xref: /openbmc/linux/security/selinux/ss/services.c (revision da2ef666)
1 /*
2  * Implementation of the security services.
3  *
4  * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
5  *	     James Morris <jmorris@redhat.com>
6  *
7  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8  *
9  *	Support for enhanced MLS infrastructure.
10  *	Support for context based audit filters.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *	Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul@paul-moore.com>
17  *
18  *      Added support for NetLabel
19  *      Added support for the policy capability bitmap
20  *
21  * Updated: Chad Sellers <csellers@tresys.com>
22  *
23  *  Added validation of kernel classes and permissions
24  *
25  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
26  *
27  *  Added support for bounds domain and audit messaged on masked permissions
28  *
29  * Updated: Guido Trentalancia <guido@trentalancia.com>
30  *
31  *  Added support for runtime switching of the policy type
32  *
33  * Copyright (C) 2008, 2009 NEC Corporation
34  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38  *	This program is free software; you can redistribute it and/or modify
39  *	it under the terms of the GNU General Public License as published by
40  *	the Free Software Foundation, version 2.
41  */
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/errno.h>
48 #include <linux/in.h>
49 #include <linux/sched.h>
50 #include <linux/audit.h>
51 #include <linux/mutex.h>
52 #include <linux/selinux.h>
53 #include <linux/flex_array.h>
54 #include <linux/vmalloc.h>
55 #include <net/netlabel.h>
56 
57 #include "flask.h"
58 #include "avc.h"
59 #include "avc_ss.h"
60 #include "security.h"
61 #include "context.h"
62 #include "policydb.h"
63 #include "sidtab.h"
64 #include "services.h"
65 #include "conditional.h"
66 #include "mls.h"
67 #include "objsec.h"
68 #include "netlabel.h"
69 #include "xfrm.h"
70 #include "ebitmap.h"
71 #include "audit.h"
72 
73 /* Policy capability names */
74 char *selinux_policycap_names[__POLICYDB_CAPABILITY_MAX] = {
75 	"network_peer_controls",
76 	"open_perms",
77 	"extended_socket_class",
78 	"always_check_network",
79 	"cgroup_seclabel",
80 	"nnp_nosuid_transition"
81 };
82 
83 static struct selinux_ss selinux_ss;
84 
85 void selinux_ss_init(struct selinux_ss **ss)
86 {
87 	rwlock_init(&selinux_ss.policy_rwlock);
88 	mutex_init(&selinux_ss.status_lock);
89 	*ss = &selinux_ss;
90 }
91 
92 /* Forward declaration. */
93 static int context_struct_to_string(struct policydb *policydb,
94 				    struct context *context,
95 				    char **scontext,
96 				    u32 *scontext_len);
97 
98 static void context_struct_compute_av(struct policydb *policydb,
99 				      struct context *scontext,
100 				      struct context *tcontext,
101 				      u16 tclass,
102 				      struct av_decision *avd,
103 				      struct extended_perms *xperms);
104 
105 static int selinux_set_mapping(struct policydb *pol,
106 			       struct security_class_mapping *map,
107 			       struct selinux_map *out_map)
108 {
109 	u16 i, j;
110 	unsigned k;
111 	bool print_unknown_handle = false;
112 
113 	/* Find number of classes in the input mapping */
114 	if (!map)
115 		return -EINVAL;
116 	i = 0;
117 	while (map[i].name)
118 		i++;
119 
120 	/* Allocate space for the class records, plus one for class zero */
121 	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
122 	if (!out_map->mapping)
123 		return -ENOMEM;
124 
125 	/* Store the raw class and permission values */
126 	j = 0;
127 	while (map[j].name) {
128 		struct security_class_mapping *p_in = map + (j++);
129 		struct selinux_mapping *p_out = out_map->mapping + j;
130 
131 		/* An empty class string skips ahead */
132 		if (!strcmp(p_in->name, "")) {
133 			p_out->num_perms = 0;
134 			continue;
135 		}
136 
137 		p_out->value = string_to_security_class(pol, p_in->name);
138 		if (!p_out->value) {
139 			pr_info("SELinux:  Class %s not defined in policy.\n",
140 			       p_in->name);
141 			if (pol->reject_unknown)
142 				goto err;
143 			p_out->num_perms = 0;
144 			print_unknown_handle = true;
145 			continue;
146 		}
147 
148 		k = 0;
149 		while (p_in->perms[k]) {
150 			/* An empty permission string skips ahead */
151 			if (!*p_in->perms[k]) {
152 				k++;
153 				continue;
154 			}
155 			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
156 							    p_in->perms[k]);
157 			if (!p_out->perms[k]) {
158 				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
159 				       p_in->perms[k], p_in->name);
160 				if (pol->reject_unknown)
161 					goto err;
162 				print_unknown_handle = true;
163 			}
164 
165 			k++;
166 		}
167 		p_out->num_perms = k;
168 	}
169 
170 	if (print_unknown_handle)
171 		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
172 		       pol->allow_unknown ? "allowed" : "denied");
173 
174 	out_map->size = i;
175 	return 0;
176 err:
177 	kfree(out_map->mapping);
178 	out_map->mapping = NULL;
179 	return -EINVAL;
180 }
181 
182 /*
183  * Get real, policy values from mapped values
184  */
185 
186 static u16 unmap_class(struct selinux_map *map, u16 tclass)
187 {
188 	if (tclass < map->size)
189 		return map->mapping[tclass].value;
190 
191 	return tclass;
192 }
193 
194 /*
195  * Get kernel value for class from its policy value
196  */
197 static u16 map_class(struct selinux_map *map, u16 pol_value)
198 {
199 	u16 i;
200 
201 	for (i = 1; i < map->size; i++) {
202 		if (map->mapping[i].value == pol_value)
203 			return i;
204 	}
205 
206 	return SECCLASS_NULL;
207 }
208 
209 static void map_decision(struct selinux_map *map,
210 			 u16 tclass, struct av_decision *avd,
211 			 int allow_unknown)
212 {
213 	if (tclass < map->size) {
214 		struct selinux_mapping *mapping = &map->mapping[tclass];
215 		unsigned int i, n = mapping->num_perms;
216 		u32 result;
217 
218 		for (i = 0, result = 0; i < n; i++) {
219 			if (avd->allowed & mapping->perms[i])
220 				result |= 1<<i;
221 			if (allow_unknown && !mapping->perms[i])
222 				result |= 1<<i;
223 		}
224 		avd->allowed = result;
225 
226 		for (i = 0, result = 0; i < n; i++)
227 			if (avd->auditallow & mapping->perms[i])
228 				result |= 1<<i;
229 		avd->auditallow = result;
230 
231 		for (i = 0, result = 0; i < n; i++) {
232 			if (avd->auditdeny & mapping->perms[i])
233 				result |= 1<<i;
234 			if (!allow_unknown && !mapping->perms[i])
235 				result |= 1<<i;
236 		}
237 		/*
238 		 * In case the kernel has a bug and requests a permission
239 		 * between num_perms and the maximum permission number, we
240 		 * should audit that denial
241 		 */
242 		for (; i < (sizeof(u32)*8); i++)
243 			result |= 1<<i;
244 		avd->auditdeny = result;
245 	}
246 }
247 
248 int security_mls_enabled(struct selinux_state *state)
249 {
250 	struct policydb *p = &state->ss->policydb;
251 
252 	return p->mls_enabled;
253 }
254 
255 /*
256  * Return the boolean value of a constraint expression
257  * when it is applied to the specified source and target
258  * security contexts.
259  *
260  * xcontext is a special beast...  It is used by the validatetrans rules
261  * only.  For these rules, scontext is the context before the transition,
262  * tcontext is the context after the transition, and xcontext is the context
263  * of the process performing the transition.  All other callers of
264  * constraint_expr_eval should pass in NULL for xcontext.
265  */
266 static int constraint_expr_eval(struct policydb *policydb,
267 				struct context *scontext,
268 				struct context *tcontext,
269 				struct context *xcontext,
270 				struct constraint_expr *cexpr)
271 {
272 	u32 val1, val2;
273 	struct context *c;
274 	struct role_datum *r1, *r2;
275 	struct mls_level *l1, *l2;
276 	struct constraint_expr *e;
277 	int s[CEXPR_MAXDEPTH];
278 	int sp = -1;
279 
280 	for (e = cexpr; e; e = e->next) {
281 		switch (e->expr_type) {
282 		case CEXPR_NOT:
283 			BUG_ON(sp < 0);
284 			s[sp] = !s[sp];
285 			break;
286 		case CEXPR_AND:
287 			BUG_ON(sp < 1);
288 			sp--;
289 			s[sp] &= s[sp + 1];
290 			break;
291 		case CEXPR_OR:
292 			BUG_ON(sp < 1);
293 			sp--;
294 			s[sp] |= s[sp + 1];
295 			break;
296 		case CEXPR_ATTR:
297 			if (sp == (CEXPR_MAXDEPTH - 1))
298 				return 0;
299 			switch (e->attr) {
300 			case CEXPR_USER:
301 				val1 = scontext->user;
302 				val2 = tcontext->user;
303 				break;
304 			case CEXPR_TYPE:
305 				val1 = scontext->type;
306 				val2 = tcontext->type;
307 				break;
308 			case CEXPR_ROLE:
309 				val1 = scontext->role;
310 				val2 = tcontext->role;
311 				r1 = policydb->role_val_to_struct[val1 - 1];
312 				r2 = policydb->role_val_to_struct[val2 - 1];
313 				switch (e->op) {
314 				case CEXPR_DOM:
315 					s[++sp] = ebitmap_get_bit(&r1->dominates,
316 								  val2 - 1);
317 					continue;
318 				case CEXPR_DOMBY:
319 					s[++sp] = ebitmap_get_bit(&r2->dominates,
320 								  val1 - 1);
321 					continue;
322 				case CEXPR_INCOMP:
323 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
324 								    val2 - 1) &&
325 						   !ebitmap_get_bit(&r2->dominates,
326 								    val1 - 1));
327 					continue;
328 				default:
329 					break;
330 				}
331 				break;
332 			case CEXPR_L1L2:
333 				l1 = &(scontext->range.level[0]);
334 				l2 = &(tcontext->range.level[0]);
335 				goto mls_ops;
336 			case CEXPR_L1H2:
337 				l1 = &(scontext->range.level[0]);
338 				l2 = &(tcontext->range.level[1]);
339 				goto mls_ops;
340 			case CEXPR_H1L2:
341 				l1 = &(scontext->range.level[1]);
342 				l2 = &(tcontext->range.level[0]);
343 				goto mls_ops;
344 			case CEXPR_H1H2:
345 				l1 = &(scontext->range.level[1]);
346 				l2 = &(tcontext->range.level[1]);
347 				goto mls_ops;
348 			case CEXPR_L1H1:
349 				l1 = &(scontext->range.level[0]);
350 				l2 = &(scontext->range.level[1]);
351 				goto mls_ops;
352 			case CEXPR_L2H2:
353 				l1 = &(tcontext->range.level[0]);
354 				l2 = &(tcontext->range.level[1]);
355 				goto mls_ops;
356 mls_ops:
357 			switch (e->op) {
358 			case CEXPR_EQ:
359 				s[++sp] = mls_level_eq(l1, l2);
360 				continue;
361 			case CEXPR_NEQ:
362 				s[++sp] = !mls_level_eq(l1, l2);
363 				continue;
364 			case CEXPR_DOM:
365 				s[++sp] = mls_level_dom(l1, l2);
366 				continue;
367 			case CEXPR_DOMBY:
368 				s[++sp] = mls_level_dom(l2, l1);
369 				continue;
370 			case CEXPR_INCOMP:
371 				s[++sp] = mls_level_incomp(l2, l1);
372 				continue;
373 			default:
374 				BUG();
375 				return 0;
376 			}
377 			break;
378 			default:
379 				BUG();
380 				return 0;
381 			}
382 
383 			switch (e->op) {
384 			case CEXPR_EQ:
385 				s[++sp] = (val1 == val2);
386 				break;
387 			case CEXPR_NEQ:
388 				s[++sp] = (val1 != val2);
389 				break;
390 			default:
391 				BUG();
392 				return 0;
393 			}
394 			break;
395 		case CEXPR_NAMES:
396 			if (sp == (CEXPR_MAXDEPTH-1))
397 				return 0;
398 			c = scontext;
399 			if (e->attr & CEXPR_TARGET)
400 				c = tcontext;
401 			else if (e->attr & CEXPR_XTARGET) {
402 				c = xcontext;
403 				if (!c) {
404 					BUG();
405 					return 0;
406 				}
407 			}
408 			if (e->attr & CEXPR_USER)
409 				val1 = c->user;
410 			else if (e->attr & CEXPR_ROLE)
411 				val1 = c->role;
412 			else if (e->attr & CEXPR_TYPE)
413 				val1 = c->type;
414 			else {
415 				BUG();
416 				return 0;
417 			}
418 
419 			switch (e->op) {
420 			case CEXPR_EQ:
421 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
422 				break;
423 			case CEXPR_NEQ:
424 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
425 				break;
426 			default:
427 				BUG();
428 				return 0;
429 			}
430 			break;
431 		default:
432 			BUG();
433 			return 0;
434 		}
435 	}
436 
437 	BUG_ON(sp != 0);
438 	return s[0];
439 }
440 
441 /*
442  * security_dump_masked_av - dumps masked permissions during
443  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
444  */
445 static int dump_masked_av_helper(void *k, void *d, void *args)
446 {
447 	struct perm_datum *pdatum = d;
448 	char **permission_names = args;
449 
450 	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
451 
452 	permission_names[pdatum->value - 1] = (char *)k;
453 
454 	return 0;
455 }
456 
457 static void security_dump_masked_av(struct policydb *policydb,
458 				    struct context *scontext,
459 				    struct context *tcontext,
460 				    u16 tclass,
461 				    u32 permissions,
462 				    const char *reason)
463 {
464 	struct common_datum *common_dat;
465 	struct class_datum *tclass_dat;
466 	struct audit_buffer *ab;
467 	char *tclass_name;
468 	char *scontext_name = NULL;
469 	char *tcontext_name = NULL;
470 	char *permission_names[32];
471 	int index;
472 	u32 length;
473 	bool need_comma = false;
474 
475 	if (!permissions)
476 		return;
477 
478 	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
479 	tclass_dat = policydb->class_val_to_struct[tclass - 1];
480 	common_dat = tclass_dat->comdatum;
481 
482 	/* init permission_names */
483 	if (common_dat &&
484 	    hashtab_map(common_dat->permissions.table,
485 			dump_masked_av_helper, permission_names) < 0)
486 		goto out;
487 
488 	if (hashtab_map(tclass_dat->permissions.table,
489 			dump_masked_av_helper, permission_names) < 0)
490 		goto out;
491 
492 	/* get scontext/tcontext in text form */
493 	if (context_struct_to_string(policydb, scontext,
494 				     &scontext_name, &length) < 0)
495 		goto out;
496 
497 	if (context_struct_to_string(policydb, tcontext,
498 				     &tcontext_name, &length) < 0)
499 		goto out;
500 
501 	/* audit a message */
502 	ab = audit_log_start(audit_context(),
503 			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
504 	if (!ab)
505 		goto out;
506 
507 	audit_log_format(ab, "op=security_compute_av reason=%s "
508 			 "scontext=%s tcontext=%s tclass=%s perms=",
509 			 reason, scontext_name, tcontext_name, tclass_name);
510 
511 	for (index = 0; index < 32; index++) {
512 		u32 mask = (1 << index);
513 
514 		if ((mask & permissions) == 0)
515 			continue;
516 
517 		audit_log_format(ab, "%s%s",
518 				 need_comma ? "," : "",
519 				 permission_names[index]
520 				 ? permission_names[index] : "????");
521 		need_comma = true;
522 	}
523 	audit_log_end(ab);
524 out:
525 	/* release scontext/tcontext */
526 	kfree(tcontext_name);
527 	kfree(scontext_name);
528 
529 	return;
530 }
531 
532 /*
533  * security_boundary_permission - drops violated permissions
534  * on boundary constraint.
535  */
536 static void type_attribute_bounds_av(struct policydb *policydb,
537 				     struct context *scontext,
538 				     struct context *tcontext,
539 				     u16 tclass,
540 				     struct av_decision *avd)
541 {
542 	struct context lo_scontext;
543 	struct context lo_tcontext, *tcontextp = tcontext;
544 	struct av_decision lo_avd;
545 	struct type_datum *source;
546 	struct type_datum *target;
547 	u32 masked = 0;
548 
549 	source = flex_array_get_ptr(policydb->type_val_to_struct_array,
550 				    scontext->type - 1);
551 	BUG_ON(!source);
552 
553 	if (!source->bounds)
554 		return;
555 
556 	target = flex_array_get_ptr(policydb->type_val_to_struct_array,
557 				    tcontext->type - 1);
558 	BUG_ON(!target);
559 
560 	memset(&lo_avd, 0, sizeof(lo_avd));
561 
562 	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
563 	lo_scontext.type = source->bounds;
564 
565 	if (target->bounds) {
566 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
567 		lo_tcontext.type = target->bounds;
568 		tcontextp = &lo_tcontext;
569 	}
570 
571 	context_struct_compute_av(policydb, &lo_scontext,
572 				  tcontextp,
573 				  tclass,
574 				  &lo_avd,
575 				  NULL);
576 
577 	masked = ~lo_avd.allowed & avd->allowed;
578 
579 	if (likely(!masked))
580 		return;		/* no masked permission */
581 
582 	/* mask violated permissions */
583 	avd->allowed &= ~masked;
584 
585 	/* audit masked permissions */
586 	security_dump_masked_av(policydb, scontext, tcontext,
587 				tclass, masked, "bounds");
588 }
589 
590 /*
591  * flag which drivers have permissions
592  * only looking for ioctl based extended permssions
593  */
594 void services_compute_xperms_drivers(
595 		struct extended_perms *xperms,
596 		struct avtab_node *node)
597 {
598 	unsigned int i;
599 
600 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
601 		/* if one or more driver has all permissions allowed */
602 		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
603 			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
604 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
605 		/* if allowing permissions within a driver */
606 		security_xperm_set(xperms->drivers.p,
607 					node->datum.u.xperms->driver);
608 	}
609 
610 	/* If no ioctl commands are allowed, ignore auditallow and auditdeny */
611 	if (node->key.specified & AVTAB_XPERMS_ALLOWED)
612 		xperms->len = 1;
613 }
614 
615 /*
616  * Compute access vectors and extended permissions based on a context
617  * structure pair for the permissions in a particular class.
618  */
619 static void context_struct_compute_av(struct policydb *policydb,
620 				      struct context *scontext,
621 				      struct context *tcontext,
622 				      u16 tclass,
623 				      struct av_decision *avd,
624 				      struct extended_perms *xperms)
625 {
626 	struct constraint_node *constraint;
627 	struct role_allow *ra;
628 	struct avtab_key avkey;
629 	struct avtab_node *node;
630 	struct class_datum *tclass_datum;
631 	struct ebitmap *sattr, *tattr;
632 	struct ebitmap_node *snode, *tnode;
633 	unsigned int i, j;
634 
635 	avd->allowed = 0;
636 	avd->auditallow = 0;
637 	avd->auditdeny = 0xffffffff;
638 	if (xperms) {
639 		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
640 		xperms->len = 0;
641 	}
642 
643 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
644 		if (printk_ratelimit())
645 			pr_warn("SELinux:  Invalid class %hu\n", tclass);
646 		return;
647 	}
648 
649 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
650 
651 	/*
652 	 * If a specific type enforcement rule was defined for
653 	 * this permission check, then use it.
654 	 */
655 	avkey.target_class = tclass;
656 	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
657 	sattr = flex_array_get(policydb->type_attr_map_array,
658 			       scontext->type - 1);
659 	BUG_ON(!sattr);
660 	tattr = flex_array_get(policydb->type_attr_map_array,
661 			       tcontext->type - 1);
662 	BUG_ON(!tattr);
663 	ebitmap_for_each_positive_bit(sattr, snode, i) {
664 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
665 			avkey.source_type = i + 1;
666 			avkey.target_type = j + 1;
667 			for (node = avtab_search_node(&policydb->te_avtab,
668 						      &avkey);
669 			     node;
670 			     node = avtab_search_node_next(node, avkey.specified)) {
671 				if (node->key.specified == AVTAB_ALLOWED)
672 					avd->allowed |= node->datum.u.data;
673 				else if (node->key.specified == AVTAB_AUDITALLOW)
674 					avd->auditallow |= node->datum.u.data;
675 				else if (node->key.specified == AVTAB_AUDITDENY)
676 					avd->auditdeny &= node->datum.u.data;
677 				else if (xperms && (node->key.specified & AVTAB_XPERMS))
678 					services_compute_xperms_drivers(xperms, node);
679 			}
680 
681 			/* Check conditional av table for additional permissions */
682 			cond_compute_av(&policydb->te_cond_avtab, &avkey,
683 					avd, xperms);
684 
685 		}
686 	}
687 
688 	/*
689 	 * Remove any permissions prohibited by a constraint (this includes
690 	 * the MLS policy).
691 	 */
692 	constraint = tclass_datum->constraints;
693 	while (constraint) {
694 		if ((constraint->permissions & (avd->allowed)) &&
695 		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
696 					  constraint->expr)) {
697 			avd->allowed &= ~(constraint->permissions);
698 		}
699 		constraint = constraint->next;
700 	}
701 
702 	/*
703 	 * If checking process transition permission and the
704 	 * role is changing, then check the (current_role, new_role)
705 	 * pair.
706 	 */
707 	if (tclass == policydb->process_class &&
708 	    (avd->allowed & policydb->process_trans_perms) &&
709 	    scontext->role != tcontext->role) {
710 		for (ra = policydb->role_allow; ra; ra = ra->next) {
711 			if (scontext->role == ra->role &&
712 			    tcontext->role == ra->new_role)
713 				break;
714 		}
715 		if (!ra)
716 			avd->allowed &= ~policydb->process_trans_perms;
717 	}
718 
719 	/*
720 	 * If the given source and target types have boundary
721 	 * constraint, lazy checks have to mask any violated
722 	 * permission and notice it to userspace via audit.
723 	 */
724 	type_attribute_bounds_av(policydb, scontext, tcontext,
725 				 tclass, avd);
726 }
727 
728 static int security_validtrans_handle_fail(struct selinux_state *state,
729 					   struct context *ocontext,
730 					   struct context *ncontext,
731 					   struct context *tcontext,
732 					   u16 tclass)
733 {
734 	struct policydb *p = &state->ss->policydb;
735 	char *o = NULL, *n = NULL, *t = NULL;
736 	u32 olen, nlen, tlen;
737 
738 	if (context_struct_to_string(p, ocontext, &o, &olen))
739 		goto out;
740 	if (context_struct_to_string(p, ncontext, &n, &nlen))
741 		goto out;
742 	if (context_struct_to_string(p, tcontext, &t, &tlen))
743 		goto out;
744 	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
745 		  "op=security_validate_transition seresult=denied"
746 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
747 		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
748 out:
749 	kfree(o);
750 	kfree(n);
751 	kfree(t);
752 
753 	if (!enforcing_enabled(state))
754 		return 0;
755 	return -EPERM;
756 }
757 
758 static int security_compute_validatetrans(struct selinux_state *state,
759 					  u32 oldsid, u32 newsid, u32 tasksid,
760 					  u16 orig_tclass, bool user)
761 {
762 	struct policydb *policydb;
763 	struct sidtab *sidtab;
764 	struct context *ocontext;
765 	struct context *ncontext;
766 	struct context *tcontext;
767 	struct class_datum *tclass_datum;
768 	struct constraint_node *constraint;
769 	u16 tclass;
770 	int rc = 0;
771 
772 
773 	if (!state->initialized)
774 		return 0;
775 
776 	read_lock(&state->ss->policy_rwlock);
777 
778 	policydb = &state->ss->policydb;
779 	sidtab = &state->ss->sidtab;
780 
781 	if (!user)
782 		tclass = unmap_class(&state->ss->map, orig_tclass);
783 	else
784 		tclass = orig_tclass;
785 
786 	if (!tclass || tclass > policydb->p_classes.nprim) {
787 		rc = -EINVAL;
788 		goto out;
789 	}
790 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
791 
792 	ocontext = sidtab_search(sidtab, oldsid);
793 	if (!ocontext) {
794 		pr_err("SELinux: %s:  unrecognized SID %d\n",
795 			__func__, oldsid);
796 		rc = -EINVAL;
797 		goto out;
798 	}
799 
800 	ncontext = sidtab_search(sidtab, newsid);
801 	if (!ncontext) {
802 		pr_err("SELinux: %s:  unrecognized SID %d\n",
803 			__func__, newsid);
804 		rc = -EINVAL;
805 		goto out;
806 	}
807 
808 	tcontext = sidtab_search(sidtab, tasksid);
809 	if (!tcontext) {
810 		pr_err("SELinux: %s:  unrecognized SID %d\n",
811 			__func__, tasksid);
812 		rc = -EINVAL;
813 		goto out;
814 	}
815 
816 	constraint = tclass_datum->validatetrans;
817 	while (constraint) {
818 		if (!constraint_expr_eval(policydb, ocontext, ncontext,
819 					  tcontext, constraint->expr)) {
820 			if (user)
821 				rc = -EPERM;
822 			else
823 				rc = security_validtrans_handle_fail(state,
824 								     ocontext,
825 								     ncontext,
826 								     tcontext,
827 								     tclass);
828 			goto out;
829 		}
830 		constraint = constraint->next;
831 	}
832 
833 out:
834 	read_unlock(&state->ss->policy_rwlock);
835 	return rc;
836 }
837 
838 int security_validate_transition_user(struct selinux_state *state,
839 				      u32 oldsid, u32 newsid, u32 tasksid,
840 				      u16 tclass)
841 {
842 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
843 					      tclass, true);
844 }
845 
846 int security_validate_transition(struct selinux_state *state,
847 				 u32 oldsid, u32 newsid, u32 tasksid,
848 				 u16 orig_tclass)
849 {
850 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
851 					      orig_tclass, false);
852 }
853 
854 /*
855  * security_bounded_transition - check whether the given
856  * transition is directed to bounded, or not.
857  * It returns 0, if @newsid is bounded by @oldsid.
858  * Otherwise, it returns error code.
859  *
860  * @oldsid : current security identifier
861  * @newsid : destinated security identifier
862  */
863 int security_bounded_transition(struct selinux_state *state,
864 				u32 old_sid, u32 new_sid)
865 {
866 	struct policydb *policydb;
867 	struct sidtab *sidtab;
868 	struct context *old_context, *new_context;
869 	struct type_datum *type;
870 	int index;
871 	int rc;
872 
873 	if (!state->initialized)
874 		return 0;
875 
876 	read_lock(&state->ss->policy_rwlock);
877 
878 	policydb = &state->ss->policydb;
879 	sidtab = &state->ss->sidtab;
880 
881 	rc = -EINVAL;
882 	old_context = sidtab_search(sidtab, old_sid);
883 	if (!old_context) {
884 		pr_err("SELinux: %s: unrecognized SID %u\n",
885 		       __func__, old_sid);
886 		goto out;
887 	}
888 
889 	rc = -EINVAL;
890 	new_context = sidtab_search(sidtab, new_sid);
891 	if (!new_context) {
892 		pr_err("SELinux: %s: unrecognized SID %u\n",
893 		       __func__, new_sid);
894 		goto out;
895 	}
896 
897 	rc = 0;
898 	/* type/domain unchanged */
899 	if (old_context->type == new_context->type)
900 		goto out;
901 
902 	index = new_context->type;
903 	while (true) {
904 		type = flex_array_get_ptr(policydb->type_val_to_struct_array,
905 					  index - 1);
906 		BUG_ON(!type);
907 
908 		/* not bounded anymore */
909 		rc = -EPERM;
910 		if (!type->bounds)
911 			break;
912 
913 		/* @newsid is bounded by @oldsid */
914 		rc = 0;
915 		if (type->bounds == old_context->type)
916 			break;
917 
918 		index = type->bounds;
919 	}
920 
921 	if (rc) {
922 		char *old_name = NULL;
923 		char *new_name = NULL;
924 		u32 length;
925 
926 		if (!context_struct_to_string(policydb, old_context,
927 					      &old_name, &length) &&
928 		    !context_struct_to_string(policydb, new_context,
929 					      &new_name, &length)) {
930 			audit_log(audit_context(),
931 				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
932 				  "op=security_bounded_transition "
933 				  "seresult=denied "
934 				  "oldcontext=%s newcontext=%s",
935 				  old_name, new_name);
936 		}
937 		kfree(new_name);
938 		kfree(old_name);
939 	}
940 out:
941 	read_unlock(&state->ss->policy_rwlock);
942 
943 	return rc;
944 }
945 
946 static void avd_init(struct selinux_state *state, struct av_decision *avd)
947 {
948 	avd->allowed = 0;
949 	avd->auditallow = 0;
950 	avd->auditdeny = 0xffffffff;
951 	avd->seqno = state->ss->latest_granting;
952 	avd->flags = 0;
953 }
954 
955 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
956 					struct avtab_node *node)
957 {
958 	unsigned int i;
959 
960 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
961 		if (xpermd->driver != node->datum.u.xperms->driver)
962 			return;
963 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
964 		if (!security_xperm_test(node->datum.u.xperms->perms.p,
965 					xpermd->driver))
966 			return;
967 	} else {
968 		BUG();
969 	}
970 
971 	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
972 		xpermd->used |= XPERMS_ALLOWED;
973 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
974 			memset(xpermd->allowed->p, 0xff,
975 					sizeof(xpermd->allowed->p));
976 		}
977 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
978 			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
979 				xpermd->allowed->p[i] |=
980 					node->datum.u.xperms->perms.p[i];
981 		}
982 	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
983 		xpermd->used |= XPERMS_AUDITALLOW;
984 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
985 			memset(xpermd->auditallow->p, 0xff,
986 					sizeof(xpermd->auditallow->p));
987 		}
988 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
989 			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
990 				xpermd->auditallow->p[i] |=
991 					node->datum.u.xperms->perms.p[i];
992 		}
993 	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
994 		xpermd->used |= XPERMS_DONTAUDIT;
995 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
996 			memset(xpermd->dontaudit->p, 0xff,
997 					sizeof(xpermd->dontaudit->p));
998 		}
999 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
1000 			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1001 				xpermd->dontaudit->p[i] |=
1002 					node->datum.u.xperms->perms.p[i];
1003 		}
1004 	} else {
1005 		BUG();
1006 	}
1007 }
1008 
1009 void security_compute_xperms_decision(struct selinux_state *state,
1010 				      u32 ssid,
1011 				      u32 tsid,
1012 				      u16 orig_tclass,
1013 				      u8 driver,
1014 				      struct extended_perms_decision *xpermd)
1015 {
1016 	struct policydb *policydb;
1017 	struct sidtab *sidtab;
1018 	u16 tclass;
1019 	struct context *scontext, *tcontext;
1020 	struct avtab_key avkey;
1021 	struct avtab_node *node;
1022 	struct ebitmap *sattr, *tattr;
1023 	struct ebitmap_node *snode, *tnode;
1024 	unsigned int i, j;
1025 
1026 	xpermd->driver = driver;
1027 	xpermd->used = 0;
1028 	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1029 	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1030 	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1031 
1032 	read_lock(&state->ss->policy_rwlock);
1033 	if (!state->initialized)
1034 		goto allow;
1035 
1036 	policydb = &state->ss->policydb;
1037 	sidtab = &state->ss->sidtab;
1038 
1039 	scontext = sidtab_search(sidtab, ssid);
1040 	if (!scontext) {
1041 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1042 		       __func__, ssid);
1043 		goto out;
1044 	}
1045 
1046 	tcontext = sidtab_search(sidtab, tsid);
1047 	if (!tcontext) {
1048 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1049 		       __func__, tsid);
1050 		goto out;
1051 	}
1052 
1053 	tclass = unmap_class(&state->ss->map, orig_tclass);
1054 	if (unlikely(orig_tclass && !tclass)) {
1055 		if (policydb->allow_unknown)
1056 			goto allow;
1057 		goto out;
1058 	}
1059 
1060 
1061 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1062 		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1063 		goto out;
1064 	}
1065 
1066 	avkey.target_class = tclass;
1067 	avkey.specified = AVTAB_XPERMS;
1068 	sattr = flex_array_get(policydb->type_attr_map_array,
1069 				scontext->type - 1);
1070 	BUG_ON(!sattr);
1071 	tattr = flex_array_get(policydb->type_attr_map_array,
1072 				tcontext->type - 1);
1073 	BUG_ON(!tattr);
1074 	ebitmap_for_each_positive_bit(sattr, snode, i) {
1075 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1076 			avkey.source_type = i + 1;
1077 			avkey.target_type = j + 1;
1078 			for (node = avtab_search_node(&policydb->te_avtab,
1079 						      &avkey);
1080 			     node;
1081 			     node = avtab_search_node_next(node, avkey.specified))
1082 				services_compute_xperms_decision(xpermd, node);
1083 
1084 			cond_compute_xperms(&policydb->te_cond_avtab,
1085 						&avkey, xpermd);
1086 		}
1087 	}
1088 out:
1089 	read_unlock(&state->ss->policy_rwlock);
1090 	return;
1091 allow:
1092 	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1093 	goto out;
1094 }
1095 
1096 /**
1097  * security_compute_av - Compute access vector decisions.
1098  * @ssid: source security identifier
1099  * @tsid: target security identifier
1100  * @tclass: target security class
1101  * @avd: access vector decisions
1102  * @xperms: extended permissions
1103  *
1104  * Compute a set of access vector decisions based on the
1105  * SID pair (@ssid, @tsid) for the permissions in @tclass.
1106  */
1107 void security_compute_av(struct selinux_state *state,
1108 			 u32 ssid,
1109 			 u32 tsid,
1110 			 u16 orig_tclass,
1111 			 struct av_decision *avd,
1112 			 struct extended_perms *xperms)
1113 {
1114 	struct policydb *policydb;
1115 	struct sidtab *sidtab;
1116 	u16 tclass;
1117 	struct context *scontext = NULL, *tcontext = NULL;
1118 
1119 	read_lock(&state->ss->policy_rwlock);
1120 	avd_init(state, avd);
1121 	xperms->len = 0;
1122 	if (!state->initialized)
1123 		goto allow;
1124 
1125 	policydb = &state->ss->policydb;
1126 	sidtab = &state->ss->sidtab;
1127 
1128 	scontext = sidtab_search(sidtab, ssid);
1129 	if (!scontext) {
1130 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1131 		       __func__, ssid);
1132 		goto out;
1133 	}
1134 
1135 	/* permissive domain? */
1136 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1137 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1138 
1139 	tcontext = sidtab_search(sidtab, tsid);
1140 	if (!tcontext) {
1141 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1142 		       __func__, tsid);
1143 		goto out;
1144 	}
1145 
1146 	tclass = unmap_class(&state->ss->map, orig_tclass);
1147 	if (unlikely(orig_tclass && !tclass)) {
1148 		if (policydb->allow_unknown)
1149 			goto allow;
1150 		goto out;
1151 	}
1152 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1153 				  xperms);
1154 	map_decision(&state->ss->map, orig_tclass, avd,
1155 		     policydb->allow_unknown);
1156 out:
1157 	read_unlock(&state->ss->policy_rwlock);
1158 	return;
1159 allow:
1160 	avd->allowed = 0xffffffff;
1161 	goto out;
1162 }
1163 
1164 void security_compute_av_user(struct selinux_state *state,
1165 			      u32 ssid,
1166 			      u32 tsid,
1167 			      u16 tclass,
1168 			      struct av_decision *avd)
1169 {
1170 	struct policydb *policydb;
1171 	struct sidtab *sidtab;
1172 	struct context *scontext = NULL, *tcontext = NULL;
1173 
1174 	read_lock(&state->ss->policy_rwlock);
1175 	avd_init(state, avd);
1176 	if (!state->initialized)
1177 		goto allow;
1178 
1179 	policydb = &state->ss->policydb;
1180 	sidtab = &state->ss->sidtab;
1181 
1182 	scontext = sidtab_search(sidtab, ssid);
1183 	if (!scontext) {
1184 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1185 		       __func__, ssid);
1186 		goto out;
1187 	}
1188 
1189 	/* permissive domain? */
1190 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1191 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1192 
1193 	tcontext = sidtab_search(sidtab, tsid);
1194 	if (!tcontext) {
1195 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1196 		       __func__, tsid);
1197 		goto out;
1198 	}
1199 
1200 	if (unlikely(!tclass)) {
1201 		if (policydb->allow_unknown)
1202 			goto allow;
1203 		goto out;
1204 	}
1205 
1206 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1207 				  NULL);
1208  out:
1209 	read_unlock(&state->ss->policy_rwlock);
1210 	return;
1211 allow:
1212 	avd->allowed = 0xffffffff;
1213 	goto out;
1214 }
1215 
1216 /*
1217  * Write the security context string representation of
1218  * the context structure `context' into a dynamically
1219  * allocated string of the correct size.  Set `*scontext'
1220  * to point to this string and set `*scontext_len' to
1221  * the length of the string.
1222  */
1223 static int context_struct_to_string(struct policydb *p,
1224 				    struct context *context,
1225 				    char **scontext, u32 *scontext_len)
1226 {
1227 	char *scontextp;
1228 
1229 	if (scontext)
1230 		*scontext = NULL;
1231 	*scontext_len = 0;
1232 
1233 	if (context->len) {
1234 		*scontext_len = context->len;
1235 		if (scontext) {
1236 			*scontext = kstrdup(context->str, GFP_ATOMIC);
1237 			if (!(*scontext))
1238 				return -ENOMEM;
1239 		}
1240 		return 0;
1241 	}
1242 
1243 	/* Compute the size of the context. */
1244 	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1245 	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1246 	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1247 	*scontext_len += mls_compute_context_len(p, context);
1248 
1249 	if (!scontext)
1250 		return 0;
1251 
1252 	/* Allocate space for the context; caller must free this space. */
1253 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1254 	if (!scontextp)
1255 		return -ENOMEM;
1256 	*scontext = scontextp;
1257 
1258 	/*
1259 	 * Copy the user name, role name and type name into the context.
1260 	 */
1261 	scontextp += sprintf(scontextp, "%s:%s:%s",
1262 		sym_name(p, SYM_USERS, context->user - 1),
1263 		sym_name(p, SYM_ROLES, context->role - 1),
1264 		sym_name(p, SYM_TYPES, context->type - 1));
1265 
1266 	mls_sid_to_context(p, context, &scontextp);
1267 
1268 	*scontextp = 0;
1269 
1270 	return 0;
1271 }
1272 
1273 #include "initial_sid_to_string.h"
1274 
1275 const char *security_get_initial_sid_context(u32 sid)
1276 {
1277 	if (unlikely(sid > SECINITSID_NUM))
1278 		return NULL;
1279 	return initial_sid_to_string[sid];
1280 }
1281 
1282 static int security_sid_to_context_core(struct selinux_state *state,
1283 					u32 sid, char **scontext,
1284 					u32 *scontext_len, int force)
1285 {
1286 	struct policydb *policydb;
1287 	struct sidtab *sidtab;
1288 	struct context *context;
1289 	int rc = 0;
1290 
1291 	if (scontext)
1292 		*scontext = NULL;
1293 	*scontext_len  = 0;
1294 
1295 	if (!state->initialized) {
1296 		if (sid <= SECINITSID_NUM) {
1297 			char *scontextp;
1298 
1299 			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1300 			if (!scontext)
1301 				goto out;
1302 			scontextp = kmemdup(initial_sid_to_string[sid],
1303 					    *scontext_len, GFP_ATOMIC);
1304 			if (!scontextp) {
1305 				rc = -ENOMEM;
1306 				goto out;
1307 			}
1308 			*scontext = scontextp;
1309 			goto out;
1310 		}
1311 		pr_err("SELinux: %s:  called before initial "
1312 		       "load_policy on unknown SID %d\n", __func__, sid);
1313 		rc = -EINVAL;
1314 		goto out;
1315 	}
1316 	read_lock(&state->ss->policy_rwlock);
1317 	policydb = &state->ss->policydb;
1318 	sidtab = &state->ss->sidtab;
1319 	if (force)
1320 		context = sidtab_search_force(sidtab, sid);
1321 	else
1322 		context = sidtab_search(sidtab, sid);
1323 	if (!context) {
1324 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1325 			__func__, sid);
1326 		rc = -EINVAL;
1327 		goto out_unlock;
1328 	}
1329 	rc = context_struct_to_string(policydb, context, scontext,
1330 				      scontext_len);
1331 out_unlock:
1332 	read_unlock(&state->ss->policy_rwlock);
1333 out:
1334 	return rc;
1335 
1336 }
1337 
1338 /**
1339  * security_sid_to_context - Obtain a context for a given SID.
1340  * @sid: security identifier, SID
1341  * @scontext: security context
1342  * @scontext_len: length in bytes
1343  *
1344  * Write the string representation of the context associated with @sid
1345  * into a dynamically allocated string of the correct size.  Set @scontext
1346  * to point to this string and set @scontext_len to the length of the string.
1347  */
1348 int security_sid_to_context(struct selinux_state *state,
1349 			    u32 sid, char **scontext, u32 *scontext_len)
1350 {
1351 	return security_sid_to_context_core(state, sid, scontext,
1352 					    scontext_len, 0);
1353 }
1354 
1355 int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1356 				  char **scontext, u32 *scontext_len)
1357 {
1358 	return security_sid_to_context_core(state, sid, scontext,
1359 					    scontext_len, 1);
1360 }
1361 
1362 /*
1363  * Caveat:  Mutates scontext.
1364  */
1365 static int string_to_context_struct(struct policydb *pol,
1366 				    struct sidtab *sidtabp,
1367 				    char *scontext,
1368 				    u32 scontext_len,
1369 				    struct context *ctx,
1370 				    u32 def_sid)
1371 {
1372 	struct role_datum *role;
1373 	struct type_datum *typdatum;
1374 	struct user_datum *usrdatum;
1375 	char *scontextp, *p, oldc;
1376 	int rc = 0;
1377 
1378 	context_init(ctx);
1379 
1380 	/* Parse the security context. */
1381 
1382 	rc = -EINVAL;
1383 	scontextp = (char *) scontext;
1384 
1385 	/* Extract the user. */
1386 	p = scontextp;
1387 	while (*p && *p != ':')
1388 		p++;
1389 
1390 	if (*p == 0)
1391 		goto out;
1392 
1393 	*p++ = 0;
1394 
1395 	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1396 	if (!usrdatum)
1397 		goto out;
1398 
1399 	ctx->user = usrdatum->value;
1400 
1401 	/* Extract role. */
1402 	scontextp = p;
1403 	while (*p && *p != ':')
1404 		p++;
1405 
1406 	if (*p == 0)
1407 		goto out;
1408 
1409 	*p++ = 0;
1410 
1411 	role = hashtab_search(pol->p_roles.table, scontextp);
1412 	if (!role)
1413 		goto out;
1414 	ctx->role = role->value;
1415 
1416 	/* Extract type. */
1417 	scontextp = p;
1418 	while (*p && *p != ':')
1419 		p++;
1420 	oldc = *p;
1421 	*p++ = 0;
1422 
1423 	typdatum = hashtab_search(pol->p_types.table, scontextp);
1424 	if (!typdatum || typdatum->attribute)
1425 		goto out;
1426 
1427 	ctx->type = typdatum->value;
1428 
1429 	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1430 	if (rc)
1431 		goto out;
1432 
1433 	rc = -EINVAL;
1434 	if ((p - scontext) < scontext_len)
1435 		goto out;
1436 
1437 	/* Check the validity of the new context. */
1438 	if (!policydb_context_isvalid(pol, ctx))
1439 		goto out;
1440 	rc = 0;
1441 out:
1442 	if (rc)
1443 		context_destroy(ctx);
1444 	return rc;
1445 }
1446 
1447 static int security_context_to_sid_core(struct selinux_state *state,
1448 					const char *scontext, u32 scontext_len,
1449 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1450 					int force)
1451 {
1452 	struct policydb *policydb;
1453 	struct sidtab *sidtab;
1454 	char *scontext2, *str = NULL;
1455 	struct context context;
1456 	int rc = 0;
1457 
1458 	/* An empty security context is never valid. */
1459 	if (!scontext_len)
1460 		return -EINVAL;
1461 
1462 	/* Copy the string to allow changes and ensure a NUL terminator */
1463 	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1464 	if (!scontext2)
1465 		return -ENOMEM;
1466 
1467 	if (!state->initialized) {
1468 		int i;
1469 
1470 		for (i = 1; i < SECINITSID_NUM; i++) {
1471 			if (!strcmp(initial_sid_to_string[i], scontext2)) {
1472 				*sid = i;
1473 				goto out;
1474 			}
1475 		}
1476 		*sid = SECINITSID_KERNEL;
1477 		goto out;
1478 	}
1479 	*sid = SECSID_NULL;
1480 
1481 	if (force) {
1482 		/* Save another copy for storing in uninterpreted form */
1483 		rc = -ENOMEM;
1484 		str = kstrdup(scontext2, gfp_flags);
1485 		if (!str)
1486 			goto out;
1487 	}
1488 	read_lock(&state->ss->policy_rwlock);
1489 	policydb = &state->ss->policydb;
1490 	sidtab = &state->ss->sidtab;
1491 	rc = string_to_context_struct(policydb, sidtab, scontext2,
1492 				      scontext_len, &context, def_sid);
1493 	if (rc == -EINVAL && force) {
1494 		context.str = str;
1495 		context.len = strlen(str) + 1;
1496 		str = NULL;
1497 	} else if (rc)
1498 		goto out_unlock;
1499 	rc = sidtab_context_to_sid(sidtab, &context, sid);
1500 	context_destroy(&context);
1501 out_unlock:
1502 	read_unlock(&state->ss->policy_rwlock);
1503 out:
1504 	kfree(scontext2);
1505 	kfree(str);
1506 	return rc;
1507 }
1508 
1509 /**
1510  * security_context_to_sid - Obtain a SID for a given security context.
1511  * @scontext: security context
1512  * @scontext_len: length in bytes
1513  * @sid: security identifier, SID
1514  * @gfp: context for the allocation
1515  *
1516  * Obtains a SID associated with the security context that
1517  * has the string representation specified by @scontext.
1518  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1519  * memory is available, or 0 on success.
1520  */
1521 int security_context_to_sid(struct selinux_state *state,
1522 			    const char *scontext, u32 scontext_len, u32 *sid,
1523 			    gfp_t gfp)
1524 {
1525 	return security_context_to_sid_core(state, scontext, scontext_len,
1526 					    sid, SECSID_NULL, gfp, 0);
1527 }
1528 
1529 int security_context_str_to_sid(struct selinux_state *state,
1530 				const char *scontext, u32 *sid, gfp_t gfp)
1531 {
1532 	return security_context_to_sid(state, scontext, strlen(scontext),
1533 				       sid, gfp);
1534 }
1535 
1536 /**
1537  * security_context_to_sid_default - Obtain a SID for a given security context,
1538  * falling back to specified default if needed.
1539  *
1540  * @scontext: security context
1541  * @scontext_len: length in bytes
1542  * @sid: security identifier, SID
1543  * @def_sid: default SID to assign on error
1544  *
1545  * Obtains a SID associated with the security context that
1546  * has the string representation specified by @scontext.
1547  * The default SID is passed to the MLS layer to be used to allow
1548  * kernel labeling of the MLS field if the MLS field is not present
1549  * (for upgrading to MLS without full relabel).
1550  * Implicitly forces adding of the context even if it cannot be mapped yet.
1551  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1552  * memory is available, or 0 on success.
1553  */
1554 int security_context_to_sid_default(struct selinux_state *state,
1555 				    const char *scontext, u32 scontext_len,
1556 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1557 {
1558 	return security_context_to_sid_core(state, scontext, scontext_len,
1559 					    sid, def_sid, gfp_flags, 1);
1560 }
1561 
1562 int security_context_to_sid_force(struct selinux_state *state,
1563 				  const char *scontext, u32 scontext_len,
1564 				  u32 *sid)
1565 {
1566 	return security_context_to_sid_core(state, scontext, scontext_len,
1567 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1568 }
1569 
1570 static int compute_sid_handle_invalid_context(
1571 	struct selinux_state *state,
1572 	struct context *scontext,
1573 	struct context *tcontext,
1574 	u16 tclass,
1575 	struct context *newcontext)
1576 {
1577 	struct policydb *policydb = &state->ss->policydb;
1578 	char *s = NULL, *t = NULL, *n = NULL;
1579 	u32 slen, tlen, nlen;
1580 
1581 	if (context_struct_to_string(policydb, scontext, &s, &slen))
1582 		goto out;
1583 	if (context_struct_to_string(policydb, tcontext, &t, &tlen))
1584 		goto out;
1585 	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1586 		goto out;
1587 	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
1588 		  "op=security_compute_sid invalid_context=%s"
1589 		  " scontext=%s"
1590 		  " tcontext=%s"
1591 		  " tclass=%s",
1592 		  n, s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1593 out:
1594 	kfree(s);
1595 	kfree(t);
1596 	kfree(n);
1597 	if (!enforcing_enabled(state))
1598 		return 0;
1599 	return -EACCES;
1600 }
1601 
1602 static void filename_compute_type(struct policydb *policydb,
1603 				  struct context *newcontext,
1604 				  u32 stype, u32 ttype, u16 tclass,
1605 				  const char *objname)
1606 {
1607 	struct filename_trans ft;
1608 	struct filename_trans_datum *otype;
1609 
1610 	/*
1611 	 * Most filename trans rules are going to live in specific directories
1612 	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1613 	 * if the ttype does not contain any rules.
1614 	 */
1615 	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1616 		return;
1617 
1618 	ft.stype = stype;
1619 	ft.ttype = ttype;
1620 	ft.tclass = tclass;
1621 	ft.name = objname;
1622 
1623 	otype = hashtab_search(policydb->filename_trans, &ft);
1624 	if (otype)
1625 		newcontext->type = otype->otype;
1626 }
1627 
1628 static int security_compute_sid(struct selinux_state *state,
1629 				u32 ssid,
1630 				u32 tsid,
1631 				u16 orig_tclass,
1632 				u32 specified,
1633 				const char *objname,
1634 				u32 *out_sid,
1635 				bool kern)
1636 {
1637 	struct policydb *policydb;
1638 	struct sidtab *sidtab;
1639 	struct class_datum *cladatum = NULL;
1640 	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1641 	struct role_trans *roletr = NULL;
1642 	struct avtab_key avkey;
1643 	struct avtab_datum *avdatum;
1644 	struct avtab_node *node;
1645 	u16 tclass;
1646 	int rc = 0;
1647 	bool sock;
1648 
1649 	if (!state->initialized) {
1650 		switch (orig_tclass) {
1651 		case SECCLASS_PROCESS: /* kernel value */
1652 			*out_sid = ssid;
1653 			break;
1654 		default:
1655 			*out_sid = tsid;
1656 			break;
1657 		}
1658 		goto out;
1659 	}
1660 
1661 	context_init(&newcontext);
1662 
1663 	read_lock(&state->ss->policy_rwlock);
1664 
1665 	if (kern) {
1666 		tclass = unmap_class(&state->ss->map, orig_tclass);
1667 		sock = security_is_socket_class(orig_tclass);
1668 	} else {
1669 		tclass = orig_tclass;
1670 		sock = security_is_socket_class(map_class(&state->ss->map,
1671 							  tclass));
1672 	}
1673 
1674 	policydb = &state->ss->policydb;
1675 	sidtab = &state->ss->sidtab;
1676 
1677 	scontext = sidtab_search(sidtab, ssid);
1678 	if (!scontext) {
1679 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1680 		       __func__, ssid);
1681 		rc = -EINVAL;
1682 		goto out_unlock;
1683 	}
1684 	tcontext = sidtab_search(sidtab, tsid);
1685 	if (!tcontext) {
1686 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1687 		       __func__, tsid);
1688 		rc = -EINVAL;
1689 		goto out_unlock;
1690 	}
1691 
1692 	if (tclass && tclass <= policydb->p_classes.nprim)
1693 		cladatum = policydb->class_val_to_struct[tclass - 1];
1694 
1695 	/* Set the user identity. */
1696 	switch (specified) {
1697 	case AVTAB_TRANSITION:
1698 	case AVTAB_CHANGE:
1699 		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1700 			newcontext.user = tcontext->user;
1701 		} else {
1702 			/* notice this gets both DEFAULT_SOURCE and unset */
1703 			/* Use the process user identity. */
1704 			newcontext.user = scontext->user;
1705 		}
1706 		break;
1707 	case AVTAB_MEMBER:
1708 		/* Use the related object owner. */
1709 		newcontext.user = tcontext->user;
1710 		break;
1711 	}
1712 
1713 	/* Set the role to default values. */
1714 	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1715 		newcontext.role = scontext->role;
1716 	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1717 		newcontext.role = tcontext->role;
1718 	} else {
1719 		if ((tclass == policydb->process_class) || (sock == true))
1720 			newcontext.role = scontext->role;
1721 		else
1722 			newcontext.role = OBJECT_R_VAL;
1723 	}
1724 
1725 	/* Set the type to default values. */
1726 	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1727 		newcontext.type = scontext->type;
1728 	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1729 		newcontext.type = tcontext->type;
1730 	} else {
1731 		if ((tclass == policydb->process_class) || (sock == true)) {
1732 			/* Use the type of process. */
1733 			newcontext.type = scontext->type;
1734 		} else {
1735 			/* Use the type of the related object. */
1736 			newcontext.type = tcontext->type;
1737 		}
1738 	}
1739 
1740 	/* Look for a type transition/member/change rule. */
1741 	avkey.source_type = scontext->type;
1742 	avkey.target_type = tcontext->type;
1743 	avkey.target_class = tclass;
1744 	avkey.specified = specified;
1745 	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1746 
1747 	/* If no permanent rule, also check for enabled conditional rules */
1748 	if (!avdatum) {
1749 		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1750 		for (; node; node = avtab_search_node_next(node, specified)) {
1751 			if (node->key.specified & AVTAB_ENABLED) {
1752 				avdatum = &node->datum;
1753 				break;
1754 			}
1755 		}
1756 	}
1757 
1758 	if (avdatum) {
1759 		/* Use the type from the type transition/member/change rule. */
1760 		newcontext.type = avdatum->u.data;
1761 	}
1762 
1763 	/* if we have a objname this is a file trans check so check those rules */
1764 	if (objname)
1765 		filename_compute_type(policydb, &newcontext, scontext->type,
1766 				      tcontext->type, tclass, objname);
1767 
1768 	/* Check for class-specific changes. */
1769 	if (specified & AVTAB_TRANSITION) {
1770 		/* Look for a role transition rule. */
1771 		for (roletr = policydb->role_tr; roletr;
1772 		     roletr = roletr->next) {
1773 			if ((roletr->role == scontext->role) &&
1774 			    (roletr->type == tcontext->type) &&
1775 			    (roletr->tclass == tclass)) {
1776 				/* Use the role transition rule. */
1777 				newcontext.role = roletr->new_role;
1778 				break;
1779 			}
1780 		}
1781 	}
1782 
1783 	/* Set the MLS attributes.
1784 	   This is done last because it may allocate memory. */
1785 	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1786 			     &newcontext, sock);
1787 	if (rc)
1788 		goto out_unlock;
1789 
1790 	/* Check the validity of the context. */
1791 	if (!policydb_context_isvalid(policydb, &newcontext)) {
1792 		rc = compute_sid_handle_invalid_context(state, scontext,
1793 							tcontext,
1794 							tclass,
1795 							&newcontext);
1796 		if (rc)
1797 			goto out_unlock;
1798 	}
1799 	/* Obtain the sid for the context. */
1800 	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1801 out_unlock:
1802 	read_unlock(&state->ss->policy_rwlock);
1803 	context_destroy(&newcontext);
1804 out:
1805 	return rc;
1806 }
1807 
1808 /**
1809  * security_transition_sid - Compute the SID for a new subject/object.
1810  * @ssid: source security identifier
1811  * @tsid: target security identifier
1812  * @tclass: target security class
1813  * @out_sid: security identifier for new subject/object
1814  *
1815  * Compute a SID to use for labeling a new subject or object in the
1816  * class @tclass based on a SID pair (@ssid, @tsid).
1817  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1818  * if insufficient memory is available, or %0 if the new SID was
1819  * computed successfully.
1820  */
1821 int security_transition_sid(struct selinux_state *state,
1822 			    u32 ssid, u32 tsid, u16 tclass,
1823 			    const struct qstr *qstr, u32 *out_sid)
1824 {
1825 	return security_compute_sid(state, ssid, tsid, tclass,
1826 				    AVTAB_TRANSITION,
1827 				    qstr ? qstr->name : NULL, out_sid, true);
1828 }
1829 
1830 int security_transition_sid_user(struct selinux_state *state,
1831 				 u32 ssid, u32 tsid, u16 tclass,
1832 				 const char *objname, u32 *out_sid)
1833 {
1834 	return security_compute_sid(state, ssid, tsid, tclass,
1835 				    AVTAB_TRANSITION,
1836 				    objname, out_sid, false);
1837 }
1838 
1839 /**
1840  * security_member_sid - Compute the SID for member selection.
1841  * @ssid: source security identifier
1842  * @tsid: target security identifier
1843  * @tclass: target security class
1844  * @out_sid: security identifier for selected member
1845  *
1846  * Compute a SID to use when selecting a member of a polyinstantiated
1847  * object of class @tclass based on a SID pair (@ssid, @tsid).
1848  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1849  * if insufficient memory is available, or %0 if the SID was
1850  * computed successfully.
1851  */
1852 int security_member_sid(struct selinux_state *state,
1853 			u32 ssid,
1854 			u32 tsid,
1855 			u16 tclass,
1856 			u32 *out_sid)
1857 {
1858 	return security_compute_sid(state, ssid, tsid, tclass,
1859 				    AVTAB_MEMBER, NULL,
1860 				    out_sid, false);
1861 }
1862 
1863 /**
1864  * security_change_sid - Compute the SID for object relabeling.
1865  * @ssid: source security identifier
1866  * @tsid: target security identifier
1867  * @tclass: target security class
1868  * @out_sid: security identifier for selected member
1869  *
1870  * Compute a SID to use for relabeling an object of class @tclass
1871  * based on a SID pair (@ssid, @tsid).
1872  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1873  * if insufficient memory is available, or %0 if the SID was
1874  * computed successfully.
1875  */
1876 int security_change_sid(struct selinux_state *state,
1877 			u32 ssid,
1878 			u32 tsid,
1879 			u16 tclass,
1880 			u32 *out_sid)
1881 {
1882 	return security_compute_sid(state,
1883 				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1884 				    out_sid, false);
1885 }
1886 
1887 /* Clone the SID into the new SID table. */
1888 static int clone_sid(u32 sid,
1889 		     struct context *context,
1890 		     void *arg)
1891 {
1892 	struct sidtab *s = arg;
1893 
1894 	if (sid > SECINITSID_NUM)
1895 		return sidtab_insert(s, sid, context);
1896 	else
1897 		return 0;
1898 }
1899 
1900 static inline int convert_context_handle_invalid_context(
1901 	struct selinux_state *state,
1902 	struct context *context)
1903 {
1904 	struct policydb *policydb = &state->ss->policydb;
1905 	char *s;
1906 	u32 len;
1907 
1908 	if (enforcing_enabled(state))
1909 		return -EINVAL;
1910 
1911 	if (!context_struct_to_string(policydb, context, &s, &len)) {
1912 		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
1913 			s);
1914 		kfree(s);
1915 	}
1916 	return 0;
1917 }
1918 
1919 struct convert_context_args {
1920 	struct selinux_state *state;
1921 	struct policydb *oldp;
1922 	struct policydb *newp;
1923 };
1924 
1925 /*
1926  * Convert the values in the security context
1927  * structure `c' from the values specified
1928  * in the policy `p->oldp' to the values specified
1929  * in the policy `p->newp'.  Verify that the
1930  * context is valid under the new policy.
1931  */
1932 static int convert_context(u32 key,
1933 			   struct context *c,
1934 			   void *p)
1935 {
1936 	struct convert_context_args *args;
1937 	struct context oldc;
1938 	struct ocontext *oc;
1939 	struct mls_range *range;
1940 	struct role_datum *role;
1941 	struct type_datum *typdatum;
1942 	struct user_datum *usrdatum;
1943 	char *s;
1944 	u32 len;
1945 	int rc = 0;
1946 
1947 	if (key <= SECINITSID_NUM)
1948 		goto out;
1949 
1950 	args = p;
1951 
1952 	if (c->str) {
1953 		struct context ctx;
1954 
1955 		rc = -ENOMEM;
1956 		s = kstrdup(c->str, GFP_KERNEL);
1957 		if (!s)
1958 			goto out;
1959 
1960 		rc = string_to_context_struct(args->newp, NULL, s,
1961 					      c->len, &ctx, SECSID_NULL);
1962 		kfree(s);
1963 		if (!rc) {
1964 			pr_info("SELinux:  Context %s became valid (mapped).\n",
1965 			       c->str);
1966 			/* Replace string with mapped representation. */
1967 			kfree(c->str);
1968 			memcpy(c, &ctx, sizeof(*c));
1969 			goto out;
1970 		} else if (rc == -EINVAL) {
1971 			/* Retain string representation for later mapping. */
1972 			rc = 0;
1973 			goto out;
1974 		} else {
1975 			/* Other error condition, e.g. ENOMEM. */
1976 			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
1977 			       c->str, -rc);
1978 			goto out;
1979 		}
1980 	}
1981 
1982 	rc = context_cpy(&oldc, c);
1983 	if (rc)
1984 		goto out;
1985 
1986 	/* Convert the user. */
1987 	rc = -EINVAL;
1988 	usrdatum = hashtab_search(args->newp->p_users.table,
1989 				  sym_name(args->oldp, SYM_USERS, c->user - 1));
1990 	if (!usrdatum)
1991 		goto bad;
1992 	c->user = usrdatum->value;
1993 
1994 	/* Convert the role. */
1995 	rc = -EINVAL;
1996 	role = hashtab_search(args->newp->p_roles.table,
1997 			      sym_name(args->oldp, SYM_ROLES, c->role - 1));
1998 	if (!role)
1999 		goto bad;
2000 	c->role = role->value;
2001 
2002 	/* Convert the type. */
2003 	rc = -EINVAL;
2004 	typdatum = hashtab_search(args->newp->p_types.table,
2005 				  sym_name(args->oldp, SYM_TYPES, c->type - 1));
2006 	if (!typdatum)
2007 		goto bad;
2008 	c->type = typdatum->value;
2009 
2010 	/* Convert the MLS fields if dealing with MLS policies */
2011 	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2012 		rc = mls_convert_context(args->oldp, args->newp, c);
2013 		if (rc)
2014 			goto bad;
2015 	} else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
2016 		/*
2017 		 * Switching between MLS and non-MLS policy:
2018 		 * free any storage used by the MLS fields in the
2019 		 * context for all existing entries in the sidtab.
2020 		 */
2021 		mls_context_destroy(c);
2022 	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2023 		/*
2024 		 * Switching between non-MLS and MLS policy:
2025 		 * ensure that the MLS fields of the context for all
2026 		 * existing entries in the sidtab are filled in with a
2027 		 * suitable default value, likely taken from one of the
2028 		 * initial SIDs.
2029 		 */
2030 		oc = args->newp->ocontexts[OCON_ISID];
2031 		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2032 			oc = oc->next;
2033 		rc = -EINVAL;
2034 		if (!oc) {
2035 			pr_err("SELinux:  unable to look up"
2036 				" the initial SIDs list\n");
2037 			goto bad;
2038 		}
2039 		range = &oc->context[0].range;
2040 		rc = mls_range_set(c, range);
2041 		if (rc)
2042 			goto bad;
2043 	}
2044 
2045 	/* Check the validity of the new context. */
2046 	if (!policydb_context_isvalid(args->newp, c)) {
2047 		rc = convert_context_handle_invalid_context(args->state,
2048 							    &oldc);
2049 		if (rc)
2050 			goto bad;
2051 	}
2052 
2053 	context_destroy(&oldc);
2054 
2055 	rc = 0;
2056 out:
2057 	return rc;
2058 bad:
2059 	/* Map old representation to string and save it. */
2060 	rc = context_struct_to_string(args->oldp, &oldc, &s, &len);
2061 	if (rc)
2062 		return rc;
2063 	context_destroy(&oldc);
2064 	context_destroy(c);
2065 	c->str = s;
2066 	c->len = len;
2067 	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2068 	       c->str);
2069 	rc = 0;
2070 	goto out;
2071 }
2072 
2073 static void security_load_policycaps(struct selinux_state *state)
2074 {
2075 	struct policydb *p = &state->ss->policydb;
2076 	unsigned int i;
2077 	struct ebitmap_node *node;
2078 
2079 	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2080 		state->policycap[i] = ebitmap_get_bit(&p->policycaps, i);
2081 
2082 	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2083 		pr_info("SELinux:  policy capability %s=%d\n",
2084 			selinux_policycap_names[i],
2085 			ebitmap_get_bit(&p->policycaps, i));
2086 
2087 	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2088 		if (i >= ARRAY_SIZE(selinux_policycap_names))
2089 			pr_info("SELinux:  unknown policy capability %u\n",
2090 				i);
2091 	}
2092 }
2093 
2094 static int security_preserve_bools(struct selinux_state *state,
2095 				   struct policydb *newpolicydb);
2096 
2097 /**
2098  * security_load_policy - Load a security policy configuration.
2099  * @data: binary policy data
2100  * @len: length of data in bytes
2101  *
2102  * Load a new set of security policy configuration data,
2103  * validate it and convert the SID table as necessary.
2104  * This function will flush the access vector cache after
2105  * loading the new policy.
2106  */
2107 int security_load_policy(struct selinux_state *state, void *data, size_t len)
2108 {
2109 	struct policydb *policydb;
2110 	struct sidtab *sidtab;
2111 	struct policydb *oldpolicydb, *newpolicydb;
2112 	struct sidtab oldsidtab, newsidtab;
2113 	struct selinux_mapping *oldmapping;
2114 	struct selinux_map newmap;
2115 	struct convert_context_args args;
2116 	u32 seqno;
2117 	int rc = 0;
2118 	struct policy_file file = { data, len }, *fp = &file;
2119 
2120 	oldpolicydb = kcalloc(2, sizeof(*oldpolicydb), GFP_KERNEL);
2121 	if (!oldpolicydb) {
2122 		rc = -ENOMEM;
2123 		goto out;
2124 	}
2125 	newpolicydb = oldpolicydb + 1;
2126 
2127 	policydb = &state->ss->policydb;
2128 	sidtab = &state->ss->sidtab;
2129 
2130 	if (!state->initialized) {
2131 		rc = policydb_read(policydb, fp);
2132 		if (rc)
2133 			goto out;
2134 
2135 		policydb->len = len;
2136 		rc = selinux_set_mapping(policydb, secclass_map,
2137 					 &state->ss->map);
2138 		if (rc) {
2139 			policydb_destroy(policydb);
2140 			goto out;
2141 		}
2142 
2143 		rc = policydb_load_isids(policydb, sidtab);
2144 		if (rc) {
2145 			policydb_destroy(policydb);
2146 			goto out;
2147 		}
2148 
2149 		security_load_policycaps(state);
2150 		state->initialized = 1;
2151 		seqno = ++state->ss->latest_granting;
2152 		selinux_complete_init();
2153 		avc_ss_reset(state->avc, seqno);
2154 		selnl_notify_policyload(seqno);
2155 		selinux_status_update_policyload(state, seqno);
2156 		selinux_netlbl_cache_invalidate();
2157 		selinux_xfrm_notify_policyload();
2158 		goto out;
2159 	}
2160 
2161 #if 0
2162 	sidtab_hash_eval(sidtab, "sids");
2163 #endif
2164 
2165 	rc = policydb_read(newpolicydb, fp);
2166 	if (rc)
2167 		goto out;
2168 
2169 	newpolicydb->len = len;
2170 	/* If switching between different policy types, log MLS status */
2171 	if (policydb->mls_enabled && !newpolicydb->mls_enabled)
2172 		pr_info("SELinux: Disabling MLS support...\n");
2173 	else if (!policydb->mls_enabled && newpolicydb->mls_enabled)
2174 		pr_info("SELinux: Enabling MLS support...\n");
2175 
2176 	rc = policydb_load_isids(newpolicydb, &newsidtab);
2177 	if (rc) {
2178 		pr_err("SELinux:  unable to load the initial SIDs\n");
2179 		policydb_destroy(newpolicydb);
2180 		goto out;
2181 	}
2182 
2183 	rc = selinux_set_mapping(newpolicydb, secclass_map, &newmap);
2184 	if (rc)
2185 		goto err;
2186 
2187 	rc = security_preserve_bools(state, newpolicydb);
2188 	if (rc) {
2189 		pr_err("SELinux:  unable to preserve booleans\n");
2190 		goto err;
2191 	}
2192 
2193 	/* Clone the SID table. */
2194 	sidtab_shutdown(sidtab);
2195 
2196 	rc = sidtab_map(sidtab, clone_sid, &newsidtab);
2197 	if (rc)
2198 		goto err;
2199 
2200 	/*
2201 	 * Convert the internal representations of contexts
2202 	 * in the new SID table.
2203 	 */
2204 	args.state = state;
2205 	args.oldp = policydb;
2206 	args.newp = newpolicydb;
2207 	rc = sidtab_map(&newsidtab, convert_context, &args);
2208 	if (rc) {
2209 		pr_err("SELinux:  unable to convert the internal"
2210 			" representation of contexts in the new SID"
2211 			" table\n");
2212 		goto err;
2213 	}
2214 
2215 	/* Save the old policydb and SID table to free later. */
2216 	memcpy(oldpolicydb, policydb, sizeof(*policydb));
2217 	sidtab_set(&oldsidtab, sidtab);
2218 
2219 	/* Install the new policydb and SID table. */
2220 	write_lock_irq(&state->ss->policy_rwlock);
2221 	memcpy(policydb, newpolicydb, sizeof(*policydb));
2222 	sidtab_set(sidtab, &newsidtab);
2223 	security_load_policycaps(state);
2224 	oldmapping = state->ss->map.mapping;
2225 	state->ss->map.mapping = newmap.mapping;
2226 	state->ss->map.size = newmap.size;
2227 	seqno = ++state->ss->latest_granting;
2228 	write_unlock_irq(&state->ss->policy_rwlock);
2229 
2230 	/* Free the old policydb and SID table. */
2231 	policydb_destroy(oldpolicydb);
2232 	sidtab_destroy(&oldsidtab);
2233 	kfree(oldmapping);
2234 
2235 	avc_ss_reset(state->avc, seqno);
2236 	selnl_notify_policyload(seqno);
2237 	selinux_status_update_policyload(state, seqno);
2238 	selinux_netlbl_cache_invalidate();
2239 	selinux_xfrm_notify_policyload();
2240 
2241 	rc = 0;
2242 	goto out;
2243 
2244 err:
2245 	kfree(newmap.mapping);
2246 	sidtab_destroy(&newsidtab);
2247 	policydb_destroy(newpolicydb);
2248 
2249 out:
2250 	kfree(oldpolicydb);
2251 	return rc;
2252 }
2253 
2254 size_t security_policydb_len(struct selinux_state *state)
2255 {
2256 	struct policydb *p = &state->ss->policydb;
2257 	size_t len;
2258 
2259 	read_lock(&state->ss->policy_rwlock);
2260 	len = p->len;
2261 	read_unlock(&state->ss->policy_rwlock);
2262 
2263 	return len;
2264 }
2265 
2266 /**
2267  * security_port_sid - Obtain the SID for a port.
2268  * @protocol: protocol number
2269  * @port: port number
2270  * @out_sid: security identifier
2271  */
2272 int security_port_sid(struct selinux_state *state,
2273 		      u8 protocol, u16 port, u32 *out_sid)
2274 {
2275 	struct policydb *policydb;
2276 	struct sidtab *sidtab;
2277 	struct ocontext *c;
2278 	int rc = 0;
2279 
2280 	read_lock(&state->ss->policy_rwlock);
2281 
2282 	policydb = &state->ss->policydb;
2283 	sidtab = &state->ss->sidtab;
2284 
2285 	c = policydb->ocontexts[OCON_PORT];
2286 	while (c) {
2287 		if (c->u.port.protocol == protocol &&
2288 		    c->u.port.low_port <= port &&
2289 		    c->u.port.high_port >= port)
2290 			break;
2291 		c = c->next;
2292 	}
2293 
2294 	if (c) {
2295 		if (!c->sid[0]) {
2296 			rc = sidtab_context_to_sid(sidtab,
2297 						   &c->context[0],
2298 						   &c->sid[0]);
2299 			if (rc)
2300 				goto out;
2301 		}
2302 		*out_sid = c->sid[0];
2303 	} else {
2304 		*out_sid = SECINITSID_PORT;
2305 	}
2306 
2307 out:
2308 	read_unlock(&state->ss->policy_rwlock);
2309 	return rc;
2310 }
2311 
2312 /**
2313  * security_pkey_sid - Obtain the SID for a pkey.
2314  * @subnet_prefix: Subnet Prefix
2315  * @pkey_num: pkey number
2316  * @out_sid: security identifier
2317  */
2318 int security_ib_pkey_sid(struct selinux_state *state,
2319 			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2320 {
2321 	struct policydb *policydb;
2322 	struct sidtab *sidtab;
2323 	struct ocontext *c;
2324 	int rc = 0;
2325 
2326 	read_lock(&state->ss->policy_rwlock);
2327 
2328 	policydb = &state->ss->policydb;
2329 	sidtab = &state->ss->sidtab;
2330 
2331 	c = policydb->ocontexts[OCON_IBPKEY];
2332 	while (c) {
2333 		if (c->u.ibpkey.low_pkey <= pkey_num &&
2334 		    c->u.ibpkey.high_pkey >= pkey_num &&
2335 		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2336 			break;
2337 
2338 		c = c->next;
2339 	}
2340 
2341 	if (c) {
2342 		if (!c->sid[0]) {
2343 			rc = sidtab_context_to_sid(sidtab,
2344 						   &c->context[0],
2345 						   &c->sid[0]);
2346 			if (rc)
2347 				goto out;
2348 		}
2349 		*out_sid = c->sid[0];
2350 	} else
2351 		*out_sid = SECINITSID_UNLABELED;
2352 
2353 out:
2354 	read_unlock(&state->ss->policy_rwlock);
2355 	return rc;
2356 }
2357 
2358 /**
2359  * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2360  * @dev_name: device name
2361  * @port: port number
2362  * @out_sid: security identifier
2363  */
2364 int security_ib_endport_sid(struct selinux_state *state,
2365 			    const char *dev_name, u8 port_num, u32 *out_sid)
2366 {
2367 	struct policydb *policydb;
2368 	struct sidtab *sidtab;
2369 	struct ocontext *c;
2370 	int rc = 0;
2371 
2372 	read_lock(&state->ss->policy_rwlock);
2373 
2374 	policydb = &state->ss->policydb;
2375 	sidtab = &state->ss->sidtab;
2376 
2377 	c = policydb->ocontexts[OCON_IBENDPORT];
2378 	while (c) {
2379 		if (c->u.ibendport.port == port_num &&
2380 		    !strncmp(c->u.ibendport.dev_name,
2381 			     dev_name,
2382 			     IB_DEVICE_NAME_MAX))
2383 			break;
2384 
2385 		c = c->next;
2386 	}
2387 
2388 	if (c) {
2389 		if (!c->sid[0]) {
2390 			rc = sidtab_context_to_sid(sidtab,
2391 						   &c->context[0],
2392 						   &c->sid[0]);
2393 			if (rc)
2394 				goto out;
2395 		}
2396 		*out_sid = c->sid[0];
2397 	} else
2398 		*out_sid = SECINITSID_UNLABELED;
2399 
2400 out:
2401 	read_unlock(&state->ss->policy_rwlock);
2402 	return rc;
2403 }
2404 
2405 /**
2406  * security_netif_sid - Obtain the SID for a network interface.
2407  * @name: interface name
2408  * @if_sid: interface SID
2409  */
2410 int security_netif_sid(struct selinux_state *state,
2411 		       char *name, u32 *if_sid)
2412 {
2413 	struct policydb *policydb;
2414 	struct sidtab *sidtab;
2415 	int rc = 0;
2416 	struct ocontext *c;
2417 
2418 	read_lock(&state->ss->policy_rwlock);
2419 
2420 	policydb = &state->ss->policydb;
2421 	sidtab = &state->ss->sidtab;
2422 
2423 	c = policydb->ocontexts[OCON_NETIF];
2424 	while (c) {
2425 		if (strcmp(name, c->u.name) == 0)
2426 			break;
2427 		c = c->next;
2428 	}
2429 
2430 	if (c) {
2431 		if (!c->sid[0] || !c->sid[1]) {
2432 			rc = sidtab_context_to_sid(sidtab,
2433 						  &c->context[0],
2434 						  &c->sid[0]);
2435 			if (rc)
2436 				goto out;
2437 			rc = sidtab_context_to_sid(sidtab,
2438 						   &c->context[1],
2439 						   &c->sid[1]);
2440 			if (rc)
2441 				goto out;
2442 		}
2443 		*if_sid = c->sid[0];
2444 	} else
2445 		*if_sid = SECINITSID_NETIF;
2446 
2447 out:
2448 	read_unlock(&state->ss->policy_rwlock);
2449 	return rc;
2450 }
2451 
2452 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2453 {
2454 	int i, fail = 0;
2455 
2456 	for (i = 0; i < 4; i++)
2457 		if (addr[i] != (input[i] & mask[i])) {
2458 			fail = 1;
2459 			break;
2460 		}
2461 
2462 	return !fail;
2463 }
2464 
2465 /**
2466  * security_node_sid - Obtain the SID for a node (host).
2467  * @domain: communication domain aka address family
2468  * @addrp: address
2469  * @addrlen: address length in bytes
2470  * @out_sid: security identifier
2471  */
2472 int security_node_sid(struct selinux_state *state,
2473 		      u16 domain,
2474 		      void *addrp,
2475 		      u32 addrlen,
2476 		      u32 *out_sid)
2477 {
2478 	struct policydb *policydb;
2479 	struct sidtab *sidtab;
2480 	int rc;
2481 	struct ocontext *c;
2482 
2483 	read_lock(&state->ss->policy_rwlock);
2484 
2485 	policydb = &state->ss->policydb;
2486 	sidtab = &state->ss->sidtab;
2487 
2488 	switch (domain) {
2489 	case AF_INET: {
2490 		u32 addr;
2491 
2492 		rc = -EINVAL;
2493 		if (addrlen != sizeof(u32))
2494 			goto out;
2495 
2496 		addr = *((u32 *)addrp);
2497 
2498 		c = policydb->ocontexts[OCON_NODE];
2499 		while (c) {
2500 			if (c->u.node.addr == (addr & c->u.node.mask))
2501 				break;
2502 			c = c->next;
2503 		}
2504 		break;
2505 	}
2506 
2507 	case AF_INET6:
2508 		rc = -EINVAL;
2509 		if (addrlen != sizeof(u64) * 2)
2510 			goto out;
2511 		c = policydb->ocontexts[OCON_NODE6];
2512 		while (c) {
2513 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2514 						c->u.node6.mask))
2515 				break;
2516 			c = c->next;
2517 		}
2518 		break;
2519 
2520 	default:
2521 		rc = 0;
2522 		*out_sid = SECINITSID_NODE;
2523 		goto out;
2524 	}
2525 
2526 	if (c) {
2527 		if (!c->sid[0]) {
2528 			rc = sidtab_context_to_sid(sidtab,
2529 						   &c->context[0],
2530 						   &c->sid[0]);
2531 			if (rc)
2532 				goto out;
2533 		}
2534 		*out_sid = c->sid[0];
2535 	} else {
2536 		*out_sid = SECINITSID_NODE;
2537 	}
2538 
2539 	rc = 0;
2540 out:
2541 	read_unlock(&state->ss->policy_rwlock);
2542 	return rc;
2543 }
2544 
2545 #define SIDS_NEL 25
2546 
2547 /**
2548  * security_get_user_sids - Obtain reachable SIDs for a user.
2549  * @fromsid: starting SID
2550  * @username: username
2551  * @sids: array of reachable SIDs for user
2552  * @nel: number of elements in @sids
2553  *
2554  * Generate the set of SIDs for legal security contexts
2555  * for a given user that can be reached by @fromsid.
2556  * Set *@sids to point to a dynamically allocated
2557  * array containing the set of SIDs.  Set *@nel to the
2558  * number of elements in the array.
2559  */
2560 
2561 int security_get_user_sids(struct selinux_state *state,
2562 			   u32 fromsid,
2563 			   char *username,
2564 			   u32 **sids,
2565 			   u32 *nel)
2566 {
2567 	struct policydb *policydb;
2568 	struct sidtab *sidtab;
2569 	struct context *fromcon, usercon;
2570 	u32 *mysids = NULL, *mysids2, sid;
2571 	u32 mynel = 0, maxnel = SIDS_NEL;
2572 	struct user_datum *user;
2573 	struct role_datum *role;
2574 	struct ebitmap_node *rnode, *tnode;
2575 	int rc = 0, i, j;
2576 
2577 	*sids = NULL;
2578 	*nel = 0;
2579 
2580 	if (!state->initialized)
2581 		goto out;
2582 
2583 	read_lock(&state->ss->policy_rwlock);
2584 
2585 	policydb = &state->ss->policydb;
2586 	sidtab = &state->ss->sidtab;
2587 
2588 	context_init(&usercon);
2589 
2590 	rc = -EINVAL;
2591 	fromcon = sidtab_search(sidtab, fromsid);
2592 	if (!fromcon)
2593 		goto out_unlock;
2594 
2595 	rc = -EINVAL;
2596 	user = hashtab_search(policydb->p_users.table, username);
2597 	if (!user)
2598 		goto out_unlock;
2599 
2600 	usercon.user = user->value;
2601 
2602 	rc = -ENOMEM;
2603 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2604 	if (!mysids)
2605 		goto out_unlock;
2606 
2607 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2608 		role = policydb->role_val_to_struct[i];
2609 		usercon.role = i + 1;
2610 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2611 			usercon.type = j + 1;
2612 
2613 			if (mls_setup_user_range(policydb, fromcon, user,
2614 						 &usercon))
2615 				continue;
2616 
2617 			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2618 			if (rc)
2619 				goto out_unlock;
2620 			if (mynel < maxnel) {
2621 				mysids[mynel++] = sid;
2622 			} else {
2623 				rc = -ENOMEM;
2624 				maxnel += SIDS_NEL;
2625 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2626 				if (!mysids2)
2627 					goto out_unlock;
2628 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2629 				kfree(mysids);
2630 				mysids = mysids2;
2631 				mysids[mynel++] = sid;
2632 			}
2633 		}
2634 	}
2635 	rc = 0;
2636 out_unlock:
2637 	read_unlock(&state->ss->policy_rwlock);
2638 	if (rc || !mynel) {
2639 		kfree(mysids);
2640 		goto out;
2641 	}
2642 
2643 	rc = -ENOMEM;
2644 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2645 	if (!mysids2) {
2646 		kfree(mysids);
2647 		goto out;
2648 	}
2649 	for (i = 0, j = 0; i < mynel; i++) {
2650 		struct av_decision dummy_avd;
2651 		rc = avc_has_perm_noaudit(state,
2652 					  fromsid, mysids[i],
2653 					  SECCLASS_PROCESS, /* kernel value */
2654 					  PROCESS__TRANSITION, AVC_STRICT,
2655 					  &dummy_avd);
2656 		if (!rc)
2657 			mysids2[j++] = mysids[i];
2658 		cond_resched();
2659 	}
2660 	rc = 0;
2661 	kfree(mysids);
2662 	*sids = mysids2;
2663 	*nel = j;
2664 out:
2665 	return rc;
2666 }
2667 
2668 /**
2669  * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2670  * @fstype: filesystem type
2671  * @path: path from root of mount
2672  * @sclass: file security class
2673  * @sid: SID for path
2674  *
2675  * Obtain a SID to use for a file in a filesystem that
2676  * cannot support xattr or use a fixed labeling behavior like
2677  * transition SIDs or task SIDs.
2678  *
2679  * The caller must acquire the policy_rwlock before calling this function.
2680  */
2681 static inline int __security_genfs_sid(struct selinux_state *state,
2682 				       const char *fstype,
2683 				       char *path,
2684 				       u16 orig_sclass,
2685 				       u32 *sid)
2686 {
2687 	struct policydb *policydb = &state->ss->policydb;
2688 	struct sidtab *sidtab = &state->ss->sidtab;
2689 	int len;
2690 	u16 sclass;
2691 	struct genfs *genfs;
2692 	struct ocontext *c;
2693 	int rc, cmp = 0;
2694 
2695 	while (path[0] == '/' && path[1] == '/')
2696 		path++;
2697 
2698 	sclass = unmap_class(&state->ss->map, orig_sclass);
2699 	*sid = SECINITSID_UNLABELED;
2700 
2701 	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2702 		cmp = strcmp(fstype, genfs->fstype);
2703 		if (cmp <= 0)
2704 			break;
2705 	}
2706 
2707 	rc = -ENOENT;
2708 	if (!genfs || cmp)
2709 		goto out;
2710 
2711 	for (c = genfs->head; c; c = c->next) {
2712 		len = strlen(c->u.name);
2713 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2714 		    (strncmp(c->u.name, path, len) == 0))
2715 			break;
2716 	}
2717 
2718 	rc = -ENOENT;
2719 	if (!c)
2720 		goto out;
2721 
2722 	if (!c->sid[0]) {
2723 		rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2724 		if (rc)
2725 			goto out;
2726 	}
2727 
2728 	*sid = c->sid[0];
2729 	rc = 0;
2730 out:
2731 	return rc;
2732 }
2733 
2734 /**
2735  * security_genfs_sid - Obtain a SID for a file in a filesystem
2736  * @fstype: filesystem type
2737  * @path: path from root of mount
2738  * @sclass: file security class
2739  * @sid: SID for path
2740  *
2741  * Acquire policy_rwlock before calling __security_genfs_sid() and release
2742  * it afterward.
2743  */
2744 int security_genfs_sid(struct selinux_state *state,
2745 		       const char *fstype,
2746 		       char *path,
2747 		       u16 orig_sclass,
2748 		       u32 *sid)
2749 {
2750 	int retval;
2751 
2752 	read_lock(&state->ss->policy_rwlock);
2753 	retval = __security_genfs_sid(state, fstype, path, orig_sclass, sid);
2754 	read_unlock(&state->ss->policy_rwlock);
2755 	return retval;
2756 }
2757 
2758 /**
2759  * security_fs_use - Determine how to handle labeling for a filesystem.
2760  * @sb: superblock in question
2761  */
2762 int security_fs_use(struct selinux_state *state, struct super_block *sb)
2763 {
2764 	struct policydb *policydb;
2765 	struct sidtab *sidtab;
2766 	int rc = 0;
2767 	struct ocontext *c;
2768 	struct superblock_security_struct *sbsec = sb->s_security;
2769 	const char *fstype = sb->s_type->name;
2770 
2771 	read_lock(&state->ss->policy_rwlock);
2772 
2773 	policydb = &state->ss->policydb;
2774 	sidtab = &state->ss->sidtab;
2775 
2776 	c = policydb->ocontexts[OCON_FSUSE];
2777 	while (c) {
2778 		if (strcmp(fstype, c->u.name) == 0)
2779 			break;
2780 		c = c->next;
2781 	}
2782 
2783 	if (c) {
2784 		sbsec->behavior = c->v.behavior;
2785 		if (!c->sid[0]) {
2786 			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2787 						   &c->sid[0]);
2788 			if (rc)
2789 				goto out;
2790 		}
2791 		sbsec->sid = c->sid[0];
2792 	} else {
2793 		rc = __security_genfs_sid(state, fstype, "/", SECCLASS_DIR,
2794 					  &sbsec->sid);
2795 		if (rc) {
2796 			sbsec->behavior = SECURITY_FS_USE_NONE;
2797 			rc = 0;
2798 		} else {
2799 			sbsec->behavior = SECURITY_FS_USE_GENFS;
2800 		}
2801 	}
2802 
2803 out:
2804 	read_unlock(&state->ss->policy_rwlock);
2805 	return rc;
2806 }
2807 
2808 int security_get_bools(struct selinux_state *state,
2809 		       int *len, char ***names, int **values)
2810 {
2811 	struct policydb *policydb;
2812 	int i, rc;
2813 
2814 	if (!state->initialized) {
2815 		*len = 0;
2816 		*names = NULL;
2817 		*values = NULL;
2818 		return 0;
2819 	}
2820 
2821 	read_lock(&state->ss->policy_rwlock);
2822 
2823 	policydb = &state->ss->policydb;
2824 
2825 	*names = NULL;
2826 	*values = NULL;
2827 
2828 	rc = 0;
2829 	*len = policydb->p_bools.nprim;
2830 	if (!*len)
2831 		goto out;
2832 
2833 	rc = -ENOMEM;
2834 	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2835 	if (!*names)
2836 		goto err;
2837 
2838 	rc = -ENOMEM;
2839 	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2840 	if (!*values)
2841 		goto err;
2842 
2843 	for (i = 0; i < *len; i++) {
2844 		(*values)[i] = policydb->bool_val_to_struct[i]->state;
2845 
2846 		rc = -ENOMEM;
2847 		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2848 				      GFP_ATOMIC);
2849 		if (!(*names)[i])
2850 			goto err;
2851 	}
2852 	rc = 0;
2853 out:
2854 	read_unlock(&state->ss->policy_rwlock);
2855 	return rc;
2856 err:
2857 	if (*names) {
2858 		for (i = 0; i < *len; i++)
2859 			kfree((*names)[i]);
2860 	}
2861 	kfree(*values);
2862 	goto out;
2863 }
2864 
2865 
2866 int security_set_bools(struct selinux_state *state, int len, int *values)
2867 {
2868 	struct policydb *policydb;
2869 	int i, rc;
2870 	int lenp, seqno = 0;
2871 	struct cond_node *cur;
2872 
2873 	write_lock_irq(&state->ss->policy_rwlock);
2874 
2875 	policydb = &state->ss->policydb;
2876 
2877 	rc = -EFAULT;
2878 	lenp = policydb->p_bools.nprim;
2879 	if (len != lenp)
2880 		goto out;
2881 
2882 	for (i = 0; i < len; i++) {
2883 		if (!!values[i] != policydb->bool_val_to_struct[i]->state) {
2884 			audit_log(audit_context(), GFP_ATOMIC,
2885 				AUDIT_MAC_CONFIG_CHANGE,
2886 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2887 				sym_name(policydb, SYM_BOOLS, i),
2888 				!!values[i],
2889 				policydb->bool_val_to_struct[i]->state,
2890 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
2891 				audit_get_sessionid(current));
2892 		}
2893 		if (values[i])
2894 			policydb->bool_val_to_struct[i]->state = 1;
2895 		else
2896 			policydb->bool_val_to_struct[i]->state = 0;
2897 	}
2898 
2899 	for (cur = policydb->cond_list; cur; cur = cur->next) {
2900 		rc = evaluate_cond_node(policydb, cur);
2901 		if (rc)
2902 			goto out;
2903 	}
2904 
2905 	seqno = ++state->ss->latest_granting;
2906 	rc = 0;
2907 out:
2908 	write_unlock_irq(&state->ss->policy_rwlock);
2909 	if (!rc) {
2910 		avc_ss_reset(state->avc, seqno);
2911 		selnl_notify_policyload(seqno);
2912 		selinux_status_update_policyload(state, seqno);
2913 		selinux_xfrm_notify_policyload();
2914 	}
2915 	return rc;
2916 }
2917 
2918 int security_get_bool_value(struct selinux_state *state,
2919 			    int index)
2920 {
2921 	struct policydb *policydb;
2922 	int rc;
2923 	int len;
2924 
2925 	read_lock(&state->ss->policy_rwlock);
2926 
2927 	policydb = &state->ss->policydb;
2928 
2929 	rc = -EFAULT;
2930 	len = policydb->p_bools.nprim;
2931 	if (index >= len)
2932 		goto out;
2933 
2934 	rc = policydb->bool_val_to_struct[index]->state;
2935 out:
2936 	read_unlock(&state->ss->policy_rwlock);
2937 	return rc;
2938 }
2939 
2940 static int security_preserve_bools(struct selinux_state *state,
2941 				   struct policydb *policydb)
2942 {
2943 	int rc, nbools = 0, *bvalues = NULL, i;
2944 	char **bnames = NULL;
2945 	struct cond_bool_datum *booldatum;
2946 	struct cond_node *cur;
2947 
2948 	rc = security_get_bools(state, &nbools, &bnames, &bvalues);
2949 	if (rc)
2950 		goto out;
2951 	for (i = 0; i < nbools; i++) {
2952 		booldatum = hashtab_search(policydb->p_bools.table, bnames[i]);
2953 		if (booldatum)
2954 			booldatum->state = bvalues[i];
2955 	}
2956 	for (cur = policydb->cond_list; cur; cur = cur->next) {
2957 		rc = evaluate_cond_node(policydb, cur);
2958 		if (rc)
2959 			goto out;
2960 	}
2961 
2962 out:
2963 	if (bnames) {
2964 		for (i = 0; i < nbools; i++)
2965 			kfree(bnames[i]);
2966 	}
2967 	kfree(bnames);
2968 	kfree(bvalues);
2969 	return rc;
2970 }
2971 
2972 /*
2973  * security_sid_mls_copy() - computes a new sid based on the given
2974  * sid and the mls portion of mls_sid.
2975  */
2976 int security_sid_mls_copy(struct selinux_state *state,
2977 			  u32 sid, u32 mls_sid, u32 *new_sid)
2978 {
2979 	struct policydb *policydb = &state->ss->policydb;
2980 	struct sidtab *sidtab = &state->ss->sidtab;
2981 	struct context *context1;
2982 	struct context *context2;
2983 	struct context newcon;
2984 	char *s;
2985 	u32 len;
2986 	int rc;
2987 
2988 	rc = 0;
2989 	if (!state->initialized || !policydb->mls_enabled) {
2990 		*new_sid = sid;
2991 		goto out;
2992 	}
2993 
2994 	context_init(&newcon);
2995 
2996 	read_lock(&state->ss->policy_rwlock);
2997 
2998 	rc = -EINVAL;
2999 	context1 = sidtab_search(sidtab, sid);
3000 	if (!context1) {
3001 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3002 			__func__, sid);
3003 		goto out_unlock;
3004 	}
3005 
3006 	rc = -EINVAL;
3007 	context2 = sidtab_search(sidtab, mls_sid);
3008 	if (!context2) {
3009 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3010 			__func__, mls_sid);
3011 		goto out_unlock;
3012 	}
3013 
3014 	newcon.user = context1->user;
3015 	newcon.role = context1->role;
3016 	newcon.type = context1->type;
3017 	rc = mls_context_cpy(&newcon, context2);
3018 	if (rc)
3019 		goto out_unlock;
3020 
3021 	/* Check the validity of the new context. */
3022 	if (!policydb_context_isvalid(policydb, &newcon)) {
3023 		rc = convert_context_handle_invalid_context(state, &newcon);
3024 		if (rc) {
3025 			if (!context_struct_to_string(policydb, &newcon, &s,
3026 						      &len)) {
3027 				audit_log(audit_context(),
3028 					  GFP_ATOMIC, AUDIT_SELINUX_ERR,
3029 					  "op=security_sid_mls_copy "
3030 					  "invalid_context=%s", s);
3031 				kfree(s);
3032 			}
3033 			goto out_unlock;
3034 		}
3035 	}
3036 
3037 	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3038 out_unlock:
3039 	read_unlock(&state->ss->policy_rwlock);
3040 	context_destroy(&newcon);
3041 out:
3042 	return rc;
3043 }
3044 
3045 /**
3046  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3047  * @nlbl_sid: NetLabel SID
3048  * @nlbl_type: NetLabel labeling protocol type
3049  * @xfrm_sid: XFRM SID
3050  *
3051  * Description:
3052  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3053  * resolved into a single SID it is returned via @peer_sid and the function
3054  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3055  * returns a negative value.  A table summarizing the behavior is below:
3056  *
3057  *                                 | function return |      @sid
3058  *   ------------------------------+-----------------+-----------------
3059  *   no peer labels                |        0        |    SECSID_NULL
3060  *   single peer label             |        0        |    <peer_label>
3061  *   multiple, consistent labels   |        0        |    <peer_label>
3062  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3063  *
3064  */
3065 int security_net_peersid_resolve(struct selinux_state *state,
3066 				 u32 nlbl_sid, u32 nlbl_type,
3067 				 u32 xfrm_sid,
3068 				 u32 *peer_sid)
3069 {
3070 	struct policydb *policydb = &state->ss->policydb;
3071 	struct sidtab *sidtab = &state->ss->sidtab;
3072 	int rc;
3073 	struct context *nlbl_ctx;
3074 	struct context *xfrm_ctx;
3075 
3076 	*peer_sid = SECSID_NULL;
3077 
3078 	/* handle the common (which also happens to be the set of easy) cases
3079 	 * right away, these two if statements catch everything involving a
3080 	 * single or absent peer SID/label */
3081 	if (xfrm_sid == SECSID_NULL) {
3082 		*peer_sid = nlbl_sid;
3083 		return 0;
3084 	}
3085 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3086 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3087 	 * is present */
3088 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3089 		*peer_sid = xfrm_sid;
3090 		return 0;
3091 	}
3092 
3093 	/*
3094 	 * We don't need to check initialized here since the only way both
3095 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3096 	 * security server was initialized and state->initialized was true.
3097 	 */
3098 	if (!policydb->mls_enabled)
3099 		return 0;
3100 
3101 	read_lock(&state->ss->policy_rwlock);
3102 
3103 	rc = -EINVAL;
3104 	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3105 	if (!nlbl_ctx) {
3106 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3107 		       __func__, nlbl_sid);
3108 		goto out;
3109 	}
3110 	rc = -EINVAL;
3111 	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3112 	if (!xfrm_ctx) {
3113 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3114 		       __func__, xfrm_sid);
3115 		goto out;
3116 	}
3117 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3118 	if (rc)
3119 		goto out;
3120 
3121 	/* at present NetLabel SIDs/labels really only carry MLS
3122 	 * information so if the MLS portion of the NetLabel SID
3123 	 * matches the MLS portion of the labeled XFRM SID/label
3124 	 * then pass along the XFRM SID as it is the most
3125 	 * expressive */
3126 	*peer_sid = xfrm_sid;
3127 out:
3128 	read_unlock(&state->ss->policy_rwlock);
3129 	return rc;
3130 }
3131 
3132 static int get_classes_callback(void *k, void *d, void *args)
3133 {
3134 	struct class_datum *datum = d;
3135 	char *name = k, **classes = args;
3136 	int value = datum->value - 1;
3137 
3138 	classes[value] = kstrdup(name, GFP_ATOMIC);
3139 	if (!classes[value])
3140 		return -ENOMEM;
3141 
3142 	return 0;
3143 }
3144 
3145 int security_get_classes(struct selinux_state *state,
3146 			 char ***classes, int *nclasses)
3147 {
3148 	struct policydb *policydb = &state->ss->policydb;
3149 	int rc;
3150 
3151 	if (!state->initialized) {
3152 		*nclasses = 0;
3153 		*classes = NULL;
3154 		return 0;
3155 	}
3156 
3157 	read_lock(&state->ss->policy_rwlock);
3158 
3159 	rc = -ENOMEM;
3160 	*nclasses = policydb->p_classes.nprim;
3161 	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3162 	if (!*classes)
3163 		goto out;
3164 
3165 	rc = hashtab_map(policydb->p_classes.table, get_classes_callback,
3166 			*classes);
3167 	if (rc) {
3168 		int i;
3169 		for (i = 0; i < *nclasses; i++)
3170 			kfree((*classes)[i]);
3171 		kfree(*classes);
3172 	}
3173 
3174 out:
3175 	read_unlock(&state->ss->policy_rwlock);
3176 	return rc;
3177 }
3178 
3179 static int get_permissions_callback(void *k, void *d, void *args)
3180 {
3181 	struct perm_datum *datum = d;
3182 	char *name = k, **perms = args;
3183 	int value = datum->value - 1;
3184 
3185 	perms[value] = kstrdup(name, GFP_ATOMIC);
3186 	if (!perms[value])
3187 		return -ENOMEM;
3188 
3189 	return 0;
3190 }
3191 
3192 int security_get_permissions(struct selinux_state *state,
3193 			     char *class, char ***perms, int *nperms)
3194 {
3195 	struct policydb *policydb = &state->ss->policydb;
3196 	int rc, i;
3197 	struct class_datum *match;
3198 
3199 	read_lock(&state->ss->policy_rwlock);
3200 
3201 	rc = -EINVAL;
3202 	match = hashtab_search(policydb->p_classes.table, class);
3203 	if (!match) {
3204 		pr_err("SELinux: %s:  unrecognized class %s\n",
3205 			__func__, class);
3206 		goto out;
3207 	}
3208 
3209 	rc = -ENOMEM;
3210 	*nperms = match->permissions.nprim;
3211 	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3212 	if (!*perms)
3213 		goto out;
3214 
3215 	if (match->comdatum) {
3216 		rc = hashtab_map(match->comdatum->permissions.table,
3217 				get_permissions_callback, *perms);
3218 		if (rc)
3219 			goto err;
3220 	}
3221 
3222 	rc = hashtab_map(match->permissions.table, get_permissions_callback,
3223 			*perms);
3224 	if (rc)
3225 		goto err;
3226 
3227 out:
3228 	read_unlock(&state->ss->policy_rwlock);
3229 	return rc;
3230 
3231 err:
3232 	read_unlock(&state->ss->policy_rwlock);
3233 	for (i = 0; i < *nperms; i++)
3234 		kfree((*perms)[i]);
3235 	kfree(*perms);
3236 	return rc;
3237 }
3238 
3239 int security_get_reject_unknown(struct selinux_state *state)
3240 {
3241 	return state->ss->policydb.reject_unknown;
3242 }
3243 
3244 int security_get_allow_unknown(struct selinux_state *state)
3245 {
3246 	return state->ss->policydb.allow_unknown;
3247 }
3248 
3249 /**
3250  * security_policycap_supported - Check for a specific policy capability
3251  * @req_cap: capability
3252  *
3253  * Description:
3254  * This function queries the currently loaded policy to see if it supports the
3255  * capability specified by @req_cap.  Returns true (1) if the capability is
3256  * supported, false (0) if it isn't supported.
3257  *
3258  */
3259 int security_policycap_supported(struct selinux_state *state,
3260 				 unsigned int req_cap)
3261 {
3262 	struct policydb *policydb = &state->ss->policydb;
3263 	int rc;
3264 
3265 	read_lock(&state->ss->policy_rwlock);
3266 	rc = ebitmap_get_bit(&policydb->policycaps, req_cap);
3267 	read_unlock(&state->ss->policy_rwlock);
3268 
3269 	return rc;
3270 }
3271 
3272 struct selinux_audit_rule {
3273 	u32 au_seqno;
3274 	struct context au_ctxt;
3275 };
3276 
3277 void selinux_audit_rule_free(void *vrule)
3278 {
3279 	struct selinux_audit_rule *rule = vrule;
3280 
3281 	if (rule) {
3282 		context_destroy(&rule->au_ctxt);
3283 		kfree(rule);
3284 	}
3285 }
3286 
3287 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3288 {
3289 	struct selinux_state *state = &selinux_state;
3290 	struct policydb *policydb = &state->ss->policydb;
3291 	struct selinux_audit_rule *tmprule;
3292 	struct role_datum *roledatum;
3293 	struct type_datum *typedatum;
3294 	struct user_datum *userdatum;
3295 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3296 	int rc = 0;
3297 
3298 	*rule = NULL;
3299 
3300 	if (!state->initialized)
3301 		return -EOPNOTSUPP;
3302 
3303 	switch (field) {
3304 	case AUDIT_SUBJ_USER:
3305 	case AUDIT_SUBJ_ROLE:
3306 	case AUDIT_SUBJ_TYPE:
3307 	case AUDIT_OBJ_USER:
3308 	case AUDIT_OBJ_ROLE:
3309 	case AUDIT_OBJ_TYPE:
3310 		/* only 'equals' and 'not equals' fit user, role, and type */
3311 		if (op != Audit_equal && op != Audit_not_equal)
3312 			return -EINVAL;
3313 		break;
3314 	case AUDIT_SUBJ_SEN:
3315 	case AUDIT_SUBJ_CLR:
3316 	case AUDIT_OBJ_LEV_LOW:
3317 	case AUDIT_OBJ_LEV_HIGH:
3318 		/* we do not allow a range, indicated by the presence of '-' */
3319 		if (strchr(rulestr, '-'))
3320 			return -EINVAL;
3321 		break;
3322 	default:
3323 		/* only the above fields are valid */
3324 		return -EINVAL;
3325 	}
3326 
3327 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3328 	if (!tmprule)
3329 		return -ENOMEM;
3330 
3331 	context_init(&tmprule->au_ctxt);
3332 
3333 	read_lock(&state->ss->policy_rwlock);
3334 
3335 	tmprule->au_seqno = state->ss->latest_granting;
3336 
3337 	switch (field) {
3338 	case AUDIT_SUBJ_USER:
3339 	case AUDIT_OBJ_USER:
3340 		rc = -EINVAL;
3341 		userdatum = hashtab_search(policydb->p_users.table, rulestr);
3342 		if (!userdatum)
3343 			goto out;
3344 		tmprule->au_ctxt.user = userdatum->value;
3345 		break;
3346 	case AUDIT_SUBJ_ROLE:
3347 	case AUDIT_OBJ_ROLE:
3348 		rc = -EINVAL;
3349 		roledatum = hashtab_search(policydb->p_roles.table, rulestr);
3350 		if (!roledatum)
3351 			goto out;
3352 		tmprule->au_ctxt.role = roledatum->value;
3353 		break;
3354 	case AUDIT_SUBJ_TYPE:
3355 	case AUDIT_OBJ_TYPE:
3356 		rc = -EINVAL;
3357 		typedatum = hashtab_search(policydb->p_types.table, rulestr);
3358 		if (!typedatum)
3359 			goto out;
3360 		tmprule->au_ctxt.type = typedatum->value;
3361 		break;
3362 	case AUDIT_SUBJ_SEN:
3363 	case AUDIT_SUBJ_CLR:
3364 	case AUDIT_OBJ_LEV_LOW:
3365 	case AUDIT_OBJ_LEV_HIGH:
3366 		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3367 				     GFP_ATOMIC);
3368 		if (rc)
3369 			goto out;
3370 		break;
3371 	}
3372 	rc = 0;
3373 out:
3374 	read_unlock(&state->ss->policy_rwlock);
3375 
3376 	if (rc) {
3377 		selinux_audit_rule_free(tmprule);
3378 		tmprule = NULL;
3379 	}
3380 
3381 	*rule = tmprule;
3382 
3383 	return rc;
3384 }
3385 
3386 /* Check to see if the rule contains any selinux fields */
3387 int selinux_audit_rule_known(struct audit_krule *rule)
3388 {
3389 	int i;
3390 
3391 	for (i = 0; i < rule->field_count; i++) {
3392 		struct audit_field *f = &rule->fields[i];
3393 		switch (f->type) {
3394 		case AUDIT_SUBJ_USER:
3395 		case AUDIT_SUBJ_ROLE:
3396 		case AUDIT_SUBJ_TYPE:
3397 		case AUDIT_SUBJ_SEN:
3398 		case AUDIT_SUBJ_CLR:
3399 		case AUDIT_OBJ_USER:
3400 		case AUDIT_OBJ_ROLE:
3401 		case AUDIT_OBJ_TYPE:
3402 		case AUDIT_OBJ_LEV_LOW:
3403 		case AUDIT_OBJ_LEV_HIGH:
3404 			return 1;
3405 		}
3406 	}
3407 
3408 	return 0;
3409 }
3410 
3411 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
3412 			     struct audit_context *actx)
3413 {
3414 	struct selinux_state *state = &selinux_state;
3415 	struct context *ctxt;
3416 	struct mls_level *level;
3417 	struct selinux_audit_rule *rule = vrule;
3418 	int match = 0;
3419 
3420 	if (unlikely(!rule)) {
3421 		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3422 		return -ENOENT;
3423 	}
3424 
3425 	read_lock(&state->ss->policy_rwlock);
3426 
3427 	if (rule->au_seqno < state->ss->latest_granting) {
3428 		match = -ESTALE;
3429 		goto out;
3430 	}
3431 
3432 	ctxt = sidtab_search(&state->ss->sidtab, sid);
3433 	if (unlikely(!ctxt)) {
3434 		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3435 			  sid);
3436 		match = -ENOENT;
3437 		goto out;
3438 	}
3439 
3440 	/* a field/op pair that is not caught here will simply fall through
3441 	   without a match */
3442 	switch (field) {
3443 	case AUDIT_SUBJ_USER:
3444 	case AUDIT_OBJ_USER:
3445 		switch (op) {
3446 		case Audit_equal:
3447 			match = (ctxt->user == rule->au_ctxt.user);
3448 			break;
3449 		case Audit_not_equal:
3450 			match = (ctxt->user != rule->au_ctxt.user);
3451 			break;
3452 		}
3453 		break;
3454 	case AUDIT_SUBJ_ROLE:
3455 	case AUDIT_OBJ_ROLE:
3456 		switch (op) {
3457 		case Audit_equal:
3458 			match = (ctxt->role == rule->au_ctxt.role);
3459 			break;
3460 		case Audit_not_equal:
3461 			match = (ctxt->role != rule->au_ctxt.role);
3462 			break;
3463 		}
3464 		break;
3465 	case AUDIT_SUBJ_TYPE:
3466 	case AUDIT_OBJ_TYPE:
3467 		switch (op) {
3468 		case Audit_equal:
3469 			match = (ctxt->type == rule->au_ctxt.type);
3470 			break;
3471 		case Audit_not_equal:
3472 			match = (ctxt->type != rule->au_ctxt.type);
3473 			break;
3474 		}
3475 		break;
3476 	case AUDIT_SUBJ_SEN:
3477 	case AUDIT_SUBJ_CLR:
3478 	case AUDIT_OBJ_LEV_LOW:
3479 	case AUDIT_OBJ_LEV_HIGH:
3480 		level = ((field == AUDIT_SUBJ_SEN ||
3481 			  field == AUDIT_OBJ_LEV_LOW) ?
3482 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3483 		switch (op) {
3484 		case Audit_equal:
3485 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3486 					     level);
3487 			break;
3488 		case Audit_not_equal:
3489 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3490 					      level);
3491 			break;
3492 		case Audit_lt:
3493 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3494 					       level) &&
3495 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3496 					       level));
3497 			break;
3498 		case Audit_le:
3499 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3500 					      level);
3501 			break;
3502 		case Audit_gt:
3503 			match = (mls_level_dom(level,
3504 					      &rule->au_ctxt.range.level[0]) &&
3505 				 !mls_level_eq(level,
3506 					       &rule->au_ctxt.range.level[0]));
3507 			break;
3508 		case Audit_ge:
3509 			match = mls_level_dom(level,
3510 					      &rule->au_ctxt.range.level[0]);
3511 			break;
3512 		}
3513 	}
3514 
3515 out:
3516 	read_unlock(&state->ss->policy_rwlock);
3517 	return match;
3518 }
3519 
3520 static int (*aurule_callback)(void) = audit_update_lsm_rules;
3521 
3522 static int aurule_avc_callback(u32 event)
3523 {
3524 	int err = 0;
3525 
3526 	if (event == AVC_CALLBACK_RESET && aurule_callback)
3527 		err = aurule_callback();
3528 	return err;
3529 }
3530 
3531 static int __init aurule_init(void)
3532 {
3533 	int err;
3534 
3535 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3536 	if (err)
3537 		panic("avc_add_callback() failed, error %d\n", err);
3538 
3539 	return err;
3540 }
3541 __initcall(aurule_init);
3542 
3543 #ifdef CONFIG_NETLABEL
3544 /**
3545  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3546  * @secattr: the NetLabel packet security attributes
3547  * @sid: the SELinux SID
3548  *
3549  * Description:
3550  * Attempt to cache the context in @ctx, which was derived from the packet in
3551  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3552  * already been initialized.
3553  *
3554  */
3555 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3556 				      u32 sid)
3557 {
3558 	u32 *sid_cache;
3559 
3560 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3561 	if (sid_cache == NULL)
3562 		return;
3563 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3564 	if (secattr->cache == NULL) {
3565 		kfree(sid_cache);
3566 		return;
3567 	}
3568 
3569 	*sid_cache = sid;
3570 	secattr->cache->free = kfree;
3571 	secattr->cache->data = sid_cache;
3572 	secattr->flags |= NETLBL_SECATTR_CACHE;
3573 }
3574 
3575 /**
3576  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3577  * @secattr: the NetLabel packet security attributes
3578  * @sid: the SELinux SID
3579  *
3580  * Description:
3581  * Convert the given NetLabel security attributes in @secattr into a
3582  * SELinux SID.  If the @secattr field does not contain a full SELinux
3583  * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3584  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3585  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3586  * conversion for future lookups.  Returns zero on success, negative values on
3587  * failure.
3588  *
3589  */
3590 int security_netlbl_secattr_to_sid(struct selinux_state *state,
3591 				   struct netlbl_lsm_secattr *secattr,
3592 				   u32 *sid)
3593 {
3594 	struct policydb *policydb = &state->ss->policydb;
3595 	struct sidtab *sidtab = &state->ss->sidtab;
3596 	int rc;
3597 	struct context *ctx;
3598 	struct context ctx_new;
3599 
3600 	if (!state->initialized) {
3601 		*sid = SECSID_NULL;
3602 		return 0;
3603 	}
3604 
3605 	read_lock(&state->ss->policy_rwlock);
3606 
3607 	if (secattr->flags & NETLBL_SECATTR_CACHE)
3608 		*sid = *(u32 *)secattr->cache->data;
3609 	else if (secattr->flags & NETLBL_SECATTR_SECID)
3610 		*sid = secattr->attr.secid;
3611 	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3612 		rc = -EIDRM;
3613 		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3614 		if (ctx == NULL)
3615 			goto out;
3616 
3617 		context_init(&ctx_new);
3618 		ctx_new.user = ctx->user;
3619 		ctx_new.role = ctx->role;
3620 		ctx_new.type = ctx->type;
3621 		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3622 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3623 			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3624 			if (rc)
3625 				goto out;
3626 		}
3627 		rc = -EIDRM;
3628 		if (!mls_context_isvalid(policydb, &ctx_new))
3629 			goto out_free;
3630 
3631 		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3632 		if (rc)
3633 			goto out_free;
3634 
3635 		security_netlbl_cache_add(secattr, *sid);
3636 
3637 		ebitmap_destroy(&ctx_new.range.level[0].cat);
3638 	} else
3639 		*sid = SECSID_NULL;
3640 
3641 	read_unlock(&state->ss->policy_rwlock);
3642 	return 0;
3643 out_free:
3644 	ebitmap_destroy(&ctx_new.range.level[0].cat);
3645 out:
3646 	read_unlock(&state->ss->policy_rwlock);
3647 	return rc;
3648 }
3649 
3650 /**
3651  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3652  * @sid: the SELinux SID
3653  * @secattr: the NetLabel packet security attributes
3654  *
3655  * Description:
3656  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3657  * Returns zero on success, negative values on failure.
3658  *
3659  */
3660 int security_netlbl_sid_to_secattr(struct selinux_state *state,
3661 				   u32 sid, struct netlbl_lsm_secattr *secattr)
3662 {
3663 	struct policydb *policydb = &state->ss->policydb;
3664 	int rc;
3665 	struct context *ctx;
3666 
3667 	if (!state->initialized)
3668 		return 0;
3669 
3670 	read_lock(&state->ss->policy_rwlock);
3671 
3672 	rc = -ENOENT;
3673 	ctx = sidtab_search(&state->ss->sidtab, sid);
3674 	if (ctx == NULL)
3675 		goto out;
3676 
3677 	rc = -ENOMEM;
3678 	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3679 				  GFP_ATOMIC);
3680 	if (secattr->domain == NULL)
3681 		goto out;
3682 
3683 	secattr->attr.secid = sid;
3684 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3685 	mls_export_netlbl_lvl(policydb, ctx, secattr);
3686 	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3687 out:
3688 	read_unlock(&state->ss->policy_rwlock);
3689 	return rc;
3690 }
3691 #endif /* CONFIG_NETLABEL */
3692 
3693 /**
3694  * security_read_policy - read the policy.
3695  * @data: binary policy data
3696  * @len: length of data in bytes
3697  *
3698  */
3699 int security_read_policy(struct selinux_state *state,
3700 			 void **data, size_t *len)
3701 {
3702 	struct policydb *policydb = &state->ss->policydb;
3703 	int rc;
3704 	struct policy_file fp;
3705 
3706 	if (!state->initialized)
3707 		return -EINVAL;
3708 
3709 	*len = security_policydb_len(state);
3710 
3711 	*data = vmalloc_user(*len);
3712 	if (!*data)
3713 		return -ENOMEM;
3714 
3715 	fp.data = *data;
3716 	fp.len = *len;
3717 
3718 	read_lock(&state->ss->policy_rwlock);
3719 	rc = policydb_write(policydb, &fp);
3720 	read_unlock(&state->ss->policy_rwlock);
3721 
3722 	if (rc)
3723 		return rc;
3724 
3725 	*len = (unsigned long)fp.data - (unsigned long)*data;
3726 	return 0;
3727 
3728 }
3729