xref: /openbmc/linux/security/selinux/ss/services.c (revision b7019ac5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Implementation of the security services.
4  *
5  * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
6  *	     James Morris <jmorris@redhat.com>
7  *
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *	Support for enhanced MLS infrastructure.
11  *	Support for context based audit filters.
12  *
13  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14  *
15  *	Added conditional policy language extensions
16  *
17  * Updated: Hewlett-Packard <paul@paul-moore.com>
18  *
19  *      Added support for NetLabel
20  *      Added support for the policy capability bitmap
21  *
22  * Updated: Chad Sellers <csellers@tresys.com>
23  *
24  *  Added validation of kernel classes and permissions
25  *
26  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27  *
28  *  Added support for bounds domain and audit messaged on masked permissions
29  *
30  * Updated: Guido Trentalancia <guido@trentalancia.com>
31  *
32  *  Added support for runtime switching of the policy type
33  *
34  * Copyright (C) 2008, 2009 NEC Corporation
35  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39  */
40 #include <linux/kernel.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/errno.h>
46 #include <linux/in.h>
47 #include <linux/sched.h>
48 #include <linux/audit.h>
49 #include <linux/mutex.h>
50 #include <linux/vmalloc.h>
51 #include <net/netlabel.h>
52 
53 #include "flask.h"
54 #include "avc.h"
55 #include "avc_ss.h"
56 #include "security.h"
57 #include "context.h"
58 #include "policydb.h"
59 #include "sidtab.h"
60 #include "services.h"
61 #include "conditional.h"
62 #include "mls.h"
63 #include "objsec.h"
64 #include "netlabel.h"
65 #include "xfrm.h"
66 #include "ebitmap.h"
67 #include "audit.h"
68 
69 /* Policy capability names */
70 const char *selinux_policycap_names[__POLICYDB_CAPABILITY_MAX] = {
71 	"network_peer_controls",
72 	"open_perms",
73 	"extended_socket_class",
74 	"always_check_network",
75 	"cgroup_seclabel",
76 	"nnp_nosuid_transition"
77 };
78 
79 static struct selinux_ss selinux_ss;
80 
81 void selinux_ss_init(struct selinux_ss **ss)
82 {
83 	rwlock_init(&selinux_ss.policy_rwlock);
84 	mutex_init(&selinux_ss.status_lock);
85 	*ss = &selinux_ss;
86 }
87 
88 /* Forward declaration. */
89 static int context_struct_to_string(struct policydb *policydb,
90 				    struct context *context,
91 				    char **scontext,
92 				    u32 *scontext_len);
93 
94 static void context_struct_compute_av(struct policydb *policydb,
95 				      struct context *scontext,
96 				      struct context *tcontext,
97 				      u16 tclass,
98 				      struct av_decision *avd,
99 				      struct extended_perms *xperms);
100 
101 static int selinux_set_mapping(struct policydb *pol,
102 			       struct security_class_mapping *map,
103 			       struct selinux_map *out_map)
104 {
105 	u16 i, j;
106 	unsigned k;
107 	bool print_unknown_handle = false;
108 
109 	/* Find number of classes in the input mapping */
110 	if (!map)
111 		return -EINVAL;
112 	i = 0;
113 	while (map[i].name)
114 		i++;
115 
116 	/* Allocate space for the class records, plus one for class zero */
117 	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
118 	if (!out_map->mapping)
119 		return -ENOMEM;
120 
121 	/* Store the raw class and permission values */
122 	j = 0;
123 	while (map[j].name) {
124 		struct security_class_mapping *p_in = map + (j++);
125 		struct selinux_mapping *p_out = out_map->mapping + j;
126 
127 		/* An empty class string skips ahead */
128 		if (!strcmp(p_in->name, "")) {
129 			p_out->num_perms = 0;
130 			continue;
131 		}
132 
133 		p_out->value = string_to_security_class(pol, p_in->name);
134 		if (!p_out->value) {
135 			pr_info("SELinux:  Class %s not defined in policy.\n",
136 			       p_in->name);
137 			if (pol->reject_unknown)
138 				goto err;
139 			p_out->num_perms = 0;
140 			print_unknown_handle = true;
141 			continue;
142 		}
143 
144 		k = 0;
145 		while (p_in->perms[k]) {
146 			/* An empty permission string skips ahead */
147 			if (!*p_in->perms[k]) {
148 				k++;
149 				continue;
150 			}
151 			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
152 							    p_in->perms[k]);
153 			if (!p_out->perms[k]) {
154 				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
155 				       p_in->perms[k], p_in->name);
156 				if (pol->reject_unknown)
157 					goto err;
158 				print_unknown_handle = true;
159 			}
160 
161 			k++;
162 		}
163 		p_out->num_perms = k;
164 	}
165 
166 	if (print_unknown_handle)
167 		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
168 		       pol->allow_unknown ? "allowed" : "denied");
169 
170 	out_map->size = i;
171 	return 0;
172 err:
173 	kfree(out_map->mapping);
174 	out_map->mapping = NULL;
175 	return -EINVAL;
176 }
177 
178 /*
179  * Get real, policy values from mapped values
180  */
181 
182 static u16 unmap_class(struct selinux_map *map, u16 tclass)
183 {
184 	if (tclass < map->size)
185 		return map->mapping[tclass].value;
186 
187 	return tclass;
188 }
189 
190 /*
191  * Get kernel value for class from its policy value
192  */
193 static u16 map_class(struct selinux_map *map, u16 pol_value)
194 {
195 	u16 i;
196 
197 	for (i = 1; i < map->size; i++) {
198 		if (map->mapping[i].value == pol_value)
199 			return i;
200 	}
201 
202 	return SECCLASS_NULL;
203 }
204 
205 static void map_decision(struct selinux_map *map,
206 			 u16 tclass, struct av_decision *avd,
207 			 int allow_unknown)
208 {
209 	if (tclass < map->size) {
210 		struct selinux_mapping *mapping = &map->mapping[tclass];
211 		unsigned int i, n = mapping->num_perms;
212 		u32 result;
213 
214 		for (i = 0, result = 0; i < n; i++) {
215 			if (avd->allowed & mapping->perms[i])
216 				result |= 1<<i;
217 			if (allow_unknown && !mapping->perms[i])
218 				result |= 1<<i;
219 		}
220 		avd->allowed = result;
221 
222 		for (i = 0, result = 0; i < n; i++)
223 			if (avd->auditallow & mapping->perms[i])
224 				result |= 1<<i;
225 		avd->auditallow = result;
226 
227 		for (i = 0, result = 0; i < n; i++) {
228 			if (avd->auditdeny & mapping->perms[i])
229 				result |= 1<<i;
230 			if (!allow_unknown && !mapping->perms[i])
231 				result |= 1<<i;
232 		}
233 		/*
234 		 * In case the kernel has a bug and requests a permission
235 		 * between num_perms and the maximum permission number, we
236 		 * should audit that denial
237 		 */
238 		for (; i < (sizeof(u32)*8); i++)
239 			result |= 1<<i;
240 		avd->auditdeny = result;
241 	}
242 }
243 
244 int security_mls_enabled(struct selinux_state *state)
245 {
246 	struct policydb *p = &state->ss->policydb;
247 
248 	return p->mls_enabled;
249 }
250 
251 /*
252  * Return the boolean value of a constraint expression
253  * when it is applied to the specified source and target
254  * security contexts.
255  *
256  * xcontext is a special beast...  It is used by the validatetrans rules
257  * only.  For these rules, scontext is the context before the transition,
258  * tcontext is the context after the transition, and xcontext is the context
259  * of the process performing the transition.  All other callers of
260  * constraint_expr_eval should pass in NULL for xcontext.
261  */
262 static int constraint_expr_eval(struct policydb *policydb,
263 				struct context *scontext,
264 				struct context *tcontext,
265 				struct context *xcontext,
266 				struct constraint_expr *cexpr)
267 {
268 	u32 val1, val2;
269 	struct context *c;
270 	struct role_datum *r1, *r2;
271 	struct mls_level *l1, *l2;
272 	struct constraint_expr *e;
273 	int s[CEXPR_MAXDEPTH];
274 	int sp = -1;
275 
276 	for (e = cexpr; e; e = e->next) {
277 		switch (e->expr_type) {
278 		case CEXPR_NOT:
279 			BUG_ON(sp < 0);
280 			s[sp] = !s[sp];
281 			break;
282 		case CEXPR_AND:
283 			BUG_ON(sp < 1);
284 			sp--;
285 			s[sp] &= s[sp + 1];
286 			break;
287 		case CEXPR_OR:
288 			BUG_ON(sp < 1);
289 			sp--;
290 			s[sp] |= s[sp + 1];
291 			break;
292 		case CEXPR_ATTR:
293 			if (sp == (CEXPR_MAXDEPTH - 1))
294 				return 0;
295 			switch (e->attr) {
296 			case CEXPR_USER:
297 				val1 = scontext->user;
298 				val2 = tcontext->user;
299 				break;
300 			case CEXPR_TYPE:
301 				val1 = scontext->type;
302 				val2 = tcontext->type;
303 				break;
304 			case CEXPR_ROLE:
305 				val1 = scontext->role;
306 				val2 = tcontext->role;
307 				r1 = policydb->role_val_to_struct[val1 - 1];
308 				r2 = policydb->role_val_to_struct[val2 - 1];
309 				switch (e->op) {
310 				case CEXPR_DOM:
311 					s[++sp] = ebitmap_get_bit(&r1->dominates,
312 								  val2 - 1);
313 					continue;
314 				case CEXPR_DOMBY:
315 					s[++sp] = ebitmap_get_bit(&r2->dominates,
316 								  val1 - 1);
317 					continue;
318 				case CEXPR_INCOMP:
319 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
320 								    val2 - 1) &&
321 						   !ebitmap_get_bit(&r2->dominates,
322 								    val1 - 1));
323 					continue;
324 				default:
325 					break;
326 				}
327 				break;
328 			case CEXPR_L1L2:
329 				l1 = &(scontext->range.level[0]);
330 				l2 = &(tcontext->range.level[0]);
331 				goto mls_ops;
332 			case CEXPR_L1H2:
333 				l1 = &(scontext->range.level[0]);
334 				l2 = &(tcontext->range.level[1]);
335 				goto mls_ops;
336 			case CEXPR_H1L2:
337 				l1 = &(scontext->range.level[1]);
338 				l2 = &(tcontext->range.level[0]);
339 				goto mls_ops;
340 			case CEXPR_H1H2:
341 				l1 = &(scontext->range.level[1]);
342 				l2 = &(tcontext->range.level[1]);
343 				goto mls_ops;
344 			case CEXPR_L1H1:
345 				l1 = &(scontext->range.level[0]);
346 				l2 = &(scontext->range.level[1]);
347 				goto mls_ops;
348 			case CEXPR_L2H2:
349 				l1 = &(tcontext->range.level[0]);
350 				l2 = &(tcontext->range.level[1]);
351 				goto mls_ops;
352 mls_ops:
353 			switch (e->op) {
354 			case CEXPR_EQ:
355 				s[++sp] = mls_level_eq(l1, l2);
356 				continue;
357 			case CEXPR_NEQ:
358 				s[++sp] = !mls_level_eq(l1, l2);
359 				continue;
360 			case CEXPR_DOM:
361 				s[++sp] = mls_level_dom(l1, l2);
362 				continue;
363 			case CEXPR_DOMBY:
364 				s[++sp] = mls_level_dom(l2, l1);
365 				continue;
366 			case CEXPR_INCOMP:
367 				s[++sp] = mls_level_incomp(l2, l1);
368 				continue;
369 			default:
370 				BUG();
371 				return 0;
372 			}
373 			break;
374 			default:
375 				BUG();
376 				return 0;
377 			}
378 
379 			switch (e->op) {
380 			case CEXPR_EQ:
381 				s[++sp] = (val1 == val2);
382 				break;
383 			case CEXPR_NEQ:
384 				s[++sp] = (val1 != val2);
385 				break;
386 			default:
387 				BUG();
388 				return 0;
389 			}
390 			break;
391 		case CEXPR_NAMES:
392 			if (sp == (CEXPR_MAXDEPTH-1))
393 				return 0;
394 			c = scontext;
395 			if (e->attr & CEXPR_TARGET)
396 				c = tcontext;
397 			else if (e->attr & CEXPR_XTARGET) {
398 				c = xcontext;
399 				if (!c) {
400 					BUG();
401 					return 0;
402 				}
403 			}
404 			if (e->attr & CEXPR_USER)
405 				val1 = c->user;
406 			else if (e->attr & CEXPR_ROLE)
407 				val1 = c->role;
408 			else if (e->attr & CEXPR_TYPE)
409 				val1 = c->type;
410 			else {
411 				BUG();
412 				return 0;
413 			}
414 
415 			switch (e->op) {
416 			case CEXPR_EQ:
417 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
418 				break;
419 			case CEXPR_NEQ:
420 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
421 				break;
422 			default:
423 				BUG();
424 				return 0;
425 			}
426 			break;
427 		default:
428 			BUG();
429 			return 0;
430 		}
431 	}
432 
433 	BUG_ON(sp != 0);
434 	return s[0];
435 }
436 
437 /*
438  * security_dump_masked_av - dumps masked permissions during
439  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
440  */
441 static int dump_masked_av_helper(void *k, void *d, void *args)
442 {
443 	struct perm_datum *pdatum = d;
444 	char **permission_names = args;
445 
446 	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
447 
448 	permission_names[pdatum->value - 1] = (char *)k;
449 
450 	return 0;
451 }
452 
453 static void security_dump_masked_av(struct policydb *policydb,
454 				    struct context *scontext,
455 				    struct context *tcontext,
456 				    u16 tclass,
457 				    u32 permissions,
458 				    const char *reason)
459 {
460 	struct common_datum *common_dat;
461 	struct class_datum *tclass_dat;
462 	struct audit_buffer *ab;
463 	char *tclass_name;
464 	char *scontext_name = NULL;
465 	char *tcontext_name = NULL;
466 	char *permission_names[32];
467 	int index;
468 	u32 length;
469 	bool need_comma = false;
470 
471 	if (!permissions)
472 		return;
473 
474 	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
475 	tclass_dat = policydb->class_val_to_struct[tclass - 1];
476 	common_dat = tclass_dat->comdatum;
477 
478 	/* init permission_names */
479 	if (common_dat &&
480 	    hashtab_map(common_dat->permissions.table,
481 			dump_masked_av_helper, permission_names) < 0)
482 		goto out;
483 
484 	if (hashtab_map(tclass_dat->permissions.table,
485 			dump_masked_av_helper, permission_names) < 0)
486 		goto out;
487 
488 	/* get scontext/tcontext in text form */
489 	if (context_struct_to_string(policydb, scontext,
490 				     &scontext_name, &length) < 0)
491 		goto out;
492 
493 	if (context_struct_to_string(policydb, tcontext,
494 				     &tcontext_name, &length) < 0)
495 		goto out;
496 
497 	/* audit a message */
498 	ab = audit_log_start(audit_context(),
499 			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
500 	if (!ab)
501 		goto out;
502 
503 	audit_log_format(ab, "op=security_compute_av reason=%s "
504 			 "scontext=%s tcontext=%s tclass=%s perms=",
505 			 reason, scontext_name, tcontext_name, tclass_name);
506 
507 	for (index = 0; index < 32; index++) {
508 		u32 mask = (1 << index);
509 
510 		if ((mask & permissions) == 0)
511 			continue;
512 
513 		audit_log_format(ab, "%s%s",
514 				 need_comma ? "," : "",
515 				 permission_names[index]
516 				 ? permission_names[index] : "????");
517 		need_comma = true;
518 	}
519 	audit_log_end(ab);
520 out:
521 	/* release scontext/tcontext */
522 	kfree(tcontext_name);
523 	kfree(scontext_name);
524 
525 	return;
526 }
527 
528 /*
529  * security_boundary_permission - drops violated permissions
530  * on boundary constraint.
531  */
532 static void type_attribute_bounds_av(struct policydb *policydb,
533 				     struct context *scontext,
534 				     struct context *tcontext,
535 				     u16 tclass,
536 				     struct av_decision *avd)
537 {
538 	struct context lo_scontext;
539 	struct context lo_tcontext, *tcontextp = tcontext;
540 	struct av_decision lo_avd;
541 	struct type_datum *source;
542 	struct type_datum *target;
543 	u32 masked = 0;
544 
545 	source = policydb->type_val_to_struct_array[scontext->type - 1];
546 	BUG_ON(!source);
547 
548 	if (!source->bounds)
549 		return;
550 
551 	target = policydb->type_val_to_struct_array[tcontext->type - 1];
552 	BUG_ON(!target);
553 
554 	memset(&lo_avd, 0, sizeof(lo_avd));
555 
556 	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
557 	lo_scontext.type = source->bounds;
558 
559 	if (target->bounds) {
560 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
561 		lo_tcontext.type = target->bounds;
562 		tcontextp = &lo_tcontext;
563 	}
564 
565 	context_struct_compute_av(policydb, &lo_scontext,
566 				  tcontextp,
567 				  tclass,
568 				  &lo_avd,
569 				  NULL);
570 
571 	masked = ~lo_avd.allowed & avd->allowed;
572 
573 	if (likely(!masked))
574 		return;		/* no masked permission */
575 
576 	/* mask violated permissions */
577 	avd->allowed &= ~masked;
578 
579 	/* audit masked permissions */
580 	security_dump_masked_av(policydb, scontext, tcontext,
581 				tclass, masked, "bounds");
582 }
583 
584 /*
585  * flag which drivers have permissions
586  * only looking for ioctl based extended permssions
587  */
588 void services_compute_xperms_drivers(
589 		struct extended_perms *xperms,
590 		struct avtab_node *node)
591 {
592 	unsigned int i;
593 
594 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
595 		/* if one or more driver has all permissions allowed */
596 		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
597 			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
598 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
599 		/* if allowing permissions within a driver */
600 		security_xperm_set(xperms->drivers.p,
601 					node->datum.u.xperms->driver);
602 	}
603 
604 	/* If no ioctl commands are allowed, ignore auditallow and auditdeny */
605 	if (node->key.specified & AVTAB_XPERMS_ALLOWED)
606 		xperms->len = 1;
607 }
608 
609 /*
610  * Compute access vectors and extended permissions based on a context
611  * structure pair for the permissions in a particular class.
612  */
613 static void context_struct_compute_av(struct policydb *policydb,
614 				      struct context *scontext,
615 				      struct context *tcontext,
616 				      u16 tclass,
617 				      struct av_decision *avd,
618 				      struct extended_perms *xperms)
619 {
620 	struct constraint_node *constraint;
621 	struct role_allow *ra;
622 	struct avtab_key avkey;
623 	struct avtab_node *node;
624 	struct class_datum *tclass_datum;
625 	struct ebitmap *sattr, *tattr;
626 	struct ebitmap_node *snode, *tnode;
627 	unsigned int i, j;
628 
629 	avd->allowed = 0;
630 	avd->auditallow = 0;
631 	avd->auditdeny = 0xffffffff;
632 	if (xperms) {
633 		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
634 		xperms->len = 0;
635 	}
636 
637 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
638 		if (printk_ratelimit())
639 			pr_warn("SELinux:  Invalid class %hu\n", tclass);
640 		return;
641 	}
642 
643 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
644 
645 	/*
646 	 * If a specific type enforcement rule was defined for
647 	 * this permission check, then use it.
648 	 */
649 	avkey.target_class = tclass;
650 	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
651 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
652 	BUG_ON(!sattr);
653 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
654 	BUG_ON(!tattr);
655 	ebitmap_for_each_positive_bit(sattr, snode, i) {
656 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
657 			avkey.source_type = i + 1;
658 			avkey.target_type = j + 1;
659 			for (node = avtab_search_node(&policydb->te_avtab,
660 						      &avkey);
661 			     node;
662 			     node = avtab_search_node_next(node, avkey.specified)) {
663 				if (node->key.specified == AVTAB_ALLOWED)
664 					avd->allowed |= node->datum.u.data;
665 				else if (node->key.specified == AVTAB_AUDITALLOW)
666 					avd->auditallow |= node->datum.u.data;
667 				else if (node->key.specified == AVTAB_AUDITDENY)
668 					avd->auditdeny &= node->datum.u.data;
669 				else if (xperms && (node->key.specified & AVTAB_XPERMS))
670 					services_compute_xperms_drivers(xperms, node);
671 			}
672 
673 			/* Check conditional av table for additional permissions */
674 			cond_compute_av(&policydb->te_cond_avtab, &avkey,
675 					avd, xperms);
676 
677 		}
678 	}
679 
680 	/*
681 	 * Remove any permissions prohibited by a constraint (this includes
682 	 * the MLS policy).
683 	 */
684 	constraint = tclass_datum->constraints;
685 	while (constraint) {
686 		if ((constraint->permissions & (avd->allowed)) &&
687 		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
688 					  constraint->expr)) {
689 			avd->allowed &= ~(constraint->permissions);
690 		}
691 		constraint = constraint->next;
692 	}
693 
694 	/*
695 	 * If checking process transition permission and the
696 	 * role is changing, then check the (current_role, new_role)
697 	 * pair.
698 	 */
699 	if (tclass == policydb->process_class &&
700 	    (avd->allowed & policydb->process_trans_perms) &&
701 	    scontext->role != tcontext->role) {
702 		for (ra = policydb->role_allow; ra; ra = ra->next) {
703 			if (scontext->role == ra->role &&
704 			    tcontext->role == ra->new_role)
705 				break;
706 		}
707 		if (!ra)
708 			avd->allowed &= ~policydb->process_trans_perms;
709 	}
710 
711 	/*
712 	 * If the given source and target types have boundary
713 	 * constraint, lazy checks have to mask any violated
714 	 * permission and notice it to userspace via audit.
715 	 */
716 	type_attribute_bounds_av(policydb, scontext, tcontext,
717 				 tclass, avd);
718 }
719 
720 static int security_validtrans_handle_fail(struct selinux_state *state,
721 					   struct context *ocontext,
722 					   struct context *ncontext,
723 					   struct context *tcontext,
724 					   u16 tclass)
725 {
726 	struct policydb *p = &state->ss->policydb;
727 	char *o = NULL, *n = NULL, *t = NULL;
728 	u32 olen, nlen, tlen;
729 
730 	if (context_struct_to_string(p, ocontext, &o, &olen))
731 		goto out;
732 	if (context_struct_to_string(p, ncontext, &n, &nlen))
733 		goto out;
734 	if (context_struct_to_string(p, tcontext, &t, &tlen))
735 		goto out;
736 	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
737 		  "op=security_validate_transition seresult=denied"
738 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
739 		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
740 out:
741 	kfree(o);
742 	kfree(n);
743 	kfree(t);
744 
745 	if (!enforcing_enabled(state))
746 		return 0;
747 	return -EPERM;
748 }
749 
750 static int security_compute_validatetrans(struct selinux_state *state,
751 					  u32 oldsid, u32 newsid, u32 tasksid,
752 					  u16 orig_tclass, bool user)
753 {
754 	struct policydb *policydb;
755 	struct sidtab *sidtab;
756 	struct context *ocontext;
757 	struct context *ncontext;
758 	struct context *tcontext;
759 	struct class_datum *tclass_datum;
760 	struct constraint_node *constraint;
761 	u16 tclass;
762 	int rc = 0;
763 
764 
765 	if (!state->initialized)
766 		return 0;
767 
768 	read_lock(&state->ss->policy_rwlock);
769 
770 	policydb = &state->ss->policydb;
771 	sidtab = state->ss->sidtab;
772 
773 	if (!user)
774 		tclass = unmap_class(&state->ss->map, orig_tclass);
775 	else
776 		tclass = orig_tclass;
777 
778 	if (!tclass || tclass > policydb->p_classes.nprim) {
779 		rc = -EINVAL;
780 		goto out;
781 	}
782 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
783 
784 	ocontext = sidtab_search(sidtab, oldsid);
785 	if (!ocontext) {
786 		pr_err("SELinux: %s:  unrecognized SID %d\n",
787 			__func__, oldsid);
788 		rc = -EINVAL;
789 		goto out;
790 	}
791 
792 	ncontext = sidtab_search(sidtab, newsid);
793 	if (!ncontext) {
794 		pr_err("SELinux: %s:  unrecognized SID %d\n",
795 			__func__, newsid);
796 		rc = -EINVAL;
797 		goto out;
798 	}
799 
800 	tcontext = sidtab_search(sidtab, tasksid);
801 	if (!tcontext) {
802 		pr_err("SELinux: %s:  unrecognized SID %d\n",
803 			__func__, tasksid);
804 		rc = -EINVAL;
805 		goto out;
806 	}
807 
808 	constraint = tclass_datum->validatetrans;
809 	while (constraint) {
810 		if (!constraint_expr_eval(policydb, ocontext, ncontext,
811 					  tcontext, constraint->expr)) {
812 			if (user)
813 				rc = -EPERM;
814 			else
815 				rc = security_validtrans_handle_fail(state,
816 								     ocontext,
817 								     ncontext,
818 								     tcontext,
819 								     tclass);
820 			goto out;
821 		}
822 		constraint = constraint->next;
823 	}
824 
825 out:
826 	read_unlock(&state->ss->policy_rwlock);
827 	return rc;
828 }
829 
830 int security_validate_transition_user(struct selinux_state *state,
831 				      u32 oldsid, u32 newsid, u32 tasksid,
832 				      u16 tclass)
833 {
834 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
835 					      tclass, true);
836 }
837 
838 int security_validate_transition(struct selinux_state *state,
839 				 u32 oldsid, u32 newsid, u32 tasksid,
840 				 u16 orig_tclass)
841 {
842 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
843 					      orig_tclass, false);
844 }
845 
846 /*
847  * security_bounded_transition - check whether the given
848  * transition is directed to bounded, or not.
849  * It returns 0, if @newsid is bounded by @oldsid.
850  * Otherwise, it returns error code.
851  *
852  * @oldsid : current security identifier
853  * @newsid : destinated security identifier
854  */
855 int security_bounded_transition(struct selinux_state *state,
856 				u32 old_sid, u32 new_sid)
857 {
858 	struct policydb *policydb;
859 	struct sidtab *sidtab;
860 	struct context *old_context, *new_context;
861 	struct type_datum *type;
862 	int index;
863 	int rc;
864 
865 	if (!state->initialized)
866 		return 0;
867 
868 	read_lock(&state->ss->policy_rwlock);
869 
870 	policydb = &state->ss->policydb;
871 	sidtab = state->ss->sidtab;
872 
873 	rc = -EINVAL;
874 	old_context = sidtab_search(sidtab, old_sid);
875 	if (!old_context) {
876 		pr_err("SELinux: %s: unrecognized SID %u\n",
877 		       __func__, old_sid);
878 		goto out;
879 	}
880 
881 	rc = -EINVAL;
882 	new_context = sidtab_search(sidtab, new_sid);
883 	if (!new_context) {
884 		pr_err("SELinux: %s: unrecognized SID %u\n",
885 		       __func__, new_sid);
886 		goto out;
887 	}
888 
889 	rc = 0;
890 	/* type/domain unchanged */
891 	if (old_context->type == new_context->type)
892 		goto out;
893 
894 	index = new_context->type;
895 	while (true) {
896 		type = policydb->type_val_to_struct_array[index - 1];
897 		BUG_ON(!type);
898 
899 		/* not bounded anymore */
900 		rc = -EPERM;
901 		if (!type->bounds)
902 			break;
903 
904 		/* @newsid is bounded by @oldsid */
905 		rc = 0;
906 		if (type->bounds == old_context->type)
907 			break;
908 
909 		index = type->bounds;
910 	}
911 
912 	if (rc) {
913 		char *old_name = NULL;
914 		char *new_name = NULL;
915 		u32 length;
916 
917 		if (!context_struct_to_string(policydb, old_context,
918 					      &old_name, &length) &&
919 		    !context_struct_to_string(policydb, new_context,
920 					      &new_name, &length)) {
921 			audit_log(audit_context(),
922 				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
923 				  "op=security_bounded_transition "
924 				  "seresult=denied "
925 				  "oldcontext=%s newcontext=%s",
926 				  old_name, new_name);
927 		}
928 		kfree(new_name);
929 		kfree(old_name);
930 	}
931 out:
932 	read_unlock(&state->ss->policy_rwlock);
933 
934 	return rc;
935 }
936 
937 static void avd_init(struct selinux_state *state, struct av_decision *avd)
938 {
939 	avd->allowed = 0;
940 	avd->auditallow = 0;
941 	avd->auditdeny = 0xffffffff;
942 	avd->seqno = state->ss->latest_granting;
943 	avd->flags = 0;
944 }
945 
946 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
947 					struct avtab_node *node)
948 {
949 	unsigned int i;
950 
951 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
952 		if (xpermd->driver != node->datum.u.xperms->driver)
953 			return;
954 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
955 		if (!security_xperm_test(node->datum.u.xperms->perms.p,
956 					xpermd->driver))
957 			return;
958 	} else {
959 		BUG();
960 	}
961 
962 	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
963 		xpermd->used |= XPERMS_ALLOWED;
964 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
965 			memset(xpermd->allowed->p, 0xff,
966 					sizeof(xpermd->allowed->p));
967 		}
968 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
969 			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
970 				xpermd->allowed->p[i] |=
971 					node->datum.u.xperms->perms.p[i];
972 		}
973 	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
974 		xpermd->used |= XPERMS_AUDITALLOW;
975 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
976 			memset(xpermd->auditallow->p, 0xff,
977 					sizeof(xpermd->auditallow->p));
978 		}
979 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
980 			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
981 				xpermd->auditallow->p[i] |=
982 					node->datum.u.xperms->perms.p[i];
983 		}
984 	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
985 		xpermd->used |= XPERMS_DONTAUDIT;
986 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
987 			memset(xpermd->dontaudit->p, 0xff,
988 					sizeof(xpermd->dontaudit->p));
989 		}
990 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
991 			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
992 				xpermd->dontaudit->p[i] |=
993 					node->datum.u.xperms->perms.p[i];
994 		}
995 	} else {
996 		BUG();
997 	}
998 }
999 
1000 void security_compute_xperms_decision(struct selinux_state *state,
1001 				      u32 ssid,
1002 				      u32 tsid,
1003 				      u16 orig_tclass,
1004 				      u8 driver,
1005 				      struct extended_perms_decision *xpermd)
1006 {
1007 	struct policydb *policydb;
1008 	struct sidtab *sidtab;
1009 	u16 tclass;
1010 	struct context *scontext, *tcontext;
1011 	struct avtab_key avkey;
1012 	struct avtab_node *node;
1013 	struct ebitmap *sattr, *tattr;
1014 	struct ebitmap_node *snode, *tnode;
1015 	unsigned int i, j;
1016 
1017 	xpermd->driver = driver;
1018 	xpermd->used = 0;
1019 	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1020 	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1021 	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1022 
1023 	read_lock(&state->ss->policy_rwlock);
1024 	if (!state->initialized)
1025 		goto allow;
1026 
1027 	policydb = &state->ss->policydb;
1028 	sidtab = state->ss->sidtab;
1029 
1030 	scontext = sidtab_search(sidtab, ssid);
1031 	if (!scontext) {
1032 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1033 		       __func__, ssid);
1034 		goto out;
1035 	}
1036 
1037 	tcontext = sidtab_search(sidtab, tsid);
1038 	if (!tcontext) {
1039 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1040 		       __func__, tsid);
1041 		goto out;
1042 	}
1043 
1044 	tclass = unmap_class(&state->ss->map, orig_tclass);
1045 	if (unlikely(orig_tclass && !tclass)) {
1046 		if (policydb->allow_unknown)
1047 			goto allow;
1048 		goto out;
1049 	}
1050 
1051 
1052 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1053 		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1054 		goto out;
1055 	}
1056 
1057 	avkey.target_class = tclass;
1058 	avkey.specified = AVTAB_XPERMS;
1059 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1060 	BUG_ON(!sattr);
1061 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1062 	BUG_ON(!tattr);
1063 	ebitmap_for_each_positive_bit(sattr, snode, i) {
1064 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1065 			avkey.source_type = i + 1;
1066 			avkey.target_type = j + 1;
1067 			for (node = avtab_search_node(&policydb->te_avtab,
1068 						      &avkey);
1069 			     node;
1070 			     node = avtab_search_node_next(node, avkey.specified))
1071 				services_compute_xperms_decision(xpermd, node);
1072 
1073 			cond_compute_xperms(&policydb->te_cond_avtab,
1074 						&avkey, xpermd);
1075 		}
1076 	}
1077 out:
1078 	read_unlock(&state->ss->policy_rwlock);
1079 	return;
1080 allow:
1081 	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1082 	goto out;
1083 }
1084 
1085 /**
1086  * security_compute_av - Compute access vector decisions.
1087  * @ssid: source security identifier
1088  * @tsid: target security identifier
1089  * @tclass: target security class
1090  * @avd: access vector decisions
1091  * @xperms: extended permissions
1092  *
1093  * Compute a set of access vector decisions based on the
1094  * SID pair (@ssid, @tsid) for the permissions in @tclass.
1095  */
1096 void security_compute_av(struct selinux_state *state,
1097 			 u32 ssid,
1098 			 u32 tsid,
1099 			 u16 orig_tclass,
1100 			 struct av_decision *avd,
1101 			 struct extended_perms *xperms)
1102 {
1103 	struct policydb *policydb;
1104 	struct sidtab *sidtab;
1105 	u16 tclass;
1106 	struct context *scontext = NULL, *tcontext = NULL;
1107 
1108 	read_lock(&state->ss->policy_rwlock);
1109 	avd_init(state, avd);
1110 	xperms->len = 0;
1111 	if (!state->initialized)
1112 		goto allow;
1113 
1114 	policydb = &state->ss->policydb;
1115 	sidtab = state->ss->sidtab;
1116 
1117 	scontext = sidtab_search(sidtab, ssid);
1118 	if (!scontext) {
1119 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1120 		       __func__, ssid);
1121 		goto out;
1122 	}
1123 
1124 	/* permissive domain? */
1125 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1126 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1127 
1128 	tcontext = sidtab_search(sidtab, tsid);
1129 	if (!tcontext) {
1130 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1131 		       __func__, tsid);
1132 		goto out;
1133 	}
1134 
1135 	tclass = unmap_class(&state->ss->map, orig_tclass);
1136 	if (unlikely(orig_tclass && !tclass)) {
1137 		if (policydb->allow_unknown)
1138 			goto allow;
1139 		goto out;
1140 	}
1141 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1142 				  xperms);
1143 	map_decision(&state->ss->map, orig_tclass, avd,
1144 		     policydb->allow_unknown);
1145 out:
1146 	read_unlock(&state->ss->policy_rwlock);
1147 	return;
1148 allow:
1149 	avd->allowed = 0xffffffff;
1150 	goto out;
1151 }
1152 
1153 void security_compute_av_user(struct selinux_state *state,
1154 			      u32 ssid,
1155 			      u32 tsid,
1156 			      u16 tclass,
1157 			      struct av_decision *avd)
1158 {
1159 	struct policydb *policydb;
1160 	struct sidtab *sidtab;
1161 	struct context *scontext = NULL, *tcontext = NULL;
1162 
1163 	read_lock(&state->ss->policy_rwlock);
1164 	avd_init(state, avd);
1165 	if (!state->initialized)
1166 		goto allow;
1167 
1168 	policydb = &state->ss->policydb;
1169 	sidtab = state->ss->sidtab;
1170 
1171 	scontext = sidtab_search(sidtab, ssid);
1172 	if (!scontext) {
1173 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1174 		       __func__, ssid);
1175 		goto out;
1176 	}
1177 
1178 	/* permissive domain? */
1179 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1180 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1181 
1182 	tcontext = sidtab_search(sidtab, tsid);
1183 	if (!tcontext) {
1184 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1185 		       __func__, tsid);
1186 		goto out;
1187 	}
1188 
1189 	if (unlikely(!tclass)) {
1190 		if (policydb->allow_unknown)
1191 			goto allow;
1192 		goto out;
1193 	}
1194 
1195 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1196 				  NULL);
1197  out:
1198 	read_unlock(&state->ss->policy_rwlock);
1199 	return;
1200 allow:
1201 	avd->allowed = 0xffffffff;
1202 	goto out;
1203 }
1204 
1205 /*
1206  * Write the security context string representation of
1207  * the context structure `context' into a dynamically
1208  * allocated string of the correct size.  Set `*scontext'
1209  * to point to this string and set `*scontext_len' to
1210  * the length of the string.
1211  */
1212 static int context_struct_to_string(struct policydb *p,
1213 				    struct context *context,
1214 				    char **scontext, u32 *scontext_len)
1215 {
1216 	char *scontextp;
1217 
1218 	if (scontext)
1219 		*scontext = NULL;
1220 	*scontext_len = 0;
1221 
1222 	if (context->len) {
1223 		*scontext_len = context->len;
1224 		if (scontext) {
1225 			*scontext = kstrdup(context->str, GFP_ATOMIC);
1226 			if (!(*scontext))
1227 				return -ENOMEM;
1228 		}
1229 		return 0;
1230 	}
1231 
1232 	/* Compute the size of the context. */
1233 	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1234 	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1235 	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1236 	*scontext_len += mls_compute_context_len(p, context);
1237 
1238 	if (!scontext)
1239 		return 0;
1240 
1241 	/* Allocate space for the context; caller must free this space. */
1242 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1243 	if (!scontextp)
1244 		return -ENOMEM;
1245 	*scontext = scontextp;
1246 
1247 	/*
1248 	 * Copy the user name, role name and type name into the context.
1249 	 */
1250 	scontextp += sprintf(scontextp, "%s:%s:%s",
1251 		sym_name(p, SYM_USERS, context->user - 1),
1252 		sym_name(p, SYM_ROLES, context->role - 1),
1253 		sym_name(p, SYM_TYPES, context->type - 1));
1254 
1255 	mls_sid_to_context(p, context, &scontextp);
1256 
1257 	*scontextp = 0;
1258 
1259 	return 0;
1260 }
1261 
1262 #include "initial_sid_to_string.h"
1263 
1264 const char *security_get_initial_sid_context(u32 sid)
1265 {
1266 	if (unlikely(sid > SECINITSID_NUM))
1267 		return NULL;
1268 	return initial_sid_to_string[sid];
1269 }
1270 
1271 static int security_sid_to_context_core(struct selinux_state *state,
1272 					u32 sid, char **scontext,
1273 					u32 *scontext_len, int force,
1274 					int only_invalid)
1275 {
1276 	struct policydb *policydb;
1277 	struct sidtab *sidtab;
1278 	struct context *context;
1279 	int rc = 0;
1280 
1281 	if (scontext)
1282 		*scontext = NULL;
1283 	*scontext_len  = 0;
1284 
1285 	if (!state->initialized) {
1286 		if (sid <= SECINITSID_NUM) {
1287 			char *scontextp;
1288 
1289 			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1290 			if (!scontext)
1291 				goto out;
1292 			scontextp = kmemdup(initial_sid_to_string[sid],
1293 					    *scontext_len, GFP_ATOMIC);
1294 			if (!scontextp) {
1295 				rc = -ENOMEM;
1296 				goto out;
1297 			}
1298 			*scontext = scontextp;
1299 			goto out;
1300 		}
1301 		pr_err("SELinux: %s:  called before initial "
1302 		       "load_policy on unknown SID %d\n", __func__, sid);
1303 		rc = -EINVAL;
1304 		goto out;
1305 	}
1306 	read_lock(&state->ss->policy_rwlock);
1307 	policydb = &state->ss->policydb;
1308 	sidtab = state->ss->sidtab;
1309 	if (force)
1310 		context = sidtab_search_force(sidtab, sid);
1311 	else
1312 		context = sidtab_search(sidtab, sid);
1313 	if (!context) {
1314 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1315 			__func__, sid);
1316 		rc = -EINVAL;
1317 		goto out_unlock;
1318 	}
1319 	if (only_invalid && !context->len)
1320 		rc = 0;
1321 	else
1322 		rc = context_struct_to_string(policydb, context, scontext,
1323 					      scontext_len);
1324 out_unlock:
1325 	read_unlock(&state->ss->policy_rwlock);
1326 out:
1327 	return rc;
1328 
1329 }
1330 
1331 /**
1332  * security_sid_to_context - Obtain a context for a given SID.
1333  * @sid: security identifier, SID
1334  * @scontext: security context
1335  * @scontext_len: length in bytes
1336  *
1337  * Write the string representation of the context associated with @sid
1338  * into a dynamically allocated string of the correct size.  Set @scontext
1339  * to point to this string and set @scontext_len to the length of the string.
1340  */
1341 int security_sid_to_context(struct selinux_state *state,
1342 			    u32 sid, char **scontext, u32 *scontext_len)
1343 {
1344 	return security_sid_to_context_core(state, sid, scontext,
1345 					    scontext_len, 0, 0);
1346 }
1347 
1348 int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1349 				  char **scontext, u32 *scontext_len)
1350 {
1351 	return security_sid_to_context_core(state, sid, scontext,
1352 					    scontext_len, 1, 0);
1353 }
1354 
1355 /**
1356  * security_sid_to_context_inval - Obtain a context for a given SID if it
1357  *                                 is invalid.
1358  * @sid: security identifier, SID
1359  * @scontext: security context
1360  * @scontext_len: length in bytes
1361  *
1362  * Write the string representation of the context associated with @sid
1363  * into a dynamically allocated string of the correct size, but only if the
1364  * context is invalid in the current policy.  Set @scontext to point to
1365  * this string (or NULL if the context is valid) and set @scontext_len to
1366  * the length of the string (or 0 if the context is valid).
1367  */
1368 int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1369 				  char **scontext, u32 *scontext_len)
1370 {
1371 	return security_sid_to_context_core(state, sid, scontext,
1372 					    scontext_len, 1, 1);
1373 }
1374 
1375 /*
1376  * Caveat:  Mutates scontext.
1377  */
1378 static int string_to_context_struct(struct policydb *pol,
1379 				    struct sidtab *sidtabp,
1380 				    char *scontext,
1381 				    struct context *ctx,
1382 				    u32 def_sid)
1383 {
1384 	struct role_datum *role;
1385 	struct type_datum *typdatum;
1386 	struct user_datum *usrdatum;
1387 	char *scontextp, *p, oldc;
1388 	int rc = 0;
1389 
1390 	context_init(ctx);
1391 
1392 	/* Parse the security context. */
1393 
1394 	rc = -EINVAL;
1395 	scontextp = (char *) scontext;
1396 
1397 	/* Extract the user. */
1398 	p = scontextp;
1399 	while (*p && *p != ':')
1400 		p++;
1401 
1402 	if (*p == 0)
1403 		goto out;
1404 
1405 	*p++ = 0;
1406 
1407 	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1408 	if (!usrdatum)
1409 		goto out;
1410 
1411 	ctx->user = usrdatum->value;
1412 
1413 	/* Extract role. */
1414 	scontextp = p;
1415 	while (*p && *p != ':')
1416 		p++;
1417 
1418 	if (*p == 0)
1419 		goto out;
1420 
1421 	*p++ = 0;
1422 
1423 	role = hashtab_search(pol->p_roles.table, scontextp);
1424 	if (!role)
1425 		goto out;
1426 	ctx->role = role->value;
1427 
1428 	/* Extract type. */
1429 	scontextp = p;
1430 	while (*p && *p != ':')
1431 		p++;
1432 	oldc = *p;
1433 	*p++ = 0;
1434 
1435 	typdatum = hashtab_search(pol->p_types.table, scontextp);
1436 	if (!typdatum || typdatum->attribute)
1437 		goto out;
1438 
1439 	ctx->type = typdatum->value;
1440 
1441 	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1442 	if (rc)
1443 		goto out;
1444 
1445 	/* Check the validity of the new context. */
1446 	rc = -EINVAL;
1447 	if (!policydb_context_isvalid(pol, ctx))
1448 		goto out;
1449 	rc = 0;
1450 out:
1451 	if (rc)
1452 		context_destroy(ctx);
1453 	return rc;
1454 }
1455 
1456 static int security_context_to_sid_core(struct selinux_state *state,
1457 					const char *scontext, u32 scontext_len,
1458 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1459 					int force)
1460 {
1461 	struct policydb *policydb;
1462 	struct sidtab *sidtab;
1463 	char *scontext2, *str = NULL;
1464 	struct context context;
1465 	int rc = 0;
1466 
1467 	/* An empty security context is never valid. */
1468 	if (!scontext_len)
1469 		return -EINVAL;
1470 
1471 	/* Copy the string to allow changes and ensure a NUL terminator */
1472 	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1473 	if (!scontext2)
1474 		return -ENOMEM;
1475 
1476 	if (!state->initialized) {
1477 		int i;
1478 
1479 		for (i = 1; i < SECINITSID_NUM; i++) {
1480 			if (!strcmp(initial_sid_to_string[i], scontext2)) {
1481 				*sid = i;
1482 				goto out;
1483 			}
1484 		}
1485 		*sid = SECINITSID_KERNEL;
1486 		goto out;
1487 	}
1488 	*sid = SECSID_NULL;
1489 
1490 	if (force) {
1491 		/* Save another copy for storing in uninterpreted form */
1492 		rc = -ENOMEM;
1493 		str = kstrdup(scontext2, gfp_flags);
1494 		if (!str)
1495 			goto out;
1496 	}
1497 	read_lock(&state->ss->policy_rwlock);
1498 	policydb = &state->ss->policydb;
1499 	sidtab = state->ss->sidtab;
1500 	rc = string_to_context_struct(policydb, sidtab, scontext2,
1501 				      &context, def_sid);
1502 	if (rc == -EINVAL && force) {
1503 		context.str = str;
1504 		context.len = strlen(str) + 1;
1505 		str = NULL;
1506 	} else if (rc)
1507 		goto out_unlock;
1508 	rc = sidtab_context_to_sid(sidtab, &context, sid);
1509 	context_destroy(&context);
1510 out_unlock:
1511 	read_unlock(&state->ss->policy_rwlock);
1512 out:
1513 	kfree(scontext2);
1514 	kfree(str);
1515 	return rc;
1516 }
1517 
1518 /**
1519  * security_context_to_sid - Obtain a SID for a given security context.
1520  * @scontext: security context
1521  * @scontext_len: length in bytes
1522  * @sid: security identifier, SID
1523  * @gfp: context for the allocation
1524  *
1525  * Obtains a SID associated with the security context that
1526  * has the string representation specified by @scontext.
1527  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1528  * memory is available, or 0 on success.
1529  */
1530 int security_context_to_sid(struct selinux_state *state,
1531 			    const char *scontext, u32 scontext_len, u32 *sid,
1532 			    gfp_t gfp)
1533 {
1534 	return security_context_to_sid_core(state, scontext, scontext_len,
1535 					    sid, SECSID_NULL, gfp, 0);
1536 }
1537 
1538 int security_context_str_to_sid(struct selinux_state *state,
1539 				const char *scontext, u32 *sid, gfp_t gfp)
1540 {
1541 	return security_context_to_sid(state, scontext, strlen(scontext),
1542 				       sid, gfp);
1543 }
1544 
1545 /**
1546  * security_context_to_sid_default - Obtain a SID for a given security context,
1547  * falling back to specified default if needed.
1548  *
1549  * @scontext: security context
1550  * @scontext_len: length in bytes
1551  * @sid: security identifier, SID
1552  * @def_sid: default SID to assign on error
1553  *
1554  * Obtains a SID associated with the security context that
1555  * has the string representation specified by @scontext.
1556  * The default SID is passed to the MLS layer to be used to allow
1557  * kernel labeling of the MLS field if the MLS field is not present
1558  * (for upgrading to MLS without full relabel).
1559  * Implicitly forces adding of the context even if it cannot be mapped yet.
1560  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1561  * memory is available, or 0 on success.
1562  */
1563 int security_context_to_sid_default(struct selinux_state *state,
1564 				    const char *scontext, u32 scontext_len,
1565 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1566 {
1567 	return security_context_to_sid_core(state, scontext, scontext_len,
1568 					    sid, def_sid, gfp_flags, 1);
1569 }
1570 
1571 int security_context_to_sid_force(struct selinux_state *state,
1572 				  const char *scontext, u32 scontext_len,
1573 				  u32 *sid)
1574 {
1575 	return security_context_to_sid_core(state, scontext, scontext_len,
1576 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1577 }
1578 
1579 static int compute_sid_handle_invalid_context(
1580 	struct selinux_state *state,
1581 	struct context *scontext,
1582 	struct context *tcontext,
1583 	u16 tclass,
1584 	struct context *newcontext)
1585 {
1586 	struct policydb *policydb = &state->ss->policydb;
1587 	char *s = NULL, *t = NULL, *n = NULL;
1588 	u32 slen, tlen, nlen;
1589 
1590 	if (context_struct_to_string(policydb, scontext, &s, &slen))
1591 		goto out;
1592 	if (context_struct_to_string(policydb, tcontext, &t, &tlen))
1593 		goto out;
1594 	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1595 		goto out;
1596 	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
1597 		  "op=security_compute_sid invalid_context=%s"
1598 		  " scontext=%s"
1599 		  " tcontext=%s"
1600 		  " tclass=%s",
1601 		  n, s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1602 out:
1603 	kfree(s);
1604 	kfree(t);
1605 	kfree(n);
1606 	if (!enforcing_enabled(state))
1607 		return 0;
1608 	return -EACCES;
1609 }
1610 
1611 static void filename_compute_type(struct policydb *policydb,
1612 				  struct context *newcontext,
1613 				  u32 stype, u32 ttype, u16 tclass,
1614 				  const char *objname)
1615 {
1616 	struct filename_trans ft;
1617 	struct filename_trans_datum *otype;
1618 
1619 	/*
1620 	 * Most filename trans rules are going to live in specific directories
1621 	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1622 	 * if the ttype does not contain any rules.
1623 	 */
1624 	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1625 		return;
1626 
1627 	ft.stype = stype;
1628 	ft.ttype = ttype;
1629 	ft.tclass = tclass;
1630 	ft.name = objname;
1631 
1632 	otype = hashtab_search(policydb->filename_trans, &ft);
1633 	if (otype)
1634 		newcontext->type = otype->otype;
1635 }
1636 
1637 static int security_compute_sid(struct selinux_state *state,
1638 				u32 ssid,
1639 				u32 tsid,
1640 				u16 orig_tclass,
1641 				u32 specified,
1642 				const char *objname,
1643 				u32 *out_sid,
1644 				bool kern)
1645 {
1646 	struct policydb *policydb;
1647 	struct sidtab *sidtab;
1648 	struct class_datum *cladatum = NULL;
1649 	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1650 	struct role_trans *roletr = NULL;
1651 	struct avtab_key avkey;
1652 	struct avtab_datum *avdatum;
1653 	struct avtab_node *node;
1654 	u16 tclass;
1655 	int rc = 0;
1656 	bool sock;
1657 
1658 	if (!state->initialized) {
1659 		switch (orig_tclass) {
1660 		case SECCLASS_PROCESS: /* kernel value */
1661 			*out_sid = ssid;
1662 			break;
1663 		default:
1664 			*out_sid = tsid;
1665 			break;
1666 		}
1667 		goto out;
1668 	}
1669 
1670 	context_init(&newcontext);
1671 
1672 	read_lock(&state->ss->policy_rwlock);
1673 
1674 	if (kern) {
1675 		tclass = unmap_class(&state->ss->map, orig_tclass);
1676 		sock = security_is_socket_class(orig_tclass);
1677 	} else {
1678 		tclass = orig_tclass;
1679 		sock = security_is_socket_class(map_class(&state->ss->map,
1680 							  tclass));
1681 	}
1682 
1683 	policydb = &state->ss->policydb;
1684 	sidtab = state->ss->sidtab;
1685 
1686 	scontext = sidtab_search(sidtab, ssid);
1687 	if (!scontext) {
1688 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1689 		       __func__, ssid);
1690 		rc = -EINVAL;
1691 		goto out_unlock;
1692 	}
1693 	tcontext = sidtab_search(sidtab, tsid);
1694 	if (!tcontext) {
1695 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1696 		       __func__, tsid);
1697 		rc = -EINVAL;
1698 		goto out_unlock;
1699 	}
1700 
1701 	if (tclass && tclass <= policydb->p_classes.nprim)
1702 		cladatum = policydb->class_val_to_struct[tclass - 1];
1703 
1704 	/* Set the user identity. */
1705 	switch (specified) {
1706 	case AVTAB_TRANSITION:
1707 	case AVTAB_CHANGE:
1708 		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1709 			newcontext.user = tcontext->user;
1710 		} else {
1711 			/* notice this gets both DEFAULT_SOURCE and unset */
1712 			/* Use the process user identity. */
1713 			newcontext.user = scontext->user;
1714 		}
1715 		break;
1716 	case AVTAB_MEMBER:
1717 		/* Use the related object owner. */
1718 		newcontext.user = tcontext->user;
1719 		break;
1720 	}
1721 
1722 	/* Set the role to default values. */
1723 	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1724 		newcontext.role = scontext->role;
1725 	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1726 		newcontext.role = tcontext->role;
1727 	} else {
1728 		if ((tclass == policydb->process_class) || (sock == true))
1729 			newcontext.role = scontext->role;
1730 		else
1731 			newcontext.role = OBJECT_R_VAL;
1732 	}
1733 
1734 	/* Set the type to default values. */
1735 	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1736 		newcontext.type = scontext->type;
1737 	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1738 		newcontext.type = tcontext->type;
1739 	} else {
1740 		if ((tclass == policydb->process_class) || (sock == true)) {
1741 			/* Use the type of process. */
1742 			newcontext.type = scontext->type;
1743 		} else {
1744 			/* Use the type of the related object. */
1745 			newcontext.type = tcontext->type;
1746 		}
1747 	}
1748 
1749 	/* Look for a type transition/member/change rule. */
1750 	avkey.source_type = scontext->type;
1751 	avkey.target_type = tcontext->type;
1752 	avkey.target_class = tclass;
1753 	avkey.specified = specified;
1754 	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1755 
1756 	/* If no permanent rule, also check for enabled conditional rules */
1757 	if (!avdatum) {
1758 		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1759 		for (; node; node = avtab_search_node_next(node, specified)) {
1760 			if (node->key.specified & AVTAB_ENABLED) {
1761 				avdatum = &node->datum;
1762 				break;
1763 			}
1764 		}
1765 	}
1766 
1767 	if (avdatum) {
1768 		/* Use the type from the type transition/member/change rule. */
1769 		newcontext.type = avdatum->u.data;
1770 	}
1771 
1772 	/* if we have a objname this is a file trans check so check those rules */
1773 	if (objname)
1774 		filename_compute_type(policydb, &newcontext, scontext->type,
1775 				      tcontext->type, tclass, objname);
1776 
1777 	/* Check for class-specific changes. */
1778 	if (specified & AVTAB_TRANSITION) {
1779 		/* Look for a role transition rule. */
1780 		for (roletr = policydb->role_tr; roletr;
1781 		     roletr = roletr->next) {
1782 			if ((roletr->role == scontext->role) &&
1783 			    (roletr->type == tcontext->type) &&
1784 			    (roletr->tclass == tclass)) {
1785 				/* Use the role transition rule. */
1786 				newcontext.role = roletr->new_role;
1787 				break;
1788 			}
1789 		}
1790 	}
1791 
1792 	/* Set the MLS attributes.
1793 	   This is done last because it may allocate memory. */
1794 	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1795 			     &newcontext, sock);
1796 	if (rc)
1797 		goto out_unlock;
1798 
1799 	/* Check the validity of the context. */
1800 	if (!policydb_context_isvalid(policydb, &newcontext)) {
1801 		rc = compute_sid_handle_invalid_context(state, scontext,
1802 							tcontext,
1803 							tclass,
1804 							&newcontext);
1805 		if (rc)
1806 			goto out_unlock;
1807 	}
1808 	/* Obtain the sid for the context. */
1809 	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1810 out_unlock:
1811 	read_unlock(&state->ss->policy_rwlock);
1812 	context_destroy(&newcontext);
1813 out:
1814 	return rc;
1815 }
1816 
1817 /**
1818  * security_transition_sid - Compute the SID for a new subject/object.
1819  * @ssid: source security identifier
1820  * @tsid: target security identifier
1821  * @tclass: target security class
1822  * @out_sid: security identifier for new subject/object
1823  *
1824  * Compute a SID to use for labeling a new subject or object in the
1825  * class @tclass based on a SID pair (@ssid, @tsid).
1826  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1827  * if insufficient memory is available, or %0 if the new SID was
1828  * computed successfully.
1829  */
1830 int security_transition_sid(struct selinux_state *state,
1831 			    u32 ssid, u32 tsid, u16 tclass,
1832 			    const struct qstr *qstr, u32 *out_sid)
1833 {
1834 	return security_compute_sid(state, ssid, tsid, tclass,
1835 				    AVTAB_TRANSITION,
1836 				    qstr ? qstr->name : NULL, out_sid, true);
1837 }
1838 
1839 int security_transition_sid_user(struct selinux_state *state,
1840 				 u32 ssid, u32 tsid, u16 tclass,
1841 				 const char *objname, u32 *out_sid)
1842 {
1843 	return security_compute_sid(state, ssid, tsid, tclass,
1844 				    AVTAB_TRANSITION,
1845 				    objname, out_sid, false);
1846 }
1847 
1848 /**
1849  * security_member_sid - Compute the SID for member selection.
1850  * @ssid: source security identifier
1851  * @tsid: target security identifier
1852  * @tclass: target security class
1853  * @out_sid: security identifier for selected member
1854  *
1855  * Compute a SID to use when selecting a member of a polyinstantiated
1856  * object of class @tclass based on a SID pair (@ssid, @tsid).
1857  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1858  * if insufficient memory is available, or %0 if the SID was
1859  * computed successfully.
1860  */
1861 int security_member_sid(struct selinux_state *state,
1862 			u32 ssid,
1863 			u32 tsid,
1864 			u16 tclass,
1865 			u32 *out_sid)
1866 {
1867 	return security_compute_sid(state, ssid, tsid, tclass,
1868 				    AVTAB_MEMBER, NULL,
1869 				    out_sid, false);
1870 }
1871 
1872 /**
1873  * security_change_sid - Compute the SID for object relabeling.
1874  * @ssid: source security identifier
1875  * @tsid: target security identifier
1876  * @tclass: target security class
1877  * @out_sid: security identifier for selected member
1878  *
1879  * Compute a SID to use for relabeling an object of class @tclass
1880  * based on a SID pair (@ssid, @tsid).
1881  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1882  * if insufficient memory is available, or %0 if the SID was
1883  * computed successfully.
1884  */
1885 int security_change_sid(struct selinux_state *state,
1886 			u32 ssid,
1887 			u32 tsid,
1888 			u16 tclass,
1889 			u32 *out_sid)
1890 {
1891 	return security_compute_sid(state,
1892 				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1893 				    out_sid, false);
1894 }
1895 
1896 static inline int convert_context_handle_invalid_context(
1897 	struct selinux_state *state,
1898 	struct context *context)
1899 {
1900 	struct policydb *policydb = &state->ss->policydb;
1901 	char *s;
1902 	u32 len;
1903 
1904 	if (enforcing_enabled(state))
1905 		return -EINVAL;
1906 
1907 	if (!context_struct_to_string(policydb, context, &s, &len)) {
1908 		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
1909 			s);
1910 		kfree(s);
1911 	}
1912 	return 0;
1913 }
1914 
1915 struct convert_context_args {
1916 	struct selinux_state *state;
1917 	struct policydb *oldp;
1918 	struct policydb *newp;
1919 };
1920 
1921 /*
1922  * Convert the values in the security context
1923  * structure `oldc' from the values specified
1924  * in the policy `p->oldp' to the values specified
1925  * in the policy `p->newp', storing the new context
1926  * in `newc'.  Verify that the context is valid
1927  * under the new policy.
1928  */
1929 static int convert_context(struct context *oldc, struct context *newc, void *p)
1930 {
1931 	struct convert_context_args *args;
1932 	struct ocontext *oc;
1933 	struct role_datum *role;
1934 	struct type_datum *typdatum;
1935 	struct user_datum *usrdatum;
1936 	char *s;
1937 	u32 len;
1938 	int rc;
1939 
1940 	args = p;
1941 
1942 	if (oldc->str) {
1943 		s = kstrdup(oldc->str, GFP_KERNEL);
1944 		if (!s)
1945 			return -ENOMEM;
1946 
1947 		rc = string_to_context_struct(args->newp, NULL, s,
1948 					      newc, SECSID_NULL);
1949 		if (rc == -EINVAL) {
1950 			/* Retain string representation for later mapping. */
1951 			context_init(newc);
1952 			newc->str = s;
1953 			newc->len = oldc->len;
1954 			return 0;
1955 		}
1956 		kfree(s);
1957 		if (rc) {
1958 			/* Other error condition, e.g. ENOMEM. */
1959 			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
1960 			       oldc->str, -rc);
1961 			return rc;
1962 		}
1963 		pr_info("SELinux:  Context %s became valid (mapped).\n",
1964 			oldc->str);
1965 		return 0;
1966 	}
1967 
1968 	context_init(newc);
1969 
1970 	/* Convert the user. */
1971 	rc = -EINVAL;
1972 	usrdatum = hashtab_search(args->newp->p_users.table,
1973 				  sym_name(args->oldp,
1974 					   SYM_USERS, oldc->user - 1));
1975 	if (!usrdatum)
1976 		goto bad;
1977 	newc->user = usrdatum->value;
1978 
1979 	/* Convert the role. */
1980 	rc = -EINVAL;
1981 	role = hashtab_search(args->newp->p_roles.table,
1982 			      sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
1983 	if (!role)
1984 		goto bad;
1985 	newc->role = role->value;
1986 
1987 	/* Convert the type. */
1988 	rc = -EINVAL;
1989 	typdatum = hashtab_search(args->newp->p_types.table,
1990 				  sym_name(args->oldp,
1991 					   SYM_TYPES, oldc->type - 1));
1992 	if (!typdatum)
1993 		goto bad;
1994 	newc->type = typdatum->value;
1995 
1996 	/* Convert the MLS fields if dealing with MLS policies */
1997 	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1998 		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
1999 		if (rc)
2000 			goto bad;
2001 	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2002 		/*
2003 		 * Switching between non-MLS and MLS policy:
2004 		 * ensure that the MLS fields of the context for all
2005 		 * existing entries in the sidtab are filled in with a
2006 		 * suitable default value, likely taken from one of the
2007 		 * initial SIDs.
2008 		 */
2009 		oc = args->newp->ocontexts[OCON_ISID];
2010 		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2011 			oc = oc->next;
2012 		rc = -EINVAL;
2013 		if (!oc) {
2014 			pr_err("SELinux:  unable to look up"
2015 				" the initial SIDs list\n");
2016 			goto bad;
2017 		}
2018 		rc = mls_range_set(newc, &oc->context[0].range);
2019 		if (rc)
2020 			goto bad;
2021 	}
2022 
2023 	/* Check the validity of the new context. */
2024 	if (!policydb_context_isvalid(args->newp, newc)) {
2025 		rc = convert_context_handle_invalid_context(args->state, oldc);
2026 		if (rc)
2027 			goto bad;
2028 	}
2029 
2030 	return 0;
2031 bad:
2032 	/* Map old representation to string and save it. */
2033 	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2034 	if (rc)
2035 		return rc;
2036 	context_destroy(newc);
2037 	newc->str = s;
2038 	newc->len = len;
2039 	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2040 		newc->str);
2041 	return 0;
2042 }
2043 
2044 static void security_load_policycaps(struct selinux_state *state)
2045 {
2046 	struct policydb *p = &state->ss->policydb;
2047 	unsigned int i;
2048 	struct ebitmap_node *node;
2049 
2050 	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2051 		state->policycap[i] = ebitmap_get_bit(&p->policycaps, i);
2052 
2053 	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2054 		pr_info("SELinux:  policy capability %s=%d\n",
2055 			selinux_policycap_names[i],
2056 			ebitmap_get_bit(&p->policycaps, i));
2057 
2058 	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2059 		if (i >= ARRAY_SIZE(selinux_policycap_names))
2060 			pr_info("SELinux:  unknown policy capability %u\n",
2061 				i);
2062 	}
2063 }
2064 
2065 static int security_preserve_bools(struct selinux_state *state,
2066 				   struct policydb *newpolicydb);
2067 
2068 /**
2069  * security_load_policy - Load a security policy configuration.
2070  * @data: binary policy data
2071  * @len: length of data in bytes
2072  *
2073  * Load a new set of security policy configuration data,
2074  * validate it and convert the SID table as necessary.
2075  * This function will flush the access vector cache after
2076  * loading the new policy.
2077  */
2078 int security_load_policy(struct selinux_state *state, void *data, size_t len)
2079 {
2080 	struct policydb *policydb;
2081 	struct sidtab *oldsidtab, *newsidtab;
2082 	struct policydb *oldpolicydb, *newpolicydb;
2083 	struct selinux_mapping *oldmapping;
2084 	struct selinux_map newmap;
2085 	struct sidtab_convert_params convert_params;
2086 	struct convert_context_args args;
2087 	u32 seqno;
2088 	int rc = 0;
2089 	struct policy_file file = { data, len }, *fp = &file;
2090 
2091 	oldpolicydb = kcalloc(2, sizeof(*oldpolicydb), GFP_KERNEL);
2092 	if (!oldpolicydb) {
2093 		rc = -ENOMEM;
2094 		goto out;
2095 	}
2096 	newpolicydb = oldpolicydb + 1;
2097 
2098 	policydb = &state->ss->policydb;
2099 
2100 	newsidtab = kmalloc(sizeof(*newsidtab), GFP_KERNEL);
2101 	if (!newsidtab) {
2102 		rc = -ENOMEM;
2103 		goto out;
2104 	}
2105 
2106 	if (!state->initialized) {
2107 		rc = policydb_read(policydb, fp);
2108 		if (rc) {
2109 			kfree(newsidtab);
2110 			goto out;
2111 		}
2112 
2113 		policydb->len = len;
2114 		rc = selinux_set_mapping(policydb, secclass_map,
2115 					 &state->ss->map);
2116 		if (rc) {
2117 			kfree(newsidtab);
2118 			policydb_destroy(policydb);
2119 			goto out;
2120 		}
2121 
2122 		rc = policydb_load_isids(policydb, newsidtab);
2123 		if (rc) {
2124 			kfree(newsidtab);
2125 			policydb_destroy(policydb);
2126 			goto out;
2127 		}
2128 
2129 		state->ss->sidtab = newsidtab;
2130 		security_load_policycaps(state);
2131 		state->initialized = 1;
2132 		seqno = ++state->ss->latest_granting;
2133 		selinux_complete_init();
2134 		avc_ss_reset(state->avc, seqno);
2135 		selnl_notify_policyload(seqno);
2136 		selinux_status_update_policyload(state, seqno);
2137 		selinux_netlbl_cache_invalidate();
2138 		selinux_xfrm_notify_policyload();
2139 		goto out;
2140 	}
2141 
2142 	rc = policydb_read(newpolicydb, fp);
2143 	if (rc) {
2144 		kfree(newsidtab);
2145 		goto out;
2146 	}
2147 
2148 	newpolicydb->len = len;
2149 	/* If switching between different policy types, log MLS status */
2150 	if (policydb->mls_enabled && !newpolicydb->mls_enabled)
2151 		pr_info("SELinux: Disabling MLS support...\n");
2152 	else if (!policydb->mls_enabled && newpolicydb->mls_enabled)
2153 		pr_info("SELinux: Enabling MLS support...\n");
2154 
2155 	rc = policydb_load_isids(newpolicydb, newsidtab);
2156 	if (rc) {
2157 		pr_err("SELinux:  unable to load the initial SIDs\n");
2158 		policydb_destroy(newpolicydb);
2159 		kfree(newsidtab);
2160 		goto out;
2161 	}
2162 
2163 	rc = selinux_set_mapping(newpolicydb, secclass_map, &newmap);
2164 	if (rc)
2165 		goto err;
2166 
2167 	rc = security_preserve_bools(state, newpolicydb);
2168 	if (rc) {
2169 		pr_err("SELinux:  unable to preserve booleans\n");
2170 		goto err;
2171 	}
2172 
2173 	oldsidtab = state->ss->sidtab;
2174 
2175 	/*
2176 	 * Convert the internal representations of contexts
2177 	 * in the new SID table.
2178 	 */
2179 	args.state = state;
2180 	args.oldp = policydb;
2181 	args.newp = newpolicydb;
2182 
2183 	convert_params.func = convert_context;
2184 	convert_params.args = &args;
2185 	convert_params.target = newsidtab;
2186 
2187 	rc = sidtab_convert(oldsidtab, &convert_params);
2188 	if (rc) {
2189 		pr_err("SELinux:  unable to convert the internal"
2190 			" representation of contexts in the new SID"
2191 			" table\n");
2192 		goto err;
2193 	}
2194 
2195 	/* Save the old policydb and SID table to free later. */
2196 	memcpy(oldpolicydb, policydb, sizeof(*policydb));
2197 
2198 	/* Install the new policydb and SID table. */
2199 	write_lock_irq(&state->ss->policy_rwlock);
2200 	memcpy(policydb, newpolicydb, sizeof(*policydb));
2201 	state->ss->sidtab = newsidtab;
2202 	security_load_policycaps(state);
2203 	oldmapping = state->ss->map.mapping;
2204 	state->ss->map.mapping = newmap.mapping;
2205 	state->ss->map.size = newmap.size;
2206 	seqno = ++state->ss->latest_granting;
2207 	write_unlock_irq(&state->ss->policy_rwlock);
2208 
2209 	/* Free the old policydb and SID table. */
2210 	policydb_destroy(oldpolicydb);
2211 	sidtab_destroy(oldsidtab);
2212 	kfree(oldsidtab);
2213 	kfree(oldmapping);
2214 
2215 	avc_ss_reset(state->avc, seqno);
2216 	selnl_notify_policyload(seqno);
2217 	selinux_status_update_policyload(state, seqno);
2218 	selinux_netlbl_cache_invalidate();
2219 	selinux_xfrm_notify_policyload();
2220 
2221 	rc = 0;
2222 	goto out;
2223 
2224 err:
2225 	kfree(newmap.mapping);
2226 	sidtab_destroy(newsidtab);
2227 	kfree(newsidtab);
2228 	policydb_destroy(newpolicydb);
2229 
2230 out:
2231 	kfree(oldpolicydb);
2232 	return rc;
2233 }
2234 
2235 size_t security_policydb_len(struct selinux_state *state)
2236 {
2237 	struct policydb *p = &state->ss->policydb;
2238 	size_t len;
2239 
2240 	read_lock(&state->ss->policy_rwlock);
2241 	len = p->len;
2242 	read_unlock(&state->ss->policy_rwlock);
2243 
2244 	return len;
2245 }
2246 
2247 /**
2248  * security_port_sid - Obtain the SID for a port.
2249  * @protocol: protocol number
2250  * @port: port number
2251  * @out_sid: security identifier
2252  */
2253 int security_port_sid(struct selinux_state *state,
2254 		      u8 protocol, u16 port, u32 *out_sid)
2255 {
2256 	struct policydb *policydb;
2257 	struct sidtab *sidtab;
2258 	struct ocontext *c;
2259 	int rc = 0;
2260 
2261 	read_lock(&state->ss->policy_rwlock);
2262 
2263 	policydb = &state->ss->policydb;
2264 	sidtab = state->ss->sidtab;
2265 
2266 	c = policydb->ocontexts[OCON_PORT];
2267 	while (c) {
2268 		if (c->u.port.protocol == protocol &&
2269 		    c->u.port.low_port <= port &&
2270 		    c->u.port.high_port >= port)
2271 			break;
2272 		c = c->next;
2273 	}
2274 
2275 	if (c) {
2276 		if (!c->sid[0]) {
2277 			rc = sidtab_context_to_sid(sidtab,
2278 						   &c->context[0],
2279 						   &c->sid[0]);
2280 			if (rc)
2281 				goto out;
2282 		}
2283 		*out_sid = c->sid[0];
2284 	} else {
2285 		*out_sid = SECINITSID_PORT;
2286 	}
2287 
2288 out:
2289 	read_unlock(&state->ss->policy_rwlock);
2290 	return rc;
2291 }
2292 
2293 /**
2294  * security_pkey_sid - Obtain the SID for a pkey.
2295  * @subnet_prefix: Subnet Prefix
2296  * @pkey_num: pkey number
2297  * @out_sid: security identifier
2298  */
2299 int security_ib_pkey_sid(struct selinux_state *state,
2300 			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2301 {
2302 	struct policydb *policydb;
2303 	struct sidtab *sidtab;
2304 	struct ocontext *c;
2305 	int rc = 0;
2306 
2307 	read_lock(&state->ss->policy_rwlock);
2308 
2309 	policydb = &state->ss->policydb;
2310 	sidtab = state->ss->sidtab;
2311 
2312 	c = policydb->ocontexts[OCON_IBPKEY];
2313 	while (c) {
2314 		if (c->u.ibpkey.low_pkey <= pkey_num &&
2315 		    c->u.ibpkey.high_pkey >= pkey_num &&
2316 		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2317 			break;
2318 
2319 		c = c->next;
2320 	}
2321 
2322 	if (c) {
2323 		if (!c->sid[0]) {
2324 			rc = sidtab_context_to_sid(sidtab,
2325 						   &c->context[0],
2326 						   &c->sid[0]);
2327 			if (rc)
2328 				goto out;
2329 		}
2330 		*out_sid = c->sid[0];
2331 	} else
2332 		*out_sid = SECINITSID_UNLABELED;
2333 
2334 out:
2335 	read_unlock(&state->ss->policy_rwlock);
2336 	return rc;
2337 }
2338 
2339 /**
2340  * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2341  * @dev_name: device name
2342  * @port: port number
2343  * @out_sid: security identifier
2344  */
2345 int security_ib_endport_sid(struct selinux_state *state,
2346 			    const char *dev_name, u8 port_num, u32 *out_sid)
2347 {
2348 	struct policydb *policydb;
2349 	struct sidtab *sidtab;
2350 	struct ocontext *c;
2351 	int rc = 0;
2352 
2353 	read_lock(&state->ss->policy_rwlock);
2354 
2355 	policydb = &state->ss->policydb;
2356 	sidtab = state->ss->sidtab;
2357 
2358 	c = policydb->ocontexts[OCON_IBENDPORT];
2359 	while (c) {
2360 		if (c->u.ibendport.port == port_num &&
2361 		    !strncmp(c->u.ibendport.dev_name,
2362 			     dev_name,
2363 			     IB_DEVICE_NAME_MAX))
2364 			break;
2365 
2366 		c = c->next;
2367 	}
2368 
2369 	if (c) {
2370 		if (!c->sid[0]) {
2371 			rc = sidtab_context_to_sid(sidtab,
2372 						   &c->context[0],
2373 						   &c->sid[0]);
2374 			if (rc)
2375 				goto out;
2376 		}
2377 		*out_sid = c->sid[0];
2378 	} else
2379 		*out_sid = SECINITSID_UNLABELED;
2380 
2381 out:
2382 	read_unlock(&state->ss->policy_rwlock);
2383 	return rc;
2384 }
2385 
2386 /**
2387  * security_netif_sid - Obtain the SID for a network interface.
2388  * @name: interface name
2389  * @if_sid: interface SID
2390  */
2391 int security_netif_sid(struct selinux_state *state,
2392 		       char *name, u32 *if_sid)
2393 {
2394 	struct policydb *policydb;
2395 	struct sidtab *sidtab;
2396 	int rc = 0;
2397 	struct ocontext *c;
2398 
2399 	read_lock(&state->ss->policy_rwlock);
2400 
2401 	policydb = &state->ss->policydb;
2402 	sidtab = state->ss->sidtab;
2403 
2404 	c = policydb->ocontexts[OCON_NETIF];
2405 	while (c) {
2406 		if (strcmp(name, c->u.name) == 0)
2407 			break;
2408 		c = c->next;
2409 	}
2410 
2411 	if (c) {
2412 		if (!c->sid[0] || !c->sid[1]) {
2413 			rc = sidtab_context_to_sid(sidtab,
2414 						  &c->context[0],
2415 						  &c->sid[0]);
2416 			if (rc)
2417 				goto out;
2418 			rc = sidtab_context_to_sid(sidtab,
2419 						   &c->context[1],
2420 						   &c->sid[1]);
2421 			if (rc)
2422 				goto out;
2423 		}
2424 		*if_sid = c->sid[0];
2425 	} else
2426 		*if_sid = SECINITSID_NETIF;
2427 
2428 out:
2429 	read_unlock(&state->ss->policy_rwlock);
2430 	return rc;
2431 }
2432 
2433 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2434 {
2435 	int i, fail = 0;
2436 
2437 	for (i = 0; i < 4; i++)
2438 		if (addr[i] != (input[i] & mask[i])) {
2439 			fail = 1;
2440 			break;
2441 		}
2442 
2443 	return !fail;
2444 }
2445 
2446 /**
2447  * security_node_sid - Obtain the SID for a node (host).
2448  * @domain: communication domain aka address family
2449  * @addrp: address
2450  * @addrlen: address length in bytes
2451  * @out_sid: security identifier
2452  */
2453 int security_node_sid(struct selinux_state *state,
2454 		      u16 domain,
2455 		      void *addrp,
2456 		      u32 addrlen,
2457 		      u32 *out_sid)
2458 {
2459 	struct policydb *policydb;
2460 	struct sidtab *sidtab;
2461 	int rc;
2462 	struct ocontext *c;
2463 
2464 	read_lock(&state->ss->policy_rwlock);
2465 
2466 	policydb = &state->ss->policydb;
2467 	sidtab = state->ss->sidtab;
2468 
2469 	switch (domain) {
2470 	case AF_INET: {
2471 		u32 addr;
2472 
2473 		rc = -EINVAL;
2474 		if (addrlen != sizeof(u32))
2475 			goto out;
2476 
2477 		addr = *((u32 *)addrp);
2478 
2479 		c = policydb->ocontexts[OCON_NODE];
2480 		while (c) {
2481 			if (c->u.node.addr == (addr & c->u.node.mask))
2482 				break;
2483 			c = c->next;
2484 		}
2485 		break;
2486 	}
2487 
2488 	case AF_INET6:
2489 		rc = -EINVAL;
2490 		if (addrlen != sizeof(u64) * 2)
2491 			goto out;
2492 		c = policydb->ocontexts[OCON_NODE6];
2493 		while (c) {
2494 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2495 						c->u.node6.mask))
2496 				break;
2497 			c = c->next;
2498 		}
2499 		break;
2500 
2501 	default:
2502 		rc = 0;
2503 		*out_sid = SECINITSID_NODE;
2504 		goto out;
2505 	}
2506 
2507 	if (c) {
2508 		if (!c->sid[0]) {
2509 			rc = sidtab_context_to_sid(sidtab,
2510 						   &c->context[0],
2511 						   &c->sid[0]);
2512 			if (rc)
2513 				goto out;
2514 		}
2515 		*out_sid = c->sid[0];
2516 	} else {
2517 		*out_sid = SECINITSID_NODE;
2518 	}
2519 
2520 	rc = 0;
2521 out:
2522 	read_unlock(&state->ss->policy_rwlock);
2523 	return rc;
2524 }
2525 
2526 #define SIDS_NEL 25
2527 
2528 /**
2529  * security_get_user_sids - Obtain reachable SIDs for a user.
2530  * @fromsid: starting SID
2531  * @username: username
2532  * @sids: array of reachable SIDs for user
2533  * @nel: number of elements in @sids
2534  *
2535  * Generate the set of SIDs for legal security contexts
2536  * for a given user that can be reached by @fromsid.
2537  * Set *@sids to point to a dynamically allocated
2538  * array containing the set of SIDs.  Set *@nel to the
2539  * number of elements in the array.
2540  */
2541 
2542 int security_get_user_sids(struct selinux_state *state,
2543 			   u32 fromsid,
2544 			   char *username,
2545 			   u32 **sids,
2546 			   u32 *nel)
2547 {
2548 	struct policydb *policydb;
2549 	struct sidtab *sidtab;
2550 	struct context *fromcon, usercon;
2551 	u32 *mysids = NULL, *mysids2, sid;
2552 	u32 mynel = 0, maxnel = SIDS_NEL;
2553 	struct user_datum *user;
2554 	struct role_datum *role;
2555 	struct ebitmap_node *rnode, *tnode;
2556 	int rc = 0, i, j;
2557 
2558 	*sids = NULL;
2559 	*nel = 0;
2560 
2561 	if (!state->initialized)
2562 		goto out;
2563 
2564 	read_lock(&state->ss->policy_rwlock);
2565 
2566 	policydb = &state->ss->policydb;
2567 	sidtab = state->ss->sidtab;
2568 
2569 	context_init(&usercon);
2570 
2571 	rc = -EINVAL;
2572 	fromcon = sidtab_search(sidtab, fromsid);
2573 	if (!fromcon)
2574 		goto out_unlock;
2575 
2576 	rc = -EINVAL;
2577 	user = hashtab_search(policydb->p_users.table, username);
2578 	if (!user)
2579 		goto out_unlock;
2580 
2581 	usercon.user = user->value;
2582 
2583 	rc = -ENOMEM;
2584 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2585 	if (!mysids)
2586 		goto out_unlock;
2587 
2588 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2589 		role = policydb->role_val_to_struct[i];
2590 		usercon.role = i + 1;
2591 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2592 			usercon.type = j + 1;
2593 
2594 			if (mls_setup_user_range(policydb, fromcon, user,
2595 						 &usercon))
2596 				continue;
2597 
2598 			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2599 			if (rc)
2600 				goto out_unlock;
2601 			if (mynel < maxnel) {
2602 				mysids[mynel++] = sid;
2603 			} else {
2604 				rc = -ENOMEM;
2605 				maxnel += SIDS_NEL;
2606 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2607 				if (!mysids2)
2608 					goto out_unlock;
2609 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2610 				kfree(mysids);
2611 				mysids = mysids2;
2612 				mysids[mynel++] = sid;
2613 			}
2614 		}
2615 	}
2616 	rc = 0;
2617 out_unlock:
2618 	read_unlock(&state->ss->policy_rwlock);
2619 	if (rc || !mynel) {
2620 		kfree(mysids);
2621 		goto out;
2622 	}
2623 
2624 	rc = -ENOMEM;
2625 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2626 	if (!mysids2) {
2627 		kfree(mysids);
2628 		goto out;
2629 	}
2630 	for (i = 0, j = 0; i < mynel; i++) {
2631 		struct av_decision dummy_avd;
2632 		rc = avc_has_perm_noaudit(state,
2633 					  fromsid, mysids[i],
2634 					  SECCLASS_PROCESS, /* kernel value */
2635 					  PROCESS__TRANSITION, AVC_STRICT,
2636 					  &dummy_avd);
2637 		if (!rc)
2638 			mysids2[j++] = mysids[i];
2639 		cond_resched();
2640 	}
2641 	rc = 0;
2642 	kfree(mysids);
2643 	*sids = mysids2;
2644 	*nel = j;
2645 out:
2646 	return rc;
2647 }
2648 
2649 /**
2650  * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2651  * @fstype: filesystem type
2652  * @path: path from root of mount
2653  * @sclass: file security class
2654  * @sid: SID for path
2655  *
2656  * Obtain a SID to use for a file in a filesystem that
2657  * cannot support xattr or use a fixed labeling behavior like
2658  * transition SIDs or task SIDs.
2659  *
2660  * The caller must acquire the policy_rwlock before calling this function.
2661  */
2662 static inline int __security_genfs_sid(struct selinux_state *state,
2663 				       const char *fstype,
2664 				       char *path,
2665 				       u16 orig_sclass,
2666 				       u32 *sid)
2667 {
2668 	struct policydb *policydb = &state->ss->policydb;
2669 	struct sidtab *sidtab = state->ss->sidtab;
2670 	int len;
2671 	u16 sclass;
2672 	struct genfs *genfs;
2673 	struct ocontext *c;
2674 	int rc, cmp = 0;
2675 
2676 	while (path[0] == '/' && path[1] == '/')
2677 		path++;
2678 
2679 	sclass = unmap_class(&state->ss->map, orig_sclass);
2680 	*sid = SECINITSID_UNLABELED;
2681 
2682 	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2683 		cmp = strcmp(fstype, genfs->fstype);
2684 		if (cmp <= 0)
2685 			break;
2686 	}
2687 
2688 	rc = -ENOENT;
2689 	if (!genfs || cmp)
2690 		goto out;
2691 
2692 	for (c = genfs->head; c; c = c->next) {
2693 		len = strlen(c->u.name);
2694 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2695 		    (strncmp(c->u.name, path, len) == 0))
2696 			break;
2697 	}
2698 
2699 	rc = -ENOENT;
2700 	if (!c)
2701 		goto out;
2702 
2703 	if (!c->sid[0]) {
2704 		rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2705 		if (rc)
2706 			goto out;
2707 	}
2708 
2709 	*sid = c->sid[0];
2710 	rc = 0;
2711 out:
2712 	return rc;
2713 }
2714 
2715 /**
2716  * security_genfs_sid - Obtain a SID for a file in a filesystem
2717  * @fstype: filesystem type
2718  * @path: path from root of mount
2719  * @sclass: file security class
2720  * @sid: SID for path
2721  *
2722  * Acquire policy_rwlock before calling __security_genfs_sid() and release
2723  * it afterward.
2724  */
2725 int security_genfs_sid(struct selinux_state *state,
2726 		       const char *fstype,
2727 		       char *path,
2728 		       u16 orig_sclass,
2729 		       u32 *sid)
2730 {
2731 	int retval;
2732 
2733 	read_lock(&state->ss->policy_rwlock);
2734 	retval = __security_genfs_sid(state, fstype, path, orig_sclass, sid);
2735 	read_unlock(&state->ss->policy_rwlock);
2736 	return retval;
2737 }
2738 
2739 /**
2740  * security_fs_use - Determine how to handle labeling for a filesystem.
2741  * @sb: superblock in question
2742  */
2743 int security_fs_use(struct selinux_state *state, struct super_block *sb)
2744 {
2745 	struct policydb *policydb;
2746 	struct sidtab *sidtab;
2747 	int rc = 0;
2748 	struct ocontext *c;
2749 	struct superblock_security_struct *sbsec = sb->s_security;
2750 	const char *fstype = sb->s_type->name;
2751 
2752 	read_lock(&state->ss->policy_rwlock);
2753 
2754 	policydb = &state->ss->policydb;
2755 	sidtab = state->ss->sidtab;
2756 
2757 	c = policydb->ocontexts[OCON_FSUSE];
2758 	while (c) {
2759 		if (strcmp(fstype, c->u.name) == 0)
2760 			break;
2761 		c = c->next;
2762 	}
2763 
2764 	if (c) {
2765 		sbsec->behavior = c->v.behavior;
2766 		if (!c->sid[0]) {
2767 			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2768 						   &c->sid[0]);
2769 			if (rc)
2770 				goto out;
2771 		}
2772 		sbsec->sid = c->sid[0];
2773 	} else {
2774 		rc = __security_genfs_sid(state, fstype, "/", SECCLASS_DIR,
2775 					  &sbsec->sid);
2776 		if (rc) {
2777 			sbsec->behavior = SECURITY_FS_USE_NONE;
2778 			rc = 0;
2779 		} else {
2780 			sbsec->behavior = SECURITY_FS_USE_GENFS;
2781 		}
2782 	}
2783 
2784 out:
2785 	read_unlock(&state->ss->policy_rwlock);
2786 	return rc;
2787 }
2788 
2789 int security_get_bools(struct selinux_state *state,
2790 		       int *len, char ***names, int **values)
2791 {
2792 	struct policydb *policydb;
2793 	int i, rc;
2794 
2795 	if (!state->initialized) {
2796 		*len = 0;
2797 		*names = NULL;
2798 		*values = NULL;
2799 		return 0;
2800 	}
2801 
2802 	read_lock(&state->ss->policy_rwlock);
2803 
2804 	policydb = &state->ss->policydb;
2805 
2806 	*names = NULL;
2807 	*values = NULL;
2808 
2809 	rc = 0;
2810 	*len = policydb->p_bools.nprim;
2811 	if (!*len)
2812 		goto out;
2813 
2814 	rc = -ENOMEM;
2815 	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2816 	if (!*names)
2817 		goto err;
2818 
2819 	rc = -ENOMEM;
2820 	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2821 	if (!*values)
2822 		goto err;
2823 
2824 	for (i = 0; i < *len; i++) {
2825 		(*values)[i] = policydb->bool_val_to_struct[i]->state;
2826 
2827 		rc = -ENOMEM;
2828 		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2829 				      GFP_ATOMIC);
2830 		if (!(*names)[i])
2831 			goto err;
2832 	}
2833 	rc = 0;
2834 out:
2835 	read_unlock(&state->ss->policy_rwlock);
2836 	return rc;
2837 err:
2838 	if (*names) {
2839 		for (i = 0; i < *len; i++)
2840 			kfree((*names)[i]);
2841 	}
2842 	kfree(*values);
2843 	goto out;
2844 }
2845 
2846 
2847 int security_set_bools(struct selinux_state *state, int len, int *values)
2848 {
2849 	struct policydb *policydb;
2850 	int i, rc;
2851 	int lenp, seqno = 0;
2852 	struct cond_node *cur;
2853 
2854 	write_lock_irq(&state->ss->policy_rwlock);
2855 
2856 	policydb = &state->ss->policydb;
2857 
2858 	rc = -EFAULT;
2859 	lenp = policydb->p_bools.nprim;
2860 	if (len != lenp)
2861 		goto out;
2862 
2863 	for (i = 0; i < len; i++) {
2864 		if (!!values[i] != policydb->bool_val_to_struct[i]->state) {
2865 			audit_log(audit_context(), GFP_ATOMIC,
2866 				AUDIT_MAC_CONFIG_CHANGE,
2867 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2868 				sym_name(policydb, SYM_BOOLS, i),
2869 				!!values[i],
2870 				policydb->bool_val_to_struct[i]->state,
2871 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
2872 				audit_get_sessionid(current));
2873 		}
2874 		if (values[i])
2875 			policydb->bool_val_to_struct[i]->state = 1;
2876 		else
2877 			policydb->bool_val_to_struct[i]->state = 0;
2878 	}
2879 
2880 	for (cur = policydb->cond_list; cur; cur = cur->next) {
2881 		rc = evaluate_cond_node(policydb, cur);
2882 		if (rc)
2883 			goto out;
2884 	}
2885 
2886 	seqno = ++state->ss->latest_granting;
2887 	rc = 0;
2888 out:
2889 	write_unlock_irq(&state->ss->policy_rwlock);
2890 	if (!rc) {
2891 		avc_ss_reset(state->avc, seqno);
2892 		selnl_notify_policyload(seqno);
2893 		selinux_status_update_policyload(state, seqno);
2894 		selinux_xfrm_notify_policyload();
2895 	}
2896 	return rc;
2897 }
2898 
2899 int security_get_bool_value(struct selinux_state *state,
2900 			    int index)
2901 {
2902 	struct policydb *policydb;
2903 	int rc;
2904 	int len;
2905 
2906 	read_lock(&state->ss->policy_rwlock);
2907 
2908 	policydb = &state->ss->policydb;
2909 
2910 	rc = -EFAULT;
2911 	len = policydb->p_bools.nprim;
2912 	if (index >= len)
2913 		goto out;
2914 
2915 	rc = policydb->bool_val_to_struct[index]->state;
2916 out:
2917 	read_unlock(&state->ss->policy_rwlock);
2918 	return rc;
2919 }
2920 
2921 static int security_preserve_bools(struct selinux_state *state,
2922 				   struct policydb *policydb)
2923 {
2924 	int rc, nbools = 0, *bvalues = NULL, i;
2925 	char **bnames = NULL;
2926 	struct cond_bool_datum *booldatum;
2927 	struct cond_node *cur;
2928 
2929 	rc = security_get_bools(state, &nbools, &bnames, &bvalues);
2930 	if (rc)
2931 		goto out;
2932 	for (i = 0; i < nbools; i++) {
2933 		booldatum = hashtab_search(policydb->p_bools.table, bnames[i]);
2934 		if (booldatum)
2935 			booldatum->state = bvalues[i];
2936 	}
2937 	for (cur = policydb->cond_list; cur; cur = cur->next) {
2938 		rc = evaluate_cond_node(policydb, cur);
2939 		if (rc)
2940 			goto out;
2941 	}
2942 
2943 out:
2944 	if (bnames) {
2945 		for (i = 0; i < nbools; i++)
2946 			kfree(bnames[i]);
2947 	}
2948 	kfree(bnames);
2949 	kfree(bvalues);
2950 	return rc;
2951 }
2952 
2953 /*
2954  * security_sid_mls_copy() - computes a new sid based on the given
2955  * sid and the mls portion of mls_sid.
2956  */
2957 int security_sid_mls_copy(struct selinux_state *state,
2958 			  u32 sid, u32 mls_sid, u32 *new_sid)
2959 {
2960 	struct policydb *policydb = &state->ss->policydb;
2961 	struct sidtab *sidtab = state->ss->sidtab;
2962 	struct context *context1;
2963 	struct context *context2;
2964 	struct context newcon;
2965 	char *s;
2966 	u32 len;
2967 	int rc;
2968 
2969 	rc = 0;
2970 	if (!state->initialized || !policydb->mls_enabled) {
2971 		*new_sid = sid;
2972 		goto out;
2973 	}
2974 
2975 	context_init(&newcon);
2976 
2977 	read_lock(&state->ss->policy_rwlock);
2978 
2979 	rc = -EINVAL;
2980 	context1 = sidtab_search(sidtab, sid);
2981 	if (!context1) {
2982 		pr_err("SELinux: %s:  unrecognized SID %d\n",
2983 			__func__, sid);
2984 		goto out_unlock;
2985 	}
2986 
2987 	rc = -EINVAL;
2988 	context2 = sidtab_search(sidtab, mls_sid);
2989 	if (!context2) {
2990 		pr_err("SELinux: %s:  unrecognized SID %d\n",
2991 			__func__, mls_sid);
2992 		goto out_unlock;
2993 	}
2994 
2995 	newcon.user = context1->user;
2996 	newcon.role = context1->role;
2997 	newcon.type = context1->type;
2998 	rc = mls_context_cpy(&newcon, context2);
2999 	if (rc)
3000 		goto out_unlock;
3001 
3002 	/* Check the validity of the new context. */
3003 	if (!policydb_context_isvalid(policydb, &newcon)) {
3004 		rc = convert_context_handle_invalid_context(state, &newcon);
3005 		if (rc) {
3006 			if (!context_struct_to_string(policydb, &newcon, &s,
3007 						      &len)) {
3008 				audit_log(audit_context(),
3009 					  GFP_ATOMIC, AUDIT_SELINUX_ERR,
3010 					  "op=security_sid_mls_copy "
3011 					  "invalid_context=%s", s);
3012 				kfree(s);
3013 			}
3014 			goto out_unlock;
3015 		}
3016 	}
3017 
3018 	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3019 out_unlock:
3020 	read_unlock(&state->ss->policy_rwlock);
3021 	context_destroy(&newcon);
3022 out:
3023 	return rc;
3024 }
3025 
3026 /**
3027  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3028  * @nlbl_sid: NetLabel SID
3029  * @nlbl_type: NetLabel labeling protocol type
3030  * @xfrm_sid: XFRM SID
3031  *
3032  * Description:
3033  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3034  * resolved into a single SID it is returned via @peer_sid and the function
3035  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3036  * returns a negative value.  A table summarizing the behavior is below:
3037  *
3038  *                                 | function return |      @sid
3039  *   ------------------------------+-----------------+-----------------
3040  *   no peer labels                |        0        |    SECSID_NULL
3041  *   single peer label             |        0        |    <peer_label>
3042  *   multiple, consistent labels   |        0        |    <peer_label>
3043  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3044  *
3045  */
3046 int security_net_peersid_resolve(struct selinux_state *state,
3047 				 u32 nlbl_sid, u32 nlbl_type,
3048 				 u32 xfrm_sid,
3049 				 u32 *peer_sid)
3050 {
3051 	struct policydb *policydb = &state->ss->policydb;
3052 	struct sidtab *sidtab = state->ss->sidtab;
3053 	int rc;
3054 	struct context *nlbl_ctx;
3055 	struct context *xfrm_ctx;
3056 
3057 	*peer_sid = SECSID_NULL;
3058 
3059 	/* handle the common (which also happens to be the set of easy) cases
3060 	 * right away, these two if statements catch everything involving a
3061 	 * single or absent peer SID/label */
3062 	if (xfrm_sid == SECSID_NULL) {
3063 		*peer_sid = nlbl_sid;
3064 		return 0;
3065 	}
3066 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3067 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3068 	 * is present */
3069 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3070 		*peer_sid = xfrm_sid;
3071 		return 0;
3072 	}
3073 
3074 	/*
3075 	 * We don't need to check initialized here since the only way both
3076 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3077 	 * security server was initialized and state->initialized was true.
3078 	 */
3079 	if (!policydb->mls_enabled)
3080 		return 0;
3081 
3082 	read_lock(&state->ss->policy_rwlock);
3083 
3084 	rc = -EINVAL;
3085 	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3086 	if (!nlbl_ctx) {
3087 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3088 		       __func__, nlbl_sid);
3089 		goto out;
3090 	}
3091 	rc = -EINVAL;
3092 	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3093 	if (!xfrm_ctx) {
3094 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3095 		       __func__, xfrm_sid);
3096 		goto out;
3097 	}
3098 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3099 	if (rc)
3100 		goto out;
3101 
3102 	/* at present NetLabel SIDs/labels really only carry MLS
3103 	 * information so if the MLS portion of the NetLabel SID
3104 	 * matches the MLS portion of the labeled XFRM SID/label
3105 	 * then pass along the XFRM SID as it is the most
3106 	 * expressive */
3107 	*peer_sid = xfrm_sid;
3108 out:
3109 	read_unlock(&state->ss->policy_rwlock);
3110 	return rc;
3111 }
3112 
3113 static int get_classes_callback(void *k, void *d, void *args)
3114 {
3115 	struct class_datum *datum = d;
3116 	char *name = k, **classes = args;
3117 	int value = datum->value - 1;
3118 
3119 	classes[value] = kstrdup(name, GFP_ATOMIC);
3120 	if (!classes[value])
3121 		return -ENOMEM;
3122 
3123 	return 0;
3124 }
3125 
3126 int security_get_classes(struct selinux_state *state,
3127 			 char ***classes, int *nclasses)
3128 {
3129 	struct policydb *policydb = &state->ss->policydb;
3130 	int rc;
3131 
3132 	if (!state->initialized) {
3133 		*nclasses = 0;
3134 		*classes = NULL;
3135 		return 0;
3136 	}
3137 
3138 	read_lock(&state->ss->policy_rwlock);
3139 
3140 	rc = -ENOMEM;
3141 	*nclasses = policydb->p_classes.nprim;
3142 	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3143 	if (!*classes)
3144 		goto out;
3145 
3146 	rc = hashtab_map(policydb->p_classes.table, get_classes_callback,
3147 			*classes);
3148 	if (rc) {
3149 		int i;
3150 		for (i = 0; i < *nclasses; i++)
3151 			kfree((*classes)[i]);
3152 		kfree(*classes);
3153 	}
3154 
3155 out:
3156 	read_unlock(&state->ss->policy_rwlock);
3157 	return rc;
3158 }
3159 
3160 static int get_permissions_callback(void *k, void *d, void *args)
3161 {
3162 	struct perm_datum *datum = d;
3163 	char *name = k, **perms = args;
3164 	int value = datum->value - 1;
3165 
3166 	perms[value] = kstrdup(name, GFP_ATOMIC);
3167 	if (!perms[value])
3168 		return -ENOMEM;
3169 
3170 	return 0;
3171 }
3172 
3173 int security_get_permissions(struct selinux_state *state,
3174 			     char *class, char ***perms, int *nperms)
3175 {
3176 	struct policydb *policydb = &state->ss->policydb;
3177 	int rc, i;
3178 	struct class_datum *match;
3179 
3180 	read_lock(&state->ss->policy_rwlock);
3181 
3182 	rc = -EINVAL;
3183 	match = hashtab_search(policydb->p_classes.table, class);
3184 	if (!match) {
3185 		pr_err("SELinux: %s:  unrecognized class %s\n",
3186 			__func__, class);
3187 		goto out;
3188 	}
3189 
3190 	rc = -ENOMEM;
3191 	*nperms = match->permissions.nprim;
3192 	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3193 	if (!*perms)
3194 		goto out;
3195 
3196 	if (match->comdatum) {
3197 		rc = hashtab_map(match->comdatum->permissions.table,
3198 				get_permissions_callback, *perms);
3199 		if (rc)
3200 			goto err;
3201 	}
3202 
3203 	rc = hashtab_map(match->permissions.table, get_permissions_callback,
3204 			*perms);
3205 	if (rc)
3206 		goto err;
3207 
3208 out:
3209 	read_unlock(&state->ss->policy_rwlock);
3210 	return rc;
3211 
3212 err:
3213 	read_unlock(&state->ss->policy_rwlock);
3214 	for (i = 0; i < *nperms; i++)
3215 		kfree((*perms)[i]);
3216 	kfree(*perms);
3217 	return rc;
3218 }
3219 
3220 int security_get_reject_unknown(struct selinux_state *state)
3221 {
3222 	return state->ss->policydb.reject_unknown;
3223 }
3224 
3225 int security_get_allow_unknown(struct selinux_state *state)
3226 {
3227 	return state->ss->policydb.allow_unknown;
3228 }
3229 
3230 /**
3231  * security_policycap_supported - Check for a specific policy capability
3232  * @req_cap: capability
3233  *
3234  * Description:
3235  * This function queries the currently loaded policy to see if it supports the
3236  * capability specified by @req_cap.  Returns true (1) if the capability is
3237  * supported, false (0) if it isn't supported.
3238  *
3239  */
3240 int security_policycap_supported(struct selinux_state *state,
3241 				 unsigned int req_cap)
3242 {
3243 	struct policydb *policydb = &state->ss->policydb;
3244 	int rc;
3245 
3246 	read_lock(&state->ss->policy_rwlock);
3247 	rc = ebitmap_get_bit(&policydb->policycaps, req_cap);
3248 	read_unlock(&state->ss->policy_rwlock);
3249 
3250 	return rc;
3251 }
3252 
3253 struct selinux_audit_rule {
3254 	u32 au_seqno;
3255 	struct context au_ctxt;
3256 };
3257 
3258 void selinux_audit_rule_free(void *vrule)
3259 {
3260 	struct selinux_audit_rule *rule = vrule;
3261 
3262 	if (rule) {
3263 		context_destroy(&rule->au_ctxt);
3264 		kfree(rule);
3265 	}
3266 }
3267 
3268 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3269 {
3270 	struct selinux_state *state = &selinux_state;
3271 	struct policydb *policydb = &state->ss->policydb;
3272 	struct selinux_audit_rule *tmprule;
3273 	struct role_datum *roledatum;
3274 	struct type_datum *typedatum;
3275 	struct user_datum *userdatum;
3276 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3277 	int rc = 0;
3278 
3279 	*rule = NULL;
3280 
3281 	if (!state->initialized)
3282 		return -EOPNOTSUPP;
3283 
3284 	switch (field) {
3285 	case AUDIT_SUBJ_USER:
3286 	case AUDIT_SUBJ_ROLE:
3287 	case AUDIT_SUBJ_TYPE:
3288 	case AUDIT_OBJ_USER:
3289 	case AUDIT_OBJ_ROLE:
3290 	case AUDIT_OBJ_TYPE:
3291 		/* only 'equals' and 'not equals' fit user, role, and type */
3292 		if (op != Audit_equal && op != Audit_not_equal)
3293 			return -EINVAL;
3294 		break;
3295 	case AUDIT_SUBJ_SEN:
3296 	case AUDIT_SUBJ_CLR:
3297 	case AUDIT_OBJ_LEV_LOW:
3298 	case AUDIT_OBJ_LEV_HIGH:
3299 		/* we do not allow a range, indicated by the presence of '-' */
3300 		if (strchr(rulestr, '-'))
3301 			return -EINVAL;
3302 		break;
3303 	default:
3304 		/* only the above fields are valid */
3305 		return -EINVAL;
3306 	}
3307 
3308 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3309 	if (!tmprule)
3310 		return -ENOMEM;
3311 
3312 	context_init(&tmprule->au_ctxt);
3313 
3314 	read_lock(&state->ss->policy_rwlock);
3315 
3316 	tmprule->au_seqno = state->ss->latest_granting;
3317 
3318 	switch (field) {
3319 	case AUDIT_SUBJ_USER:
3320 	case AUDIT_OBJ_USER:
3321 		rc = -EINVAL;
3322 		userdatum = hashtab_search(policydb->p_users.table, rulestr);
3323 		if (!userdatum)
3324 			goto out;
3325 		tmprule->au_ctxt.user = userdatum->value;
3326 		break;
3327 	case AUDIT_SUBJ_ROLE:
3328 	case AUDIT_OBJ_ROLE:
3329 		rc = -EINVAL;
3330 		roledatum = hashtab_search(policydb->p_roles.table, rulestr);
3331 		if (!roledatum)
3332 			goto out;
3333 		tmprule->au_ctxt.role = roledatum->value;
3334 		break;
3335 	case AUDIT_SUBJ_TYPE:
3336 	case AUDIT_OBJ_TYPE:
3337 		rc = -EINVAL;
3338 		typedatum = hashtab_search(policydb->p_types.table, rulestr);
3339 		if (!typedatum)
3340 			goto out;
3341 		tmprule->au_ctxt.type = typedatum->value;
3342 		break;
3343 	case AUDIT_SUBJ_SEN:
3344 	case AUDIT_SUBJ_CLR:
3345 	case AUDIT_OBJ_LEV_LOW:
3346 	case AUDIT_OBJ_LEV_HIGH:
3347 		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3348 				     GFP_ATOMIC);
3349 		if (rc)
3350 			goto out;
3351 		break;
3352 	}
3353 	rc = 0;
3354 out:
3355 	read_unlock(&state->ss->policy_rwlock);
3356 
3357 	if (rc) {
3358 		selinux_audit_rule_free(tmprule);
3359 		tmprule = NULL;
3360 	}
3361 
3362 	*rule = tmprule;
3363 
3364 	return rc;
3365 }
3366 
3367 /* Check to see if the rule contains any selinux fields */
3368 int selinux_audit_rule_known(struct audit_krule *rule)
3369 {
3370 	int i;
3371 
3372 	for (i = 0; i < rule->field_count; i++) {
3373 		struct audit_field *f = &rule->fields[i];
3374 		switch (f->type) {
3375 		case AUDIT_SUBJ_USER:
3376 		case AUDIT_SUBJ_ROLE:
3377 		case AUDIT_SUBJ_TYPE:
3378 		case AUDIT_SUBJ_SEN:
3379 		case AUDIT_SUBJ_CLR:
3380 		case AUDIT_OBJ_USER:
3381 		case AUDIT_OBJ_ROLE:
3382 		case AUDIT_OBJ_TYPE:
3383 		case AUDIT_OBJ_LEV_LOW:
3384 		case AUDIT_OBJ_LEV_HIGH:
3385 			return 1;
3386 		}
3387 	}
3388 
3389 	return 0;
3390 }
3391 
3392 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3393 {
3394 	struct selinux_state *state = &selinux_state;
3395 	struct context *ctxt;
3396 	struct mls_level *level;
3397 	struct selinux_audit_rule *rule = vrule;
3398 	int match = 0;
3399 
3400 	if (unlikely(!rule)) {
3401 		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3402 		return -ENOENT;
3403 	}
3404 
3405 	read_lock(&state->ss->policy_rwlock);
3406 
3407 	if (rule->au_seqno < state->ss->latest_granting) {
3408 		match = -ESTALE;
3409 		goto out;
3410 	}
3411 
3412 	ctxt = sidtab_search(state->ss->sidtab, sid);
3413 	if (unlikely(!ctxt)) {
3414 		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3415 			  sid);
3416 		match = -ENOENT;
3417 		goto out;
3418 	}
3419 
3420 	/* a field/op pair that is not caught here will simply fall through
3421 	   without a match */
3422 	switch (field) {
3423 	case AUDIT_SUBJ_USER:
3424 	case AUDIT_OBJ_USER:
3425 		switch (op) {
3426 		case Audit_equal:
3427 			match = (ctxt->user == rule->au_ctxt.user);
3428 			break;
3429 		case Audit_not_equal:
3430 			match = (ctxt->user != rule->au_ctxt.user);
3431 			break;
3432 		}
3433 		break;
3434 	case AUDIT_SUBJ_ROLE:
3435 	case AUDIT_OBJ_ROLE:
3436 		switch (op) {
3437 		case Audit_equal:
3438 			match = (ctxt->role == rule->au_ctxt.role);
3439 			break;
3440 		case Audit_not_equal:
3441 			match = (ctxt->role != rule->au_ctxt.role);
3442 			break;
3443 		}
3444 		break;
3445 	case AUDIT_SUBJ_TYPE:
3446 	case AUDIT_OBJ_TYPE:
3447 		switch (op) {
3448 		case Audit_equal:
3449 			match = (ctxt->type == rule->au_ctxt.type);
3450 			break;
3451 		case Audit_not_equal:
3452 			match = (ctxt->type != rule->au_ctxt.type);
3453 			break;
3454 		}
3455 		break;
3456 	case AUDIT_SUBJ_SEN:
3457 	case AUDIT_SUBJ_CLR:
3458 	case AUDIT_OBJ_LEV_LOW:
3459 	case AUDIT_OBJ_LEV_HIGH:
3460 		level = ((field == AUDIT_SUBJ_SEN ||
3461 			  field == AUDIT_OBJ_LEV_LOW) ?
3462 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3463 		switch (op) {
3464 		case Audit_equal:
3465 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3466 					     level);
3467 			break;
3468 		case Audit_not_equal:
3469 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3470 					      level);
3471 			break;
3472 		case Audit_lt:
3473 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3474 					       level) &&
3475 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3476 					       level));
3477 			break;
3478 		case Audit_le:
3479 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3480 					      level);
3481 			break;
3482 		case Audit_gt:
3483 			match = (mls_level_dom(level,
3484 					      &rule->au_ctxt.range.level[0]) &&
3485 				 !mls_level_eq(level,
3486 					       &rule->au_ctxt.range.level[0]));
3487 			break;
3488 		case Audit_ge:
3489 			match = mls_level_dom(level,
3490 					      &rule->au_ctxt.range.level[0]);
3491 			break;
3492 		}
3493 	}
3494 
3495 out:
3496 	read_unlock(&state->ss->policy_rwlock);
3497 	return match;
3498 }
3499 
3500 static int (*aurule_callback)(void) = audit_update_lsm_rules;
3501 
3502 static int aurule_avc_callback(u32 event)
3503 {
3504 	int err = 0;
3505 
3506 	if (event == AVC_CALLBACK_RESET && aurule_callback)
3507 		err = aurule_callback();
3508 	return err;
3509 }
3510 
3511 static int __init aurule_init(void)
3512 {
3513 	int err;
3514 
3515 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3516 	if (err)
3517 		panic("avc_add_callback() failed, error %d\n", err);
3518 
3519 	return err;
3520 }
3521 __initcall(aurule_init);
3522 
3523 #ifdef CONFIG_NETLABEL
3524 /**
3525  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3526  * @secattr: the NetLabel packet security attributes
3527  * @sid: the SELinux SID
3528  *
3529  * Description:
3530  * Attempt to cache the context in @ctx, which was derived from the packet in
3531  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3532  * already been initialized.
3533  *
3534  */
3535 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3536 				      u32 sid)
3537 {
3538 	u32 *sid_cache;
3539 
3540 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3541 	if (sid_cache == NULL)
3542 		return;
3543 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3544 	if (secattr->cache == NULL) {
3545 		kfree(sid_cache);
3546 		return;
3547 	}
3548 
3549 	*sid_cache = sid;
3550 	secattr->cache->free = kfree;
3551 	secattr->cache->data = sid_cache;
3552 	secattr->flags |= NETLBL_SECATTR_CACHE;
3553 }
3554 
3555 /**
3556  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3557  * @secattr: the NetLabel packet security attributes
3558  * @sid: the SELinux SID
3559  *
3560  * Description:
3561  * Convert the given NetLabel security attributes in @secattr into a
3562  * SELinux SID.  If the @secattr field does not contain a full SELinux
3563  * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3564  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3565  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3566  * conversion for future lookups.  Returns zero on success, negative values on
3567  * failure.
3568  *
3569  */
3570 int security_netlbl_secattr_to_sid(struct selinux_state *state,
3571 				   struct netlbl_lsm_secattr *secattr,
3572 				   u32 *sid)
3573 {
3574 	struct policydb *policydb = &state->ss->policydb;
3575 	struct sidtab *sidtab = state->ss->sidtab;
3576 	int rc;
3577 	struct context *ctx;
3578 	struct context ctx_new;
3579 
3580 	if (!state->initialized) {
3581 		*sid = SECSID_NULL;
3582 		return 0;
3583 	}
3584 
3585 	read_lock(&state->ss->policy_rwlock);
3586 
3587 	if (secattr->flags & NETLBL_SECATTR_CACHE)
3588 		*sid = *(u32 *)secattr->cache->data;
3589 	else if (secattr->flags & NETLBL_SECATTR_SECID)
3590 		*sid = secattr->attr.secid;
3591 	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3592 		rc = -EIDRM;
3593 		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3594 		if (ctx == NULL)
3595 			goto out;
3596 
3597 		context_init(&ctx_new);
3598 		ctx_new.user = ctx->user;
3599 		ctx_new.role = ctx->role;
3600 		ctx_new.type = ctx->type;
3601 		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3602 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3603 			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3604 			if (rc)
3605 				goto out;
3606 		}
3607 		rc = -EIDRM;
3608 		if (!mls_context_isvalid(policydb, &ctx_new))
3609 			goto out_free;
3610 
3611 		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3612 		if (rc)
3613 			goto out_free;
3614 
3615 		security_netlbl_cache_add(secattr, *sid);
3616 
3617 		ebitmap_destroy(&ctx_new.range.level[0].cat);
3618 	} else
3619 		*sid = SECSID_NULL;
3620 
3621 	read_unlock(&state->ss->policy_rwlock);
3622 	return 0;
3623 out_free:
3624 	ebitmap_destroy(&ctx_new.range.level[0].cat);
3625 out:
3626 	read_unlock(&state->ss->policy_rwlock);
3627 	return rc;
3628 }
3629 
3630 /**
3631  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3632  * @sid: the SELinux SID
3633  * @secattr: the NetLabel packet security attributes
3634  *
3635  * Description:
3636  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3637  * Returns zero on success, negative values on failure.
3638  *
3639  */
3640 int security_netlbl_sid_to_secattr(struct selinux_state *state,
3641 				   u32 sid, struct netlbl_lsm_secattr *secattr)
3642 {
3643 	struct policydb *policydb = &state->ss->policydb;
3644 	int rc;
3645 	struct context *ctx;
3646 
3647 	if (!state->initialized)
3648 		return 0;
3649 
3650 	read_lock(&state->ss->policy_rwlock);
3651 
3652 	rc = -ENOENT;
3653 	ctx = sidtab_search(state->ss->sidtab, sid);
3654 	if (ctx == NULL)
3655 		goto out;
3656 
3657 	rc = -ENOMEM;
3658 	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3659 				  GFP_ATOMIC);
3660 	if (secattr->domain == NULL)
3661 		goto out;
3662 
3663 	secattr->attr.secid = sid;
3664 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3665 	mls_export_netlbl_lvl(policydb, ctx, secattr);
3666 	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3667 out:
3668 	read_unlock(&state->ss->policy_rwlock);
3669 	return rc;
3670 }
3671 #endif /* CONFIG_NETLABEL */
3672 
3673 /**
3674  * security_read_policy - read the policy.
3675  * @data: binary policy data
3676  * @len: length of data in bytes
3677  *
3678  */
3679 int security_read_policy(struct selinux_state *state,
3680 			 void **data, size_t *len)
3681 {
3682 	struct policydb *policydb = &state->ss->policydb;
3683 	int rc;
3684 	struct policy_file fp;
3685 
3686 	if (!state->initialized)
3687 		return -EINVAL;
3688 
3689 	*len = security_policydb_len(state);
3690 
3691 	*data = vmalloc_user(*len);
3692 	if (!*data)
3693 		return -ENOMEM;
3694 
3695 	fp.data = *data;
3696 	fp.len = *len;
3697 
3698 	read_lock(&state->ss->policy_rwlock);
3699 	rc = policydb_write(policydb, &fp);
3700 	read_unlock(&state->ss->policy_rwlock);
3701 
3702 	if (rc)
3703 		return rc;
3704 
3705 	*len = (unsigned long)fp.data - (unsigned long)*data;
3706 	return 0;
3707 
3708 }
3709