xref: /openbmc/linux/security/selinux/ss/services.c (revision b9b77222)
1 /*
2  * Implementation of the security services.
3  *
4  * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
5  *	     James Morris <jmorris@redhat.com>
6  *
7  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8  *
9  *	Support for enhanced MLS infrastructure.
10  *	Support for context based audit filters.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *	Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul@paul-moore.com>
17  *
18  *      Added support for NetLabel
19  *      Added support for the policy capability bitmap
20  *
21  * Updated: Chad Sellers <csellers@tresys.com>
22  *
23  *  Added validation of kernel classes and permissions
24  *
25  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
26  *
27  *  Added support for bounds domain and audit messaged on masked permissions
28  *
29  * Updated: Guido Trentalancia <guido@trentalancia.com>
30  *
31  *  Added support for runtime switching of the policy type
32  *
33  * Copyright (C) 2008, 2009 NEC Corporation
34  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38  *	This program is free software; you can redistribute it and/or modify
39  *	it under the terms of the GNU General Public License as published by
40  *	the Free Software Foundation, version 2.
41  */
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/errno.h>
48 #include <linux/in.h>
49 #include <linux/sched.h>
50 #include <linux/audit.h>
51 #include <linux/mutex.h>
52 #include <linux/selinux.h>
53 #include <linux/flex_array.h>
54 #include <linux/vmalloc.h>
55 #include <net/netlabel.h>
56 
57 #include "flask.h"
58 #include "avc.h"
59 #include "avc_ss.h"
60 #include "security.h"
61 #include "context.h"
62 #include "policydb.h"
63 #include "sidtab.h"
64 #include "services.h"
65 #include "conditional.h"
66 #include "mls.h"
67 #include "objsec.h"
68 #include "netlabel.h"
69 #include "xfrm.h"
70 #include "ebitmap.h"
71 #include "audit.h"
72 
73 /* Policy capability names */
74 char *selinux_policycap_names[__POLICYDB_CAPABILITY_MAX] = {
75 	"network_peer_controls",
76 	"open_perms",
77 	"extended_socket_class",
78 	"always_check_network",
79 	"cgroup_seclabel",
80 	"nnp_nosuid_transition"
81 };
82 
83 static struct selinux_ss selinux_ss;
84 
85 void selinux_ss_init(struct selinux_ss **ss)
86 {
87 	rwlock_init(&selinux_ss.policy_rwlock);
88 	mutex_init(&selinux_ss.status_lock);
89 	*ss = &selinux_ss;
90 }
91 
92 /* Forward declaration. */
93 static int context_struct_to_string(struct policydb *policydb,
94 				    struct context *context,
95 				    char **scontext,
96 				    u32 *scontext_len);
97 
98 static void context_struct_compute_av(struct policydb *policydb,
99 				      struct context *scontext,
100 				      struct context *tcontext,
101 				      u16 tclass,
102 				      struct av_decision *avd,
103 				      struct extended_perms *xperms);
104 
105 static int selinux_set_mapping(struct policydb *pol,
106 			       struct security_class_mapping *map,
107 			       struct selinux_map *out_map)
108 {
109 	u16 i, j;
110 	unsigned k;
111 	bool print_unknown_handle = false;
112 
113 	/* Find number of classes in the input mapping */
114 	if (!map)
115 		return -EINVAL;
116 	i = 0;
117 	while (map[i].name)
118 		i++;
119 
120 	/* Allocate space for the class records, plus one for class zero */
121 	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
122 	if (!out_map->mapping)
123 		return -ENOMEM;
124 
125 	/* Store the raw class and permission values */
126 	j = 0;
127 	while (map[j].name) {
128 		struct security_class_mapping *p_in = map + (j++);
129 		struct selinux_mapping *p_out = out_map->mapping + j;
130 
131 		/* An empty class string skips ahead */
132 		if (!strcmp(p_in->name, "")) {
133 			p_out->num_perms = 0;
134 			continue;
135 		}
136 
137 		p_out->value = string_to_security_class(pol, p_in->name);
138 		if (!p_out->value) {
139 			printk(KERN_INFO
140 			       "SELinux:  Class %s not defined in policy.\n",
141 			       p_in->name);
142 			if (pol->reject_unknown)
143 				goto err;
144 			p_out->num_perms = 0;
145 			print_unknown_handle = true;
146 			continue;
147 		}
148 
149 		k = 0;
150 		while (p_in->perms[k]) {
151 			/* An empty permission string skips ahead */
152 			if (!*p_in->perms[k]) {
153 				k++;
154 				continue;
155 			}
156 			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
157 							    p_in->perms[k]);
158 			if (!p_out->perms[k]) {
159 				printk(KERN_INFO
160 				       "SELinux:  Permission %s in class %s not defined in policy.\n",
161 				       p_in->perms[k], p_in->name);
162 				if (pol->reject_unknown)
163 					goto err;
164 				print_unknown_handle = true;
165 			}
166 
167 			k++;
168 		}
169 		p_out->num_perms = k;
170 	}
171 
172 	if (print_unknown_handle)
173 		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
174 		       pol->allow_unknown ? "allowed" : "denied");
175 
176 	out_map->size = i;
177 	return 0;
178 err:
179 	kfree(out_map->mapping);
180 	out_map->mapping = NULL;
181 	return -EINVAL;
182 }
183 
184 /*
185  * Get real, policy values from mapped values
186  */
187 
188 static u16 unmap_class(struct selinux_map *map, u16 tclass)
189 {
190 	if (tclass < map->size)
191 		return map->mapping[tclass].value;
192 
193 	return tclass;
194 }
195 
196 /*
197  * Get kernel value for class from its policy value
198  */
199 static u16 map_class(struct selinux_map *map, u16 pol_value)
200 {
201 	u16 i;
202 
203 	for (i = 1; i < map->size; i++) {
204 		if (map->mapping[i].value == pol_value)
205 			return i;
206 	}
207 
208 	return SECCLASS_NULL;
209 }
210 
211 static void map_decision(struct selinux_map *map,
212 			 u16 tclass, struct av_decision *avd,
213 			 int allow_unknown)
214 {
215 	if (tclass < map->size) {
216 		struct selinux_mapping *mapping = &map->mapping[tclass];
217 		unsigned int i, n = mapping->num_perms;
218 		u32 result;
219 
220 		for (i = 0, result = 0; i < n; i++) {
221 			if (avd->allowed & mapping->perms[i])
222 				result |= 1<<i;
223 			if (allow_unknown && !mapping->perms[i])
224 				result |= 1<<i;
225 		}
226 		avd->allowed = result;
227 
228 		for (i = 0, result = 0; i < n; i++)
229 			if (avd->auditallow & mapping->perms[i])
230 				result |= 1<<i;
231 		avd->auditallow = result;
232 
233 		for (i = 0, result = 0; i < n; i++) {
234 			if (avd->auditdeny & mapping->perms[i])
235 				result |= 1<<i;
236 			if (!allow_unknown && !mapping->perms[i])
237 				result |= 1<<i;
238 		}
239 		/*
240 		 * In case the kernel has a bug and requests a permission
241 		 * between num_perms and the maximum permission number, we
242 		 * should audit that denial
243 		 */
244 		for (; i < (sizeof(u32)*8); i++)
245 			result |= 1<<i;
246 		avd->auditdeny = result;
247 	}
248 }
249 
250 int security_mls_enabled(struct selinux_state *state)
251 {
252 	struct policydb *p = &state->ss->policydb;
253 
254 	return p->mls_enabled;
255 }
256 
257 /*
258  * Return the boolean value of a constraint expression
259  * when it is applied to the specified source and target
260  * security contexts.
261  *
262  * xcontext is a special beast...  It is used by the validatetrans rules
263  * only.  For these rules, scontext is the context before the transition,
264  * tcontext is the context after the transition, and xcontext is the context
265  * of the process performing the transition.  All other callers of
266  * constraint_expr_eval should pass in NULL for xcontext.
267  */
268 static int constraint_expr_eval(struct policydb *policydb,
269 				struct context *scontext,
270 				struct context *tcontext,
271 				struct context *xcontext,
272 				struct constraint_expr *cexpr)
273 {
274 	u32 val1, val2;
275 	struct context *c;
276 	struct role_datum *r1, *r2;
277 	struct mls_level *l1, *l2;
278 	struct constraint_expr *e;
279 	int s[CEXPR_MAXDEPTH];
280 	int sp = -1;
281 
282 	for (e = cexpr; e; e = e->next) {
283 		switch (e->expr_type) {
284 		case CEXPR_NOT:
285 			BUG_ON(sp < 0);
286 			s[sp] = !s[sp];
287 			break;
288 		case CEXPR_AND:
289 			BUG_ON(sp < 1);
290 			sp--;
291 			s[sp] &= s[sp + 1];
292 			break;
293 		case CEXPR_OR:
294 			BUG_ON(sp < 1);
295 			sp--;
296 			s[sp] |= s[sp + 1];
297 			break;
298 		case CEXPR_ATTR:
299 			if (sp == (CEXPR_MAXDEPTH - 1))
300 				return 0;
301 			switch (e->attr) {
302 			case CEXPR_USER:
303 				val1 = scontext->user;
304 				val2 = tcontext->user;
305 				break;
306 			case CEXPR_TYPE:
307 				val1 = scontext->type;
308 				val2 = tcontext->type;
309 				break;
310 			case CEXPR_ROLE:
311 				val1 = scontext->role;
312 				val2 = tcontext->role;
313 				r1 = policydb->role_val_to_struct[val1 - 1];
314 				r2 = policydb->role_val_to_struct[val2 - 1];
315 				switch (e->op) {
316 				case CEXPR_DOM:
317 					s[++sp] = ebitmap_get_bit(&r1->dominates,
318 								  val2 - 1);
319 					continue;
320 				case CEXPR_DOMBY:
321 					s[++sp] = ebitmap_get_bit(&r2->dominates,
322 								  val1 - 1);
323 					continue;
324 				case CEXPR_INCOMP:
325 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
326 								    val2 - 1) &&
327 						   !ebitmap_get_bit(&r2->dominates,
328 								    val1 - 1));
329 					continue;
330 				default:
331 					break;
332 				}
333 				break;
334 			case CEXPR_L1L2:
335 				l1 = &(scontext->range.level[0]);
336 				l2 = &(tcontext->range.level[0]);
337 				goto mls_ops;
338 			case CEXPR_L1H2:
339 				l1 = &(scontext->range.level[0]);
340 				l2 = &(tcontext->range.level[1]);
341 				goto mls_ops;
342 			case CEXPR_H1L2:
343 				l1 = &(scontext->range.level[1]);
344 				l2 = &(tcontext->range.level[0]);
345 				goto mls_ops;
346 			case CEXPR_H1H2:
347 				l1 = &(scontext->range.level[1]);
348 				l2 = &(tcontext->range.level[1]);
349 				goto mls_ops;
350 			case CEXPR_L1H1:
351 				l1 = &(scontext->range.level[0]);
352 				l2 = &(scontext->range.level[1]);
353 				goto mls_ops;
354 			case CEXPR_L2H2:
355 				l1 = &(tcontext->range.level[0]);
356 				l2 = &(tcontext->range.level[1]);
357 				goto mls_ops;
358 mls_ops:
359 			switch (e->op) {
360 			case CEXPR_EQ:
361 				s[++sp] = mls_level_eq(l1, l2);
362 				continue;
363 			case CEXPR_NEQ:
364 				s[++sp] = !mls_level_eq(l1, l2);
365 				continue;
366 			case CEXPR_DOM:
367 				s[++sp] = mls_level_dom(l1, l2);
368 				continue;
369 			case CEXPR_DOMBY:
370 				s[++sp] = mls_level_dom(l2, l1);
371 				continue;
372 			case CEXPR_INCOMP:
373 				s[++sp] = mls_level_incomp(l2, l1);
374 				continue;
375 			default:
376 				BUG();
377 				return 0;
378 			}
379 			break;
380 			default:
381 				BUG();
382 				return 0;
383 			}
384 
385 			switch (e->op) {
386 			case CEXPR_EQ:
387 				s[++sp] = (val1 == val2);
388 				break;
389 			case CEXPR_NEQ:
390 				s[++sp] = (val1 != val2);
391 				break;
392 			default:
393 				BUG();
394 				return 0;
395 			}
396 			break;
397 		case CEXPR_NAMES:
398 			if (sp == (CEXPR_MAXDEPTH-1))
399 				return 0;
400 			c = scontext;
401 			if (e->attr & CEXPR_TARGET)
402 				c = tcontext;
403 			else if (e->attr & CEXPR_XTARGET) {
404 				c = xcontext;
405 				if (!c) {
406 					BUG();
407 					return 0;
408 				}
409 			}
410 			if (e->attr & CEXPR_USER)
411 				val1 = c->user;
412 			else if (e->attr & CEXPR_ROLE)
413 				val1 = c->role;
414 			else if (e->attr & CEXPR_TYPE)
415 				val1 = c->type;
416 			else {
417 				BUG();
418 				return 0;
419 			}
420 
421 			switch (e->op) {
422 			case CEXPR_EQ:
423 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
424 				break;
425 			case CEXPR_NEQ:
426 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
427 				break;
428 			default:
429 				BUG();
430 				return 0;
431 			}
432 			break;
433 		default:
434 			BUG();
435 			return 0;
436 		}
437 	}
438 
439 	BUG_ON(sp != 0);
440 	return s[0];
441 }
442 
443 /*
444  * security_dump_masked_av - dumps masked permissions during
445  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
446  */
447 static int dump_masked_av_helper(void *k, void *d, void *args)
448 {
449 	struct perm_datum *pdatum = d;
450 	char **permission_names = args;
451 
452 	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
453 
454 	permission_names[pdatum->value - 1] = (char *)k;
455 
456 	return 0;
457 }
458 
459 static void security_dump_masked_av(struct policydb *policydb,
460 				    struct context *scontext,
461 				    struct context *tcontext,
462 				    u16 tclass,
463 				    u32 permissions,
464 				    const char *reason)
465 {
466 	struct common_datum *common_dat;
467 	struct class_datum *tclass_dat;
468 	struct audit_buffer *ab;
469 	char *tclass_name;
470 	char *scontext_name = NULL;
471 	char *tcontext_name = NULL;
472 	char *permission_names[32];
473 	int index;
474 	u32 length;
475 	bool need_comma = false;
476 
477 	if (!permissions)
478 		return;
479 
480 	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
481 	tclass_dat = policydb->class_val_to_struct[tclass - 1];
482 	common_dat = tclass_dat->comdatum;
483 
484 	/* init permission_names */
485 	if (common_dat &&
486 	    hashtab_map(common_dat->permissions.table,
487 			dump_masked_av_helper, permission_names) < 0)
488 		goto out;
489 
490 	if (hashtab_map(tclass_dat->permissions.table,
491 			dump_masked_av_helper, permission_names) < 0)
492 		goto out;
493 
494 	/* get scontext/tcontext in text form */
495 	if (context_struct_to_string(policydb, scontext,
496 				     &scontext_name, &length) < 0)
497 		goto out;
498 
499 	if (context_struct_to_string(policydb, tcontext,
500 				     &tcontext_name, &length) < 0)
501 		goto out;
502 
503 	/* audit a message */
504 	ab = audit_log_start(audit_context(),
505 			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
506 	if (!ab)
507 		goto out;
508 
509 	audit_log_format(ab, "op=security_compute_av reason=%s "
510 			 "scontext=%s tcontext=%s tclass=%s perms=",
511 			 reason, scontext_name, tcontext_name, tclass_name);
512 
513 	for (index = 0; index < 32; index++) {
514 		u32 mask = (1 << index);
515 
516 		if ((mask & permissions) == 0)
517 			continue;
518 
519 		audit_log_format(ab, "%s%s",
520 				 need_comma ? "," : "",
521 				 permission_names[index]
522 				 ? permission_names[index] : "????");
523 		need_comma = true;
524 	}
525 	audit_log_end(ab);
526 out:
527 	/* release scontext/tcontext */
528 	kfree(tcontext_name);
529 	kfree(scontext_name);
530 
531 	return;
532 }
533 
534 /*
535  * security_boundary_permission - drops violated permissions
536  * on boundary constraint.
537  */
538 static void type_attribute_bounds_av(struct policydb *policydb,
539 				     struct context *scontext,
540 				     struct context *tcontext,
541 				     u16 tclass,
542 				     struct av_decision *avd)
543 {
544 	struct context lo_scontext;
545 	struct context lo_tcontext, *tcontextp = tcontext;
546 	struct av_decision lo_avd;
547 	struct type_datum *source;
548 	struct type_datum *target;
549 	u32 masked = 0;
550 
551 	source = flex_array_get_ptr(policydb->type_val_to_struct_array,
552 				    scontext->type - 1);
553 	BUG_ON(!source);
554 
555 	if (!source->bounds)
556 		return;
557 
558 	target = flex_array_get_ptr(policydb->type_val_to_struct_array,
559 				    tcontext->type - 1);
560 	BUG_ON(!target);
561 
562 	memset(&lo_avd, 0, sizeof(lo_avd));
563 
564 	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
565 	lo_scontext.type = source->bounds;
566 
567 	if (target->bounds) {
568 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
569 		lo_tcontext.type = target->bounds;
570 		tcontextp = &lo_tcontext;
571 	}
572 
573 	context_struct_compute_av(policydb, &lo_scontext,
574 				  tcontextp,
575 				  tclass,
576 				  &lo_avd,
577 				  NULL);
578 
579 	masked = ~lo_avd.allowed & avd->allowed;
580 
581 	if (likely(!masked))
582 		return;		/* no masked permission */
583 
584 	/* mask violated permissions */
585 	avd->allowed &= ~masked;
586 
587 	/* audit masked permissions */
588 	security_dump_masked_av(policydb, scontext, tcontext,
589 				tclass, masked, "bounds");
590 }
591 
592 /*
593  * flag which drivers have permissions
594  * only looking for ioctl based extended permssions
595  */
596 void services_compute_xperms_drivers(
597 		struct extended_perms *xperms,
598 		struct avtab_node *node)
599 {
600 	unsigned int i;
601 
602 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
603 		/* if one or more driver has all permissions allowed */
604 		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
605 			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
606 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
607 		/* if allowing permissions within a driver */
608 		security_xperm_set(xperms->drivers.p,
609 					node->datum.u.xperms->driver);
610 	}
611 
612 	/* If no ioctl commands are allowed, ignore auditallow and auditdeny */
613 	if (node->key.specified & AVTAB_XPERMS_ALLOWED)
614 		xperms->len = 1;
615 }
616 
617 /*
618  * Compute access vectors and extended permissions based on a context
619  * structure pair for the permissions in a particular class.
620  */
621 static void context_struct_compute_av(struct policydb *policydb,
622 				      struct context *scontext,
623 				      struct context *tcontext,
624 				      u16 tclass,
625 				      struct av_decision *avd,
626 				      struct extended_perms *xperms)
627 {
628 	struct constraint_node *constraint;
629 	struct role_allow *ra;
630 	struct avtab_key avkey;
631 	struct avtab_node *node;
632 	struct class_datum *tclass_datum;
633 	struct ebitmap *sattr, *tattr;
634 	struct ebitmap_node *snode, *tnode;
635 	unsigned int i, j;
636 
637 	avd->allowed = 0;
638 	avd->auditallow = 0;
639 	avd->auditdeny = 0xffffffff;
640 	if (xperms) {
641 		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
642 		xperms->len = 0;
643 	}
644 
645 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
646 		if (printk_ratelimit())
647 			printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
648 		return;
649 	}
650 
651 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
652 
653 	/*
654 	 * If a specific type enforcement rule was defined for
655 	 * this permission check, then use it.
656 	 */
657 	avkey.target_class = tclass;
658 	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
659 	sattr = flex_array_get(policydb->type_attr_map_array,
660 			       scontext->type - 1);
661 	BUG_ON(!sattr);
662 	tattr = flex_array_get(policydb->type_attr_map_array,
663 			       tcontext->type - 1);
664 	BUG_ON(!tattr);
665 	ebitmap_for_each_positive_bit(sattr, snode, i) {
666 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
667 			avkey.source_type = i + 1;
668 			avkey.target_type = j + 1;
669 			for (node = avtab_search_node(&policydb->te_avtab,
670 						      &avkey);
671 			     node;
672 			     node = avtab_search_node_next(node, avkey.specified)) {
673 				if (node->key.specified == AVTAB_ALLOWED)
674 					avd->allowed |= node->datum.u.data;
675 				else if (node->key.specified == AVTAB_AUDITALLOW)
676 					avd->auditallow |= node->datum.u.data;
677 				else if (node->key.specified == AVTAB_AUDITDENY)
678 					avd->auditdeny &= node->datum.u.data;
679 				else if (xperms && (node->key.specified & AVTAB_XPERMS))
680 					services_compute_xperms_drivers(xperms, node);
681 			}
682 
683 			/* Check conditional av table for additional permissions */
684 			cond_compute_av(&policydb->te_cond_avtab, &avkey,
685 					avd, xperms);
686 
687 		}
688 	}
689 
690 	/*
691 	 * Remove any permissions prohibited by a constraint (this includes
692 	 * the MLS policy).
693 	 */
694 	constraint = tclass_datum->constraints;
695 	while (constraint) {
696 		if ((constraint->permissions & (avd->allowed)) &&
697 		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
698 					  constraint->expr)) {
699 			avd->allowed &= ~(constraint->permissions);
700 		}
701 		constraint = constraint->next;
702 	}
703 
704 	/*
705 	 * If checking process transition permission and the
706 	 * role is changing, then check the (current_role, new_role)
707 	 * pair.
708 	 */
709 	if (tclass == policydb->process_class &&
710 	    (avd->allowed & policydb->process_trans_perms) &&
711 	    scontext->role != tcontext->role) {
712 		for (ra = policydb->role_allow; ra; ra = ra->next) {
713 			if (scontext->role == ra->role &&
714 			    tcontext->role == ra->new_role)
715 				break;
716 		}
717 		if (!ra)
718 			avd->allowed &= ~policydb->process_trans_perms;
719 	}
720 
721 	/*
722 	 * If the given source and target types have boundary
723 	 * constraint, lazy checks have to mask any violated
724 	 * permission and notice it to userspace via audit.
725 	 */
726 	type_attribute_bounds_av(policydb, scontext, tcontext,
727 				 tclass, avd);
728 }
729 
730 static int security_validtrans_handle_fail(struct selinux_state *state,
731 					   struct context *ocontext,
732 					   struct context *ncontext,
733 					   struct context *tcontext,
734 					   u16 tclass)
735 {
736 	struct policydb *p = &state->ss->policydb;
737 	char *o = NULL, *n = NULL, *t = NULL;
738 	u32 olen, nlen, tlen;
739 
740 	if (context_struct_to_string(p, ocontext, &o, &olen))
741 		goto out;
742 	if (context_struct_to_string(p, ncontext, &n, &nlen))
743 		goto out;
744 	if (context_struct_to_string(p, tcontext, &t, &tlen))
745 		goto out;
746 	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
747 		  "op=security_validate_transition seresult=denied"
748 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
749 		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
750 out:
751 	kfree(o);
752 	kfree(n);
753 	kfree(t);
754 
755 	if (!enforcing_enabled(state))
756 		return 0;
757 	return -EPERM;
758 }
759 
760 static int security_compute_validatetrans(struct selinux_state *state,
761 					  u32 oldsid, u32 newsid, u32 tasksid,
762 					  u16 orig_tclass, bool user)
763 {
764 	struct policydb *policydb;
765 	struct sidtab *sidtab;
766 	struct context *ocontext;
767 	struct context *ncontext;
768 	struct context *tcontext;
769 	struct class_datum *tclass_datum;
770 	struct constraint_node *constraint;
771 	u16 tclass;
772 	int rc = 0;
773 
774 
775 	if (!state->initialized)
776 		return 0;
777 
778 	read_lock(&state->ss->policy_rwlock);
779 
780 	policydb = &state->ss->policydb;
781 	sidtab = &state->ss->sidtab;
782 
783 	if (!user)
784 		tclass = unmap_class(&state->ss->map, orig_tclass);
785 	else
786 		tclass = orig_tclass;
787 
788 	if (!tclass || tclass > policydb->p_classes.nprim) {
789 		rc = -EINVAL;
790 		goto out;
791 	}
792 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
793 
794 	ocontext = sidtab_search(sidtab, oldsid);
795 	if (!ocontext) {
796 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
797 			__func__, oldsid);
798 		rc = -EINVAL;
799 		goto out;
800 	}
801 
802 	ncontext = sidtab_search(sidtab, newsid);
803 	if (!ncontext) {
804 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
805 			__func__, newsid);
806 		rc = -EINVAL;
807 		goto out;
808 	}
809 
810 	tcontext = sidtab_search(sidtab, tasksid);
811 	if (!tcontext) {
812 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
813 			__func__, tasksid);
814 		rc = -EINVAL;
815 		goto out;
816 	}
817 
818 	constraint = tclass_datum->validatetrans;
819 	while (constraint) {
820 		if (!constraint_expr_eval(policydb, ocontext, ncontext,
821 					  tcontext, constraint->expr)) {
822 			if (user)
823 				rc = -EPERM;
824 			else
825 				rc = security_validtrans_handle_fail(state,
826 								     ocontext,
827 								     ncontext,
828 								     tcontext,
829 								     tclass);
830 			goto out;
831 		}
832 		constraint = constraint->next;
833 	}
834 
835 out:
836 	read_unlock(&state->ss->policy_rwlock);
837 	return rc;
838 }
839 
840 int security_validate_transition_user(struct selinux_state *state,
841 				      u32 oldsid, u32 newsid, u32 tasksid,
842 				      u16 tclass)
843 {
844 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
845 					      tclass, true);
846 }
847 
848 int security_validate_transition(struct selinux_state *state,
849 				 u32 oldsid, u32 newsid, u32 tasksid,
850 				 u16 orig_tclass)
851 {
852 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
853 					      orig_tclass, false);
854 }
855 
856 /*
857  * security_bounded_transition - check whether the given
858  * transition is directed to bounded, or not.
859  * It returns 0, if @newsid is bounded by @oldsid.
860  * Otherwise, it returns error code.
861  *
862  * @oldsid : current security identifier
863  * @newsid : destinated security identifier
864  */
865 int security_bounded_transition(struct selinux_state *state,
866 				u32 old_sid, u32 new_sid)
867 {
868 	struct policydb *policydb;
869 	struct sidtab *sidtab;
870 	struct context *old_context, *new_context;
871 	struct type_datum *type;
872 	int index;
873 	int rc;
874 
875 	if (!state->initialized)
876 		return 0;
877 
878 	read_lock(&state->ss->policy_rwlock);
879 
880 	policydb = &state->ss->policydb;
881 	sidtab = &state->ss->sidtab;
882 
883 	rc = -EINVAL;
884 	old_context = sidtab_search(sidtab, old_sid);
885 	if (!old_context) {
886 		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
887 		       __func__, old_sid);
888 		goto out;
889 	}
890 
891 	rc = -EINVAL;
892 	new_context = sidtab_search(sidtab, new_sid);
893 	if (!new_context) {
894 		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
895 		       __func__, new_sid);
896 		goto out;
897 	}
898 
899 	rc = 0;
900 	/* type/domain unchanged */
901 	if (old_context->type == new_context->type)
902 		goto out;
903 
904 	index = new_context->type;
905 	while (true) {
906 		type = flex_array_get_ptr(policydb->type_val_to_struct_array,
907 					  index - 1);
908 		BUG_ON(!type);
909 
910 		/* not bounded anymore */
911 		rc = -EPERM;
912 		if (!type->bounds)
913 			break;
914 
915 		/* @newsid is bounded by @oldsid */
916 		rc = 0;
917 		if (type->bounds == old_context->type)
918 			break;
919 
920 		index = type->bounds;
921 	}
922 
923 	if (rc) {
924 		char *old_name = NULL;
925 		char *new_name = NULL;
926 		u32 length;
927 
928 		if (!context_struct_to_string(policydb, old_context,
929 					      &old_name, &length) &&
930 		    !context_struct_to_string(policydb, new_context,
931 					      &new_name, &length)) {
932 			audit_log(audit_context(),
933 				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
934 				  "op=security_bounded_transition "
935 				  "seresult=denied "
936 				  "oldcontext=%s newcontext=%s",
937 				  old_name, new_name);
938 		}
939 		kfree(new_name);
940 		kfree(old_name);
941 	}
942 out:
943 	read_unlock(&state->ss->policy_rwlock);
944 
945 	return rc;
946 }
947 
948 static void avd_init(struct selinux_state *state, struct av_decision *avd)
949 {
950 	avd->allowed = 0;
951 	avd->auditallow = 0;
952 	avd->auditdeny = 0xffffffff;
953 	avd->seqno = state->ss->latest_granting;
954 	avd->flags = 0;
955 }
956 
957 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
958 					struct avtab_node *node)
959 {
960 	unsigned int i;
961 
962 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
963 		if (xpermd->driver != node->datum.u.xperms->driver)
964 			return;
965 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
966 		if (!security_xperm_test(node->datum.u.xperms->perms.p,
967 					xpermd->driver))
968 			return;
969 	} else {
970 		BUG();
971 	}
972 
973 	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
974 		xpermd->used |= XPERMS_ALLOWED;
975 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
976 			memset(xpermd->allowed->p, 0xff,
977 					sizeof(xpermd->allowed->p));
978 		}
979 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
980 			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
981 				xpermd->allowed->p[i] |=
982 					node->datum.u.xperms->perms.p[i];
983 		}
984 	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
985 		xpermd->used |= XPERMS_AUDITALLOW;
986 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
987 			memset(xpermd->auditallow->p, 0xff,
988 					sizeof(xpermd->auditallow->p));
989 		}
990 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
991 			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
992 				xpermd->auditallow->p[i] |=
993 					node->datum.u.xperms->perms.p[i];
994 		}
995 	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
996 		xpermd->used |= XPERMS_DONTAUDIT;
997 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
998 			memset(xpermd->dontaudit->p, 0xff,
999 					sizeof(xpermd->dontaudit->p));
1000 		}
1001 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
1002 			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1003 				xpermd->dontaudit->p[i] |=
1004 					node->datum.u.xperms->perms.p[i];
1005 		}
1006 	} else {
1007 		BUG();
1008 	}
1009 }
1010 
1011 void security_compute_xperms_decision(struct selinux_state *state,
1012 				      u32 ssid,
1013 				      u32 tsid,
1014 				      u16 orig_tclass,
1015 				      u8 driver,
1016 				      struct extended_perms_decision *xpermd)
1017 {
1018 	struct policydb *policydb;
1019 	struct sidtab *sidtab;
1020 	u16 tclass;
1021 	struct context *scontext, *tcontext;
1022 	struct avtab_key avkey;
1023 	struct avtab_node *node;
1024 	struct ebitmap *sattr, *tattr;
1025 	struct ebitmap_node *snode, *tnode;
1026 	unsigned int i, j;
1027 
1028 	xpermd->driver = driver;
1029 	xpermd->used = 0;
1030 	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1031 	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1032 	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1033 
1034 	read_lock(&state->ss->policy_rwlock);
1035 	if (!state->initialized)
1036 		goto allow;
1037 
1038 	policydb = &state->ss->policydb;
1039 	sidtab = &state->ss->sidtab;
1040 
1041 	scontext = sidtab_search(sidtab, ssid);
1042 	if (!scontext) {
1043 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1044 		       __func__, ssid);
1045 		goto out;
1046 	}
1047 
1048 	tcontext = sidtab_search(sidtab, tsid);
1049 	if (!tcontext) {
1050 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1051 		       __func__, tsid);
1052 		goto out;
1053 	}
1054 
1055 	tclass = unmap_class(&state->ss->map, orig_tclass);
1056 	if (unlikely(orig_tclass && !tclass)) {
1057 		if (policydb->allow_unknown)
1058 			goto allow;
1059 		goto out;
1060 	}
1061 
1062 
1063 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1064 		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1065 		goto out;
1066 	}
1067 
1068 	avkey.target_class = tclass;
1069 	avkey.specified = AVTAB_XPERMS;
1070 	sattr = flex_array_get(policydb->type_attr_map_array,
1071 				scontext->type - 1);
1072 	BUG_ON(!sattr);
1073 	tattr = flex_array_get(policydb->type_attr_map_array,
1074 				tcontext->type - 1);
1075 	BUG_ON(!tattr);
1076 	ebitmap_for_each_positive_bit(sattr, snode, i) {
1077 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1078 			avkey.source_type = i + 1;
1079 			avkey.target_type = j + 1;
1080 			for (node = avtab_search_node(&policydb->te_avtab,
1081 						      &avkey);
1082 			     node;
1083 			     node = avtab_search_node_next(node, avkey.specified))
1084 				services_compute_xperms_decision(xpermd, node);
1085 
1086 			cond_compute_xperms(&policydb->te_cond_avtab,
1087 						&avkey, xpermd);
1088 		}
1089 	}
1090 out:
1091 	read_unlock(&state->ss->policy_rwlock);
1092 	return;
1093 allow:
1094 	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1095 	goto out;
1096 }
1097 
1098 /**
1099  * security_compute_av - Compute access vector decisions.
1100  * @ssid: source security identifier
1101  * @tsid: target security identifier
1102  * @tclass: target security class
1103  * @avd: access vector decisions
1104  * @xperms: extended permissions
1105  *
1106  * Compute a set of access vector decisions based on the
1107  * SID pair (@ssid, @tsid) for the permissions in @tclass.
1108  */
1109 void security_compute_av(struct selinux_state *state,
1110 			 u32 ssid,
1111 			 u32 tsid,
1112 			 u16 orig_tclass,
1113 			 struct av_decision *avd,
1114 			 struct extended_perms *xperms)
1115 {
1116 	struct policydb *policydb;
1117 	struct sidtab *sidtab;
1118 	u16 tclass;
1119 	struct context *scontext = NULL, *tcontext = NULL;
1120 
1121 	read_lock(&state->ss->policy_rwlock);
1122 	avd_init(state, avd);
1123 	xperms->len = 0;
1124 	if (!state->initialized)
1125 		goto allow;
1126 
1127 	policydb = &state->ss->policydb;
1128 	sidtab = &state->ss->sidtab;
1129 
1130 	scontext = sidtab_search(sidtab, ssid);
1131 	if (!scontext) {
1132 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1133 		       __func__, ssid);
1134 		goto out;
1135 	}
1136 
1137 	/* permissive domain? */
1138 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1139 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1140 
1141 	tcontext = sidtab_search(sidtab, tsid);
1142 	if (!tcontext) {
1143 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1144 		       __func__, tsid);
1145 		goto out;
1146 	}
1147 
1148 	tclass = unmap_class(&state->ss->map, orig_tclass);
1149 	if (unlikely(orig_tclass && !tclass)) {
1150 		if (policydb->allow_unknown)
1151 			goto allow;
1152 		goto out;
1153 	}
1154 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1155 				  xperms);
1156 	map_decision(&state->ss->map, orig_tclass, avd,
1157 		     policydb->allow_unknown);
1158 out:
1159 	read_unlock(&state->ss->policy_rwlock);
1160 	return;
1161 allow:
1162 	avd->allowed = 0xffffffff;
1163 	goto out;
1164 }
1165 
1166 void security_compute_av_user(struct selinux_state *state,
1167 			      u32 ssid,
1168 			      u32 tsid,
1169 			      u16 tclass,
1170 			      struct av_decision *avd)
1171 {
1172 	struct policydb *policydb;
1173 	struct sidtab *sidtab;
1174 	struct context *scontext = NULL, *tcontext = NULL;
1175 
1176 	read_lock(&state->ss->policy_rwlock);
1177 	avd_init(state, avd);
1178 	if (!state->initialized)
1179 		goto allow;
1180 
1181 	policydb = &state->ss->policydb;
1182 	sidtab = &state->ss->sidtab;
1183 
1184 	scontext = sidtab_search(sidtab, ssid);
1185 	if (!scontext) {
1186 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1187 		       __func__, ssid);
1188 		goto out;
1189 	}
1190 
1191 	/* permissive domain? */
1192 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1193 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1194 
1195 	tcontext = sidtab_search(sidtab, tsid);
1196 	if (!tcontext) {
1197 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1198 		       __func__, tsid);
1199 		goto out;
1200 	}
1201 
1202 	if (unlikely(!tclass)) {
1203 		if (policydb->allow_unknown)
1204 			goto allow;
1205 		goto out;
1206 	}
1207 
1208 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1209 				  NULL);
1210  out:
1211 	read_unlock(&state->ss->policy_rwlock);
1212 	return;
1213 allow:
1214 	avd->allowed = 0xffffffff;
1215 	goto out;
1216 }
1217 
1218 /*
1219  * Write the security context string representation of
1220  * the context structure `context' into a dynamically
1221  * allocated string of the correct size.  Set `*scontext'
1222  * to point to this string and set `*scontext_len' to
1223  * the length of the string.
1224  */
1225 static int context_struct_to_string(struct policydb *p,
1226 				    struct context *context,
1227 				    char **scontext, u32 *scontext_len)
1228 {
1229 	char *scontextp;
1230 
1231 	if (scontext)
1232 		*scontext = NULL;
1233 	*scontext_len = 0;
1234 
1235 	if (context->len) {
1236 		*scontext_len = context->len;
1237 		if (scontext) {
1238 			*scontext = kstrdup(context->str, GFP_ATOMIC);
1239 			if (!(*scontext))
1240 				return -ENOMEM;
1241 		}
1242 		return 0;
1243 	}
1244 
1245 	/* Compute the size of the context. */
1246 	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1247 	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1248 	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1249 	*scontext_len += mls_compute_context_len(p, context);
1250 
1251 	if (!scontext)
1252 		return 0;
1253 
1254 	/* Allocate space for the context; caller must free this space. */
1255 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1256 	if (!scontextp)
1257 		return -ENOMEM;
1258 	*scontext = scontextp;
1259 
1260 	/*
1261 	 * Copy the user name, role name and type name into the context.
1262 	 */
1263 	scontextp += sprintf(scontextp, "%s:%s:%s",
1264 		sym_name(p, SYM_USERS, context->user - 1),
1265 		sym_name(p, SYM_ROLES, context->role - 1),
1266 		sym_name(p, SYM_TYPES, context->type - 1));
1267 
1268 	mls_sid_to_context(p, context, &scontextp);
1269 
1270 	*scontextp = 0;
1271 
1272 	return 0;
1273 }
1274 
1275 #include "initial_sid_to_string.h"
1276 
1277 const char *security_get_initial_sid_context(u32 sid)
1278 {
1279 	if (unlikely(sid > SECINITSID_NUM))
1280 		return NULL;
1281 	return initial_sid_to_string[sid];
1282 }
1283 
1284 static int security_sid_to_context_core(struct selinux_state *state,
1285 					u32 sid, char **scontext,
1286 					u32 *scontext_len, int force)
1287 {
1288 	struct policydb *policydb;
1289 	struct sidtab *sidtab;
1290 	struct context *context;
1291 	int rc = 0;
1292 
1293 	if (scontext)
1294 		*scontext = NULL;
1295 	*scontext_len  = 0;
1296 
1297 	if (!state->initialized) {
1298 		if (sid <= SECINITSID_NUM) {
1299 			char *scontextp;
1300 
1301 			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1302 			if (!scontext)
1303 				goto out;
1304 			scontextp = kmemdup(initial_sid_to_string[sid],
1305 					    *scontext_len, GFP_ATOMIC);
1306 			if (!scontextp) {
1307 				rc = -ENOMEM;
1308 				goto out;
1309 			}
1310 			*scontext = scontextp;
1311 			goto out;
1312 		}
1313 		printk(KERN_ERR "SELinux: %s:  called before initial "
1314 		       "load_policy on unknown SID %d\n", __func__, sid);
1315 		rc = -EINVAL;
1316 		goto out;
1317 	}
1318 	read_lock(&state->ss->policy_rwlock);
1319 	policydb = &state->ss->policydb;
1320 	sidtab = &state->ss->sidtab;
1321 	if (force)
1322 		context = sidtab_search_force(sidtab, sid);
1323 	else
1324 		context = sidtab_search(sidtab, sid);
1325 	if (!context) {
1326 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1327 			__func__, sid);
1328 		rc = -EINVAL;
1329 		goto out_unlock;
1330 	}
1331 	rc = context_struct_to_string(policydb, context, scontext,
1332 				      scontext_len);
1333 out_unlock:
1334 	read_unlock(&state->ss->policy_rwlock);
1335 out:
1336 	return rc;
1337 
1338 }
1339 
1340 /**
1341  * security_sid_to_context - Obtain a context for a given SID.
1342  * @sid: security identifier, SID
1343  * @scontext: security context
1344  * @scontext_len: length in bytes
1345  *
1346  * Write the string representation of the context associated with @sid
1347  * into a dynamically allocated string of the correct size.  Set @scontext
1348  * to point to this string and set @scontext_len to the length of the string.
1349  */
1350 int security_sid_to_context(struct selinux_state *state,
1351 			    u32 sid, char **scontext, u32 *scontext_len)
1352 {
1353 	return security_sid_to_context_core(state, sid, scontext,
1354 					    scontext_len, 0);
1355 }
1356 
1357 int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1358 				  char **scontext, u32 *scontext_len)
1359 {
1360 	return security_sid_to_context_core(state, sid, scontext,
1361 					    scontext_len, 1);
1362 }
1363 
1364 /*
1365  * Caveat:  Mutates scontext.
1366  */
1367 static int string_to_context_struct(struct policydb *pol,
1368 				    struct sidtab *sidtabp,
1369 				    char *scontext,
1370 				    u32 scontext_len,
1371 				    struct context *ctx,
1372 				    u32 def_sid)
1373 {
1374 	struct role_datum *role;
1375 	struct type_datum *typdatum;
1376 	struct user_datum *usrdatum;
1377 	char *scontextp, *p, oldc;
1378 	int rc = 0;
1379 
1380 	context_init(ctx);
1381 
1382 	/* Parse the security context. */
1383 
1384 	rc = -EINVAL;
1385 	scontextp = (char *) scontext;
1386 
1387 	/* Extract the user. */
1388 	p = scontextp;
1389 	while (*p && *p != ':')
1390 		p++;
1391 
1392 	if (*p == 0)
1393 		goto out;
1394 
1395 	*p++ = 0;
1396 
1397 	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1398 	if (!usrdatum)
1399 		goto out;
1400 
1401 	ctx->user = usrdatum->value;
1402 
1403 	/* Extract role. */
1404 	scontextp = p;
1405 	while (*p && *p != ':')
1406 		p++;
1407 
1408 	if (*p == 0)
1409 		goto out;
1410 
1411 	*p++ = 0;
1412 
1413 	role = hashtab_search(pol->p_roles.table, scontextp);
1414 	if (!role)
1415 		goto out;
1416 	ctx->role = role->value;
1417 
1418 	/* Extract type. */
1419 	scontextp = p;
1420 	while (*p && *p != ':')
1421 		p++;
1422 	oldc = *p;
1423 	*p++ = 0;
1424 
1425 	typdatum = hashtab_search(pol->p_types.table, scontextp);
1426 	if (!typdatum || typdatum->attribute)
1427 		goto out;
1428 
1429 	ctx->type = typdatum->value;
1430 
1431 	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1432 	if (rc)
1433 		goto out;
1434 
1435 	rc = -EINVAL;
1436 	if ((p - scontext) < scontext_len)
1437 		goto out;
1438 
1439 	/* Check the validity of the new context. */
1440 	if (!policydb_context_isvalid(pol, ctx))
1441 		goto out;
1442 	rc = 0;
1443 out:
1444 	if (rc)
1445 		context_destroy(ctx);
1446 	return rc;
1447 }
1448 
1449 static int security_context_to_sid_core(struct selinux_state *state,
1450 					const char *scontext, u32 scontext_len,
1451 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1452 					int force)
1453 {
1454 	struct policydb *policydb;
1455 	struct sidtab *sidtab;
1456 	char *scontext2, *str = NULL;
1457 	struct context context;
1458 	int rc = 0;
1459 
1460 	/* An empty security context is never valid. */
1461 	if (!scontext_len)
1462 		return -EINVAL;
1463 
1464 	/* Copy the string to allow changes and ensure a NUL terminator */
1465 	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1466 	if (!scontext2)
1467 		return -ENOMEM;
1468 
1469 	if (!state->initialized) {
1470 		int i;
1471 
1472 		for (i = 1; i < SECINITSID_NUM; i++) {
1473 			if (!strcmp(initial_sid_to_string[i], scontext2)) {
1474 				*sid = i;
1475 				goto out;
1476 			}
1477 		}
1478 		*sid = SECINITSID_KERNEL;
1479 		goto out;
1480 	}
1481 	*sid = SECSID_NULL;
1482 
1483 	if (force) {
1484 		/* Save another copy for storing in uninterpreted form */
1485 		rc = -ENOMEM;
1486 		str = kstrdup(scontext2, gfp_flags);
1487 		if (!str)
1488 			goto out;
1489 	}
1490 	read_lock(&state->ss->policy_rwlock);
1491 	policydb = &state->ss->policydb;
1492 	sidtab = &state->ss->sidtab;
1493 	rc = string_to_context_struct(policydb, sidtab, scontext2,
1494 				      scontext_len, &context, def_sid);
1495 	if (rc == -EINVAL && force) {
1496 		context.str = str;
1497 		context.len = strlen(str) + 1;
1498 		str = NULL;
1499 	} else if (rc)
1500 		goto out_unlock;
1501 	rc = sidtab_context_to_sid(sidtab, &context, sid);
1502 	context_destroy(&context);
1503 out_unlock:
1504 	read_unlock(&state->ss->policy_rwlock);
1505 out:
1506 	kfree(scontext2);
1507 	kfree(str);
1508 	return rc;
1509 }
1510 
1511 /**
1512  * security_context_to_sid - Obtain a SID for a given security context.
1513  * @scontext: security context
1514  * @scontext_len: length in bytes
1515  * @sid: security identifier, SID
1516  * @gfp: context for the allocation
1517  *
1518  * Obtains a SID associated with the security context that
1519  * has the string representation specified by @scontext.
1520  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1521  * memory is available, or 0 on success.
1522  */
1523 int security_context_to_sid(struct selinux_state *state,
1524 			    const char *scontext, u32 scontext_len, u32 *sid,
1525 			    gfp_t gfp)
1526 {
1527 	return security_context_to_sid_core(state, scontext, scontext_len,
1528 					    sid, SECSID_NULL, gfp, 0);
1529 }
1530 
1531 int security_context_str_to_sid(struct selinux_state *state,
1532 				const char *scontext, u32 *sid, gfp_t gfp)
1533 {
1534 	return security_context_to_sid(state, scontext, strlen(scontext),
1535 				       sid, gfp);
1536 }
1537 
1538 /**
1539  * security_context_to_sid_default - Obtain a SID for a given security context,
1540  * falling back to specified default if needed.
1541  *
1542  * @scontext: security context
1543  * @scontext_len: length in bytes
1544  * @sid: security identifier, SID
1545  * @def_sid: default SID to assign on error
1546  *
1547  * Obtains a SID associated with the security context that
1548  * has the string representation specified by @scontext.
1549  * The default SID is passed to the MLS layer to be used to allow
1550  * kernel labeling of the MLS field if the MLS field is not present
1551  * (for upgrading to MLS without full relabel).
1552  * Implicitly forces adding of the context even if it cannot be mapped yet.
1553  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1554  * memory is available, or 0 on success.
1555  */
1556 int security_context_to_sid_default(struct selinux_state *state,
1557 				    const char *scontext, u32 scontext_len,
1558 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1559 {
1560 	return security_context_to_sid_core(state, scontext, scontext_len,
1561 					    sid, def_sid, gfp_flags, 1);
1562 }
1563 
1564 int security_context_to_sid_force(struct selinux_state *state,
1565 				  const char *scontext, u32 scontext_len,
1566 				  u32 *sid)
1567 {
1568 	return security_context_to_sid_core(state, scontext, scontext_len,
1569 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1570 }
1571 
1572 static int compute_sid_handle_invalid_context(
1573 	struct selinux_state *state,
1574 	struct context *scontext,
1575 	struct context *tcontext,
1576 	u16 tclass,
1577 	struct context *newcontext)
1578 {
1579 	struct policydb *policydb = &state->ss->policydb;
1580 	char *s = NULL, *t = NULL, *n = NULL;
1581 	u32 slen, tlen, nlen;
1582 
1583 	if (context_struct_to_string(policydb, scontext, &s, &slen))
1584 		goto out;
1585 	if (context_struct_to_string(policydb, tcontext, &t, &tlen))
1586 		goto out;
1587 	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1588 		goto out;
1589 	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
1590 		  "op=security_compute_sid invalid_context=%s"
1591 		  " scontext=%s"
1592 		  " tcontext=%s"
1593 		  " tclass=%s",
1594 		  n, s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1595 out:
1596 	kfree(s);
1597 	kfree(t);
1598 	kfree(n);
1599 	if (!enforcing_enabled(state))
1600 		return 0;
1601 	return -EACCES;
1602 }
1603 
1604 static void filename_compute_type(struct policydb *policydb,
1605 				  struct context *newcontext,
1606 				  u32 stype, u32 ttype, u16 tclass,
1607 				  const char *objname)
1608 {
1609 	struct filename_trans ft;
1610 	struct filename_trans_datum *otype;
1611 
1612 	/*
1613 	 * Most filename trans rules are going to live in specific directories
1614 	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1615 	 * if the ttype does not contain any rules.
1616 	 */
1617 	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1618 		return;
1619 
1620 	ft.stype = stype;
1621 	ft.ttype = ttype;
1622 	ft.tclass = tclass;
1623 	ft.name = objname;
1624 
1625 	otype = hashtab_search(policydb->filename_trans, &ft);
1626 	if (otype)
1627 		newcontext->type = otype->otype;
1628 }
1629 
1630 static int security_compute_sid(struct selinux_state *state,
1631 				u32 ssid,
1632 				u32 tsid,
1633 				u16 orig_tclass,
1634 				u32 specified,
1635 				const char *objname,
1636 				u32 *out_sid,
1637 				bool kern)
1638 {
1639 	struct policydb *policydb;
1640 	struct sidtab *sidtab;
1641 	struct class_datum *cladatum = NULL;
1642 	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1643 	struct role_trans *roletr = NULL;
1644 	struct avtab_key avkey;
1645 	struct avtab_datum *avdatum;
1646 	struct avtab_node *node;
1647 	u16 tclass;
1648 	int rc = 0;
1649 	bool sock;
1650 
1651 	if (!state->initialized) {
1652 		switch (orig_tclass) {
1653 		case SECCLASS_PROCESS: /* kernel value */
1654 			*out_sid = ssid;
1655 			break;
1656 		default:
1657 			*out_sid = tsid;
1658 			break;
1659 		}
1660 		goto out;
1661 	}
1662 
1663 	context_init(&newcontext);
1664 
1665 	read_lock(&state->ss->policy_rwlock);
1666 
1667 	if (kern) {
1668 		tclass = unmap_class(&state->ss->map, orig_tclass);
1669 		sock = security_is_socket_class(orig_tclass);
1670 	} else {
1671 		tclass = orig_tclass;
1672 		sock = security_is_socket_class(map_class(&state->ss->map,
1673 							  tclass));
1674 	}
1675 
1676 	policydb = &state->ss->policydb;
1677 	sidtab = &state->ss->sidtab;
1678 
1679 	scontext = sidtab_search(sidtab, ssid);
1680 	if (!scontext) {
1681 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1682 		       __func__, ssid);
1683 		rc = -EINVAL;
1684 		goto out_unlock;
1685 	}
1686 	tcontext = sidtab_search(sidtab, tsid);
1687 	if (!tcontext) {
1688 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1689 		       __func__, tsid);
1690 		rc = -EINVAL;
1691 		goto out_unlock;
1692 	}
1693 
1694 	if (tclass && tclass <= policydb->p_classes.nprim)
1695 		cladatum = policydb->class_val_to_struct[tclass - 1];
1696 
1697 	/* Set the user identity. */
1698 	switch (specified) {
1699 	case AVTAB_TRANSITION:
1700 	case AVTAB_CHANGE:
1701 		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1702 			newcontext.user = tcontext->user;
1703 		} else {
1704 			/* notice this gets both DEFAULT_SOURCE and unset */
1705 			/* Use the process user identity. */
1706 			newcontext.user = scontext->user;
1707 		}
1708 		break;
1709 	case AVTAB_MEMBER:
1710 		/* Use the related object owner. */
1711 		newcontext.user = tcontext->user;
1712 		break;
1713 	}
1714 
1715 	/* Set the role to default values. */
1716 	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1717 		newcontext.role = scontext->role;
1718 	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1719 		newcontext.role = tcontext->role;
1720 	} else {
1721 		if ((tclass == policydb->process_class) || (sock == true))
1722 			newcontext.role = scontext->role;
1723 		else
1724 			newcontext.role = OBJECT_R_VAL;
1725 	}
1726 
1727 	/* Set the type to default values. */
1728 	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1729 		newcontext.type = scontext->type;
1730 	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1731 		newcontext.type = tcontext->type;
1732 	} else {
1733 		if ((tclass == policydb->process_class) || (sock == true)) {
1734 			/* Use the type of process. */
1735 			newcontext.type = scontext->type;
1736 		} else {
1737 			/* Use the type of the related object. */
1738 			newcontext.type = tcontext->type;
1739 		}
1740 	}
1741 
1742 	/* Look for a type transition/member/change rule. */
1743 	avkey.source_type = scontext->type;
1744 	avkey.target_type = tcontext->type;
1745 	avkey.target_class = tclass;
1746 	avkey.specified = specified;
1747 	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1748 
1749 	/* If no permanent rule, also check for enabled conditional rules */
1750 	if (!avdatum) {
1751 		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1752 		for (; node; node = avtab_search_node_next(node, specified)) {
1753 			if (node->key.specified & AVTAB_ENABLED) {
1754 				avdatum = &node->datum;
1755 				break;
1756 			}
1757 		}
1758 	}
1759 
1760 	if (avdatum) {
1761 		/* Use the type from the type transition/member/change rule. */
1762 		newcontext.type = avdatum->u.data;
1763 	}
1764 
1765 	/* if we have a objname this is a file trans check so check those rules */
1766 	if (objname)
1767 		filename_compute_type(policydb, &newcontext, scontext->type,
1768 				      tcontext->type, tclass, objname);
1769 
1770 	/* Check for class-specific changes. */
1771 	if (specified & AVTAB_TRANSITION) {
1772 		/* Look for a role transition rule. */
1773 		for (roletr = policydb->role_tr; roletr;
1774 		     roletr = roletr->next) {
1775 			if ((roletr->role == scontext->role) &&
1776 			    (roletr->type == tcontext->type) &&
1777 			    (roletr->tclass == tclass)) {
1778 				/* Use the role transition rule. */
1779 				newcontext.role = roletr->new_role;
1780 				break;
1781 			}
1782 		}
1783 	}
1784 
1785 	/* Set the MLS attributes.
1786 	   This is done last because it may allocate memory. */
1787 	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1788 			     &newcontext, sock);
1789 	if (rc)
1790 		goto out_unlock;
1791 
1792 	/* Check the validity of the context. */
1793 	if (!policydb_context_isvalid(policydb, &newcontext)) {
1794 		rc = compute_sid_handle_invalid_context(state, scontext,
1795 							tcontext,
1796 							tclass,
1797 							&newcontext);
1798 		if (rc)
1799 			goto out_unlock;
1800 	}
1801 	/* Obtain the sid for the context. */
1802 	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1803 out_unlock:
1804 	read_unlock(&state->ss->policy_rwlock);
1805 	context_destroy(&newcontext);
1806 out:
1807 	return rc;
1808 }
1809 
1810 /**
1811  * security_transition_sid - Compute the SID for a new subject/object.
1812  * @ssid: source security identifier
1813  * @tsid: target security identifier
1814  * @tclass: target security class
1815  * @out_sid: security identifier for new subject/object
1816  *
1817  * Compute a SID to use for labeling a new subject or object in the
1818  * class @tclass based on a SID pair (@ssid, @tsid).
1819  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1820  * if insufficient memory is available, or %0 if the new SID was
1821  * computed successfully.
1822  */
1823 int security_transition_sid(struct selinux_state *state,
1824 			    u32 ssid, u32 tsid, u16 tclass,
1825 			    const struct qstr *qstr, u32 *out_sid)
1826 {
1827 	return security_compute_sid(state, ssid, tsid, tclass,
1828 				    AVTAB_TRANSITION,
1829 				    qstr ? qstr->name : NULL, out_sid, true);
1830 }
1831 
1832 int security_transition_sid_user(struct selinux_state *state,
1833 				 u32 ssid, u32 tsid, u16 tclass,
1834 				 const char *objname, u32 *out_sid)
1835 {
1836 	return security_compute_sid(state, ssid, tsid, tclass,
1837 				    AVTAB_TRANSITION,
1838 				    objname, out_sid, false);
1839 }
1840 
1841 /**
1842  * security_member_sid - Compute the SID for member selection.
1843  * @ssid: source security identifier
1844  * @tsid: target security identifier
1845  * @tclass: target security class
1846  * @out_sid: security identifier for selected member
1847  *
1848  * Compute a SID to use when selecting a member of a polyinstantiated
1849  * object of class @tclass based on a SID pair (@ssid, @tsid).
1850  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1851  * if insufficient memory is available, or %0 if the SID was
1852  * computed successfully.
1853  */
1854 int security_member_sid(struct selinux_state *state,
1855 			u32 ssid,
1856 			u32 tsid,
1857 			u16 tclass,
1858 			u32 *out_sid)
1859 {
1860 	return security_compute_sid(state, ssid, tsid, tclass,
1861 				    AVTAB_MEMBER, NULL,
1862 				    out_sid, false);
1863 }
1864 
1865 /**
1866  * security_change_sid - Compute the SID for object relabeling.
1867  * @ssid: source security identifier
1868  * @tsid: target security identifier
1869  * @tclass: target security class
1870  * @out_sid: security identifier for selected member
1871  *
1872  * Compute a SID to use for relabeling an object of class @tclass
1873  * based on a SID pair (@ssid, @tsid).
1874  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1875  * if insufficient memory is available, or %0 if the SID was
1876  * computed successfully.
1877  */
1878 int security_change_sid(struct selinux_state *state,
1879 			u32 ssid,
1880 			u32 tsid,
1881 			u16 tclass,
1882 			u32 *out_sid)
1883 {
1884 	return security_compute_sid(state,
1885 				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1886 				    out_sid, false);
1887 }
1888 
1889 /* Clone the SID into the new SID table. */
1890 static int clone_sid(u32 sid,
1891 		     struct context *context,
1892 		     void *arg)
1893 {
1894 	struct sidtab *s = arg;
1895 
1896 	if (sid > SECINITSID_NUM)
1897 		return sidtab_insert(s, sid, context);
1898 	else
1899 		return 0;
1900 }
1901 
1902 static inline int convert_context_handle_invalid_context(
1903 	struct selinux_state *state,
1904 	struct context *context)
1905 {
1906 	struct policydb *policydb = &state->ss->policydb;
1907 	char *s;
1908 	u32 len;
1909 
1910 	if (enforcing_enabled(state))
1911 		return -EINVAL;
1912 
1913 	if (!context_struct_to_string(policydb, context, &s, &len)) {
1914 		printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
1915 		kfree(s);
1916 	}
1917 	return 0;
1918 }
1919 
1920 struct convert_context_args {
1921 	struct selinux_state *state;
1922 	struct policydb *oldp;
1923 	struct policydb *newp;
1924 };
1925 
1926 /*
1927  * Convert the values in the security context
1928  * structure `c' from the values specified
1929  * in the policy `p->oldp' to the values specified
1930  * in the policy `p->newp'.  Verify that the
1931  * context is valid under the new policy.
1932  */
1933 static int convert_context(u32 key,
1934 			   struct context *c,
1935 			   void *p)
1936 {
1937 	struct convert_context_args *args;
1938 	struct context oldc;
1939 	struct ocontext *oc;
1940 	struct mls_range *range;
1941 	struct role_datum *role;
1942 	struct type_datum *typdatum;
1943 	struct user_datum *usrdatum;
1944 	char *s;
1945 	u32 len;
1946 	int rc = 0;
1947 
1948 	if (key <= SECINITSID_NUM)
1949 		goto out;
1950 
1951 	args = p;
1952 
1953 	if (c->str) {
1954 		struct context ctx;
1955 
1956 		rc = -ENOMEM;
1957 		s = kstrdup(c->str, GFP_KERNEL);
1958 		if (!s)
1959 			goto out;
1960 
1961 		rc = string_to_context_struct(args->newp, NULL, s,
1962 					      c->len, &ctx, SECSID_NULL);
1963 		kfree(s);
1964 		if (!rc) {
1965 			printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1966 			       c->str);
1967 			/* Replace string with mapped representation. */
1968 			kfree(c->str);
1969 			memcpy(c, &ctx, sizeof(*c));
1970 			goto out;
1971 		} else if (rc == -EINVAL) {
1972 			/* Retain string representation for later mapping. */
1973 			rc = 0;
1974 			goto out;
1975 		} else {
1976 			/* Other error condition, e.g. ENOMEM. */
1977 			printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1978 			       c->str, -rc);
1979 			goto out;
1980 		}
1981 	}
1982 
1983 	rc = context_cpy(&oldc, c);
1984 	if (rc)
1985 		goto out;
1986 
1987 	/* Convert the user. */
1988 	rc = -EINVAL;
1989 	usrdatum = hashtab_search(args->newp->p_users.table,
1990 				  sym_name(args->oldp, SYM_USERS, c->user - 1));
1991 	if (!usrdatum)
1992 		goto bad;
1993 	c->user = usrdatum->value;
1994 
1995 	/* Convert the role. */
1996 	rc = -EINVAL;
1997 	role = hashtab_search(args->newp->p_roles.table,
1998 			      sym_name(args->oldp, SYM_ROLES, c->role - 1));
1999 	if (!role)
2000 		goto bad;
2001 	c->role = role->value;
2002 
2003 	/* Convert the type. */
2004 	rc = -EINVAL;
2005 	typdatum = hashtab_search(args->newp->p_types.table,
2006 				  sym_name(args->oldp, SYM_TYPES, c->type - 1));
2007 	if (!typdatum)
2008 		goto bad;
2009 	c->type = typdatum->value;
2010 
2011 	/* Convert the MLS fields if dealing with MLS policies */
2012 	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2013 		rc = mls_convert_context(args->oldp, args->newp, c);
2014 		if (rc)
2015 			goto bad;
2016 	} else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
2017 		/*
2018 		 * Switching between MLS and non-MLS policy:
2019 		 * free any storage used by the MLS fields in the
2020 		 * context for all existing entries in the sidtab.
2021 		 */
2022 		mls_context_destroy(c);
2023 	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2024 		/*
2025 		 * Switching between non-MLS and MLS policy:
2026 		 * ensure that the MLS fields of the context for all
2027 		 * existing entries in the sidtab are filled in with a
2028 		 * suitable default value, likely taken from one of the
2029 		 * initial SIDs.
2030 		 */
2031 		oc = args->newp->ocontexts[OCON_ISID];
2032 		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2033 			oc = oc->next;
2034 		rc = -EINVAL;
2035 		if (!oc) {
2036 			printk(KERN_ERR "SELinux:  unable to look up"
2037 				" the initial SIDs list\n");
2038 			goto bad;
2039 		}
2040 		range = &oc->context[0].range;
2041 		rc = mls_range_set(c, range);
2042 		if (rc)
2043 			goto bad;
2044 	}
2045 
2046 	/* Check the validity of the new context. */
2047 	if (!policydb_context_isvalid(args->newp, c)) {
2048 		rc = convert_context_handle_invalid_context(args->state,
2049 							    &oldc);
2050 		if (rc)
2051 			goto bad;
2052 	}
2053 
2054 	context_destroy(&oldc);
2055 
2056 	rc = 0;
2057 out:
2058 	return rc;
2059 bad:
2060 	/* Map old representation to string and save it. */
2061 	rc = context_struct_to_string(args->oldp, &oldc, &s, &len);
2062 	if (rc)
2063 		return rc;
2064 	context_destroy(&oldc);
2065 	context_destroy(c);
2066 	c->str = s;
2067 	c->len = len;
2068 	printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
2069 	       c->str);
2070 	rc = 0;
2071 	goto out;
2072 }
2073 
2074 static void security_load_policycaps(struct selinux_state *state)
2075 {
2076 	struct policydb *p = &state->ss->policydb;
2077 	unsigned int i;
2078 	struct ebitmap_node *node;
2079 
2080 	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2081 		state->policycap[i] = ebitmap_get_bit(&p->policycaps, i);
2082 
2083 	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2084 		pr_info("SELinux:  policy capability %s=%d\n",
2085 			selinux_policycap_names[i],
2086 			ebitmap_get_bit(&p->policycaps, i));
2087 
2088 	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2089 		if (i >= ARRAY_SIZE(selinux_policycap_names))
2090 			pr_info("SELinux:  unknown policy capability %u\n",
2091 				i);
2092 	}
2093 }
2094 
2095 static int security_preserve_bools(struct selinux_state *state,
2096 				   struct policydb *newpolicydb);
2097 
2098 /**
2099  * security_load_policy - Load a security policy configuration.
2100  * @data: binary policy data
2101  * @len: length of data in bytes
2102  *
2103  * Load a new set of security policy configuration data,
2104  * validate it and convert the SID table as necessary.
2105  * This function will flush the access vector cache after
2106  * loading the new policy.
2107  */
2108 int security_load_policy(struct selinux_state *state, void *data, size_t len)
2109 {
2110 	struct policydb *policydb;
2111 	struct sidtab *sidtab;
2112 	struct policydb *oldpolicydb, *newpolicydb;
2113 	struct sidtab oldsidtab, newsidtab;
2114 	struct selinux_mapping *oldmapping;
2115 	struct selinux_map newmap;
2116 	struct convert_context_args args;
2117 	u32 seqno;
2118 	int rc = 0;
2119 	struct policy_file file = { data, len }, *fp = &file;
2120 
2121 	oldpolicydb = kcalloc(2, sizeof(*oldpolicydb), GFP_KERNEL);
2122 	if (!oldpolicydb) {
2123 		rc = -ENOMEM;
2124 		goto out;
2125 	}
2126 	newpolicydb = oldpolicydb + 1;
2127 
2128 	policydb = &state->ss->policydb;
2129 	sidtab = &state->ss->sidtab;
2130 
2131 	if (!state->initialized) {
2132 		rc = policydb_read(policydb, fp);
2133 		if (rc)
2134 			goto out;
2135 
2136 		policydb->len = len;
2137 		rc = selinux_set_mapping(policydb, secclass_map,
2138 					 &state->ss->map);
2139 		if (rc) {
2140 			policydb_destroy(policydb);
2141 			goto out;
2142 		}
2143 
2144 		rc = policydb_load_isids(policydb, sidtab);
2145 		if (rc) {
2146 			policydb_destroy(policydb);
2147 			goto out;
2148 		}
2149 
2150 		security_load_policycaps(state);
2151 		state->initialized = 1;
2152 		seqno = ++state->ss->latest_granting;
2153 		selinux_complete_init();
2154 		avc_ss_reset(state->avc, seqno);
2155 		selnl_notify_policyload(seqno);
2156 		selinux_status_update_policyload(state, seqno);
2157 		selinux_netlbl_cache_invalidate();
2158 		selinux_xfrm_notify_policyload();
2159 		goto out;
2160 	}
2161 
2162 #if 0
2163 	sidtab_hash_eval(sidtab, "sids");
2164 #endif
2165 
2166 	rc = policydb_read(newpolicydb, fp);
2167 	if (rc)
2168 		goto out;
2169 
2170 	newpolicydb->len = len;
2171 	/* If switching between different policy types, log MLS status */
2172 	if (policydb->mls_enabled && !newpolicydb->mls_enabled)
2173 		printk(KERN_INFO "SELinux: Disabling MLS support...\n");
2174 	else if (!policydb->mls_enabled && newpolicydb->mls_enabled)
2175 		printk(KERN_INFO "SELinux: Enabling MLS support...\n");
2176 
2177 	rc = policydb_load_isids(newpolicydb, &newsidtab);
2178 	if (rc) {
2179 		printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
2180 		policydb_destroy(newpolicydb);
2181 		goto out;
2182 	}
2183 
2184 	rc = selinux_set_mapping(newpolicydb, secclass_map, &newmap);
2185 	if (rc)
2186 		goto err;
2187 
2188 	rc = security_preserve_bools(state, newpolicydb);
2189 	if (rc) {
2190 		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
2191 		goto err;
2192 	}
2193 
2194 	/* Clone the SID table. */
2195 	sidtab_shutdown(sidtab);
2196 
2197 	rc = sidtab_map(sidtab, clone_sid, &newsidtab);
2198 	if (rc)
2199 		goto err;
2200 
2201 	/*
2202 	 * Convert the internal representations of contexts
2203 	 * in the new SID table.
2204 	 */
2205 	args.state = state;
2206 	args.oldp = policydb;
2207 	args.newp = newpolicydb;
2208 	rc = sidtab_map(&newsidtab, convert_context, &args);
2209 	if (rc) {
2210 		printk(KERN_ERR "SELinux:  unable to convert the internal"
2211 			" representation of contexts in the new SID"
2212 			" table\n");
2213 		goto err;
2214 	}
2215 
2216 	/* Save the old policydb and SID table to free later. */
2217 	memcpy(oldpolicydb, policydb, sizeof(*policydb));
2218 	sidtab_set(&oldsidtab, sidtab);
2219 
2220 	/* Install the new policydb and SID table. */
2221 	write_lock_irq(&state->ss->policy_rwlock);
2222 	memcpy(policydb, newpolicydb, sizeof(*policydb));
2223 	sidtab_set(sidtab, &newsidtab);
2224 	security_load_policycaps(state);
2225 	oldmapping = state->ss->map.mapping;
2226 	state->ss->map.mapping = newmap.mapping;
2227 	state->ss->map.size = newmap.size;
2228 	seqno = ++state->ss->latest_granting;
2229 	write_unlock_irq(&state->ss->policy_rwlock);
2230 
2231 	/* Free the old policydb and SID table. */
2232 	policydb_destroy(oldpolicydb);
2233 	sidtab_destroy(&oldsidtab);
2234 	kfree(oldmapping);
2235 
2236 	avc_ss_reset(state->avc, seqno);
2237 	selnl_notify_policyload(seqno);
2238 	selinux_status_update_policyload(state, seqno);
2239 	selinux_netlbl_cache_invalidate();
2240 	selinux_xfrm_notify_policyload();
2241 
2242 	rc = 0;
2243 	goto out;
2244 
2245 err:
2246 	kfree(newmap.mapping);
2247 	sidtab_destroy(&newsidtab);
2248 	policydb_destroy(newpolicydb);
2249 
2250 out:
2251 	kfree(oldpolicydb);
2252 	return rc;
2253 }
2254 
2255 size_t security_policydb_len(struct selinux_state *state)
2256 {
2257 	struct policydb *p = &state->ss->policydb;
2258 	size_t len;
2259 
2260 	read_lock(&state->ss->policy_rwlock);
2261 	len = p->len;
2262 	read_unlock(&state->ss->policy_rwlock);
2263 
2264 	return len;
2265 }
2266 
2267 /**
2268  * security_port_sid - Obtain the SID for a port.
2269  * @protocol: protocol number
2270  * @port: port number
2271  * @out_sid: security identifier
2272  */
2273 int security_port_sid(struct selinux_state *state,
2274 		      u8 protocol, u16 port, u32 *out_sid)
2275 {
2276 	struct policydb *policydb;
2277 	struct sidtab *sidtab;
2278 	struct ocontext *c;
2279 	int rc = 0;
2280 
2281 	read_lock(&state->ss->policy_rwlock);
2282 
2283 	policydb = &state->ss->policydb;
2284 	sidtab = &state->ss->sidtab;
2285 
2286 	c = policydb->ocontexts[OCON_PORT];
2287 	while (c) {
2288 		if (c->u.port.protocol == protocol &&
2289 		    c->u.port.low_port <= port &&
2290 		    c->u.port.high_port >= port)
2291 			break;
2292 		c = c->next;
2293 	}
2294 
2295 	if (c) {
2296 		if (!c->sid[0]) {
2297 			rc = sidtab_context_to_sid(sidtab,
2298 						   &c->context[0],
2299 						   &c->sid[0]);
2300 			if (rc)
2301 				goto out;
2302 		}
2303 		*out_sid = c->sid[0];
2304 	} else {
2305 		*out_sid = SECINITSID_PORT;
2306 	}
2307 
2308 out:
2309 	read_unlock(&state->ss->policy_rwlock);
2310 	return rc;
2311 }
2312 
2313 /**
2314  * security_pkey_sid - Obtain the SID for a pkey.
2315  * @subnet_prefix: Subnet Prefix
2316  * @pkey_num: pkey number
2317  * @out_sid: security identifier
2318  */
2319 int security_ib_pkey_sid(struct selinux_state *state,
2320 			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2321 {
2322 	struct policydb *policydb;
2323 	struct sidtab *sidtab;
2324 	struct ocontext *c;
2325 	int rc = 0;
2326 
2327 	read_lock(&state->ss->policy_rwlock);
2328 
2329 	policydb = &state->ss->policydb;
2330 	sidtab = &state->ss->sidtab;
2331 
2332 	c = policydb->ocontexts[OCON_IBPKEY];
2333 	while (c) {
2334 		if (c->u.ibpkey.low_pkey <= pkey_num &&
2335 		    c->u.ibpkey.high_pkey >= pkey_num &&
2336 		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2337 			break;
2338 
2339 		c = c->next;
2340 	}
2341 
2342 	if (c) {
2343 		if (!c->sid[0]) {
2344 			rc = sidtab_context_to_sid(sidtab,
2345 						   &c->context[0],
2346 						   &c->sid[0]);
2347 			if (rc)
2348 				goto out;
2349 		}
2350 		*out_sid = c->sid[0];
2351 	} else
2352 		*out_sid = SECINITSID_UNLABELED;
2353 
2354 out:
2355 	read_unlock(&state->ss->policy_rwlock);
2356 	return rc;
2357 }
2358 
2359 /**
2360  * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2361  * @dev_name: device name
2362  * @port: port number
2363  * @out_sid: security identifier
2364  */
2365 int security_ib_endport_sid(struct selinux_state *state,
2366 			    const char *dev_name, u8 port_num, u32 *out_sid)
2367 {
2368 	struct policydb *policydb;
2369 	struct sidtab *sidtab;
2370 	struct ocontext *c;
2371 	int rc = 0;
2372 
2373 	read_lock(&state->ss->policy_rwlock);
2374 
2375 	policydb = &state->ss->policydb;
2376 	sidtab = &state->ss->sidtab;
2377 
2378 	c = policydb->ocontexts[OCON_IBENDPORT];
2379 	while (c) {
2380 		if (c->u.ibendport.port == port_num &&
2381 		    !strncmp(c->u.ibendport.dev_name,
2382 			     dev_name,
2383 			     IB_DEVICE_NAME_MAX))
2384 			break;
2385 
2386 		c = c->next;
2387 	}
2388 
2389 	if (c) {
2390 		if (!c->sid[0]) {
2391 			rc = sidtab_context_to_sid(sidtab,
2392 						   &c->context[0],
2393 						   &c->sid[0]);
2394 			if (rc)
2395 				goto out;
2396 		}
2397 		*out_sid = c->sid[0];
2398 	} else
2399 		*out_sid = SECINITSID_UNLABELED;
2400 
2401 out:
2402 	read_unlock(&state->ss->policy_rwlock);
2403 	return rc;
2404 }
2405 
2406 /**
2407  * security_netif_sid - Obtain the SID for a network interface.
2408  * @name: interface name
2409  * @if_sid: interface SID
2410  */
2411 int security_netif_sid(struct selinux_state *state,
2412 		       char *name, u32 *if_sid)
2413 {
2414 	struct policydb *policydb;
2415 	struct sidtab *sidtab;
2416 	int rc = 0;
2417 	struct ocontext *c;
2418 
2419 	read_lock(&state->ss->policy_rwlock);
2420 
2421 	policydb = &state->ss->policydb;
2422 	sidtab = &state->ss->sidtab;
2423 
2424 	c = policydb->ocontexts[OCON_NETIF];
2425 	while (c) {
2426 		if (strcmp(name, c->u.name) == 0)
2427 			break;
2428 		c = c->next;
2429 	}
2430 
2431 	if (c) {
2432 		if (!c->sid[0] || !c->sid[1]) {
2433 			rc = sidtab_context_to_sid(sidtab,
2434 						  &c->context[0],
2435 						  &c->sid[0]);
2436 			if (rc)
2437 				goto out;
2438 			rc = sidtab_context_to_sid(sidtab,
2439 						   &c->context[1],
2440 						   &c->sid[1]);
2441 			if (rc)
2442 				goto out;
2443 		}
2444 		*if_sid = c->sid[0];
2445 	} else
2446 		*if_sid = SECINITSID_NETIF;
2447 
2448 out:
2449 	read_unlock(&state->ss->policy_rwlock);
2450 	return rc;
2451 }
2452 
2453 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2454 {
2455 	int i, fail = 0;
2456 
2457 	for (i = 0; i < 4; i++)
2458 		if (addr[i] != (input[i] & mask[i])) {
2459 			fail = 1;
2460 			break;
2461 		}
2462 
2463 	return !fail;
2464 }
2465 
2466 /**
2467  * security_node_sid - Obtain the SID for a node (host).
2468  * @domain: communication domain aka address family
2469  * @addrp: address
2470  * @addrlen: address length in bytes
2471  * @out_sid: security identifier
2472  */
2473 int security_node_sid(struct selinux_state *state,
2474 		      u16 domain,
2475 		      void *addrp,
2476 		      u32 addrlen,
2477 		      u32 *out_sid)
2478 {
2479 	struct policydb *policydb;
2480 	struct sidtab *sidtab;
2481 	int rc;
2482 	struct ocontext *c;
2483 
2484 	read_lock(&state->ss->policy_rwlock);
2485 
2486 	policydb = &state->ss->policydb;
2487 	sidtab = &state->ss->sidtab;
2488 
2489 	switch (domain) {
2490 	case AF_INET: {
2491 		u32 addr;
2492 
2493 		rc = -EINVAL;
2494 		if (addrlen != sizeof(u32))
2495 			goto out;
2496 
2497 		addr = *((u32 *)addrp);
2498 
2499 		c = policydb->ocontexts[OCON_NODE];
2500 		while (c) {
2501 			if (c->u.node.addr == (addr & c->u.node.mask))
2502 				break;
2503 			c = c->next;
2504 		}
2505 		break;
2506 	}
2507 
2508 	case AF_INET6:
2509 		rc = -EINVAL;
2510 		if (addrlen != sizeof(u64) * 2)
2511 			goto out;
2512 		c = policydb->ocontexts[OCON_NODE6];
2513 		while (c) {
2514 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2515 						c->u.node6.mask))
2516 				break;
2517 			c = c->next;
2518 		}
2519 		break;
2520 
2521 	default:
2522 		rc = 0;
2523 		*out_sid = SECINITSID_NODE;
2524 		goto out;
2525 	}
2526 
2527 	if (c) {
2528 		if (!c->sid[0]) {
2529 			rc = sidtab_context_to_sid(sidtab,
2530 						   &c->context[0],
2531 						   &c->sid[0]);
2532 			if (rc)
2533 				goto out;
2534 		}
2535 		*out_sid = c->sid[0];
2536 	} else {
2537 		*out_sid = SECINITSID_NODE;
2538 	}
2539 
2540 	rc = 0;
2541 out:
2542 	read_unlock(&state->ss->policy_rwlock);
2543 	return rc;
2544 }
2545 
2546 #define SIDS_NEL 25
2547 
2548 /**
2549  * security_get_user_sids - Obtain reachable SIDs for a user.
2550  * @fromsid: starting SID
2551  * @username: username
2552  * @sids: array of reachable SIDs for user
2553  * @nel: number of elements in @sids
2554  *
2555  * Generate the set of SIDs for legal security contexts
2556  * for a given user that can be reached by @fromsid.
2557  * Set *@sids to point to a dynamically allocated
2558  * array containing the set of SIDs.  Set *@nel to the
2559  * number of elements in the array.
2560  */
2561 
2562 int security_get_user_sids(struct selinux_state *state,
2563 			   u32 fromsid,
2564 			   char *username,
2565 			   u32 **sids,
2566 			   u32 *nel)
2567 {
2568 	struct policydb *policydb;
2569 	struct sidtab *sidtab;
2570 	struct context *fromcon, usercon;
2571 	u32 *mysids = NULL, *mysids2, sid;
2572 	u32 mynel = 0, maxnel = SIDS_NEL;
2573 	struct user_datum *user;
2574 	struct role_datum *role;
2575 	struct ebitmap_node *rnode, *tnode;
2576 	int rc = 0, i, j;
2577 
2578 	*sids = NULL;
2579 	*nel = 0;
2580 
2581 	if (!state->initialized)
2582 		goto out;
2583 
2584 	read_lock(&state->ss->policy_rwlock);
2585 
2586 	policydb = &state->ss->policydb;
2587 	sidtab = &state->ss->sidtab;
2588 
2589 	context_init(&usercon);
2590 
2591 	rc = -EINVAL;
2592 	fromcon = sidtab_search(sidtab, fromsid);
2593 	if (!fromcon)
2594 		goto out_unlock;
2595 
2596 	rc = -EINVAL;
2597 	user = hashtab_search(policydb->p_users.table, username);
2598 	if (!user)
2599 		goto out_unlock;
2600 
2601 	usercon.user = user->value;
2602 
2603 	rc = -ENOMEM;
2604 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2605 	if (!mysids)
2606 		goto out_unlock;
2607 
2608 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2609 		role = policydb->role_val_to_struct[i];
2610 		usercon.role = i + 1;
2611 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2612 			usercon.type = j + 1;
2613 
2614 			if (mls_setup_user_range(policydb, fromcon, user,
2615 						 &usercon))
2616 				continue;
2617 
2618 			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2619 			if (rc)
2620 				goto out_unlock;
2621 			if (mynel < maxnel) {
2622 				mysids[mynel++] = sid;
2623 			} else {
2624 				rc = -ENOMEM;
2625 				maxnel += SIDS_NEL;
2626 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2627 				if (!mysids2)
2628 					goto out_unlock;
2629 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2630 				kfree(mysids);
2631 				mysids = mysids2;
2632 				mysids[mynel++] = sid;
2633 			}
2634 		}
2635 	}
2636 	rc = 0;
2637 out_unlock:
2638 	read_unlock(&state->ss->policy_rwlock);
2639 	if (rc || !mynel) {
2640 		kfree(mysids);
2641 		goto out;
2642 	}
2643 
2644 	rc = -ENOMEM;
2645 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2646 	if (!mysids2) {
2647 		kfree(mysids);
2648 		goto out;
2649 	}
2650 	for (i = 0, j = 0; i < mynel; i++) {
2651 		struct av_decision dummy_avd;
2652 		rc = avc_has_perm_noaudit(state,
2653 					  fromsid, mysids[i],
2654 					  SECCLASS_PROCESS, /* kernel value */
2655 					  PROCESS__TRANSITION, AVC_STRICT,
2656 					  &dummy_avd);
2657 		if (!rc)
2658 			mysids2[j++] = mysids[i];
2659 		cond_resched();
2660 	}
2661 	rc = 0;
2662 	kfree(mysids);
2663 	*sids = mysids2;
2664 	*nel = j;
2665 out:
2666 	return rc;
2667 }
2668 
2669 /**
2670  * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2671  * @fstype: filesystem type
2672  * @path: path from root of mount
2673  * @sclass: file security class
2674  * @sid: SID for path
2675  *
2676  * Obtain a SID to use for a file in a filesystem that
2677  * cannot support xattr or use a fixed labeling behavior like
2678  * transition SIDs or task SIDs.
2679  *
2680  * The caller must acquire the policy_rwlock before calling this function.
2681  */
2682 static inline int __security_genfs_sid(struct selinux_state *state,
2683 				       const char *fstype,
2684 				       char *path,
2685 				       u16 orig_sclass,
2686 				       u32 *sid)
2687 {
2688 	struct policydb *policydb = &state->ss->policydb;
2689 	struct sidtab *sidtab = &state->ss->sidtab;
2690 	int len;
2691 	u16 sclass;
2692 	struct genfs *genfs;
2693 	struct ocontext *c;
2694 	int rc, cmp = 0;
2695 
2696 	while (path[0] == '/' && path[1] == '/')
2697 		path++;
2698 
2699 	sclass = unmap_class(&state->ss->map, orig_sclass);
2700 	*sid = SECINITSID_UNLABELED;
2701 
2702 	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2703 		cmp = strcmp(fstype, genfs->fstype);
2704 		if (cmp <= 0)
2705 			break;
2706 	}
2707 
2708 	rc = -ENOENT;
2709 	if (!genfs || cmp)
2710 		goto out;
2711 
2712 	for (c = genfs->head; c; c = c->next) {
2713 		len = strlen(c->u.name);
2714 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2715 		    (strncmp(c->u.name, path, len) == 0))
2716 			break;
2717 	}
2718 
2719 	rc = -ENOENT;
2720 	if (!c)
2721 		goto out;
2722 
2723 	if (!c->sid[0]) {
2724 		rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2725 		if (rc)
2726 			goto out;
2727 	}
2728 
2729 	*sid = c->sid[0];
2730 	rc = 0;
2731 out:
2732 	return rc;
2733 }
2734 
2735 /**
2736  * security_genfs_sid - Obtain a SID for a file in a filesystem
2737  * @fstype: filesystem type
2738  * @path: path from root of mount
2739  * @sclass: file security class
2740  * @sid: SID for path
2741  *
2742  * Acquire policy_rwlock before calling __security_genfs_sid() and release
2743  * it afterward.
2744  */
2745 int security_genfs_sid(struct selinux_state *state,
2746 		       const char *fstype,
2747 		       char *path,
2748 		       u16 orig_sclass,
2749 		       u32 *sid)
2750 {
2751 	int retval;
2752 
2753 	read_lock(&state->ss->policy_rwlock);
2754 	retval = __security_genfs_sid(state, fstype, path, orig_sclass, sid);
2755 	read_unlock(&state->ss->policy_rwlock);
2756 	return retval;
2757 }
2758 
2759 /**
2760  * security_fs_use - Determine how to handle labeling for a filesystem.
2761  * @sb: superblock in question
2762  */
2763 int security_fs_use(struct selinux_state *state, struct super_block *sb)
2764 {
2765 	struct policydb *policydb;
2766 	struct sidtab *sidtab;
2767 	int rc = 0;
2768 	struct ocontext *c;
2769 	struct superblock_security_struct *sbsec = sb->s_security;
2770 	const char *fstype = sb->s_type->name;
2771 
2772 	read_lock(&state->ss->policy_rwlock);
2773 
2774 	policydb = &state->ss->policydb;
2775 	sidtab = &state->ss->sidtab;
2776 
2777 	c = policydb->ocontexts[OCON_FSUSE];
2778 	while (c) {
2779 		if (strcmp(fstype, c->u.name) == 0)
2780 			break;
2781 		c = c->next;
2782 	}
2783 
2784 	if (c) {
2785 		sbsec->behavior = c->v.behavior;
2786 		if (!c->sid[0]) {
2787 			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2788 						   &c->sid[0]);
2789 			if (rc)
2790 				goto out;
2791 		}
2792 		sbsec->sid = c->sid[0];
2793 	} else {
2794 		rc = __security_genfs_sid(state, fstype, "/", SECCLASS_DIR,
2795 					  &sbsec->sid);
2796 		if (rc) {
2797 			sbsec->behavior = SECURITY_FS_USE_NONE;
2798 			rc = 0;
2799 		} else {
2800 			sbsec->behavior = SECURITY_FS_USE_GENFS;
2801 		}
2802 	}
2803 
2804 out:
2805 	read_unlock(&state->ss->policy_rwlock);
2806 	return rc;
2807 }
2808 
2809 int security_get_bools(struct selinux_state *state,
2810 		       int *len, char ***names, int **values)
2811 {
2812 	struct policydb *policydb;
2813 	int i, rc;
2814 
2815 	if (!state->initialized) {
2816 		*len = 0;
2817 		*names = NULL;
2818 		*values = NULL;
2819 		return 0;
2820 	}
2821 
2822 	read_lock(&state->ss->policy_rwlock);
2823 
2824 	policydb = &state->ss->policydb;
2825 
2826 	*names = NULL;
2827 	*values = NULL;
2828 
2829 	rc = 0;
2830 	*len = policydb->p_bools.nprim;
2831 	if (!*len)
2832 		goto out;
2833 
2834 	rc = -ENOMEM;
2835 	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2836 	if (!*names)
2837 		goto err;
2838 
2839 	rc = -ENOMEM;
2840 	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2841 	if (!*values)
2842 		goto err;
2843 
2844 	for (i = 0; i < *len; i++) {
2845 		(*values)[i] = policydb->bool_val_to_struct[i]->state;
2846 
2847 		rc = -ENOMEM;
2848 		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2849 				      GFP_ATOMIC);
2850 		if (!(*names)[i])
2851 			goto err;
2852 	}
2853 	rc = 0;
2854 out:
2855 	read_unlock(&state->ss->policy_rwlock);
2856 	return rc;
2857 err:
2858 	if (*names) {
2859 		for (i = 0; i < *len; i++)
2860 			kfree((*names)[i]);
2861 	}
2862 	kfree(*values);
2863 	goto out;
2864 }
2865 
2866 
2867 int security_set_bools(struct selinux_state *state, int len, int *values)
2868 {
2869 	struct policydb *policydb;
2870 	int i, rc;
2871 	int lenp, seqno = 0;
2872 	struct cond_node *cur;
2873 
2874 	write_lock_irq(&state->ss->policy_rwlock);
2875 
2876 	policydb = &state->ss->policydb;
2877 
2878 	rc = -EFAULT;
2879 	lenp = policydb->p_bools.nprim;
2880 	if (len != lenp)
2881 		goto out;
2882 
2883 	for (i = 0; i < len; i++) {
2884 		if (!!values[i] != policydb->bool_val_to_struct[i]->state) {
2885 			audit_log(audit_context(), GFP_ATOMIC,
2886 				AUDIT_MAC_CONFIG_CHANGE,
2887 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2888 				sym_name(policydb, SYM_BOOLS, i),
2889 				!!values[i],
2890 				policydb->bool_val_to_struct[i]->state,
2891 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
2892 				audit_get_sessionid(current));
2893 		}
2894 		if (values[i])
2895 			policydb->bool_val_to_struct[i]->state = 1;
2896 		else
2897 			policydb->bool_val_to_struct[i]->state = 0;
2898 	}
2899 
2900 	for (cur = policydb->cond_list; cur; cur = cur->next) {
2901 		rc = evaluate_cond_node(policydb, cur);
2902 		if (rc)
2903 			goto out;
2904 	}
2905 
2906 	seqno = ++state->ss->latest_granting;
2907 	rc = 0;
2908 out:
2909 	write_unlock_irq(&state->ss->policy_rwlock);
2910 	if (!rc) {
2911 		avc_ss_reset(state->avc, seqno);
2912 		selnl_notify_policyload(seqno);
2913 		selinux_status_update_policyload(state, seqno);
2914 		selinux_xfrm_notify_policyload();
2915 	}
2916 	return rc;
2917 }
2918 
2919 int security_get_bool_value(struct selinux_state *state,
2920 			    int index)
2921 {
2922 	struct policydb *policydb;
2923 	int rc;
2924 	int len;
2925 
2926 	read_lock(&state->ss->policy_rwlock);
2927 
2928 	policydb = &state->ss->policydb;
2929 
2930 	rc = -EFAULT;
2931 	len = policydb->p_bools.nprim;
2932 	if (index >= len)
2933 		goto out;
2934 
2935 	rc = policydb->bool_val_to_struct[index]->state;
2936 out:
2937 	read_unlock(&state->ss->policy_rwlock);
2938 	return rc;
2939 }
2940 
2941 static int security_preserve_bools(struct selinux_state *state,
2942 				   struct policydb *policydb)
2943 {
2944 	int rc, nbools = 0, *bvalues = NULL, i;
2945 	char **bnames = NULL;
2946 	struct cond_bool_datum *booldatum;
2947 	struct cond_node *cur;
2948 
2949 	rc = security_get_bools(state, &nbools, &bnames, &bvalues);
2950 	if (rc)
2951 		goto out;
2952 	for (i = 0; i < nbools; i++) {
2953 		booldatum = hashtab_search(policydb->p_bools.table, bnames[i]);
2954 		if (booldatum)
2955 			booldatum->state = bvalues[i];
2956 	}
2957 	for (cur = policydb->cond_list; cur; cur = cur->next) {
2958 		rc = evaluate_cond_node(policydb, cur);
2959 		if (rc)
2960 			goto out;
2961 	}
2962 
2963 out:
2964 	if (bnames) {
2965 		for (i = 0; i < nbools; i++)
2966 			kfree(bnames[i]);
2967 	}
2968 	kfree(bnames);
2969 	kfree(bvalues);
2970 	return rc;
2971 }
2972 
2973 /*
2974  * security_sid_mls_copy() - computes a new sid based on the given
2975  * sid and the mls portion of mls_sid.
2976  */
2977 int security_sid_mls_copy(struct selinux_state *state,
2978 			  u32 sid, u32 mls_sid, u32 *new_sid)
2979 {
2980 	struct policydb *policydb = &state->ss->policydb;
2981 	struct sidtab *sidtab = &state->ss->sidtab;
2982 	struct context *context1;
2983 	struct context *context2;
2984 	struct context newcon;
2985 	char *s;
2986 	u32 len;
2987 	int rc;
2988 
2989 	rc = 0;
2990 	if (!state->initialized || !policydb->mls_enabled) {
2991 		*new_sid = sid;
2992 		goto out;
2993 	}
2994 
2995 	context_init(&newcon);
2996 
2997 	read_lock(&state->ss->policy_rwlock);
2998 
2999 	rc = -EINVAL;
3000 	context1 = sidtab_search(sidtab, sid);
3001 	if (!context1) {
3002 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
3003 			__func__, sid);
3004 		goto out_unlock;
3005 	}
3006 
3007 	rc = -EINVAL;
3008 	context2 = sidtab_search(sidtab, mls_sid);
3009 	if (!context2) {
3010 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
3011 			__func__, mls_sid);
3012 		goto out_unlock;
3013 	}
3014 
3015 	newcon.user = context1->user;
3016 	newcon.role = context1->role;
3017 	newcon.type = context1->type;
3018 	rc = mls_context_cpy(&newcon, context2);
3019 	if (rc)
3020 		goto out_unlock;
3021 
3022 	/* Check the validity of the new context. */
3023 	if (!policydb_context_isvalid(policydb, &newcon)) {
3024 		rc = convert_context_handle_invalid_context(state, &newcon);
3025 		if (rc) {
3026 			if (!context_struct_to_string(policydb, &newcon, &s,
3027 						      &len)) {
3028 				audit_log(audit_context(),
3029 					  GFP_ATOMIC, AUDIT_SELINUX_ERR,
3030 					  "op=security_sid_mls_copy "
3031 					  "invalid_context=%s", s);
3032 				kfree(s);
3033 			}
3034 			goto out_unlock;
3035 		}
3036 	}
3037 
3038 	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3039 out_unlock:
3040 	read_unlock(&state->ss->policy_rwlock);
3041 	context_destroy(&newcon);
3042 out:
3043 	return rc;
3044 }
3045 
3046 /**
3047  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3048  * @nlbl_sid: NetLabel SID
3049  * @nlbl_type: NetLabel labeling protocol type
3050  * @xfrm_sid: XFRM SID
3051  *
3052  * Description:
3053  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3054  * resolved into a single SID it is returned via @peer_sid and the function
3055  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3056  * returns a negative value.  A table summarizing the behavior is below:
3057  *
3058  *                                 | function return |      @sid
3059  *   ------------------------------+-----------------+-----------------
3060  *   no peer labels                |        0        |    SECSID_NULL
3061  *   single peer label             |        0        |    <peer_label>
3062  *   multiple, consistent labels   |        0        |    <peer_label>
3063  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3064  *
3065  */
3066 int security_net_peersid_resolve(struct selinux_state *state,
3067 				 u32 nlbl_sid, u32 nlbl_type,
3068 				 u32 xfrm_sid,
3069 				 u32 *peer_sid)
3070 {
3071 	struct policydb *policydb = &state->ss->policydb;
3072 	struct sidtab *sidtab = &state->ss->sidtab;
3073 	int rc;
3074 	struct context *nlbl_ctx;
3075 	struct context *xfrm_ctx;
3076 
3077 	*peer_sid = SECSID_NULL;
3078 
3079 	/* handle the common (which also happens to be the set of easy) cases
3080 	 * right away, these two if statements catch everything involving a
3081 	 * single or absent peer SID/label */
3082 	if (xfrm_sid == SECSID_NULL) {
3083 		*peer_sid = nlbl_sid;
3084 		return 0;
3085 	}
3086 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3087 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3088 	 * is present */
3089 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3090 		*peer_sid = xfrm_sid;
3091 		return 0;
3092 	}
3093 
3094 	/*
3095 	 * We don't need to check initialized here since the only way both
3096 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3097 	 * security server was initialized and state->initialized was true.
3098 	 */
3099 	if (!policydb->mls_enabled)
3100 		return 0;
3101 
3102 	read_lock(&state->ss->policy_rwlock);
3103 
3104 	rc = -EINVAL;
3105 	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3106 	if (!nlbl_ctx) {
3107 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
3108 		       __func__, nlbl_sid);
3109 		goto out;
3110 	}
3111 	rc = -EINVAL;
3112 	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3113 	if (!xfrm_ctx) {
3114 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
3115 		       __func__, xfrm_sid);
3116 		goto out;
3117 	}
3118 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3119 	if (rc)
3120 		goto out;
3121 
3122 	/* at present NetLabel SIDs/labels really only carry MLS
3123 	 * information so if the MLS portion of the NetLabel SID
3124 	 * matches the MLS portion of the labeled XFRM SID/label
3125 	 * then pass along the XFRM SID as it is the most
3126 	 * expressive */
3127 	*peer_sid = xfrm_sid;
3128 out:
3129 	read_unlock(&state->ss->policy_rwlock);
3130 	return rc;
3131 }
3132 
3133 static int get_classes_callback(void *k, void *d, void *args)
3134 {
3135 	struct class_datum *datum = d;
3136 	char *name = k, **classes = args;
3137 	int value = datum->value - 1;
3138 
3139 	classes[value] = kstrdup(name, GFP_ATOMIC);
3140 	if (!classes[value])
3141 		return -ENOMEM;
3142 
3143 	return 0;
3144 }
3145 
3146 int security_get_classes(struct selinux_state *state,
3147 			 char ***classes, int *nclasses)
3148 {
3149 	struct policydb *policydb = &state->ss->policydb;
3150 	int rc;
3151 
3152 	if (!state->initialized) {
3153 		*nclasses = 0;
3154 		*classes = NULL;
3155 		return 0;
3156 	}
3157 
3158 	read_lock(&state->ss->policy_rwlock);
3159 
3160 	rc = -ENOMEM;
3161 	*nclasses = policydb->p_classes.nprim;
3162 	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3163 	if (!*classes)
3164 		goto out;
3165 
3166 	rc = hashtab_map(policydb->p_classes.table, get_classes_callback,
3167 			*classes);
3168 	if (rc) {
3169 		int i;
3170 		for (i = 0; i < *nclasses; i++)
3171 			kfree((*classes)[i]);
3172 		kfree(*classes);
3173 	}
3174 
3175 out:
3176 	read_unlock(&state->ss->policy_rwlock);
3177 	return rc;
3178 }
3179 
3180 static int get_permissions_callback(void *k, void *d, void *args)
3181 {
3182 	struct perm_datum *datum = d;
3183 	char *name = k, **perms = args;
3184 	int value = datum->value - 1;
3185 
3186 	perms[value] = kstrdup(name, GFP_ATOMIC);
3187 	if (!perms[value])
3188 		return -ENOMEM;
3189 
3190 	return 0;
3191 }
3192 
3193 int security_get_permissions(struct selinux_state *state,
3194 			     char *class, char ***perms, int *nperms)
3195 {
3196 	struct policydb *policydb = &state->ss->policydb;
3197 	int rc, i;
3198 	struct class_datum *match;
3199 
3200 	read_lock(&state->ss->policy_rwlock);
3201 
3202 	rc = -EINVAL;
3203 	match = hashtab_search(policydb->p_classes.table, class);
3204 	if (!match) {
3205 		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
3206 			__func__, class);
3207 		goto out;
3208 	}
3209 
3210 	rc = -ENOMEM;
3211 	*nperms = match->permissions.nprim;
3212 	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3213 	if (!*perms)
3214 		goto out;
3215 
3216 	if (match->comdatum) {
3217 		rc = hashtab_map(match->comdatum->permissions.table,
3218 				get_permissions_callback, *perms);
3219 		if (rc)
3220 			goto err;
3221 	}
3222 
3223 	rc = hashtab_map(match->permissions.table, get_permissions_callback,
3224 			*perms);
3225 	if (rc)
3226 		goto err;
3227 
3228 out:
3229 	read_unlock(&state->ss->policy_rwlock);
3230 	return rc;
3231 
3232 err:
3233 	read_unlock(&state->ss->policy_rwlock);
3234 	for (i = 0; i < *nperms; i++)
3235 		kfree((*perms)[i]);
3236 	kfree(*perms);
3237 	return rc;
3238 }
3239 
3240 int security_get_reject_unknown(struct selinux_state *state)
3241 {
3242 	return state->ss->policydb.reject_unknown;
3243 }
3244 
3245 int security_get_allow_unknown(struct selinux_state *state)
3246 {
3247 	return state->ss->policydb.allow_unknown;
3248 }
3249 
3250 /**
3251  * security_policycap_supported - Check for a specific policy capability
3252  * @req_cap: capability
3253  *
3254  * Description:
3255  * This function queries the currently loaded policy to see if it supports the
3256  * capability specified by @req_cap.  Returns true (1) if the capability is
3257  * supported, false (0) if it isn't supported.
3258  *
3259  */
3260 int security_policycap_supported(struct selinux_state *state,
3261 				 unsigned int req_cap)
3262 {
3263 	struct policydb *policydb = &state->ss->policydb;
3264 	int rc;
3265 
3266 	read_lock(&state->ss->policy_rwlock);
3267 	rc = ebitmap_get_bit(&policydb->policycaps, req_cap);
3268 	read_unlock(&state->ss->policy_rwlock);
3269 
3270 	return rc;
3271 }
3272 
3273 struct selinux_audit_rule {
3274 	u32 au_seqno;
3275 	struct context au_ctxt;
3276 };
3277 
3278 void selinux_audit_rule_free(void *vrule)
3279 {
3280 	struct selinux_audit_rule *rule = vrule;
3281 
3282 	if (rule) {
3283 		context_destroy(&rule->au_ctxt);
3284 		kfree(rule);
3285 	}
3286 }
3287 
3288 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3289 {
3290 	struct selinux_state *state = &selinux_state;
3291 	struct policydb *policydb = &state->ss->policydb;
3292 	struct selinux_audit_rule *tmprule;
3293 	struct role_datum *roledatum;
3294 	struct type_datum *typedatum;
3295 	struct user_datum *userdatum;
3296 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3297 	int rc = 0;
3298 
3299 	*rule = NULL;
3300 
3301 	if (!state->initialized)
3302 		return -EOPNOTSUPP;
3303 
3304 	switch (field) {
3305 	case AUDIT_SUBJ_USER:
3306 	case AUDIT_SUBJ_ROLE:
3307 	case AUDIT_SUBJ_TYPE:
3308 	case AUDIT_OBJ_USER:
3309 	case AUDIT_OBJ_ROLE:
3310 	case AUDIT_OBJ_TYPE:
3311 		/* only 'equals' and 'not equals' fit user, role, and type */
3312 		if (op != Audit_equal && op != Audit_not_equal)
3313 			return -EINVAL;
3314 		break;
3315 	case AUDIT_SUBJ_SEN:
3316 	case AUDIT_SUBJ_CLR:
3317 	case AUDIT_OBJ_LEV_LOW:
3318 	case AUDIT_OBJ_LEV_HIGH:
3319 		/* we do not allow a range, indicated by the presence of '-' */
3320 		if (strchr(rulestr, '-'))
3321 			return -EINVAL;
3322 		break;
3323 	default:
3324 		/* only the above fields are valid */
3325 		return -EINVAL;
3326 	}
3327 
3328 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3329 	if (!tmprule)
3330 		return -ENOMEM;
3331 
3332 	context_init(&tmprule->au_ctxt);
3333 
3334 	read_lock(&state->ss->policy_rwlock);
3335 
3336 	tmprule->au_seqno = state->ss->latest_granting;
3337 
3338 	switch (field) {
3339 	case AUDIT_SUBJ_USER:
3340 	case AUDIT_OBJ_USER:
3341 		rc = -EINVAL;
3342 		userdatum = hashtab_search(policydb->p_users.table, rulestr);
3343 		if (!userdatum)
3344 			goto out;
3345 		tmprule->au_ctxt.user = userdatum->value;
3346 		break;
3347 	case AUDIT_SUBJ_ROLE:
3348 	case AUDIT_OBJ_ROLE:
3349 		rc = -EINVAL;
3350 		roledatum = hashtab_search(policydb->p_roles.table, rulestr);
3351 		if (!roledatum)
3352 			goto out;
3353 		tmprule->au_ctxt.role = roledatum->value;
3354 		break;
3355 	case AUDIT_SUBJ_TYPE:
3356 	case AUDIT_OBJ_TYPE:
3357 		rc = -EINVAL;
3358 		typedatum = hashtab_search(policydb->p_types.table, rulestr);
3359 		if (!typedatum)
3360 			goto out;
3361 		tmprule->au_ctxt.type = typedatum->value;
3362 		break;
3363 	case AUDIT_SUBJ_SEN:
3364 	case AUDIT_SUBJ_CLR:
3365 	case AUDIT_OBJ_LEV_LOW:
3366 	case AUDIT_OBJ_LEV_HIGH:
3367 		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3368 				     GFP_ATOMIC);
3369 		if (rc)
3370 			goto out;
3371 		break;
3372 	}
3373 	rc = 0;
3374 out:
3375 	read_unlock(&state->ss->policy_rwlock);
3376 
3377 	if (rc) {
3378 		selinux_audit_rule_free(tmprule);
3379 		tmprule = NULL;
3380 	}
3381 
3382 	*rule = tmprule;
3383 
3384 	return rc;
3385 }
3386 
3387 /* Check to see if the rule contains any selinux fields */
3388 int selinux_audit_rule_known(struct audit_krule *rule)
3389 {
3390 	int i;
3391 
3392 	for (i = 0; i < rule->field_count; i++) {
3393 		struct audit_field *f = &rule->fields[i];
3394 		switch (f->type) {
3395 		case AUDIT_SUBJ_USER:
3396 		case AUDIT_SUBJ_ROLE:
3397 		case AUDIT_SUBJ_TYPE:
3398 		case AUDIT_SUBJ_SEN:
3399 		case AUDIT_SUBJ_CLR:
3400 		case AUDIT_OBJ_USER:
3401 		case AUDIT_OBJ_ROLE:
3402 		case AUDIT_OBJ_TYPE:
3403 		case AUDIT_OBJ_LEV_LOW:
3404 		case AUDIT_OBJ_LEV_HIGH:
3405 			return 1;
3406 		}
3407 	}
3408 
3409 	return 0;
3410 }
3411 
3412 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
3413 			     struct audit_context *actx)
3414 {
3415 	struct selinux_state *state = &selinux_state;
3416 	struct context *ctxt;
3417 	struct mls_level *level;
3418 	struct selinux_audit_rule *rule = vrule;
3419 	int match = 0;
3420 
3421 	if (unlikely(!rule)) {
3422 		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3423 		return -ENOENT;
3424 	}
3425 
3426 	read_lock(&state->ss->policy_rwlock);
3427 
3428 	if (rule->au_seqno < state->ss->latest_granting) {
3429 		match = -ESTALE;
3430 		goto out;
3431 	}
3432 
3433 	ctxt = sidtab_search(&state->ss->sidtab, sid);
3434 	if (unlikely(!ctxt)) {
3435 		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3436 			  sid);
3437 		match = -ENOENT;
3438 		goto out;
3439 	}
3440 
3441 	/* a field/op pair that is not caught here will simply fall through
3442 	   without a match */
3443 	switch (field) {
3444 	case AUDIT_SUBJ_USER:
3445 	case AUDIT_OBJ_USER:
3446 		switch (op) {
3447 		case Audit_equal:
3448 			match = (ctxt->user == rule->au_ctxt.user);
3449 			break;
3450 		case Audit_not_equal:
3451 			match = (ctxt->user != rule->au_ctxt.user);
3452 			break;
3453 		}
3454 		break;
3455 	case AUDIT_SUBJ_ROLE:
3456 	case AUDIT_OBJ_ROLE:
3457 		switch (op) {
3458 		case Audit_equal:
3459 			match = (ctxt->role == rule->au_ctxt.role);
3460 			break;
3461 		case Audit_not_equal:
3462 			match = (ctxt->role != rule->au_ctxt.role);
3463 			break;
3464 		}
3465 		break;
3466 	case AUDIT_SUBJ_TYPE:
3467 	case AUDIT_OBJ_TYPE:
3468 		switch (op) {
3469 		case Audit_equal:
3470 			match = (ctxt->type == rule->au_ctxt.type);
3471 			break;
3472 		case Audit_not_equal:
3473 			match = (ctxt->type != rule->au_ctxt.type);
3474 			break;
3475 		}
3476 		break;
3477 	case AUDIT_SUBJ_SEN:
3478 	case AUDIT_SUBJ_CLR:
3479 	case AUDIT_OBJ_LEV_LOW:
3480 	case AUDIT_OBJ_LEV_HIGH:
3481 		level = ((field == AUDIT_SUBJ_SEN ||
3482 			  field == AUDIT_OBJ_LEV_LOW) ?
3483 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3484 		switch (op) {
3485 		case Audit_equal:
3486 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3487 					     level);
3488 			break;
3489 		case Audit_not_equal:
3490 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3491 					      level);
3492 			break;
3493 		case Audit_lt:
3494 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3495 					       level) &&
3496 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3497 					       level));
3498 			break;
3499 		case Audit_le:
3500 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3501 					      level);
3502 			break;
3503 		case Audit_gt:
3504 			match = (mls_level_dom(level,
3505 					      &rule->au_ctxt.range.level[0]) &&
3506 				 !mls_level_eq(level,
3507 					       &rule->au_ctxt.range.level[0]));
3508 			break;
3509 		case Audit_ge:
3510 			match = mls_level_dom(level,
3511 					      &rule->au_ctxt.range.level[0]);
3512 			break;
3513 		}
3514 	}
3515 
3516 out:
3517 	read_unlock(&state->ss->policy_rwlock);
3518 	return match;
3519 }
3520 
3521 static int (*aurule_callback)(void) = audit_update_lsm_rules;
3522 
3523 static int aurule_avc_callback(u32 event)
3524 {
3525 	int err = 0;
3526 
3527 	if (event == AVC_CALLBACK_RESET && aurule_callback)
3528 		err = aurule_callback();
3529 	return err;
3530 }
3531 
3532 static int __init aurule_init(void)
3533 {
3534 	int err;
3535 
3536 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3537 	if (err)
3538 		panic("avc_add_callback() failed, error %d\n", err);
3539 
3540 	return err;
3541 }
3542 __initcall(aurule_init);
3543 
3544 #ifdef CONFIG_NETLABEL
3545 /**
3546  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3547  * @secattr: the NetLabel packet security attributes
3548  * @sid: the SELinux SID
3549  *
3550  * Description:
3551  * Attempt to cache the context in @ctx, which was derived from the packet in
3552  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3553  * already been initialized.
3554  *
3555  */
3556 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3557 				      u32 sid)
3558 {
3559 	u32 *sid_cache;
3560 
3561 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3562 	if (sid_cache == NULL)
3563 		return;
3564 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3565 	if (secattr->cache == NULL) {
3566 		kfree(sid_cache);
3567 		return;
3568 	}
3569 
3570 	*sid_cache = sid;
3571 	secattr->cache->free = kfree;
3572 	secattr->cache->data = sid_cache;
3573 	secattr->flags |= NETLBL_SECATTR_CACHE;
3574 }
3575 
3576 /**
3577  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3578  * @secattr: the NetLabel packet security attributes
3579  * @sid: the SELinux SID
3580  *
3581  * Description:
3582  * Convert the given NetLabel security attributes in @secattr into a
3583  * SELinux SID.  If the @secattr field does not contain a full SELinux
3584  * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3585  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3586  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3587  * conversion for future lookups.  Returns zero on success, negative values on
3588  * failure.
3589  *
3590  */
3591 int security_netlbl_secattr_to_sid(struct selinux_state *state,
3592 				   struct netlbl_lsm_secattr *secattr,
3593 				   u32 *sid)
3594 {
3595 	struct policydb *policydb = &state->ss->policydb;
3596 	struct sidtab *sidtab = &state->ss->sidtab;
3597 	int rc;
3598 	struct context *ctx;
3599 	struct context ctx_new;
3600 
3601 	if (!state->initialized) {
3602 		*sid = SECSID_NULL;
3603 		return 0;
3604 	}
3605 
3606 	read_lock(&state->ss->policy_rwlock);
3607 
3608 	if (secattr->flags & NETLBL_SECATTR_CACHE)
3609 		*sid = *(u32 *)secattr->cache->data;
3610 	else if (secattr->flags & NETLBL_SECATTR_SECID)
3611 		*sid = secattr->attr.secid;
3612 	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3613 		rc = -EIDRM;
3614 		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3615 		if (ctx == NULL)
3616 			goto out;
3617 
3618 		context_init(&ctx_new);
3619 		ctx_new.user = ctx->user;
3620 		ctx_new.role = ctx->role;
3621 		ctx_new.type = ctx->type;
3622 		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3623 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3624 			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3625 			if (rc)
3626 				goto out;
3627 		}
3628 		rc = -EIDRM;
3629 		if (!mls_context_isvalid(policydb, &ctx_new))
3630 			goto out_free;
3631 
3632 		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3633 		if (rc)
3634 			goto out_free;
3635 
3636 		security_netlbl_cache_add(secattr, *sid);
3637 
3638 		ebitmap_destroy(&ctx_new.range.level[0].cat);
3639 	} else
3640 		*sid = SECSID_NULL;
3641 
3642 	read_unlock(&state->ss->policy_rwlock);
3643 	return 0;
3644 out_free:
3645 	ebitmap_destroy(&ctx_new.range.level[0].cat);
3646 out:
3647 	read_unlock(&state->ss->policy_rwlock);
3648 	return rc;
3649 }
3650 
3651 /**
3652  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3653  * @sid: the SELinux SID
3654  * @secattr: the NetLabel packet security attributes
3655  *
3656  * Description:
3657  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3658  * Returns zero on success, negative values on failure.
3659  *
3660  */
3661 int security_netlbl_sid_to_secattr(struct selinux_state *state,
3662 				   u32 sid, struct netlbl_lsm_secattr *secattr)
3663 {
3664 	struct policydb *policydb = &state->ss->policydb;
3665 	int rc;
3666 	struct context *ctx;
3667 
3668 	if (!state->initialized)
3669 		return 0;
3670 
3671 	read_lock(&state->ss->policy_rwlock);
3672 
3673 	rc = -ENOENT;
3674 	ctx = sidtab_search(&state->ss->sidtab, sid);
3675 	if (ctx == NULL)
3676 		goto out;
3677 
3678 	rc = -ENOMEM;
3679 	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3680 				  GFP_ATOMIC);
3681 	if (secattr->domain == NULL)
3682 		goto out;
3683 
3684 	secattr->attr.secid = sid;
3685 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3686 	mls_export_netlbl_lvl(policydb, ctx, secattr);
3687 	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3688 out:
3689 	read_unlock(&state->ss->policy_rwlock);
3690 	return rc;
3691 }
3692 #endif /* CONFIG_NETLABEL */
3693 
3694 /**
3695  * security_read_policy - read the policy.
3696  * @data: binary policy data
3697  * @len: length of data in bytes
3698  *
3699  */
3700 int security_read_policy(struct selinux_state *state,
3701 			 void **data, size_t *len)
3702 {
3703 	struct policydb *policydb = &state->ss->policydb;
3704 	int rc;
3705 	struct policy_file fp;
3706 
3707 	if (!state->initialized)
3708 		return -EINVAL;
3709 
3710 	*len = security_policydb_len(state);
3711 
3712 	*data = vmalloc_user(*len);
3713 	if (!*data)
3714 		return -ENOMEM;
3715 
3716 	fp.data = *data;
3717 	fp.len = *len;
3718 
3719 	read_lock(&state->ss->policy_rwlock);
3720 	rc = policydb_write(policydb, &fp);
3721 	read_unlock(&state->ss->policy_rwlock);
3722 
3723 	if (rc)
3724 		return rc;
3725 
3726 	*len = (unsigned long)fp.data - (unsigned long)*data;
3727 	return 0;
3728 
3729 }
3730