xref: /openbmc/linux/security/selinux/ss/services.c (revision f15cbe6f1a4b4d9df59142fc8e4abb973302cf44)
1 /*
2  * Implementation of the security services.
3  *
4  * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5  *	     James Morris <jmorris@redhat.com>
6  *
7  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8  *
9  *	Support for enhanced MLS infrastructure.
10  *	Support for context based audit filters.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *	Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul.moore@hp.com>
17  *
18  *      Added support for NetLabel
19  *      Added support for the policy capability bitmap
20  *
21  * Updated: Chad Sellers <csellers@tresys.com>
22  *
23  *  Added validation of kernel classes and permissions
24  *
25  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
26  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
27  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
28  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
29  *	This program is free software; you can redistribute it and/or modify
30  *	it under the terms of the GNU General Public License as published by
31  *	the Free Software Foundation, version 2.
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/string.h>
36 #include <linux/spinlock.h>
37 #include <linux/rcupdate.h>
38 #include <linux/errno.h>
39 #include <linux/in.h>
40 #include <linux/sched.h>
41 #include <linux/audit.h>
42 #include <linux/mutex.h>
43 #include <linux/selinux.h>
44 #include <net/netlabel.h>
45 
46 #include "flask.h"
47 #include "avc.h"
48 #include "avc_ss.h"
49 #include "security.h"
50 #include "context.h"
51 #include "policydb.h"
52 #include "sidtab.h"
53 #include "services.h"
54 #include "conditional.h"
55 #include "mls.h"
56 #include "objsec.h"
57 #include "netlabel.h"
58 #include "xfrm.h"
59 #include "ebitmap.h"
60 #include "audit.h"
61 
62 extern void selnl_notify_policyload(u32 seqno);
63 unsigned int policydb_loaded_version;
64 
65 int selinux_policycap_netpeer;
66 int selinux_policycap_openperm;
67 
68 /*
69  * This is declared in avc.c
70  */
71 extern const struct selinux_class_perm selinux_class_perm;
72 
73 static DEFINE_RWLOCK(policy_rwlock);
74 
75 static struct sidtab sidtab;
76 struct policydb policydb;
77 int ss_initialized;
78 
79 /*
80  * The largest sequence number that has been used when
81  * providing an access decision to the access vector cache.
82  * The sequence number only changes when a policy change
83  * occurs.
84  */
85 static u32 latest_granting;
86 
87 /* Forward declaration. */
88 static int context_struct_to_string(struct context *context, char **scontext,
89 				    u32 *scontext_len);
90 
91 /*
92  * Return the boolean value of a constraint expression
93  * when it is applied to the specified source and target
94  * security contexts.
95  *
96  * xcontext is a special beast...  It is used by the validatetrans rules
97  * only.  For these rules, scontext is the context before the transition,
98  * tcontext is the context after the transition, and xcontext is the context
99  * of the process performing the transition.  All other callers of
100  * constraint_expr_eval should pass in NULL for xcontext.
101  */
102 static int constraint_expr_eval(struct context *scontext,
103 				struct context *tcontext,
104 				struct context *xcontext,
105 				struct constraint_expr *cexpr)
106 {
107 	u32 val1, val2;
108 	struct context *c;
109 	struct role_datum *r1, *r2;
110 	struct mls_level *l1, *l2;
111 	struct constraint_expr *e;
112 	int s[CEXPR_MAXDEPTH];
113 	int sp = -1;
114 
115 	for (e = cexpr; e; e = e->next) {
116 		switch (e->expr_type) {
117 		case CEXPR_NOT:
118 			BUG_ON(sp < 0);
119 			s[sp] = !s[sp];
120 			break;
121 		case CEXPR_AND:
122 			BUG_ON(sp < 1);
123 			sp--;
124 			s[sp] &= s[sp+1];
125 			break;
126 		case CEXPR_OR:
127 			BUG_ON(sp < 1);
128 			sp--;
129 			s[sp] |= s[sp+1];
130 			break;
131 		case CEXPR_ATTR:
132 			if (sp == (CEXPR_MAXDEPTH-1))
133 				return 0;
134 			switch (e->attr) {
135 			case CEXPR_USER:
136 				val1 = scontext->user;
137 				val2 = tcontext->user;
138 				break;
139 			case CEXPR_TYPE:
140 				val1 = scontext->type;
141 				val2 = tcontext->type;
142 				break;
143 			case CEXPR_ROLE:
144 				val1 = scontext->role;
145 				val2 = tcontext->role;
146 				r1 = policydb.role_val_to_struct[val1 - 1];
147 				r2 = policydb.role_val_to_struct[val2 - 1];
148 				switch (e->op) {
149 				case CEXPR_DOM:
150 					s[++sp] = ebitmap_get_bit(&r1->dominates,
151 								  val2 - 1);
152 					continue;
153 				case CEXPR_DOMBY:
154 					s[++sp] = ebitmap_get_bit(&r2->dominates,
155 								  val1 - 1);
156 					continue;
157 				case CEXPR_INCOMP:
158 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
159 								    val2 - 1) &&
160 						   !ebitmap_get_bit(&r2->dominates,
161 								    val1 - 1));
162 					continue;
163 				default:
164 					break;
165 				}
166 				break;
167 			case CEXPR_L1L2:
168 				l1 = &(scontext->range.level[0]);
169 				l2 = &(tcontext->range.level[0]);
170 				goto mls_ops;
171 			case CEXPR_L1H2:
172 				l1 = &(scontext->range.level[0]);
173 				l2 = &(tcontext->range.level[1]);
174 				goto mls_ops;
175 			case CEXPR_H1L2:
176 				l1 = &(scontext->range.level[1]);
177 				l2 = &(tcontext->range.level[0]);
178 				goto mls_ops;
179 			case CEXPR_H1H2:
180 				l1 = &(scontext->range.level[1]);
181 				l2 = &(tcontext->range.level[1]);
182 				goto mls_ops;
183 			case CEXPR_L1H1:
184 				l1 = &(scontext->range.level[0]);
185 				l2 = &(scontext->range.level[1]);
186 				goto mls_ops;
187 			case CEXPR_L2H2:
188 				l1 = &(tcontext->range.level[0]);
189 				l2 = &(tcontext->range.level[1]);
190 				goto mls_ops;
191 mls_ops:
192 			switch (e->op) {
193 			case CEXPR_EQ:
194 				s[++sp] = mls_level_eq(l1, l2);
195 				continue;
196 			case CEXPR_NEQ:
197 				s[++sp] = !mls_level_eq(l1, l2);
198 				continue;
199 			case CEXPR_DOM:
200 				s[++sp] = mls_level_dom(l1, l2);
201 				continue;
202 			case CEXPR_DOMBY:
203 				s[++sp] = mls_level_dom(l2, l1);
204 				continue;
205 			case CEXPR_INCOMP:
206 				s[++sp] = mls_level_incomp(l2, l1);
207 				continue;
208 			default:
209 				BUG();
210 				return 0;
211 			}
212 			break;
213 			default:
214 				BUG();
215 				return 0;
216 			}
217 
218 			switch (e->op) {
219 			case CEXPR_EQ:
220 				s[++sp] = (val1 == val2);
221 				break;
222 			case CEXPR_NEQ:
223 				s[++sp] = (val1 != val2);
224 				break;
225 			default:
226 				BUG();
227 				return 0;
228 			}
229 			break;
230 		case CEXPR_NAMES:
231 			if (sp == (CEXPR_MAXDEPTH-1))
232 				return 0;
233 			c = scontext;
234 			if (e->attr & CEXPR_TARGET)
235 				c = tcontext;
236 			else if (e->attr & CEXPR_XTARGET) {
237 				c = xcontext;
238 				if (!c) {
239 					BUG();
240 					return 0;
241 				}
242 			}
243 			if (e->attr & CEXPR_USER)
244 				val1 = c->user;
245 			else if (e->attr & CEXPR_ROLE)
246 				val1 = c->role;
247 			else if (e->attr & CEXPR_TYPE)
248 				val1 = c->type;
249 			else {
250 				BUG();
251 				return 0;
252 			}
253 
254 			switch (e->op) {
255 			case CEXPR_EQ:
256 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
257 				break;
258 			case CEXPR_NEQ:
259 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
260 				break;
261 			default:
262 				BUG();
263 				return 0;
264 			}
265 			break;
266 		default:
267 			BUG();
268 			return 0;
269 		}
270 	}
271 
272 	BUG_ON(sp != 0);
273 	return s[0];
274 }
275 
276 /*
277  * Compute access vectors based on a context structure pair for
278  * the permissions in a particular class.
279  */
280 static int context_struct_compute_av(struct context *scontext,
281 				     struct context *tcontext,
282 				     u16 tclass,
283 				     u32 requested,
284 				     struct av_decision *avd)
285 {
286 	struct constraint_node *constraint;
287 	struct role_allow *ra;
288 	struct avtab_key avkey;
289 	struct avtab_node *node;
290 	struct class_datum *tclass_datum;
291 	struct ebitmap *sattr, *tattr;
292 	struct ebitmap_node *snode, *tnode;
293 	const struct selinux_class_perm *kdefs = &selinux_class_perm;
294 	unsigned int i, j;
295 
296 	/*
297 	 * Remap extended Netlink classes for old policy versions.
298 	 * Do this here rather than socket_type_to_security_class()
299 	 * in case a newer policy version is loaded, allowing sockets
300 	 * to remain in the correct class.
301 	 */
302 	if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
303 		if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
304 		    tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
305 			tclass = SECCLASS_NETLINK_SOCKET;
306 
307 	/*
308 	 * Initialize the access vectors to the default values.
309 	 */
310 	avd->allowed = 0;
311 	avd->decided = 0xffffffff;
312 	avd->auditallow = 0;
313 	avd->auditdeny = 0xffffffff;
314 	avd->seqno = latest_granting;
315 
316 	/*
317 	 * Check for all the invalid cases.
318 	 * - tclass 0
319 	 * - tclass > policy and > kernel
320 	 * - tclass > policy but is a userspace class
321 	 * - tclass > policy but we do not allow unknowns
322 	 */
323 	if (unlikely(!tclass))
324 		goto inval_class;
325 	if (unlikely(tclass > policydb.p_classes.nprim))
326 		if (tclass > kdefs->cts_len ||
327 		    !kdefs->class_to_string[tclass] ||
328 		    !policydb.allow_unknown)
329 			goto inval_class;
330 
331 	/*
332 	 * Kernel class and we allow unknown so pad the allow decision
333 	 * the pad will be all 1 for unknown classes.
334 	 */
335 	if (tclass <= kdefs->cts_len && policydb.allow_unknown)
336 		avd->allowed = policydb.undefined_perms[tclass - 1];
337 
338 	/*
339 	 * Not in policy. Since decision is completed (all 1 or all 0) return.
340 	 */
341 	if (unlikely(tclass > policydb.p_classes.nprim))
342 		return 0;
343 
344 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
345 
346 	/*
347 	 * If a specific type enforcement rule was defined for
348 	 * this permission check, then use it.
349 	 */
350 	avkey.target_class = tclass;
351 	avkey.specified = AVTAB_AV;
352 	sattr = &policydb.type_attr_map[scontext->type - 1];
353 	tattr = &policydb.type_attr_map[tcontext->type - 1];
354 	ebitmap_for_each_positive_bit(sattr, snode, i) {
355 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
356 			avkey.source_type = i + 1;
357 			avkey.target_type = j + 1;
358 			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
359 			     node != NULL;
360 			     node = avtab_search_node_next(node, avkey.specified)) {
361 				if (node->key.specified == AVTAB_ALLOWED)
362 					avd->allowed |= node->datum.data;
363 				else if (node->key.specified == AVTAB_AUDITALLOW)
364 					avd->auditallow |= node->datum.data;
365 				else if (node->key.specified == AVTAB_AUDITDENY)
366 					avd->auditdeny &= node->datum.data;
367 			}
368 
369 			/* Check conditional av table for additional permissions */
370 			cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
371 
372 		}
373 	}
374 
375 	/*
376 	 * Remove any permissions prohibited by a constraint (this includes
377 	 * the MLS policy).
378 	 */
379 	constraint = tclass_datum->constraints;
380 	while (constraint) {
381 		if ((constraint->permissions & (avd->allowed)) &&
382 		    !constraint_expr_eval(scontext, tcontext, NULL,
383 					  constraint->expr)) {
384 			avd->allowed = (avd->allowed) & ~(constraint->permissions);
385 		}
386 		constraint = constraint->next;
387 	}
388 
389 	/*
390 	 * If checking process transition permission and the
391 	 * role is changing, then check the (current_role, new_role)
392 	 * pair.
393 	 */
394 	if (tclass == SECCLASS_PROCESS &&
395 	    (avd->allowed & (PROCESS__TRANSITION | PROCESS__DYNTRANSITION)) &&
396 	    scontext->role != tcontext->role) {
397 		for (ra = policydb.role_allow; ra; ra = ra->next) {
398 			if (scontext->role == ra->role &&
399 			    tcontext->role == ra->new_role)
400 				break;
401 		}
402 		if (!ra)
403 			avd->allowed = (avd->allowed) & ~(PROCESS__TRANSITION |
404 							PROCESS__DYNTRANSITION);
405 	}
406 
407 	return 0;
408 
409 inval_class:
410 	if (!tclass || tclass > kdefs->cts_len ||
411 	    !kdefs->class_to_string[tclass]) {
412 		if (printk_ratelimit())
413 			printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
414 			       __func__, tclass);
415 		return -EINVAL;
416 	}
417 
418 	/*
419 	 * Known to the kernel, but not to the policy.
420 	 * Handle as a denial (allowed is 0).
421 	 */
422 	return 0;
423 }
424 
425 /*
426  * Given a sid find if the type has the permissive flag set
427  */
428 int security_permissive_sid(u32 sid)
429 {
430 	struct context *context;
431 	u32 type;
432 	int rc;
433 
434 	read_lock(&policy_rwlock);
435 
436 	context = sidtab_search(&sidtab, sid);
437 	BUG_ON(!context);
438 
439 	type = context->type;
440 	/*
441 	 * we are intentionally using type here, not type-1, the 0th bit may
442 	 * someday indicate that we are globally setting permissive in policy.
443 	 */
444 	rc = ebitmap_get_bit(&policydb.permissive_map, type);
445 
446 	read_unlock(&policy_rwlock);
447 	return rc;
448 }
449 
450 static int security_validtrans_handle_fail(struct context *ocontext,
451 					   struct context *ncontext,
452 					   struct context *tcontext,
453 					   u16 tclass)
454 {
455 	char *o = NULL, *n = NULL, *t = NULL;
456 	u32 olen, nlen, tlen;
457 
458 	if (context_struct_to_string(ocontext, &o, &olen) < 0)
459 		goto out;
460 	if (context_struct_to_string(ncontext, &n, &nlen) < 0)
461 		goto out;
462 	if (context_struct_to_string(tcontext, &t, &tlen) < 0)
463 		goto out;
464 	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
465 		  "security_validate_transition:  denied for"
466 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
467 		  o, n, t, policydb.p_class_val_to_name[tclass-1]);
468 out:
469 	kfree(o);
470 	kfree(n);
471 	kfree(t);
472 
473 	if (!selinux_enforcing)
474 		return 0;
475 	return -EPERM;
476 }
477 
478 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
479 				 u16 tclass)
480 {
481 	struct context *ocontext;
482 	struct context *ncontext;
483 	struct context *tcontext;
484 	struct class_datum *tclass_datum;
485 	struct constraint_node *constraint;
486 	int rc = 0;
487 
488 	if (!ss_initialized)
489 		return 0;
490 
491 	read_lock(&policy_rwlock);
492 
493 	/*
494 	 * Remap extended Netlink classes for old policy versions.
495 	 * Do this here rather than socket_type_to_security_class()
496 	 * in case a newer policy version is loaded, allowing sockets
497 	 * to remain in the correct class.
498 	 */
499 	if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
500 		if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
501 		    tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
502 			tclass = SECCLASS_NETLINK_SOCKET;
503 
504 	if (!tclass || tclass > policydb.p_classes.nprim) {
505 		printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
506 			__func__, tclass);
507 		rc = -EINVAL;
508 		goto out;
509 	}
510 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
511 
512 	ocontext = sidtab_search(&sidtab, oldsid);
513 	if (!ocontext) {
514 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
515 			__func__, oldsid);
516 		rc = -EINVAL;
517 		goto out;
518 	}
519 
520 	ncontext = sidtab_search(&sidtab, newsid);
521 	if (!ncontext) {
522 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
523 			__func__, newsid);
524 		rc = -EINVAL;
525 		goto out;
526 	}
527 
528 	tcontext = sidtab_search(&sidtab, tasksid);
529 	if (!tcontext) {
530 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
531 			__func__, tasksid);
532 		rc = -EINVAL;
533 		goto out;
534 	}
535 
536 	constraint = tclass_datum->validatetrans;
537 	while (constraint) {
538 		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
539 					  constraint->expr)) {
540 			rc = security_validtrans_handle_fail(ocontext, ncontext,
541 							     tcontext, tclass);
542 			goto out;
543 		}
544 		constraint = constraint->next;
545 	}
546 
547 out:
548 	read_unlock(&policy_rwlock);
549 	return rc;
550 }
551 
552 /**
553  * security_compute_av - Compute access vector decisions.
554  * @ssid: source security identifier
555  * @tsid: target security identifier
556  * @tclass: target security class
557  * @requested: requested permissions
558  * @avd: access vector decisions
559  *
560  * Compute a set of access vector decisions based on the
561  * SID pair (@ssid, @tsid) for the permissions in @tclass.
562  * Return -%EINVAL if any of the parameters are invalid or %0
563  * if the access vector decisions were computed successfully.
564  */
565 int security_compute_av(u32 ssid,
566 			u32 tsid,
567 			u16 tclass,
568 			u32 requested,
569 			struct av_decision *avd)
570 {
571 	struct context *scontext = NULL, *tcontext = NULL;
572 	int rc = 0;
573 
574 	if (!ss_initialized) {
575 		avd->allowed = 0xffffffff;
576 		avd->decided = 0xffffffff;
577 		avd->auditallow = 0;
578 		avd->auditdeny = 0xffffffff;
579 		avd->seqno = latest_granting;
580 		return 0;
581 	}
582 
583 	read_lock(&policy_rwlock);
584 
585 	scontext = sidtab_search(&sidtab, ssid);
586 	if (!scontext) {
587 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
588 		       __func__, ssid);
589 		rc = -EINVAL;
590 		goto out;
591 	}
592 	tcontext = sidtab_search(&sidtab, tsid);
593 	if (!tcontext) {
594 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
595 		       __func__, tsid);
596 		rc = -EINVAL;
597 		goto out;
598 	}
599 
600 	rc = context_struct_compute_av(scontext, tcontext, tclass,
601 				       requested, avd);
602 out:
603 	read_unlock(&policy_rwlock);
604 	return rc;
605 }
606 
607 /*
608  * Write the security context string representation of
609  * the context structure `context' into a dynamically
610  * allocated string of the correct size.  Set `*scontext'
611  * to point to this string and set `*scontext_len' to
612  * the length of the string.
613  */
614 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
615 {
616 	char *scontextp;
617 
618 	*scontext = NULL;
619 	*scontext_len = 0;
620 
621 	if (context->len) {
622 		*scontext_len = context->len;
623 		*scontext = kstrdup(context->str, GFP_ATOMIC);
624 		if (!(*scontext))
625 			return -ENOMEM;
626 		return 0;
627 	}
628 
629 	/* Compute the size of the context. */
630 	*scontext_len += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1;
631 	*scontext_len += strlen(policydb.p_role_val_to_name[context->role - 1]) + 1;
632 	*scontext_len += strlen(policydb.p_type_val_to_name[context->type - 1]) + 1;
633 	*scontext_len += mls_compute_context_len(context);
634 
635 	/* Allocate space for the context; caller must free this space. */
636 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
637 	if (!scontextp)
638 		return -ENOMEM;
639 	*scontext = scontextp;
640 
641 	/*
642 	 * Copy the user name, role name and type name into the context.
643 	 */
644 	sprintf(scontextp, "%s:%s:%s",
645 		policydb.p_user_val_to_name[context->user - 1],
646 		policydb.p_role_val_to_name[context->role - 1],
647 		policydb.p_type_val_to_name[context->type - 1]);
648 	scontextp += strlen(policydb.p_user_val_to_name[context->user - 1]) +
649 		     1 + strlen(policydb.p_role_val_to_name[context->role - 1]) +
650 		     1 + strlen(policydb.p_type_val_to_name[context->type - 1]);
651 
652 	mls_sid_to_context(context, &scontextp);
653 
654 	*scontextp = 0;
655 
656 	return 0;
657 }
658 
659 #include "initial_sid_to_string.h"
660 
661 const char *security_get_initial_sid_context(u32 sid)
662 {
663 	if (unlikely(sid > SECINITSID_NUM))
664 		return NULL;
665 	return initial_sid_to_string[sid];
666 }
667 
668 static int security_sid_to_context_core(u32 sid, char **scontext,
669 					u32 *scontext_len, int force)
670 {
671 	struct context *context;
672 	int rc = 0;
673 
674 	*scontext = NULL;
675 	*scontext_len  = 0;
676 
677 	if (!ss_initialized) {
678 		if (sid <= SECINITSID_NUM) {
679 			char *scontextp;
680 
681 			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
682 			scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
683 			if (!scontextp) {
684 				rc = -ENOMEM;
685 				goto out;
686 			}
687 			strcpy(scontextp, initial_sid_to_string[sid]);
688 			*scontext = scontextp;
689 			goto out;
690 		}
691 		printk(KERN_ERR "SELinux: %s:  called before initial "
692 		       "load_policy on unknown SID %d\n", __func__, sid);
693 		rc = -EINVAL;
694 		goto out;
695 	}
696 	read_lock(&policy_rwlock);
697 	if (force)
698 		context = sidtab_search_force(&sidtab, sid);
699 	else
700 		context = sidtab_search(&sidtab, sid);
701 	if (!context) {
702 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
703 			__func__, sid);
704 		rc = -EINVAL;
705 		goto out_unlock;
706 	}
707 	rc = context_struct_to_string(context, scontext, scontext_len);
708 out_unlock:
709 	read_unlock(&policy_rwlock);
710 out:
711 	return rc;
712 
713 }
714 
715 /**
716  * security_sid_to_context - Obtain a context for a given SID.
717  * @sid: security identifier, SID
718  * @scontext: security context
719  * @scontext_len: length in bytes
720  *
721  * Write the string representation of the context associated with @sid
722  * into a dynamically allocated string of the correct size.  Set @scontext
723  * to point to this string and set @scontext_len to the length of the string.
724  */
725 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
726 {
727 	return security_sid_to_context_core(sid, scontext, scontext_len, 0);
728 }
729 
730 int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
731 {
732 	return security_sid_to_context_core(sid, scontext, scontext_len, 1);
733 }
734 
735 /*
736  * Caveat:  Mutates scontext.
737  */
738 static int string_to_context_struct(struct policydb *pol,
739 				    struct sidtab *sidtabp,
740 				    char *scontext,
741 				    u32 scontext_len,
742 				    struct context *ctx,
743 				    u32 def_sid)
744 {
745 	struct role_datum *role;
746 	struct type_datum *typdatum;
747 	struct user_datum *usrdatum;
748 	char *scontextp, *p, oldc;
749 	int rc = 0;
750 
751 	context_init(ctx);
752 
753 	/* Parse the security context. */
754 
755 	rc = -EINVAL;
756 	scontextp = (char *) scontext;
757 
758 	/* Extract the user. */
759 	p = scontextp;
760 	while (*p && *p != ':')
761 		p++;
762 
763 	if (*p == 0)
764 		goto out;
765 
766 	*p++ = 0;
767 
768 	usrdatum = hashtab_search(pol->p_users.table, scontextp);
769 	if (!usrdatum)
770 		goto out;
771 
772 	ctx->user = usrdatum->value;
773 
774 	/* Extract role. */
775 	scontextp = p;
776 	while (*p && *p != ':')
777 		p++;
778 
779 	if (*p == 0)
780 		goto out;
781 
782 	*p++ = 0;
783 
784 	role = hashtab_search(pol->p_roles.table, scontextp);
785 	if (!role)
786 		goto out;
787 	ctx->role = role->value;
788 
789 	/* Extract type. */
790 	scontextp = p;
791 	while (*p && *p != ':')
792 		p++;
793 	oldc = *p;
794 	*p++ = 0;
795 
796 	typdatum = hashtab_search(pol->p_types.table, scontextp);
797 	if (!typdatum)
798 		goto out;
799 
800 	ctx->type = typdatum->value;
801 
802 	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
803 	if (rc)
804 		goto out;
805 
806 	if ((p - scontext) < scontext_len) {
807 		rc = -EINVAL;
808 		goto out;
809 	}
810 
811 	/* Check the validity of the new context. */
812 	if (!policydb_context_isvalid(pol, ctx)) {
813 		rc = -EINVAL;
814 		context_destroy(ctx);
815 		goto out;
816 	}
817 	rc = 0;
818 out:
819 	return rc;
820 }
821 
822 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
823 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
824 					int force)
825 {
826 	char *scontext2, *str = NULL;
827 	struct context context;
828 	int rc = 0;
829 
830 	if (!ss_initialized) {
831 		int i;
832 
833 		for (i = 1; i < SECINITSID_NUM; i++) {
834 			if (!strcmp(initial_sid_to_string[i], scontext)) {
835 				*sid = i;
836 				return 0;
837 			}
838 		}
839 		*sid = SECINITSID_KERNEL;
840 		return 0;
841 	}
842 	*sid = SECSID_NULL;
843 
844 	/* Copy the string so that we can modify the copy as we parse it. */
845 	scontext2 = kmalloc(scontext_len+1, gfp_flags);
846 	if (!scontext2)
847 		return -ENOMEM;
848 	memcpy(scontext2, scontext, scontext_len);
849 	scontext2[scontext_len] = 0;
850 
851 	if (force) {
852 		/* Save another copy for storing in uninterpreted form */
853 		str = kstrdup(scontext2, gfp_flags);
854 		if (!str) {
855 			kfree(scontext2);
856 			return -ENOMEM;
857 		}
858 	}
859 
860 	read_lock(&policy_rwlock);
861 	rc = string_to_context_struct(&policydb, &sidtab,
862 				      scontext2, scontext_len,
863 				      &context, def_sid);
864 	if (rc == -EINVAL && force) {
865 		context.str = str;
866 		context.len = scontext_len;
867 		str = NULL;
868 	} else if (rc)
869 		goto out;
870 	rc = sidtab_context_to_sid(&sidtab, &context, sid);
871 	if (rc)
872 		context_destroy(&context);
873 out:
874 	read_unlock(&policy_rwlock);
875 	kfree(scontext2);
876 	kfree(str);
877 	return rc;
878 }
879 
880 /**
881  * security_context_to_sid - Obtain a SID for a given security context.
882  * @scontext: security context
883  * @scontext_len: length in bytes
884  * @sid: security identifier, SID
885  *
886  * Obtains a SID associated with the security context that
887  * has the string representation specified by @scontext.
888  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
889  * memory is available, or 0 on success.
890  */
891 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
892 {
893 	return security_context_to_sid_core(scontext, scontext_len,
894 					    sid, SECSID_NULL, GFP_KERNEL, 0);
895 }
896 
897 /**
898  * security_context_to_sid_default - Obtain a SID for a given security context,
899  * falling back to specified default if needed.
900  *
901  * @scontext: security context
902  * @scontext_len: length in bytes
903  * @sid: security identifier, SID
904  * @def_sid: default SID to assign on error
905  *
906  * Obtains a SID associated with the security context that
907  * has the string representation specified by @scontext.
908  * The default SID is passed to the MLS layer to be used to allow
909  * kernel labeling of the MLS field if the MLS field is not present
910  * (for upgrading to MLS without full relabel).
911  * Implicitly forces adding of the context even if it cannot be mapped yet.
912  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
913  * memory is available, or 0 on success.
914  */
915 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
916 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
917 {
918 	return security_context_to_sid_core(scontext, scontext_len,
919 					    sid, def_sid, gfp_flags, 1);
920 }
921 
922 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
923 				  u32 *sid)
924 {
925 	return security_context_to_sid_core(scontext, scontext_len,
926 					    sid, SECSID_NULL, GFP_KERNEL, 1);
927 }
928 
929 static int compute_sid_handle_invalid_context(
930 	struct context *scontext,
931 	struct context *tcontext,
932 	u16 tclass,
933 	struct context *newcontext)
934 {
935 	char *s = NULL, *t = NULL, *n = NULL;
936 	u32 slen, tlen, nlen;
937 
938 	if (context_struct_to_string(scontext, &s, &slen) < 0)
939 		goto out;
940 	if (context_struct_to_string(tcontext, &t, &tlen) < 0)
941 		goto out;
942 	if (context_struct_to_string(newcontext, &n, &nlen) < 0)
943 		goto out;
944 	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
945 		  "security_compute_sid:  invalid context %s"
946 		  " for scontext=%s"
947 		  " tcontext=%s"
948 		  " tclass=%s",
949 		  n, s, t, policydb.p_class_val_to_name[tclass-1]);
950 out:
951 	kfree(s);
952 	kfree(t);
953 	kfree(n);
954 	if (!selinux_enforcing)
955 		return 0;
956 	return -EACCES;
957 }
958 
959 static int security_compute_sid(u32 ssid,
960 				u32 tsid,
961 				u16 tclass,
962 				u32 specified,
963 				u32 *out_sid)
964 {
965 	struct context *scontext = NULL, *tcontext = NULL, newcontext;
966 	struct role_trans *roletr = NULL;
967 	struct avtab_key avkey;
968 	struct avtab_datum *avdatum;
969 	struct avtab_node *node;
970 	int rc = 0;
971 
972 	if (!ss_initialized) {
973 		switch (tclass) {
974 		case SECCLASS_PROCESS:
975 			*out_sid = ssid;
976 			break;
977 		default:
978 			*out_sid = tsid;
979 			break;
980 		}
981 		goto out;
982 	}
983 
984 	context_init(&newcontext);
985 
986 	read_lock(&policy_rwlock);
987 
988 	scontext = sidtab_search(&sidtab, ssid);
989 	if (!scontext) {
990 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
991 		       __func__, ssid);
992 		rc = -EINVAL;
993 		goto out_unlock;
994 	}
995 	tcontext = sidtab_search(&sidtab, tsid);
996 	if (!tcontext) {
997 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
998 		       __func__, tsid);
999 		rc = -EINVAL;
1000 		goto out_unlock;
1001 	}
1002 
1003 	/* Set the user identity. */
1004 	switch (specified) {
1005 	case AVTAB_TRANSITION:
1006 	case AVTAB_CHANGE:
1007 		/* Use the process user identity. */
1008 		newcontext.user = scontext->user;
1009 		break;
1010 	case AVTAB_MEMBER:
1011 		/* Use the related object owner. */
1012 		newcontext.user = tcontext->user;
1013 		break;
1014 	}
1015 
1016 	/* Set the role and type to default values. */
1017 	switch (tclass) {
1018 	case SECCLASS_PROCESS:
1019 		/* Use the current role and type of process. */
1020 		newcontext.role = scontext->role;
1021 		newcontext.type = scontext->type;
1022 		break;
1023 	default:
1024 		/* Use the well-defined object role. */
1025 		newcontext.role = OBJECT_R_VAL;
1026 		/* Use the type of the related object. */
1027 		newcontext.type = tcontext->type;
1028 	}
1029 
1030 	/* Look for a type transition/member/change rule. */
1031 	avkey.source_type = scontext->type;
1032 	avkey.target_type = tcontext->type;
1033 	avkey.target_class = tclass;
1034 	avkey.specified = specified;
1035 	avdatum = avtab_search(&policydb.te_avtab, &avkey);
1036 
1037 	/* If no permanent rule, also check for enabled conditional rules */
1038 	if (!avdatum) {
1039 		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1040 		for (; node != NULL; node = avtab_search_node_next(node, specified)) {
1041 			if (node->key.specified & AVTAB_ENABLED) {
1042 				avdatum = &node->datum;
1043 				break;
1044 			}
1045 		}
1046 	}
1047 
1048 	if (avdatum) {
1049 		/* Use the type from the type transition/member/change rule. */
1050 		newcontext.type = avdatum->data;
1051 	}
1052 
1053 	/* Check for class-specific changes. */
1054 	switch (tclass) {
1055 	case SECCLASS_PROCESS:
1056 		if (specified & AVTAB_TRANSITION) {
1057 			/* Look for a role transition rule. */
1058 			for (roletr = policydb.role_tr; roletr;
1059 			     roletr = roletr->next) {
1060 				if (roletr->role == scontext->role &&
1061 				    roletr->type == tcontext->type) {
1062 					/* Use the role transition rule. */
1063 					newcontext.role = roletr->new_role;
1064 					break;
1065 				}
1066 			}
1067 		}
1068 		break;
1069 	default:
1070 		break;
1071 	}
1072 
1073 	/* Set the MLS attributes.
1074 	   This is done last because it may allocate memory. */
1075 	rc = mls_compute_sid(scontext, tcontext, tclass, specified, &newcontext);
1076 	if (rc)
1077 		goto out_unlock;
1078 
1079 	/* Check the validity of the context. */
1080 	if (!policydb_context_isvalid(&policydb, &newcontext)) {
1081 		rc = compute_sid_handle_invalid_context(scontext,
1082 							tcontext,
1083 							tclass,
1084 							&newcontext);
1085 		if (rc)
1086 			goto out_unlock;
1087 	}
1088 	/* Obtain the sid for the context. */
1089 	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1090 out_unlock:
1091 	read_unlock(&policy_rwlock);
1092 	context_destroy(&newcontext);
1093 out:
1094 	return rc;
1095 }
1096 
1097 /**
1098  * security_transition_sid - Compute the SID for a new subject/object.
1099  * @ssid: source security identifier
1100  * @tsid: target security identifier
1101  * @tclass: target security class
1102  * @out_sid: security identifier for new subject/object
1103  *
1104  * Compute a SID to use for labeling a new subject or object in the
1105  * class @tclass based on a SID pair (@ssid, @tsid).
1106  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1107  * if insufficient memory is available, or %0 if the new SID was
1108  * computed successfully.
1109  */
1110 int security_transition_sid(u32 ssid,
1111 			    u32 tsid,
1112 			    u16 tclass,
1113 			    u32 *out_sid)
1114 {
1115 	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, out_sid);
1116 }
1117 
1118 /**
1119  * security_member_sid - Compute the SID for member selection.
1120  * @ssid: source security identifier
1121  * @tsid: target security identifier
1122  * @tclass: target security class
1123  * @out_sid: security identifier for selected member
1124  *
1125  * Compute a SID to use when selecting a member of a polyinstantiated
1126  * object of class @tclass based on a SID pair (@ssid, @tsid).
1127  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1128  * if insufficient memory is available, or %0 if the SID was
1129  * computed successfully.
1130  */
1131 int security_member_sid(u32 ssid,
1132 			u32 tsid,
1133 			u16 tclass,
1134 			u32 *out_sid)
1135 {
1136 	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid);
1137 }
1138 
1139 /**
1140  * security_change_sid - Compute the SID for object relabeling.
1141  * @ssid: source security identifier
1142  * @tsid: target security identifier
1143  * @tclass: target security class
1144  * @out_sid: security identifier for selected member
1145  *
1146  * Compute a SID to use for relabeling an object of class @tclass
1147  * based on a SID pair (@ssid, @tsid).
1148  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1149  * if insufficient memory is available, or %0 if the SID was
1150  * computed successfully.
1151  */
1152 int security_change_sid(u32 ssid,
1153 			u32 tsid,
1154 			u16 tclass,
1155 			u32 *out_sid)
1156 {
1157 	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid);
1158 }
1159 
1160 /*
1161  * Verify that each kernel class that is defined in the
1162  * policy is correct
1163  */
1164 static int validate_classes(struct policydb *p)
1165 {
1166 	int i, j;
1167 	struct class_datum *cladatum;
1168 	struct perm_datum *perdatum;
1169 	u32 nprim, tmp, common_pts_len, perm_val, pol_val;
1170 	u16 class_val;
1171 	const struct selinux_class_perm *kdefs = &selinux_class_perm;
1172 	const char *def_class, *def_perm, *pol_class;
1173 	struct symtab *perms;
1174 	bool print_unknown_handle = 0;
1175 
1176 	if (p->allow_unknown) {
1177 		u32 num_classes = kdefs->cts_len;
1178 		p->undefined_perms = kcalloc(num_classes, sizeof(u32), GFP_KERNEL);
1179 		if (!p->undefined_perms)
1180 			return -ENOMEM;
1181 	}
1182 
1183 	for (i = 1; i < kdefs->cts_len; i++) {
1184 		def_class = kdefs->class_to_string[i];
1185 		if (!def_class)
1186 			continue;
1187 		if (i > p->p_classes.nprim) {
1188 			printk(KERN_INFO
1189 			       "SELinux:  class %s not defined in policy\n",
1190 			       def_class);
1191 			if (p->reject_unknown)
1192 				return -EINVAL;
1193 			if (p->allow_unknown)
1194 				p->undefined_perms[i-1] = ~0U;
1195 			print_unknown_handle = 1;
1196 			continue;
1197 		}
1198 		pol_class = p->p_class_val_to_name[i-1];
1199 		if (strcmp(pol_class, def_class)) {
1200 			printk(KERN_ERR
1201 			       "SELinux:  class %d is incorrect, found %s but should be %s\n",
1202 			       i, pol_class, def_class);
1203 			return -EINVAL;
1204 		}
1205 	}
1206 	for (i = 0; i < kdefs->av_pts_len; i++) {
1207 		class_val = kdefs->av_perm_to_string[i].tclass;
1208 		perm_val = kdefs->av_perm_to_string[i].value;
1209 		def_perm = kdefs->av_perm_to_string[i].name;
1210 		if (class_val > p->p_classes.nprim)
1211 			continue;
1212 		pol_class = p->p_class_val_to_name[class_val-1];
1213 		cladatum = hashtab_search(p->p_classes.table, pol_class);
1214 		BUG_ON(!cladatum);
1215 		perms = &cladatum->permissions;
1216 		nprim = 1 << (perms->nprim - 1);
1217 		if (perm_val > nprim) {
1218 			printk(KERN_INFO
1219 			       "SELinux:  permission %s in class %s not defined in policy\n",
1220 			       def_perm, pol_class);
1221 			if (p->reject_unknown)
1222 				return -EINVAL;
1223 			if (p->allow_unknown)
1224 				p->undefined_perms[class_val-1] |= perm_val;
1225 			print_unknown_handle = 1;
1226 			continue;
1227 		}
1228 		perdatum = hashtab_search(perms->table, def_perm);
1229 		if (perdatum == NULL) {
1230 			printk(KERN_ERR
1231 			       "SELinux:  permission %s in class %s not found in policy, bad policy\n",
1232 			       def_perm, pol_class);
1233 			return -EINVAL;
1234 		}
1235 		pol_val = 1 << (perdatum->value - 1);
1236 		if (pol_val != perm_val) {
1237 			printk(KERN_ERR
1238 			       "SELinux:  permission %s in class %s has incorrect value\n",
1239 			       def_perm, pol_class);
1240 			return -EINVAL;
1241 		}
1242 	}
1243 	for (i = 0; i < kdefs->av_inherit_len; i++) {
1244 		class_val = kdefs->av_inherit[i].tclass;
1245 		if (class_val > p->p_classes.nprim)
1246 			continue;
1247 		pol_class = p->p_class_val_to_name[class_val-1];
1248 		cladatum = hashtab_search(p->p_classes.table, pol_class);
1249 		BUG_ON(!cladatum);
1250 		if (!cladatum->comdatum) {
1251 			printk(KERN_ERR
1252 			       "SELinux:  class %s should have an inherits clause but does not\n",
1253 			       pol_class);
1254 			return -EINVAL;
1255 		}
1256 		tmp = kdefs->av_inherit[i].common_base;
1257 		common_pts_len = 0;
1258 		while (!(tmp & 0x01)) {
1259 			common_pts_len++;
1260 			tmp >>= 1;
1261 		}
1262 		perms = &cladatum->comdatum->permissions;
1263 		for (j = 0; j < common_pts_len; j++) {
1264 			def_perm = kdefs->av_inherit[i].common_pts[j];
1265 			if (j >= perms->nprim) {
1266 				printk(KERN_INFO
1267 				       "SELinux:  permission %s in class %s not defined in policy\n",
1268 				       def_perm, pol_class);
1269 				if (p->reject_unknown)
1270 					return -EINVAL;
1271 				if (p->allow_unknown)
1272 					p->undefined_perms[class_val-1] |= (1 << j);
1273 				print_unknown_handle = 1;
1274 				continue;
1275 			}
1276 			perdatum = hashtab_search(perms->table, def_perm);
1277 			if (perdatum == NULL) {
1278 				printk(KERN_ERR
1279 				       "SELinux:  permission %s in class %s not found in policy, bad policy\n",
1280 				       def_perm, pol_class);
1281 				return -EINVAL;
1282 			}
1283 			if (perdatum->value != j + 1) {
1284 				printk(KERN_ERR
1285 				       "SELinux:  permission %s in class %s has incorrect value\n",
1286 				       def_perm, pol_class);
1287 				return -EINVAL;
1288 			}
1289 		}
1290 	}
1291 	if (print_unknown_handle)
1292 		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
1293 			(security_get_allow_unknown() ? "allowed" : "denied"));
1294 	return 0;
1295 }
1296 
1297 /* Clone the SID into the new SID table. */
1298 static int clone_sid(u32 sid,
1299 		     struct context *context,
1300 		     void *arg)
1301 {
1302 	struct sidtab *s = arg;
1303 
1304 	return sidtab_insert(s, sid, context);
1305 }
1306 
1307 static inline int convert_context_handle_invalid_context(struct context *context)
1308 {
1309 	int rc = 0;
1310 
1311 	if (selinux_enforcing) {
1312 		rc = -EINVAL;
1313 	} else {
1314 		char *s;
1315 		u32 len;
1316 
1317 		if (!context_struct_to_string(context, &s, &len)) {
1318 			printk(KERN_WARNING
1319 		       "SELinux:  Context %s would be invalid if enforcing\n",
1320 			       s);
1321 			kfree(s);
1322 		}
1323 	}
1324 	return rc;
1325 }
1326 
1327 struct convert_context_args {
1328 	struct policydb *oldp;
1329 	struct policydb *newp;
1330 };
1331 
1332 /*
1333  * Convert the values in the security context
1334  * structure `c' from the values specified
1335  * in the policy `p->oldp' to the values specified
1336  * in the policy `p->newp'.  Verify that the
1337  * context is valid under the new policy.
1338  */
1339 static int convert_context(u32 key,
1340 			   struct context *c,
1341 			   void *p)
1342 {
1343 	struct convert_context_args *args;
1344 	struct context oldc;
1345 	struct role_datum *role;
1346 	struct type_datum *typdatum;
1347 	struct user_datum *usrdatum;
1348 	char *s;
1349 	u32 len;
1350 	int rc;
1351 
1352 	args = p;
1353 
1354 	if (c->str) {
1355 		struct context ctx;
1356 		s = kstrdup(c->str, GFP_KERNEL);
1357 		if (!s) {
1358 			rc = -ENOMEM;
1359 			goto out;
1360 		}
1361 		rc = string_to_context_struct(args->newp, NULL, s,
1362 					      c->len, &ctx, SECSID_NULL);
1363 		kfree(s);
1364 		if (!rc) {
1365 			printk(KERN_INFO
1366 		       "SELinux:  Context %s became valid (mapped).\n",
1367 			       c->str);
1368 			/* Replace string with mapped representation. */
1369 			kfree(c->str);
1370 			memcpy(c, &ctx, sizeof(*c));
1371 			goto out;
1372 		} else if (rc == -EINVAL) {
1373 			/* Retain string representation for later mapping. */
1374 			rc = 0;
1375 			goto out;
1376 		} else {
1377 			/* Other error condition, e.g. ENOMEM. */
1378 			printk(KERN_ERR
1379 		       "SELinux:   Unable to map context %s, rc = %d.\n",
1380 			       c->str, -rc);
1381 			goto out;
1382 		}
1383 	}
1384 
1385 	rc = context_cpy(&oldc, c);
1386 	if (rc)
1387 		goto out;
1388 
1389 	rc = -EINVAL;
1390 
1391 	/* Convert the user. */
1392 	usrdatum = hashtab_search(args->newp->p_users.table,
1393 				  args->oldp->p_user_val_to_name[c->user - 1]);
1394 	if (!usrdatum)
1395 		goto bad;
1396 	c->user = usrdatum->value;
1397 
1398 	/* Convert the role. */
1399 	role = hashtab_search(args->newp->p_roles.table,
1400 			      args->oldp->p_role_val_to_name[c->role - 1]);
1401 	if (!role)
1402 		goto bad;
1403 	c->role = role->value;
1404 
1405 	/* Convert the type. */
1406 	typdatum = hashtab_search(args->newp->p_types.table,
1407 				  args->oldp->p_type_val_to_name[c->type - 1]);
1408 	if (!typdatum)
1409 		goto bad;
1410 	c->type = typdatum->value;
1411 
1412 	rc = mls_convert_context(args->oldp, args->newp, c);
1413 	if (rc)
1414 		goto bad;
1415 
1416 	/* Check the validity of the new context. */
1417 	if (!policydb_context_isvalid(args->newp, c)) {
1418 		rc = convert_context_handle_invalid_context(&oldc);
1419 		if (rc)
1420 			goto bad;
1421 	}
1422 
1423 	context_destroy(&oldc);
1424 	rc = 0;
1425 out:
1426 	return rc;
1427 bad:
1428 	/* Map old representation to string and save it. */
1429 	if (context_struct_to_string(&oldc, &s, &len))
1430 		return -ENOMEM;
1431 	context_destroy(&oldc);
1432 	context_destroy(c);
1433 	c->str = s;
1434 	c->len = len;
1435 	printk(KERN_INFO
1436 	       "SELinux:  Context %s became invalid (unmapped).\n",
1437 	       c->str);
1438 	rc = 0;
1439 	goto out;
1440 }
1441 
1442 static void security_load_policycaps(void)
1443 {
1444 	selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1445 						  POLICYDB_CAPABILITY_NETPEER);
1446 	selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1447 						  POLICYDB_CAPABILITY_OPENPERM);
1448 }
1449 
1450 extern void selinux_complete_init(void);
1451 static int security_preserve_bools(struct policydb *p);
1452 
1453 /**
1454  * security_load_policy - Load a security policy configuration.
1455  * @data: binary policy data
1456  * @len: length of data in bytes
1457  *
1458  * Load a new set of security policy configuration data,
1459  * validate it and convert the SID table as necessary.
1460  * This function will flush the access vector cache after
1461  * loading the new policy.
1462  */
1463 int security_load_policy(void *data, size_t len)
1464 {
1465 	struct policydb oldpolicydb, newpolicydb;
1466 	struct sidtab oldsidtab, newsidtab;
1467 	struct convert_context_args args;
1468 	u32 seqno;
1469 	int rc = 0;
1470 	struct policy_file file = { data, len }, *fp = &file;
1471 
1472 	if (!ss_initialized) {
1473 		avtab_cache_init();
1474 		if (policydb_read(&policydb, fp)) {
1475 			avtab_cache_destroy();
1476 			return -EINVAL;
1477 		}
1478 		if (policydb_load_isids(&policydb, &sidtab)) {
1479 			policydb_destroy(&policydb);
1480 			avtab_cache_destroy();
1481 			return -EINVAL;
1482 		}
1483 		/* Verify that the kernel defined classes are correct. */
1484 		if (validate_classes(&policydb)) {
1485 			printk(KERN_ERR
1486 			       "SELinux:  the definition of a class is incorrect\n");
1487 			sidtab_destroy(&sidtab);
1488 			policydb_destroy(&policydb);
1489 			avtab_cache_destroy();
1490 			return -EINVAL;
1491 		}
1492 		security_load_policycaps();
1493 		policydb_loaded_version = policydb.policyvers;
1494 		ss_initialized = 1;
1495 		seqno = ++latest_granting;
1496 		selinux_complete_init();
1497 		avc_ss_reset(seqno);
1498 		selnl_notify_policyload(seqno);
1499 		selinux_netlbl_cache_invalidate();
1500 		selinux_xfrm_notify_policyload();
1501 		return 0;
1502 	}
1503 
1504 #if 0
1505 	sidtab_hash_eval(&sidtab, "sids");
1506 #endif
1507 
1508 	if (policydb_read(&newpolicydb, fp))
1509 		return -EINVAL;
1510 
1511 	if (sidtab_init(&newsidtab)) {
1512 		policydb_destroy(&newpolicydb);
1513 		return -ENOMEM;
1514 	}
1515 
1516 	/* Verify that the kernel defined classes are correct. */
1517 	if (validate_classes(&newpolicydb)) {
1518 		printk(KERN_ERR
1519 		       "SELinux:  the definition of a class is incorrect\n");
1520 		rc = -EINVAL;
1521 		goto err;
1522 	}
1523 
1524 	rc = security_preserve_bools(&newpolicydb);
1525 	if (rc) {
1526 		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
1527 		goto err;
1528 	}
1529 
1530 	/* Clone the SID table. */
1531 	sidtab_shutdown(&sidtab);
1532 	if (sidtab_map(&sidtab, clone_sid, &newsidtab)) {
1533 		rc = -ENOMEM;
1534 		goto err;
1535 	}
1536 
1537 	/*
1538 	 * Convert the internal representations of contexts
1539 	 * in the new SID table.
1540 	 */
1541 	args.oldp = &policydb;
1542 	args.newp = &newpolicydb;
1543 	rc = sidtab_map(&newsidtab, convert_context, &args);
1544 	if (rc)
1545 		goto err;
1546 
1547 	/* Save the old policydb and SID table to free later. */
1548 	memcpy(&oldpolicydb, &policydb, sizeof policydb);
1549 	sidtab_set(&oldsidtab, &sidtab);
1550 
1551 	/* Install the new policydb and SID table. */
1552 	write_lock_irq(&policy_rwlock);
1553 	memcpy(&policydb, &newpolicydb, sizeof policydb);
1554 	sidtab_set(&sidtab, &newsidtab);
1555 	security_load_policycaps();
1556 	seqno = ++latest_granting;
1557 	policydb_loaded_version = policydb.policyvers;
1558 	write_unlock_irq(&policy_rwlock);
1559 
1560 	/* Free the old policydb and SID table. */
1561 	policydb_destroy(&oldpolicydb);
1562 	sidtab_destroy(&oldsidtab);
1563 
1564 	avc_ss_reset(seqno);
1565 	selnl_notify_policyload(seqno);
1566 	selinux_netlbl_cache_invalidate();
1567 	selinux_xfrm_notify_policyload();
1568 
1569 	return 0;
1570 
1571 err:
1572 	sidtab_destroy(&newsidtab);
1573 	policydb_destroy(&newpolicydb);
1574 	return rc;
1575 
1576 }
1577 
1578 /**
1579  * security_port_sid - Obtain the SID for a port.
1580  * @protocol: protocol number
1581  * @port: port number
1582  * @out_sid: security identifier
1583  */
1584 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
1585 {
1586 	struct ocontext *c;
1587 	int rc = 0;
1588 
1589 	read_lock(&policy_rwlock);
1590 
1591 	c = policydb.ocontexts[OCON_PORT];
1592 	while (c) {
1593 		if (c->u.port.protocol == protocol &&
1594 		    c->u.port.low_port <= port &&
1595 		    c->u.port.high_port >= port)
1596 			break;
1597 		c = c->next;
1598 	}
1599 
1600 	if (c) {
1601 		if (!c->sid[0]) {
1602 			rc = sidtab_context_to_sid(&sidtab,
1603 						   &c->context[0],
1604 						   &c->sid[0]);
1605 			if (rc)
1606 				goto out;
1607 		}
1608 		*out_sid = c->sid[0];
1609 	} else {
1610 		*out_sid = SECINITSID_PORT;
1611 	}
1612 
1613 out:
1614 	read_unlock(&policy_rwlock);
1615 	return rc;
1616 }
1617 
1618 /**
1619  * security_netif_sid - Obtain the SID for a network interface.
1620  * @name: interface name
1621  * @if_sid: interface SID
1622  */
1623 int security_netif_sid(char *name, u32 *if_sid)
1624 {
1625 	int rc = 0;
1626 	struct ocontext *c;
1627 
1628 	read_lock(&policy_rwlock);
1629 
1630 	c = policydb.ocontexts[OCON_NETIF];
1631 	while (c) {
1632 		if (strcmp(name, c->u.name) == 0)
1633 			break;
1634 		c = c->next;
1635 	}
1636 
1637 	if (c) {
1638 		if (!c->sid[0] || !c->sid[1]) {
1639 			rc = sidtab_context_to_sid(&sidtab,
1640 						  &c->context[0],
1641 						  &c->sid[0]);
1642 			if (rc)
1643 				goto out;
1644 			rc = sidtab_context_to_sid(&sidtab,
1645 						   &c->context[1],
1646 						   &c->sid[1]);
1647 			if (rc)
1648 				goto out;
1649 		}
1650 		*if_sid = c->sid[0];
1651 	} else
1652 		*if_sid = SECINITSID_NETIF;
1653 
1654 out:
1655 	read_unlock(&policy_rwlock);
1656 	return rc;
1657 }
1658 
1659 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
1660 {
1661 	int i, fail = 0;
1662 
1663 	for (i = 0; i < 4; i++)
1664 		if (addr[i] != (input[i] & mask[i])) {
1665 			fail = 1;
1666 			break;
1667 		}
1668 
1669 	return !fail;
1670 }
1671 
1672 /**
1673  * security_node_sid - Obtain the SID for a node (host).
1674  * @domain: communication domain aka address family
1675  * @addrp: address
1676  * @addrlen: address length in bytes
1677  * @out_sid: security identifier
1678  */
1679 int security_node_sid(u16 domain,
1680 		      void *addrp,
1681 		      u32 addrlen,
1682 		      u32 *out_sid)
1683 {
1684 	int rc = 0;
1685 	struct ocontext *c;
1686 
1687 	read_lock(&policy_rwlock);
1688 
1689 	switch (domain) {
1690 	case AF_INET: {
1691 		u32 addr;
1692 
1693 		if (addrlen != sizeof(u32)) {
1694 			rc = -EINVAL;
1695 			goto out;
1696 		}
1697 
1698 		addr = *((u32 *)addrp);
1699 
1700 		c = policydb.ocontexts[OCON_NODE];
1701 		while (c) {
1702 			if (c->u.node.addr == (addr & c->u.node.mask))
1703 				break;
1704 			c = c->next;
1705 		}
1706 		break;
1707 	}
1708 
1709 	case AF_INET6:
1710 		if (addrlen != sizeof(u64) * 2) {
1711 			rc = -EINVAL;
1712 			goto out;
1713 		}
1714 		c = policydb.ocontexts[OCON_NODE6];
1715 		while (c) {
1716 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
1717 						c->u.node6.mask))
1718 				break;
1719 			c = c->next;
1720 		}
1721 		break;
1722 
1723 	default:
1724 		*out_sid = SECINITSID_NODE;
1725 		goto out;
1726 	}
1727 
1728 	if (c) {
1729 		if (!c->sid[0]) {
1730 			rc = sidtab_context_to_sid(&sidtab,
1731 						   &c->context[0],
1732 						   &c->sid[0]);
1733 			if (rc)
1734 				goto out;
1735 		}
1736 		*out_sid = c->sid[0];
1737 	} else {
1738 		*out_sid = SECINITSID_NODE;
1739 	}
1740 
1741 out:
1742 	read_unlock(&policy_rwlock);
1743 	return rc;
1744 }
1745 
1746 #define SIDS_NEL 25
1747 
1748 /**
1749  * security_get_user_sids - Obtain reachable SIDs for a user.
1750  * @fromsid: starting SID
1751  * @username: username
1752  * @sids: array of reachable SIDs for user
1753  * @nel: number of elements in @sids
1754  *
1755  * Generate the set of SIDs for legal security contexts
1756  * for a given user that can be reached by @fromsid.
1757  * Set *@sids to point to a dynamically allocated
1758  * array containing the set of SIDs.  Set *@nel to the
1759  * number of elements in the array.
1760  */
1761 
1762 int security_get_user_sids(u32 fromsid,
1763 			   char *username,
1764 			   u32 **sids,
1765 			   u32 *nel)
1766 {
1767 	struct context *fromcon, usercon;
1768 	u32 *mysids = NULL, *mysids2, sid;
1769 	u32 mynel = 0, maxnel = SIDS_NEL;
1770 	struct user_datum *user;
1771 	struct role_datum *role;
1772 	struct ebitmap_node *rnode, *tnode;
1773 	int rc = 0, i, j;
1774 
1775 	*sids = NULL;
1776 	*nel = 0;
1777 
1778 	if (!ss_initialized)
1779 		goto out;
1780 
1781 	read_lock(&policy_rwlock);
1782 
1783 	context_init(&usercon);
1784 
1785 	fromcon = sidtab_search(&sidtab, fromsid);
1786 	if (!fromcon) {
1787 		rc = -EINVAL;
1788 		goto out_unlock;
1789 	}
1790 
1791 	user = hashtab_search(policydb.p_users.table, username);
1792 	if (!user) {
1793 		rc = -EINVAL;
1794 		goto out_unlock;
1795 	}
1796 	usercon.user = user->value;
1797 
1798 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
1799 	if (!mysids) {
1800 		rc = -ENOMEM;
1801 		goto out_unlock;
1802 	}
1803 
1804 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
1805 		role = policydb.role_val_to_struct[i];
1806 		usercon.role = i+1;
1807 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
1808 			usercon.type = j+1;
1809 
1810 			if (mls_setup_user_range(fromcon, user, &usercon))
1811 				continue;
1812 
1813 			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
1814 			if (rc)
1815 				goto out_unlock;
1816 			if (mynel < maxnel) {
1817 				mysids[mynel++] = sid;
1818 			} else {
1819 				maxnel += SIDS_NEL;
1820 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
1821 				if (!mysids2) {
1822 					rc = -ENOMEM;
1823 					goto out_unlock;
1824 				}
1825 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
1826 				kfree(mysids);
1827 				mysids = mysids2;
1828 				mysids[mynel++] = sid;
1829 			}
1830 		}
1831 	}
1832 
1833 out_unlock:
1834 	read_unlock(&policy_rwlock);
1835 	if (rc || !mynel) {
1836 		kfree(mysids);
1837 		goto out;
1838 	}
1839 
1840 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
1841 	if (!mysids2) {
1842 		rc = -ENOMEM;
1843 		kfree(mysids);
1844 		goto out;
1845 	}
1846 	for (i = 0, j = 0; i < mynel; i++) {
1847 		rc = avc_has_perm_noaudit(fromsid, mysids[i],
1848 					  SECCLASS_PROCESS,
1849 					  PROCESS__TRANSITION, AVC_STRICT,
1850 					  NULL);
1851 		if (!rc)
1852 			mysids2[j++] = mysids[i];
1853 		cond_resched();
1854 	}
1855 	rc = 0;
1856 	kfree(mysids);
1857 	*sids = mysids2;
1858 	*nel = j;
1859 out:
1860 	return rc;
1861 }
1862 
1863 /**
1864  * security_genfs_sid - Obtain a SID for a file in a filesystem
1865  * @fstype: filesystem type
1866  * @path: path from root of mount
1867  * @sclass: file security class
1868  * @sid: SID for path
1869  *
1870  * Obtain a SID to use for a file in a filesystem that
1871  * cannot support xattr or use a fixed labeling behavior like
1872  * transition SIDs or task SIDs.
1873  */
1874 int security_genfs_sid(const char *fstype,
1875 		       char *path,
1876 		       u16 sclass,
1877 		       u32 *sid)
1878 {
1879 	int len;
1880 	struct genfs *genfs;
1881 	struct ocontext *c;
1882 	int rc = 0, cmp = 0;
1883 
1884 	while (path[0] == '/' && path[1] == '/')
1885 		path++;
1886 
1887 	read_lock(&policy_rwlock);
1888 
1889 	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
1890 		cmp = strcmp(fstype, genfs->fstype);
1891 		if (cmp <= 0)
1892 			break;
1893 	}
1894 
1895 	if (!genfs || cmp) {
1896 		*sid = SECINITSID_UNLABELED;
1897 		rc = -ENOENT;
1898 		goto out;
1899 	}
1900 
1901 	for (c = genfs->head; c; c = c->next) {
1902 		len = strlen(c->u.name);
1903 		if ((!c->v.sclass || sclass == c->v.sclass) &&
1904 		    (strncmp(c->u.name, path, len) == 0))
1905 			break;
1906 	}
1907 
1908 	if (!c) {
1909 		*sid = SECINITSID_UNLABELED;
1910 		rc = -ENOENT;
1911 		goto out;
1912 	}
1913 
1914 	if (!c->sid[0]) {
1915 		rc = sidtab_context_to_sid(&sidtab,
1916 					   &c->context[0],
1917 					   &c->sid[0]);
1918 		if (rc)
1919 			goto out;
1920 	}
1921 
1922 	*sid = c->sid[0];
1923 out:
1924 	read_unlock(&policy_rwlock);
1925 	return rc;
1926 }
1927 
1928 /**
1929  * security_fs_use - Determine how to handle labeling for a filesystem.
1930  * @fstype: filesystem type
1931  * @behavior: labeling behavior
1932  * @sid: SID for filesystem (superblock)
1933  */
1934 int security_fs_use(
1935 	const char *fstype,
1936 	unsigned int *behavior,
1937 	u32 *sid)
1938 {
1939 	int rc = 0;
1940 	struct ocontext *c;
1941 
1942 	read_lock(&policy_rwlock);
1943 
1944 	c = policydb.ocontexts[OCON_FSUSE];
1945 	while (c) {
1946 		if (strcmp(fstype, c->u.name) == 0)
1947 			break;
1948 		c = c->next;
1949 	}
1950 
1951 	if (c) {
1952 		*behavior = c->v.behavior;
1953 		if (!c->sid[0]) {
1954 			rc = sidtab_context_to_sid(&sidtab,
1955 						   &c->context[0],
1956 						   &c->sid[0]);
1957 			if (rc)
1958 				goto out;
1959 		}
1960 		*sid = c->sid[0];
1961 	} else {
1962 		rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
1963 		if (rc) {
1964 			*behavior = SECURITY_FS_USE_NONE;
1965 			rc = 0;
1966 		} else {
1967 			*behavior = SECURITY_FS_USE_GENFS;
1968 		}
1969 	}
1970 
1971 out:
1972 	read_unlock(&policy_rwlock);
1973 	return rc;
1974 }
1975 
1976 int security_get_bools(int *len, char ***names, int **values)
1977 {
1978 	int i, rc = -ENOMEM;
1979 
1980 	read_lock(&policy_rwlock);
1981 	*names = NULL;
1982 	*values = NULL;
1983 
1984 	*len = policydb.p_bools.nprim;
1985 	if (!*len) {
1986 		rc = 0;
1987 		goto out;
1988 	}
1989 
1990        *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
1991 	if (!*names)
1992 		goto err;
1993 
1994        *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
1995 	if (!*values)
1996 		goto err;
1997 
1998 	for (i = 0; i < *len; i++) {
1999 		size_t name_len;
2000 		(*values)[i] = policydb.bool_val_to_struct[i]->state;
2001 		name_len = strlen(policydb.p_bool_val_to_name[i]) + 1;
2002 	       (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
2003 		if (!(*names)[i])
2004 			goto err;
2005 		strncpy((*names)[i], policydb.p_bool_val_to_name[i], name_len);
2006 		(*names)[i][name_len - 1] = 0;
2007 	}
2008 	rc = 0;
2009 out:
2010 	read_unlock(&policy_rwlock);
2011 	return rc;
2012 err:
2013 	if (*names) {
2014 		for (i = 0; i < *len; i++)
2015 			kfree((*names)[i]);
2016 	}
2017 	kfree(*values);
2018 	goto out;
2019 }
2020 
2021 
2022 int security_set_bools(int len, int *values)
2023 {
2024 	int i, rc = 0;
2025 	int lenp, seqno = 0;
2026 	struct cond_node *cur;
2027 
2028 	write_lock_irq(&policy_rwlock);
2029 
2030 	lenp = policydb.p_bools.nprim;
2031 	if (len != lenp) {
2032 		rc = -EFAULT;
2033 		goto out;
2034 	}
2035 
2036 	for (i = 0; i < len; i++) {
2037 		if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2038 			audit_log(current->audit_context, GFP_ATOMIC,
2039 				AUDIT_MAC_CONFIG_CHANGE,
2040 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2041 				policydb.p_bool_val_to_name[i],
2042 				!!values[i],
2043 				policydb.bool_val_to_struct[i]->state,
2044 				audit_get_loginuid(current),
2045 				audit_get_sessionid(current));
2046 		}
2047 		if (values[i])
2048 			policydb.bool_val_to_struct[i]->state = 1;
2049 		else
2050 			policydb.bool_val_to_struct[i]->state = 0;
2051 	}
2052 
2053 	for (cur = policydb.cond_list; cur != NULL; cur = cur->next) {
2054 		rc = evaluate_cond_node(&policydb, cur);
2055 		if (rc)
2056 			goto out;
2057 	}
2058 
2059 	seqno = ++latest_granting;
2060 
2061 out:
2062 	write_unlock_irq(&policy_rwlock);
2063 	if (!rc) {
2064 		avc_ss_reset(seqno);
2065 		selnl_notify_policyload(seqno);
2066 		selinux_xfrm_notify_policyload();
2067 	}
2068 	return rc;
2069 }
2070 
2071 int security_get_bool_value(int bool)
2072 {
2073 	int rc = 0;
2074 	int len;
2075 
2076 	read_lock(&policy_rwlock);
2077 
2078 	len = policydb.p_bools.nprim;
2079 	if (bool >= len) {
2080 		rc = -EFAULT;
2081 		goto out;
2082 	}
2083 
2084 	rc = policydb.bool_val_to_struct[bool]->state;
2085 out:
2086 	read_unlock(&policy_rwlock);
2087 	return rc;
2088 }
2089 
2090 static int security_preserve_bools(struct policydb *p)
2091 {
2092 	int rc, nbools = 0, *bvalues = NULL, i;
2093 	char **bnames = NULL;
2094 	struct cond_bool_datum *booldatum;
2095 	struct cond_node *cur;
2096 
2097 	rc = security_get_bools(&nbools, &bnames, &bvalues);
2098 	if (rc)
2099 		goto out;
2100 	for (i = 0; i < nbools; i++) {
2101 		booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2102 		if (booldatum)
2103 			booldatum->state = bvalues[i];
2104 	}
2105 	for (cur = p->cond_list; cur != NULL; cur = cur->next) {
2106 		rc = evaluate_cond_node(p, cur);
2107 		if (rc)
2108 			goto out;
2109 	}
2110 
2111 out:
2112 	if (bnames) {
2113 		for (i = 0; i < nbools; i++)
2114 			kfree(bnames[i]);
2115 	}
2116 	kfree(bnames);
2117 	kfree(bvalues);
2118 	return rc;
2119 }
2120 
2121 /*
2122  * security_sid_mls_copy() - computes a new sid based on the given
2123  * sid and the mls portion of mls_sid.
2124  */
2125 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2126 {
2127 	struct context *context1;
2128 	struct context *context2;
2129 	struct context newcon;
2130 	char *s;
2131 	u32 len;
2132 	int rc = 0;
2133 
2134 	if (!ss_initialized || !selinux_mls_enabled) {
2135 		*new_sid = sid;
2136 		goto out;
2137 	}
2138 
2139 	context_init(&newcon);
2140 
2141 	read_lock(&policy_rwlock);
2142 	context1 = sidtab_search(&sidtab, sid);
2143 	if (!context1) {
2144 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2145 			__func__, sid);
2146 		rc = -EINVAL;
2147 		goto out_unlock;
2148 	}
2149 
2150 	context2 = sidtab_search(&sidtab, mls_sid);
2151 	if (!context2) {
2152 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2153 			__func__, mls_sid);
2154 		rc = -EINVAL;
2155 		goto out_unlock;
2156 	}
2157 
2158 	newcon.user = context1->user;
2159 	newcon.role = context1->role;
2160 	newcon.type = context1->type;
2161 	rc = mls_context_cpy(&newcon, context2);
2162 	if (rc)
2163 		goto out_unlock;
2164 
2165 	/* Check the validity of the new context. */
2166 	if (!policydb_context_isvalid(&policydb, &newcon)) {
2167 		rc = convert_context_handle_invalid_context(&newcon);
2168 		if (rc)
2169 			goto bad;
2170 	}
2171 
2172 	rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2173 	goto out_unlock;
2174 
2175 bad:
2176 	if (!context_struct_to_string(&newcon, &s, &len)) {
2177 		audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2178 			  "security_sid_mls_copy: invalid context %s", s);
2179 		kfree(s);
2180 	}
2181 
2182 out_unlock:
2183 	read_unlock(&policy_rwlock);
2184 	context_destroy(&newcon);
2185 out:
2186 	return rc;
2187 }
2188 
2189 /**
2190  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2191  * @nlbl_sid: NetLabel SID
2192  * @nlbl_type: NetLabel labeling protocol type
2193  * @xfrm_sid: XFRM SID
2194  *
2195  * Description:
2196  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2197  * resolved into a single SID it is returned via @peer_sid and the function
2198  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2199  * returns a negative value.  A table summarizing the behavior is below:
2200  *
2201  *                                 | function return |      @sid
2202  *   ------------------------------+-----------------+-----------------
2203  *   no peer labels                |        0        |    SECSID_NULL
2204  *   single peer label             |        0        |    <peer_label>
2205  *   multiple, consistent labels   |        0        |    <peer_label>
2206  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2207  *
2208  */
2209 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2210 				 u32 xfrm_sid,
2211 				 u32 *peer_sid)
2212 {
2213 	int rc;
2214 	struct context *nlbl_ctx;
2215 	struct context *xfrm_ctx;
2216 
2217 	/* handle the common (which also happens to be the set of easy) cases
2218 	 * right away, these two if statements catch everything involving a
2219 	 * single or absent peer SID/label */
2220 	if (xfrm_sid == SECSID_NULL) {
2221 		*peer_sid = nlbl_sid;
2222 		return 0;
2223 	}
2224 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2225 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2226 	 * is present */
2227 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2228 		*peer_sid = xfrm_sid;
2229 		return 0;
2230 	}
2231 
2232 	/* we don't need to check ss_initialized here since the only way both
2233 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2234 	 * security server was initialized and ss_initialized was true */
2235 	if (!selinux_mls_enabled) {
2236 		*peer_sid = SECSID_NULL;
2237 		return 0;
2238 	}
2239 
2240 	read_lock(&policy_rwlock);
2241 
2242 	nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2243 	if (!nlbl_ctx) {
2244 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2245 		       __func__, nlbl_sid);
2246 		rc = -EINVAL;
2247 		goto out_slowpath;
2248 	}
2249 	xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2250 	if (!xfrm_ctx) {
2251 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2252 		       __func__, xfrm_sid);
2253 		rc = -EINVAL;
2254 		goto out_slowpath;
2255 	}
2256 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2257 
2258 out_slowpath:
2259 	read_unlock(&policy_rwlock);
2260 	if (rc == 0)
2261 		/* at present NetLabel SIDs/labels really only carry MLS
2262 		 * information so if the MLS portion of the NetLabel SID
2263 		 * matches the MLS portion of the labeled XFRM SID/label
2264 		 * then pass along the XFRM SID as it is the most
2265 		 * expressive */
2266 		*peer_sid = xfrm_sid;
2267 	else
2268 		*peer_sid = SECSID_NULL;
2269 	return rc;
2270 }
2271 
2272 static int get_classes_callback(void *k, void *d, void *args)
2273 {
2274 	struct class_datum *datum = d;
2275 	char *name = k, **classes = args;
2276 	int value = datum->value - 1;
2277 
2278 	classes[value] = kstrdup(name, GFP_ATOMIC);
2279 	if (!classes[value])
2280 		return -ENOMEM;
2281 
2282 	return 0;
2283 }
2284 
2285 int security_get_classes(char ***classes, int *nclasses)
2286 {
2287 	int rc = -ENOMEM;
2288 
2289 	read_lock(&policy_rwlock);
2290 
2291 	*nclasses = policydb.p_classes.nprim;
2292 	*classes = kcalloc(*nclasses, sizeof(*classes), GFP_ATOMIC);
2293 	if (!*classes)
2294 		goto out;
2295 
2296 	rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2297 			*classes);
2298 	if (rc < 0) {
2299 		int i;
2300 		for (i = 0; i < *nclasses; i++)
2301 			kfree((*classes)[i]);
2302 		kfree(*classes);
2303 	}
2304 
2305 out:
2306 	read_unlock(&policy_rwlock);
2307 	return rc;
2308 }
2309 
2310 static int get_permissions_callback(void *k, void *d, void *args)
2311 {
2312 	struct perm_datum *datum = d;
2313 	char *name = k, **perms = args;
2314 	int value = datum->value - 1;
2315 
2316 	perms[value] = kstrdup(name, GFP_ATOMIC);
2317 	if (!perms[value])
2318 		return -ENOMEM;
2319 
2320 	return 0;
2321 }
2322 
2323 int security_get_permissions(char *class, char ***perms, int *nperms)
2324 {
2325 	int rc = -ENOMEM, i;
2326 	struct class_datum *match;
2327 
2328 	read_lock(&policy_rwlock);
2329 
2330 	match = hashtab_search(policydb.p_classes.table, class);
2331 	if (!match) {
2332 		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2333 			__func__, class);
2334 		rc = -EINVAL;
2335 		goto out;
2336 	}
2337 
2338 	*nperms = match->permissions.nprim;
2339 	*perms = kcalloc(*nperms, sizeof(*perms), GFP_ATOMIC);
2340 	if (!*perms)
2341 		goto out;
2342 
2343 	if (match->comdatum) {
2344 		rc = hashtab_map(match->comdatum->permissions.table,
2345 				get_permissions_callback, *perms);
2346 		if (rc < 0)
2347 			goto err;
2348 	}
2349 
2350 	rc = hashtab_map(match->permissions.table, get_permissions_callback,
2351 			*perms);
2352 	if (rc < 0)
2353 		goto err;
2354 
2355 out:
2356 	read_unlock(&policy_rwlock);
2357 	return rc;
2358 
2359 err:
2360 	read_unlock(&policy_rwlock);
2361 	for (i = 0; i < *nperms; i++)
2362 		kfree((*perms)[i]);
2363 	kfree(*perms);
2364 	return rc;
2365 }
2366 
2367 int security_get_reject_unknown(void)
2368 {
2369 	return policydb.reject_unknown;
2370 }
2371 
2372 int security_get_allow_unknown(void)
2373 {
2374 	return policydb.allow_unknown;
2375 }
2376 
2377 /**
2378  * security_policycap_supported - Check for a specific policy capability
2379  * @req_cap: capability
2380  *
2381  * Description:
2382  * This function queries the currently loaded policy to see if it supports the
2383  * capability specified by @req_cap.  Returns true (1) if the capability is
2384  * supported, false (0) if it isn't supported.
2385  *
2386  */
2387 int security_policycap_supported(unsigned int req_cap)
2388 {
2389 	int rc;
2390 
2391 	read_lock(&policy_rwlock);
2392 	rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2393 	read_unlock(&policy_rwlock);
2394 
2395 	return rc;
2396 }
2397 
2398 struct selinux_audit_rule {
2399 	u32 au_seqno;
2400 	struct context au_ctxt;
2401 };
2402 
2403 void selinux_audit_rule_free(void *vrule)
2404 {
2405 	struct selinux_audit_rule *rule = vrule;
2406 
2407 	if (rule) {
2408 		context_destroy(&rule->au_ctxt);
2409 		kfree(rule);
2410 	}
2411 }
2412 
2413 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2414 {
2415 	struct selinux_audit_rule *tmprule;
2416 	struct role_datum *roledatum;
2417 	struct type_datum *typedatum;
2418 	struct user_datum *userdatum;
2419 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2420 	int rc = 0;
2421 
2422 	*rule = NULL;
2423 
2424 	if (!ss_initialized)
2425 		return -EOPNOTSUPP;
2426 
2427 	switch (field) {
2428 	case AUDIT_SUBJ_USER:
2429 	case AUDIT_SUBJ_ROLE:
2430 	case AUDIT_SUBJ_TYPE:
2431 	case AUDIT_OBJ_USER:
2432 	case AUDIT_OBJ_ROLE:
2433 	case AUDIT_OBJ_TYPE:
2434 		/* only 'equals' and 'not equals' fit user, role, and type */
2435 		if (op != AUDIT_EQUAL && op != AUDIT_NOT_EQUAL)
2436 			return -EINVAL;
2437 		break;
2438 	case AUDIT_SUBJ_SEN:
2439 	case AUDIT_SUBJ_CLR:
2440 	case AUDIT_OBJ_LEV_LOW:
2441 	case AUDIT_OBJ_LEV_HIGH:
2442 		/* we do not allow a range, indicated by the presense of '-' */
2443 		if (strchr(rulestr, '-'))
2444 			return -EINVAL;
2445 		break;
2446 	default:
2447 		/* only the above fields are valid */
2448 		return -EINVAL;
2449 	}
2450 
2451 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2452 	if (!tmprule)
2453 		return -ENOMEM;
2454 
2455 	context_init(&tmprule->au_ctxt);
2456 
2457 	read_lock(&policy_rwlock);
2458 
2459 	tmprule->au_seqno = latest_granting;
2460 
2461 	switch (field) {
2462 	case AUDIT_SUBJ_USER:
2463 	case AUDIT_OBJ_USER:
2464 		userdatum = hashtab_search(policydb.p_users.table, rulestr);
2465 		if (!userdatum)
2466 			rc = -EINVAL;
2467 		else
2468 			tmprule->au_ctxt.user = userdatum->value;
2469 		break;
2470 	case AUDIT_SUBJ_ROLE:
2471 	case AUDIT_OBJ_ROLE:
2472 		roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2473 		if (!roledatum)
2474 			rc = -EINVAL;
2475 		else
2476 			tmprule->au_ctxt.role = roledatum->value;
2477 		break;
2478 	case AUDIT_SUBJ_TYPE:
2479 	case AUDIT_OBJ_TYPE:
2480 		typedatum = hashtab_search(policydb.p_types.table, rulestr);
2481 		if (!typedatum)
2482 			rc = -EINVAL;
2483 		else
2484 			tmprule->au_ctxt.type = typedatum->value;
2485 		break;
2486 	case AUDIT_SUBJ_SEN:
2487 	case AUDIT_SUBJ_CLR:
2488 	case AUDIT_OBJ_LEV_LOW:
2489 	case AUDIT_OBJ_LEV_HIGH:
2490 		rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2491 		break;
2492 	}
2493 
2494 	read_unlock(&policy_rwlock);
2495 
2496 	if (rc) {
2497 		selinux_audit_rule_free(tmprule);
2498 		tmprule = NULL;
2499 	}
2500 
2501 	*rule = tmprule;
2502 
2503 	return rc;
2504 }
2505 
2506 /* Check to see if the rule contains any selinux fields */
2507 int selinux_audit_rule_known(struct audit_krule *rule)
2508 {
2509 	int i;
2510 
2511 	for (i = 0; i < rule->field_count; i++) {
2512 		struct audit_field *f = &rule->fields[i];
2513 		switch (f->type) {
2514 		case AUDIT_SUBJ_USER:
2515 		case AUDIT_SUBJ_ROLE:
2516 		case AUDIT_SUBJ_TYPE:
2517 		case AUDIT_SUBJ_SEN:
2518 		case AUDIT_SUBJ_CLR:
2519 		case AUDIT_OBJ_USER:
2520 		case AUDIT_OBJ_ROLE:
2521 		case AUDIT_OBJ_TYPE:
2522 		case AUDIT_OBJ_LEV_LOW:
2523 		case AUDIT_OBJ_LEV_HIGH:
2524 			return 1;
2525 		}
2526 	}
2527 
2528 	return 0;
2529 }
2530 
2531 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2532 			     struct audit_context *actx)
2533 {
2534 	struct context *ctxt;
2535 	struct mls_level *level;
2536 	struct selinux_audit_rule *rule = vrule;
2537 	int match = 0;
2538 
2539 	if (!rule) {
2540 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2541 			  "selinux_audit_rule_match: missing rule\n");
2542 		return -ENOENT;
2543 	}
2544 
2545 	read_lock(&policy_rwlock);
2546 
2547 	if (rule->au_seqno < latest_granting) {
2548 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2549 			  "selinux_audit_rule_match: stale rule\n");
2550 		match = -ESTALE;
2551 		goto out;
2552 	}
2553 
2554 	ctxt = sidtab_search(&sidtab, sid);
2555 	if (!ctxt) {
2556 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2557 			  "selinux_audit_rule_match: unrecognized SID %d\n",
2558 			  sid);
2559 		match = -ENOENT;
2560 		goto out;
2561 	}
2562 
2563 	/* a field/op pair that is not caught here will simply fall through
2564 	   without a match */
2565 	switch (field) {
2566 	case AUDIT_SUBJ_USER:
2567 	case AUDIT_OBJ_USER:
2568 		switch (op) {
2569 		case AUDIT_EQUAL:
2570 			match = (ctxt->user == rule->au_ctxt.user);
2571 			break;
2572 		case AUDIT_NOT_EQUAL:
2573 			match = (ctxt->user != rule->au_ctxt.user);
2574 			break;
2575 		}
2576 		break;
2577 	case AUDIT_SUBJ_ROLE:
2578 	case AUDIT_OBJ_ROLE:
2579 		switch (op) {
2580 		case AUDIT_EQUAL:
2581 			match = (ctxt->role == rule->au_ctxt.role);
2582 			break;
2583 		case AUDIT_NOT_EQUAL:
2584 			match = (ctxt->role != rule->au_ctxt.role);
2585 			break;
2586 		}
2587 		break;
2588 	case AUDIT_SUBJ_TYPE:
2589 	case AUDIT_OBJ_TYPE:
2590 		switch (op) {
2591 		case AUDIT_EQUAL:
2592 			match = (ctxt->type == rule->au_ctxt.type);
2593 			break;
2594 		case AUDIT_NOT_EQUAL:
2595 			match = (ctxt->type != rule->au_ctxt.type);
2596 			break;
2597 		}
2598 		break;
2599 	case AUDIT_SUBJ_SEN:
2600 	case AUDIT_SUBJ_CLR:
2601 	case AUDIT_OBJ_LEV_LOW:
2602 	case AUDIT_OBJ_LEV_HIGH:
2603 		level = ((field == AUDIT_SUBJ_SEN ||
2604 			  field == AUDIT_OBJ_LEV_LOW) ?
2605 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
2606 		switch (op) {
2607 		case AUDIT_EQUAL:
2608 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
2609 					     level);
2610 			break;
2611 		case AUDIT_NOT_EQUAL:
2612 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
2613 					      level);
2614 			break;
2615 		case AUDIT_LESS_THAN:
2616 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
2617 					       level) &&
2618 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
2619 					       level));
2620 			break;
2621 		case AUDIT_LESS_THAN_OR_EQUAL:
2622 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
2623 					      level);
2624 			break;
2625 		case AUDIT_GREATER_THAN:
2626 			match = (mls_level_dom(level,
2627 					      &rule->au_ctxt.range.level[0]) &&
2628 				 !mls_level_eq(level,
2629 					       &rule->au_ctxt.range.level[0]));
2630 			break;
2631 		case AUDIT_GREATER_THAN_OR_EQUAL:
2632 			match = mls_level_dom(level,
2633 					      &rule->au_ctxt.range.level[0]);
2634 			break;
2635 		}
2636 	}
2637 
2638 out:
2639 	read_unlock(&policy_rwlock);
2640 	return match;
2641 }
2642 
2643 static int (*aurule_callback)(void) = audit_update_lsm_rules;
2644 
2645 static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
2646 			       u16 class, u32 perms, u32 *retained)
2647 {
2648 	int err = 0;
2649 
2650 	if (event == AVC_CALLBACK_RESET && aurule_callback)
2651 		err = aurule_callback();
2652 	return err;
2653 }
2654 
2655 static int __init aurule_init(void)
2656 {
2657 	int err;
2658 
2659 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
2660 			       SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
2661 	if (err)
2662 		panic("avc_add_callback() failed, error %d\n", err);
2663 
2664 	return err;
2665 }
2666 __initcall(aurule_init);
2667 
2668 #ifdef CONFIG_NETLABEL
2669 /**
2670  * security_netlbl_cache_add - Add an entry to the NetLabel cache
2671  * @secattr: the NetLabel packet security attributes
2672  * @sid: the SELinux SID
2673  *
2674  * Description:
2675  * Attempt to cache the context in @ctx, which was derived from the packet in
2676  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
2677  * already been initialized.
2678  *
2679  */
2680 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
2681 				      u32 sid)
2682 {
2683 	u32 *sid_cache;
2684 
2685 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
2686 	if (sid_cache == NULL)
2687 		return;
2688 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
2689 	if (secattr->cache == NULL) {
2690 		kfree(sid_cache);
2691 		return;
2692 	}
2693 
2694 	*sid_cache = sid;
2695 	secattr->cache->free = kfree;
2696 	secattr->cache->data = sid_cache;
2697 	secattr->flags |= NETLBL_SECATTR_CACHE;
2698 }
2699 
2700 /**
2701  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
2702  * @secattr: the NetLabel packet security attributes
2703  * @sid: the SELinux SID
2704  *
2705  * Description:
2706  * Convert the given NetLabel security attributes in @secattr into a
2707  * SELinux SID.  If the @secattr field does not contain a full SELinux
2708  * SID/context then use SECINITSID_NETMSG as the foundation.  If possibile the
2709  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
2710  * allow the @secattr to be used by NetLabel to cache the secattr to SID
2711  * conversion for future lookups.  Returns zero on success, negative values on
2712  * failure.
2713  *
2714  */
2715 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
2716 				   u32 *sid)
2717 {
2718 	int rc = -EIDRM;
2719 	struct context *ctx;
2720 	struct context ctx_new;
2721 
2722 	if (!ss_initialized) {
2723 		*sid = SECSID_NULL;
2724 		return 0;
2725 	}
2726 
2727 	read_lock(&policy_rwlock);
2728 
2729 	if (secattr->flags & NETLBL_SECATTR_CACHE) {
2730 		*sid = *(u32 *)secattr->cache->data;
2731 		rc = 0;
2732 	} else if (secattr->flags & NETLBL_SECATTR_SECID) {
2733 		*sid = secattr->attr.secid;
2734 		rc = 0;
2735 	} else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
2736 		ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
2737 		if (ctx == NULL)
2738 			goto netlbl_secattr_to_sid_return;
2739 
2740 		ctx_new.user = ctx->user;
2741 		ctx_new.role = ctx->role;
2742 		ctx_new.type = ctx->type;
2743 		mls_import_netlbl_lvl(&ctx_new, secattr);
2744 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
2745 			if (ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
2746 						  secattr->attr.mls.cat) != 0)
2747 				goto netlbl_secattr_to_sid_return;
2748 			ctx_new.range.level[1].cat.highbit =
2749 				ctx_new.range.level[0].cat.highbit;
2750 			ctx_new.range.level[1].cat.node =
2751 				ctx_new.range.level[0].cat.node;
2752 		} else {
2753 			ebitmap_init(&ctx_new.range.level[0].cat);
2754 			ebitmap_init(&ctx_new.range.level[1].cat);
2755 		}
2756 		if (mls_context_isvalid(&policydb, &ctx_new) != 1)
2757 			goto netlbl_secattr_to_sid_return_cleanup;
2758 
2759 		rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
2760 		if (rc != 0)
2761 			goto netlbl_secattr_to_sid_return_cleanup;
2762 
2763 		security_netlbl_cache_add(secattr, *sid);
2764 
2765 		ebitmap_destroy(&ctx_new.range.level[0].cat);
2766 	} else {
2767 		*sid = SECSID_NULL;
2768 		rc = 0;
2769 	}
2770 
2771 netlbl_secattr_to_sid_return:
2772 	read_unlock(&policy_rwlock);
2773 	return rc;
2774 netlbl_secattr_to_sid_return_cleanup:
2775 	ebitmap_destroy(&ctx_new.range.level[0].cat);
2776 	goto netlbl_secattr_to_sid_return;
2777 }
2778 
2779 /**
2780  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
2781  * @sid: the SELinux SID
2782  * @secattr: the NetLabel packet security attributes
2783  *
2784  * Description:
2785  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
2786  * Returns zero on success, negative values on failure.
2787  *
2788  */
2789 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
2790 {
2791 	int rc = -ENOENT;
2792 	struct context *ctx;
2793 
2794 	if (!ss_initialized)
2795 		return 0;
2796 
2797 	read_lock(&policy_rwlock);
2798 	ctx = sidtab_search(&sidtab, sid);
2799 	if (ctx == NULL)
2800 		goto netlbl_sid_to_secattr_failure;
2801 	secattr->domain = kstrdup(policydb.p_type_val_to_name[ctx->type - 1],
2802 				  GFP_ATOMIC);
2803 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY;
2804 	mls_export_netlbl_lvl(ctx, secattr);
2805 	rc = mls_export_netlbl_cat(ctx, secattr);
2806 	if (rc != 0)
2807 		goto netlbl_sid_to_secattr_failure;
2808 	read_unlock(&policy_rwlock);
2809 
2810 	return 0;
2811 
2812 netlbl_sid_to_secattr_failure:
2813 	read_unlock(&policy_rwlock);
2814 	return rc;
2815 }
2816 #endif /* CONFIG_NETLABEL */
2817