xref: /openbmc/linux/security/selinux/ss/services.c (revision e23feb16)
1 /*
2  * Implementation of the security services.
3  *
4  * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5  *	     James Morris <jmorris@redhat.com>
6  *
7  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8  *
9  *	Support for enhanced MLS infrastructure.
10  *	Support for context based audit filters.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *	Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul@paul-moore.com>
17  *
18  *      Added support for NetLabel
19  *      Added support for the policy capability bitmap
20  *
21  * Updated: Chad Sellers <csellers@tresys.com>
22  *
23  *  Added validation of kernel classes and permissions
24  *
25  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
26  *
27  *  Added support for bounds domain and audit messaged on masked permissions
28  *
29  * Updated: Guido Trentalancia <guido@trentalancia.com>
30  *
31  *  Added support for runtime switching of the policy type
32  *
33  * Copyright (C) 2008, 2009 NEC Corporation
34  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38  *	This program is free software; you can redistribute it and/or modify
39  *	it under the terms of the GNU General Public License as published by
40  *	the Free Software Foundation, version 2.
41  */
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/errno.h>
48 #include <linux/in.h>
49 #include <linux/sched.h>
50 #include <linux/audit.h>
51 #include <linux/mutex.h>
52 #include <linux/selinux.h>
53 #include <linux/flex_array.h>
54 #include <linux/vmalloc.h>
55 #include <net/netlabel.h>
56 
57 #include "flask.h"
58 #include "avc.h"
59 #include "avc_ss.h"
60 #include "security.h"
61 #include "context.h"
62 #include "policydb.h"
63 #include "sidtab.h"
64 #include "services.h"
65 #include "conditional.h"
66 #include "mls.h"
67 #include "objsec.h"
68 #include "netlabel.h"
69 #include "xfrm.h"
70 #include "ebitmap.h"
71 #include "audit.h"
72 
73 int selinux_policycap_netpeer;
74 int selinux_policycap_openperm;
75 
76 static DEFINE_RWLOCK(policy_rwlock);
77 
78 static struct sidtab sidtab;
79 struct policydb policydb;
80 int ss_initialized;
81 
82 /*
83  * The largest sequence number that has been used when
84  * providing an access decision to the access vector cache.
85  * The sequence number only changes when a policy change
86  * occurs.
87  */
88 static u32 latest_granting;
89 
90 /* Forward declaration. */
91 static int context_struct_to_string(struct context *context, char **scontext,
92 				    u32 *scontext_len);
93 
94 static void context_struct_compute_av(struct context *scontext,
95 				      struct context *tcontext,
96 				      u16 tclass,
97 				      struct av_decision *avd);
98 
99 struct selinux_mapping {
100 	u16 value; /* policy value */
101 	unsigned num_perms;
102 	u32 perms[sizeof(u32) * 8];
103 };
104 
105 static struct selinux_mapping *current_mapping;
106 static u16 current_mapping_size;
107 
108 static int selinux_set_mapping(struct policydb *pol,
109 			       struct security_class_mapping *map,
110 			       struct selinux_mapping **out_map_p,
111 			       u16 *out_map_size)
112 {
113 	struct selinux_mapping *out_map = NULL;
114 	size_t size = sizeof(struct selinux_mapping);
115 	u16 i, j;
116 	unsigned k;
117 	bool print_unknown_handle = false;
118 
119 	/* Find number of classes in the input mapping */
120 	if (!map)
121 		return -EINVAL;
122 	i = 0;
123 	while (map[i].name)
124 		i++;
125 
126 	/* Allocate space for the class records, plus one for class zero */
127 	out_map = kcalloc(++i, size, GFP_ATOMIC);
128 	if (!out_map)
129 		return -ENOMEM;
130 
131 	/* Store the raw class and permission values */
132 	j = 0;
133 	while (map[j].name) {
134 		struct security_class_mapping *p_in = map + (j++);
135 		struct selinux_mapping *p_out = out_map + j;
136 
137 		/* An empty class string skips ahead */
138 		if (!strcmp(p_in->name, "")) {
139 			p_out->num_perms = 0;
140 			continue;
141 		}
142 
143 		p_out->value = string_to_security_class(pol, p_in->name);
144 		if (!p_out->value) {
145 			printk(KERN_INFO
146 			       "SELinux:  Class %s not defined in policy.\n",
147 			       p_in->name);
148 			if (pol->reject_unknown)
149 				goto err;
150 			p_out->num_perms = 0;
151 			print_unknown_handle = true;
152 			continue;
153 		}
154 
155 		k = 0;
156 		while (p_in->perms && p_in->perms[k]) {
157 			/* An empty permission string skips ahead */
158 			if (!*p_in->perms[k]) {
159 				k++;
160 				continue;
161 			}
162 			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
163 							    p_in->perms[k]);
164 			if (!p_out->perms[k]) {
165 				printk(KERN_INFO
166 				       "SELinux:  Permission %s in class %s not defined in policy.\n",
167 				       p_in->perms[k], p_in->name);
168 				if (pol->reject_unknown)
169 					goto err;
170 				print_unknown_handle = true;
171 			}
172 
173 			k++;
174 		}
175 		p_out->num_perms = k;
176 	}
177 
178 	if (print_unknown_handle)
179 		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
180 		       pol->allow_unknown ? "allowed" : "denied");
181 
182 	*out_map_p = out_map;
183 	*out_map_size = i;
184 	return 0;
185 err:
186 	kfree(out_map);
187 	return -EINVAL;
188 }
189 
190 /*
191  * Get real, policy values from mapped values
192  */
193 
194 static u16 unmap_class(u16 tclass)
195 {
196 	if (tclass < current_mapping_size)
197 		return current_mapping[tclass].value;
198 
199 	return tclass;
200 }
201 
202 /*
203  * Get kernel value for class from its policy value
204  */
205 static u16 map_class(u16 pol_value)
206 {
207 	u16 i;
208 
209 	for (i = 1; i < current_mapping_size; i++) {
210 		if (current_mapping[i].value == pol_value)
211 			return i;
212 	}
213 
214 	return SECCLASS_NULL;
215 }
216 
217 static void map_decision(u16 tclass, struct av_decision *avd,
218 			 int allow_unknown)
219 {
220 	if (tclass < current_mapping_size) {
221 		unsigned i, n = current_mapping[tclass].num_perms;
222 		u32 result;
223 
224 		for (i = 0, result = 0; i < n; i++) {
225 			if (avd->allowed & current_mapping[tclass].perms[i])
226 				result |= 1<<i;
227 			if (allow_unknown && !current_mapping[tclass].perms[i])
228 				result |= 1<<i;
229 		}
230 		avd->allowed = result;
231 
232 		for (i = 0, result = 0; i < n; i++)
233 			if (avd->auditallow & current_mapping[tclass].perms[i])
234 				result |= 1<<i;
235 		avd->auditallow = result;
236 
237 		for (i = 0, result = 0; i < n; i++) {
238 			if (avd->auditdeny & current_mapping[tclass].perms[i])
239 				result |= 1<<i;
240 			if (!allow_unknown && !current_mapping[tclass].perms[i])
241 				result |= 1<<i;
242 		}
243 		/*
244 		 * In case the kernel has a bug and requests a permission
245 		 * between num_perms and the maximum permission number, we
246 		 * should audit that denial
247 		 */
248 		for (; i < (sizeof(u32)*8); i++)
249 			result |= 1<<i;
250 		avd->auditdeny = result;
251 	}
252 }
253 
254 int security_mls_enabled(void)
255 {
256 	return policydb.mls_enabled;
257 }
258 
259 /*
260  * Return the boolean value of a constraint expression
261  * when it is applied to the specified source and target
262  * security contexts.
263  *
264  * xcontext is a special beast...  It is used by the validatetrans rules
265  * only.  For these rules, scontext is the context before the transition,
266  * tcontext is the context after the transition, and xcontext is the context
267  * of the process performing the transition.  All other callers of
268  * constraint_expr_eval should pass in NULL for xcontext.
269  */
270 static int constraint_expr_eval(struct context *scontext,
271 				struct context *tcontext,
272 				struct context *xcontext,
273 				struct constraint_expr *cexpr)
274 {
275 	u32 val1, val2;
276 	struct context *c;
277 	struct role_datum *r1, *r2;
278 	struct mls_level *l1, *l2;
279 	struct constraint_expr *e;
280 	int s[CEXPR_MAXDEPTH];
281 	int sp = -1;
282 
283 	for (e = cexpr; e; e = e->next) {
284 		switch (e->expr_type) {
285 		case CEXPR_NOT:
286 			BUG_ON(sp < 0);
287 			s[sp] = !s[sp];
288 			break;
289 		case CEXPR_AND:
290 			BUG_ON(sp < 1);
291 			sp--;
292 			s[sp] &= s[sp + 1];
293 			break;
294 		case CEXPR_OR:
295 			BUG_ON(sp < 1);
296 			sp--;
297 			s[sp] |= s[sp + 1];
298 			break;
299 		case CEXPR_ATTR:
300 			if (sp == (CEXPR_MAXDEPTH - 1))
301 				return 0;
302 			switch (e->attr) {
303 			case CEXPR_USER:
304 				val1 = scontext->user;
305 				val2 = tcontext->user;
306 				break;
307 			case CEXPR_TYPE:
308 				val1 = scontext->type;
309 				val2 = tcontext->type;
310 				break;
311 			case CEXPR_ROLE:
312 				val1 = scontext->role;
313 				val2 = tcontext->role;
314 				r1 = policydb.role_val_to_struct[val1 - 1];
315 				r2 = policydb.role_val_to_struct[val2 - 1];
316 				switch (e->op) {
317 				case CEXPR_DOM:
318 					s[++sp] = ebitmap_get_bit(&r1->dominates,
319 								  val2 - 1);
320 					continue;
321 				case CEXPR_DOMBY:
322 					s[++sp] = ebitmap_get_bit(&r2->dominates,
323 								  val1 - 1);
324 					continue;
325 				case CEXPR_INCOMP:
326 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
327 								    val2 - 1) &&
328 						   !ebitmap_get_bit(&r2->dominates,
329 								    val1 - 1));
330 					continue;
331 				default:
332 					break;
333 				}
334 				break;
335 			case CEXPR_L1L2:
336 				l1 = &(scontext->range.level[0]);
337 				l2 = &(tcontext->range.level[0]);
338 				goto mls_ops;
339 			case CEXPR_L1H2:
340 				l1 = &(scontext->range.level[0]);
341 				l2 = &(tcontext->range.level[1]);
342 				goto mls_ops;
343 			case CEXPR_H1L2:
344 				l1 = &(scontext->range.level[1]);
345 				l2 = &(tcontext->range.level[0]);
346 				goto mls_ops;
347 			case CEXPR_H1H2:
348 				l1 = &(scontext->range.level[1]);
349 				l2 = &(tcontext->range.level[1]);
350 				goto mls_ops;
351 			case CEXPR_L1H1:
352 				l1 = &(scontext->range.level[0]);
353 				l2 = &(scontext->range.level[1]);
354 				goto mls_ops;
355 			case CEXPR_L2H2:
356 				l1 = &(tcontext->range.level[0]);
357 				l2 = &(tcontext->range.level[1]);
358 				goto mls_ops;
359 mls_ops:
360 			switch (e->op) {
361 			case CEXPR_EQ:
362 				s[++sp] = mls_level_eq(l1, l2);
363 				continue;
364 			case CEXPR_NEQ:
365 				s[++sp] = !mls_level_eq(l1, l2);
366 				continue;
367 			case CEXPR_DOM:
368 				s[++sp] = mls_level_dom(l1, l2);
369 				continue;
370 			case CEXPR_DOMBY:
371 				s[++sp] = mls_level_dom(l2, l1);
372 				continue;
373 			case CEXPR_INCOMP:
374 				s[++sp] = mls_level_incomp(l2, l1);
375 				continue;
376 			default:
377 				BUG();
378 				return 0;
379 			}
380 			break;
381 			default:
382 				BUG();
383 				return 0;
384 			}
385 
386 			switch (e->op) {
387 			case CEXPR_EQ:
388 				s[++sp] = (val1 == val2);
389 				break;
390 			case CEXPR_NEQ:
391 				s[++sp] = (val1 != val2);
392 				break;
393 			default:
394 				BUG();
395 				return 0;
396 			}
397 			break;
398 		case CEXPR_NAMES:
399 			if (sp == (CEXPR_MAXDEPTH-1))
400 				return 0;
401 			c = scontext;
402 			if (e->attr & CEXPR_TARGET)
403 				c = tcontext;
404 			else if (e->attr & CEXPR_XTARGET) {
405 				c = xcontext;
406 				if (!c) {
407 					BUG();
408 					return 0;
409 				}
410 			}
411 			if (e->attr & CEXPR_USER)
412 				val1 = c->user;
413 			else if (e->attr & CEXPR_ROLE)
414 				val1 = c->role;
415 			else if (e->attr & CEXPR_TYPE)
416 				val1 = c->type;
417 			else {
418 				BUG();
419 				return 0;
420 			}
421 
422 			switch (e->op) {
423 			case CEXPR_EQ:
424 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
425 				break;
426 			case CEXPR_NEQ:
427 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
428 				break;
429 			default:
430 				BUG();
431 				return 0;
432 			}
433 			break;
434 		default:
435 			BUG();
436 			return 0;
437 		}
438 	}
439 
440 	BUG_ON(sp != 0);
441 	return s[0];
442 }
443 
444 /*
445  * security_dump_masked_av - dumps masked permissions during
446  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
447  */
448 static int dump_masked_av_helper(void *k, void *d, void *args)
449 {
450 	struct perm_datum *pdatum = d;
451 	char **permission_names = args;
452 
453 	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
454 
455 	permission_names[pdatum->value - 1] = (char *)k;
456 
457 	return 0;
458 }
459 
460 static void security_dump_masked_av(struct context *scontext,
461 				    struct context *tcontext,
462 				    u16 tclass,
463 				    u32 permissions,
464 				    const char *reason)
465 {
466 	struct common_datum *common_dat;
467 	struct class_datum *tclass_dat;
468 	struct audit_buffer *ab;
469 	char *tclass_name;
470 	char *scontext_name = NULL;
471 	char *tcontext_name = NULL;
472 	char *permission_names[32];
473 	int index;
474 	u32 length;
475 	bool need_comma = false;
476 
477 	if (!permissions)
478 		return;
479 
480 	tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
481 	tclass_dat = policydb.class_val_to_struct[tclass - 1];
482 	common_dat = tclass_dat->comdatum;
483 
484 	/* init permission_names */
485 	if (common_dat &&
486 	    hashtab_map(common_dat->permissions.table,
487 			dump_masked_av_helper, permission_names) < 0)
488 		goto out;
489 
490 	if (hashtab_map(tclass_dat->permissions.table,
491 			dump_masked_av_helper, permission_names) < 0)
492 		goto out;
493 
494 	/* get scontext/tcontext in text form */
495 	if (context_struct_to_string(scontext,
496 				     &scontext_name, &length) < 0)
497 		goto out;
498 
499 	if (context_struct_to_string(tcontext,
500 				     &tcontext_name, &length) < 0)
501 		goto out;
502 
503 	/* audit a message */
504 	ab = audit_log_start(current->audit_context,
505 			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
506 	if (!ab)
507 		goto out;
508 
509 	audit_log_format(ab, "op=security_compute_av reason=%s "
510 			 "scontext=%s tcontext=%s tclass=%s perms=",
511 			 reason, scontext_name, tcontext_name, tclass_name);
512 
513 	for (index = 0; index < 32; index++) {
514 		u32 mask = (1 << index);
515 
516 		if ((mask & permissions) == 0)
517 			continue;
518 
519 		audit_log_format(ab, "%s%s",
520 				 need_comma ? "," : "",
521 				 permission_names[index]
522 				 ? permission_names[index] : "????");
523 		need_comma = true;
524 	}
525 	audit_log_end(ab);
526 out:
527 	/* release scontext/tcontext */
528 	kfree(tcontext_name);
529 	kfree(scontext_name);
530 
531 	return;
532 }
533 
534 /*
535  * security_boundary_permission - drops violated permissions
536  * on boundary constraint.
537  */
538 static void type_attribute_bounds_av(struct context *scontext,
539 				     struct context *tcontext,
540 				     u16 tclass,
541 				     struct av_decision *avd)
542 {
543 	struct context lo_scontext;
544 	struct context lo_tcontext;
545 	struct av_decision lo_avd;
546 	struct type_datum *source;
547 	struct type_datum *target;
548 	u32 masked = 0;
549 
550 	source = flex_array_get_ptr(policydb.type_val_to_struct_array,
551 				    scontext->type - 1);
552 	BUG_ON(!source);
553 
554 	target = flex_array_get_ptr(policydb.type_val_to_struct_array,
555 				    tcontext->type - 1);
556 	BUG_ON(!target);
557 
558 	if (source->bounds) {
559 		memset(&lo_avd, 0, sizeof(lo_avd));
560 
561 		memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
562 		lo_scontext.type = source->bounds;
563 
564 		context_struct_compute_av(&lo_scontext,
565 					  tcontext,
566 					  tclass,
567 					  &lo_avd);
568 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
569 			return;		/* no masked permission */
570 		masked = ~lo_avd.allowed & avd->allowed;
571 	}
572 
573 	if (target->bounds) {
574 		memset(&lo_avd, 0, sizeof(lo_avd));
575 
576 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
577 		lo_tcontext.type = target->bounds;
578 
579 		context_struct_compute_av(scontext,
580 					  &lo_tcontext,
581 					  tclass,
582 					  &lo_avd);
583 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
584 			return;		/* no masked permission */
585 		masked = ~lo_avd.allowed & avd->allowed;
586 	}
587 
588 	if (source->bounds && target->bounds) {
589 		memset(&lo_avd, 0, sizeof(lo_avd));
590 		/*
591 		 * lo_scontext and lo_tcontext are already
592 		 * set up.
593 		 */
594 
595 		context_struct_compute_av(&lo_scontext,
596 					  &lo_tcontext,
597 					  tclass,
598 					  &lo_avd);
599 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
600 			return;		/* no masked permission */
601 		masked = ~lo_avd.allowed & avd->allowed;
602 	}
603 
604 	if (masked) {
605 		/* mask violated permissions */
606 		avd->allowed &= ~masked;
607 
608 		/* audit masked permissions */
609 		security_dump_masked_av(scontext, tcontext,
610 					tclass, masked, "bounds");
611 	}
612 }
613 
614 /*
615  * Compute access vectors based on a context structure pair for
616  * the permissions in a particular class.
617  */
618 static void context_struct_compute_av(struct context *scontext,
619 				      struct context *tcontext,
620 				      u16 tclass,
621 				      struct av_decision *avd)
622 {
623 	struct constraint_node *constraint;
624 	struct role_allow *ra;
625 	struct avtab_key avkey;
626 	struct avtab_node *node;
627 	struct class_datum *tclass_datum;
628 	struct ebitmap *sattr, *tattr;
629 	struct ebitmap_node *snode, *tnode;
630 	unsigned int i, j;
631 
632 	avd->allowed = 0;
633 	avd->auditallow = 0;
634 	avd->auditdeny = 0xffffffff;
635 
636 	if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
637 		if (printk_ratelimit())
638 			printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
639 		return;
640 	}
641 
642 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
643 
644 	/*
645 	 * If a specific type enforcement rule was defined for
646 	 * this permission check, then use it.
647 	 */
648 	avkey.target_class = tclass;
649 	avkey.specified = AVTAB_AV;
650 	sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
651 	BUG_ON(!sattr);
652 	tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
653 	BUG_ON(!tattr);
654 	ebitmap_for_each_positive_bit(sattr, snode, i) {
655 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
656 			avkey.source_type = i + 1;
657 			avkey.target_type = j + 1;
658 			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
659 			     node;
660 			     node = avtab_search_node_next(node, avkey.specified)) {
661 				if (node->key.specified == AVTAB_ALLOWED)
662 					avd->allowed |= node->datum.data;
663 				else if (node->key.specified == AVTAB_AUDITALLOW)
664 					avd->auditallow |= node->datum.data;
665 				else if (node->key.specified == AVTAB_AUDITDENY)
666 					avd->auditdeny &= node->datum.data;
667 			}
668 
669 			/* Check conditional av table for additional permissions */
670 			cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
671 
672 		}
673 	}
674 
675 	/*
676 	 * Remove any permissions prohibited by a constraint (this includes
677 	 * the MLS policy).
678 	 */
679 	constraint = tclass_datum->constraints;
680 	while (constraint) {
681 		if ((constraint->permissions & (avd->allowed)) &&
682 		    !constraint_expr_eval(scontext, tcontext, NULL,
683 					  constraint->expr)) {
684 			avd->allowed &= ~(constraint->permissions);
685 		}
686 		constraint = constraint->next;
687 	}
688 
689 	/*
690 	 * If checking process transition permission and the
691 	 * role is changing, then check the (current_role, new_role)
692 	 * pair.
693 	 */
694 	if (tclass == policydb.process_class &&
695 	    (avd->allowed & policydb.process_trans_perms) &&
696 	    scontext->role != tcontext->role) {
697 		for (ra = policydb.role_allow; ra; ra = ra->next) {
698 			if (scontext->role == ra->role &&
699 			    tcontext->role == ra->new_role)
700 				break;
701 		}
702 		if (!ra)
703 			avd->allowed &= ~policydb.process_trans_perms;
704 	}
705 
706 	/*
707 	 * If the given source and target types have boundary
708 	 * constraint, lazy checks have to mask any violated
709 	 * permission and notice it to userspace via audit.
710 	 */
711 	type_attribute_bounds_av(scontext, tcontext,
712 				 tclass, avd);
713 }
714 
715 static int security_validtrans_handle_fail(struct context *ocontext,
716 					   struct context *ncontext,
717 					   struct context *tcontext,
718 					   u16 tclass)
719 {
720 	char *o = NULL, *n = NULL, *t = NULL;
721 	u32 olen, nlen, tlen;
722 
723 	if (context_struct_to_string(ocontext, &o, &olen))
724 		goto out;
725 	if (context_struct_to_string(ncontext, &n, &nlen))
726 		goto out;
727 	if (context_struct_to_string(tcontext, &t, &tlen))
728 		goto out;
729 	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
730 		  "security_validate_transition:  denied for"
731 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
732 		  o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
733 out:
734 	kfree(o);
735 	kfree(n);
736 	kfree(t);
737 
738 	if (!selinux_enforcing)
739 		return 0;
740 	return -EPERM;
741 }
742 
743 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
744 				 u16 orig_tclass)
745 {
746 	struct context *ocontext;
747 	struct context *ncontext;
748 	struct context *tcontext;
749 	struct class_datum *tclass_datum;
750 	struct constraint_node *constraint;
751 	u16 tclass;
752 	int rc = 0;
753 
754 	if (!ss_initialized)
755 		return 0;
756 
757 	read_lock(&policy_rwlock);
758 
759 	tclass = unmap_class(orig_tclass);
760 
761 	if (!tclass || tclass > policydb.p_classes.nprim) {
762 		printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
763 			__func__, tclass);
764 		rc = -EINVAL;
765 		goto out;
766 	}
767 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
768 
769 	ocontext = sidtab_search(&sidtab, oldsid);
770 	if (!ocontext) {
771 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
772 			__func__, oldsid);
773 		rc = -EINVAL;
774 		goto out;
775 	}
776 
777 	ncontext = sidtab_search(&sidtab, newsid);
778 	if (!ncontext) {
779 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
780 			__func__, newsid);
781 		rc = -EINVAL;
782 		goto out;
783 	}
784 
785 	tcontext = sidtab_search(&sidtab, tasksid);
786 	if (!tcontext) {
787 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
788 			__func__, tasksid);
789 		rc = -EINVAL;
790 		goto out;
791 	}
792 
793 	constraint = tclass_datum->validatetrans;
794 	while (constraint) {
795 		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
796 					  constraint->expr)) {
797 			rc = security_validtrans_handle_fail(ocontext, ncontext,
798 							     tcontext, tclass);
799 			goto out;
800 		}
801 		constraint = constraint->next;
802 	}
803 
804 out:
805 	read_unlock(&policy_rwlock);
806 	return rc;
807 }
808 
809 /*
810  * security_bounded_transition - check whether the given
811  * transition is directed to bounded, or not.
812  * It returns 0, if @newsid is bounded by @oldsid.
813  * Otherwise, it returns error code.
814  *
815  * @oldsid : current security identifier
816  * @newsid : destinated security identifier
817  */
818 int security_bounded_transition(u32 old_sid, u32 new_sid)
819 {
820 	struct context *old_context, *new_context;
821 	struct type_datum *type;
822 	int index;
823 	int rc;
824 
825 	read_lock(&policy_rwlock);
826 
827 	rc = -EINVAL;
828 	old_context = sidtab_search(&sidtab, old_sid);
829 	if (!old_context) {
830 		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
831 		       __func__, old_sid);
832 		goto out;
833 	}
834 
835 	rc = -EINVAL;
836 	new_context = sidtab_search(&sidtab, new_sid);
837 	if (!new_context) {
838 		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
839 		       __func__, new_sid);
840 		goto out;
841 	}
842 
843 	rc = 0;
844 	/* type/domain unchanged */
845 	if (old_context->type == new_context->type)
846 		goto out;
847 
848 	index = new_context->type;
849 	while (true) {
850 		type = flex_array_get_ptr(policydb.type_val_to_struct_array,
851 					  index - 1);
852 		BUG_ON(!type);
853 
854 		/* not bounded anymore */
855 		rc = -EPERM;
856 		if (!type->bounds)
857 			break;
858 
859 		/* @newsid is bounded by @oldsid */
860 		rc = 0;
861 		if (type->bounds == old_context->type)
862 			break;
863 
864 		index = type->bounds;
865 	}
866 
867 	if (rc) {
868 		char *old_name = NULL;
869 		char *new_name = NULL;
870 		u32 length;
871 
872 		if (!context_struct_to_string(old_context,
873 					      &old_name, &length) &&
874 		    !context_struct_to_string(new_context,
875 					      &new_name, &length)) {
876 			audit_log(current->audit_context,
877 				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
878 				  "op=security_bounded_transition "
879 				  "result=denied "
880 				  "oldcontext=%s newcontext=%s",
881 				  old_name, new_name);
882 		}
883 		kfree(new_name);
884 		kfree(old_name);
885 	}
886 out:
887 	read_unlock(&policy_rwlock);
888 
889 	return rc;
890 }
891 
892 static void avd_init(struct av_decision *avd)
893 {
894 	avd->allowed = 0;
895 	avd->auditallow = 0;
896 	avd->auditdeny = 0xffffffff;
897 	avd->seqno = latest_granting;
898 	avd->flags = 0;
899 }
900 
901 
902 /**
903  * security_compute_av - Compute access vector decisions.
904  * @ssid: source security identifier
905  * @tsid: target security identifier
906  * @tclass: target security class
907  * @avd: access vector decisions
908  *
909  * Compute a set of access vector decisions based on the
910  * SID pair (@ssid, @tsid) for the permissions in @tclass.
911  */
912 void security_compute_av(u32 ssid,
913 			 u32 tsid,
914 			 u16 orig_tclass,
915 			 struct av_decision *avd)
916 {
917 	u16 tclass;
918 	struct context *scontext = NULL, *tcontext = NULL;
919 
920 	read_lock(&policy_rwlock);
921 	avd_init(avd);
922 	if (!ss_initialized)
923 		goto allow;
924 
925 	scontext = sidtab_search(&sidtab, ssid);
926 	if (!scontext) {
927 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
928 		       __func__, ssid);
929 		goto out;
930 	}
931 
932 	/* permissive domain? */
933 	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
934 		avd->flags |= AVD_FLAGS_PERMISSIVE;
935 
936 	tcontext = sidtab_search(&sidtab, tsid);
937 	if (!tcontext) {
938 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
939 		       __func__, tsid);
940 		goto out;
941 	}
942 
943 	tclass = unmap_class(orig_tclass);
944 	if (unlikely(orig_tclass && !tclass)) {
945 		if (policydb.allow_unknown)
946 			goto allow;
947 		goto out;
948 	}
949 	context_struct_compute_av(scontext, tcontext, tclass, avd);
950 	map_decision(orig_tclass, avd, policydb.allow_unknown);
951 out:
952 	read_unlock(&policy_rwlock);
953 	return;
954 allow:
955 	avd->allowed = 0xffffffff;
956 	goto out;
957 }
958 
959 void security_compute_av_user(u32 ssid,
960 			      u32 tsid,
961 			      u16 tclass,
962 			      struct av_decision *avd)
963 {
964 	struct context *scontext = NULL, *tcontext = NULL;
965 
966 	read_lock(&policy_rwlock);
967 	avd_init(avd);
968 	if (!ss_initialized)
969 		goto allow;
970 
971 	scontext = sidtab_search(&sidtab, ssid);
972 	if (!scontext) {
973 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
974 		       __func__, ssid);
975 		goto out;
976 	}
977 
978 	/* permissive domain? */
979 	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
980 		avd->flags |= AVD_FLAGS_PERMISSIVE;
981 
982 	tcontext = sidtab_search(&sidtab, tsid);
983 	if (!tcontext) {
984 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
985 		       __func__, tsid);
986 		goto out;
987 	}
988 
989 	if (unlikely(!tclass)) {
990 		if (policydb.allow_unknown)
991 			goto allow;
992 		goto out;
993 	}
994 
995 	context_struct_compute_av(scontext, tcontext, tclass, avd);
996  out:
997 	read_unlock(&policy_rwlock);
998 	return;
999 allow:
1000 	avd->allowed = 0xffffffff;
1001 	goto out;
1002 }
1003 
1004 /*
1005  * Write the security context string representation of
1006  * the context structure `context' into a dynamically
1007  * allocated string of the correct size.  Set `*scontext'
1008  * to point to this string and set `*scontext_len' to
1009  * the length of the string.
1010  */
1011 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
1012 {
1013 	char *scontextp;
1014 
1015 	if (scontext)
1016 		*scontext = NULL;
1017 	*scontext_len = 0;
1018 
1019 	if (context->len) {
1020 		*scontext_len = context->len;
1021 		if (scontext) {
1022 			*scontext = kstrdup(context->str, GFP_ATOMIC);
1023 			if (!(*scontext))
1024 				return -ENOMEM;
1025 		}
1026 		return 0;
1027 	}
1028 
1029 	/* Compute the size of the context. */
1030 	*scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1031 	*scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1032 	*scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1033 	*scontext_len += mls_compute_context_len(context);
1034 
1035 	if (!scontext)
1036 		return 0;
1037 
1038 	/* Allocate space for the context; caller must free this space. */
1039 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1040 	if (!scontextp)
1041 		return -ENOMEM;
1042 	*scontext = scontextp;
1043 
1044 	/*
1045 	 * Copy the user name, role name and type name into the context.
1046 	 */
1047 	sprintf(scontextp, "%s:%s:%s",
1048 		sym_name(&policydb, SYM_USERS, context->user - 1),
1049 		sym_name(&policydb, SYM_ROLES, context->role - 1),
1050 		sym_name(&policydb, SYM_TYPES, context->type - 1));
1051 	scontextp += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) +
1052 		     1 + strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) +
1053 		     1 + strlen(sym_name(&policydb, SYM_TYPES, context->type - 1));
1054 
1055 	mls_sid_to_context(context, &scontextp);
1056 
1057 	*scontextp = 0;
1058 
1059 	return 0;
1060 }
1061 
1062 #include "initial_sid_to_string.h"
1063 
1064 const char *security_get_initial_sid_context(u32 sid)
1065 {
1066 	if (unlikely(sid > SECINITSID_NUM))
1067 		return NULL;
1068 	return initial_sid_to_string[sid];
1069 }
1070 
1071 static int security_sid_to_context_core(u32 sid, char **scontext,
1072 					u32 *scontext_len, int force)
1073 {
1074 	struct context *context;
1075 	int rc = 0;
1076 
1077 	if (scontext)
1078 		*scontext = NULL;
1079 	*scontext_len  = 0;
1080 
1081 	if (!ss_initialized) {
1082 		if (sid <= SECINITSID_NUM) {
1083 			char *scontextp;
1084 
1085 			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1086 			if (!scontext)
1087 				goto out;
1088 			scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1089 			if (!scontextp) {
1090 				rc = -ENOMEM;
1091 				goto out;
1092 			}
1093 			strcpy(scontextp, initial_sid_to_string[sid]);
1094 			*scontext = scontextp;
1095 			goto out;
1096 		}
1097 		printk(KERN_ERR "SELinux: %s:  called before initial "
1098 		       "load_policy on unknown SID %d\n", __func__, sid);
1099 		rc = -EINVAL;
1100 		goto out;
1101 	}
1102 	read_lock(&policy_rwlock);
1103 	if (force)
1104 		context = sidtab_search_force(&sidtab, sid);
1105 	else
1106 		context = sidtab_search(&sidtab, sid);
1107 	if (!context) {
1108 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1109 			__func__, sid);
1110 		rc = -EINVAL;
1111 		goto out_unlock;
1112 	}
1113 	rc = context_struct_to_string(context, scontext, scontext_len);
1114 out_unlock:
1115 	read_unlock(&policy_rwlock);
1116 out:
1117 	return rc;
1118 
1119 }
1120 
1121 /**
1122  * security_sid_to_context - Obtain a context for a given SID.
1123  * @sid: security identifier, SID
1124  * @scontext: security context
1125  * @scontext_len: length in bytes
1126  *
1127  * Write the string representation of the context associated with @sid
1128  * into a dynamically allocated string of the correct size.  Set @scontext
1129  * to point to this string and set @scontext_len to the length of the string.
1130  */
1131 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1132 {
1133 	return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1134 }
1135 
1136 int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1137 {
1138 	return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1139 }
1140 
1141 /*
1142  * Caveat:  Mutates scontext.
1143  */
1144 static int string_to_context_struct(struct policydb *pol,
1145 				    struct sidtab *sidtabp,
1146 				    char *scontext,
1147 				    u32 scontext_len,
1148 				    struct context *ctx,
1149 				    u32 def_sid)
1150 {
1151 	struct role_datum *role;
1152 	struct type_datum *typdatum;
1153 	struct user_datum *usrdatum;
1154 	char *scontextp, *p, oldc;
1155 	int rc = 0;
1156 
1157 	context_init(ctx);
1158 
1159 	/* Parse the security context. */
1160 
1161 	rc = -EINVAL;
1162 	scontextp = (char *) scontext;
1163 
1164 	/* Extract the user. */
1165 	p = scontextp;
1166 	while (*p && *p != ':')
1167 		p++;
1168 
1169 	if (*p == 0)
1170 		goto out;
1171 
1172 	*p++ = 0;
1173 
1174 	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1175 	if (!usrdatum)
1176 		goto out;
1177 
1178 	ctx->user = usrdatum->value;
1179 
1180 	/* Extract role. */
1181 	scontextp = p;
1182 	while (*p && *p != ':')
1183 		p++;
1184 
1185 	if (*p == 0)
1186 		goto out;
1187 
1188 	*p++ = 0;
1189 
1190 	role = hashtab_search(pol->p_roles.table, scontextp);
1191 	if (!role)
1192 		goto out;
1193 	ctx->role = role->value;
1194 
1195 	/* Extract type. */
1196 	scontextp = p;
1197 	while (*p && *p != ':')
1198 		p++;
1199 	oldc = *p;
1200 	*p++ = 0;
1201 
1202 	typdatum = hashtab_search(pol->p_types.table, scontextp);
1203 	if (!typdatum || typdatum->attribute)
1204 		goto out;
1205 
1206 	ctx->type = typdatum->value;
1207 
1208 	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1209 	if (rc)
1210 		goto out;
1211 
1212 	rc = -EINVAL;
1213 	if ((p - scontext) < scontext_len)
1214 		goto out;
1215 
1216 	/* Check the validity of the new context. */
1217 	if (!policydb_context_isvalid(pol, ctx))
1218 		goto out;
1219 	rc = 0;
1220 out:
1221 	if (rc)
1222 		context_destroy(ctx);
1223 	return rc;
1224 }
1225 
1226 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1227 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1228 					int force)
1229 {
1230 	char *scontext2, *str = NULL;
1231 	struct context context;
1232 	int rc = 0;
1233 
1234 	if (!ss_initialized) {
1235 		int i;
1236 
1237 		for (i = 1; i < SECINITSID_NUM; i++) {
1238 			if (!strcmp(initial_sid_to_string[i], scontext)) {
1239 				*sid = i;
1240 				return 0;
1241 			}
1242 		}
1243 		*sid = SECINITSID_KERNEL;
1244 		return 0;
1245 	}
1246 	*sid = SECSID_NULL;
1247 
1248 	/* Copy the string so that we can modify the copy as we parse it. */
1249 	scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1250 	if (!scontext2)
1251 		return -ENOMEM;
1252 	memcpy(scontext2, scontext, scontext_len);
1253 	scontext2[scontext_len] = 0;
1254 
1255 	if (force) {
1256 		/* Save another copy for storing in uninterpreted form */
1257 		rc = -ENOMEM;
1258 		str = kstrdup(scontext2, gfp_flags);
1259 		if (!str)
1260 			goto out;
1261 	}
1262 
1263 	read_lock(&policy_rwlock);
1264 	rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1265 				      scontext_len, &context, def_sid);
1266 	if (rc == -EINVAL && force) {
1267 		context.str = str;
1268 		context.len = scontext_len;
1269 		str = NULL;
1270 	} else if (rc)
1271 		goto out_unlock;
1272 	rc = sidtab_context_to_sid(&sidtab, &context, sid);
1273 	context_destroy(&context);
1274 out_unlock:
1275 	read_unlock(&policy_rwlock);
1276 out:
1277 	kfree(scontext2);
1278 	kfree(str);
1279 	return rc;
1280 }
1281 
1282 /**
1283  * security_context_to_sid - Obtain a SID for a given security context.
1284  * @scontext: security context
1285  * @scontext_len: length in bytes
1286  * @sid: security identifier, SID
1287  *
1288  * Obtains a SID associated with the security context that
1289  * has the string representation specified by @scontext.
1290  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1291  * memory is available, or 0 on success.
1292  */
1293 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
1294 {
1295 	return security_context_to_sid_core(scontext, scontext_len,
1296 					    sid, SECSID_NULL, GFP_KERNEL, 0);
1297 }
1298 
1299 /**
1300  * security_context_to_sid_default - Obtain a SID for a given security context,
1301  * falling back to specified default if needed.
1302  *
1303  * @scontext: security context
1304  * @scontext_len: length in bytes
1305  * @sid: security identifier, SID
1306  * @def_sid: default SID to assign on error
1307  *
1308  * Obtains a SID associated with the security context that
1309  * has the string representation specified by @scontext.
1310  * The default SID is passed to the MLS layer to be used to allow
1311  * kernel labeling of the MLS field if the MLS field is not present
1312  * (for upgrading to MLS without full relabel).
1313  * Implicitly forces adding of the context even if it cannot be mapped yet.
1314  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1315  * memory is available, or 0 on success.
1316  */
1317 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1318 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1319 {
1320 	return security_context_to_sid_core(scontext, scontext_len,
1321 					    sid, def_sid, gfp_flags, 1);
1322 }
1323 
1324 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1325 				  u32 *sid)
1326 {
1327 	return security_context_to_sid_core(scontext, scontext_len,
1328 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1329 }
1330 
1331 static int compute_sid_handle_invalid_context(
1332 	struct context *scontext,
1333 	struct context *tcontext,
1334 	u16 tclass,
1335 	struct context *newcontext)
1336 {
1337 	char *s = NULL, *t = NULL, *n = NULL;
1338 	u32 slen, tlen, nlen;
1339 
1340 	if (context_struct_to_string(scontext, &s, &slen))
1341 		goto out;
1342 	if (context_struct_to_string(tcontext, &t, &tlen))
1343 		goto out;
1344 	if (context_struct_to_string(newcontext, &n, &nlen))
1345 		goto out;
1346 	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1347 		  "security_compute_sid:  invalid context %s"
1348 		  " for scontext=%s"
1349 		  " tcontext=%s"
1350 		  " tclass=%s",
1351 		  n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
1352 out:
1353 	kfree(s);
1354 	kfree(t);
1355 	kfree(n);
1356 	if (!selinux_enforcing)
1357 		return 0;
1358 	return -EACCES;
1359 }
1360 
1361 static void filename_compute_type(struct policydb *p, struct context *newcontext,
1362 				  u32 stype, u32 ttype, u16 tclass,
1363 				  const char *objname)
1364 {
1365 	struct filename_trans ft;
1366 	struct filename_trans_datum *otype;
1367 
1368 	/*
1369 	 * Most filename trans rules are going to live in specific directories
1370 	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1371 	 * if the ttype does not contain any rules.
1372 	 */
1373 	if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1374 		return;
1375 
1376 	ft.stype = stype;
1377 	ft.ttype = ttype;
1378 	ft.tclass = tclass;
1379 	ft.name = objname;
1380 
1381 	otype = hashtab_search(p->filename_trans, &ft);
1382 	if (otype)
1383 		newcontext->type = otype->otype;
1384 }
1385 
1386 static int security_compute_sid(u32 ssid,
1387 				u32 tsid,
1388 				u16 orig_tclass,
1389 				u32 specified,
1390 				const char *objname,
1391 				u32 *out_sid,
1392 				bool kern)
1393 {
1394 	struct class_datum *cladatum = NULL;
1395 	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1396 	struct role_trans *roletr = NULL;
1397 	struct avtab_key avkey;
1398 	struct avtab_datum *avdatum;
1399 	struct avtab_node *node;
1400 	u16 tclass;
1401 	int rc = 0;
1402 	bool sock;
1403 
1404 	if (!ss_initialized) {
1405 		switch (orig_tclass) {
1406 		case SECCLASS_PROCESS: /* kernel value */
1407 			*out_sid = ssid;
1408 			break;
1409 		default:
1410 			*out_sid = tsid;
1411 			break;
1412 		}
1413 		goto out;
1414 	}
1415 
1416 	context_init(&newcontext);
1417 
1418 	read_lock(&policy_rwlock);
1419 
1420 	if (kern) {
1421 		tclass = unmap_class(orig_tclass);
1422 		sock = security_is_socket_class(orig_tclass);
1423 	} else {
1424 		tclass = orig_tclass;
1425 		sock = security_is_socket_class(map_class(tclass));
1426 	}
1427 
1428 	scontext = sidtab_search(&sidtab, ssid);
1429 	if (!scontext) {
1430 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1431 		       __func__, ssid);
1432 		rc = -EINVAL;
1433 		goto out_unlock;
1434 	}
1435 	tcontext = sidtab_search(&sidtab, tsid);
1436 	if (!tcontext) {
1437 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1438 		       __func__, tsid);
1439 		rc = -EINVAL;
1440 		goto out_unlock;
1441 	}
1442 
1443 	if (tclass && tclass <= policydb.p_classes.nprim)
1444 		cladatum = policydb.class_val_to_struct[tclass - 1];
1445 
1446 	/* Set the user identity. */
1447 	switch (specified) {
1448 	case AVTAB_TRANSITION:
1449 	case AVTAB_CHANGE:
1450 		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1451 			newcontext.user = tcontext->user;
1452 		} else {
1453 			/* notice this gets both DEFAULT_SOURCE and unset */
1454 			/* Use the process user identity. */
1455 			newcontext.user = scontext->user;
1456 		}
1457 		break;
1458 	case AVTAB_MEMBER:
1459 		/* Use the related object owner. */
1460 		newcontext.user = tcontext->user;
1461 		break;
1462 	}
1463 
1464 	/* Set the role to default values. */
1465 	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1466 		newcontext.role = scontext->role;
1467 	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1468 		newcontext.role = tcontext->role;
1469 	} else {
1470 		if ((tclass == policydb.process_class) || (sock == true))
1471 			newcontext.role = scontext->role;
1472 		else
1473 			newcontext.role = OBJECT_R_VAL;
1474 	}
1475 
1476 	/* Set the type to default values. */
1477 	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1478 		newcontext.type = scontext->type;
1479 	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1480 		newcontext.type = tcontext->type;
1481 	} else {
1482 		if ((tclass == policydb.process_class) || (sock == true)) {
1483 			/* Use the type of process. */
1484 			newcontext.type = scontext->type;
1485 		} else {
1486 			/* Use the type of the related object. */
1487 			newcontext.type = tcontext->type;
1488 		}
1489 	}
1490 
1491 	/* Look for a type transition/member/change rule. */
1492 	avkey.source_type = scontext->type;
1493 	avkey.target_type = tcontext->type;
1494 	avkey.target_class = tclass;
1495 	avkey.specified = specified;
1496 	avdatum = avtab_search(&policydb.te_avtab, &avkey);
1497 
1498 	/* If no permanent rule, also check for enabled conditional rules */
1499 	if (!avdatum) {
1500 		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1501 		for (; node; node = avtab_search_node_next(node, specified)) {
1502 			if (node->key.specified & AVTAB_ENABLED) {
1503 				avdatum = &node->datum;
1504 				break;
1505 			}
1506 		}
1507 	}
1508 
1509 	if (avdatum) {
1510 		/* Use the type from the type transition/member/change rule. */
1511 		newcontext.type = avdatum->data;
1512 	}
1513 
1514 	/* if we have a objname this is a file trans check so check those rules */
1515 	if (objname)
1516 		filename_compute_type(&policydb, &newcontext, scontext->type,
1517 				      tcontext->type, tclass, objname);
1518 
1519 	/* Check for class-specific changes. */
1520 	if (specified & AVTAB_TRANSITION) {
1521 		/* Look for a role transition rule. */
1522 		for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
1523 			if ((roletr->role == scontext->role) &&
1524 			    (roletr->type == tcontext->type) &&
1525 			    (roletr->tclass == tclass)) {
1526 				/* Use the role transition rule. */
1527 				newcontext.role = roletr->new_role;
1528 				break;
1529 			}
1530 		}
1531 	}
1532 
1533 	/* Set the MLS attributes.
1534 	   This is done last because it may allocate memory. */
1535 	rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1536 			     &newcontext, sock);
1537 	if (rc)
1538 		goto out_unlock;
1539 
1540 	/* Check the validity of the context. */
1541 	if (!policydb_context_isvalid(&policydb, &newcontext)) {
1542 		rc = compute_sid_handle_invalid_context(scontext,
1543 							tcontext,
1544 							tclass,
1545 							&newcontext);
1546 		if (rc)
1547 			goto out_unlock;
1548 	}
1549 	/* Obtain the sid for the context. */
1550 	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1551 out_unlock:
1552 	read_unlock(&policy_rwlock);
1553 	context_destroy(&newcontext);
1554 out:
1555 	return rc;
1556 }
1557 
1558 /**
1559  * security_transition_sid - Compute the SID for a new subject/object.
1560  * @ssid: source security identifier
1561  * @tsid: target security identifier
1562  * @tclass: target security class
1563  * @out_sid: security identifier for new subject/object
1564  *
1565  * Compute a SID to use for labeling a new subject or object in the
1566  * class @tclass based on a SID pair (@ssid, @tsid).
1567  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1568  * if insufficient memory is available, or %0 if the new SID was
1569  * computed successfully.
1570  */
1571 int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1572 			    const struct qstr *qstr, u32 *out_sid)
1573 {
1574 	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1575 				    qstr ? qstr->name : NULL, out_sid, true);
1576 }
1577 
1578 int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1579 				 const char *objname, u32 *out_sid)
1580 {
1581 	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1582 				    objname, out_sid, false);
1583 }
1584 
1585 /**
1586  * security_member_sid - Compute the SID for member selection.
1587  * @ssid: source security identifier
1588  * @tsid: target security identifier
1589  * @tclass: target security class
1590  * @out_sid: security identifier for selected member
1591  *
1592  * Compute a SID to use when selecting a member of a polyinstantiated
1593  * object of class @tclass based on a SID pair (@ssid, @tsid).
1594  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1595  * if insufficient memory is available, or %0 if the SID was
1596  * computed successfully.
1597  */
1598 int security_member_sid(u32 ssid,
1599 			u32 tsid,
1600 			u16 tclass,
1601 			u32 *out_sid)
1602 {
1603 	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
1604 				    out_sid, false);
1605 }
1606 
1607 /**
1608  * security_change_sid - Compute the SID for object relabeling.
1609  * @ssid: source security identifier
1610  * @tsid: target security identifier
1611  * @tclass: target security class
1612  * @out_sid: security identifier for selected member
1613  *
1614  * Compute a SID to use for relabeling an object of class @tclass
1615  * based on a SID pair (@ssid, @tsid).
1616  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1617  * if insufficient memory is available, or %0 if the SID was
1618  * computed successfully.
1619  */
1620 int security_change_sid(u32 ssid,
1621 			u32 tsid,
1622 			u16 tclass,
1623 			u32 *out_sid)
1624 {
1625 	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1626 				    out_sid, false);
1627 }
1628 
1629 /* Clone the SID into the new SID table. */
1630 static int clone_sid(u32 sid,
1631 		     struct context *context,
1632 		     void *arg)
1633 {
1634 	struct sidtab *s = arg;
1635 
1636 	if (sid > SECINITSID_NUM)
1637 		return sidtab_insert(s, sid, context);
1638 	else
1639 		return 0;
1640 }
1641 
1642 static inline int convert_context_handle_invalid_context(struct context *context)
1643 {
1644 	char *s;
1645 	u32 len;
1646 
1647 	if (selinux_enforcing)
1648 		return -EINVAL;
1649 
1650 	if (!context_struct_to_string(context, &s, &len)) {
1651 		printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
1652 		kfree(s);
1653 	}
1654 	return 0;
1655 }
1656 
1657 struct convert_context_args {
1658 	struct policydb *oldp;
1659 	struct policydb *newp;
1660 };
1661 
1662 /*
1663  * Convert the values in the security context
1664  * structure `c' from the values specified
1665  * in the policy `p->oldp' to the values specified
1666  * in the policy `p->newp'.  Verify that the
1667  * context is valid under the new policy.
1668  */
1669 static int convert_context(u32 key,
1670 			   struct context *c,
1671 			   void *p)
1672 {
1673 	struct convert_context_args *args;
1674 	struct context oldc;
1675 	struct ocontext *oc;
1676 	struct mls_range *range;
1677 	struct role_datum *role;
1678 	struct type_datum *typdatum;
1679 	struct user_datum *usrdatum;
1680 	char *s;
1681 	u32 len;
1682 	int rc = 0;
1683 
1684 	if (key <= SECINITSID_NUM)
1685 		goto out;
1686 
1687 	args = p;
1688 
1689 	if (c->str) {
1690 		struct context ctx;
1691 
1692 		rc = -ENOMEM;
1693 		s = kstrdup(c->str, GFP_KERNEL);
1694 		if (!s)
1695 			goto out;
1696 
1697 		rc = string_to_context_struct(args->newp, NULL, s,
1698 					      c->len, &ctx, SECSID_NULL);
1699 		kfree(s);
1700 		if (!rc) {
1701 			printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1702 			       c->str);
1703 			/* Replace string with mapped representation. */
1704 			kfree(c->str);
1705 			memcpy(c, &ctx, sizeof(*c));
1706 			goto out;
1707 		} else if (rc == -EINVAL) {
1708 			/* Retain string representation for later mapping. */
1709 			rc = 0;
1710 			goto out;
1711 		} else {
1712 			/* Other error condition, e.g. ENOMEM. */
1713 			printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1714 			       c->str, -rc);
1715 			goto out;
1716 		}
1717 	}
1718 
1719 	rc = context_cpy(&oldc, c);
1720 	if (rc)
1721 		goto out;
1722 
1723 	/* Convert the user. */
1724 	rc = -EINVAL;
1725 	usrdatum = hashtab_search(args->newp->p_users.table,
1726 				  sym_name(args->oldp, SYM_USERS, c->user - 1));
1727 	if (!usrdatum)
1728 		goto bad;
1729 	c->user = usrdatum->value;
1730 
1731 	/* Convert the role. */
1732 	rc = -EINVAL;
1733 	role = hashtab_search(args->newp->p_roles.table,
1734 			      sym_name(args->oldp, SYM_ROLES, c->role - 1));
1735 	if (!role)
1736 		goto bad;
1737 	c->role = role->value;
1738 
1739 	/* Convert the type. */
1740 	rc = -EINVAL;
1741 	typdatum = hashtab_search(args->newp->p_types.table,
1742 				  sym_name(args->oldp, SYM_TYPES, c->type - 1));
1743 	if (!typdatum)
1744 		goto bad;
1745 	c->type = typdatum->value;
1746 
1747 	/* Convert the MLS fields if dealing with MLS policies */
1748 	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1749 		rc = mls_convert_context(args->oldp, args->newp, c);
1750 		if (rc)
1751 			goto bad;
1752 	} else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1753 		/*
1754 		 * Switching between MLS and non-MLS policy:
1755 		 * free any storage used by the MLS fields in the
1756 		 * context for all existing entries in the sidtab.
1757 		 */
1758 		mls_context_destroy(c);
1759 	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1760 		/*
1761 		 * Switching between non-MLS and MLS policy:
1762 		 * ensure that the MLS fields of the context for all
1763 		 * existing entries in the sidtab are filled in with a
1764 		 * suitable default value, likely taken from one of the
1765 		 * initial SIDs.
1766 		 */
1767 		oc = args->newp->ocontexts[OCON_ISID];
1768 		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1769 			oc = oc->next;
1770 		rc = -EINVAL;
1771 		if (!oc) {
1772 			printk(KERN_ERR "SELinux:  unable to look up"
1773 				" the initial SIDs list\n");
1774 			goto bad;
1775 		}
1776 		range = &oc->context[0].range;
1777 		rc = mls_range_set(c, range);
1778 		if (rc)
1779 			goto bad;
1780 	}
1781 
1782 	/* Check the validity of the new context. */
1783 	if (!policydb_context_isvalid(args->newp, c)) {
1784 		rc = convert_context_handle_invalid_context(&oldc);
1785 		if (rc)
1786 			goto bad;
1787 	}
1788 
1789 	context_destroy(&oldc);
1790 
1791 	rc = 0;
1792 out:
1793 	return rc;
1794 bad:
1795 	/* Map old representation to string and save it. */
1796 	rc = context_struct_to_string(&oldc, &s, &len);
1797 	if (rc)
1798 		return rc;
1799 	context_destroy(&oldc);
1800 	context_destroy(c);
1801 	c->str = s;
1802 	c->len = len;
1803 	printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
1804 	       c->str);
1805 	rc = 0;
1806 	goto out;
1807 }
1808 
1809 static void security_load_policycaps(void)
1810 {
1811 	selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1812 						  POLICYDB_CAPABILITY_NETPEER);
1813 	selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1814 						  POLICYDB_CAPABILITY_OPENPERM);
1815 }
1816 
1817 static int security_preserve_bools(struct policydb *p);
1818 
1819 /**
1820  * security_load_policy - Load a security policy configuration.
1821  * @data: binary policy data
1822  * @len: length of data in bytes
1823  *
1824  * Load a new set of security policy configuration data,
1825  * validate it and convert the SID table as necessary.
1826  * This function will flush the access vector cache after
1827  * loading the new policy.
1828  */
1829 int security_load_policy(void *data, size_t len)
1830 {
1831 	struct policydb oldpolicydb, newpolicydb;
1832 	struct sidtab oldsidtab, newsidtab;
1833 	struct selinux_mapping *oldmap, *map = NULL;
1834 	struct convert_context_args args;
1835 	u32 seqno;
1836 	u16 map_size;
1837 	int rc = 0;
1838 	struct policy_file file = { data, len }, *fp = &file;
1839 
1840 	if (!ss_initialized) {
1841 		avtab_cache_init();
1842 		rc = policydb_read(&policydb, fp);
1843 		if (rc) {
1844 			avtab_cache_destroy();
1845 			return rc;
1846 		}
1847 
1848 		policydb.len = len;
1849 		rc = selinux_set_mapping(&policydb, secclass_map,
1850 					 &current_mapping,
1851 					 &current_mapping_size);
1852 		if (rc) {
1853 			policydb_destroy(&policydb);
1854 			avtab_cache_destroy();
1855 			return rc;
1856 		}
1857 
1858 		rc = policydb_load_isids(&policydb, &sidtab);
1859 		if (rc) {
1860 			policydb_destroy(&policydb);
1861 			avtab_cache_destroy();
1862 			return rc;
1863 		}
1864 
1865 		security_load_policycaps();
1866 		ss_initialized = 1;
1867 		seqno = ++latest_granting;
1868 		selinux_complete_init();
1869 		avc_ss_reset(seqno);
1870 		selnl_notify_policyload(seqno);
1871 		selinux_status_update_policyload(seqno);
1872 		selinux_netlbl_cache_invalidate();
1873 		selinux_xfrm_notify_policyload();
1874 		return 0;
1875 	}
1876 
1877 #if 0
1878 	sidtab_hash_eval(&sidtab, "sids");
1879 #endif
1880 
1881 	rc = policydb_read(&newpolicydb, fp);
1882 	if (rc)
1883 		return rc;
1884 
1885 	newpolicydb.len = len;
1886 	/* If switching between different policy types, log MLS status */
1887 	if (policydb.mls_enabled && !newpolicydb.mls_enabled)
1888 		printk(KERN_INFO "SELinux: Disabling MLS support...\n");
1889 	else if (!policydb.mls_enabled && newpolicydb.mls_enabled)
1890 		printk(KERN_INFO "SELinux: Enabling MLS support...\n");
1891 
1892 	rc = policydb_load_isids(&newpolicydb, &newsidtab);
1893 	if (rc) {
1894 		printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
1895 		policydb_destroy(&newpolicydb);
1896 		return rc;
1897 	}
1898 
1899 	rc = selinux_set_mapping(&newpolicydb, secclass_map, &map, &map_size);
1900 	if (rc)
1901 		goto err;
1902 
1903 	rc = security_preserve_bools(&newpolicydb);
1904 	if (rc) {
1905 		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
1906 		goto err;
1907 	}
1908 
1909 	/* Clone the SID table. */
1910 	sidtab_shutdown(&sidtab);
1911 
1912 	rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
1913 	if (rc)
1914 		goto err;
1915 
1916 	/*
1917 	 * Convert the internal representations of contexts
1918 	 * in the new SID table.
1919 	 */
1920 	args.oldp = &policydb;
1921 	args.newp = &newpolicydb;
1922 	rc = sidtab_map(&newsidtab, convert_context, &args);
1923 	if (rc) {
1924 		printk(KERN_ERR "SELinux:  unable to convert the internal"
1925 			" representation of contexts in the new SID"
1926 			" table\n");
1927 		goto err;
1928 	}
1929 
1930 	/* Save the old policydb and SID table to free later. */
1931 	memcpy(&oldpolicydb, &policydb, sizeof policydb);
1932 	sidtab_set(&oldsidtab, &sidtab);
1933 
1934 	/* Install the new policydb and SID table. */
1935 	write_lock_irq(&policy_rwlock);
1936 	memcpy(&policydb, &newpolicydb, sizeof policydb);
1937 	sidtab_set(&sidtab, &newsidtab);
1938 	security_load_policycaps();
1939 	oldmap = current_mapping;
1940 	current_mapping = map;
1941 	current_mapping_size = map_size;
1942 	seqno = ++latest_granting;
1943 	write_unlock_irq(&policy_rwlock);
1944 
1945 	/* Free the old policydb and SID table. */
1946 	policydb_destroy(&oldpolicydb);
1947 	sidtab_destroy(&oldsidtab);
1948 	kfree(oldmap);
1949 
1950 	avc_ss_reset(seqno);
1951 	selnl_notify_policyload(seqno);
1952 	selinux_status_update_policyload(seqno);
1953 	selinux_netlbl_cache_invalidate();
1954 	selinux_xfrm_notify_policyload();
1955 
1956 	return 0;
1957 
1958 err:
1959 	kfree(map);
1960 	sidtab_destroy(&newsidtab);
1961 	policydb_destroy(&newpolicydb);
1962 	return rc;
1963 
1964 }
1965 
1966 size_t security_policydb_len(void)
1967 {
1968 	size_t len;
1969 
1970 	read_lock(&policy_rwlock);
1971 	len = policydb.len;
1972 	read_unlock(&policy_rwlock);
1973 
1974 	return len;
1975 }
1976 
1977 /**
1978  * security_port_sid - Obtain the SID for a port.
1979  * @protocol: protocol number
1980  * @port: port number
1981  * @out_sid: security identifier
1982  */
1983 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
1984 {
1985 	struct ocontext *c;
1986 	int rc = 0;
1987 
1988 	read_lock(&policy_rwlock);
1989 
1990 	c = policydb.ocontexts[OCON_PORT];
1991 	while (c) {
1992 		if (c->u.port.protocol == protocol &&
1993 		    c->u.port.low_port <= port &&
1994 		    c->u.port.high_port >= port)
1995 			break;
1996 		c = c->next;
1997 	}
1998 
1999 	if (c) {
2000 		if (!c->sid[0]) {
2001 			rc = sidtab_context_to_sid(&sidtab,
2002 						   &c->context[0],
2003 						   &c->sid[0]);
2004 			if (rc)
2005 				goto out;
2006 		}
2007 		*out_sid = c->sid[0];
2008 	} else {
2009 		*out_sid = SECINITSID_PORT;
2010 	}
2011 
2012 out:
2013 	read_unlock(&policy_rwlock);
2014 	return rc;
2015 }
2016 
2017 /**
2018  * security_netif_sid - Obtain the SID for a network interface.
2019  * @name: interface name
2020  * @if_sid: interface SID
2021  */
2022 int security_netif_sid(char *name, u32 *if_sid)
2023 {
2024 	int rc = 0;
2025 	struct ocontext *c;
2026 
2027 	read_lock(&policy_rwlock);
2028 
2029 	c = policydb.ocontexts[OCON_NETIF];
2030 	while (c) {
2031 		if (strcmp(name, c->u.name) == 0)
2032 			break;
2033 		c = c->next;
2034 	}
2035 
2036 	if (c) {
2037 		if (!c->sid[0] || !c->sid[1]) {
2038 			rc = sidtab_context_to_sid(&sidtab,
2039 						  &c->context[0],
2040 						  &c->sid[0]);
2041 			if (rc)
2042 				goto out;
2043 			rc = sidtab_context_to_sid(&sidtab,
2044 						   &c->context[1],
2045 						   &c->sid[1]);
2046 			if (rc)
2047 				goto out;
2048 		}
2049 		*if_sid = c->sid[0];
2050 	} else
2051 		*if_sid = SECINITSID_NETIF;
2052 
2053 out:
2054 	read_unlock(&policy_rwlock);
2055 	return rc;
2056 }
2057 
2058 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2059 {
2060 	int i, fail = 0;
2061 
2062 	for (i = 0; i < 4; i++)
2063 		if (addr[i] != (input[i] & mask[i])) {
2064 			fail = 1;
2065 			break;
2066 		}
2067 
2068 	return !fail;
2069 }
2070 
2071 /**
2072  * security_node_sid - Obtain the SID for a node (host).
2073  * @domain: communication domain aka address family
2074  * @addrp: address
2075  * @addrlen: address length in bytes
2076  * @out_sid: security identifier
2077  */
2078 int security_node_sid(u16 domain,
2079 		      void *addrp,
2080 		      u32 addrlen,
2081 		      u32 *out_sid)
2082 {
2083 	int rc;
2084 	struct ocontext *c;
2085 
2086 	read_lock(&policy_rwlock);
2087 
2088 	switch (domain) {
2089 	case AF_INET: {
2090 		u32 addr;
2091 
2092 		rc = -EINVAL;
2093 		if (addrlen != sizeof(u32))
2094 			goto out;
2095 
2096 		addr = *((u32 *)addrp);
2097 
2098 		c = policydb.ocontexts[OCON_NODE];
2099 		while (c) {
2100 			if (c->u.node.addr == (addr & c->u.node.mask))
2101 				break;
2102 			c = c->next;
2103 		}
2104 		break;
2105 	}
2106 
2107 	case AF_INET6:
2108 		rc = -EINVAL;
2109 		if (addrlen != sizeof(u64) * 2)
2110 			goto out;
2111 		c = policydb.ocontexts[OCON_NODE6];
2112 		while (c) {
2113 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2114 						c->u.node6.mask))
2115 				break;
2116 			c = c->next;
2117 		}
2118 		break;
2119 
2120 	default:
2121 		rc = 0;
2122 		*out_sid = SECINITSID_NODE;
2123 		goto out;
2124 	}
2125 
2126 	if (c) {
2127 		if (!c->sid[0]) {
2128 			rc = sidtab_context_to_sid(&sidtab,
2129 						   &c->context[0],
2130 						   &c->sid[0]);
2131 			if (rc)
2132 				goto out;
2133 		}
2134 		*out_sid = c->sid[0];
2135 	} else {
2136 		*out_sid = SECINITSID_NODE;
2137 	}
2138 
2139 	rc = 0;
2140 out:
2141 	read_unlock(&policy_rwlock);
2142 	return rc;
2143 }
2144 
2145 #define SIDS_NEL 25
2146 
2147 /**
2148  * security_get_user_sids - Obtain reachable SIDs for a user.
2149  * @fromsid: starting SID
2150  * @username: username
2151  * @sids: array of reachable SIDs for user
2152  * @nel: number of elements in @sids
2153  *
2154  * Generate the set of SIDs for legal security contexts
2155  * for a given user that can be reached by @fromsid.
2156  * Set *@sids to point to a dynamically allocated
2157  * array containing the set of SIDs.  Set *@nel to the
2158  * number of elements in the array.
2159  */
2160 
2161 int security_get_user_sids(u32 fromsid,
2162 			   char *username,
2163 			   u32 **sids,
2164 			   u32 *nel)
2165 {
2166 	struct context *fromcon, usercon;
2167 	u32 *mysids = NULL, *mysids2, sid;
2168 	u32 mynel = 0, maxnel = SIDS_NEL;
2169 	struct user_datum *user;
2170 	struct role_datum *role;
2171 	struct ebitmap_node *rnode, *tnode;
2172 	int rc = 0, i, j;
2173 
2174 	*sids = NULL;
2175 	*nel = 0;
2176 
2177 	if (!ss_initialized)
2178 		goto out;
2179 
2180 	read_lock(&policy_rwlock);
2181 
2182 	context_init(&usercon);
2183 
2184 	rc = -EINVAL;
2185 	fromcon = sidtab_search(&sidtab, fromsid);
2186 	if (!fromcon)
2187 		goto out_unlock;
2188 
2189 	rc = -EINVAL;
2190 	user = hashtab_search(policydb.p_users.table, username);
2191 	if (!user)
2192 		goto out_unlock;
2193 
2194 	usercon.user = user->value;
2195 
2196 	rc = -ENOMEM;
2197 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2198 	if (!mysids)
2199 		goto out_unlock;
2200 
2201 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2202 		role = policydb.role_val_to_struct[i];
2203 		usercon.role = i + 1;
2204 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2205 			usercon.type = j + 1;
2206 
2207 			if (mls_setup_user_range(fromcon, user, &usercon))
2208 				continue;
2209 
2210 			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2211 			if (rc)
2212 				goto out_unlock;
2213 			if (mynel < maxnel) {
2214 				mysids[mynel++] = sid;
2215 			} else {
2216 				rc = -ENOMEM;
2217 				maxnel += SIDS_NEL;
2218 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2219 				if (!mysids2)
2220 					goto out_unlock;
2221 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2222 				kfree(mysids);
2223 				mysids = mysids2;
2224 				mysids[mynel++] = sid;
2225 			}
2226 		}
2227 	}
2228 	rc = 0;
2229 out_unlock:
2230 	read_unlock(&policy_rwlock);
2231 	if (rc || !mynel) {
2232 		kfree(mysids);
2233 		goto out;
2234 	}
2235 
2236 	rc = -ENOMEM;
2237 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2238 	if (!mysids2) {
2239 		kfree(mysids);
2240 		goto out;
2241 	}
2242 	for (i = 0, j = 0; i < mynel; i++) {
2243 		struct av_decision dummy_avd;
2244 		rc = avc_has_perm_noaudit(fromsid, mysids[i],
2245 					  SECCLASS_PROCESS, /* kernel value */
2246 					  PROCESS__TRANSITION, AVC_STRICT,
2247 					  &dummy_avd);
2248 		if (!rc)
2249 			mysids2[j++] = mysids[i];
2250 		cond_resched();
2251 	}
2252 	rc = 0;
2253 	kfree(mysids);
2254 	*sids = mysids2;
2255 	*nel = j;
2256 out:
2257 	return rc;
2258 }
2259 
2260 /**
2261  * security_genfs_sid - Obtain a SID for a file in a filesystem
2262  * @fstype: filesystem type
2263  * @path: path from root of mount
2264  * @sclass: file security class
2265  * @sid: SID for path
2266  *
2267  * Obtain a SID to use for a file in a filesystem that
2268  * cannot support xattr or use a fixed labeling behavior like
2269  * transition SIDs or task SIDs.
2270  */
2271 int security_genfs_sid(const char *fstype,
2272 		       char *path,
2273 		       u16 orig_sclass,
2274 		       u32 *sid)
2275 {
2276 	int len;
2277 	u16 sclass;
2278 	struct genfs *genfs;
2279 	struct ocontext *c;
2280 	int rc, cmp = 0;
2281 
2282 	while (path[0] == '/' && path[1] == '/')
2283 		path++;
2284 
2285 	read_lock(&policy_rwlock);
2286 
2287 	sclass = unmap_class(orig_sclass);
2288 	*sid = SECINITSID_UNLABELED;
2289 
2290 	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2291 		cmp = strcmp(fstype, genfs->fstype);
2292 		if (cmp <= 0)
2293 			break;
2294 	}
2295 
2296 	rc = -ENOENT;
2297 	if (!genfs || cmp)
2298 		goto out;
2299 
2300 	for (c = genfs->head; c; c = c->next) {
2301 		len = strlen(c->u.name);
2302 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2303 		    (strncmp(c->u.name, path, len) == 0))
2304 			break;
2305 	}
2306 
2307 	rc = -ENOENT;
2308 	if (!c)
2309 		goto out;
2310 
2311 	if (!c->sid[0]) {
2312 		rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2313 		if (rc)
2314 			goto out;
2315 	}
2316 
2317 	*sid = c->sid[0];
2318 	rc = 0;
2319 out:
2320 	read_unlock(&policy_rwlock);
2321 	return rc;
2322 }
2323 
2324 /**
2325  * security_fs_use - Determine how to handle labeling for a filesystem.
2326  * @fstype: filesystem type
2327  * @behavior: labeling behavior
2328  * @sid: SID for filesystem (superblock)
2329  */
2330 int security_fs_use(
2331 	const char *fstype,
2332 	unsigned int *behavior,
2333 	u32 *sid)
2334 {
2335 	int rc = 0;
2336 	struct ocontext *c;
2337 
2338 	read_lock(&policy_rwlock);
2339 
2340 	c = policydb.ocontexts[OCON_FSUSE];
2341 	while (c) {
2342 		if (strcmp(fstype, c->u.name) == 0)
2343 			break;
2344 		c = c->next;
2345 	}
2346 
2347 	if (c) {
2348 		*behavior = c->v.behavior;
2349 		if (!c->sid[0]) {
2350 			rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2351 						   &c->sid[0]);
2352 			if (rc)
2353 				goto out;
2354 		}
2355 		*sid = c->sid[0];
2356 	} else {
2357 		rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
2358 		if (rc) {
2359 			*behavior = SECURITY_FS_USE_NONE;
2360 			rc = 0;
2361 		} else {
2362 			*behavior = SECURITY_FS_USE_GENFS;
2363 		}
2364 	}
2365 
2366 out:
2367 	read_unlock(&policy_rwlock);
2368 	return rc;
2369 }
2370 
2371 int security_get_bools(int *len, char ***names, int **values)
2372 {
2373 	int i, rc;
2374 
2375 	read_lock(&policy_rwlock);
2376 	*names = NULL;
2377 	*values = NULL;
2378 
2379 	rc = 0;
2380 	*len = policydb.p_bools.nprim;
2381 	if (!*len)
2382 		goto out;
2383 
2384 	rc = -ENOMEM;
2385 	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2386 	if (!*names)
2387 		goto err;
2388 
2389 	rc = -ENOMEM;
2390 	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2391 	if (!*values)
2392 		goto err;
2393 
2394 	for (i = 0; i < *len; i++) {
2395 		size_t name_len;
2396 
2397 		(*values)[i] = policydb.bool_val_to_struct[i]->state;
2398 		name_len = strlen(sym_name(&policydb, SYM_BOOLS, i)) + 1;
2399 
2400 		rc = -ENOMEM;
2401 		(*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
2402 		if (!(*names)[i])
2403 			goto err;
2404 
2405 		strncpy((*names)[i], sym_name(&policydb, SYM_BOOLS, i), name_len);
2406 		(*names)[i][name_len - 1] = 0;
2407 	}
2408 	rc = 0;
2409 out:
2410 	read_unlock(&policy_rwlock);
2411 	return rc;
2412 err:
2413 	if (*names) {
2414 		for (i = 0; i < *len; i++)
2415 			kfree((*names)[i]);
2416 	}
2417 	kfree(*values);
2418 	goto out;
2419 }
2420 
2421 
2422 int security_set_bools(int len, int *values)
2423 {
2424 	int i, rc;
2425 	int lenp, seqno = 0;
2426 	struct cond_node *cur;
2427 
2428 	write_lock_irq(&policy_rwlock);
2429 
2430 	rc = -EFAULT;
2431 	lenp = policydb.p_bools.nprim;
2432 	if (len != lenp)
2433 		goto out;
2434 
2435 	for (i = 0; i < len; i++) {
2436 		if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2437 			audit_log(current->audit_context, GFP_ATOMIC,
2438 				AUDIT_MAC_CONFIG_CHANGE,
2439 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2440 				sym_name(&policydb, SYM_BOOLS, i),
2441 				!!values[i],
2442 				policydb.bool_val_to_struct[i]->state,
2443 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
2444 				audit_get_sessionid(current));
2445 		}
2446 		if (values[i])
2447 			policydb.bool_val_to_struct[i]->state = 1;
2448 		else
2449 			policydb.bool_val_to_struct[i]->state = 0;
2450 	}
2451 
2452 	for (cur = policydb.cond_list; cur; cur = cur->next) {
2453 		rc = evaluate_cond_node(&policydb, cur);
2454 		if (rc)
2455 			goto out;
2456 	}
2457 
2458 	seqno = ++latest_granting;
2459 	rc = 0;
2460 out:
2461 	write_unlock_irq(&policy_rwlock);
2462 	if (!rc) {
2463 		avc_ss_reset(seqno);
2464 		selnl_notify_policyload(seqno);
2465 		selinux_status_update_policyload(seqno);
2466 		selinux_xfrm_notify_policyload();
2467 	}
2468 	return rc;
2469 }
2470 
2471 int security_get_bool_value(int bool)
2472 {
2473 	int rc;
2474 	int len;
2475 
2476 	read_lock(&policy_rwlock);
2477 
2478 	rc = -EFAULT;
2479 	len = policydb.p_bools.nprim;
2480 	if (bool >= len)
2481 		goto out;
2482 
2483 	rc = policydb.bool_val_to_struct[bool]->state;
2484 out:
2485 	read_unlock(&policy_rwlock);
2486 	return rc;
2487 }
2488 
2489 static int security_preserve_bools(struct policydb *p)
2490 {
2491 	int rc, nbools = 0, *bvalues = NULL, i;
2492 	char **bnames = NULL;
2493 	struct cond_bool_datum *booldatum;
2494 	struct cond_node *cur;
2495 
2496 	rc = security_get_bools(&nbools, &bnames, &bvalues);
2497 	if (rc)
2498 		goto out;
2499 	for (i = 0; i < nbools; i++) {
2500 		booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2501 		if (booldatum)
2502 			booldatum->state = bvalues[i];
2503 	}
2504 	for (cur = p->cond_list; cur; cur = cur->next) {
2505 		rc = evaluate_cond_node(p, cur);
2506 		if (rc)
2507 			goto out;
2508 	}
2509 
2510 out:
2511 	if (bnames) {
2512 		for (i = 0; i < nbools; i++)
2513 			kfree(bnames[i]);
2514 	}
2515 	kfree(bnames);
2516 	kfree(bvalues);
2517 	return rc;
2518 }
2519 
2520 /*
2521  * security_sid_mls_copy() - computes a new sid based on the given
2522  * sid and the mls portion of mls_sid.
2523  */
2524 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2525 {
2526 	struct context *context1;
2527 	struct context *context2;
2528 	struct context newcon;
2529 	char *s;
2530 	u32 len;
2531 	int rc;
2532 
2533 	rc = 0;
2534 	if (!ss_initialized || !policydb.mls_enabled) {
2535 		*new_sid = sid;
2536 		goto out;
2537 	}
2538 
2539 	context_init(&newcon);
2540 
2541 	read_lock(&policy_rwlock);
2542 
2543 	rc = -EINVAL;
2544 	context1 = sidtab_search(&sidtab, sid);
2545 	if (!context1) {
2546 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2547 			__func__, sid);
2548 		goto out_unlock;
2549 	}
2550 
2551 	rc = -EINVAL;
2552 	context2 = sidtab_search(&sidtab, mls_sid);
2553 	if (!context2) {
2554 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2555 			__func__, mls_sid);
2556 		goto out_unlock;
2557 	}
2558 
2559 	newcon.user = context1->user;
2560 	newcon.role = context1->role;
2561 	newcon.type = context1->type;
2562 	rc = mls_context_cpy(&newcon, context2);
2563 	if (rc)
2564 		goto out_unlock;
2565 
2566 	/* Check the validity of the new context. */
2567 	if (!policydb_context_isvalid(&policydb, &newcon)) {
2568 		rc = convert_context_handle_invalid_context(&newcon);
2569 		if (rc) {
2570 			if (!context_struct_to_string(&newcon, &s, &len)) {
2571 				audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2572 					  "security_sid_mls_copy: invalid context %s", s);
2573 				kfree(s);
2574 			}
2575 			goto out_unlock;
2576 		}
2577 	}
2578 
2579 	rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2580 out_unlock:
2581 	read_unlock(&policy_rwlock);
2582 	context_destroy(&newcon);
2583 out:
2584 	return rc;
2585 }
2586 
2587 /**
2588  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2589  * @nlbl_sid: NetLabel SID
2590  * @nlbl_type: NetLabel labeling protocol type
2591  * @xfrm_sid: XFRM SID
2592  *
2593  * Description:
2594  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2595  * resolved into a single SID it is returned via @peer_sid and the function
2596  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2597  * returns a negative value.  A table summarizing the behavior is below:
2598  *
2599  *                                 | function return |      @sid
2600  *   ------------------------------+-----------------+-----------------
2601  *   no peer labels                |        0        |    SECSID_NULL
2602  *   single peer label             |        0        |    <peer_label>
2603  *   multiple, consistent labels   |        0        |    <peer_label>
2604  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2605  *
2606  */
2607 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2608 				 u32 xfrm_sid,
2609 				 u32 *peer_sid)
2610 {
2611 	int rc;
2612 	struct context *nlbl_ctx;
2613 	struct context *xfrm_ctx;
2614 
2615 	*peer_sid = SECSID_NULL;
2616 
2617 	/* handle the common (which also happens to be the set of easy) cases
2618 	 * right away, these two if statements catch everything involving a
2619 	 * single or absent peer SID/label */
2620 	if (xfrm_sid == SECSID_NULL) {
2621 		*peer_sid = nlbl_sid;
2622 		return 0;
2623 	}
2624 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2625 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2626 	 * is present */
2627 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2628 		*peer_sid = xfrm_sid;
2629 		return 0;
2630 	}
2631 
2632 	/* we don't need to check ss_initialized here since the only way both
2633 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2634 	 * security server was initialized and ss_initialized was true */
2635 	if (!policydb.mls_enabled)
2636 		return 0;
2637 
2638 	read_lock(&policy_rwlock);
2639 
2640 	rc = -EINVAL;
2641 	nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2642 	if (!nlbl_ctx) {
2643 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2644 		       __func__, nlbl_sid);
2645 		goto out;
2646 	}
2647 	rc = -EINVAL;
2648 	xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2649 	if (!xfrm_ctx) {
2650 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2651 		       __func__, xfrm_sid);
2652 		goto out;
2653 	}
2654 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2655 	if (rc)
2656 		goto out;
2657 
2658 	/* at present NetLabel SIDs/labels really only carry MLS
2659 	 * information so if the MLS portion of the NetLabel SID
2660 	 * matches the MLS portion of the labeled XFRM SID/label
2661 	 * then pass along the XFRM SID as it is the most
2662 	 * expressive */
2663 	*peer_sid = xfrm_sid;
2664 out:
2665 	read_unlock(&policy_rwlock);
2666 	return rc;
2667 }
2668 
2669 static int get_classes_callback(void *k, void *d, void *args)
2670 {
2671 	struct class_datum *datum = d;
2672 	char *name = k, **classes = args;
2673 	int value = datum->value - 1;
2674 
2675 	classes[value] = kstrdup(name, GFP_ATOMIC);
2676 	if (!classes[value])
2677 		return -ENOMEM;
2678 
2679 	return 0;
2680 }
2681 
2682 int security_get_classes(char ***classes, int *nclasses)
2683 {
2684 	int rc;
2685 
2686 	read_lock(&policy_rwlock);
2687 
2688 	rc = -ENOMEM;
2689 	*nclasses = policydb.p_classes.nprim;
2690 	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2691 	if (!*classes)
2692 		goto out;
2693 
2694 	rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2695 			*classes);
2696 	if (rc) {
2697 		int i;
2698 		for (i = 0; i < *nclasses; i++)
2699 			kfree((*classes)[i]);
2700 		kfree(*classes);
2701 	}
2702 
2703 out:
2704 	read_unlock(&policy_rwlock);
2705 	return rc;
2706 }
2707 
2708 static int get_permissions_callback(void *k, void *d, void *args)
2709 {
2710 	struct perm_datum *datum = d;
2711 	char *name = k, **perms = args;
2712 	int value = datum->value - 1;
2713 
2714 	perms[value] = kstrdup(name, GFP_ATOMIC);
2715 	if (!perms[value])
2716 		return -ENOMEM;
2717 
2718 	return 0;
2719 }
2720 
2721 int security_get_permissions(char *class, char ***perms, int *nperms)
2722 {
2723 	int rc, i;
2724 	struct class_datum *match;
2725 
2726 	read_lock(&policy_rwlock);
2727 
2728 	rc = -EINVAL;
2729 	match = hashtab_search(policydb.p_classes.table, class);
2730 	if (!match) {
2731 		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2732 			__func__, class);
2733 		goto out;
2734 	}
2735 
2736 	rc = -ENOMEM;
2737 	*nperms = match->permissions.nprim;
2738 	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2739 	if (!*perms)
2740 		goto out;
2741 
2742 	if (match->comdatum) {
2743 		rc = hashtab_map(match->comdatum->permissions.table,
2744 				get_permissions_callback, *perms);
2745 		if (rc)
2746 			goto err;
2747 	}
2748 
2749 	rc = hashtab_map(match->permissions.table, get_permissions_callback,
2750 			*perms);
2751 	if (rc)
2752 		goto err;
2753 
2754 out:
2755 	read_unlock(&policy_rwlock);
2756 	return rc;
2757 
2758 err:
2759 	read_unlock(&policy_rwlock);
2760 	for (i = 0; i < *nperms; i++)
2761 		kfree((*perms)[i]);
2762 	kfree(*perms);
2763 	return rc;
2764 }
2765 
2766 int security_get_reject_unknown(void)
2767 {
2768 	return policydb.reject_unknown;
2769 }
2770 
2771 int security_get_allow_unknown(void)
2772 {
2773 	return policydb.allow_unknown;
2774 }
2775 
2776 /**
2777  * security_policycap_supported - Check for a specific policy capability
2778  * @req_cap: capability
2779  *
2780  * Description:
2781  * This function queries the currently loaded policy to see if it supports the
2782  * capability specified by @req_cap.  Returns true (1) if the capability is
2783  * supported, false (0) if it isn't supported.
2784  *
2785  */
2786 int security_policycap_supported(unsigned int req_cap)
2787 {
2788 	int rc;
2789 
2790 	read_lock(&policy_rwlock);
2791 	rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2792 	read_unlock(&policy_rwlock);
2793 
2794 	return rc;
2795 }
2796 
2797 struct selinux_audit_rule {
2798 	u32 au_seqno;
2799 	struct context au_ctxt;
2800 };
2801 
2802 void selinux_audit_rule_free(void *vrule)
2803 {
2804 	struct selinux_audit_rule *rule = vrule;
2805 
2806 	if (rule) {
2807 		context_destroy(&rule->au_ctxt);
2808 		kfree(rule);
2809 	}
2810 }
2811 
2812 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2813 {
2814 	struct selinux_audit_rule *tmprule;
2815 	struct role_datum *roledatum;
2816 	struct type_datum *typedatum;
2817 	struct user_datum *userdatum;
2818 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2819 	int rc = 0;
2820 
2821 	*rule = NULL;
2822 
2823 	if (!ss_initialized)
2824 		return -EOPNOTSUPP;
2825 
2826 	switch (field) {
2827 	case AUDIT_SUBJ_USER:
2828 	case AUDIT_SUBJ_ROLE:
2829 	case AUDIT_SUBJ_TYPE:
2830 	case AUDIT_OBJ_USER:
2831 	case AUDIT_OBJ_ROLE:
2832 	case AUDIT_OBJ_TYPE:
2833 		/* only 'equals' and 'not equals' fit user, role, and type */
2834 		if (op != Audit_equal && op != Audit_not_equal)
2835 			return -EINVAL;
2836 		break;
2837 	case AUDIT_SUBJ_SEN:
2838 	case AUDIT_SUBJ_CLR:
2839 	case AUDIT_OBJ_LEV_LOW:
2840 	case AUDIT_OBJ_LEV_HIGH:
2841 		/* we do not allow a range, indicated by the presence of '-' */
2842 		if (strchr(rulestr, '-'))
2843 			return -EINVAL;
2844 		break;
2845 	default:
2846 		/* only the above fields are valid */
2847 		return -EINVAL;
2848 	}
2849 
2850 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2851 	if (!tmprule)
2852 		return -ENOMEM;
2853 
2854 	context_init(&tmprule->au_ctxt);
2855 
2856 	read_lock(&policy_rwlock);
2857 
2858 	tmprule->au_seqno = latest_granting;
2859 
2860 	switch (field) {
2861 	case AUDIT_SUBJ_USER:
2862 	case AUDIT_OBJ_USER:
2863 		rc = -EINVAL;
2864 		userdatum = hashtab_search(policydb.p_users.table, rulestr);
2865 		if (!userdatum)
2866 			goto out;
2867 		tmprule->au_ctxt.user = userdatum->value;
2868 		break;
2869 	case AUDIT_SUBJ_ROLE:
2870 	case AUDIT_OBJ_ROLE:
2871 		rc = -EINVAL;
2872 		roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2873 		if (!roledatum)
2874 			goto out;
2875 		tmprule->au_ctxt.role = roledatum->value;
2876 		break;
2877 	case AUDIT_SUBJ_TYPE:
2878 	case AUDIT_OBJ_TYPE:
2879 		rc = -EINVAL;
2880 		typedatum = hashtab_search(policydb.p_types.table, rulestr);
2881 		if (!typedatum)
2882 			goto out;
2883 		tmprule->au_ctxt.type = typedatum->value;
2884 		break;
2885 	case AUDIT_SUBJ_SEN:
2886 	case AUDIT_SUBJ_CLR:
2887 	case AUDIT_OBJ_LEV_LOW:
2888 	case AUDIT_OBJ_LEV_HIGH:
2889 		rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2890 		if (rc)
2891 			goto out;
2892 		break;
2893 	}
2894 	rc = 0;
2895 out:
2896 	read_unlock(&policy_rwlock);
2897 
2898 	if (rc) {
2899 		selinux_audit_rule_free(tmprule);
2900 		tmprule = NULL;
2901 	}
2902 
2903 	*rule = tmprule;
2904 
2905 	return rc;
2906 }
2907 
2908 /* Check to see if the rule contains any selinux fields */
2909 int selinux_audit_rule_known(struct audit_krule *rule)
2910 {
2911 	int i;
2912 
2913 	for (i = 0; i < rule->field_count; i++) {
2914 		struct audit_field *f = &rule->fields[i];
2915 		switch (f->type) {
2916 		case AUDIT_SUBJ_USER:
2917 		case AUDIT_SUBJ_ROLE:
2918 		case AUDIT_SUBJ_TYPE:
2919 		case AUDIT_SUBJ_SEN:
2920 		case AUDIT_SUBJ_CLR:
2921 		case AUDIT_OBJ_USER:
2922 		case AUDIT_OBJ_ROLE:
2923 		case AUDIT_OBJ_TYPE:
2924 		case AUDIT_OBJ_LEV_LOW:
2925 		case AUDIT_OBJ_LEV_HIGH:
2926 			return 1;
2927 		}
2928 	}
2929 
2930 	return 0;
2931 }
2932 
2933 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2934 			     struct audit_context *actx)
2935 {
2936 	struct context *ctxt;
2937 	struct mls_level *level;
2938 	struct selinux_audit_rule *rule = vrule;
2939 	int match = 0;
2940 
2941 	if (!rule) {
2942 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2943 			  "selinux_audit_rule_match: missing rule\n");
2944 		return -ENOENT;
2945 	}
2946 
2947 	read_lock(&policy_rwlock);
2948 
2949 	if (rule->au_seqno < latest_granting) {
2950 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2951 			  "selinux_audit_rule_match: stale rule\n");
2952 		match = -ESTALE;
2953 		goto out;
2954 	}
2955 
2956 	ctxt = sidtab_search(&sidtab, sid);
2957 	if (!ctxt) {
2958 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2959 			  "selinux_audit_rule_match: unrecognized SID %d\n",
2960 			  sid);
2961 		match = -ENOENT;
2962 		goto out;
2963 	}
2964 
2965 	/* a field/op pair that is not caught here will simply fall through
2966 	   without a match */
2967 	switch (field) {
2968 	case AUDIT_SUBJ_USER:
2969 	case AUDIT_OBJ_USER:
2970 		switch (op) {
2971 		case Audit_equal:
2972 			match = (ctxt->user == rule->au_ctxt.user);
2973 			break;
2974 		case Audit_not_equal:
2975 			match = (ctxt->user != rule->au_ctxt.user);
2976 			break;
2977 		}
2978 		break;
2979 	case AUDIT_SUBJ_ROLE:
2980 	case AUDIT_OBJ_ROLE:
2981 		switch (op) {
2982 		case Audit_equal:
2983 			match = (ctxt->role == rule->au_ctxt.role);
2984 			break;
2985 		case Audit_not_equal:
2986 			match = (ctxt->role != rule->au_ctxt.role);
2987 			break;
2988 		}
2989 		break;
2990 	case AUDIT_SUBJ_TYPE:
2991 	case AUDIT_OBJ_TYPE:
2992 		switch (op) {
2993 		case Audit_equal:
2994 			match = (ctxt->type == rule->au_ctxt.type);
2995 			break;
2996 		case Audit_not_equal:
2997 			match = (ctxt->type != rule->au_ctxt.type);
2998 			break;
2999 		}
3000 		break;
3001 	case AUDIT_SUBJ_SEN:
3002 	case AUDIT_SUBJ_CLR:
3003 	case AUDIT_OBJ_LEV_LOW:
3004 	case AUDIT_OBJ_LEV_HIGH:
3005 		level = ((field == AUDIT_SUBJ_SEN ||
3006 			  field == AUDIT_OBJ_LEV_LOW) ?
3007 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3008 		switch (op) {
3009 		case Audit_equal:
3010 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3011 					     level);
3012 			break;
3013 		case Audit_not_equal:
3014 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3015 					      level);
3016 			break;
3017 		case Audit_lt:
3018 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3019 					       level) &&
3020 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3021 					       level));
3022 			break;
3023 		case Audit_le:
3024 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3025 					      level);
3026 			break;
3027 		case Audit_gt:
3028 			match = (mls_level_dom(level,
3029 					      &rule->au_ctxt.range.level[0]) &&
3030 				 !mls_level_eq(level,
3031 					       &rule->au_ctxt.range.level[0]));
3032 			break;
3033 		case Audit_ge:
3034 			match = mls_level_dom(level,
3035 					      &rule->au_ctxt.range.level[0]);
3036 			break;
3037 		}
3038 	}
3039 
3040 out:
3041 	read_unlock(&policy_rwlock);
3042 	return match;
3043 }
3044 
3045 static int (*aurule_callback)(void) = audit_update_lsm_rules;
3046 
3047 static int aurule_avc_callback(u32 event)
3048 {
3049 	int err = 0;
3050 
3051 	if (event == AVC_CALLBACK_RESET && aurule_callback)
3052 		err = aurule_callback();
3053 	return err;
3054 }
3055 
3056 static int __init aurule_init(void)
3057 {
3058 	int err;
3059 
3060 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3061 	if (err)
3062 		panic("avc_add_callback() failed, error %d\n", err);
3063 
3064 	return err;
3065 }
3066 __initcall(aurule_init);
3067 
3068 #ifdef CONFIG_NETLABEL
3069 /**
3070  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3071  * @secattr: the NetLabel packet security attributes
3072  * @sid: the SELinux SID
3073  *
3074  * Description:
3075  * Attempt to cache the context in @ctx, which was derived from the packet in
3076  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3077  * already been initialized.
3078  *
3079  */
3080 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3081 				      u32 sid)
3082 {
3083 	u32 *sid_cache;
3084 
3085 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3086 	if (sid_cache == NULL)
3087 		return;
3088 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3089 	if (secattr->cache == NULL) {
3090 		kfree(sid_cache);
3091 		return;
3092 	}
3093 
3094 	*sid_cache = sid;
3095 	secattr->cache->free = kfree;
3096 	secattr->cache->data = sid_cache;
3097 	secattr->flags |= NETLBL_SECATTR_CACHE;
3098 }
3099 
3100 /**
3101  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3102  * @secattr: the NetLabel packet security attributes
3103  * @sid: the SELinux SID
3104  *
3105  * Description:
3106  * Convert the given NetLabel security attributes in @secattr into a
3107  * SELinux SID.  If the @secattr field does not contain a full SELinux
3108  * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3109  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3110  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3111  * conversion for future lookups.  Returns zero on success, negative values on
3112  * failure.
3113  *
3114  */
3115 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3116 				   u32 *sid)
3117 {
3118 	int rc;
3119 	struct context *ctx;
3120 	struct context ctx_new;
3121 
3122 	if (!ss_initialized) {
3123 		*sid = SECSID_NULL;
3124 		return 0;
3125 	}
3126 
3127 	read_lock(&policy_rwlock);
3128 
3129 	if (secattr->flags & NETLBL_SECATTR_CACHE)
3130 		*sid = *(u32 *)secattr->cache->data;
3131 	else if (secattr->flags & NETLBL_SECATTR_SECID)
3132 		*sid = secattr->attr.secid;
3133 	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3134 		rc = -EIDRM;
3135 		ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3136 		if (ctx == NULL)
3137 			goto out;
3138 
3139 		context_init(&ctx_new);
3140 		ctx_new.user = ctx->user;
3141 		ctx_new.role = ctx->role;
3142 		ctx_new.type = ctx->type;
3143 		mls_import_netlbl_lvl(&ctx_new, secattr);
3144 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3145 			rc = ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
3146 						   secattr->attr.mls.cat);
3147 			if (rc)
3148 				goto out;
3149 			memcpy(&ctx_new.range.level[1].cat,
3150 			       &ctx_new.range.level[0].cat,
3151 			       sizeof(ctx_new.range.level[0].cat));
3152 		}
3153 		rc = -EIDRM;
3154 		if (!mls_context_isvalid(&policydb, &ctx_new))
3155 			goto out_free;
3156 
3157 		rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3158 		if (rc)
3159 			goto out_free;
3160 
3161 		security_netlbl_cache_add(secattr, *sid);
3162 
3163 		ebitmap_destroy(&ctx_new.range.level[0].cat);
3164 	} else
3165 		*sid = SECSID_NULL;
3166 
3167 	read_unlock(&policy_rwlock);
3168 	return 0;
3169 out_free:
3170 	ebitmap_destroy(&ctx_new.range.level[0].cat);
3171 out:
3172 	read_unlock(&policy_rwlock);
3173 	return rc;
3174 }
3175 
3176 /**
3177  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3178  * @sid: the SELinux SID
3179  * @secattr: the NetLabel packet security attributes
3180  *
3181  * Description:
3182  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3183  * Returns zero on success, negative values on failure.
3184  *
3185  */
3186 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3187 {
3188 	int rc;
3189 	struct context *ctx;
3190 
3191 	if (!ss_initialized)
3192 		return 0;
3193 
3194 	read_lock(&policy_rwlock);
3195 
3196 	rc = -ENOENT;
3197 	ctx = sidtab_search(&sidtab, sid);
3198 	if (ctx == NULL)
3199 		goto out;
3200 
3201 	rc = -ENOMEM;
3202 	secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3203 				  GFP_ATOMIC);
3204 	if (secattr->domain == NULL)
3205 		goto out;
3206 
3207 	secattr->attr.secid = sid;
3208 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3209 	mls_export_netlbl_lvl(ctx, secattr);
3210 	rc = mls_export_netlbl_cat(ctx, secattr);
3211 out:
3212 	read_unlock(&policy_rwlock);
3213 	return rc;
3214 }
3215 #endif /* CONFIG_NETLABEL */
3216 
3217 /**
3218  * security_read_policy - read the policy.
3219  * @data: binary policy data
3220  * @len: length of data in bytes
3221  *
3222  */
3223 int security_read_policy(void **data, size_t *len)
3224 {
3225 	int rc;
3226 	struct policy_file fp;
3227 
3228 	if (!ss_initialized)
3229 		return -EINVAL;
3230 
3231 	*len = security_policydb_len();
3232 
3233 	*data = vmalloc_user(*len);
3234 	if (!*data)
3235 		return -ENOMEM;
3236 
3237 	fp.data = *data;
3238 	fp.len = *len;
3239 
3240 	read_lock(&policy_rwlock);
3241 	rc = policydb_write(&policydb, &fp);
3242 	read_unlock(&policy_rwlock);
3243 
3244 	if (rc)
3245 		return rc;
3246 
3247 	*len = (unsigned long)fp.data - (unsigned long)*data;
3248 	return 0;
3249 
3250 }
3251