xref: /openbmc/linux/security/selinux/ss/services.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * Implementation of the security services.
3  *
4  * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5  *	     James Morris <jmorris@redhat.com>
6  *
7  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8  *
9  *	Support for enhanced MLS infrastructure.
10  *	Support for context based audit filters.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *	Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul.moore@hp.com>
17  *
18  *      Added support for NetLabel
19  *      Added support for the policy capability bitmap
20  *
21  * Updated: Chad Sellers <csellers@tresys.com>
22  *
23  *  Added validation of kernel classes and permissions
24  *
25  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
26  *
27  *  Added support for bounds domain and audit messaged on masked permissions
28  *
29  * Updated: Guido Trentalancia <guido@trentalancia.com>
30  *
31  *  Added support for runtime switching of the policy type
32  *
33  * Copyright (C) 2008, 2009 NEC Corporation
34  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38  *	This program is free software; you can redistribute it and/or modify
39  *	it under the terms of the GNU General Public License as published by
40  *	the Free Software Foundation, version 2.
41  */
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/errno.h>
48 #include <linux/in.h>
49 #include <linux/sched.h>
50 #include <linux/audit.h>
51 #include <linux/mutex.h>
52 #include <linux/selinux.h>
53 #include <linux/flex_array.h>
54 #include <linux/vmalloc.h>
55 #include <net/netlabel.h>
56 
57 #include "flask.h"
58 #include "avc.h"
59 #include "avc_ss.h"
60 #include "security.h"
61 #include "context.h"
62 #include "policydb.h"
63 #include "sidtab.h"
64 #include "services.h"
65 #include "conditional.h"
66 #include "mls.h"
67 #include "objsec.h"
68 #include "netlabel.h"
69 #include "xfrm.h"
70 #include "ebitmap.h"
71 #include "audit.h"
72 
73 extern void selnl_notify_policyload(u32 seqno);
74 
75 int selinux_policycap_netpeer;
76 int selinux_policycap_openperm;
77 
78 static DEFINE_RWLOCK(policy_rwlock);
79 
80 static struct sidtab sidtab;
81 struct policydb policydb;
82 int ss_initialized;
83 
84 /*
85  * The largest sequence number that has been used when
86  * providing an access decision to the access vector cache.
87  * The sequence number only changes when a policy change
88  * occurs.
89  */
90 static u32 latest_granting;
91 
92 /* Forward declaration. */
93 static int context_struct_to_string(struct context *context, char **scontext,
94 				    u32 *scontext_len);
95 
96 static void context_struct_compute_av(struct context *scontext,
97 				      struct context *tcontext,
98 				      u16 tclass,
99 				      struct av_decision *avd);
100 
101 struct selinux_mapping {
102 	u16 value; /* policy value */
103 	unsigned num_perms;
104 	u32 perms[sizeof(u32) * 8];
105 };
106 
107 static struct selinux_mapping *current_mapping;
108 static u16 current_mapping_size;
109 
110 static int selinux_set_mapping(struct policydb *pol,
111 			       struct security_class_mapping *map,
112 			       struct selinux_mapping **out_map_p,
113 			       u16 *out_map_size)
114 {
115 	struct selinux_mapping *out_map = NULL;
116 	size_t size = sizeof(struct selinux_mapping);
117 	u16 i, j;
118 	unsigned k;
119 	bool print_unknown_handle = false;
120 
121 	/* Find number of classes in the input mapping */
122 	if (!map)
123 		return -EINVAL;
124 	i = 0;
125 	while (map[i].name)
126 		i++;
127 
128 	/* Allocate space for the class records, plus one for class zero */
129 	out_map = kcalloc(++i, size, GFP_ATOMIC);
130 	if (!out_map)
131 		return -ENOMEM;
132 
133 	/* Store the raw class and permission values */
134 	j = 0;
135 	while (map[j].name) {
136 		struct security_class_mapping *p_in = map + (j++);
137 		struct selinux_mapping *p_out = out_map + j;
138 
139 		/* An empty class string skips ahead */
140 		if (!strcmp(p_in->name, "")) {
141 			p_out->num_perms = 0;
142 			continue;
143 		}
144 
145 		p_out->value = string_to_security_class(pol, p_in->name);
146 		if (!p_out->value) {
147 			printk(KERN_INFO
148 			       "SELinux:  Class %s not defined in policy.\n",
149 			       p_in->name);
150 			if (pol->reject_unknown)
151 				goto err;
152 			p_out->num_perms = 0;
153 			print_unknown_handle = true;
154 			continue;
155 		}
156 
157 		k = 0;
158 		while (p_in->perms && p_in->perms[k]) {
159 			/* An empty permission string skips ahead */
160 			if (!*p_in->perms[k]) {
161 				k++;
162 				continue;
163 			}
164 			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
165 							    p_in->perms[k]);
166 			if (!p_out->perms[k]) {
167 				printk(KERN_INFO
168 				       "SELinux:  Permission %s in class %s not defined in policy.\n",
169 				       p_in->perms[k], p_in->name);
170 				if (pol->reject_unknown)
171 					goto err;
172 				print_unknown_handle = true;
173 			}
174 
175 			k++;
176 		}
177 		p_out->num_perms = k;
178 	}
179 
180 	if (print_unknown_handle)
181 		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
182 		       pol->allow_unknown ? "allowed" : "denied");
183 
184 	*out_map_p = out_map;
185 	*out_map_size = i;
186 	return 0;
187 err:
188 	kfree(out_map);
189 	return -EINVAL;
190 }
191 
192 /*
193  * Get real, policy values from mapped values
194  */
195 
196 static u16 unmap_class(u16 tclass)
197 {
198 	if (tclass < current_mapping_size)
199 		return current_mapping[tclass].value;
200 
201 	return tclass;
202 }
203 
204 static void map_decision(u16 tclass, struct av_decision *avd,
205 			 int allow_unknown)
206 {
207 	if (tclass < current_mapping_size) {
208 		unsigned i, n = current_mapping[tclass].num_perms;
209 		u32 result;
210 
211 		for (i = 0, result = 0; i < n; i++) {
212 			if (avd->allowed & current_mapping[tclass].perms[i])
213 				result |= 1<<i;
214 			if (allow_unknown && !current_mapping[tclass].perms[i])
215 				result |= 1<<i;
216 		}
217 		avd->allowed = result;
218 
219 		for (i = 0, result = 0; i < n; i++)
220 			if (avd->auditallow & current_mapping[tclass].perms[i])
221 				result |= 1<<i;
222 		avd->auditallow = result;
223 
224 		for (i = 0, result = 0; i < n; i++) {
225 			if (avd->auditdeny & current_mapping[tclass].perms[i])
226 				result |= 1<<i;
227 			if (!allow_unknown && !current_mapping[tclass].perms[i])
228 				result |= 1<<i;
229 		}
230 		/*
231 		 * In case the kernel has a bug and requests a permission
232 		 * between num_perms and the maximum permission number, we
233 		 * should audit that denial
234 		 */
235 		for (; i < (sizeof(u32)*8); i++)
236 			result |= 1<<i;
237 		avd->auditdeny = result;
238 	}
239 }
240 
241 int security_mls_enabled(void)
242 {
243 	return policydb.mls_enabled;
244 }
245 
246 /*
247  * Return the boolean value of a constraint expression
248  * when it is applied to the specified source and target
249  * security contexts.
250  *
251  * xcontext is a special beast...  It is used by the validatetrans rules
252  * only.  For these rules, scontext is the context before the transition,
253  * tcontext is the context after the transition, and xcontext is the context
254  * of the process performing the transition.  All other callers of
255  * constraint_expr_eval should pass in NULL for xcontext.
256  */
257 static int constraint_expr_eval(struct context *scontext,
258 				struct context *tcontext,
259 				struct context *xcontext,
260 				struct constraint_expr *cexpr)
261 {
262 	u32 val1, val2;
263 	struct context *c;
264 	struct role_datum *r1, *r2;
265 	struct mls_level *l1, *l2;
266 	struct constraint_expr *e;
267 	int s[CEXPR_MAXDEPTH];
268 	int sp = -1;
269 
270 	for (e = cexpr; e; e = e->next) {
271 		switch (e->expr_type) {
272 		case CEXPR_NOT:
273 			BUG_ON(sp < 0);
274 			s[sp] = !s[sp];
275 			break;
276 		case CEXPR_AND:
277 			BUG_ON(sp < 1);
278 			sp--;
279 			s[sp] &= s[sp + 1];
280 			break;
281 		case CEXPR_OR:
282 			BUG_ON(sp < 1);
283 			sp--;
284 			s[sp] |= s[sp + 1];
285 			break;
286 		case CEXPR_ATTR:
287 			if (sp == (CEXPR_MAXDEPTH - 1))
288 				return 0;
289 			switch (e->attr) {
290 			case CEXPR_USER:
291 				val1 = scontext->user;
292 				val2 = tcontext->user;
293 				break;
294 			case CEXPR_TYPE:
295 				val1 = scontext->type;
296 				val2 = tcontext->type;
297 				break;
298 			case CEXPR_ROLE:
299 				val1 = scontext->role;
300 				val2 = tcontext->role;
301 				r1 = policydb.role_val_to_struct[val1 - 1];
302 				r2 = policydb.role_val_to_struct[val2 - 1];
303 				switch (e->op) {
304 				case CEXPR_DOM:
305 					s[++sp] = ebitmap_get_bit(&r1->dominates,
306 								  val2 - 1);
307 					continue;
308 				case CEXPR_DOMBY:
309 					s[++sp] = ebitmap_get_bit(&r2->dominates,
310 								  val1 - 1);
311 					continue;
312 				case CEXPR_INCOMP:
313 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
314 								    val2 - 1) &&
315 						   !ebitmap_get_bit(&r2->dominates,
316 								    val1 - 1));
317 					continue;
318 				default:
319 					break;
320 				}
321 				break;
322 			case CEXPR_L1L2:
323 				l1 = &(scontext->range.level[0]);
324 				l2 = &(tcontext->range.level[0]);
325 				goto mls_ops;
326 			case CEXPR_L1H2:
327 				l1 = &(scontext->range.level[0]);
328 				l2 = &(tcontext->range.level[1]);
329 				goto mls_ops;
330 			case CEXPR_H1L2:
331 				l1 = &(scontext->range.level[1]);
332 				l2 = &(tcontext->range.level[0]);
333 				goto mls_ops;
334 			case CEXPR_H1H2:
335 				l1 = &(scontext->range.level[1]);
336 				l2 = &(tcontext->range.level[1]);
337 				goto mls_ops;
338 			case CEXPR_L1H1:
339 				l1 = &(scontext->range.level[0]);
340 				l2 = &(scontext->range.level[1]);
341 				goto mls_ops;
342 			case CEXPR_L2H2:
343 				l1 = &(tcontext->range.level[0]);
344 				l2 = &(tcontext->range.level[1]);
345 				goto mls_ops;
346 mls_ops:
347 			switch (e->op) {
348 			case CEXPR_EQ:
349 				s[++sp] = mls_level_eq(l1, l2);
350 				continue;
351 			case CEXPR_NEQ:
352 				s[++sp] = !mls_level_eq(l1, l2);
353 				continue;
354 			case CEXPR_DOM:
355 				s[++sp] = mls_level_dom(l1, l2);
356 				continue;
357 			case CEXPR_DOMBY:
358 				s[++sp] = mls_level_dom(l2, l1);
359 				continue;
360 			case CEXPR_INCOMP:
361 				s[++sp] = mls_level_incomp(l2, l1);
362 				continue;
363 			default:
364 				BUG();
365 				return 0;
366 			}
367 			break;
368 			default:
369 				BUG();
370 				return 0;
371 			}
372 
373 			switch (e->op) {
374 			case CEXPR_EQ:
375 				s[++sp] = (val1 == val2);
376 				break;
377 			case CEXPR_NEQ:
378 				s[++sp] = (val1 != val2);
379 				break;
380 			default:
381 				BUG();
382 				return 0;
383 			}
384 			break;
385 		case CEXPR_NAMES:
386 			if (sp == (CEXPR_MAXDEPTH-1))
387 				return 0;
388 			c = scontext;
389 			if (e->attr & CEXPR_TARGET)
390 				c = tcontext;
391 			else if (e->attr & CEXPR_XTARGET) {
392 				c = xcontext;
393 				if (!c) {
394 					BUG();
395 					return 0;
396 				}
397 			}
398 			if (e->attr & CEXPR_USER)
399 				val1 = c->user;
400 			else if (e->attr & CEXPR_ROLE)
401 				val1 = c->role;
402 			else if (e->attr & CEXPR_TYPE)
403 				val1 = c->type;
404 			else {
405 				BUG();
406 				return 0;
407 			}
408 
409 			switch (e->op) {
410 			case CEXPR_EQ:
411 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
412 				break;
413 			case CEXPR_NEQ:
414 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
415 				break;
416 			default:
417 				BUG();
418 				return 0;
419 			}
420 			break;
421 		default:
422 			BUG();
423 			return 0;
424 		}
425 	}
426 
427 	BUG_ON(sp != 0);
428 	return s[0];
429 }
430 
431 /*
432  * security_dump_masked_av - dumps masked permissions during
433  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
434  */
435 static int dump_masked_av_helper(void *k, void *d, void *args)
436 {
437 	struct perm_datum *pdatum = d;
438 	char **permission_names = args;
439 
440 	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
441 
442 	permission_names[pdatum->value - 1] = (char *)k;
443 
444 	return 0;
445 }
446 
447 static void security_dump_masked_av(struct context *scontext,
448 				    struct context *tcontext,
449 				    u16 tclass,
450 				    u32 permissions,
451 				    const char *reason)
452 {
453 	struct common_datum *common_dat;
454 	struct class_datum *tclass_dat;
455 	struct audit_buffer *ab;
456 	char *tclass_name;
457 	char *scontext_name = NULL;
458 	char *tcontext_name = NULL;
459 	char *permission_names[32];
460 	int index;
461 	u32 length;
462 	bool need_comma = false;
463 
464 	if (!permissions)
465 		return;
466 
467 	tclass_name = policydb.p_class_val_to_name[tclass - 1];
468 	tclass_dat = policydb.class_val_to_struct[tclass - 1];
469 	common_dat = tclass_dat->comdatum;
470 
471 	/* init permission_names */
472 	if (common_dat &&
473 	    hashtab_map(common_dat->permissions.table,
474 			dump_masked_av_helper, permission_names) < 0)
475 		goto out;
476 
477 	if (hashtab_map(tclass_dat->permissions.table,
478 			dump_masked_av_helper, permission_names) < 0)
479 		goto out;
480 
481 	/* get scontext/tcontext in text form */
482 	if (context_struct_to_string(scontext,
483 				     &scontext_name, &length) < 0)
484 		goto out;
485 
486 	if (context_struct_to_string(tcontext,
487 				     &tcontext_name, &length) < 0)
488 		goto out;
489 
490 	/* audit a message */
491 	ab = audit_log_start(current->audit_context,
492 			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
493 	if (!ab)
494 		goto out;
495 
496 	audit_log_format(ab, "op=security_compute_av reason=%s "
497 			 "scontext=%s tcontext=%s tclass=%s perms=",
498 			 reason, scontext_name, tcontext_name, tclass_name);
499 
500 	for (index = 0; index < 32; index++) {
501 		u32 mask = (1 << index);
502 
503 		if ((mask & permissions) == 0)
504 			continue;
505 
506 		audit_log_format(ab, "%s%s",
507 				 need_comma ? "," : "",
508 				 permission_names[index]
509 				 ? permission_names[index] : "????");
510 		need_comma = true;
511 	}
512 	audit_log_end(ab);
513 out:
514 	/* release scontext/tcontext */
515 	kfree(tcontext_name);
516 	kfree(scontext_name);
517 
518 	return;
519 }
520 
521 /*
522  * security_boundary_permission - drops violated permissions
523  * on boundary constraint.
524  */
525 static void type_attribute_bounds_av(struct context *scontext,
526 				     struct context *tcontext,
527 				     u16 tclass,
528 				     struct av_decision *avd)
529 {
530 	struct context lo_scontext;
531 	struct context lo_tcontext;
532 	struct av_decision lo_avd;
533 	struct type_datum *source
534 		= policydb.type_val_to_struct[scontext->type - 1];
535 	struct type_datum *target
536 		= policydb.type_val_to_struct[tcontext->type - 1];
537 	u32 masked = 0;
538 
539 	if (source->bounds) {
540 		memset(&lo_avd, 0, sizeof(lo_avd));
541 
542 		memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
543 		lo_scontext.type = source->bounds;
544 
545 		context_struct_compute_av(&lo_scontext,
546 					  tcontext,
547 					  tclass,
548 					  &lo_avd);
549 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
550 			return;		/* no masked permission */
551 		masked = ~lo_avd.allowed & avd->allowed;
552 	}
553 
554 	if (target->bounds) {
555 		memset(&lo_avd, 0, sizeof(lo_avd));
556 
557 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
558 		lo_tcontext.type = target->bounds;
559 
560 		context_struct_compute_av(scontext,
561 					  &lo_tcontext,
562 					  tclass,
563 					  &lo_avd);
564 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
565 			return;		/* no masked permission */
566 		masked = ~lo_avd.allowed & avd->allowed;
567 	}
568 
569 	if (source->bounds && target->bounds) {
570 		memset(&lo_avd, 0, sizeof(lo_avd));
571 		/*
572 		 * lo_scontext and lo_tcontext are already
573 		 * set up.
574 		 */
575 
576 		context_struct_compute_av(&lo_scontext,
577 					  &lo_tcontext,
578 					  tclass,
579 					  &lo_avd);
580 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
581 			return;		/* no masked permission */
582 		masked = ~lo_avd.allowed & avd->allowed;
583 	}
584 
585 	if (masked) {
586 		/* mask violated permissions */
587 		avd->allowed &= ~masked;
588 
589 		/* audit masked permissions */
590 		security_dump_masked_av(scontext, tcontext,
591 					tclass, masked, "bounds");
592 	}
593 }
594 
595 /*
596  * Compute access vectors based on a context structure pair for
597  * the permissions in a particular class.
598  */
599 static void context_struct_compute_av(struct context *scontext,
600 				      struct context *tcontext,
601 				      u16 tclass,
602 				      struct av_decision *avd)
603 {
604 	struct constraint_node *constraint;
605 	struct role_allow *ra;
606 	struct avtab_key avkey;
607 	struct avtab_node *node;
608 	struct class_datum *tclass_datum;
609 	struct ebitmap *sattr, *tattr;
610 	struct ebitmap_node *snode, *tnode;
611 	unsigned int i, j;
612 
613 	avd->allowed = 0;
614 	avd->auditallow = 0;
615 	avd->auditdeny = 0xffffffff;
616 
617 	if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
618 		if (printk_ratelimit())
619 			printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
620 		return;
621 	}
622 
623 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
624 
625 	/*
626 	 * If a specific type enforcement rule was defined for
627 	 * this permission check, then use it.
628 	 */
629 	avkey.target_class = tclass;
630 	avkey.specified = AVTAB_AV;
631 	sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
632 	BUG_ON(!sattr);
633 	tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
634 	BUG_ON(!tattr);
635 	ebitmap_for_each_positive_bit(sattr, snode, i) {
636 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
637 			avkey.source_type = i + 1;
638 			avkey.target_type = j + 1;
639 			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
640 			     node;
641 			     node = avtab_search_node_next(node, avkey.specified)) {
642 				if (node->key.specified == AVTAB_ALLOWED)
643 					avd->allowed |= node->datum.data;
644 				else if (node->key.specified == AVTAB_AUDITALLOW)
645 					avd->auditallow |= node->datum.data;
646 				else if (node->key.specified == AVTAB_AUDITDENY)
647 					avd->auditdeny &= node->datum.data;
648 			}
649 
650 			/* Check conditional av table for additional permissions */
651 			cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
652 
653 		}
654 	}
655 
656 	/*
657 	 * Remove any permissions prohibited by a constraint (this includes
658 	 * the MLS policy).
659 	 */
660 	constraint = tclass_datum->constraints;
661 	while (constraint) {
662 		if ((constraint->permissions & (avd->allowed)) &&
663 		    !constraint_expr_eval(scontext, tcontext, NULL,
664 					  constraint->expr)) {
665 			avd->allowed &= ~(constraint->permissions);
666 		}
667 		constraint = constraint->next;
668 	}
669 
670 	/*
671 	 * If checking process transition permission and the
672 	 * role is changing, then check the (current_role, new_role)
673 	 * pair.
674 	 */
675 	if (tclass == policydb.process_class &&
676 	    (avd->allowed & policydb.process_trans_perms) &&
677 	    scontext->role != tcontext->role) {
678 		for (ra = policydb.role_allow; ra; ra = ra->next) {
679 			if (scontext->role == ra->role &&
680 			    tcontext->role == ra->new_role)
681 				break;
682 		}
683 		if (!ra)
684 			avd->allowed &= ~policydb.process_trans_perms;
685 	}
686 
687 	/*
688 	 * If the given source and target types have boundary
689 	 * constraint, lazy checks have to mask any violated
690 	 * permission and notice it to userspace via audit.
691 	 */
692 	type_attribute_bounds_av(scontext, tcontext,
693 				 tclass, avd);
694 }
695 
696 static int security_validtrans_handle_fail(struct context *ocontext,
697 					   struct context *ncontext,
698 					   struct context *tcontext,
699 					   u16 tclass)
700 {
701 	char *o = NULL, *n = NULL, *t = NULL;
702 	u32 olen, nlen, tlen;
703 
704 	if (context_struct_to_string(ocontext, &o, &olen) < 0)
705 		goto out;
706 	if (context_struct_to_string(ncontext, &n, &nlen) < 0)
707 		goto out;
708 	if (context_struct_to_string(tcontext, &t, &tlen) < 0)
709 		goto out;
710 	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
711 		  "security_validate_transition:  denied for"
712 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
713 		  o, n, t, policydb.p_class_val_to_name[tclass-1]);
714 out:
715 	kfree(o);
716 	kfree(n);
717 	kfree(t);
718 
719 	if (!selinux_enforcing)
720 		return 0;
721 	return -EPERM;
722 }
723 
724 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
725 				 u16 orig_tclass)
726 {
727 	struct context *ocontext;
728 	struct context *ncontext;
729 	struct context *tcontext;
730 	struct class_datum *tclass_datum;
731 	struct constraint_node *constraint;
732 	u16 tclass;
733 	int rc = 0;
734 
735 	if (!ss_initialized)
736 		return 0;
737 
738 	read_lock(&policy_rwlock);
739 
740 	tclass = unmap_class(orig_tclass);
741 
742 	if (!tclass || tclass > policydb.p_classes.nprim) {
743 		printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
744 			__func__, tclass);
745 		rc = -EINVAL;
746 		goto out;
747 	}
748 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
749 
750 	ocontext = sidtab_search(&sidtab, oldsid);
751 	if (!ocontext) {
752 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
753 			__func__, oldsid);
754 		rc = -EINVAL;
755 		goto out;
756 	}
757 
758 	ncontext = sidtab_search(&sidtab, newsid);
759 	if (!ncontext) {
760 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
761 			__func__, newsid);
762 		rc = -EINVAL;
763 		goto out;
764 	}
765 
766 	tcontext = sidtab_search(&sidtab, tasksid);
767 	if (!tcontext) {
768 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
769 			__func__, tasksid);
770 		rc = -EINVAL;
771 		goto out;
772 	}
773 
774 	constraint = tclass_datum->validatetrans;
775 	while (constraint) {
776 		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
777 					  constraint->expr)) {
778 			rc = security_validtrans_handle_fail(ocontext, ncontext,
779 							     tcontext, tclass);
780 			goto out;
781 		}
782 		constraint = constraint->next;
783 	}
784 
785 out:
786 	read_unlock(&policy_rwlock);
787 	return rc;
788 }
789 
790 /*
791  * security_bounded_transition - check whether the given
792  * transition is directed to bounded, or not.
793  * It returns 0, if @newsid is bounded by @oldsid.
794  * Otherwise, it returns error code.
795  *
796  * @oldsid : current security identifier
797  * @newsid : destinated security identifier
798  */
799 int security_bounded_transition(u32 old_sid, u32 new_sid)
800 {
801 	struct context *old_context, *new_context;
802 	struct type_datum *type;
803 	int index;
804 	int rc = -EINVAL;
805 
806 	read_lock(&policy_rwlock);
807 
808 	old_context = sidtab_search(&sidtab, old_sid);
809 	if (!old_context) {
810 		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
811 		       __func__, old_sid);
812 		goto out;
813 	}
814 
815 	new_context = sidtab_search(&sidtab, new_sid);
816 	if (!new_context) {
817 		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
818 		       __func__, new_sid);
819 		goto out;
820 	}
821 
822 	/* type/domain unchanged */
823 	if (old_context->type == new_context->type) {
824 		rc = 0;
825 		goto out;
826 	}
827 
828 	index = new_context->type;
829 	while (true) {
830 		type = policydb.type_val_to_struct[index - 1];
831 		BUG_ON(!type);
832 
833 		/* not bounded anymore */
834 		if (!type->bounds) {
835 			rc = -EPERM;
836 			break;
837 		}
838 
839 		/* @newsid is bounded by @oldsid */
840 		if (type->bounds == old_context->type) {
841 			rc = 0;
842 			break;
843 		}
844 		index = type->bounds;
845 	}
846 
847 	if (rc) {
848 		char *old_name = NULL;
849 		char *new_name = NULL;
850 		u32 length;
851 
852 		if (!context_struct_to_string(old_context,
853 					      &old_name, &length) &&
854 		    !context_struct_to_string(new_context,
855 					      &new_name, &length)) {
856 			audit_log(current->audit_context,
857 				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
858 				  "op=security_bounded_transition "
859 				  "result=denied "
860 				  "oldcontext=%s newcontext=%s",
861 				  old_name, new_name);
862 		}
863 		kfree(new_name);
864 		kfree(old_name);
865 	}
866 out:
867 	read_unlock(&policy_rwlock);
868 
869 	return rc;
870 }
871 
872 static void avd_init(struct av_decision *avd)
873 {
874 	avd->allowed = 0;
875 	avd->auditallow = 0;
876 	avd->auditdeny = 0xffffffff;
877 	avd->seqno = latest_granting;
878 	avd->flags = 0;
879 }
880 
881 
882 /**
883  * security_compute_av - Compute access vector decisions.
884  * @ssid: source security identifier
885  * @tsid: target security identifier
886  * @tclass: target security class
887  * @avd: access vector decisions
888  *
889  * Compute a set of access vector decisions based on the
890  * SID pair (@ssid, @tsid) for the permissions in @tclass.
891  */
892 void security_compute_av(u32 ssid,
893 			 u32 tsid,
894 			 u16 orig_tclass,
895 			 struct av_decision *avd)
896 {
897 	u16 tclass;
898 	struct context *scontext = NULL, *tcontext = NULL;
899 
900 	read_lock(&policy_rwlock);
901 	avd_init(avd);
902 	if (!ss_initialized)
903 		goto allow;
904 
905 	scontext = sidtab_search(&sidtab, ssid);
906 	if (!scontext) {
907 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
908 		       __func__, ssid);
909 		goto out;
910 	}
911 
912 	/* permissive domain? */
913 	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
914 		avd->flags |= AVD_FLAGS_PERMISSIVE;
915 
916 	tcontext = sidtab_search(&sidtab, tsid);
917 	if (!tcontext) {
918 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
919 		       __func__, tsid);
920 		goto out;
921 	}
922 
923 	tclass = unmap_class(orig_tclass);
924 	if (unlikely(orig_tclass && !tclass)) {
925 		if (policydb.allow_unknown)
926 			goto allow;
927 		goto out;
928 	}
929 	context_struct_compute_av(scontext, tcontext, tclass, avd);
930 	map_decision(orig_tclass, avd, policydb.allow_unknown);
931 out:
932 	read_unlock(&policy_rwlock);
933 	return;
934 allow:
935 	avd->allowed = 0xffffffff;
936 	goto out;
937 }
938 
939 void security_compute_av_user(u32 ssid,
940 			      u32 tsid,
941 			      u16 tclass,
942 			      struct av_decision *avd)
943 {
944 	struct context *scontext = NULL, *tcontext = NULL;
945 
946 	read_lock(&policy_rwlock);
947 	avd_init(avd);
948 	if (!ss_initialized)
949 		goto allow;
950 
951 	scontext = sidtab_search(&sidtab, ssid);
952 	if (!scontext) {
953 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
954 		       __func__, ssid);
955 		goto out;
956 	}
957 
958 	/* permissive domain? */
959 	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
960 		avd->flags |= AVD_FLAGS_PERMISSIVE;
961 
962 	tcontext = sidtab_search(&sidtab, tsid);
963 	if (!tcontext) {
964 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
965 		       __func__, tsid);
966 		goto out;
967 	}
968 
969 	if (unlikely(!tclass)) {
970 		if (policydb.allow_unknown)
971 			goto allow;
972 		goto out;
973 	}
974 
975 	context_struct_compute_av(scontext, tcontext, tclass, avd);
976  out:
977 	read_unlock(&policy_rwlock);
978 	return;
979 allow:
980 	avd->allowed = 0xffffffff;
981 	goto out;
982 }
983 
984 /*
985  * Write the security context string representation of
986  * the context structure `context' into a dynamically
987  * allocated string of the correct size.  Set `*scontext'
988  * to point to this string and set `*scontext_len' to
989  * the length of the string.
990  */
991 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
992 {
993 	char *scontextp;
994 
995 	if (scontext)
996 		*scontext = NULL;
997 	*scontext_len = 0;
998 
999 	if (context->len) {
1000 		*scontext_len = context->len;
1001 		*scontext = kstrdup(context->str, GFP_ATOMIC);
1002 		if (!(*scontext))
1003 			return -ENOMEM;
1004 		return 0;
1005 	}
1006 
1007 	/* Compute the size of the context. */
1008 	*scontext_len += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1;
1009 	*scontext_len += strlen(policydb.p_role_val_to_name[context->role - 1]) + 1;
1010 	*scontext_len += strlen(policydb.p_type_val_to_name[context->type - 1]) + 1;
1011 	*scontext_len += mls_compute_context_len(context);
1012 
1013 	if (!scontext)
1014 		return 0;
1015 
1016 	/* Allocate space for the context; caller must free this space. */
1017 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1018 	if (!scontextp)
1019 		return -ENOMEM;
1020 	*scontext = scontextp;
1021 
1022 	/*
1023 	 * Copy the user name, role name and type name into the context.
1024 	 */
1025 	sprintf(scontextp, "%s:%s:%s",
1026 		policydb.p_user_val_to_name[context->user - 1],
1027 		policydb.p_role_val_to_name[context->role - 1],
1028 		policydb.p_type_val_to_name[context->type - 1]);
1029 	scontextp += strlen(policydb.p_user_val_to_name[context->user - 1]) +
1030 		     1 + strlen(policydb.p_role_val_to_name[context->role - 1]) +
1031 		     1 + strlen(policydb.p_type_val_to_name[context->type - 1]);
1032 
1033 	mls_sid_to_context(context, &scontextp);
1034 
1035 	*scontextp = 0;
1036 
1037 	return 0;
1038 }
1039 
1040 #include "initial_sid_to_string.h"
1041 
1042 const char *security_get_initial_sid_context(u32 sid)
1043 {
1044 	if (unlikely(sid > SECINITSID_NUM))
1045 		return NULL;
1046 	return initial_sid_to_string[sid];
1047 }
1048 
1049 static int security_sid_to_context_core(u32 sid, char **scontext,
1050 					u32 *scontext_len, int force)
1051 {
1052 	struct context *context;
1053 	int rc = 0;
1054 
1055 	if (scontext)
1056 		*scontext = NULL;
1057 	*scontext_len  = 0;
1058 
1059 	if (!ss_initialized) {
1060 		if (sid <= SECINITSID_NUM) {
1061 			char *scontextp;
1062 
1063 			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1064 			if (!scontext)
1065 				goto out;
1066 			scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1067 			if (!scontextp) {
1068 				rc = -ENOMEM;
1069 				goto out;
1070 			}
1071 			strcpy(scontextp, initial_sid_to_string[sid]);
1072 			*scontext = scontextp;
1073 			goto out;
1074 		}
1075 		printk(KERN_ERR "SELinux: %s:  called before initial "
1076 		       "load_policy on unknown SID %d\n", __func__, sid);
1077 		rc = -EINVAL;
1078 		goto out;
1079 	}
1080 	read_lock(&policy_rwlock);
1081 	if (force)
1082 		context = sidtab_search_force(&sidtab, sid);
1083 	else
1084 		context = sidtab_search(&sidtab, sid);
1085 	if (!context) {
1086 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1087 			__func__, sid);
1088 		rc = -EINVAL;
1089 		goto out_unlock;
1090 	}
1091 	rc = context_struct_to_string(context, scontext, scontext_len);
1092 out_unlock:
1093 	read_unlock(&policy_rwlock);
1094 out:
1095 	return rc;
1096 
1097 }
1098 
1099 /**
1100  * security_sid_to_context - Obtain a context for a given SID.
1101  * @sid: security identifier, SID
1102  * @scontext: security context
1103  * @scontext_len: length in bytes
1104  *
1105  * Write the string representation of the context associated with @sid
1106  * into a dynamically allocated string of the correct size.  Set @scontext
1107  * to point to this string and set @scontext_len to the length of the string.
1108  */
1109 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1110 {
1111 	return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1112 }
1113 
1114 int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1115 {
1116 	return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1117 }
1118 
1119 /*
1120  * Caveat:  Mutates scontext.
1121  */
1122 static int string_to_context_struct(struct policydb *pol,
1123 				    struct sidtab *sidtabp,
1124 				    char *scontext,
1125 				    u32 scontext_len,
1126 				    struct context *ctx,
1127 				    u32 def_sid)
1128 {
1129 	struct role_datum *role;
1130 	struct type_datum *typdatum;
1131 	struct user_datum *usrdatum;
1132 	char *scontextp, *p, oldc;
1133 	int rc = 0;
1134 
1135 	context_init(ctx);
1136 
1137 	/* Parse the security context. */
1138 
1139 	rc = -EINVAL;
1140 	scontextp = (char *) scontext;
1141 
1142 	/* Extract the user. */
1143 	p = scontextp;
1144 	while (*p && *p != ':')
1145 		p++;
1146 
1147 	if (*p == 0)
1148 		goto out;
1149 
1150 	*p++ = 0;
1151 
1152 	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1153 	if (!usrdatum)
1154 		goto out;
1155 
1156 	ctx->user = usrdatum->value;
1157 
1158 	/* Extract role. */
1159 	scontextp = p;
1160 	while (*p && *p != ':')
1161 		p++;
1162 
1163 	if (*p == 0)
1164 		goto out;
1165 
1166 	*p++ = 0;
1167 
1168 	role = hashtab_search(pol->p_roles.table, scontextp);
1169 	if (!role)
1170 		goto out;
1171 	ctx->role = role->value;
1172 
1173 	/* Extract type. */
1174 	scontextp = p;
1175 	while (*p && *p != ':')
1176 		p++;
1177 	oldc = *p;
1178 	*p++ = 0;
1179 
1180 	typdatum = hashtab_search(pol->p_types.table, scontextp);
1181 	if (!typdatum || typdatum->attribute)
1182 		goto out;
1183 
1184 	ctx->type = typdatum->value;
1185 
1186 	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1187 	if (rc)
1188 		goto out;
1189 
1190 	if ((p - scontext) < scontext_len) {
1191 		rc = -EINVAL;
1192 		goto out;
1193 	}
1194 
1195 	/* Check the validity of the new context. */
1196 	if (!policydb_context_isvalid(pol, ctx)) {
1197 		rc = -EINVAL;
1198 		goto out;
1199 	}
1200 	rc = 0;
1201 out:
1202 	if (rc)
1203 		context_destroy(ctx);
1204 	return rc;
1205 }
1206 
1207 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1208 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1209 					int force)
1210 {
1211 	char *scontext2, *str = NULL;
1212 	struct context context;
1213 	int rc = 0;
1214 
1215 	if (!ss_initialized) {
1216 		int i;
1217 
1218 		for (i = 1; i < SECINITSID_NUM; i++) {
1219 			if (!strcmp(initial_sid_to_string[i], scontext)) {
1220 				*sid = i;
1221 				return 0;
1222 			}
1223 		}
1224 		*sid = SECINITSID_KERNEL;
1225 		return 0;
1226 	}
1227 	*sid = SECSID_NULL;
1228 
1229 	/* Copy the string so that we can modify the copy as we parse it. */
1230 	scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1231 	if (!scontext2)
1232 		return -ENOMEM;
1233 	memcpy(scontext2, scontext, scontext_len);
1234 	scontext2[scontext_len] = 0;
1235 
1236 	if (force) {
1237 		/* Save another copy for storing in uninterpreted form */
1238 		str = kstrdup(scontext2, gfp_flags);
1239 		if (!str) {
1240 			kfree(scontext2);
1241 			return -ENOMEM;
1242 		}
1243 	}
1244 
1245 	read_lock(&policy_rwlock);
1246 	rc = string_to_context_struct(&policydb, &sidtab,
1247 				      scontext2, scontext_len,
1248 				      &context, def_sid);
1249 	if (rc == -EINVAL && force) {
1250 		context.str = str;
1251 		context.len = scontext_len;
1252 		str = NULL;
1253 	} else if (rc)
1254 		goto out;
1255 	rc = sidtab_context_to_sid(&sidtab, &context, sid);
1256 	context_destroy(&context);
1257 out:
1258 	read_unlock(&policy_rwlock);
1259 	kfree(scontext2);
1260 	kfree(str);
1261 	return rc;
1262 }
1263 
1264 /**
1265  * security_context_to_sid - Obtain a SID for a given security context.
1266  * @scontext: security context
1267  * @scontext_len: length in bytes
1268  * @sid: security identifier, SID
1269  *
1270  * Obtains a SID associated with the security context that
1271  * has the string representation specified by @scontext.
1272  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1273  * memory is available, or 0 on success.
1274  */
1275 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
1276 {
1277 	return security_context_to_sid_core(scontext, scontext_len,
1278 					    sid, SECSID_NULL, GFP_KERNEL, 0);
1279 }
1280 
1281 /**
1282  * security_context_to_sid_default - Obtain a SID for a given security context,
1283  * falling back to specified default if needed.
1284  *
1285  * @scontext: security context
1286  * @scontext_len: length in bytes
1287  * @sid: security identifier, SID
1288  * @def_sid: default SID to assign on error
1289  *
1290  * Obtains a SID associated with the security context that
1291  * has the string representation specified by @scontext.
1292  * The default SID is passed to the MLS layer to be used to allow
1293  * kernel labeling of the MLS field if the MLS field is not present
1294  * (for upgrading to MLS without full relabel).
1295  * Implicitly forces adding of the context even if it cannot be mapped yet.
1296  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1297  * memory is available, or 0 on success.
1298  */
1299 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1300 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1301 {
1302 	return security_context_to_sid_core(scontext, scontext_len,
1303 					    sid, def_sid, gfp_flags, 1);
1304 }
1305 
1306 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1307 				  u32 *sid)
1308 {
1309 	return security_context_to_sid_core(scontext, scontext_len,
1310 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1311 }
1312 
1313 static int compute_sid_handle_invalid_context(
1314 	struct context *scontext,
1315 	struct context *tcontext,
1316 	u16 tclass,
1317 	struct context *newcontext)
1318 {
1319 	char *s = NULL, *t = NULL, *n = NULL;
1320 	u32 slen, tlen, nlen;
1321 
1322 	if (context_struct_to_string(scontext, &s, &slen) < 0)
1323 		goto out;
1324 	if (context_struct_to_string(tcontext, &t, &tlen) < 0)
1325 		goto out;
1326 	if (context_struct_to_string(newcontext, &n, &nlen) < 0)
1327 		goto out;
1328 	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1329 		  "security_compute_sid:  invalid context %s"
1330 		  " for scontext=%s"
1331 		  " tcontext=%s"
1332 		  " tclass=%s",
1333 		  n, s, t, policydb.p_class_val_to_name[tclass-1]);
1334 out:
1335 	kfree(s);
1336 	kfree(t);
1337 	kfree(n);
1338 	if (!selinux_enforcing)
1339 		return 0;
1340 	return -EACCES;
1341 }
1342 
1343 static int security_compute_sid(u32 ssid,
1344 				u32 tsid,
1345 				u16 orig_tclass,
1346 				u32 specified,
1347 				u32 *out_sid,
1348 				bool kern)
1349 {
1350 	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1351 	struct role_trans *roletr = NULL;
1352 	struct avtab_key avkey;
1353 	struct avtab_datum *avdatum;
1354 	struct avtab_node *node;
1355 	u16 tclass;
1356 	int rc = 0;
1357 
1358 	if (!ss_initialized) {
1359 		switch (orig_tclass) {
1360 		case SECCLASS_PROCESS: /* kernel value */
1361 			*out_sid = ssid;
1362 			break;
1363 		default:
1364 			*out_sid = tsid;
1365 			break;
1366 		}
1367 		goto out;
1368 	}
1369 
1370 	context_init(&newcontext);
1371 
1372 	read_lock(&policy_rwlock);
1373 
1374 	if (kern)
1375 		tclass = unmap_class(orig_tclass);
1376 	else
1377 		tclass = orig_tclass;
1378 
1379 	scontext = sidtab_search(&sidtab, ssid);
1380 	if (!scontext) {
1381 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1382 		       __func__, ssid);
1383 		rc = -EINVAL;
1384 		goto out_unlock;
1385 	}
1386 	tcontext = sidtab_search(&sidtab, tsid);
1387 	if (!tcontext) {
1388 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1389 		       __func__, tsid);
1390 		rc = -EINVAL;
1391 		goto out_unlock;
1392 	}
1393 
1394 	/* Set the user identity. */
1395 	switch (specified) {
1396 	case AVTAB_TRANSITION:
1397 	case AVTAB_CHANGE:
1398 		/* Use the process user identity. */
1399 		newcontext.user = scontext->user;
1400 		break;
1401 	case AVTAB_MEMBER:
1402 		/* Use the related object owner. */
1403 		newcontext.user = tcontext->user;
1404 		break;
1405 	}
1406 
1407 	/* Set the role and type to default values. */
1408 	if (tclass == policydb.process_class) {
1409 		/* Use the current role and type of process. */
1410 		newcontext.role = scontext->role;
1411 		newcontext.type = scontext->type;
1412 	} else {
1413 		/* Use the well-defined object role. */
1414 		newcontext.role = OBJECT_R_VAL;
1415 		/* Use the type of the related object. */
1416 		newcontext.type = tcontext->type;
1417 	}
1418 
1419 	/* Look for a type transition/member/change rule. */
1420 	avkey.source_type = scontext->type;
1421 	avkey.target_type = tcontext->type;
1422 	avkey.target_class = tclass;
1423 	avkey.specified = specified;
1424 	avdatum = avtab_search(&policydb.te_avtab, &avkey);
1425 
1426 	/* If no permanent rule, also check for enabled conditional rules */
1427 	if (!avdatum) {
1428 		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1429 		for (; node; node = avtab_search_node_next(node, specified)) {
1430 			if (node->key.specified & AVTAB_ENABLED) {
1431 				avdatum = &node->datum;
1432 				break;
1433 			}
1434 		}
1435 	}
1436 
1437 	if (avdatum) {
1438 		/* Use the type from the type transition/member/change rule. */
1439 		newcontext.type = avdatum->data;
1440 	}
1441 
1442 	/* Check for class-specific changes. */
1443 	if  (tclass == policydb.process_class) {
1444 		if (specified & AVTAB_TRANSITION) {
1445 			/* Look for a role transition rule. */
1446 			for (roletr = policydb.role_tr; roletr;
1447 			     roletr = roletr->next) {
1448 				if (roletr->role == scontext->role &&
1449 				    roletr->type == tcontext->type) {
1450 					/* Use the role transition rule. */
1451 					newcontext.role = roletr->new_role;
1452 					break;
1453 				}
1454 			}
1455 		}
1456 	}
1457 
1458 	/* Set the MLS attributes.
1459 	   This is done last because it may allocate memory. */
1460 	rc = mls_compute_sid(scontext, tcontext, tclass, specified, &newcontext);
1461 	if (rc)
1462 		goto out_unlock;
1463 
1464 	/* Check the validity of the context. */
1465 	if (!policydb_context_isvalid(&policydb, &newcontext)) {
1466 		rc = compute_sid_handle_invalid_context(scontext,
1467 							tcontext,
1468 							tclass,
1469 							&newcontext);
1470 		if (rc)
1471 			goto out_unlock;
1472 	}
1473 	/* Obtain the sid for the context. */
1474 	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1475 out_unlock:
1476 	read_unlock(&policy_rwlock);
1477 	context_destroy(&newcontext);
1478 out:
1479 	return rc;
1480 }
1481 
1482 /**
1483  * security_transition_sid - Compute the SID for a new subject/object.
1484  * @ssid: source security identifier
1485  * @tsid: target security identifier
1486  * @tclass: target security class
1487  * @out_sid: security identifier for new subject/object
1488  *
1489  * Compute a SID to use for labeling a new subject or object in the
1490  * class @tclass based on a SID pair (@ssid, @tsid).
1491  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1492  * if insufficient memory is available, or %0 if the new SID was
1493  * computed successfully.
1494  */
1495 int security_transition_sid(u32 ssid,
1496 			    u32 tsid,
1497 			    u16 tclass,
1498 			    u32 *out_sid)
1499 {
1500 	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1501 				    out_sid, true);
1502 }
1503 
1504 int security_transition_sid_user(u32 ssid,
1505 				 u32 tsid,
1506 				 u16 tclass,
1507 				 u32 *out_sid)
1508 {
1509 	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1510 				    out_sid, false);
1511 }
1512 
1513 /**
1514  * security_member_sid - Compute the SID for member selection.
1515  * @ssid: source security identifier
1516  * @tsid: target security identifier
1517  * @tclass: target security class
1518  * @out_sid: security identifier for selected member
1519  *
1520  * Compute a SID to use when selecting a member of a polyinstantiated
1521  * object of class @tclass based on a SID pair (@ssid, @tsid).
1522  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1523  * if insufficient memory is available, or %0 if the SID was
1524  * computed successfully.
1525  */
1526 int security_member_sid(u32 ssid,
1527 			u32 tsid,
1528 			u16 tclass,
1529 			u32 *out_sid)
1530 {
1531 	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid,
1532 				    false);
1533 }
1534 
1535 /**
1536  * security_change_sid - Compute the SID for object relabeling.
1537  * @ssid: source security identifier
1538  * @tsid: target security identifier
1539  * @tclass: target security class
1540  * @out_sid: security identifier for selected member
1541  *
1542  * Compute a SID to use for relabeling an object of class @tclass
1543  * based on a SID pair (@ssid, @tsid).
1544  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1545  * if insufficient memory is available, or %0 if the SID was
1546  * computed successfully.
1547  */
1548 int security_change_sid(u32 ssid,
1549 			u32 tsid,
1550 			u16 tclass,
1551 			u32 *out_sid)
1552 {
1553 	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid,
1554 				    false);
1555 }
1556 
1557 /* Clone the SID into the new SID table. */
1558 static int clone_sid(u32 sid,
1559 		     struct context *context,
1560 		     void *arg)
1561 {
1562 	struct sidtab *s = arg;
1563 
1564 	if (sid > SECINITSID_NUM)
1565 		return sidtab_insert(s, sid, context);
1566 	else
1567 		return 0;
1568 }
1569 
1570 static inline int convert_context_handle_invalid_context(struct context *context)
1571 {
1572 	int rc = 0;
1573 
1574 	if (selinux_enforcing) {
1575 		rc = -EINVAL;
1576 	} else {
1577 		char *s;
1578 		u32 len;
1579 
1580 		if (!context_struct_to_string(context, &s, &len)) {
1581 			printk(KERN_WARNING
1582 		       "SELinux:  Context %s would be invalid if enforcing\n",
1583 			       s);
1584 			kfree(s);
1585 		}
1586 	}
1587 	return rc;
1588 }
1589 
1590 struct convert_context_args {
1591 	struct policydb *oldp;
1592 	struct policydb *newp;
1593 };
1594 
1595 /*
1596  * Convert the values in the security context
1597  * structure `c' from the values specified
1598  * in the policy `p->oldp' to the values specified
1599  * in the policy `p->newp'.  Verify that the
1600  * context is valid under the new policy.
1601  */
1602 static int convert_context(u32 key,
1603 			   struct context *c,
1604 			   void *p)
1605 {
1606 	struct convert_context_args *args;
1607 	struct context oldc;
1608 	struct ocontext *oc;
1609 	struct mls_range *range;
1610 	struct role_datum *role;
1611 	struct type_datum *typdatum;
1612 	struct user_datum *usrdatum;
1613 	char *s;
1614 	u32 len;
1615 	int rc = 0;
1616 
1617 	if (key <= SECINITSID_NUM)
1618 		goto out;
1619 
1620 	args = p;
1621 
1622 	if (c->str) {
1623 		struct context ctx;
1624 		s = kstrdup(c->str, GFP_KERNEL);
1625 		if (!s) {
1626 			rc = -ENOMEM;
1627 			goto out;
1628 		}
1629 		rc = string_to_context_struct(args->newp, NULL, s,
1630 					      c->len, &ctx, SECSID_NULL);
1631 		kfree(s);
1632 		if (!rc) {
1633 			printk(KERN_INFO
1634 		       "SELinux:  Context %s became valid (mapped).\n",
1635 			       c->str);
1636 			/* Replace string with mapped representation. */
1637 			kfree(c->str);
1638 			memcpy(c, &ctx, sizeof(*c));
1639 			goto out;
1640 		} else if (rc == -EINVAL) {
1641 			/* Retain string representation for later mapping. */
1642 			rc = 0;
1643 			goto out;
1644 		} else {
1645 			/* Other error condition, e.g. ENOMEM. */
1646 			printk(KERN_ERR
1647 		       "SELinux:   Unable to map context %s, rc = %d.\n",
1648 			       c->str, -rc);
1649 			goto out;
1650 		}
1651 	}
1652 
1653 	rc = context_cpy(&oldc, c);
1654 	if (rc)
1655 		goto out;
1656 
1657 	rc = -EINVAL;
1658 
1659 	/* Convert the user. */
1660 	usrdatum = hashtab_search(args->newp->p_users.table,
1661 				  args->oldp->p_user_val_to_name[c->user - 1]);
1662 	if (!usrdatum)
1663 		goto bad;
1664 	c->user = usrdatum->value;
1665 
1666 	/* Convert the role. */
1667 	role = hashtab_search(args->newp->p_roles.table,
1668 			      args->oldp->p_role_val_to_name[c->role - 1]);
1669 	if (!role)
1670 		goto bad;
1671 	c->role = role->value;
1672 
1673 	/* Convert the type. */
1674 	typdatum = hashtab_search(args->newp->p_types.table,
1675 				  args->oldp->p_type_val_to_name[c->type - 1]);
1676 	if (!typdatum)
1677 		goto bad;
1678 	c->type = typdatum->value;
1679 
1680 	/* Convert the MLS fields if dealing with MLS policies */
1681 	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1682 		rc = mls_convert_context(args->oldp, args->newp, c);
1683 		if (rc)
1684 			goto bad;
1685 	} else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1686 		/*
1687 		 * Switching between MLS and non-MLS policy:
1688 		 * free any storage used by the MLS fields in the
1689 		 * context for all existing entries in the sidtab.
1690 		 */
1691 		mls_context_destroy(c);
1692 	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1693 		/*
1694 		 * Switching between non-MLS and MLS policy:
1695 		 * ensure that the MLS fields of the context for all
1696 		 * existing entries in the sidtab are filled in with a
1697 		 * suitable default value, likely taken from one of the
1698 		 * initial SIDs.
1699 		 */
1700 		oc = args->newp->ocontexts[OCON_ISID];
1701 		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1702 			oc = oc->next;
1703 		if (!oc) {
1704 			printk(KERN_ERR "SELinux:  unable to look up"
1705 				" the initial SIDs list\n");
1706 			goto bad;
1707 		}
1708 		range = &oc->context[0].range;
1709 		rc = mls_range_set(c, range);
1710 		if (rc)
1711 			goto bad;
1712 	}
1713 
1714 	/* Check the validity of the new context. */
1715 	if (!policydb_context_isvalid(args->newp, c)) {
1716 		rc = convert_context_handle_invalid_context(&oldc);
1717 		if (rc)
1718 			goto bad;
1719 	}
1720 
1721 	context_destroy(&oldc);
1722 	rc = 0;
1723 out:
1724 	return rc;
1725 bad:
1726 	/* Map old representation to string and save it. */
1727 	if (context_struct_to_string(&oldc, &s, &len))
1728 		return -ENOMEM;
1729 	context_destroy(&oldc);
1730 	context_destroy(c);
1731 	c->str = s;
1732 	c->len = len;
1733 	printk(KERN_INFO
1734 	       "SELinux:  Context %s became invalid (unmapped).\n",
1735 	       c->str);
1736 	rc = 0;
1737 	goto out;
1738 }
1739 
1740 static void security_load_policycaps(void)
1741 {
1742 	selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1743 						  POLICYDB_CAPABILITY_NETPEER);
1744 	selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1745 						  POLICYDB_CAPABILITY_OPENPERM);
1746 }
1747 
1748 extern void selinux_complete_init(void);
1749 static int security_preserve_bools(struct policydb *p);
1750 
1751 /**
1752  * security_load_policy - Load a security policy configuration.
1753  * @data: binary policy data
1754  * @len: length of data in bytes
1755  *
1756  * Load a new set of security policy configuration data,
1757  * validate it and convert the SID table as necessary.
1758  * This function will flush the access vector cache after
1759  * loading the new policy.
1760  */
1761 int security_load_policy(void *data, size_t len)
1762 {
1763 	struct policydb oldpolicydb, newpolicydb;
1764 	struct sidtab oldsidtab, newsidtab;
1765 	struct selinux_mapping *oldmap, *map = NULL;
1766 	struct convert_context_args args;
1767 	u32 seqno;
1768 	u16 map_size;
1769 	int rc = 0;
1770 	struct policy_file file = { data, len }, *fp = &file;
1771 
1772 	if (!ss_initialized) {
1773 		avtab_cache_init();
1774 		rc = policydb_read(&policydb, fp);
1775 		if (rc) {
1776 			avtab_cache_destroy();
1777 			return rc;
1778 		}
1779 
1780 		policydb.len = len;
1781 		rc = selinux_set_mapping(&policydb, secclass_map,
1782 					 &current_mapping,
1783 					 &current_mapping_size);
1784 		if (rc) {
1785 			policydb_destroy(&policydb);
1786 			avtab_cache_destroy();
1787 			return rc;
1788 		}
1789 
1790 		rc = policydb_load_isids(&policydb, &sidtab);
1791 		if (rc) {
1792 			policydb_destroy(&policydb);
1793 			avtab_cache_destroy();
1794 			return rc;
1795 		}
1796 
1797 		security_load_policycaps();
1798 		ss_initialized = 1;
1799 		seqno = ++latest_granting;
1800 		selinux_complete_init();
1801 		avc_ss_reset(seqno);
1802 		selnl_notify_policyload(seqno);
1803 		selinux_status_update_policyload(seqno);
1804 		selinux_netlbl_cache_invalidate();
1805 		selinux_xfrm_notify_policyload();
1806 		return 0;
1807 	}
1808 
1809 #if 0
1810 	sidtab_hash_eval(&sidtab, "sids");
1811 #endif
1812 
1813 	rc = policydb_read(&newpolicydb, fp);
1814 	if (rc)
1815 		return rc;
1816 
1817 	newpolicydb.len = len;
1818 	/* If switching between different policy types, log MLS status */
1819 	if (policydb.mls_enabled && !newpolicydb.mls_enabled)
1820 		printk(KERN_INFO "SELinux: Disabling MLS support...\n");
1821 	else if (!policydb.mls_enabled && newpolicydb.mls_enabled)
1822 		printk(KERN_INFO "SELinux: Enabling MLS support...\n");
1823 
1824 	rc = policydb_load_isids(&newpolicydb, &newsidtab);
1825 	if (rc) {
1826 		printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
1827 		policydb_destroy(&newpolicydb);
1828 		return rc;
1829 	}
1830 
1831 	rc = selinux_set_mapping(&newpolicydb, secclass_map, &map, &map_size);
1832 	if (rc)
1833 		goto err;
1834 
1835 	rc = security_preserve_bools(&newpolicydb);
1836 	if (rc) {
1837 		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
1838 		goto err;
1839 	}
1840 
1841 	/* Clone the SID table. */
1842 	sidtab_shutdown(&sidtab);
1843 
1844 	rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
1845 	if (rc)
1846 		goto err;
1847 
1848 	/*
1849 	 * Convert the internal representations of contexts
1850 	 * in the new SID table.
1851 	 */
1852 	args.oldp = &policydb;
1853 	args.newp = &newpolicydb;
1854 	rc = sidtab_map(&newsidtab, convert_context, &args);
1855 	if (rc) {
1856 		printk(KERN_ERR "SELinux:  unable to convert the internal"
1857 			" representation of contexts in the new SID"
1858 			" table\n");
1859 		goto err;
1860 	}
1861 
1862 	/* Save the old policydb and SID table to free later. */
1863 	memcpy(&oldpolicydb, &policydb, sizeof policydb);
1864 	sidtab_set(&oldsidtab, &sidtab);
1865 
1866 	/* Install the new policydb and SID table. */
1867 	write_lock_irq(&policy_rwlock);
1868 	memcpy(&policydb, &newpolicydb, sizeof policydb);
1869 	sidtab_set(&sidtab, &newsidtab);
1870 	security_load_policycaps();
1871 	oldmap = current_mapping;
1872 	current_mapping = map;
1873 	current_mapping_size = map_size;
1874 	seqno = ++latest_granting;
1875 	write_unlock_irq(&policy_rwlock);
1876 
1877 	/* Free the old policydb and SID table. */
1878 	policydb_destroy(&oldpolicydb);
1879 	sidtab_destroy(&oldsidtab);
1880 	kfree(oldmap);
1881 
1882 	avc_ss_reset(seqno);
1883 	selnl_notify_policyload(seqno);
1884 	selinux_status_update_policyload(seqno);
1885 	selinux_netlbl_cache_invalidate();
1886 	selinux_xfrm_notify_policyload();
1887 
1888 	return 0;
1889 
1890 err:
1891 	kfree(map);
1892 	sidtab_destroy(&newsidtab);
1893 	policydb_destroy(&newpolicydb);
1894 	return rc;
1895 
1896 }
1897 
1898 size_t security_policydb_len(void)
1899 {
1900 	size_t len;
1901 
1902 	read_lock(&policy_rwlock);
1903 	len = policydb.len;
1904 	read_unlock(&policy_rwlock);
1905 
1906 	return len;
1907 }
1908 
1909 /**
1910  * security_port_sid - Obtain the SID for a port.
1911  * @protocol: protocol number
1912  * @port: port number
1913  * @out_sid: security identifier
1914  */
1915 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
1916 {
1917 	struct ocontext *c;
1918 	int rc = 0;
1919 
1920 	read_lock(&policy_rwlock);
1921 
1922 	c = policydb.ocontexts[OCON_PORT];
1923 	while (c) {
1924 		if (c->u.port.protocol == protocol &&
1925 		    c->u.port.low_port <= port &&
1926 		    c->u.port.high_port >= port)
1927 			break;
1928 		c = c->next;
1929 	}
1930 
1931 	if (c) {
1932 		if (!c->sid[0]) {
1933 			rc = sidtab_context_to_sid(&sidtab,
1934 						   &c->context[0],
1935 						   &c->sid[0]);
1936 			if (rc)
1937 				goto out;
1938 		}
1939 		*out_sid = c->sid[0];
1940 	} else {
1941 		*out_sid = SECINITSID_PORT;
1942 	}
1943 
1944 out:
1945 	read_unlock(&policy_rwlock);
1946 	return rc;
1947 }
1948 
1949 /**
1950  * security_netif_sid - Obtain the SID for a network interface.
1951  * @name: interface name
1952  * @if_sid: interface SID
1953  */
1954 int security_netif_sid(char *name, u32 *if_sid)
1955 {
1956 	int rc = 0;
1957 	struct ocontext *c;
1958 
1959 	read_lock(&policy_rwlock);
1960 
1961 	c = policydb.ocontexts[OCON_NETIF];
1962 	while (c) {
1963 		if (strcmp(name, c->u.name) == 0)
1964 			break;
1965 		c = c->next;
1966 	}
1967 
1968 	if (c) {
1969 		if (!c->sid[0] || !c->sid[1]) {
1970 			rc = sidtab_context_to_sid(&sidtab,
1971 						  &c->context[0],
1972 						  &c->sid[0]);
1973 			if (rc)
1974 				goto out;
1975 			rc = sidtab_context_to_sid(&sidtab,
1976 						   &c->context[1],
1977 						   &c->sid[1]);
1978 			if (rc)
1979 				goto out;
1980 		}
1981 		*if_sid = c->sid[0];
1982 	} else
1983 		*if_sid = SECINITSID_NETIF;
1984 
1985 out:
1986 	read_unlock(&policy_rwlock);
1987 	return rc;
1988 }
1989 
1990 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
1991 {
1992 	int i, fail = 0;
1993 
1994 	for (i = 0; i < 4; i++)
1995 		if (addr[i] != (input[i] & mask[i])) {
1996 			fail = 1;
1997 			break;
1998 		}
1999 
2000 	return !fail;
2001 }
2002 
2003 /**
2004  * security_node_sid - Obtain the SID for a node (host).
2005  * @domain: communication domain aka address family
2006  * @addrp: address
2007  * @addrlen: address length in bytes
2008  * @out_sid: security identifier
2009  */
2010 int security_node_sid(u16 domain,
2011 		      void *addrp,
2012 		      u32 addrlen,
2013 		      u32 *out_sid)
2014 {
2015 	int rc = 0;
2016 	struct ocontext *c;
2017 
2018 	read_lock(&policy_rwlock);
2019 
2020 	switch (domain) {
2021 	case AF_INET: {
2022 		u32 addr;
2023 
2024 		if (addrlen != sizeof(u32)) {
2025 			rc = -EINVAL;
2026 			goto out;
2027 		}
2028 
2029 		addr = *((u32 *)addrp);
2030 
2031 		c = policydb.ocontexts[OCON_NODE];
2032 		while (c) {
2033 			if (c->u.node.addr == (addr & c->u.node.mask))
2034 				break;
2035 			c = c->next;
2036 		}
2037 		break;
2038 	}
2039 
2040 	case AF_INET6:
2041 		if (addrlen != sizeof(u64) * 2) {
2042 			rc = -EINVAL;
2043 			goto out;
2044 		}
2045 		c = policydb.ocontexts[OCON_NODE6];
2046 		while (c) {
2047 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2048 						c->u.node6.mask))
2049 				break;
2050 			c = c->next;
2051 		}
2052 		break;
2053 
2054 	default:
2055 		*out_sid = SECINITSID_NODE;
2056 		goto out;
2057 	}
2058 
2059 	if (c) {
2060 		if (!c->sid[0]) {
2061 			rc = sidtab_context_to_sid(&sidtab,
2062 						   &c->context[0],
2063 						   &c->sid[0]);
2064 			if (rc)
2065 				goto out;
2066 		}
2067 		*out_sid = c->sid[0];
2068 	} else {
2069 		*out_sid = SECINITSID_NODE;
2070 	}
2071 
2072 out:
2073 	read_unlock(&policy_rwlock);
2074 	return rc;
2075 }
2076 
2077 #define SIDS_NEL 25
2078 
2079 /**
2080  * security_get_user_sids - Obtain reachable SIDs for a user.
2081  * @fromsid: starting SID
2082  * @username: username
2083  * @sids: array of reachable SIDs for user
2084  * @nel: number of elements in @sids
2085  *
2086  * Generate the set of SIDs for legal security contexts
2087  * for a given user that can be reached by @fromsid.
2088  * Set *@sids to point to a dynamically allocated
2089  * array containing the set of SIDs.  Set *@nel to the
2090  * number of elements in the array.
2091  */
2092 
2093 int security_get_user_sids(u32 fromsid,
2094 			   char *username,
2095 			   u32 **sids,
2096 			   u32 *nel)
2097 {
2098 	struct context *fromcon, usercon;
2099 	u32 *mysids = NULL, *mysids2, sid;
2100 	u32 mynel = 0, maxnel = SIDS_NEL;
2101 	struct user_datum *user;
2102 	struct role_datum *role;
2103 	struct ebitmap_node *rnode, *tnode;
2104 	int rc = 0, i, j;
2105 
2106 	*sids = NULL;
2107 	*nel = 0;
2108 
2109 	if (!ss_initialized)
2110 		goto out;
2111 
2112 	read_lock(&policy_rwlock);
2113 
2114 	context_init(&usercon);
2115 
2116 	fromcon = sidtab_search(&sidtab, fromsid);
2117 	if (!fromcon) {
2118 		rc = -EINVAL;
2119 		goto out_unlock;
2120 	}
2121 
2122 	user = hashtab_search(policydb.p_users.table, username);
2123 	if (!user) {
2124 		rc = -EINVAL;
2125 		goto out_unlock;
2126 	}
2127 	usercon.user = user->value;
2128 
2129 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2130 	if (!mysids) {
2131 		rc = -ENOMEM;
2132 		goto out_unlock;
2133 	}
2134 
2135 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2136 		role = policydb.role_val_to_struct[i];
2137 		usercon.role = i + 1;
2138 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2139 			usercon.type = j + 1;
2140 
2141 			if (mls_setup_user_range(fromcon, user, &usercon))
2142 				continue;
2143 
2144 			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2145 			if (rc)
2146 				goto out_unlock;
2147 			if (mynel < maxnel) {
2148 				mysids[mynel++] = sid;
2149 			} else {
2150 				maxnel += SIDS_NEL;
2151 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2152 				if (!mysids2) {
2153 					rc = -ENOMEM;
2154 					goto out_unlock;
2155 				}
2156 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2157 				kfree(mysids);
2158 				mysids = mysids2;
2159 				mysids[mynel++] = sid;
2160 			}
2161 		}
2162 	}
2163 
2164 out_unlock:
2165 	read_unlock(&policy_rwlock);
2166 	if (rc || !mynel) {
2167 		kfree(mysids);
2168 		goto out;
2169 	}
2170 
2171 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2172 	if (!mysids2) {
2173 		rc = -ENOMEM;
2174 		kfree(mysids);
2175 		goto out;
2176 	}
2177 	for (i = 0, j = 0; i < mynel; i++) {
2178 		rc = avc_has_perm_noaudit(fromsid, mysids[i],
2179 					  SECCLASS_PROCESS, /* kernel value */
2180 					  PROCESS__TRANSITION, AVC_STRICT,
2181 					  NULL);
2182 		if (!rc)
2183 			mysids2[j++] = mysids[i];
2184 		cond_resched();
2185 	}
2186 	rc = 0;
2187 	kfree(mysids);
2188 	*sids = mysids2;
2189 	*nel = j;
2190 out:
2191 	return rc;
2192 }
2193 
2194 /**
2195  * security_genfs_sid - Obtain a SID for a file in a filesystem
2196  * @fstype: filesystem type
2197  * @path: path from root of mount
2198  * @sclass: file security class
2199  * @sid: SID for path
2200  *
2201  * Obtain a SID to use for a file in a filesystem that
2202  * cannot support xattr or use a fixed labeling behavior like
2203  * transition SIDs or task SIDs.
2204  */
2205 int security_genfs_sid(const char *fstype,
2206 		       char *path,
2207 		       u16 orig_sclass,
2208 		       u32 *sid)
2209 {
2210 	int len;
2211 	u16 sclass;
2212 	struct genfs *genfs;
2213 	struct ocontext *c;
2214 	int rc = 0, cmp = 0;
2215 
2216 	while (path[0] == '/' && path[1] == '/')
2217 		path++;
2218 
2219 	read_lock(&policy_rwlock);
2220 
2221 	sclass = unmap_class(orig_sclass);
2222 
2223 	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2224 		cmp = strcmp(fstype, genfs->fstype);
2225 		if (cmp <= 0)
2226 			break;
2227 	}
2228 
2229 	if (!genfs || cmp) {
2230 		*sid = SECINITSID_UNLABELED;
2231 		rc = -ENOENT;
2232 		goto out;
2233 	}
2234 
2235 	for (c = genfs->head; c; c = c->next) {
2236 		len = strlen(c->u.name);
2237 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2238 		    (strncmp(c->u.name, path, len) == 0))
2239 			break;
2240 	}
2241 
2242 	if (!c) {
2243 		*sid = SECINITSID_UNLABELED;
2244 		rc = -ENOENT;
2245 		goto out;
2246 	}
2247 
2248 	if (!c->sid[0]) {
2249 		rc = sidtab_context_to_sid(&sidtab,
2250 					   &c->context[0],
2251 					   &c->sid[0]);
2252 		if (rc)
2253 			goto out;
2254 	}
2255 
2256 	*sid = c->sid[0];
2257 out:
2258 	read_unlock(&policy_rwlock);
2259 	return rc;
2260 }
2261 
2262 /**
2263  * security_fs_use - Determine how to handle labeling for a filesystem.
2264  * @fstype: filesystem type
2265  * @behavior: labeling behavior
2266  * @sid: SID for filesystem (superblock)
2267  */
2268 int security_fs_use(
2269 	const char *fstype,
2270 	unsigned int *behavior,
2271 	u32 *sid)
2272 {
2273 	int rc = 0;
2274 	struct ocontext *c;
2275 
2276 	read_lock(&policy_rwlock);
2277 
2278 	c = policydb.ocontexts[OCON_FSUSE];
2279 	while (c) {
2280 		if (strcmp(fstype, c->u.name) == 0)
2281 			break;
2282 		c = c->next;
2283 	}
2284 
2285 	if (c) {
2286 		*behavior = c->v.behavior;
2287 		if (!c->sid[0]) {
2288 			rc = sidtab_context_to_sid(&sidtab,
2289 						   &c->context[0],
2290 						   &c->sid[0]);
2291 			if (rc)
2292 				goto out;
2293 		}
2294 		*sid = c->sid[0];
2295 	} else {
2296 		rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
2297 		if (rc) {
2298 			*behavior = SECURITY_FS_USE_NONE;
2299 			rc = 0;
2300 		} else {
2301 			*behavior = SECURITY_FS_USE_GENFS;
2302 		}
2303 	}
2304 
2305 out:
2306 	read_unlock(&policy_rwlock);
2307 	return rc;
2308 }
2309 
2310 int security_get_bools(int *len, char ***names, int **values)
2311 {
2312 	int i, rc = -ENOMEM;
2313 
2314 	read_lock(&policy_rwlock);
2315 	*names = NULL;
2316 	*values = NULL;
2317 
2318 	*len = policydb.p_bools.nprim;
2319 	if (!*len) {
2320 		rc = 0;
2321 		goto out;
2322 	}
2323 
2324        *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2325 	if (!*names)
2326 		goto err;
2327 
2328        *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2329 	if (!*values)
2330 		goto err;
2331 
2332 	for (i = 0; i < *len; i++) {
2333 		size_t name_len;
2334 		(*values)[i] = policydb.bool_val_to_struct[i]->state;
2335 		name_len = strlen(policydb.p_bool_val_to_name[i]) + 1;
2336 	       (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
2337 		if (!(*names)[i])
2338 			goto err;
2339 		strncpy((*names)[i], policydb.p_bool_val_to_name[i], name_len);
2340 		(*names)[i][name_len - 1] = 0;
2341 	}
2342 	rc = 0;
2343 out:
2344 	read_unlock(&policy_rwlock);
2345 	return rc;
2346 err:
2347 	if (*names) {
2348 		for (i = 0; i < *len; i++)
2349 			kfree((*names)[i]);
2350 	}
2351 	kfree(*values);
2352 	goto out;
2353 }
2354 
2355 
2356 int security_set_bools(int len, int *values)
2357 {
2358 	int i, rc = 0;
2359 	int lenp, seqno = 0;
2360 	struct cond_node *cur;
2361 
2362 	write_lock_irq(&policy_rwlock);
2363 
2364 	lenp = policydb.p_bools.nprim;
2365 	if (len != lenp) {
2366 		rc = -EFAULT;
2367 		goto out;
2368 	}
2369 
2370 	for (i = 0; i < len; i++) {
2371 		if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2372 			audit_log(current->audit_context, GFP_ATOMIC,
2373 				AUDIT_MAC_CONFIG_CHANGE,
2374 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2375 				policydb.p_bool_val_to_name[i],
2376 				!!values[i],
2377 				policydb.bool_val_to_struct[i]->state,
2378 				audit_get_loginuid(current),
2379 				audit_get_sessionid(current));
2380 		}
2381 		if (values[i])
2382 			policydb.bool_val_to_struct[i]->state = 1;
2383 		else
2384 			policydb.bool_val_to_struct[i]->state = 0;
2385 	}
2386 
2387 	for (cur = policydb.cond_list; cur; cur = cur->next) {
2388 		rc = evaluate_cond_node(&policydb, cur);
2389 		if (rc)
2390 			goto out;
2391 	}
2392 
2393 	seqno = ++latest_granting;
2394 
2395 out:
2396 	write_unlock_irq(&policy_rwlock);
2397 	if (!rc) {
2398 		avc_ss_reset(seqno);
2399 		selnl_notify_policyload(seqno);
2400 		selinux_status_update_policyload(seqno);
2401 		selinux_xfrm_notify_policyload();
2402 	}
2403 	return rc;
2404 }
2405 
2406 int security_get_bool_value(int bool)
2407 {
2408 	int rc = 0;
2409 	int len;
2410 
2411 	read_lock(&policy_rwlock);
2412 
2413 	len = policydb.p_bools.nprim;
2414 	if (bool >= len) {
2415 		rc = -EFAULT;
2416 		goto out;
2417 	}
2418 
2419 	rc = policydb.bool_val_to_struct[bool]->state;
2420 out:
2421 	read_unlock(&policy_rwlock);
2422 	return rc;
2423 }
2424 
2425 static int security_preserve_bools(struct policydb *p)
2426 {
2427 	int rc, nbools = 0, *bvalues = NULL, i;
2428 	char **bnames = NULL;
2429 	struct cond_bool_datum *booldatum;
2430 	struct cond_node *cur;
2431 
2432 	rc = security_get_bools(&nbools, &bnames, &bvalues);
2433 	if (rc)
2434 		goto out;
2435 	for (i = 0; i < nbools; i++) {
2436 		booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2437 		if (booldatum)
2438 			booldatum->state = bvalues[i];
2439 	}
2440 	for (cur = p->cond_list; cur; cur = cur->next) {
2441 		rc = evaluate_cond_node(p, cur);
2442 		if (rc)
2443 			goto out;
2444 	}
2445 
2446 out:
2447 	if (bnames) {
2448 		for (i = 0; i < nbools; i++)
2449 			kfree(bnames[i]);
2450 	}
2451 	kfree(bnames);
2452 	kfree(bvalues);
2453 	return rc;
2454 }
2455 
2456 /*
2457  * security_sid_mls_copy() - computes a new sid based on the given
2458  * sid and the mls portion of mls_sid.
2459  */
2460 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2461 {
2462 	struct context *context1;
2463 	struct context *context2;
2464 	struct context newcon;
2465 	char *s;
2466 	u32 len;
2467 	int rc = 0;
2468 
2469 	if (!ss_initialized || !policydb.mls_enabled) {
2470 		*new_sid = sid;
2471 		goto out;
2472 	}
2473 
2474 	context_init(&newcon);
2475 
2476 	read_lock(&policy_rwlock);
2477 	context1 = sidtab_search(&sidtab, sid);
2478 	if (!context1) {
2479 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2480 			__func__, sid);
2481 		rc = -EINVAL;
2482 		goto out_unlock;
2483 	}
2484 
2485 	context2 = sidtab_search(&sidtab, mls_sid);
2486 	if (!context2) {
2487 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2488 			__func__, mls_sid);
2489 		rc = -EINVAL;
2490 		goto out_unlock;
2491 	}
2492 
2493 	newcon.user = context1->user;
2494 	newcon.role = context1->role;
2495 	newcon.type = context1->type;
2496 	rc = mls_context_cpy(&newcon, context2);
2497 	if (rc)
2498 		goto out_unlock;
2499 
2500 	/* Check the validity of the new context. */
2501 	if (!policydb_context_isvalid(&policydb, &newcon)) {
2502 		rc = convert_context_handle_invalid_context(&newcon);
2503 		if (rc)
2504 			goto bad;
2505 	}
2506 
2507 	rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2508 	goto out_unlock;
2509 
2510 bad:
2511 	if (!context_struct_to_string(&newcon, &s, &len)) {
2512 		audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2513 			  "security_sid_mls_copy: invalid context %s", s);
2514 		kfree(s);
2515 	}
2516 
2517 out_unlock:
2518 	read_unlock(&policy_rwlock);
2519 	context_destroy(&newcon);
2520 out:
2521 	return rc;
2522 }
2523 
2524 /**
2525  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2526  * @nlbl_sid: NetLabel SID
2527  * @nlbl_type: NetLabel labeling protocol type
2528  * @xfrm_sid: XFRM SID
2529  *
2530  * Description:
2531  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2532  * resolved into a single SID it is returned via @peer_sid and the function
2533  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2534  * returns a negative value.  A table summarizing the behavior is below:
2535  *
2536  *                                 | function return |      @sid
2537  *   ------------------------------+-----------------+-----------------
2538  *   no peer labels                |        0        |    SECSID_NULL
2539  *   single peer label             |        0        |    <peer_label>
2540  *   multiple, consistent labels   |        0        |    <peer_label>
2541  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2542  *
2543  */
2544 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2545 				 u32 xfrm_sid,
2546 				 u32 *peer_sid)
2547 {
2548 	int rc;
2549 	struct context *nlbl_ctx;
2550 	struct context *xfrm_ctx;
2551 
2552 	/* handle the common (which also happens to be the set of easy) cases
2553 	 * right away, these two if statements catch everything involving a
2554 	 * single or absent peer SID/label */
2555 	if (xfrm_sid == SECSID_NULL) {
2556 		*peer_sid = nlbl_sid;
2557 		return 0;
2558 	}
2559 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2560 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2561 	 * is present */
2562 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2563 		*peer_sid = xfrm_sid;
2564 		return 0;
2565 	}
2566 
2567 	/* we don't need to check ss_initialized here since the only way both
2568 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2569 	 * security server was initialized and ss_initialized was true */
2570 	if (!policydb.mls_enabled) {
2571 		*peer_sid = SECSID_NULL;
2572 		return 0;
2573 	}
2574 
2575 	read_lock(&policy_rwlock);
2576 
2577 	nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2578 	if (!nlbl_ctx) {
2579 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2580 		       __func__, nlbl_sid);
2581 		rc = -EINVAL;
2582 		goto out_slowpath;
2583 	}
2584 	xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2585 	if (!xfrm_ctx) {
2586 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2587 		       __func__, xfrm_sid);
2588 		rc = -EINVAL;
2589 		goto out_slowpath;
2590 	}
2591 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2592 
2593 out_slowpath:
2594 	read_unlock(&policy_rwlock);
2595 	if (rc == 0)
2596 		/* at present NetLabel SIDs/labels really only carry MLS
2597 		 * information so if the MLS portion of the NetLabel SID
2598 		 * matches the MLS portion of the labeled XFRM SID/label
2599 		 * then pass along the XFRM SID as it is the most
2600 		 * expressive */
2601 		*peer_sid = xfrm_sid;
2602 	else
2603 		*peer_sid = SECSID_NULL;
2604 	return rc;
2605 }
2606 
2607 static int get_classes_callback(void *k, void *d, void *args)
2608 {
2609 	struct class_datum *datum = d;
2610 	char *name = k, **classes = args;
2611 	int value = datum->value - 1;
2612 
2613 	classes[value] = kstrdup(name, GFP_ATOMIC);
2614 	if (!classes[value])
2615 		return -ENOMEM;
2616 
2617 	return 0;
2618 }
2619 
2620 int security_get_classes(char ***classes, int *nclasses)
2621 {
2622 	int rc = -ENOMEM;
2623 
2624 	read_lock(&policy_rwlock);
2625 
2626 	*nclasses = policydb.p_classes.nprim;
2627 	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2628 	if (!*classes)
2629 		goto out;
2630 
2631 	rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2632 			*classes);
2633 	if (rc < 0) {
2634 		int i;
2635 		for (i = 0; i < *nclasses; i++)
2636 			kfree((*classes)[i]);
2637 		kfree(*classes);
2638 	}
2639 
2640 out:
2641 	read_unlock(&policy_rwlock);
2642 	return rc;
2643 }
2644 
2645 static int get_permissions_callback(void *k, void *d, void *args)
2646 {
2647 	struct perm_datum *datum = d;
2648 	char *name = k, **perms = args;
2649 	int value = datum->value - 1;
2650 
2651 	perms[value] = kstrdup(name, GFP_ATOMIC);
2652 	if (!perms[value])
2653 		return -ENOMEM;
2654 
2655 	return 0;
2656 }
2657 
2658 int security_get_permissions(char *class, char ***perms, int *nperms)
2659 {
2660 	int rc = -ENOMEM, i;
2661 	struct class_datum *match;
2662 
2663 	read_lock(&policy_rwlock);
2664 
2665 	match = hashtab_search(policydb.p_classes.table, class);
2666 	if (!match) {
2667 		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2668 			__func__, class);
2669 		rc = -EINVAL;
2670 		goto out;
2671 	}
2672 
2673 	*nperms = match->permissions.nprim;
2674 	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2675 	if (!*perms)
2676 		goto out;
2677 
2678 	if (match->comdatum) {
2679 		rc = hashtab_map(match->comdatum->permissions.table,
2680 				get_permissions_callback, *perms);
2681 		if (rc < 0)
2682 			goto err;
2683 	}
2684 
2685 	rc = hashtab_map(match->permissions.table, get_permissions_callback,
2686 			*perms);
2687 	if (rc < 0)
2688 		goto err;
2689 
2690 out:
2691 	read_unlock(&policy_rwlock);
2692 	return rc;
2693 
2694 err:
2695 	read_unlock(&policy_rwlock);
2696 	for (i = 0; i < *nperms; i++)
2697 		kfree((*perms)[i]);
2698 	kfree(*perms);
2699 	return rc;
2700 }
2701 
2702 int security_get_reject_unknown(void)
2703 {
2704 	return policydb.reject_unknown;
2705 }
2706 
2707 int security_get_allow_unknown(void)
2708 {
2709 	return policydb.allow_unknown;
2710 }
2711 
2712 /**
2713  * security_policycap_supported - Check for a specific policy capability
2714  * @req_cap: capability
2715  *
2716  * Description:
2717  * This function queries the currently loaded policy to see if it supports the
2718  * capability specified by @req_cap.  Returns true (1) if the capability is
2719  * supported, false (0) if it isn't supported.
2720  *
2721  */
2722 int security_policycap_supported(unsigned int req_cap)
2723 {
2724 	int rc;
2725 
2726 	read_lock(&policy_rwlock);
2727 	rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2728 	read_unlock(&policy_rwlock);
2729 
2730 	return rc;
2731 }
2732 
2733 struct selinux_audit_rule {
2734 	u32 au_seqno;
2735 	struct context au_ctxt;
2736 };
2737 
2738 void selinux_audit_rule_free(void *vrule)
2739 {
2740 	struct selinux_audit_rule *rule = vrule;
2741 
2742 	if (rule) {
2743 		context_destroy(&rule->au_ctxt);
2744 		kfree(rule);
2745 	}
2746 }
2747 
2748 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2749 {
2750 	struct selinux_audit_rule *tmprule;
2751 	struct role_datum *roledatum;
2752 	struct type_datum *typedatum;
2753 	struct user_datum *userdatum;
2754 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2755 	int rc = 0;
2756 
2757 	*rule = NULL;
2758 
2759 	if (!ss_initialized)
2760 		return -EOPNOTSUPP;
2761 
2762 	switch (field) {
2763 	case AUDIT_SUBJ_USER:
2764 	case AUDIT_SUBJ_ROLE:
2765 	case AUDIT_SUBJ_TYPE:
2766 	case AUDIT_OBJ_USER:
2767 	case AUDIT_OBJ_ROLE:
2768 	case AUDIT_OBJ_TYPE:
2769 		/* only 'equals' and 'not equals' fit user, role, and type */
2770 		if (op != Audit_equal && op != Audit_not_equal)
2771 			return -EINVAL;
2772 		break;
2773 	case AUDIT_SUBJ_SEN:
2774 	case AUDIT_SUBJ_CLR:
2775 	case AUDIT_OBJ_LEV_LOW:
2776 	case AUDIT_OBJ_LEV_HIGH:
2777 		/* we do not allow a range, indicated by the presense of '-' */
2778 		if (strchr(rulestr, '-'))
2779 			return -EINVAL;
2780 		break;
2781 	default:
2782 		/* only the above fields are valid */
2783 		return -EINVAL;
2784 	}
2785 
2786 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2787 	if (!tmprule)
2788 		return -ENOMEM;
2789 
2790 	context_init(&tmprule->au_ctxt);
2791 
2792 	read_lock(&policy_rwlock);
2793 
2794 	tmprule->au_seqno = latest_granting;
2795 
2796 	switch (field) {
2797 	case AUDIT_SUBJ_USER:
2798 	case AUDIT_OBJ_USER:
2799 		userdatum = hashtab_search(policydb.p_users.table, rulestr);
2800 		if (!userdatum)
2801 			rc = -EINVAL;
2802 		else
2803 			tmprule->au_ctxt.user = userdatum->value;
2804 		break;
2805 	case AUDIT_SUBJ_ROLE:
2806 	case AUDIT_OBJ_ROLE:
2807 		roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2808 		if (!roledatum)
2809 			rc = -EINVAL;
2810 		else
2811 			tmprule->au_ctxt.role = roledatum->value;
2812 		break;
2813 	case AUDIT_SUBJ_TYPE:
2814 	case AUDIT_OBJ_TYPE:
2815 		typedatum = hashtab_search(policydb.p_types.table, rulestr);
2816 		if (!typedatum)
2817 			rc = -EINVAL;
2818 		else
2819 			tmprule->au_ctxt.type = typedatum->value;
2820 		break;
2821 	case AUDIT_SUBJ_SEN:
2822 	case AUDIT_SUBJ_CLR:
2823 	case AUDIT_OBJ_LEV_LOW:
2824 	case AUDIT_OBJ_LEV_HIGH:
2825 		rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2826 		break;
2827 	}
2828 
2829 	read_unlock(&policy_rwlock);
2830 
2831 	if (rc) {
2832 		selinux_audit_rule_free(tmprule);
2833 		tmprule = NULL;
2834 	}
2835 
2836 	*rule = tmprule;
2837 
2838 	return rc;
2839 }
2840 
2841 /* Check to see if the rule contains any selinux fields */
2842 int selinux_audit_rule_known(struct audit_krule *rule)
2843 {
2844 	int i;
2845 
2846 	for (i = 0; i < rule->field_count; i++) {
2847 		struct audit_field *f = &rule->fields[i];
2848 		switch (f->type) {
2849 		case AUDIT_SUBJ_USER:
2850 		case AUDIT_SUBJ_ROLE:
2851 		case AUDIT_SUBJ_TYPE:
2852 		case AUDIT_SUBJ_SEN:
2853 		case AUDIT_SUBJ_CLR:
2854 		case AUDIT_OBJ_USER:
2855 		case AUDIT_OBJ_ROLE:
2856 		case AUDIT_OBJ_TYPE:
2857 		case AUDIT_OBJ_LEV_LOW:
2858 		case AUDIT_OBJ_LEV_HIGH:
2859 			return 1;
2860 		}
2861 	}
2862 
2863 	return 0;
2864 }
2865 
2866 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2867 			     struct audit_context *actx)
2868 {
2869 	struct context *ctxt;
2870 	struct mls_level *level;
2871 	struct selinux_audit_rule *rule = vrule;
2872 	int match = 0;
2873 
2874 	if (!rule) {
2875 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2876 			  "selinux_audit_rule_match: missing rule\n");
2877 		return -ENOENT;
2878 	}
2879 
2880 	read_lock(&policy_rwlock);
2881 
2882 	if (rule->au_seqno < latest_granting) {
2883 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2884 			  "selinux_audit_rule_match: stale rule\n");
2885 		match = -ESTALE;
2886 		goto out;
2887 	}
2888 
2889 	ctxt = sidtab_search(&sidtab, sid);
2890 	if (!ctxt) {
2891 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2892 			  "selinux_audit_rule_match: unrecognized SID %d\n",
2893 			  sid);
2894 		match = -ENOENT;
2895 		goto out;
2896 	}
2897 
2898 	/* a field/op pair that is not caught here will simply fall through
2899 	   without a match */
2900 	switch (field) {
2901 	case AUDIT_SUBJ_USER:
2902 	case AUDIT_OBJ_USER:
2903 		switch (op) {
2904 		case Audit_equal:
2905 			match = (ctxt->user == rule->au_ctxt.user);
2906 			break;
2907 		case Audit_not_equal:
2908 			match = (ctxt->user != rule->au_ctxt.user);
2909 			break;
2910 		}
2911 		break;
2912 	case AUDIT_SUBJ_ROLE:
2913 	case AUDIT_OBJ_ROLE:
2914 		switch (op) {
2915 		case Audit_equal:
2916 			match = (ctxt->role == rule->au_ctxt.role);
2917 			break;
2918 		case Audit_not_equal:
2919 			match = (ctxt->role != rule->au_ctxt.role);
2920 			break;
2921 		}
2922 		break;
2923 	case AUDIT_SUBJ_TYPE:
2924 	case AUDIT_OBJ_TYPE:
2925 		switch (op) {
2926 		case Audit_equal:
2927 			match = (ctxt->type == rule->au_ctxt.type);
2928 			break;
2929 		case Audit_not_equal:
2930 			match = (ctxt->type != rule->au_ctxt.type);
2931 			break;
2932 		}
2933 		break;
2934 	case AUDIT_SUBJ_SEN:
2935 	case AUDIT_SUBJ_CLR:
2936 	case AUDIT_OBJ_LEV_LOW:
2937 	case AUDIT_OBJ_LEV_HIGH:
2938 		level = ((field == AUDIT_SUBJ_SEN ||
2939 			  field == AUDIT_OBJ_LEV_LOW) ?
2940 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
2941 		switch (op) {
2942 		case Audit_equal:
2943 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
2944 					     level);
2945 			break;
2946 		case Audit_not_equal:
2947 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
2948 					      level);
2949 			break;
2950 		case Audit_lt:
2951 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
2952 					       level) &&
2953 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
2954 					       level));
2955 			break;
2956 		case Audit_le:
2957 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
2958 					      level);
2959 			break;
2960 		case Audit_gt:
2961 			match = (mls_level_dom(level,
2962 					      &rule->au_ctxt.range.level[0]) &&
2963 				 !mls_level_eq(level,
2964 					       &rule->au_ctxt.range.level[0]));
2965 			break;
2966 		case Audit_ge:
2967 			match = mls_level_dom(level,
2968 					      &rule->au_ctxt.range.level[0]);
2969 			break;
2970 		}
2971 	}
2972 
2973 out:
2974 	read_unlock(&policy_rwlock);
2975 	return match;
2976 }
2977 
2978 static int (*aurule_callback)(void) = audit_update_lsm_rules;
2979 
2980 static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
2981 			       u16 class, u32 perms, u32 *retained)
2982 {
2983 	int err = 0;
2984 
2985 	if (event == AVC_CALLBACK_RESET && aurule_callback)
2986 		err = aurule_callback();
2987 	return err;
2988 }
2989 
2990 static int __init aurule_init(void)
2991 {
2992 	int err;
2993 
2994 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
2995 			       SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
2996 	if (err)
2997 		panic("avc_add_callback() failed, error %d\n", err);
2998 
2999 	return err;
3000 }
3001 __initcall(aurule_init);
3002 
3003 #ifdef CONFIG_NETLABEL
3004 /**
3005  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3006  * @secattr: the NetLabel packet security attributes
3007  * @sid: the SELinux SID
3008  *
3009  * Description:
3010  * Attempt to cache the context in @ctx, which was derived from the packet in
3011  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3012  * already been initialized.
3013  *
3014  */
3015 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3016 				      u32 sid)
3017 {
3018 	u32 *sid_cache;
3019 
3020 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3021 	if (sid_cache == NULL)
3022 		return;
3023 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3024 	if (secattr->cache == NULL) {
3025 		kfree(sid_cache);
3026 		return;
3027 	}
3028 
3029 	*sid_cache = sid;
3030 	secattr->cache->free = kfree;
3031 	secattr->cache->data = sid_cache;
3032 	secattr->flags |= NETLBL_SECATTR_CACHE;
3033 }
3034 
3035 /**
3036  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3037  * @secattr: the NetLabel packet security attributes
3038  * @sid: the SELinux SID
3039  *
3040  * Description:
3041  * Convert the given NetLabel security attributes in @secattr into a
3042  * SELinux SID.  If the @secattr field does not contain a full SELinux
3043  * SID/context then use SECINITSID_NETMSG as the foundation.  If possibile the
3044  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3045  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3046  * conversion for future lookups.  Returns zero on success, negative values on
3047  * failure.
3048  *
3049  */
3050 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3051 				   u32 *sid)
3052 {
3053 	int rc = -EIDRM;
3054 	struct context *ctx;
3055 	struct context ctx_new;
3056 
3057 	if (!ss_initialized) {
3058 		*sid = SECSID_NULL;
3059 		return 0;
3060 	}
3061 
3062 	read_lock(&policy_rwlock);
3063 
3064 	if (secattr->flags & NETLBL_SECATTR_CACHE) {
3065 		*sid = *(u32 *)secattr->cache->data;
3066 		rc = 0;
3067 	} else if (secattr->flags & NETLBL_SECATTR_SECID) {
3068 		*sid = secattr->attr.secid;
3069 		rc = 0;
3070 	} else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3071 		ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3072 		if (ctx == NULL)
3073 			goto netlbl_secattr_to_sid_return;
3074 
3075 		context_init(&ctx_new);
3076 		ctx_new.user = ctx->user;
3077 		ctx_new.role = ctx->role;
3078 		ctx_new.type = ctx->type;
3079 		mls_import_netlbl_lvl(&ctx_new, secattr);
3080 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3081 			if (ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
3082 						  secattr->attr.mls.cat) != 0)
3083 				goto netlbl_secattr_to_sid_return;
3084 			memcpy(&ctx_new.range.level[1].cat,
3085 			       &ctx_new.range.level[0].cat,
3086 			       sizeof(ctx_new.range.level[0].cat));
3087 		}
3088 		if (mls_context_isvalid(&policydb, &ctx_new) != 1)
3089 			goto netlbl_secattr_to_sid_return_cleanup;
3090 
3091 		rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3092 		if (rc != 0)
3093 			goto netlbl_secattr_to_sid_return_cleanup;
3094 
3095 		security_netlbl_cache_add(secattr, *sid);
3096 
3097 		ebitmap_destroy(&ctx_new.range.level[0].cat);
3098 	} else {
3099 		*sid = SECSID_NULL;
3100 		rc = 0;
3101 	}
3102 
3103 netlbl_secattr_to_sid_return:
3104 	read_unlock(&policy_rwlock);
3105 	return rc;
3106 netlbl_secattr_to_sid_return_cleanup:
3107 	ebitmap_destroy(&ctx_new.range.level[0].cat);
3108 	goto netlbl_secattr_to_sid_return;
3109 }
3110 
3111 /**
3112  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3113  * @sid: the SELinux SID
3114  * @secattr: the NetLabel packet security attributes
3115  *
3116  * Description:
3117  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3118  * Returns zero on success, negative values on failure.
3119  *
3120  */
3121 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3122 {
3123 	int rc;
3124 	struct context *ctx;
3125 
3126 	if (!ss_initialized)
3127 		return 0;
3128 
3129 	read_lock(&policy_rwlock);
3130 	ctx = sidtab_search(&sidtab, sid);
3131 	if (ctx == NULL) {
3132 		rc = -ENOENT;
3133 		goto netlbl_sid_to_secattr_failure;
3134 	}
3135 	secattr->domain = kstrdup(policydb.p_type_val_to_name[ctx->type - 1],
3136 				  GFP_ATOMIC);
3137 	if (secattr->domain == NULL) {
3138 		rc = -ENOMEM;
3139 		goto netlbl_sid_to_secattr_failure;
3140 	}
3141 	secattr->attr.secid = sid;
3142 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3143 	mls_export_netlbl_lvl(ctx, secattr);
3144 	rc = mls_export_netlbl_cat(ctx, secattr);
3145 	if (rc != 0)
3146 		goto netlbl_sid_to_secattr_failure;
3147 	read_unlock(&policy_rwlock);
3148 
3149 	return 0;
3150 
3151 netlbl_sid_to_secattr_failure:
3152 	read_unlock(&policy_rwlock);
3153 	return rc;
3154 }
3155 #endif /* CONFIG_NETLABEL */
3156 
3157 /**
3158  * security_read_policy - read the policy.
3159  * @data: binary policy data
3160  * @len: length of data in bytes
3161  *
3162  */
3163 int security_read_policy(void **data, ssize_t *len)
3164 {
3165 	int rc;
3166 	struct policy_file fp;
3167 
3168 	if (!ss_initialized)
3169 		return -EINVAL;
3170 
3171 	*len = security_policydb_len();
3172 
3173 	*data = vmalloc_user(*len);
3174 	if (!*data)
3175 		return -ENOMEM;
3176 
3177 	fp.data = *data;
3178 	fp.len = *len;
3179 
3180 	read_lock(&policy_rwlock);
3181 	rc = policydb_write(&policydb, &fp);
3182 	read_unlock(&policy_rwlock);
3183 
3184 	if (rc)
3185 		return rc;
3186 
3187 	*len = (unsigned long)fp.data - (unsigned long)*data;
3188 	return 0;
3189 
3190 }
3191