1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Implementation of the security services. 4 * 5 * Authors : Stephen Smalley, <sds@tycho.nsa.gov> 6 * James Morris <jmorris@redhat.com> 7 * 8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com> 9 * 10 * Support for enhanced MLS infrastructure. 11 * Support for context based audit filters. 12 * 13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com> 14 * 15 * Added conditional policy language extensions 16 * 17 * Updated: Hewlett-Packard <paul@paul-moore.com> 18 * 19 * Added support for NetLabel 20 * Added support for the policy capability bitmap 21 * 22 * Updated: Chad Sellers <csellers@tresys.com> 23 * 24 * Added validation of kernel classes and permissions 25 * 26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com> 27 * 28 * Added support for bounds domain and audit messaged on masked permissions 29 * 30 * Updated: Guido Trentalancia <guido@trentalancia.com> 31 * 32 * Added support for runtime switching of the policy type 33 * 34 * Copyright (C) 2008, 2009 NEC Corporation 35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P. 36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc. 37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC 38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> 39 */ 40 #include <linux/kernel.h> 41 #include <linux/slab.h> 42 #include <linux/string.h> 43 #include <linux/spinlock.h> 44 #include <linux/rcupdate.h> 45 #include <linux/errno.h> 46 #include <linux/in.h> 47 #include <linux/sched.h> 48 #include <linux/audit.h> 49 #include <linux/vmalloc.h> 50 #include <net/netlabel.h> 51 52 #include "flask.h" 53 #include "avc.h" 54 #include "avc_ss.h" 55 #include "security.h" 56 #include "context.h" 57 #include "policydb.h" 58 #include "sidtab.h" 59 #include "services.h" 60 #include "conditional.h" 61 #include "mls.h" 62 #include "objsec.h" 63 #include "netlabel.h" 64 #include "xfrm.h" 65 #include "ebitmap.h" 66 #include "audit.h" 67 #include "policycap_names.h" 68 69 /* Forward declaration. */ 70 static int context_struct_to_string(struct policydb *policydb, 71 struct context *context, 72 char **scontext, 73 u32 *scontext_len); 74 75 static int sidtab_entry_to_string(struct policydb *policydb, 76 struct sidtab *sidtab, 77 struct sidtab_entry *entry, 78 char **scontext, 79 u32 *scontext_len); 80 81 static void context_struct_compute_av(struct policydb *policydb, 82 struct context *scontext, 83 struct context *tcontext, 84 u16 tclass, 85 struct av_decision *avd, 86 struct extended_perms *xperms); 87 88 static int selinux_set_mapping(struct policydb *pol, 89 struct security_class_mapping *map, 90 struct selinux_map *out_map) 91 { 92 u16 i, j; 93 unsigned k; 94 bool print_unknown_handle = false; 95 96 /* Find number of classes in the input mapping */ 97 if (!map) 98 return -EINVAL; 99 i = 0; 100 while (map[i].name) 101 i++; 102 103 /* Allocate space for the class records, plus one for class zero */ 104 out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC); 105 if (!out_map->mapping) 106 return -ENOMEM; 107 108 /* Store the raw class and permission values */ 109 j = 0; 110 while (map[j].name) { 111 struct security_class_mapping *p_in = map + (j++); 112 struct selinux_mapping *p_out = out_map->mapping + j; 113 114 /* An empty class string skips ahead */ 115 if (!strcmp(p_in->name, "")) { 116 p_out->num_perms = 0; 117 continue; 118 } 119 120 p_out->value = string_to_security_class(pol, p_in->name); 121 if (!p_out->value) { 122 pr_info("SELinux: Class %s not defined in policy.\n", 123 p_in->name); 124 if (pol->reject_unknown) 125 goto err; 126 p_out->num_perms = 0; 127 print_unknown_handle = true; 128 continue; 129 } 130 131 k = 0; 132 while (p_in->perms[k]) { 133 /* An empty permission string skips ahead */ 134 if (!*p_in->perms[k]) { 135 k++; 136 continue; 137 } 138 p_out->perms[k] = string_to_av_perm(pol, p_out->value, 139 p_in->perms[k]); 140 if (!p_out->perms[k]) { 141 pr_info("SELinux: Permission %s in class %s not defined in policy.\n", 142 p_in->perms[k], p_in->name); 143 if (pol->reject_unknown) 144 goto err; 145 print_unknown_handle = true; 146 } 147 148 k++; 149 } 150 p_out->num_perms = k; 151 } 152 153 if (print_unknown_handle) 154 pr_info("SELinux: the above unknown classes and permissions will be %s\n", 155 pol->allow_unknown ? "allowed" : "denied"); 156 157 out_map->size = i; 158 return 0; 159 err: 160 kfree(out_map->mapping); 161 out_map->mapping = NULL; 162 return -EINVAL; 163 } 164 165 /* 166 * Get real, policy values from mapped values 167 */ 168 169 static u16 unmap_class(struct selinux_map *map, u16 tclass) 170 { 171 if (tclass < map->size) 172 return map->mapping[tclass].value; 173 174 return tclass; 175 } 176 177 /* 178 * Get kernel value for class from its policy value 179 */ 180 static u16 map_class(struct selinux_map *map, u16 pol_value) 181 { 182 u16 i; 183 184 for (i = 1; i < map->size; i++) { 185 if (map->mapping[i].value == pol_value) 186 return i; 187 } 188 189 return SECCLASS_NULL; 190 } 191 192 static void map_decision(struct selinux_map *map, 193 u16 tclass, struct av_decision *avd, 194 int allow_unknown) 195 { 196 if (tclass < map->size) { 197 struct selinux_mapping *mapping = &map->mapping[tclass]; 198 unsigned int i, n = mapping->num_perms; 199 u32 result; 200 201 for (i = 0, result = 0; i < n; i++) { 202 if (avd->allowed & mapping->perms[i]) 203 result |= 1<<i; 204 if (allow_unknown && !mapping->perms[i]) 205 result |= 1<<i; 206 } 207 avd->allowed = result; 208 209 for (i = 0, result = 0; i < n; i++) 210 if (avd->auditallow & mapping->perms[i]) 211 result |= 1<<i; 212 avd->auditallow = result; 213 214 for (i = 0, result = 0; i < n; i++) { 215 if (avd->auditdeny & mapping->perms[i]) 216 result |= 1<<i; 217 if (!allow_unknown && !mapping->perms[i]) 218 result |= 1<<i; 219 } 220 /* 221 * In case the kernel has a bug and requests a permission 222 * between num_perms and the maximum permission number, we 223 * should audit that denial 224 */ 225 for (; i < (sizeof(u32)*8); i++) 226 result |= 1<<i; 227 avd->auditdeny = result; 228 } 229 } 230 231 int security_mls_enabled(struct selinux_state *state) 232 { 233 int mls_enabled; 234 struct selinux_policy *policy; 235 236 if (!selinux_initialized(state)) 237 return 0; 238 239 rcu_read_lock(); 240 policy = rcu_dereference(state->policy); 241 mls_enabled = policy->policydb.mls_enabled; 242 rcu_read_unlock(); 243 return mls_enabled; 244 } 245 246 /* 247 * Return the boolean value of a constraint expression 248 * when it is applied to the specified source and target 249 * security contexts. 250 * 251 * xcontext is a special beast... It is used by the validatetrans rules 252 * only. For these rules, scontext is the context before the transition, 253 * tcontext is the context after the transition, and xcontext is the context 254 * of the process performing the transition. All other callers of 255 * constraint_expr_eval should pass in NULL for xcontext. 256 */ 257 static int constraint_expr_eval(struct policydb *policydb, 258 struct context *scontext, 259 struct context *tcontext, 260 struct context *xcontext, 261 struct constraint_expr *cexpr) 262 { 263 u32 val1, val2; 264 struct context *c; 265 struct role_datum *r1, *r2; 266 struct mls_level *l1, *l2; 267 struct constraint_expr *e; 268 int s[CEXPR_MAXDEPTH]; 269 int sp = -1; 270 271 for (e = cexpr; e; e = e->next) { 272 switch (e->expr_type) { 273 case CEXPR_NOT: 274 BUG_ON(sp < 0); 275 s[sp] = !s[sp]; 276 break; 277 case CEXPR_AND: 278 BUG_ON(sp < 1); 279 sp--; 280 s[sp] &= s[sp + 1]; 281 break; 282 case CEXPR_OR: 283 BUG_ON(sp < 1); 284 sp--; 285 s[sp] |= s[sp + 1]; 286 break; 287 case CEXPR_ATTR: 288 if (sp == (CEXPR_MAXDEPTH - 1)) 289 return 0; 290 switch (e->attr) { 291 case CEXPR_USER: 292 val1 = scontext->user; 293 val2 = tcontext->user; 294 break; 295 case CEXPR_TYPE: 296 val1 = scontext->type; 297 val2 = tcontext->type; 298 break; 299 case CEXPR_ROLE: 300 val1 = scontext->role; 301 val2 = tcontext->role; 302 r1 = policydb->role_val_to_struct[val1 - 1]; 303 r2 = policydb->role_val_to_struct[val2 - 1]; 304 switch (e->op) { 305 case CEXPR_DOM: 306 s[++sp] = ebitmap_get_bit(&r1->dominates, 307 val2 - 1); 308 continue; 309 case CEXPR_DOMBY: 310 s[++sp] = ebitmap_get_bit(&r2->dominates, 311 val1 - 1); 312 continue; 313 case CEXPR_INCOMP: 314 s[++sp] = (!ebitmap_get_bit(&r1->dominates, 315 val2 - 1) && 316 !ebitmap_get_bit(&r2->dominates, 317 val1 - 1)); 318 continue; 319 default: 320 break; 321 } 322 break; 323 case CEXPR_L1L2: 324 l1 = &(scontext->range.level[0]); 325 l2 = &(tcontext->range.level[0]); 326 goto mls_ops; 327 case CEXPR_L1H2: 328 l1 = &(scontext->range.level[0]); 329 l2 = &(tcontext->range.level[1]); 330 goto mls_ops; 331 case CEXPR_H1L2: 332 l1 = &(scontext->range.level[1]); 333 l2 = &(tcontext->range.level[0]); 334 goto mls_ops; 335 case CEXPR_H1H2: 336 l1 = &(scontext->range.level[1]); 337 l2 = &(tcontext->range.level[1]); 338 goto mls_ops; 339 case CEXPR_L1H1: 340 l1 = &(scontext->range.level[0]); 341 l2 = &(scontext->range.level[1]); 342 goto mls_ops; 343 case CEXPR_L2H2: 344 l1 = &(tcontext->range.level[0]); 345 l2 = &(tcontext->range.level[1]); 346 goto mls_ops; 347 mls_ops: 348 switch (e->op) { 349 case CEXPR_EQ: 350 s[++sp] = mls_level_eq(l1, l2); 351 continue; 352 case CEXPR_NEQ: 353 s[++sp] = !mls_level_eq(l1, l2); 354 continue; 355 case CEXPR_DOM: 356 s[++sp] = mls_level_dom(l1, l2); 357 continue; 358 case CEXPR_DOMBY: 359 s[++sp] = mls_level_dom(l2, l1); 360 continue; 361 case CEXPR_INCOMP: 362 s[++sp] = mls_level_incomp(l2, l1); 363 continue; 364 default: 365 BUG(); 366 return 0; 367 } 368 break; 369 default: 370 BUG(); 371 return 0; 372 } 373 374 switch (e->op) { 375 case CEXPR_EQ: 376 s[++sp] = (val1 == val2); 377 break; 378 case CEXPR_NEQ: 379 s[++sp] = (val1 != val2); 380 break; 381 default: 382 BUG(); 383 return 0; 384 } 385 break; 386 case CEXPR_NAMES: 387 if (sp == (CEXPR_MAXDEPTH-1)) 388 return 0; 389 c = scontext; 390 if (e->attr & CEXPR_TARGET) 391 c = tcontext; 392 else if (e->attr & CEXPR_XTARGET) { 393 c = xcontext; 394 if (!c) { 395 BUG(); 396 return 0; 397 } 398 } 399 if (e->attr & CEXPR_USER) 400 val1 = c->user; 401 else if (e->attr & CEXPR_ROLE) 402 val1 = c->role; 403 else if (e->attr & CEXPR_TYPE) 404 val1 = c->type; 405 else { 406 BUG(); 407 return 0; 408 } 409 410 switch (e->op) { 411 case CEXPR_EQ: 412 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1); 413 break; 414 case CEXPR_NEQ: 415 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1); 416 break; 417 default: 418 BUG(); 419 return 0; 420 } 421 break; 422 default: 423 BUG(); 424 return 0; 425 } 426 } 427 428 BUG_ON(sp != 0); 429 return s[0]; 430 } 431 432 /* 433 * security_dump_masked_av - dumps masked permissions during 434 * security_compute_av due to RBAC, MLS/Constraint and Type bounds. 435 */ 436 static int dump_masked_av_helper(void *k, void *d, void *args) 437 { 438 struct perm_datum *pdatum = d; 439 char **permission_names = args; 440 441 BUG_ON(pdatum->value < 1 || pdatum->value > 32); 442 443 permission_names[pdatum->value - 1] = (char *)k; 444 445 return 0; 446 } 447 448 static void security_dump_masked_av(struct policydb *policydb, 449 struct context *scontext, 450 struct context *tcontext, 451 u16 tclass, 452 u32 permissions, 453 const char *reason) 454 { 455 struct common_datum *common_dat; 456 struct class_datum *tclass_dat; 457 struct audit_buffer *ab; 458 char *tclass_name; 459 char *scontext_name = NULL; 460 char *tcontext_name = NULL; 461 char *permission_names[32]; 462 int index; 463 u32 length; 464 bool need_comma = false; 465 466 if (!permissions) 467 return; 468 469 tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1); 470 tclass_dat = policydb->class_val_to_struct[tclass - 1]; 471 common_dat = tclass_dat->comdatum; 472 473 /* init permission_names */ 474 if (common_dat && 475 hashtab_map(&common_dat->permissions.table, 476 dump_masked_av_helper, permission_names) < 0) 477 goto out; 478 479 if (hashtab_map(&tclass_dat->permissions.table, 480 dump_masked_av_helper, permission_names) < 0) 481 goto out; 482 483 /* get scontext/tcontext in text form */ 484 if (context_struct_to_string(policydb, scontext, 485 &scontext_name, &length) < 0) 486 goto out; 487 488 if (context_struct_to_string(policydb, tcontext, 489 &tcontext_name, &length) < 0) 490 goto out; 491 492 /* audit a message */ 493 ab = audit_log_start(audit_context(), 494 GFP_ATOMIC, AUDIT_SELINUX_ERR); 495 if (!ab) 496 goto out; 497 498 audit_log_format(ab, "op=security_compute_av reason=%s " 499 "scontext=%s tcontext=%s tclass=%s perms=", 500 reason, scontext_name, tcontext_name, tclass_name); 501 502 for (index = 0; index < 32; index++) { 503 u32 mask = (1 << index); 504 505 if ((mask & permissions) == 0) 506 continue; 507 508 audit_log_format(ab, "%s%s", 509 need_comma ? "," : "", 510 permission_names[index] 511 ? permission_names[index] : "????"); 512 need_comma = true; 513 } 514 audit_log_end(ab); 515 out: 516 /* release scontext/tcontext */ 517 kfree(tcontext_name); 518 kfree(scontext_name); 519 520 return; 521 } 522 523 /* 524 * security_boundary_permission - drops violated permissions 525 * on boundary constraint. 526 */ 527 static void type_attribute_bounds_av(struct policydb *policydb, 528 struct context *scontext, 529 struct context *tcontext, 530 u16 tclass, 531 struct av_decision *avd) 532 { 533 struct context lo_scontext; 534 struct context lo_tcontext, *tcontextp = tcontext; 535 struct av_decision lo_avd; 536 struct type_datum *source; 537 struct type_datum *target; 538 u32 masked = 0; 539 540 source = policydb->type_val_to_struct[scontext->type - 1]; 541 BUG_ON(!source); 542 543 if (!source->bounds) 544 return; 545 546 target = policydb->type_val_to_struct[tcontext->type - 1]; 547 BUG_ON(!target); 548 549 memset(&lo_avd, 0, sizeof(lo_avd)); 550 551 memcpy(&lo_scontext, scontext, sizeof(lo_scontext)); 552 lo_scontext.type = source->bounds; 553 554 if (target->bounds) { 555 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext)); 556 lo_tcontext.type = target->bounds; 557 tcontextp = &lo_tcontext; 558 } 559 560 context_struct_compute_av(policydb, &lo_scontext, 561 tcontextp, 562 tclass, 563 &lo_avd, 564 NULL); 565 566 masked = ~lo_avd.allowed & avd->allowed; 567 568 if (likely(!masked)) 569 return; /* no masked permission */ 570 571 /* mask violated permissions */ 572 avd->allowed &= ~masked; 573 574 /* audit masked permissions */ 575 security_dump_masked_av(policydb, scontext, tcontext, 576 tclass, masked, "bounds"); 577 } 578 579 /* 580 * flag which drivers have permissions 581 * only looking for ioctl based extended permssions 582 */ 583 void services_compute_xperms_drivers( 584 struct extended_perms *xperms, 585 struct avtab_node *node) 586 { 587 unsigned int i; 588 589 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) { 590 /* if one or more driver has all permissions allowed */ 591 for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++) 592 xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i]; 593 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) { 594 /* if allowing permissions within a driver */ 595 security_xperm_set(xperms->drivers.p, 596 node->datum.u.xperms->driver); 597 } 598 599 /* If no ioctl commands are allowed, ignore auditallow and auditdeny */ 600 if (node->key.specified & AVTAB_XPERMS_ALLOWED) 601 xperms->len = 1; 602 } 603 604 /* 605 * Compute access vectors and extended permissions based on a context 606 * structure pair for the permissions in a particular class. 607 */ 608 static void context_struct_compute_av(struct policydb *policydb, 609 struct context *scontext, 610 struct context *tcontext, 611 u16 tclass, 612 struct av_decision *avd, 613 struct extended_perms *xperms) 614 { 615 struct constraint_node *constraint; 616 struct role_allow *ra; 617 struct avtab_key avkey; 618 struct avtab_node *node; 619 struct class_datum *tclass_datum; 620 struct ebitmap *sattr, *tattr; 621 struct ebitmap_node *snode, *tnode; 622 unsigned int i, j; 623 624 avd->allowed = 0; 625 avd->auditallow = 0; 626 avd->auditdeny = 0xffffffff; 627 if (xperms) { 628 memset(&xperms->drivers, 0, sizeof(xperms->drivers)); 629 xperms->len = 0; 630 } 631 632 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) { 633 if (printk_ratelimit()) 634 pr_warn("SELinux: Invalid class %hu\n", tclass); 635 return; 636 } 637 638 tclass_datum = policydb->class_val_to_struct[tclass - 1]; 639 640 /* 641 * If a specific type enforcement rule was defined for 642 * this permission check, then use it. 643 */ 644 avkey.target_class = tclass; 645 avkey.specified = AVTAB_AV | AVTAB_XPERMS; 646 sattr = &policydb->type_attr_map_array[scontext->type - 1]; 647 tattr = &policydb->type_attr_map_array[tcontext->type - 1]; 648 ebitmap_for_each_positive_bit(sattr, snode, i) { 649 ebitmap_for_each_positive_bit(tattr, tnode, j) { 650 avkey.source_type = i + 1; 651 avkey.target_type = j + 1; 652 for (node = avtab_search_node(&policydb->te_avtab, 653 &avkey); 654 node; 655 node = avtab_search_node_next(node, avkey.specified)) { 656 if (node->key.specified == AVTAB_ALLOWED) 657 avd->allowed |= node->datum.u.data; 658 else if (node->key.specified == AVTAB_AUDITALLOW) 659 avd->auditallow |= node->datum.u.data; 660 else if (node->key.specified == AVTAB_AUDITDENY) 661 avd->auditdeny &= node->datum.u.data; 662 else if (xperms && (node->key.specified & AVTAB_XPERMS)) 663 services_compute_xperms_drivers(xperms, node); 664 } 665 666 /* Check conditional av table for additional permissions */ 667 cond_compute_av(&policydb->te_cond_avtab, &avkey, 668 avd, xperms); 669 670 } 671 } 672 673 /* 674 * Remove any permissions prohibited by a constraint (this includes 675 * the MLS policy). 676 */ 677 constraint = tclass_datum->constraints; 678 while (constraint) { 679 if ((constraint->permissions & (avd->allowed)) && 680 !constraint_expr_eval(policydb, scontext, tcontext, NULL, 681 constraint->expr)) { 682 avd->allowed &= ~(constraint->permissions); 683 } 684 constraint = constraint->next; 685 } 686 687 /* 688 * If checking process transition permission and the 689 * role is changing, then check the (current_role, new_role) 690 * pair. 691 */ 692 if (tclass == policydb->process_class && 693 (avd->allowed & policydb->process_trans_perms) && 694 scontext->role != tcontext->role) { 695 for (ra = policydb->role_allow; ra; ra = ra->next) { 696 if (scontext->role == ra->role && 697 tcontext->role == ra->new_role) 698 break; 699 } 700 if (!ra) 701 avd->allowed &= ~policydb->process_trans_perms; 702 } 703 704 /* 705 * If the given source and target types have boundary 706 * constraint, lazy checks have to mask any violated 707 * permission and notice it to userspace via audit. 708 */ 709 type_attribute_bounds_av(policydb, scontext, tcontext, 710 tclass, avd); 711 } 712 713 static int security_validtrans_handle_fail(struct selinux_state *state, 714 struct selinux_policy *policy, 715 struct sidtab_entry *oentry, 716 struct sidtab_entry *nentry, 717 struct sidtab_entry *tentry, 718 u16 tclass) 719 { 720 struct policydb *p = &policy->policydb; 721 struct sidtab *sidtab = policy->sidtab; 722 char *o = NULL, *n = NULL, *t = NULL; 723 u32 olen, nlen, tlen; 724 725 if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen)) 726 goto out; 727 if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen)) 728 goto out; 729 if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen)) 730 goto out; 731 audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR, 732 "op=security_validate_transition seresult=denied" 733 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s", 734 o, n, t, sym_name(p, SYM_CLASSES, tclass-1)); 735 out: 736 kfree(o); 737 kfree(n); 738 kfree(t); 739 740 if (!enforcing_enabled(state)) 741 return 0; 742 return -EPERM; 743 } 744 745 static int security_compute_validatetrans(struct selinux_state *state, 746 u32 oldsid, u32 newsid, u32 tasksid, 747 u16 orig_tclass, bool user) 748 { 749 struct selinux_policy *policy; 750 struct policydb *policydb; 751 struct sidtab *sidtab; 752 struct sidtab_entry *oentry; 753 struct sidtab_entry *nentry; 754 struct sidtab_entry *tentry; 755 struct class_datum *tclass_datum; 756 struct constraint_node *constraint; 757 u16 tclass; 758 int rc = 0; 759 760 761 if (!selinux_initialized(state)) 762 return 0; 763 764 rcu_read_lock(); 765 766 policy = rcu_dereference(state->policy); 767 policydb = &policy->policydb; 768 sidtab = policy->sidtab; 769 770 if (!user) 771 tclass = unmap_class(&policy->map, orig_tclass); 772 else 773 tclass = orig_tclass; 774 775 if (!tclass || tclass > policydb->p_classes.nprim) { 776 rc = -EINVAL; 777 goto out; 778 } 779 tclass_datum = policydb->class_val_to_struct[tclass - 1]; 780 781 oentry = sidtab_search_entry(sidtab, oldsid); 782 if (!oentry) { 783 pr_err("SELinux: %s: unrecognized SID %d\n", 784 __func__, oldsid); 785 rc = -EINVAL; 786 goto out; 787 } 788 789 nentry = sidtab_search_entry(sidtab, newsid); 790 if (!nentry) { 791 pr_err("SELinux: %s: unrecognized SID %d\n", 792 __func__, newsid); 793 rc = -EINVAL; 794 goto out; 795 } 796 797 tentry = sidtab_search_entry(sidtab, tasksid); 798 if (!tentry) { 799 pr_err("SELinux: %s: unrecognized SID %d\n", 800 __func__, tasksid); 801 rc = -EINVAL; 802 goto out; 803 } 804 805 constraint = tclass_datum->validatetrans; 806 while (constraint) { 807 if (!constraint_expr_eval(policydb, &oentry->context, 808 &nentry->context, &tentry->context, 809 constraint->expr)) { 810 if (user) 811 rc = -EPERM; 812 else 813 rc = security_validtrans_handle_fail(state, 814 policy, 815 oentry, 816 nentry, 817 tentry, 818 tclass); 819 goto out; 820 } 821 constraint = constraint->next; 822 } 823 824 out: 825 rcu_read_unlock(); 826 return rc; 827 } 828 829 int security_validate_transition_user(struct selinux_state *state, 830 u32 oldsid, u32 newsid, u32 tasksid, 831 u16 tclass) 832 { 833 return security_compute_validatetrans(state, oldsid, newsid, tasksid, 834 tclass, true); 835 } 836 837 int security_validate_transition(struct selinux_state *state, 838 u32 oldsid, u32 newsid, u32 tasksid, 839 u16 orig_tclass) 840 { 841 return security_compute_validatetrans(state, oldsid, newsid, tasksid, 842 orig_tclass, false); 843 } 844 845 /* 846 * security_bounded_transition - check whether the given 847 * transition is directed to bounded, or not. 848 * It returns 0, if @newsid is bounded by @oldsid. 849 * Otherwise, it returns error code. 850 * 851 * @oldsid : current security identifier 852 * @newsid : destinated security identifier 853 */ 854 int security_bounded_transition(struct selinux_state *state, 855 u32 old_sid, u32 new_sid) 856 { 857 struct selinux_policy *policy; 858 struct policydb *policydb; 859 struct sidtab *sidtab; 860 struct sidtab_entry *old_entry, *new_entry; 861 struct type_datum *type; 862 int index; 863 int rc; 864 865 if (!selinux_initialized(state)) 866 return 0; 867 868 rcu_read_lock(); 869 policy = rcu_dereference(state->policy); 870 policydb = &policy->policydb; 871 sidtab = policy->sidtab; 872 873 rc = -EINVAL; 874 old_entry = sidtab_search_entry(sidtab, old_sid); 875 if (!old_entry) { 876 pr_err("SELinux: %s: unrecognized SID %u\n", 877 __func__, old_sid); 878 goto out; 879 } 880 881 rc = -EINVAL; 882 new_entry = sidtab_search_entry(sidtab, new_sid); 883 if (!new_entry) { 884 pr_err("SELinux: %s: unrecognized SID %u\n", 885 __func__, new_sid); 886 goto out; 887 } 888 889 rc = 0; 890 /* type/domain unchanged */ 891 if (old_entry->context.type == new_entry->context.type) 892 goto out; 893 894 index = new_entry->context.type; 895 while (true) { 896 type = policydb->type_val_to_struct[index - 1]; 897 BUG_ON(!type); 898 899 /* not bounded anymore */ 900 rc = -EPERM; 901 if (!type->bounds) 902 break; 903 904 /* @newsid is bounded by @oldsid */ 905 rc = 0; 906 if (type->bounds == old_entry->context.type) 907 break; 908 909 index = type->bounds; 910 } 911 912 if (rc) { 913 char *old_name = NULL; 914 char *new_name = NULL; 915 u32 length; 916 917 if (!sidtab_entry_to_string(policydb, sidtab, old_entry, 918 &old_name, &length) && 919 !sidtab_entry_to_string(policydb, sidtab, new_entry, 920 &new_name, &length)) { 921 audit_log(audit_context(), 922 GFP_ATOMIC, AUDIT_SELINUX_ERR, 923 "op=security_bounded_transition " 924 "seresult=denied " 925 "oldcontext=%s newcontext=%s", 926 old_name, new_name); 927 } 928 kfree(new_name); 929 kfree(old_name); 930 } 931 out: 932 rcu_read_unlock(); 933 934 return rc; 935 } 936 937 static void avd_init(struct selinux_policy *policy, struct av_decision *avd) 938 { 939 avd->allowed = 0; 940 avd->auditallow = 0; 941 avd->auditdeny = 0xffffffff; 942 if (policy) 943 avd->seqno = policy->latest_granting; 944 else 945 avd->seqno = 0; 946 avd->flags = 0; 947 } 948 949 void services_compute_xperms_decision(struct extended_perms_decision *xpermd, 950 struct avtab_node *node) 951 { 952 unsigned int i; 953 954 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) { 955 if (xpermd->driver != node->datum.u.xperms->driver) 956 return; 957 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) { 958 if (!security_xperm_test(node->datum.u.xperms->perms.p, 959 xpermd->driver)) 960 return; 961 } else { 962 BUG(); 963 } 964 965 if (node->key.specified == AVTAB_XPERMS_ALLOWED) { 966 xpermd->used |= XPERMS_ALLOWED; 967 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) { 968 memset(xpermd->allowed->p, 0xff, 969 sizeof(xpermd->allowed->p)); 970 } 971 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) { 972 for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++) 973 xpermd->allowed->p[i] |= 974 node->datum.u.xperms->perms.p[i]; 975 } 976 } else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) { 977 xpermd->used |= XPERMS_AUDITALLOW; 978 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) { 979 memset(xpermd->auditallow->p, 0xff, 980 sizeof(xpermd->auditallow->p)); 981 } 982 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) { 983 for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++) 984 xpermd->auditallow->p[i] |= 985 node->datum.u.xperms->perms.p[i]; 986 } 987 } else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) { 988 xpermd->used |= XPERMS_DONTAUDIT; 989 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) { 990 memset(xpermd->dontaudit->p, 0xff, 991 sizeof(xpermd->dontaudit->p)); 992 } 993 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) { 994 for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++) 995 xpermd->dontaudit->p[i] |= 996 node->datum.u.xperms->perms.p[i]; 997 } 998 } else { 999 BUG(); 1000 } 1001 } 1002 1003 void security_compute_xperms_decision(struct selinux_state *state, 1004 u32 ssid, 1005 u32 tsid, 1006 u16 orig_tclass, 1007 u8 driver, 1008 struct extended_perms_decision *xpermd) 1009 { 1010 struct selinux_policy *policy; 1011 struct policydb *policydb; 1012 struct sidtab *sidtab; 1013 u16 tclass; 1014 struct context *scontext, *tcontext; 1015 struct avtab_key avkey; 1016 struct avtab_node *node; 1017 struct ebitmap *sattr, *tattr; 1018 struct ebitmap_node *snode, *tnode; 1019 unsigned int i, j; 1020 1021 xpermd->driver = driver; 1022 xpermd->used = 0; 1023 memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p)); 1024 memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p)); 1025 memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p)); 1026 1027 rcu_read_lock(); 1028 if (!selinux_initialized(state)) 1029 goto allow; 1030 1031 policy = rcu_dereference(state->policy); 1032 policydb = &policy->policydb; 1033 sidtab = policy->sidtab; 1034 1035 scontext = sidtab_search(sidtab, ssid); 1036 if (!scontext) { 1037 pr_err("SELinux: %s: unrecognized SID %d\n", 1038 __func__, ssid); 1039 goto out; 1040 } 1041 1042 tcontext = sidtab_search(sidtab, tsid); 1043 if (!tcontext) { 1044 pr_err("SELinux: %s: unrecognized SID %d\n", 1045 __func__, tsid); 1046 goto out; 1047 } 1048 1049 tclass = unmap_class(&policy->map, orig_tclass); 1050 if (unlikely(orig_tclass && !tclass)) { 1051 if (policydb->allow_unknown) 1052 goto allow; 1053 goto out; 1054 } 1055 1056 1057 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) { 1058 pr_warn_ratelimited("SELinux: Invalid class %hu\n", tclass); 1059 goto out; 1060 } 1061 1062 avkey.target_class = tclass; 1063 avkey.specified = AVTAB_XPERMS; 1064 sattr = &policydb->type_attr_map_array[scontext->type - 1]; 1065 tattr = &policydb->type_attr_map_array[tcontext->type - 1]; 1066 ebitmap_for_each_positive_bit(sattr, snode, i) { 1067 ebitmap_for_each_positive_bit(tattr, tnode, j) { 1068 avkey.source_type = i + 1; 1069 avkey.target_type = j + 1; 1070 for (node = avtab_search_node(&policydb->te_avtab, 1071 &avkey); 1072 node; 1073 node = avtab_search_node_next(node, avkey.specified)) 1074 services_compute_xperms_decision(xpermd, node); 1075 1076 cond_compute_xperms(&policydb->te_cond_avtab, 1077 &avkey, xpermd); 1078 } 1079 } 1080 out: 1081 rcu_read_unlock(); 1082 return; 1083 allow: 1084 memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p)); 1085 goto out; 1086 } 1087 1088 /** 1089 * security_compute_av - Compute access vector decisions. 1090 * @ssid: source security identifier 1091 * @tsid: target security identifier 1092 * @tclass: target security class 1093 * @avd: access vector decisions 1094 * @xperms: extended permissions 1095 * 1096 * Compute a set of access vector decisions based on the 1097 * SID pair (@ssid, @tsid) for the permissions in @tclass. 1098 */ 1099 void security_compute_av(struct selinux_state *state, 1100 u32 ssid, 1101 u32 tsid, 1102 u16 orig_tclass, 1103 struct av_decision *avd, 1104 struct extended_perms *xperms) 1105 { 1106 struct selinux_policy *policy; 1107 struct policydb *policydb; 1108 struct sidtab *sidtab; 1109 u16 tclass; 1110 struct context *scontext = NULL, *tcontext = NULL; 1111 1112 rcu_read_lock(); 1113 policy = rcu_dereference(state->policy); 1114 avd_init(policy, avd); 1115 xperms->len = 0; 1116 if (!selinux_initialized(state)) 1117 goto allow; 1118 1119 policydb = &policy->policydb; 1120 sidtab = policy->sidtab; 1121 1122 scontext = sidtab_search(sidtab, ssid); 1123 if (!scontext) { 1124 pr_err("SELinux: %s: unrecognized SID %d\n", 1125 __func__, ssid); 1126 goto out; 1127 } 1128 1129 /* permissive domain? */ 1130 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type)) 1131 avd->flags |= AVD_FLAGS_PERMISSIVE; 1132 1133 tcontext = sidtab_search(sidtab, tsid); 1134 if (!tcontext) { 1135 pr_err("SELinux: %s: unrecognized SID %d\n", 1136 __func__, tsid); 1137 goto out; 1138 } 1139 1140 tclass = unmap_class(&policy->map, orig_tclass); 1141 if (unlikely(orig_tclass && !tclass)) { 1142 if (policydb->allow_unknown) 1143 goto allow; 1144 goto out; 1145 } 1146 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd, 1147 xperms); 1148 map_decision(&policy->map, orig_tclass, avd, 1149 policydb->allow_unknown); 1150 out: 1151 rcu_read_unlock(); 1152 return; 1153 allow: 1154 avd->allowed = 0xffffffff; 1155 goto out; 1156 } 1157 1158 void security_compute_av_user(struct selinux_state *state, 1159 u32 ssid, 1160 u32 tsid, 1161 u16 tclass, 1162 struct av_decision *avd) 1163 { 1164 struct selinux_policy *policy; 1165 struct policydb *policydb; 1166 struct sidtab *sidtab; 1167 struct context *scontext = NULL, *tcontext = NULL; 1168 1169 rcu_read_lock(); 1170 policy = rcu_dereference(state->policy); 1171 avd_init(policy, avd); 1172 if (!selinux_initialized(state)) 1173 goto allow; 1174 1175 policydb = &policy->policydb; 1176 sidtab = policy->sidtab; 1177 1178 scontext = sidtab_search(sidtab, ssid); 1179 if (!scontext) { 1180 pr_err("SELinux: %s: unrecognized SID %d\n", 1181 __func__, ssid); 1182 goto out; 1183 } 1184 1185 /* permissive domain? */ 1186 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type)) 1187 avd->flags |= AVD_FLAGS_PERMISSIVE; 1188 1189 tcontext = sidtab_search(sidtab, tsid); 1190 if (!tcontext) { 1191 pr_err("SELinux: %s: unrecognized SID %d\n", 1192 __func__, tsid); 1193 goto out; 1194 } 1195 1196 if (unlikely(!tclass)) { 1197 if (policydb->allow_unknown) 1198 goto allow; 1199 goto out; 1200 } 1201 1202 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd, 1203 NULL); 1204 out: 1205 rcu_read_unlock(); 1206 return; 1207 allow: 1208 avd->allowed = 0xffffffff; 1209 goto out; 1210 } 1211 1212 /* 1213 * Write the security context string representation of 1214 * the context structure `context' into a dynamically 1215 * allocated string of the correct size. Set `*scontext' 1216 * to point to this string and set `*scontext_len' to 1217 * the length of the string. 1218 */ 1219 static int context_struct_to_string(struct policydb *p, 1220 struct context *context, 1221 char **scontext, u32 *scontext_len) 1222 { 1223 char *scontextp; 1224 1225 if (scontext) 1226 *scontext = NULL; 1227 *scontext_len = 0; 1228 1229 if (context->len) { 1230 *scontext_len = context->len; 1231 if (scontext) { 1232 *scontext = kstrdup(context->str, GFP_ATOMIC); 1233 if (!(*scontext)) 1234 return -ENOMEM; 1235 } 1236 return 0; 1237 } 1238 1239 /* Compute the size of the context. */ 1240 *scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1; 1241 *scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1; 1242 *scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1; 1243 *scontext_len += mls_compute_context_len(p, context); 1244 1245 if (!scontext) 1246 return 0; 1247 1248 /* Allocate space for the context; caller must free this space. */ 1249 scontextp = kmalloc(*scontext_len, GFP_ATOMIC); 1250 if (!scontextp) 1251 return -ENOMEM; 1252 *scontext = scontextp; 1253 1254 /* 1255 * Copy the user name, role name and type name into the context. 1256 */ 1257 scontextp += sprintf(scontextp, "%s:%s:%s", 1258 sym_name(p, SYM_USERS, context->user - 1), 1259 sym_name(p, SYM_ROLES, context->role - 1), 1260 sym_name(p, SYM_TYPES, context->type - 1)); 1261 1262 mls_sid_to_context(p, context, &scontextp); 1263 1264 *scontextp = 0; 1265 1266 return 0; 1267 } 1268 1269 static int sidtab_entry_to_string(struct policydb *p, 1270 struct sidtab *sidtab, 1271 struct sidtab_entry *entry, 1272 char **scontext, u32 *scontext_len) 1273 { 1274 int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len); 1275 1276 if (rc != -ENOENT) 1277 return rc; 1278 1279 rc = context_struct_to_string(p, &entry->context, scontext, 1280 scontext_len); 1281 if (!rc && scontext) 1282 sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len); 1283 return rc; 1284 } 1285 1286 #include "initial_sid_to_string.h" 1287 1288 int security_sidtab_hash_stats(struct selinux_state *state, char *page) 1289 { 1290 struct selinux_policy *policy; 1291 int rc; 1292 1293 if (!selinux_initialized(state)) { 1294 pr_err("SELinux: %s: called before initial load_policy\n", 1295 __func__); 1296 return -EINVAL; 1297 } 1298 1299 rcu_read_lock(); 1300 policy = rcu_dereference(state->policy); 1301 rc = sidtab_hash_stats(policy->sidtab, page); 1302 rcu_read_unlock(); 1303 1304 return rc; 1305 } 1306 1307 const char *security_get_initial_sid_context(u32 sid) 1308 { 1309 if (unlikely(sid > SECINITSID_NUM)) 1310 return NULL; 1311 return initial_sid_to_string[sid]; 1312 } 1313 1314 static int security_sid_to_context_core(struct selinux_state *state, 1315 u32 sid, char **scontext, 1316 u32 *scontext_len, int force, 1317 int only_invalid) 1318 { 1319 struct selinux_policy *policy; 1320 struct policydb *policydb; 1321 struct sidtab *sidtab; 1322 struct sidtab_entry *entry; 1323 int rc = 0; 1324 1325 if (scontext) 1326 *scontext = NULL; 1327 *scontext_len = 0; 1328 1329 if (!selinux_initialized(state)) { 1330 if (sid <= SECINITSID_NUM) { 1331 char *scontextp; 1332 const char *s = initial_sid_to_string[sid]; 1333 1334 if (!s) 1335 return -EINVAL; 1336 *scontext_len = strlen(s) + 1; 1337 if (!scontext) 1338 return 0; 1339 scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC); 1340 if (!scontextp) 1341 return -ENOMEM; 1342 *scontext = scontextp; 1343 return 0; 1344 } 1345 pr_err("SELinux: %s: called before initial " 1346 "load_policy on unknown SID %d\n", __func__, sid); 1347 return -EINVAL; 1348 } 1349 rcu_read_lock(); 1350 policy = rcu_dereference(state->policy); 1351 policydb = &policy->policydb; 1352 sidtab = policy->sidtab; 1353 1354 if (force) 1355 entry = sidtab_search_entry_force(sidtab, sid); 1356 else 1357 entry = sidtab_search_entry(sidtab, sid); 1358 if (!entry) { 1359 pr_err("SELinux: %s: unrecognized SID %d\n", 1360 __func__, sid); 1361 rc = -EINVAL; 1362 goto out_unlock; 1363 } 1364 if (only_invalid && !entry->context.len) 1365 goto out_unlock; 1366 1367 rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext, 1368 scontext_len); 1369 1370 out_unlock: 1371 rcu_read_unlock(); 1372 return rc; 1373 1374 } 1375 1376 /** 1377 * security_sid_to_context - Obtain a context for a given SID. 1378 * @sid: security identifier, SID 1379 * @scontext: security context 1380 * @scontext_len: length in bytes 1381 * 1382 * Write the string representation of the context associated with @sid 1383 * into a dynamically allocated string of the correct size. Set @scontext 1384 * to point to this string and set @scontext_len to the length of the string. 1385 */ 1386 int security_sid_to_context(struct selinux_state *state, 1387 u32 sid, char **scontext, u32 *scontext_len) 1388 { 1389 return security_sid_to_context_core(state, sid, scontext, 1390 scontext_len, 0, 0); 1391 } 1392 1393 int security_sid_to_context_force(struct selinux_state *state, u32 sid, 1394 char **scontext, u32 *scontext_len) 1395 { 1396 return security_sid_to_context_core(state, sid, scontext, 1397 scontext_len, 1, 0); 1398 } 1399 1400 /** 1401 * security_sid_to_context_inval - Obtain a context for a given SID if it 1402 * is invalid. 1403 * @sid: security identifier, SID 1404 * @scontext: security context 1405 * @scontext_len: length in bytes 1406 * 1407 * Write the string representation of the context associated with @sid 1408 * into a dynamically allocated string of the correct size, but only if the 1409 * context is invalid in the current policy. Set @scontext to point to 1410 * this string (or NULL if the context is valid) and set @scontext_len to 1411 * the length of the string (or 0 if the context is valid). 1412 */ 1413 int security_sid_to_context_inval(struct selinux_state *state, u32 sid, 1414 char **scontext, u32 *scontext_len) 1415 { 1416 return security_sid_to_context_core(state, sid, scontext, 1417 scontext_len, 1, 1); 1418 } 1419 1420 /* 1421 * Caveat: Mutates scontext. 1422 */ 1423 static int string_to_context_struct(struct policydb *pol, 1424 struct sidtab *sidtabp, 1425 char *scontext, 1426 struct context *ctx, 1427 u32 def_sid) 1428 { 1429 struct role_datum *role; 1430 struct type_datum *typdatum; 1431 struct user_datum *usrdatum; 1432 char *scontextp, *p, oldc; 1433 int rc = 0; 1434 1435 context_init(ctx); 1436 1437 /* Parse the security context. */ 1438 1439 rc = -EINVAL; 1440 scontextp = (char *) scontext; 1441 1442 /* Extract the user. */ 1443 p = scontextp; 1444 while (*p && *p != ':') 1445 p++; 1446 1447 if (*p == 0) 1448 goto out; 1449 1450 *p++ = 0; 1451 1452 usrdatum = symtab_search(&pol->p_users, scontextp); 1453 if (!usrdatum) 1454 goto out; 1455 1456 ctx->user = usrdatum->value; 1457 1458 /* Extract role. */ 1459 scontextp = p; 1460 while (*p && *p != ':') 1461 p++; 1462 1463 if (*p == 0) 1464 goto out; 1465 1466 *p++ = 0; 1467 1468 role = symtab_search(&pol->p_roles, scontextp); 1469 if (!role) 1470 goto out; 1471 ctx->role = role->value; 1472 1473 /* Extract type. */ 1474 scontextp = p; 1475 while (*p && *p != ':') 1476 p++; 1477 oldc = *p; 1478 *p++ = 0; 1479 1480 typdatum = symtab_search(&pol->p_types, scontextp); 1481 if (!typdatum || typdatum->attribute) 1482 goto out; 1483 1484 ctx->type = typdatum->value; 1485 1486 rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid); 1487 if (rc) 1488 goto out; 1489 1490 /* Check the validity of the new context. */ 1491 rc = -EINVAL; 1492 if (!policydb_context_isvalid(pol, ctx)) 1493 goto out; 1494 rc = 0; 1495 out: 1496 if (rc) 1497 context_destroy(ctx); 1498 return rc; 1499 } 1500 1501 static int security_context_to_sid_core(struct selinux_state *state, 1502 const char *scontext, u32 scontext_len, 1503 u32 *sid, u32 def_sid, gfp_t gfp_flags, 1504 int force) 1505 { 1506 struct selinux_policy *policy; 1507 struct policydb *policydb; 1508 struct sidtab *sidtab; 1509 char *scontext2, *str = NULL; 1510 struct context context; 1511 int rc = 0; 1512 1513 /* An empty security context is never valid. */ 1514 if (!scontext_len) 1515 return -EINVAL; 1516 1517 /* Copy the string to allow changes and ensure a NUL terminator */ 1518 scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags); 1519 if (!scontext2) 1520 return -ENOMEM; 1521 1522 if (!selinux_initialized(state)) { 1523 int i; 1524 1525 for (i = 1; i < SECINITSID_NUM; i++) { 1526 const char *s = initial_sid_to_string[i]; 1527 1528 if (s && !strcmp(s, scontext2)) { 1529 *sid = i; 1530 goto out; 1531 } 1532 } 1533 *sid = SECINITSID_KERNEL; 1534 goto out; 1535 } 1536 *sid = SECSID_NULL; 1537 1538 if (force) { 1539 /* Save another copy for storing in uninterpreted form */ 1540 rc = -ENOMEM; 1541 str = kstrdup(scontext2, gfp_flags); 1542 if (!str) 1543 goto out; 1544 } 1545 rcu_read_lock(); 1546 policy = rcu_dereference(state->policy); 1547 policydb = &policy->policydb; 1548 sidtab = policy->sidtab; 1549 rc = string_to_context_struct(policydb, sidtab, scontext2, 1550 &context, def_sid); 1551 if (rc == -EINVAL && force) { 1552 context.str = str; 1553 context.len = strlen(str) + 1; 1554 str = NULL; 1555 } else if (rc) 1556 goto out_unlock; 1557 rc = sidtab_context_to_sid(sidtab, &context, sid); 1558 context_destroy(&context); 1559 out_unlock: 1560 rcu_read_unlock(); 1561 out: 1562 kfree(scontext2); 1563 kfree(str); 1564 return rc; 1565 } 1566 1567 /** 1568 * security_context_to_sid - Obtain a SID for a given security context. 1569 * @scontext: security context 1570 * @scontext_len: length in bytes 1571 * @sid: security identifier, SID 1572 * @gfp: context for the allocation 1573 * 1574 * Obtains a SID associated with the security context that 1575 * has the string representation specified by @scontext. 1576 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient 1577 * memory is available, or 0 on success. 1578 */ 1579 int security_context_to_sid(struct selinux_state *state, 1580 const char *scontext, u32 scontext_len, u32 *sid, 1581 gfp_t gfp) 1582 { 1583 return security_context_to_sid_core(state, scontext, scontext_len, 1584 sid, SECSID_NULL, gfp, 0); 1585 } 1586 1587 int security_context_str_to_sid(struct selinux_state *state, 1588 const char *scontext, u32 *sid, gfp_t gfp) 1589 { 1590 return security_context_to_sid(state, scontext, strlen(scontext), 1591 sid, gfp); 1592 } 1593 1594 /** 1595 * security_context_to_sid_default - Obtain a SID for a given security context, 1596 * falling back to specified default if needed. 1597 * 1598 * @scontext: security context 1599 * @scontext_len: length in bytes 1600 * @sid: security identifier, SID 1601 * @def_sid: default SID to assign on error 1602 * 1603 * Obtains a SID associated with the security context that 1604 * has the string representation specified by @scontext. 1605 * The default SID is passed to the MLS layer to be used to allow 1606 * kernel labeling of the MLS field if the MLS field is not present 1607 * (for upgrading to MLS without full relabel). 1608 * Implicitly forces adding of the context even if it cannot be mapped yet. 1609 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient 1610 * memory is available, or 0 on success. 1611 */ 1612 int security_context_to_sid_default(struct selinux_state *state, 1613 const char *scontext, u32 scontext_len, 1614 u32 *sid, u32 def_sid, gfp_t gfp_flags) 1615 { 1616 return security_context_to_sid_core(state, scontext, scontext_len, 1617 sid, def_sid, gfp_flags, 1); 1618 } 1619 1620 int security_context_to_sid_force(struct selinux_state *state, 1621 const char *scontext, u32 scontext_len, 1622 u32 *sid) 1623 { 1624 return security_context_to_sid_core(state, scontext, scontext_len, 1625 sid, SECSID_NULL, GFP_KERNEL, 1); 1626 } 1627 1628 static int compute_sid_handle_invalid_context( 1629 struct selinux_state *state, 1630 struct selinux_policy *policy, 1631 struct sidtab_entry *sentry, 1632 struct sidtab_entry *tentry, 1633 u16 tclass, 1634 struct context *newcontext) 1635 { 1636 struct policydb *policydb = &policy->policydb; 1637 struct sidtab *sidtab = policy->sidtab; 1638 char *s = NULL, *t = NULL, *n = NULL; 1639 u32 slen, tlen, nlen; 1640 struct audit_buffer *ab; 1641 1642 if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen)) 1643 goto out; 1644 if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen)) 1645 goto out; 1646 if (context_struct_to_string(policydb, newcontext, &n, &nlen)) 1647 goto out; 1648 ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR); 1649 audit_log_format(ab, 1650 "op=security_compute_sid invalid_context="); 1651 /* no need to record the NUL with untrusted strings */ 1652 audit_log_n_untrustedstring(ab, n, nlen - 1); 1653 audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s", 1654 s, t, sym_name(policydb, SYM_CLASSES, tclass-1)); 1655 audit_log_end(ab); 1656 out: 1657 kfree(s); 1658 kfree(t); 1659 kfree(n); 1660 if (!enforcing_enabled(state)) 1661 return 0; 1662 return -EACCES; 1663 } 1664 1665 static void filename_compute_type(struct policydb *policydb, 1666 struct context *newcontext, 1667 u32 stype, u32 ttype, u16 tclass, 1668 const char *objname) 1669 { 1670 struct filename_trans_key ft; 1671 struct filename_trans_datum *datum; 1672 1673 /* 1674 * Most filename trans rules are going to live in specific directories 1675 * like /dev or /var/run. This bitmap will quickly skip rule searches 1676 * if the ttype does not contain any rules. 1677 */ 1678 if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype)) 1679 return; 1680 1681 ft.ttype = ttype; 1682 ft.tclass = tclass; 1683 ft.name = objname; 1684 1685 datum = policydb_filenametr_search(policydb, &ft); 1686 while (datum) { 1687 if (ebitmap_get_bit(&datum->stypes, stype - 1)) { 1688 newcontext->type = datum->otype; 1689 return; 1690 } 1691 datum = datum->next; 1692 } 1693 } 1694 1695 static int security_compute_sid(struct selinux_state *state, 1696 u32 ssid, 1697 u32 tsid, 1698 u16 orig_tclass, 1699 u32 specified, 1700 const char *objname, 1701 u32 *out_sid, 1702 bool kern) 1703 { 1704 struct selinux_policy *policy; 1705 struct policydb *policydb; 1706 struct sidtab *sidtab; 1707 struct class_datum *cladatum = NULL; 1708 struct context *scontext, *tcontext, newcontext; 1709 struct sidtab_entry *sentry, *tentry; 1710 struct avtab_key avkey; 1711 struct avtab_datum *avdatum; 1712 struct avtab_node *node; 1713 u16 tclass; 1714 int rc = 0; 1715 bool sock; 1716 1717 if (!selinux_initialized(state)) { 1718 switch (orig_tclass) { 1719 case SECCLASS_PROCESS: /* kernel value */ 1720 *out_sid = ssid; 1721 break; 1722 default: 1723 *out_sid = tsid; 1724 break; 1725 } 1726 goto out; 1727 } 1728 1729 context_init(&newcontext); 1730 1731 rcu_read_lock(); 1732 1733 policy = rcu_dereference(state->policy); 1734 1735 if (kern) { 1736 tclass = unmap_class(&policy->map, orig_tclass); 1737 sock = security_is_socket_class(orig_tclass); 1738 } else { 1739 tclass = orig_tclass; 1740 sock = security_is_socket_class(map_class(&policy->map, 1741 tclass)); 1742 } 1743 1744 policydb = &policy->policydb; 1745 sidtab = policy->sidtab; 1746 1747 sentry = sidtab_search_entry(sidtab, ssid); 1748 if (!sentry) { 1749 pr_err("SELinux: %s: unrecognized SID %d\n", 1750 __func__, ssid); 1751 rc = -EINVAL; 1752 goto out_unlock; 1753 } 1754 tentry = sidtab_search_entry(sidtab, tsid); 1755 if (!tentry) { 1756 pr_err("SELinux: %s: unrecognized SID %d\n", 1757 __func__, tsid); 1758 rc = -EINVAL; 1759 goto out_unlock; 1760 } 1761 1762 scontext = &sentry->context; 1763 tcontext = &tentry->context; 1764 1765 if (tclass && tclass <= policydb->p_classes.nprim) 1766 cladatum = policydb->class_val_to_struct[tclass - 1]; 1767 1768 /* Set the user identity. */ 1769 switch (specified) { 1770 case AVTAB_TRANSITION: 1771 case AVTAB_CHANGE: 1772 if (cladatum && cladatum->default_user == DEFAULT_TARGET) { 1773 newcontext.user = tcontext->user; 1774 } else { 1775 /* notice this gets both DEFAULT_SOURCE and unset */ 1776 /* Use the process user identity. */ 1777 newcontext.user = scontext->user; 1778 } 1779 break; 1780 case AVTAB_MEMBER: 1781 /* Use the related object owner. */ 1782 newcontext.user = tcontext->user; 1783 break; 1784 } 1785 1786 /* Set the role to default values. */ 1787 if (cladatum && cladatum->default_role == DEFAULT_SOURCE) { 1788 newcontext.role = scontext->role; 1789 } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) { 1790 newcontext.role = tcontext->role; 1791 } else { 1792 if ((tclass == policydb->process_class) || sock) 1793 newcontext.role = scontext->role; 1794 else 1795 newcontext.role = OBJECT_R_VAL; 1796 } 1797 1798 /* Set the type to default values. */ 1799 if (cladatum && cladatum->default_type == DEFAULT_SOURCE) { 1800 newcontext.type = scontext->type; 1801 } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) { 1802 newcontext.type = tcontext->type; 1803 } else { 1804 if ((tclass == policydb->process_class) || sock) { 1805 /* Use the type of process. */ 1806 newcontext.type = scontext->type; 1807 } else { 1808 /* Use the type of the related object. */ 1809 newcontext.type = tcontext->type; 1810 } 1811 } 1812 1813 /* Look for a type transition/member/change rule. */ 1814 avkey.source_type = scontext->type; 1815 avkey.target_type = tcontext->type; 1816 avkey.target_class = tclass; 1817 avkey.specified = specified; 1818 avdatum = avtab_search(&policydb->te_avtab, &avkey); 1819 1820 /* If no permanent rule, also check for enabled conditional rules */ 1821 if (!avdatum) { 1822 node = avtab_search_node(&policydb->te_cond_avtab, &avkey); 1823 for (; node; node = avtab_search_node_next(node, specified)) { 1824 if (node->key.specified & AVTAB_ENABLED) { 1825 avdatum = &node->datum; 1826 break; 1827 } 1828 } 1829 } 1830 1831 if (avdatum) { 1832 /* Use the type from the type transition/member/change rule. */ 1833 newcontext.type = avdatum->u.data; 1834 } 1835 1836 /* if we have a objname this is a file trans check so check those rules */ 1837 if (objname) 1838 filename_compute_type(policydb, &newcontext, scontext->type, 1839 tcontext->type, tclass, objname); 1840 1841 /* Check for class-specific changes. */ 1842 if (specified & AVTAB_TRANSITION) { 1843 /* Look for a role transition rule. */ 1844 struct role_trans_datum *rtd; 1845 struct role_trans_key rtk = { 1846 .role = scontext->role, 1847 .type = tcontext->type, 1848 .tclass = tclass, 1849 }; 1850 1851 rtd = policydb_roletr_search(policydb, &rtk); 1852 if (rtd) 1853 newcontext.role = rtd->new_role; 1854 } 1855 1856 /* Set the MLS attributes. 1857 This is done last because it may allocate memory. */ 1858 rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified, 1859 &newcontext, sock); 1860 if (rc) 1861 goto out_unlock; 1862 1863 /* Check the validity of the context. */ 1864 if (!policydb_context_isvalid(policydb, &newcontext)) { 1865 rc = compute_sid_handle_invalid_context(state, policy, sentry, 1866 tentry, tclass, 1867 &newcontext); 1868 if (rc) 1869 goto out_unlock; 1870 } 1871 /* Obtain the sid for the context. */ 1872 rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid); 1873 out_unlock: 1874 rcu_read_unlock(); 1875 context_destroy(&newcontext); 1876 out: 1877 return rc; 1878 } 1879 1880 /** 1881 * security_transition_sid - Compute the SID for a new subject/object. 1882 * @ssid: source security identifier 1883 * @tsid: target security identifier 1884 * @tclass: target security class 1885 * @out_sid: security identifier for new subject/object 1886 * 1887 * Compute a SID to use for labeling a new subject or object in the 1888 * class @tclass based on a SID pair (@ssid, @tsid). 1889 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM 1890 * if insufficient memory is available, or %0 if the new SID was 1891 * computed successfully. 1892 */ 1893 int security_transition_sid(struct selinux_state *state, 1894 u32 ssid, u32 tsid, u16 tclass, 1895 const struct qstr *qstr, u32 *out_sid) 1896 { 1897 return security_compute_sid(state, ssid, tsid, tclass, 1898 AVTAB_TRANSITION, 1899 qstr ? qstr->name : NULL, out_sid, true); 1900 } 1901 1902 int security_transition_sid_user(struct selinux_state *state, 1903 u32 ssid, u32 tsid, u16 tclass, 1904 const char *objname, u32 *out_sid) 1905 { 1906 return security_compute_sid(state, ssid, tsid, tclass, 1907 AVTAB_TRANSITION, 1908 objname, out_sid, false); 1909 } 1910 1911 /** 1912 * security_member_sid - Compute the SID for member selection. 1913 * @ssid: source security identifier 1914 * @tsid: target security identifier 1915 * @tclass: target security class 1916 * @out_sid: security identifier for selected member 1917 * 1918 * Compute a SID to use when selecting a member of a polyinstantiated 1919 * object of class @tclass based on a SID pair (@ssid, @tsid). 1920 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM 1921 * if insufficient memory is available, or %0 if the SID was 1922 * computed successfully. 1923 */ 1924 int security_member_sid(struct selinux_state *state, 1925 u32 ssid, 1926 u32 tsid, 1927 u16 tclass, 1928 u32 *out_sid) 1929 { 1930 return security_compute_sid(state, ssid, tsid, tclass, 1931 AVTAB_MEMBER, NULL, 1932 out_sid, false); 1933 } 1934 1935 /** 1936 * security_change_sid - Compute the SID for object relabeling. 1937 * @ssid: source security identifier 1938 * @tsid: target security identifier 1939 * @tclass: target security class 1940 * @out_sid: security identifier for selected member 1941 * 1942 * Compute a SID to use for relabeling an object of class @tclass 1943 * based on a SID pair (@ssid, @tsid). 1944 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM 1945 * if insufficient memory is available, or %0 if the SID was 1946 * computed successfully. 1947 */ 1948 int security_change_sid(struct selinux_state *state, 1949 u32 ssid, 1950 u32 tsid, 1951 u16 tclass, 1952 u32 *out_sid) 1953 { 1954 return security_compute_sid(state, 1955 ssid, tsid, tclass, AVTAB_CHANGE, NULL, 1956 out_sid, false); 1957 } 1958 1959 static inline int convert_context_handle_invalid_context( 1960 struct selinux_state *state, 1961 struct policydb *policydb, 1962 struct context *context) 1963 { 1964 char *s; 1965 u32 len; 1966 1967 if (enforcing_enabled(state)) 1968 return -EINVAL; 1969 1970 if (!context_struct_to_string(policydb, context, &s, &len)) { 1971 pr_warn("SELinux: Context %s would be invalid if enforcing\n", 1972 s); 1973 kfree(s); 1974 } 1975 return 0; 1976 } 1977 1978 struct convert_context_args { 1979 struct selinux_state *state; 1980 struct policydb *oldp; 1981 struct policydb *newp; 1982 }; 1983 1984 /* 1985 * Convert the values in the security context 1986 * structure `oldc' from the values specified 1987 * in the policy `p->oldp' to the values specified 1988 * in the policy `p->newp', storing the new context 1989 * in `newc'. Verify that the context is valid 1990 * under the new policy. 1991 */ 1992 static int convert_context(struct context *oldc, struct context *newc, void *p) 1993 { 1994 struct convert_context_args *args; 1995 struct ocontext *oc; 1996 struct role_datum *role; 1997 struct type_datum *typdatum; 1998 struct user_datum *usrdatum; 1999 char *s; 2000 u32 len; 2001 int rc; 2002 2003 args = p; 2004 2005 if (oldc->str) { 2006 s = kstrdup(oldc->str, GFP_KERNEL); 2007 if (!s) 2008 return -ENOMEM; 2009 2010 rc = string_to_context_struct(args->newp, NULL, s, 2011 newc, SECSID_NULL); 2012 if (rc == -EINVAL) { 2013 /* 2014 * Retain string representation for later mapping. 2015 * 2016 * IMPORTANT: We need to copy the contents of oldc->str 2017 * back into s again because string_to_context_struct() 2018 * may have garbled it. 2019 */ 2020 memcpy(s, oldc->str, oldc->len); 2021 context_init(newc); 2022 newc->str = s; 2023 newc->len = oldc->len; 2024 return 0; 2025 } 2026 kfree(s); 2027 if (rc) { 2028 /* Other error condition, e.g. ENOMEM. */ 2029 pr_err("SELinux: Unable to map context %s, rc = %d.\n", 2030 oldc->str, -rc); 2031 return rc; 2032 } 2033 pr_info("SELinux: Context %s became valid (mapped).\n", 2034 oldc->str); 2035 return 0; 2036 } 2037 2038 context_init(newc); 2039 2040 /* Convert the user. */ 2041 rc = -EINVAL; 2042 usrdatum = symtab_search(&args->newp->p_users, 2043 sym_name(args->oldp, 2044 SYM_USERS, oldc->user - 1)); 2045 if (!usrdatum) 2046 goto bad; 2047 newc->user = usrdatum->value; 2048 2049 /* Convert the role. */ 2050 rc = -EINVAL; 2051 role = symtab_search(&args->newp->p_roles, 2052 sym_name(args->oldp, SYM_ROLES, oldc->role - 1)); 2053 if (!role) 2054 goto bad; 2055 newc->role = role->value; 2056 2057 /* Convert the type. */ 2058 rc = -EINVAL; 2059 typdatum = symtab_search(&args->newp->p_types, 2060 sym_name(args->oldp, 2061 SYM_TYPES, oldc->type - 1)); 2062 if (!typdatum) 2063 goto bad; 2064 newc->type = typdatum->value; 2065 2066 /* Convert the MLS fields if dealing with MLS policies */ 2067 if (args->oldp->mls_enabled && args->newp->mls_enabled) { 2068 rc = mls_convert_context(args->oldp, args->newp, oldc, newc); 2069 if (rc) 2070 goto bad; 2071 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) { 2072 /* 2073 * Switching between non-MLS and MLS policy: 2074 * ensure that the MLS fields of the context for all 2075 * existing entries in the sidtab are filled in with a 2076 * suitable default value, likely taken from one of the 2077 * initial SIDs. 2078 */ 2079 oc = args->newp->ocontexts[OCON_ISID]; 2080 while (oc && oc->sid[0] != SECINITSID_UNLABELED) 2081 oc = oc->next; 2082 rc = -EINVAL; 2083 if (!oc) { 2084 pr_err("SELinux: unable to look up" 2085 " the initial SIDs list\n"); 2086 goto bad; 2087 } 2088 rc = mls_range_set(newc, &oc->context[0].range); 2089 if (rc) 2090 goto bad; 2091 } 2092 2093 /* Check the validity of the new context. */ 2094 if (!policydb_context_isvalid(args->newp, newc)) { 2095 rc = convert_context_handle_invalid_context(args->state, 2096 args->oldp, 2097 oldc); 2098 if (rc) 2099 goto bad; 2100 } 2101 2102 return 0; 2103 bad: 2104 /* Map old representation to string and save it. */ 2105 rc = context_struct_to_string(args->oldp, oldc, &s, &len); 2106 if (rc) 2107 return rc; 2108 context_destroy(newc); 2109 newc->str = s; 2110 newc->len = len; 2111 pr_info("SELinux: Context %s became invalid (unmapped).\n", 2112 newc->str); 2113 return 0; 2114 } 2115 2116 static void security_load_policycaps(struct selinux_state *state, 2117 struct selinux_policy *policy) 2118 { 2119 struct policydb *p; 2120 unsigned int i; 2121 struct ebitmap_node *node; 2122 2123 p = &policy->policydb; 2124 2125 for (i = 0; i < ARRAY_SIZE(state->policycap); i++) 2126 WRITE_ONCE(state->policycap[i], 2127 ebitmap_get_bit(&p->policycaps, i)); 2128 2129 for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++) 2130 pr_info("SELinux: policy capability %s=%d\n", 2131 selinux_policycap_names[i], 2132 ebitmap_get_bit(&p->policycaps, i)); 2133 2134 ebitmap_for_each_positive_bit(&p->policycaps, node, i) { 2135 if (i >= ARRAY_SIZE(selinux_policycap_names)) 2136 pr_info("SELinux: unknown policy capability %u\n", 2137 i); 2138 } 2139 } 2140 2141 static int security_preserve_bools(struct selinux_policy *oldpolicy, 2142 struct selinux_policy *newpolicy); 2143 2144 static void selinux_policy_free(struct selinux_policy *policy) 2145 { 2146 if (!policy) 2147 return; 2148 2149 sidtab_destroy(policy->sidtab); 2150 kfree(policy->map.mapping); 2151 policydb_destroy(&policy->policydb); 2152 kfree(policy->sidtab); 2153 kfree(policy); 2154 } 2155 2156 static void selinux_policy_cond_free(struct selinux_policy *policy) 2157 { 2158 cond_policydb_destroy_dup(&policy->policydb); 2159 kfree(policy); 2160 } 2161 2162 void selinux_policy_cancel(struct selinux_state *state, 2163 struct selinux_policy *policy) 2164 { 2165 struct selinux_policy *oldpolicy; 2166 2167 oldpolicy = rcu_dereference_protected(state->policy, 2168 lockdep_is_held(&state->policy_mutex)); 2169 2170 sidtab_cancel_convert(oldpolicy->sidtab); 2171 selinux_policy_free(policy); 2172 } 2173 2174 static void selinux_notify_policy_change(struct selinux_state *state, 2175 u32 seqno) 2176 { 2177 /* Flush external caches and notify userspace of policy load */ 2178 avc_ss_reset(state->avc, seqno); 2179 selnl_notify_policyload(seqno); 2180 selinux_status_update_policyload(state, seqno); 2181 selinux_netlbl_cache_invalidate(); 2182 selinux_xfrm_notify_policyload(); 2183 } 2184 2185 void selinux_policy_commit(struct selinux_state *state, 2186 struct selinux_policy *newpolicy) 2187 { 2188 struct selinux_policy *oldpolicy; 2189 u32 seqno; 2190 2191 oldpolicy = rcu_dereference_protected(state->policy, 2192 lockdep_is_held(&state->policy_mutex)); 2193 2194 /* If switching between different policy types, log MLS status */ 2195 if (oldpolicy) { 2196 if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled) 2197 pr_info("SELinux: Disabling MLS support...\n"); 2198 else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled) 2199 pr_info("SELinux: Enabling MLS support...\n"); 2200 } 2201 2202 /* Set latest granting seqno for new policy. */ 2203 if (oldpolicy) 2204 newpolicy->latest_granting = oldpolicy->latest_granting + 1; 2205 else 2206 newpolicy->latest_granting = 1; 2207 seqno = newpolicy->latest_granting; 2208 2209 /* Install the new policy. */ 2210 rcu_assign_pointer(state->policy, newpolicy); 2211 2212 /* Load the policycaps from the new policy */ 2213 security_load_policycaps(state, newpolicy); 2214 2215 if (!selinux_initialized(state)) { 2216 /* 2217 * After first policy load, the security server is 2218 * marked as initialized and ready to handle requests and 2219 * any objects created prior to policy load are then labeled. 2220 */ 2221 selinux_mark_initialized(state); 2222 selinux_complete_init(); 2223 } 2224 2225 /* Free the old policy */ 2226 synchronize_rcu(); 2227 selinux_policy_free(oldpolicy); 2228 2229 /* Notify others of the policy change */ 2230 selinux_notify_policy_change(state, seqno); 2231 } 2232 2233 /** 2234 * security_load_policy - Load a security policy configuration. 2235 * @data: binary policy data 2236 * @len: length of data in bytes 2237 * 2238 * Load a new set of security policy configuration data, 2239 * validate it and convert the SID table as necessary. 2240 * This function will flush the access vector cache after 2241 * loading the new policy. 2242 */ 2243 int security_load_policy(struct selinux_state *state, void *data, size_t len, 2244 struct selinux_policy **newpolicyp) 2245 { 2246 struct selinux_policy *newpolicy, *oldpolicy; 2247 struct sidtab_convert_params convert_params; 2248 struct convert_context_args args; 2249 int rc = 0; 2250 struct policy_file file = { data, len }, *fp = &file; 2251 2252 newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL); 2253 if (!newpolicy) 2254 return -ENOMEM; 2255 2256 newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL); 2257 if (!newpolicy->sidtab) { 2258 rc = -ENOMEM; 2259 goto err_policy; 2260 } 2261 2262 rc = policydb_read(&newpolicy->policydb, fp); 2263 if (rc) 2264 goto err_sidtab; 2265 2266 newpolicy->policydb.len = len; 2267 rc = selinux_set_mapping(&newpolicy->policydb, secclass_map, 2268 &newpolicy->map); 2269 if (rc) 2270 goto err_policydb; 2271 2272 rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab); 2273 if (rc) { 2274 pr_err("SELinux: unable to load the initial SIDs\n"); 2275 goto err_mapping; 2276 } 2277 2278 2279 if (!selinux_initialized(state)) { 2280 /* First policy load, so no need to preserve state from old policy */ 2281 *newpolicyp = newpolicy; 2282 return 0; 2283 } 2284 2285 oldpolicy = rcu_dereference_protected(state->policy, 2286 lockdep_is_held(&state->policy_mutex)); 2287 2288 /* Preserve active boolean values from the old policy */ 2289 rc = security_preserve_bools(oldpolicy, newpolicy); 2290 if (rc) { 2291 pr_err("SELinux: unable to preserve booleans\n"); 2292 goto err_free_isids; 2293 } 2294 2295 /* 2296 * Convert the internal representations of contexts 2297 * in the new SID table. 2298 */ 2299 args.state = state; 2300 args.oldp = &oldpolicy->policydb; 2301 args.newp = &newpolicy->policydb; 2302 2303 convert_params.func = convert_context; 2304 convert_params.args = &args; 2305 convert_params.target = newpolicy->sidtab; 2306 2307 rc = sidtab_convert(oldpolicy->sidtab, &convert_params); 2308 if (rc) { 2309 pr_err("SELinux: unable to convert the internal" 2310 " representation of contexts in the new SID" 2311 " table\n"); 2312 goto err_free_isids; 2313 } 2314 2315 *newpolicyp = newpolicy; 2316 return 0; 2317 2318 err_free_isids: 2319 sidtab_destroy(newpolicy->sidtab); 2320 err_mapping: 2321 kfree(newpolicy->map.mapping); 2322 err_policydb: 2323 policydb_destroy(&newpolicy->policydb); 2324 err_sidtab: 2325 kfree(newpolicy->sidtab); 2326 err_policy: 2327 kfree(newpolicy); 2328 2329 return rc; 2330 } 2331 2332 /** 2333 * security_port_sid - Obtain the SID for a port. 2334 * @protocol: protocol number 2335 * @port: port number 2336 * @out_sid: security identifier 2337 */ 2338 int security_port_sid(struct selinux_state *state, 2339 u8 protocol, u16 port, u32 *out_sid) 2340 { 2341 struct selinux_policy *policy; 2342 struct policydb *policydb; 2343 struct sidtab *sidtab; 2344 struct ocontext *c; 2345 int rc = 0; 2346 2347 if (!selinux_initialized(state)) { 2348 *out_sid = SECINITSID_PORT; 2349 return 0; 2350 } 2351 2352 rcu_read_lock(); 2353 policy = rcu_dereference(state->policy); 2354 policydb = &policy->policydb; 2355 sidtab = policy->sidtab; 2356 2357 c = policydb->ocontexts[OCON_PORT]; 2358 while (c) { 2359 if (c->u.port.protocol == protocol && 2360 c->u.port.low_port <= port && 2361 c->u.port.high_port >= port) 2362 break; 2363 c = c->next; 2364 } 2365 2366 if (c) { 2367 if (!c->sid[0]) { 2368 rc = sidtab_context_to_sid(sidtab, &c->context[0], 2369 &c->sid[0]); 2370 if (rc) 2371 goto out; 2372 } 2373 *out_sid = c->sid[0]; 2374 } else { 2375 *out_sid = SECINITSID_PORT; 2376 } 2377 2378 out: 2379 rcu_read_unlock(); 2380 return rc; 2381 } 2382 2383 /** 2384 * security_pkey_sid - Obtain the SID for a pkey. 2385 * @subnet_prefix: Subnet Prefix 2386 * @pkey_num: pkey number 2387 * @out_sid: security identifier 2388 */ 2389 int security_ib_pkey_sid(struct selinux_state *state, 2390 u64 subnet_prefix, u16 pkey_num, u32 *out_sid) 2391 { 2392 struct selinux_policy *policy; 2393 struct policydb *policydb; 2394 struct sidtab *sidtab; 2395 struct ocontext *c; 2396 int rc = 0; 2397 2398 if (!selinux_initialized(state)) { 2399 *out_sid = SECINITSID_UNLABELED; 2400 return 0; 2401 } 2402 2403 rcu_read_lock(); 2404 policy = rcu_dereference(state->policy); 2405 policydb = &policy->policydb; 2406 sidtab = policy->sidtab; 2407 2408 c = policydb->ocontexts[OCON_IBPKEY]; 2409 while (c) { 2410 if (c->u.ibpkey.low_pkey <= pkey_num && 2411 c->u.ibpkey.high_pkey >= pkey_num && 2412 c->u.ibpkey.subnet_prefix == subnet_prefix) 2413 break; 2414 2415 c = c->next; 2416 } 2417 2418 if (c) { 2419 if (!c->sid[0]) { 2420 rc = sidtab_context_to_sid(sidtab, 2421 &c->context[0], 2422 &c->sid[0]); 2423 if (rc) 2424 goto out; 2425 } 2426 *out_sid = c->sid[0]; 2427 } else 2428 *out_sid = SECINITSID_UNLABELED; 2429 2430 out: 2431 rcu_read_unlock(); 2432 return rc; 2433 } 2434 2435 /** 2436 * security_ib_endport_sid - Obtain the SID for a subnet management interface. 2437 * @dev_name: device name 2438 * @port: port number 2439 * @out_sid: security identifier 2440 */ 2441 int security_ib_endport_sid(struct selinux_state *state, 2442 const char *dev_name, u8 port_num, u32 *out_sid) 2443 { 2444 struct selinux_policy *policy; 2445 struct policydb *policydb; 2446 struct sidtab *sidtab; 2447 struct ocontext *c; 2448 int rc = 0; 2449 2450 if (!selinux_initialized(state)) { 2451 *out_sid = SECINITSID_UNLABELED; 2452 return 0; 2453 } 2454 2455 rcu_read_lock(); 2456 policy = rcu_dereference(state->policy); 2457 policydb = &policy->policydb; 2458 sidtab = policy->sidtab; 2459 2460 c = policydb->ocontexts[OCON_IBENDPORT]; 2461 while (c) { 2462 if (c->u.ibendport.port == port_num && 2463 !strncmp(c->u.ibendport.dev_name, 2464 dev_name, 2465 IB_DEVICE_NAME_MAX)) 2466 break; 2467 2468 c = c->next; 2469 } 2470 2471 if (c) { 2472 if (!c->sid[0]) { 2473 rc = sidtab_context_to_sid(sidtab, &c->context[0], 2474 &c->sid[0]); 2475 if (rc) 2476 goto out; 2477 } 2478 *out_sid = c->sid[0]; 2479 } else 2480 *out_sid = SECINITSID_UNLABELED; 2481 2482 out: 2483 rcu_read_unlock(); 2484 return rc; 2485 } 2486 2487 /** 2488 * security_netif_sid - Obtain the SID for a network interface. 2489 * @name: interface name 2490 * @if_sid: interface SID 2491 */ 2492 int security_netif_sid(struct selinux_state *state, 2493 char *name, u32 *if_sid) 2494 { 2495 struct selinux_policy *policy; 2496 struct policydb *policydb; 2497 struct sidtab *sidtab; 2498 int rc = 0; 2499 struct ocontext *c; 2500 2501 if (!selinux_initialized(state)) { 2502 *if_sid = SECINITSID_NETIF; 2503 return 0; 2504 } 2505 2506 rcu_read_lock(); 2507 policy = rcu_dereference(state->policy); 2508 policydb = &policy->policydb; 2509 sidtab = policy->sidtab; 2510 2511 c = policydb->ocontexts[OCON_NETIF]; 2512 while (c) { 2513 if (strcmp(name, c->u.name) == 0) 2514 break; 2515 c = c->next; 2516 } 2517 2518 if (c) { 2519 if (!c->sid[0] || !c->sid[1]) { 2520 rc = sidtab_context_to_sid(sidtab, &c->context[0], 2521 &c->sid[0]); 2522 if (rc) 2523 goto out; 2524 rc = sidtab_context_to_sid(sidtab, &c->context[1], 2525 &c->sid[1]); 2526 if (rc) 2527 goto out; 2528 } 2529 *if_sid = c->sid[0]; 2530 } else 2531 *if_sid = SECINITSID_NETIF; 2532 2533 out: 2534 rcu_read_unlock(); 2535 return rc; 2536 } 2537 2538 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask) 2539 { 2540 int i, fail = 0; 2541 2542 for (i = 0; i < 4; i++) 2543 if (addr[i] != (input[i] & mask[i])) { 2544 fail = 1; 2545 break; 2546 } 2547 2548 return !fail; 2549 } 2550 2551 /** 2552 * security_node_sid - Obtain the SID for a node (host). 2553 * @domain: communication domain aka address family 2554 * @addrp: address 2555 * @addrlen: address length in bytes 2556 * @out_sid: security identifier 2557 */ 2558 int security_node_sid(struct selinux_state *state, 2559 u16 domain, 2560 void *addrp, 2561 u32 addrlen, 2562 u32 *out_sid) 2563 { 2564 struct selinux_policy *policy; 2565 struct policydb *policydb; 2566 struct sidtab *sidtab; 2567 int rc; 2568 struct ocontext *c; 2569 2570 if (!selinux_initialized(state)) { 2571 *out_sid = SECINITSID_NODE; 2572 return 0; 2573 } 2574 2575 rcu_read_lock(); 2576 policy = rcu_dereference(state->policy); 2577 policydb = &policy->policydb; 2578 sidtab = policy->sidtab; 2579 2580 switch (domain) { 2581 case AF_INET: { 2582 u32 addr; 2583 2584 rc = -EINVAL; 2585 if (addrlen != sizeof(u32)) 2586 goto out; 2587 2588 addr = *((u32 *)addrp); 2589 2590 c = policydb->ocontexts[OCON_NODE]; 2591 while (c) { 2592 if (c->u.node.addr == (addr & c->u.node.mask)) 2593 break; 2594 c = c->next; 2595 } 2596 break; 2597 } 2598 2599 case AF_INET6: 2600 rc = -EINVAL; 2601 if (addrlen != sizeof(u64) * 2) 2602 goto out; 2603 c = policydb->ocontexts[OCON_NODE6]; 2604 while (c) { 2605 if (match_ipv6_addrmask(addrp, c->u.node6.addr, 2606 c->u.node6.mask)) 2607 break; 2608 c = c->next; 2609 } 2610 break; 2611 2612 default: 2613 rc = 0; 2614 *out_sid = SECINITSID_NODE; 2615 goto out; 2616 } 2617 2618 if (c) { 2619 if (!c->sid[0]) { 2620 rc = sidtab_context_to_sid(sidtab, 2621 &c->context[0], 2622 &c->sid[0]); 2623 if (rc) 2624 goto out; 2625 } 2626 *out_sid = c->sid[0]; 2627 } else { 2628 *out_sid = SECINITSID_NODE; 2629 } 2630 2631 rc = 0; 2632 out: 2633 rcu_read_unlock(); 2634 return rc; 2635 } 2636 2637 #define SIDS_NEL 25 2638 2639 /** 2640 * security_get_user_sids - Obtain reachable SIDs for a user. 2641 * @fromsid: starting SID 2642 * @username: username 2643 * @sids: array of reachable SIDs for user 2644 * @nel: number of elements in @sids 2645 * 2646 * Generate the set of SIDs for legal security contexts 2647 * for a given user that can be reached by @fromsid. 2648 * Set *@sids to point to a dynamically allocated 2649 * array containing the set of SIDs. Set *@nel to the 2650 * number of elements in the array. 2651 */ 2652 2653 int security_get_user_sids(struct selinux_state *state, 2654 u32 fromsid, 2655 char *username, 2656 u32 **sids, 2657 u32 *nel) 2658 { 2659 struct selinux_policy *policy; 2660 struct policydb *policydb; 2661 struct sidtab *sidtab; 2662 struct context *fromcon, usercon; 2663 u32 *mysids = NULL, *mysids2, sid; 2664 u32 mynel = 0, maxnel = SIDS_NEL; 2665 struct user_datum *user; 2666 struct role_datum *role; 2667 struct ebitmap_node *rnode, *tnode; 2668 int rc = 0, i, j; 2669 2670 *sids = NULL; 2671 *nel = 0; 2672 2673 if (!selinux_initialized(state)) 2674 goto out; 2675 2676 rcu_read_lock(); 2677 policy = rcu_dereference(state->policy); 2678 policydb = &policy->policydb; 2679 sidtab = policy->sidtab; 2680 2681 context_init(&usercon); 2682 2683 rc = -EINVAL; 2684 fromcon = sidtab_search(sidtab, fromsid); 2685 if (!fromcon) 2686 goto out_unlock; 2687 2688 rc = -EINVAL; 2689 user = symtab_search(&policydb->p_users, username); 2690 if (!user) 2691 goto out_unlock; 2692 2693 usercon.user = user->value; 2694 2695 rc = -ENOMEM; 2696 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC); 2697 if (!mysids) 2698 goto out_unlock; 2699 2700 ebitmap_for_each_positive_bit(&user->roles, rnode, i) { 2701 role = policydb->role_val_to_struct[i]; 2702 usercon.role = i + 1; 2703 ebitmap_for_each_positive_bit(&role->types, tnode, j) { 2704 usercon.type = j + 1; 2705 2706 if (mls_setup_user_range(policydb, fromcon, user, 2707 &usercon)) 2708 continue; 2709 2710 rc = sidtab_context_to_sid(sidtab, &usercon, &sid); 2711 if (rc) 2712 goto out_unlock; 2713 if (mynel < maxnel) { 2714 mysids[mynel++] = sid; 2715 } else { 2716 rc = -ENOMEM; 2717 maxnel += SIDS_NEL; 2718 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC); 2719 if (!mysids2) 2720 goto out_unlock; 2721 memcpy(mysids2, mysids, mynel * sizeof(*mysids2)); 2722 kfree(mysids); 2723 mysids = mysids2; 2724 mysids[mynel++] = sid; 2725 } 2726 } 2727 } 2728 rc = 0; 2729 out_unlock: 2730 rcu_read_unlock(); 2731 if (rc || !mynel) { 2732 kfree(mysids); 2733 goto out; 2734 } 2735 2736 rc = -ENOMEM; 2737 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL); 2738 if (!mysids2) { 2739 kfree(mysids); 2740 goto out; 2741 } 2742 for (i = 0, j = 0; i < mynel; i++) { 2743 struct av_decision dummy_avd; 2744 rc = avc_has_perm_noaudit(state, 2745 fromsid, mysids[i], 2746 SECCLASS_PROCESS, /* kernel value */ 2747 PROCESS__TRANSITION, AVC_STRICT, 2748 &dummy_avd); 2749 if (!rc) 2750 mysids2[j++] = mysids[i]; 2751 cond_resched(); 2752 } 2753 rc = 0; 2754 kfree(mysids); 2755 *sids = mysids2; 2756 *nel = j; 2757 out: 2758 return rc; 2759 } 2760 2761 /** 2762 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem 2763 * @fstype: filesystem type 2764 * @path: path from root of mount 2765 * @sclass: file security class 2766 * @sid: SID for path 2767 * 2768 * Obtain a SID to use for a file in a filesystem that 2769 * cannot support xattr or use a fixed labeling behavior like 2770 * transition SIDs or task SIDs. 2771 */ 2772 static inline int __security_genfs_sid(struct selinux_policy *policy, 2773 const char *fstype, 2774 char *path, 2775 u16 orig_sclass, 2776 u32 *sid) 2777 { 2778 struct policydb *policydb = &policy->policydb; 2779 struct sidtab *sidtab = policy->sidtab; 2780 int len; 2781 u16 sclass; 2782 struct genfs *genfs; 2783 struct ocontext *c; 2784 int rc, cmp = 0; 2785 2786 while (path[0] == '/' && path[1] == '/') 2787 path++; 2788 2789 sclass = unmap_class(&policy->map, orig_sclass); 2790 *sid = SECINITSID_UNLABELED; 2791 2792 for (genfs = policydb->genfs; genfs; genfs = genfs->next) { 2793 cmp = strcmp(fstype, genfs->fstype); 2794 if (cmp <= 0) 2795 break; 2796 } 2797 2798 rc = -ENOENT; 2799 if (!genfs || cmp) 2800 goto out; 2801 2802 for (c = genfs->head; c; c = c->next) { 2803 len = strlen(c->u.name); 2804 if ((!c->v.sclass || sclass == c->v.sclass) && 2805 (strncmp(c->u.name, path, len) == 0)) 2806 break; 2807 } 2808 2809 rc = -ENOENT; 2810 if (!c) 2811 goto out; 2812 2813 if (!c->sid[0]) { 2814 rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]); 2815 if (rc) 2816 goto out; 2817 } 2818 2819 *sid = c->sid[0]; 2820 rc = 0; 2821 out: 2822 return rc; 2823 } 2824 2825 /** 2826 * security_genfs_sid - Obtain a SID for a file in a filesystem 2827 * @fstype: filesystem type 2828 * @path: path from root of mount 2829 * @sclass: file security class 2830 * @sid: SID for path 2831 * 2832 * Acquire policy_rwlock before calling __security_genfs_sid() and release 2833 * it afterward. 2834 */ 2835 int security_genfs_sid(struct selinux_state *state, 2836 const char *fstype, 2837 char *path, 2838 u16 orig_sclass, 2839 u32 *sid) 2840 { 2841 struct selinux_policy *policy; 2842 int retval; 2843 2844 if (!selinux_initialized(state)) { 2845 *sid = SECINITSID_UNLABELED; 2846 return 0; 2847 } 2848 2849 rcu_read_lock(); 2850 policy = rcu_dereference(state->policy); 2851 retval = __security_genfs_sid(policy, 2852 fstype, path, orig_sclass, sid); 2853 rcu_read_unlock(); 2854 return retval; 2855 } 2856 2857 int selinux_policy_genfs_sid(struct selinux_policy *policy, 2858 const char *fstype, 2859 char *path, 2860 u16 orig_sclass, 2861 u32 *sid) 2862 { 2863 /* no lock required, policy is not yet accessible by other threads */ 2864 return __security_genfs_sid(policy, fstype, path, orig_sclass, sid); 2865 } 2866 2867 /** 2868 * security_fs_use - Determine how to handle labeling for a filesystem. 2869 * @sb: superblock in question 2870 */ 2871 int security_fs_use(struct selinux_state *state, struct super_block *sb) 2872 { 2873 struct selinux_policy *policy; 2874 struct policydb *policydb; 2875 struct sidtab *sidtab; 2876 int rc = 0; 2877 struct ocontext *c; 2878 struct superblock_security_struct *sbsec = sb->s_security; 2879 const char *fstype = sb->s_type->name; 2880 2881 if (!selinux_initialized(state)) { 2882 sbsec->behavior = SECURITY_FS_USE_NONE; 2883 sbsec->sid = SECINITSID_UNLABELED; 2884 return 0; 2885 } 2886 2887 rcu_read_lock(); 2888 policy = rcu_dereference(state->policy); 2889 policydb = &policy->policydb; 2890 sidtab = policy->sidtab; 2891 2892 c = policydb->ocontexts[OCON_FSUSE]; 2893 while (c) { 2894 if (strcmp(fstype, c->u.name) == 0) 2895 break; 2896 c = c->next; 2897 } 2898 2899 if (c) { 2900 sbsec->behavior = c->v.behavior; 2901 if (!c->sid[0]) { 2902 rc = sidtab_context_to_sid(sidtab, &c->context[0], 2903 &c->sid[0]); 2904 if (rc) 2905 goto out; 2906 } 2907 sbsec->sid = c->sid[0]; 2908 } else { 2909 rc = __security_genfs_sid(policy, fstype, "/", 2910 SECCLASS_DIR, &sbsec->sid); 2911 if (rc) { 2912 sbsec->behavior = SECURITY_FS_USE_NONE; 2913 rc = 0; 2914 } else { 2915 sbsec->behavior = SECURITY_FS_USE_GENFS; 2916 } 2917 } 2918 2919 out: 2920 rcu_read_unlock(); 2921 return rc; 2922 } 2923 2924 int security_get_bools(struct selinux_policy *policy, 2925 u32 *len, char ***names, int **values) 2926 { 2927 struct policydb *policydb; 2928 u32 i; 2929 int rc; 2930 2931 policydb = &policy->policydb; 2932 2933 *names = NULL; 2934 *values = NULL; 2935 2936 rc = 0; 2937 *len = policydb->p_bools.nprim; 2938 if (!*len) 2939 goto out; 2940 2941 rc = -ENOMEM; 2942 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC); 2943 if (!*names) 2944 goto err; 2945 2946 rc = -ENOMEM; 2947 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC); 2948 if (!*values) 2949 goto err; 2950 2951 for (i = 0; i < *len; i++) { 2952 (*values)[i] = policydb->bool_val_to_struct[i]->state; 2953 2954 rc = -ENOMEM; 2955 (*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i), 2956 GFP_ATOMIC); 2957 if (!(*names)[i]) 2958 goto err; 2959 } 2960 rc = 0; 2961 out: 2962 return rc; 2963 err: 2964 if (*names) { 2965 for (i = 0; i < *len; i++) 2966 kfree((*names)[i]); 2967 kfree(*names); 2968 } 2969 kfree(*values); 2970 *len = 0; 2971 *names = NULL; 2972 *values = NULL; 2973 goto out; 2974 } 2975 2976 2977 int security_set_bools(struct selinux_state *state, u32 len, int *values) 2978 { 2979 struct selinux_policy *newpolicy, *oldpolicy; 2980 int rc; 2981 u32 i, seqno = 0; 2982 2983 if (!selinux_initialized(state)) 2984 return -EINVAL; 2985 2986 oldpolicy = rcu_dereference_protected(state->policy, 2987 lockdep_is_held(&state->policy_mutex)); 2988 2989 /* Consistency check on number of booleans, should never fail */ 2990 if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim)) 2991 return -EINVAL; 2992 2993 newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL); 2994 if (!newpolicy) 2995 return -ENOMEM; 2996 2997 /* 2998 * Deep copy only the parts of the policydb that might be 2999 * modified as a result of changing booleans. 3000 */ 3001 rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb); 3002 if (rc) { 3003 kfree(newpolicy); 3004 return -ENOMEM; 3005 } 3006 3007 /* Update the boolean states in the copy */ 3008 for (i = 0; i < len; i++) { 3009 int new_state = !!values[i]; 3010 int old_state = newpolicy->policydb.bool_val_to_struct[i]->state; 3011 3012 if (new_state != old_state) { 3013 audit_log(audit_context(), GFP_ATOMIC, 3014 AUDIT_MAC_CONFIG_CHANGE, 3015 "bool=%s val=%d old_val=%d auid=%u ses=%u", 3016 sym_name(&newpolicy->policydb, SYM_BOOLS, i), 3017 new_state, 3018 old_state, 3019 from_kuid(&init_user_ns, audit_get_loginuid(current)), 3020 audit_get_sessionid(current)); 3021 newpolicy->policydb.bool_val_to_struct[i]->state = new_state; 3022 } 3023 } 3024 3025 /* Re-evaluate the conditional rules in the copy */ 3026 evaluate_cond_nodes(&newpolicy->policydb); 3027 3028 /* Set latest granting seqno for new policy */ 3029 newpolicy->latest_granting = oldpolicy->latest_granting + 1; 3030 seqno = newpolicy->latest_granting; 3031 3032 /* Install the new policy */ 3033 rcu_assign_pointer(state->policy, newpolicy); 3034 3035 /* 3036 * Free the conditional portions of the old policydb 3037 * that were copied for the new policy, and the oldpolicy 3038 * structure itself but not what it references. 3039 */ 3040 synchronize_rcu(); 3041 selinux_policy_cond_free(oldpolicy); 3042 3043 /* Notify others of the policy change */ 3044 selinux_notify_policy_change(state, seqno); 3045 return 0; 3046 } 3047 3048 int security_get_bool_value(struct selinux_state *state, 3049 u32 index) 3050 { 3051 struct selinux_policy *policy; 3052 struct policydb *policydb; 3053 int rc; 3054 u32 len; 3055 3056 if (!selinux_initialized(state)) 3057 return 0; 3058 3059 rcu_read_lock(); 3060 policy = rcu_dereference(state->policy); 3061 policydb = &policy->policydb; 3062 3063 rc = -EFAULT; 3064 len = policydb->p_bools.nprim; 3065 if (index >= len) 3066 goto out; 3067 3068 rc = policydb->bool_val_to_struct[index]->state; 3069 out: 3070 rcu_read_unlock(); 3071 return rc; 3072 } 3073 3074 static int security_preserve_bools(struct selinux_policy *oldpolicy, 3075 struct selinux_policy *newpolicy) 3076 { 3077 int rc, *bvalues = NULL; 3078 char **bnames = NULL; 3079 struct cond_bool_datum *booldatum; 3080 u32 i, nbools = 0; 3081 3082 rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues); 3083 if (rc) 3084 goto out; 3085 for (i = 0; i < nbools; i++) { 3086 booldatum = symtab_search(&newpolicy->policydb.p_bools, 3087 bnames[i]); 3088 if (booldatum) 3089 booldatum->state = bvalues[i]; 3090 } 3091 evaluate_cond_nodes(&newpolicy->policydb); 3092 3093 out: 3094 if (bnames) { 3095 for (i = 0; i < nbools; i++) 3096 kfree(bnames[i]); 3097 } 3098 kfree(bnames); 3099 kfree(bvalues); 3100 return rc; 3101 } 3102 3103 /* 3104 * security_sid_mls_copy() - computes a new sid based on the given 3105 * sid and the mls portion of mls_sid. 3106 */ 3107 int security_sid_mls_copy(struct selinux_state *state, 3108 u32 sid, u32 mls_sid, u32 *new_sid) 3109 { 3110 struct selinux_policy *policy; 3111 struct policydb *policydb; 3112 struct sidtab *sidtab; 3113 struct context *context1; 3114 struct context *context2; 3115 struct context newcon; 3116 char *s; 3117 u32 len; 3118 int rc; 3119 3120 rc = 0; 3121 if (!selinux_initialized(state)) { 3122 *new_sid = sid; 3123 goto out; 3124 } 3125 3126 context_init(&newcon); 3127 3128 rcu_read_lock(); 3129 policy = rcu_dereference(state->policy); 3130 policydb = &policy->policydb; 3131 sidtab = policy->sidtab; 3132 3133 if (!policydb->mls_enabled) { 3134 *new_sid = sid; 3135 goto out_unlock; 3136 } 3137 3138 rc = -EINVAL; 3139 context1 = sidtab_search(sidtab, sid); 3140 if (!context1) { 3141 pr_err("SELinux: %s: unrecognized SID %d\n", 3142 __func__, sid); 3143 goto out_unlock; 3144 } 3145 3146 rc = -EINVAL; 3147 context2 = sidtab_search(sidtab, mls_sid); 3148 if (!context2) { 3149 pr_err("SELinux: %s: unrecognized SID %d\n", 3150 __func__, mls_sid); 3151 goto out_unlock; 3152 } 3153 3154 newcon.user = context1->user; 3155 newcon.role = context1->role; 3156 newcon.type = context1->type; 3157 rc = mls_context_cpy(&newcon, context2); 3158 if (rc) 3159 goto out_unlock; 3160 3161 /* Check the validity of the new context. */ 3162 if (!policydb_context_isvalid(policydb, &newcon)) { 3163 rc = convert_context_handle_invalid_context(state, policydb, 3164 &newcon); 3165 if (rc) { 3166 if (!context_struct_to_string(policydb, &newcon, &s, 3167 &len)) { 3168 struct audit_buffer *ab; 3169 3170 ab = audit_log_start(audit_context(), 3171 GFP_ATOMIC, 3172 AUDIT_SELINUX_ERR); 3173 audit_log_format(ab, 3174 "op=security_sid_mls_copy invalid_context="); 3175 /* don't record NUL with untrusted strings */ 3176 audit_log_n_untrustedstring(ab, s, len - 1); 3177 audit_log_end(ab); 3178 kfree(s); 3179 } 3180 goto out_unlock; 3181 } 3182 } 3183 rc = sidtab_context_to_sid(sidtab, &newcon, new_sid); 3184 out_unlock: 3185 rcu_read_unlock(); 3186 context_destroy(&newcon); 3187 out: 3188 return rc; 3189 } 3190 3191 /** 3192 * security_net_peersid_resolve - Compare and resolve two network peer SIDs 3193 * @nlbl_sid: NetLabel SID 3194 * @nlbl_type: NetLabel labeling protocol type 3195 * @xfrm_sid: XFRM SID 3196 * 3197 * Description: 3198 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be 3199 * resolved into a single SID it is returned via @peer_sid and the function 3200 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function 3201 * returns a negative value. A table summarizing the behavior is below: 3202 * 3203 * | function return | @sid 3204 * ------------------------------+-----------------+----------------- 3205 * no peer labels | 0 | SECSID_NULL 3206 * single peer label | 0 | <peer_label> 3207 * multiple, consistent labels | 0 | <peer_label> 3208 * multiple, inconsistent labels | -<errno> | SECSID_NULL 3209 * 3210 */ 3211 int security_net_peersid_resolve(struct selinux_state *state, 3212 u32 nlbl_sid, u32 nlbl_type, 3213 u32 xfrm_sid, 3214 u32 *peer_sid) 3215 { 3216 struct selinux_policy *policy; 3217 struct policydb *policydb; 3218 struct sidtab *sidtab; 3219 int rc; 3220 struct context *nlbl_ctx; 3221 struct context *xfrm_ctx; 3222 3223 *peer_sid = SECSID_NULL; 3224 3225 /* handle the common (which also happens to be the set of easy) cases 3226 * right away, these two if statements catch everything involving a 3227 * single or absent peer SID/label */ 3228 if (xfrm_sid == SECSID_NULL) { 3229 *peer_sid = nlbl_sid; 3230 return 0; 3231 } 3232 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label 3233 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label 3234 * is present */ 3235 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) { 3236 *peer_sid = xfrm_sid; 3237 return 0; 3238 } 3239 3240 if (!selinux_initialized(state)) 3241 return 0; 3242 3243 rcu_read_lock(); 3244 policy = rcu_dereference(state->policy); 3245 policydb = &policy->policydb; 3246 sidtab = policy->sidtab; 3247 3248 /* 3249 * We don't need to check initialized here since the only way both 3250 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the 3251 * security server was initialized and state->initialized was true. 3252 */ 3253 if (!policydb->mls_enabled) { 3254 rc = 0; 3255 goto out; 3256 } 3257 3258 rc = -EINVAL; 3259 nlbl_ctx = sidtab_search(sidtab, nlbl_sid); 3260 if (!nlbl_ctx) { 3261 pr_err("SELinux: %s: unrecognized SID %d\n", 3262 __func__, nlbl_sid); 3263 goto out; 3264 } 3265 rc = -EINVAL; 3266 xfrm_ctx = sidtab_search(sidtab, xfrm_sid); 3267 if (!xfrm_ctx) { 3268 pr_err("SELinux: %s: unrecognized SID %d\n", 3269 __func__, xfrm_sid); 3270 goto out; 3271 } 3272 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES); 3273 if (rc) 3274 goto out; 3275 3276 /* at present NetLabel SIDs/labels really only carry MLS 3277 * information so if the MLS portion of the NetLabel SID 3278 * matches the MLS portion of the labeled XFRM SID/label 3279 * then pass along the XFRM SID as it is the most 3280 * expressive */ 3281 *peer_sid = xfrm_sid; 3282 out: 3283 rcu_read_unlock(); 3284 return rc; 3285 } 3286 3287 static int get_classes_callback(void *k, void *d, void *args) 3288 { 3289 struct class_datum *datum = d; 3290 char *name = k, **classes = args; 3291 int value = datum->value - 1; 3292 3293 classes[value] = kstrdup(name, GFP_ATOMIC); 3294 if (!classes[value]) 3295 return -ENOMEM; 3296 3297 return 0; 3298 } 3299 3300 int security_get_classes(struct selinux_policy *policy, 3301 char ***classes, int *nclasses) 3302 { 3303 struct policydb *policydb; 3304 int rc; 3305 3306 policydb = &policy->policydb; 3307 3308 rc = -ENOMEM; 3309 *nclasses = policydb->p_classes.nprim; 3310 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC); 3311 if (!*classes) 3312 goto out; 3313 3314 rc = hashtab_map(&policydb->p_classes.table, get_classes_callback, 3315 *classes); 3316 if (rc) { 3317 int i; 3318 for (i = 0; i < *nclasses; i++) 3319 kfree((*classes)[i]); 3320 kfree(*classes); 3321 } 3322 3323 out: 3324 return rc; 3325 } 3326 3327 static int get_permissions_callback(void *k, void *d, void *args) 3328 { 3329 struct perm_datum *datum = d; 3330 char *name = k, **perms = args; 3331 int value = datum->value - 1; 3332 3333 perms[value] = kstrdup(name, GFP_ATOMIC); 3334 if (!perms[value]) 3335 return -ENOMEM; 3336 3337 return 0; 3338 } 3339 3340 int security_get_permissions(struct selinux_policy *policy, 3341 char *class, char ***perms, int *nperms) 3342 { 3343 struct policydb *policydb; 3344 int rc, i; 3345 struct class_datum *match; 3346 3347 policydb = &policy->policydb; 3348 3349 rc = -EINVAL; 3350 match = symtab_search(&policydb->p_classes, class); 3351 if (!match) { 3352 pr_err("SELinux: %s: unrecognized class %s\n", 3353 __func__, class); 3354 goto out; 3355 } 3356 3357 rc = -ENOMEM; 3358 *nperms = match->permissions.nprim; 3359 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC); 3360 if (!*perms) 3361 goto out; 3362 3363 if (match->comdatum) { 3364 rc = hashtab_map(&match->comdatum->permissions.table, 3365 get_permissions_callback, *perms); 3366 if (rc) 3367 goto err; 3368 } 3369 3370 rc = hashtab_map(&match->permissions.table, get_permissions_callback, 3371 *perms); 3372 if (rc) 3373 goto err; 3374 3375 out: 3376 return rc; 3377 3378 err: 3379 for (i = 0; i < *nperms; i++) 3380 kfree((*perms)[i]); 3381 kfree(*perms); 3382 return rc; 3383 } 3384 3385 int security_get_reject_unknown(struct selinux_state *state) 3386 { 3387 struct selinux_policy *policy; 3388 int value; 3389 3390 if (!selinux_initialized(state)) 3391 return 0; 3392 3393 rcu_read_lock(); 3394 policy = rcu_dereference(state->policy); 3395 value = policy->policydb.reject_unknown; 3396 rcu_read_unlock(); 3397 return value; 3398 } 3399 3400 int security_get_allow_unknown(struct selinux_state *state) 3401 { 3402 struct selinux_policy *policy; 3403 int value; 3404 3405 if (!selinux_initialized(state)) 3406 return 0; 3407 3408 rcu_read_lock(); 3409 policy = rcu_dereference(state->policy); 3410 value = policy->policydb.allow_unknown; 3411 rcu_read_unlock(); 3412 return value; 3413 } 3414 3415 /** 3416 * security_policycap_supported - Check for a specific policy capability 3417 * @req_cap: capability 3418 * 3419 * Description: 3420 * This function queries the currently loaded policy to see if it supports the 3421 * capability specified by @req_cap. Returns true (1) if the capability is 3422 * supported, false (0) if it isn't supported. 3423 * 3424 */ 3425 int security_policycap_supported(struct selinux_state *state, 3426 unsigned int req_cap) 3427 { 3428 struct selinux_policy *policy; 3429 int rc; 3430 3431 if (!selinux_initialized(state)) 3432 return 0; 3433 3434 rcu_read_lock(); 3435 policy = rcu_dereference(state->policy); 3436 rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap); 3437 rcu_read_unlock(); 3438 3439 return rc; 3440 } 3441 3442 struct selinux_audit_rule { 3443 u32 au_seqno; 3444 struct context au_ctxt; 3445 }; 3446 3447 void selinux_audit_rule_free(void *vrule) 3448 { 3449 struct selinux_audit_rule *rule = vrule; 3450 3451 if (rule) { 3452 context_destroy(&rule->au_ctxt); 3453 kfree(rule); 3454 } 3455 } 3456 3457 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule) 3458 { 3459 struct selinux_state *state = &selinux_state; 3460 struct selinux_policy *policy; 3461 struct policydb *policydb; 3462 struct selinux_audit_rule *tmprule; 3463 struct role_datum *roledatum; 3464 struct type_datum *typedatum; 3465 struct user_datum *userdatum; 3466 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule; 3467 int rc = 0; 3468 3469 *rule = NULL; 3470 3471 if (!selinux_initialized(state)) 3472 return -EOPNOTSUPP; 3473 3474 switch (field) { 3475 case AUDIT_SUBJ_USER: 3476 case AUDIT_SUBJ_ROLE: 3477 case AUDIT_SUBJ_TYPE: 3478 case AUDIT_OBJ_USER: 3479 case AUDIT_OBJ_ROLE: 3480 case AUDIT_OBJ_TYPE: 3481 /* only 'equals' and 'not equals' fit user, role, and type */ 3482 if (op != Audit_equal && op != Audit_not_equal) 3483 return -EINVAL; 3484 break; 3485 case AUDIT_SUBJ_SEN: 3486 case AUDIT_SUBJ_CLR: 3487 case AUDIT_OBJ_LEV_LOW: 3488 case AUDIT_OBJ_LEV_HIGH: 3489 /* we do not allow a range, indicated by the presence of '-' */ 3490 if (strchr(rulestr, '-')) 3491 return -EINVAL; 3492 break; 3493 default: 3494 /* only the above fields are valid */ 3495 return -EINVAL; 3496 } 3497 3498 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL); 3499 if (!tmprule) 3500 return -ENOMEM; 3501 3502 context_init(&tmprule->au_ctxt); 3503 3504 rcu_read_lock(); 3505 policy = rcu_dereference(state->policy); 3506 policydb = &policy->policydb; 3507 3508 tmprule->au_seqno = policy->latest_granting; 3509 3510 switch (field) { 3511 case AUDIT_SUBJ_USER: 3512 case AUDIT_OBJ_USER: 3513 rc = -EINVAL; 3514 userdatum = symtab_search(&policydb->p_users, rulestr); 3515 if (!userdatum) 3516 goto out; 3517 tmprule->au_ctxt.user = userdatum->value; 3518 break; 3519 case AUDIT_SUBJ_ROLE: 3520 case AUDIT_OBJ_ROLE: 3521 rc = -EINVAL; 3522 roledatum = symtab_search(&policydb->p_roles, rulestr); 3523 if (!roledatum) 3524 goto out; 3525 tmprule->au_ctxt.role = roledatum->value; 3526 break; 3527 case AUDIT_SUBJ_TYPE: 3528 case AUDIT_OBJ_TYPE: 3529 rc = -EINVAL; 3530 typedatum = symtab_search(&policydb->p_types, rulestr); 3531 if (!typedatum) 3532 goto out; 3533 tmprule->au_ctxt.type = typedatum->value; 3534 break; 3535 case AUDIT_SUBJ_SEN: 3536 case AUDIT_SUBJ_CLR: 3537 case AUDIT_OBJ_LEV_LOW: 3538 case AUDIT_OBJ_LEV_HIGH: 3539 rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt, 3540 GFP_ATOMIC); 3541 if (rc) 3542 goto out; 3543 break; 3544 } 3545 rc = 0; 3546 out: 3547 rcu_read_unlock(); 3548 3549 if (rc) { 3550 selinux_audit_rule_free(tmprule); 3551 tmprule = NULL; 3552 } 3553 3554 *rule = tmprule; 3555 3556 return rc; 3557 } 3558 3559 /* Check to see if the rule contains any selinux fields */ 3560 int selinux_audit_rule_known(struct audit_krule *rule) 3561 { 3562 int i; 3563 3564 for (i = 0; i < rule->field_count; i++) { 3565 struct audit_field *f = &rule->fields[i]; 3566 switch (f->type) { 3567 case AUDIT_SUBJ_USER: 3568 case AUDIT_SUBJ_ROLE: 3569 case AUDIT_SUBJ_TYPE: 3570 case AUDIT_SUBJ_SEN: 3571 case AUDIT_SUBJ_CLR: 3572 case AUDIT_OBJ_USER: 3573 case AUDIT_OBJ_ROLE: 3574 case AUDIT_OBJ_TYPE: 3575 case AUDIT_OBJ_LEV_LOW: 3576 case AUDIT_OBJ_LEV_HIGH: 3577 return 1; 3578 } 3579 } 3580 3581 return 0; 3582 } 3583 3584 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule) 3585 { 3586 struct selinux_state *state = &selinux_state; 3587 struct selinux_policy *policy; 3588 struct context *ctxt; 3589 struct mls_level *level; 3590 struct selinux_audit_rule *rule = vrule; 3591 int match = 0; 3592 3593 if (unlikely(!rule)) { 3594 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n"); 3595 return -ENOENT; 3596 } 3597 3598 if (!selinux_initialized(state)) 3599 return 0; 3600 3601 rcu_read_lock(); 3602 3603 policy = rcu_dereference(state->policy); 3604 3605 if (rule->au_seqno < policy->latest_granting) { 3606 match = -ESTALE; 3607 goto out; 3608 } 3609 3610 ctxt = sidtab_search(policy->sidtab, sid); 3611 if (unlikely(!ctxt)) { 3612 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n", 3613 sid); 3614 match = -ENOENT; 3615 goto out; 3616 } 3617 3618 /* a field/op pair that is not caught here will simply fall through 3619 without a match */ 3620 switch (field) { 3621 case AUDIT_SUBJ_USER: 3622 case AUDIT_OBJ_USER: 3623 switch (op) { 3624 case Audit_equal: 3625 match = (ctxt->user == rule->au_ctxt.user); 3626 break; 3627 case Audit_not_equal: 3628 match = (ctxt->user != rule->au_ctxt.user); 3629 break; 3630 } 3631 break; 3632 case AUDIT_SUBJ_ROLE: 3633 case AUDIT_OBJ_ROLE: 3634 switch (op) { 3635 case Audit_equal: 3636 match = (ctxt->role == rule->au_ctxt.role); 3637 break; 3638 case Audit_not_equal: 3639 match = (ctxt->role != rule->au_ctxt.role); 3640 break; 3641 } 3642 break; 3643 case AUDIT_SUBJ_TYPE: 3644 case AUDIT_OBJ_TYPE: 3645 switch (op) { 3646 case Audit_equal: 3647 match = (ctxt->type == rule->au_ctxt.type); 3648 break; 3649 case Audit_not_equal: 3650 match = (ctxt->type != rule->au_ctxt.type); 3651 break; 3652 } 3653 break; 3654 case AUDIT_SUBJ_SEN: 3655 case AUDIT_SUBJ_CLR: 3656 case AUDIT_OBJ_LEV_LOW: 3657 case AUDIT_OBJ_LEV_HIGH: 3658 level = ((field == AUDIT_SUBJ_SEN || 3659 field == AUDIT_OBJ_LEV_LOW) ? 3660 &ctxt->range.level[0] : &ctxt->range.level[1]); 3661 switch (op) { 3662 case Audit_equal: 3663 match = mls_level_eq(&rule->au_ctxt.range.level[0], 3664 level); 3665 break; 3666 case Audit_not_equal: 3667 match = !mls_level_eq(&rule->au_ctxt.range.level[0], 3668 level); 3669 break; 3670 case Audit_lt: 3671 match = (mls_level_dom(&rule->au_ctxt.range.level[0], 3672 level) && 3673 !mls_level_eq(&rule->au_ctxt.range.level[0], 3674 level)); 3675 break; 3676 case Audit_le: 3677 match = mls_level_dom(&rule->au_ctxt.range.level[0], 3678 level); 3679 break; 3680 case Audit_gt: 3681 match = (mls_level_dom(level, 3682 &rule->au_ctxt.range.level[0]) && 3683 !mls_level_eq(level, 3684 &rule->au_ctxt.range.level[0])); 3685 break; 3686 case Audit_ge: 3687 match = mls_level_dom(level, 3688 &rule->au_ctxt.range.level[0]); 3689 break; 3690 } 3691 } 3692 3693 out: 3694 rcu_read_unlock(); 3695 return match; 3696 } 3697 3698 static int (*aurule_callback)(void) = audit_update_lsm_rules; 3699 3700 static int aurule_avc_callback(u32 event) 3701 { 3702 int err = 0; 3703 3704 if (event == AVC_CALLBACK_RESET && aurule_callback) 3705 err = aurule_callback(); 3706 return err; 3707 } 3708 3709 static int __init aurule_init(void) 3710 { 3711 int err; 3712 3713 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET); 3714 if (err) 3715 panic("avc_add_callback() failed, error %d\n", err); 3716 3717 return err; 3718 } 3719 __initcall(aurule_init); 3720 3721 #ifdef CONFIG_NETLABEL 3722 /** 3723 * security_netlbl_cache_add - Add an entry to the NetLabel cache 3724 * @secattr: the NetLabel packet security attributes 3725 * @sid: the SELinux SID 3726 * 3727 * Description: 3728 * Attempt to cache the context in @ctx, which was derived from the packet in 3729 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has 3730 * already been initialized. 3731 * 3732 */ 3733 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr, 3734 u32 sid) 3735 { 3736 u32 *sid_cache; 3737 3738 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC); 3739 if (sid_cache == NULL) 3740 return; 3741 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC); 3742 if (secattr->cache == NULL) { 3743 kfree(sid_cache); 3744 return; 3745 } 3746 3747 *sid_cache = sid; 3748 secattr->cache->free = kfree; 3749 secattr->cache->data = sid_cache; 3750 secattr->flags |= NETLBL_SECATTR_CACHE; 3751 } 3752 3753 /** 3754 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID 3755 * @secattr: the NetLabel packet security attributes 3756 * @sid: the SELinux SID 3757 * 3758 * Description: 3759 * Convert the given NetLabel security attributes in @secattr into a 3760 * SELinux SID. If the @secattr field does not contain a full SELinux 3761 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the 3762 * 'cache' field of @secattr is set and the CACHE flag is set; this is to 3763 * allow the @secattr to be used by NetLabel to cache the secattr to SID 3764 * conversion for future lookups. Returns zero on success, negative values on 3765 * failure. 3766 * 3767 */ 3768 int security_netlbl_secattr_to_sid(struct selinux_state *state, 3769 struct netlbl_lsm_secattr *secattr, 3770 u32 *sid) 3771 { 3772 struct selinux_policy *policy; 3773 struct policydb *policydb; 3774 struct sidtab *sidtab; 3775 int rc; 3776 struct context *ctx; 3777 struct context ctx_new; 3778 3779 if (!selinux_initialized(state)) { 3780 *sid = SECSID_NULL; 3781 return 0; 3782 } 3783 3784 rcu_read_lock(); 3785 policy = rcu_dereference(state->policy); 3786 policydb = &policy->policydb; 3787 sidtab = policy->sidtab; 3788 3789 if (secattr->flags & NETLBL_SECATTR_CACHE) 3790 *sid = *(u32 *)secattr->cache->data; 3791 else if (secattr->flags & NETLBL_SECATTR_SECID) 3792 *sid = secattr->attr.secid; 3793 else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) { 3794 rc = -EIDRM; 3795 ctx = sidtab_search(sidtab, SECINITSID_NETMSG); 3796 if (ctx == NULL) 3797 goto out; 3798 3799 context_init(&ctx_new); 3800 ctx_new.user = ctx->user; 3801 ctx_new.role = ctx->role; 3802 ctx_new.type = ctx->type; 3803 mls_import_netlbl_lvl(policydb, &ctx_new, secattr); 3804 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) { 3805 rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr); 3806 if (rc) 3807 goto out; 3808 } 3809 rc = -EIDRM; 3810 if (!mls_context_isvalid(policydb, &ctx_new)) 3811 goto out_free; 3812 3813 rc = sidtab_context_to_sid(sidtab, &ctx_new, sid); 3814 if (rc) 3815 goto out_free; 3816 3817 security_netlbl_cache_add(secattr, *sid); 3818 3819 ebitmap_destroy(&ctx_new.range.level[0].cat); 3820 } else 3821 *sid = SECSID_NULL; 3822 3823 rcu_read_unlock(); 3824 return 0; 3825 out_free: 3826 ebitmap_destroy(&ctx_new.range.level[0].cat); 3827 out: 3828 rcu_read_unlock(); 3829 return rc; 3830 } 3831 3832 /** 3833 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr 3834 * @sid: the SELinux SID 3835 * @secattr: the NetLabel packet security attributes 3836 * 3837 * Description: 3838 * Convert the given SELinux SID in @sid into a NetLabel security attribute. 3839 * Returns zero on success, negative values on failure. 3840 * 3841 */ 3842 int security_netlbl_sid_to_secattr(struct selinux_state *state, 3843 u32 sid, struct netlbl_lsm_secattr *secattr) 3844 { 3845 struct selinux_policy *policy; 3846 struct policydb *policydb; 3847 int rc; 3848 struct context *ctx; 3849 3850 if (!selinux_initialized(state)) 3851 return 0; 3852 3853 rcu_read_lock(); 3854 policy = rcu_dereference(state->policy); 3855 policydb = &policy->policydb; 3856 3857 rc = -ENOENT; 3858 ctx = sidtab_search(policy->sidtab, sid); 3859 if (ctx == NULL) 3860 goto out; 3861 3862 rc = -ENOMEM; 3863 secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1), 3864 GFP_ATOMIC); 3865 if (secattr->domain == NULL) 3866 goto out; 3867 3868 secattr->attr.secid = sid; 3869 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID; 3870 mls_export_netlbl_lvl(policydb, ctx, secattr); 3871 rc = mls_export_netlbl_cat(policydb, ctx, secattr); 3872 out: 3873 rcu_read_unlock(); 3874 return rc; 3875 } 3876 #endif /* CONFIG_NETLABEL */ 3877 3878 /** 3879 * security_read_policy - read the policy. 3880 * @data: binary policy data 3881 * @len: length of data in bytes 3882 * 3883 */ 3884 int security_read_policy(struct selinux_state *state, 3885 void **data, size_t *len) 3886 { 3887 struct selinux_policy *policy; 3888 int rc; 3889 struct policy_file fp; 3890 3891 policy = rcu_dereference_protected( 3892 state->policy, lockdep_is_held(&state->policy_mutex)); 3893 if (!policy) 3894 return -EINVAL; 3895 3896 *len = policy->policydb.len; 3897 *data = vmalloc_user(*len); 3898 if (!*data) 3899 return -ENOMEM; 3900 3901 fp.data = *data; 3902 fp.len = *len; 3903 3904 rc = policydb_write(&policy->policydb, &fp); 3905 if (rc) 3906 return rc; 3907 3908 *len = (unsigned long)fp.data - (unsigned long)*data; 3909 return 0; 3910 3911 } 3912