xref: /openbmc/linux/security/selinux/ss/services.c (revision b04b4f78)
1 /*
2  * Implementation of the security services.
3  *
4  * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5  *	     James Morris <jmorris@redhat.com>
6  *
7  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8  *
9  *	Support for enhanced MLS infrastructure.
10  *	Support for context based audit filters.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *	Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul.moore@hp.com>
17  *
18  *      Added support for NetLabel
19  *      Added support for the policy capability bitmap
20  *
21  * Updated: Chad Sellers <csellers@tresys.com>
22  *
23  *  Added validation of kernel classes and permissions
24  *
25  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
26  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
27  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
28  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
29  *	This program is free software; you can redistribute it and/or modify
30  *	it under the terms of the GNU General Public License as published by
31  *	the Free Software Foundation, version 2.
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/string.h>
36 #include <linux/spinlock.h>
37 #include <linux/rcupdate.h>
38 #include <linux/errno.h>
39 #include <linux/in.h>
40 #include <linux/sched.h>
41 #include <linux/audit.h>
42 #include <linux/mutex.h>
43 #include <linux/selinux.h>
44 #include <net/netlabel.h>
45 
46 #include "flask.h"
47 #include "avc.h"
48 #include "avc_ss.h"
49 #include "security.h"
50 #include "context.h"
51 #include "policydb.h"
52 #include "sidtab.h"
53 #include "services.h"
54 #include "conditional.h"
55 #include "mls.h"
56 #include "objsec.h"
57 #include "netlabel.h"
58 #include "xfrm.h"
59 #include "ebitmap.h"
60 #include "audit.h"
61 
62 extern void selnl_notify_policyload(u32 seqno);
63 unsigned int policydb_loaded_version;
64 
65 int selinux_policycap_netpeer;
66 int selinux_policycap_openperm;
67 
68 /*
69  * This is declared in avc.c
70  */
71 extern const struct selinux_class_perm selinux_class_perm;
72 
73 static DEFINE_RWLOCK(policy_rwlock);
74 
75 static struct sidtab sidtab;
76 struct policydb policydb;
77 int ss_initialized;
78 
79 /*
80  * The largest sequence number that has been used when
81  * providing an access decision to the access vector cache.
82  * The sequence number only changes when a policy change
83  * occurs.
84  */
85 static u32 latest_granting;
86 
87 /* Forward declaration. */
88 static int context_struct_to_string(struct context *context, char **scontext,
89 				    u32 *scontext_len);
90 
91 static int context_struct_compute_av(struct context *scontext,
92 				     struct context *tcontext,
93 				     u16 tclass,
94 				     u32 requested,
95 				     struct av_decision *avd);
96 /*
97  * Return the boolean value of a constraint expression
98  * when it is applied to the specified source and target
99  * security contexts.
100  *
101  * xcontext is a special beast...  It is used by the validatetrans rules
102  * only.  For these rules, scontext is the context before the transition,
103  * tcontext is the context after the transition, and xcontext is the context
104  * of the process performing the transition.  All other callers of
105  * constraint_expr_eval should pass in NULL for xcontext.
106  */
107 static int constraint_expr_eval(struct context *scontext,
108 				struct context *tcontext,
109 				struct context *xcontext,
110 				struct constraint_expr *cexpr)
111 {
112 	u32 val1, val2;
113 	struct context *c;
114 	struct role_datum *r1, *r2;
115 	struct mls_level *l1, *l2;
116 	struct constraint_expr *e;
117 	int s[CEXPR_MAXDEPTH];
118 	int sp = -1;
119 
120 	for (e = cexpr; e; e = e->next) {
121 		switch (e->expr_type) {
122 		case CEXPR_NOT:
123 			BUG_ON(sp < 0);
124 			s[sp] = !s[sp];
125 			break;
126 		case CEXPR_AND:
127 			BUG_ON(sp < 1);
128 			sp--;
129 			s[sp] &= s[sp+1];
130 			break;
131 		case CEXPR_OR:
132 			BUG_ON(sp < 1);
133 			sp--;
134 			s[sp] |= s[sp+1];
135 			break;
136 		case CEXPR_ATTR:
137 			if (sp == (CEXPR_MAXDEPTH-1))
138 				return 0;
139 			switch (e->attr) {
140 			case CEXPR_USER:
141 				val1 = scontext->user;
142 				val2 = tcontext->user;
143 				break;
144 			case CEXPR_TYPE:
145 				val1 = scontext->type;
146 				val2 = tcontext->type;
147 				break;
148 			case CEXPR_ROLE:
149 				val1 = scontext->role;
150 				val2 = tcontext->role;
151 				r1 = policydb.role_val_to_struct[val1 - 1];
152 				r2 = policydb.role_val_to_struct[val2 - 1];
153 				switch (e->op) {
154 				case CEXPR_DOM:
155 					s[++sp] = ebitmap_get_bit(&r1->dominates,
156 								  val2 - 1);
157 					continue;
158 				case CEXPR_DOMBY:
159 					s[++sp] = ebitmap_get_bit(&r2->dominates,
160 								  val1 - 1);
161 					continue;
162 				case CEXPR_INCOMP:
163 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
164 								    val2 - 1) &&
165 						   !ebitmap_get_bit(&r2->dominates,
166 								    val1 - 1));
167 					continue;
168 				default:
169 					break;
170 				}
171 				break;
172 			case CEXPR_L1L2:
173 				l1 = &(scontext->range.level[0]);
174 				l2 = &(tcontext->range.level[0]);
175 				goto mls_ops;
176 			case CEXPR_L1H2:
177 				l1 = &(scontext->range.level[0]);
178 				l2 = &(tcontext->range.level[1]);
179 				goto mls_ops;
180 			case CEXPR_H1L2:
181 				l1 = &(scontext->range.level[1]);
182 				l2 = &(tcontext->range.level[0]);
183 				goto mls_ops;
184 			case CEXPR_H1H2:
185 				l1 = &(scontext->range.level[1]);
186 				l2 = &(tcontext->range.level[1]);
187 				goto mls_ops;
188 			case CEXPR_L1H1:
189 				l1 = &(scontext->range.level[0]);
190 				l2 = &(scontext->range.level[1]);
191 				goto mls_ops;
192 			case CEXPR_L2H2:
193 				l1 = &(tcontext->range.level[0]);
194 				l2 = &(tcontext->range.level[1]);
195 				goto mls_ops;
196 mls_ops:
197 			switch (e->op) {
198 			case CEXPR_EQ:
199 				s[++sp] = mls_level_eq(l1, l2);
200 				continue;
201 			case CEXPR_NEQ:
202 				s[++sp] = !mls_level_eq(l1, l2);
203 				continue;
204 			case CEXPR_DOM:
205 				s[++sp] = mls_level_dom(l1, l2);
206 				continue;
207 			case CEXPR_DOMBY:
208 				s[++sp] = mls_level_dom(l2, l1);
209 				continue;
210 			case CEXPR_INCOMP:
211 				s[++sp] = mls_level_incomp(l2, l1);
212 				continue;
213 			default:
214 				BUG();
215 				return 0;
216 			}
217 			break;
218 			default:
219 				BUG();
220 				return 0;
221 			}
222 
223 			switch (e->op) {
224 			case CEXPR_EQ:
225 				s[++sp] = (val1 == val2);
226 				break;
227 			case CEXPR_NEQ:
228 				s[++sp] = (val1 != val2);
229 				break;
230 			default:
231 				BUG();
232 				return 0;
233 			}
234 			break;
235 		case CEXPR_NAMES:
236 			if (sp == (CEXPR_MAXDEPTH-1))
237 				return 0;
238 			c = scontext;
239 			if (e->attr & CEXPR_TARGET)
240 				c = tcontext;
241 			else if (e->attr & CEXPR_XTARGET) {
242 				c = xcontext;
243 				if (!c) {
244 					BUG();
245 					return 0;
246 				}
247 			}
248 			if (e->attr & CEXPR_USER)
249 				val1 = c->user;
250 			else if (e->attr & CEXPR_ROLE)
251 				val1 = c->role;
252 			else if (e->attr & CEXPR_TYPE)
253 				val1 = c->type;
254 			else {
255 				BUG();
256 				return 0;
257 			}
258 
259 			switch (e->op) {
260 			case CEXPR_EQ:
261 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
262 				break;
263 			case CEXPR_NEQ:
264 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
265 				break;
266 			default:
267 				BUG();
268 				return 0;
269 			}
270 			break;
271 		default:
272 			BUG();
273 			return 0;
274 		}
275 	}
276 
277 	BUG_ON(sp != 0);
278 	return s[0];
279 }
280 
281 /*
282  * security_boundary_permission - drops violated permissions
283  * on boundary constraint.
284  */
285 static void type_attribute_bounds_av(struct context *scontext,
286 				     struct context *tcontext,
287 				     u16 tclass,
288 				     u32 requested,
289 				     struct av_decision *avd)
290 {
291 	struct context lo_scontext;
292 	struct context lo_tcontext;
293 	struct av_decision lo_avd;
294 	struct type_datum *source
295 		= policydb.type_val_to_struct[scontext->type - 1];
296 	struct type_datum *target
297 		= policydb.type_val_to_struct[tcontext->type - 1];
298 	u32 masked = 0;
299 
300 	if (source->bounds) {
301 		memset(&lo_avd, 0, sizeof(lo_avd));
302 
303 		memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
304 		lo_scontext.type = source->bounds;
305 
306 		context_struct_compute_av(&lo_scontext,
307 					  tcontext,
308 					  tclass,
309 					  requested,
310 					  &lo_avd);
311 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
312 			return;		/* no masked permission */
313 		masked = ~lo_avd.allowed & avd->allowed;
314 	}
315 
316 	if (target->bounds) {
317 		memset(&lo_avd, 0, sizeof(lo_avd));
318 
319 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
320 		lo_tcontext.type = target->bounds;
321 
322 		context_struct_compute_av(scontext,
323 					  &lo_tcontext,
324 					  tclass,
325 					  requested,
326 					  &lo_avd);
327 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
328 			return;		/* no masked permission */
329 		masked = ~lo_avd.allowed & avd->allowed;
330 	}
331 
332 	if (source->bounds && target->bounds) {
333 		memset(&lo_avd, 0, sizeof(lo_avd));
334 		/*
335 		 * lo_scontext and lo_tcontext are already
336 		 * set up.
337 		 */
338 
339 		context_struct_compute_av(&lo_scontext,
340 					  &lo_tcontext,
341 					  tclass,
342 					  requested,
343 					  &lo_avd);
344 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
345 			return;		/* no masked permission */
346 		masked = ~lo_avd.allowed & avd->allowed;
347 	}
348 
349 	if (masked) {
350 		struct audit_buffer *ab;
351 		char *stype_name
352 			= policydb.p_type_val_to_name[source->value - 1];
353 		char *ttype_name
354 			= policydb.p_type_val_to_name[target->value - 1];
355 		char *tclass_name
356 			= policydb.p_class_val_to_name[tclass - 1];
357 
358 		/* mask violated permissions */
359 		avd->allowed &= ~masked;
360 
361 		/* notice to userspace via audit message */
362 		ab = audit_log_start(current->audit_context,
363 				     GFP_ATOMIC, AUDIT_SELINUX_ERR);
364 		if (!ab)
365 			return;
366 
367 		audit_log_format(ab, "av boundary violation: "
368 				 "source=%s target=%s tclass=%s",
369 				 stype_name, ttype_name, tclass_name);
370 		avc_dump_av(ab, tclass, masked);
371 		audit_log_end(ab);
372 	}
373 }
374 
375 /*
376  * Compute access vectors based on a context structure pair for
377  * the permissions in a particular class.
378  */
379 static int context_struct_compute_av(struct context *scontext,
380 				     struct context *tcontext,
381 				     u16 tclass,
382 				     u32 requested,
383 				     struct av_decision *avd)
384 {
385 	struct constraint_node *constraint;
386 	struct role_allow *ra;
387 	struct avtab_key avkey;
388 	struct avtab_node *node;
389 	struct class_datum *tclass_datum;
390 	struct ebitmap *sattr, *tattr;
391 	struct ebitmap_node *snode, *tnode;
392 	const struct selinux_class_perm *kdefs = &selinux_class_perm;
393 	unsigned int i, j;
394 
395 	/*
396 	 * Remap extended Netlink classes for old policy versions.
397 	 * Do this here rather than socket_type_to_security_class()
398 	 * in case a newer policy version is loaded, allowing sockets
399 	 * to remain in the correct class.
400 	 */
401 	if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
402 		if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
403 		    tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
404 			tclass = SECCLASS_NETLINK_SOCKET;
405 
406 	/*
407 	 * Initialize the access vectors to the default values.
408 	 */
409 	avd->allowed = 0;
410 	avd->auditallow = 0;
411 	avd->auditdeny = 0xffffffff;
412 	avd->seqno = latest_granting;
413 
414 	/*
415 	 * Check for all the invalid cases.
416 	 * - tclass 0
417 	 * - tclass > policy and > kernel
418 	 * - tclass > policy but is a userspace class
419 	 * - tclass > policy but we do not allow unknowns
420 	 */
421 	if (unlikely(!tclass))
422 		goto inval_class;
423 	if (unlikely(tclass > policydb.p_classes.nprim))
424 		if (tclass > kdefs->cts_len ||
425 		    !kdefs->class_to_string[tclass] ||
426 		    !policydb.allow_unknown)
427 			goto inval_class;
428 
429 	/*
430 	 * Kernel class and we allow unknown so pad the allow decision
431 	 * the pad will be all 1 for unknown classes.
432 	 */
433 	if (tclass <= kdefs->cts_len && policydb.allow_unknown)
434 		avd->allowed = policydb.undefined_perms[tclass - 1];
435 
436 	/*
437 	 * Not in policy. Since decision is completed (all 1 or all 0) return.
438 	 */
439 	if (unlikely(tclass > policydb.p_classes.nprim))
440 		return 0;
441 
442 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
443 
444 	/*
445 	 * If a specific type enforcement rule was defined for
446 	 * this permission check, then use it.
447 	 */
448 	avkey.target_class = tclass;
449 	avkey.specified = AVTAB_AV;
450 	sattr = &policydb.type_attr_map[scontext->type - 1];
451 	tattr = &policydb.type_attr_map[tcontext->type - 1];
452 	ebitmap_for_each_positive_bit(sattr, snode, i) {
453 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
454 			avkey.source_type = i + 1;
455 			avkey.target_type = j + 1;
456 			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
457 			     node;
458 			     node = avtab_search_node_next(node, avkey.specified)) {
459 				if (node->key.specified == AVTAB_ALLOWED)
460 					avd->allowed |= node->datum.data;
461 				else if (node->key.specified == AVTAB_AUDITALLOW)
462 					avd->auditallow |= node->datum.data;
463 				else if (node->key.specified == AVTAB_AUDITDENY)
464 					avd->auditdeny &= node->datum.data;
465 			}
466 
467 			/* Check conditional av table for additional permissions */
468 			cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
469 
470 		}
471 	}
472 
473 	/*
474 	 * Remove any permissions prohibited by a constraint (this includes
475 	 * the MLS policy).
476 	 */
477 	constraint = tclass_datum->constraints;
478 	while (constraint) {
479 		if ((constraint->permissions & (avd->allowed)) &&
480 		    !constraint_expr_eval(scontext, tcontext, NULL,
481 					  constraint->expr)) {
482 			avd->allowed = (avd->allowed) & ~(constraint->permissions);
483 		}
484 		constraint = constraint->next;
485 	}
486 
487 	/*
488 	 * If checking process transition permission and the
489 	 * role is changing, then check the (current_role, new_role)
490 	 * pair.
491 	 */
492 	if (tclass == SECCLASS_PROCESS &&
493 	    (avd->allowed & (PROCESS__TRANSITION | PROCESS__DYNTRANSITION)) &&
494 	    scontext->role != tcontext->role) {
495 		for (ra = policydb.role_allow; ra; ra = ra->next) {
496 			if (scontext->role == ra->role &&
497 			    tcontext->role == ra->new_role)
498 				break;
499 		}
500 		if (!ra)
501 			avd->allowed = (avd->allowed) & ~(PROCESS__TRANSITION |
502 							PROCESS__DYNTRANSITION);
503 	}
504 
505 	/*
506 	 * If the given source and target types have boundary
507 	 * constraint, lazy checks have to mask any violated
508 	 * permission and notice it to userspace via audit.
509 	 */
510 	type_attribute_bounds_av(scontext, tcontext,
511 				 tclass, requested, avd);
512 
513 	return 0;
514 
515 inval_class:
516 	if (!tclass || tclass > kdefs->cts_len ||
517 	    !kdefs->class_to_string[tclass]) {
518 		if (printk_ratelimit())
519 			printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
520 			       __func__, tclass);
521 		return -EINVAL;
522 	}
523 
524 	/*
525 	 * Known to the kernel, but not to the policy.
526 	 * Handle as a denial (allowed is 0).
527 	 */
528 	return 0;
529 }
530 
531 /*
532  * Given a sid find if the type has the permissive flag set
533  */
534 int security_permissive_sid(u32 sid)
535 {
536 	struct context *context;
537 	u32 type;
538 	int rc;
539 
540 	read_lock(&policy_rwlock);
541 
542 	context = sidtab_search(&sidtab, sid);
543 	BUG_ON(!context);
544 
545 	type = context->type;
546 	/*
547 	 * we are intentionally using type here, not type-1, the 0th bit may
548 	 * someday indicate that we are globally setting permissive in policy.
549 	 */
550 	rc = ebitmap_get_bit(&policydb.permissive_map, type);
551 
552 	read_unlock(&policy_rwlock);
553 	return rc;
554 }
555 
556 static int security_validtrans_handle_fail(struct context *ocontext,
557 					   struct context *ncontext,
558 					   struct context *tcontext,
559 					   u16 tclass)
560 {
561 	char *o = NULL, *n = NULL, *t = NULL;
562 	u32 olen, nlen, tlen;
563 
564 	if (context_struct_to_string(ocontext, &o, &olen) < 0)
565 		goto out;
566 	if (context_struct_to_string(ncontext, &n, &nlen) < 0)
567 		goto out;
568 	if (context_struct_to_string(tcontext, &t, &tlen) < 0)
569 		goto out;
570 	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
571 		  "security_validate_transition:  denied for"
572 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
573 		  o, n, t, policydb.p_class_val_to_name[tclass-1]);
574 out:
575 	kfree(o);
576 	kfree(n);
577 	kfree(t);
578 
579 	if (!selinux_enforcing)
580 		return 0;
581 	return -EPERM;
582 }
583 
584 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
585 				 u16 tclass)
586 {
587 	struct context *ocontext;
588 	struct context *ncontext;
589 	struct context *tcontext;
590 	struct class_datum *tclass_datum;
591 	struct constraint_node *constraint;
592 	int rc = 0;
593 
594 	if (!ss_initialized)
595 		return 0;
596 
597 	read_lock(&policy_rwlock);
598 
599 	/*
600 	 * Remap extended Netlink classes for old policy versions.
601 	 * Do this here rather than socket_type_to_security_class()
602 	 * in case a newer policy version is loaded, allowing sockets
603 	 * to remain in the correct class.
604 	 */
605 	if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
606 		if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
607 		    tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
608 			tclass = SECCLASS_NETLINK_SOCKET;
609 
610 	if (!tclass || tclass > policydb.p_classes.nprim) {
611 		printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
612 			__func__, tclass);
613 		rc = -EINVAL;
614 		goto out;
615 	}
616 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
617 
618 	ocontext = sidtab_search(&sidtab, oldsid);
619 	if (!ocontext) {
620 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
621 			__func__, oldsid);
622 		rc = -EINVAL;
623 		goto out;
624 	}
625 
626 	ncontext = sidtab_search(&sidtab, newsid);
627 	if (!ncontext) {
628 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
629 			__func__, newsid);
630 		rc = -EINVAL;
631 		goto out;
632 	}
633 
634 	tcontext = sidtab_search(&sidtab, tasksid);
635 	if (!tcontext) {
636 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
637 			__func__, tasksid);
638 		rc = -EINVAL;
639 		goto out;
640 	}
641 
642 	constraint = tclass_datum->validatetrans;
643 	while (constraint) {
644 		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
645 					  constraint->expr)) {
646 			rc = security_validtrans_handle_fail(ocontext, ncontext,
647 							     tcontext, tclass);
648 			goto out;
649 		}
650 		constraint = constraint->next;
651 	}
652 
653 out:
654 	read_unlock(&policy_rwlock);
655 	return rc;
656 }
657 
658 /*
659  * security_bounded_transition - check whether the given
660  * transition is directed to bounded, or not.
661  * It returns 0, if @newsid is bounded by @oldsid.
662  * Otherwise, it returns error code.
663  *
664  * @oldsid : current security identifier
665  * @newsid : destinated security identifier
666  */
667 int security_bounded_transition(u32 old_sid, u32 new_sid)
668 {
669 	struct context *old_context, *new_context;
670 	struct type_datum *type;
671 	int index;
672 	int rc = -EINVAL;
673 
674 	read_lock(&policy_rwlock);
675 
676 	old_context = sidtab_search(&sidtab, old_sid);
677 	if (!old_context) {
678 		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
679 		       __func__, old_sid);
680 		goto out;
681 	}
682 
683 	new_context = sidtab_search(&sidtab, new_sid);
684 	if (!new_context) {
685 		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
686 		       __func__, new_sid);
687 		goto out;
688 	}
689 
690 	/* type/domain unchaned */
691 	if (old_context->type == new_context->type) {
692 		rc = 0;
693 		goto out;
694 	}
695 
696 	index = new_context->type;
697 	while (true) {
698 		type = policydb.type_val_to_struct[index - 1];
699 		BUG_ON(!type);
700 
701 		/* not bounded anymore */
702 		if (!type->bounds) {
703 			rc = -EPERM;
704 			break;
705 		}
706 
707 		/* @newsid is bounded by @oldsid */
708 		if (type->bounds == old_context->type) {
709 			rc = 0;
710 			break;
711 		}
712 		index = type->bounds;
713 	}
714 out:
715 	read_unlock(&policy_rwlock);
716 
717 	return rc;
718 }
719 
720 
721 /**
722  * security_compute_av - Compute access vector decisions.
723  * @ssid: source security identifier
724  * @tsid: target security identifier
725  * @tclass: target security class
726  * @requested: requested permissions
727  * @avd: access vector decisions
728  *
729  * Compute a set of access vector decisions based on the
730  * SID pair (@ssid, @tsid) for the permissions in @tclass.
731  * Return -%EINVAL if any of the parameters are invalid or %0
732  * if the access vector decisions were computed successfully.
733  */
734 int security_compute_av(u32 ssid,
735 			u32 tsid,
736 			u16 tclass,
737 			u32 requested,
738 			struct av_decision *avd)
739 {
740 	struct context *scontext = NULL, *tcontext = NULL;
741 	int rc = 0;
742 
743 	if (!ss_initialized) {
744 		avd->allowed = 0xffffffff;
745 		avd->auditallow = 0;
746 		avd->auditdeny = 0xffffffff;
747 		avd->seqno = latest_granting;
748 		return 0;
749 	}
750 
751 	read_lock(&policy_rwlock);
752 
753 	scontext = sidtab_search(&sidtab, ssid);
754 	if (!scontext) {
755 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
756 		       __func__, ssid);
757 		rc = -EINVAL;
758 		goto out;
759 	}
760 	tcontext = sidtab_search(&sidtab, tsid);
761 	if (!tcontext) {
762 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
763 		       __func__, tsid);
764 		rc = -EINVAL;
765 		goto out;
766 	}
767 
768 	rc = context_struct_compute_av(scontext, tcontext, tclass,
769 				       requested, avd);
770 out:
771 	read_unlock(&policy_rwlock);
772 	return rc;
773 }
774 
775 /*
776  * Write the security context string representation of
777  * the context structure `context' into a dynamically
778  * allocated string of the correct size.  Set `*scontext'
779  * to point to this string and set `*scontext_len' to
780  * the length of the string.
781  */
782 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
783 {
784 	char *scontextp;
785 
786 	*scontext = NULL;
787 	*scontext_len = 0;
788 
789 	if (context->len) {
790 		*scontext_len = context->len;
791 		*scontext = kstrdup(context->str, GFP_ATOMIC);
792 		if (!(*scontext))
793 			return -ENOMEM;
794 		return 0;
795 	}
796 
797 	/* Compute the size of the context. */
798 	*scontext_len += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1;
799 	*scontext_len += strlen(policydb.p_role_val_to_name[context->role - 1]) + 1;
800 	*scontext_len += strlen(policydb.p_type_val_to_name[context->type - 1]) + 1;
801 	*scontext_len += mls_compute_context_len(context);
802 
803 	/* Allocate space for the context; caller must free this space. */
804 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
805 	if (!scontextp)
806 		return -ENOMEM;
807 	*scontext = scontextp;
808 
809 	/*
810 	 * Copy the user name, role name and type name into the context.
811 	 */
812 	sprintf(scontextp, "%s:%s:%s",
813 		policydb.p_user_val_to_name[context->user - 1],
814 		policydb.p_role_val_to_name[context->role - 1],
815 		policydb.p_type_val_to_name[context->type - 1]);
816 	scontextp += strlen(policydb.p_user_val_to_name[context->user - 1]) +
817 		     1 + strlen(policydb.p_role_val_to_name[context->role - 1]) +
818 		     1 + strlen(policydb.p_type_val_to_name[context->type - 1]);
819 
820 	mls_sid_to_context(context, &scontextp);
821 
822 	*scontextp = 0;
823 
824 	return 0;
825 }
826 
827 #include "initial_sid_to_string.h"
828 
829 const char *security_get_initial_sid_context(u32 sid)
830 {
831 	if (unlikely(sid > SECINITSID_NUM))
832 		return NULL;
833 	return initial_sid_to_string[sid];
834 }
835 
836 static int security_sid_to_context_core(u32 sid, char **scontext,
837 					u32 *scontext_len, int force)
838 {
839 	struct context *context;
840 	int rc = 0;
841 
842 	*scontext = NULL;
843 	*scontext_len  = 0;
844 
845 	if (!ss_initialized) {
846 		if (sid <= SECINITSID_NUM) {
847 			char *scontextp;
848 
849 			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
850 			scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
851 			if (!scontextp) {
852 				rc = -ENOMEM;
853 				goto out;
854 			}
855 			strcpy(scontextp, initial_sid_to_string[sid]);
856 			*scontext = scontextp;
857 			goto out;
858 		}
859 		printk(KERN_ERR "SELinux: %s:  called before initial "
860 		       "load_policy on unknown SID %d\n", __func__, sid);
861 		rc = -EINVAL;
862 		goto out;
863 	}
864 	read_lock(&policy_rwlock);
865 	if (force)
866 		context = sidtab_search_force(&sidtab, sid);
867 	else
868 		context = sidtab_search(&sidtab, sid);
869 	if (!context) {
870 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
871 			__func__, sid);
872 		rc = -EINVAL;
873 		goto out_unlock;
874 	}
875 	rc = context_struct_to_string(context, scontext, scontext_len);
876 out_unlock:
877 	read_unlock(&policy_rwlock);
878 out:
879 	return rc;
880 
881 }
882 
883 /**
884  * security_sid_to_context - Obtain a context for a given SID.
885  * @sid: security identifier, SID
886  * @scontext: security context
887  * @scontext_len: length in bytes
888  *
889  * Write the string representation of the context associated with @sid
890  * into a dynamically allocated string of the correct size.  Set @scontext
891  * to point to this string and set @scontext_len to the length of the string.
892  */
893 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
894 {
895 	return security_sid_to_context_core(sid, scontext, scontext_len, 0);
896 }
897 
898 int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
899 {
900 	return security_sid_to_context_core(sid, scontext, scontext_len, 1);
901 }
902 
903 /*
904  * Caveat:  Mutates scontext.
905  */
906 static int string_to_context_struct(struct policydb *pol,
907 				    struct sidtab *sidtabp,
908 				    char *scontext,
909 				    u32 scontext_len,
910 				    struct context *ctx,
911 				    u32 def_sid)
912 {
913 	struct role_datum *role;
914 	struct type_datum *typdatum;
915 	struct user_datum *usrdatum;
916 	char *scontextp, *p, oldc;
917 	int rc = 0;
918 
919 	context_init(ctx);
920 
921 	/* Parse the security context. */
922 
923 	rc = -EINVAL;
924 	scontextp = (char *) scontext;
925 
926 	/* Extract the user. */
927 	p = scontextp;
928 	while (*p && *p != ':')
929 		p++;
930 
931 	if (*p == 0)
932 		goto out;
933 
934 	*p++ = 0;
935 
936 	usrdatum = hashtab_search(pol->p_users.table, scontextp);
937 	if (!usrdatum)
938 		goto out;
939 
940 	ctx->user = usrdatum->value;
941 
942 	/* Extract role. */
943 	scontextp = p;
944 	while (*p && *p != ':')
945 		p++;
946 
947 	if (*p == 0)
948 		goto out;
949 
950 	*p++ = 0;
951 
952 	role = hashtab_search(pol->p_roles.table, scontextp);
953 	if (!role)
954 		goto out;
955 	ctx->role = role->value;
956 
957 	/* Extract type. */
958 	scontextp = p;
959 	while (*p && *p != ':')
960 		p++;
961 	oldc = *p;
962 	*p++ = 0;
963 
964 	typdatum = hashtab_search(pol->p_types.table, scontextp);
965 	if (!typdatum || typdatum->attribute)
966 		goto out;
967 
968 	ctx->type = typdatum->value;
969 
970 	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
971 	if (rc)
972 		goto out;
973 
974 	if ((p - scontext) < scontext_len) {
975 		rc = -EINVAL;
976 		goto out;
977 	}
978 
979 	/* Check the validity of the new context. */
980 	if (!policydb_context_isvalid(pol, ctx)) {
981 		rc = -EINVAL;
982 		goto out;
983 	}
984 	rc = 0;
985 out:
986 	if (rc)
987 		context_destroy(ctx);
988 	return rc;
989 }
990 
991 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
992 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
993 					int force)
994 {
995 	char *scontext2, *str = NULL;
996 	struct context context;
997 	int rc = 0;
998 
999 	if (!ss_initialized) {
1000 		int i;
1001 
1002 		for (i = 1; i < SECINITSID_NUM; i++) {
1003 			if (!strcmp(initial_sid_to_string[i], scontext)) {
1004 				*sid = i;
1005 				return 0;
1006 			}
1007 		}
1008 		*sid = SECINITSID_KERNEL;
1009 		return 0;
1010 	}
1011 	*sid = SECSID_NULL;
1012 
1013 	/* Copy the string so that we can modify the copy as we parse it. */
1014 	scontext2 = kmalloc(scontext_len+1, gfp_flags);
1015 	if (!scontext2)
1016 		return -ENOMEM;
1017 	memcpy(scontext2, scontext, scontext_len);
1018 	scontext2[scontext_len] = 0;
1019 
1020 	if (force) {
1021 		/* Save another copy for storing in uninterpreted form */
1022 		str = kstrdup(scontext2, gfp_flags);
1023 		if (!str) {
1024 			kfree(scontext2);
1025 			return -ENOMEM;
1026 		}
1027 	}
1028 
1029 	read_lock(&policy_rwlock);
1030 	rc = string_to_context_struct(&policydb, &sidtab,
1031 				      scontext2, scontext_len,
1032 				      &context, def_sid);
1033 	if (rc == -EINVAL && force) {
1034 		context.str = str;
1035 		context.len = scontext_len;
1036 		str = NULL;
1037 	} else if (rc)
1038 		goto out;
1039 	rc = sidtab_context_to_sid(&sidtab, &context, sid);
1040 	context_destroy(&context);
1041 out:
1042 	read_unlock(&policy_rwlock);
1043 	kfree(scontext2);
1044 	kfree(str);
1045 	return rc;
1046 }
1047 
1048 /**
1049  * security_context_to_sid - Obtain a SID for a given security context.
1050  * @scontext: security context
1051  * @scontext_len: length in bytes
1052  * @sid: security identifier, SID
1053  *
1054  * Obtains a SID associated with the security context that
1055  * has the string representation specified by @scontext.
1056  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1057  * memory is available, or 0 on success.
1058  */
1059 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
1060 {
1061 	return security_context_to_sid_core(scontext, scontext_len,
1062 					    sid, SECSID_NULL, GFP_KERNEL, 0);
1063 }
1064 
1065 /**
1066  * security_context_to_sid_default - Obtain a SID for a given security context,
1067  * falling back to specified default if needed.
1068  *
1069  * @scontext: security context
1070  * @scontext_len: length in bytes
1071  * @sid: security identifier, SID
1072  * @def_sid: default SID to assign on error
1073  *
1074  * Obtains a SID associated with the security context that
1075  * has the string representation specified by @scontext.
1076  * The default SID is passed to the MLS layer to be used to allow
1077  * kernel labeling of the MLS field if the MLS field is not present
1078  * (for upgrading to MLS without full relabel).
1079  * Implicitly forces adding of the context even if it cannot be mapped yet.
1080  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1081  * memory is available, or 0 on success.
1082  */
1083 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1084 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1085 {
1086 	return security_context_to_sid_core(scontext, scontext_len,
1087 					    sid, def_sid, gfp_flags, 1);
1088 }
1089 
1090 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1091 				  u32 *sid)
1092 {
1093 	return security_context_to_sid_core(scontext, scontext_len,
1094 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1095 }
1096 
1097 static int compute_sid_handle_invalid_context(
1098 	struct context *scontext,
1099 	struct context *tcontext,
1100 	u16 tclass,
1101 	struct context *newcontext)
1102 {
1103 	char *s = NULL, *t = NULL, *n = NULL;
1104 	u32 slen, tlen, nlen;
1105 
1106 	if (context_struct_to_string(scontext, &s, &slen) < 0)
1107 		goto out;
1108 	if (context_struct_to_string(tcontext, &t, &tlen) < 0)
1109 		goto out;
1110 	if (context_struct_to_string(newcontext, &n, &nlen) < 0)
1111 		goto out;
1112 	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1113 		  "security_compute_sid:  invalid context %s"
1114 		  " for scontext=%s"
1115 		  " tcontext=%s"
1116 		  " tclass=%s",
1117 		  n, s, t, policydb.p_class_val_to_name[tclass-1]);
1118 out:
1119 	kfree(s);
1120 	kfree(t);
1121 	kfree(n);
1122 	if (!selinux_enforcing)
1123 		return 0;
1124 	return -EACCES;
1125 }
1126 
1127 static int security_compute_sid(u32 ssid,
1128 				u32 tsid,
1129 				u16 tclass,
1130 				u32 specified,
1131 				u32 *out_sid)
1132 {
1133 	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1134 	struct role_trans *roletr = NULL;
1135 	struct avtab_key avkey;
1136 	struct avtab_datum *avdatum;
1137 	struct avtab_node *node;
1138 	int rc = 0;
1139 
1140 	if (!ss_initialized) {
1141 		switch (tclass) {
1142 		case SECCLASS_PROCESS:
1143 			*out_sid = ssid;
1144 			break;
1145 		default:
1146 			*out_sid = tsid;
1147 			break;
1148 		}
1149 		goto out;
1150 	}
1151 
1152 	context_init(&newcontext);
1153 
1154 	read_lock(&policy_rwlock);
1155 
1156 	scontext = sidtab_search(&sidtab, ssid);
1157 	if (!scontext) {
1158 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1159 		       __func__, ssid);
1160 		rc = -EINVAL;
1161 		goto out_unlock;
1162 	}
1163 	tcontext = sidtab_search(&sidtab, tsid);
1164 	if (!tcontext) {
1165 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1166 		       __func__, tsid);
1167 		rc = -EINVAL;
1168 		goto out_unlock;
1169 	}
1170 
1171 	/* Set the user identity. */
1172 	switch (specified) {
1173 	case AVTAB_TRANSITION:
1174 	case AVTAB_CHANGE:
1175 		/* Use the process user identity. */
1176 		newcontext.user = scontext->user;
1177 		break;
1178 	case AVTAB_MEMBER:
1179 		/* Use the related object owner. */
1180 		newcontext.user = tcontext->user;
1181 		break;
1182 	}
1183 
1184 	/* Set the role and type to default values. */
1185 	switch (tclass) {
1186 	case SECCLASS_PROCESS:
1187 		/* Use the current role and type of process. */
1188 		newcontext.role = scontext->role;
1189 		newcontext.type = scontext->type;
1190 		break;
1191 	default:
1192 		/* Use the well-defined object role. */
1193 		newcontext.role = OBJECT_R_VAL;
1194 		/* Use the type of the related object. */
1195 		newcontext.type = tcontext->type;
1196 	}
1197 
1198 	/* Look for a type transition/member/change rule. */
1199 	avkey.source_type = scontext->type;
1200 	avkey.target_type = tcontext->type;
1201 	avkey.target_class = tclass;
1202 	avkey.specified = specified;
1203 	avdatum = avtab_search(&policydb.te_avtab, &avkey);
1204 
1205 	/* If no permanent rule, also check for enabled conditional rules */
1206 	if (!avdatum) {
1207 		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1208 		for (; node; node = avtab_search_node_next(node, specified)) {
1209 			if (node->key.specified & AVTAB_ENABLED) {
1210 				avdatum = &node->datum;
1211 				break;
1212 			}
1213 		}
1214 	}
1215 
1216 	if (avdatum) {
1217 		/* Use the type from the type transition/member/change rule. */
1218 		newcontext.type = avdatum->data;
1219 	}
1220 
1221 	/* Check for class-specific changes. */
1222 	switch (tclass) {
1223 	case SECCLASS_PROCESS:
1224 		if (specified & AVTAB_TRANSITION) {
1225 			/* Look for a role transition rule. */
1226 			for (roletr = policydb.role_tr; roletr;
1227 			     roletr = roletr->next) {
1228 				if (roletr->role == scontext->role &&
1229 				    roletr->type == tcontext->type) {
1230 					/* Use the role transition rule. */
1231 					newcontext.role = roletr->new_role;
1232 					break;
1233 				}
1234 			}
1235 		}
1236 		break;
1237 	default:
1238 		break;
1239 	}
1240 
1241 	/* Set the MLS attributes.
1242 	   This is done last because it may allocate memory. */
1243 	rc = mls_compute_sid(scontext, tcontext, tclass, specified, &newcontext);
1244 	if (rc)
1245 		goto out_unlock;
1246 
1247 	/* Check the validity of the context. */
1248 	if (!policydb_context_isvalid(&policydb, &newcontext)) {
1249 		rc = compute_sid_handle_invalid_context(scontext,
1250 							tcontext,
1251 							tclass,
1252 							&newcontext);
1253 		if (rc)
1254 			goto out_unlock;
1255 	}
1256 	/* Obtain the sid for the context. */
1257 	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1258 out_unlock:
1259 	read_unlock(&policy_rwlock);
1260 	context_destroy(&newcontext);
1261 out:
1262 	return rc;
1263 }
1264 
1265 /**
1266  * security_transition_sid - Compute the SID for a new subject/object.
1267  * @ssid: source security identifier
1268  * @tsid: target security identifier
1269  * @tclass: target security class
1270  * @out_sid: security identifier for new subject/object
1271  *
1272  * Compute a SID to use for labeling a new subject or object in the
1273  * class @tclass based on a SID pair (@ssid, @tsid).
1274  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1275  * if insufficient memory is available, or %0 if the new SID was
1276  * computed successfully.
1277  */
1278 int security_transition_sid(u32 ssid,
1279 			    u32 tsid,
1280 			    u16 tclass,
1281 			    u32 *out_sid)
1282 {
1283 	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, out_sid);
1284 }
1285 
1286 /**
1287  * security_member_sid - Compute the SID for member selection.
1288  * @ssid: source security identifier
1289  * @tsid: target security identifier
1290  * @tclass: target security class
1291  * @out_sid: security identifier for selected member
1292  *
1293  * Compute a SID to use when selecting a member of a polyinstantiated
1294  * object of class @tclass based on a SID pair (@ssid, @tsid).
1295  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1296  * if insufficient memory is available, or %0 if the SID was
1297  * computed successfully.
1298  */
1299 int security_member_sid(u32 ssid,
1300 			u32 tsid,
1301 			u16 tclass,
1302 			u32 *out_sid)
1303 {
1304 	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid);
1305 }
1306 
1307 /**
1308  * security_change_sid - Compute the SID for object relabeling.
1309  * @ssid: source security identifier
1310  * @tsid: target security identifier
1311  * @tclass: target security class
1312  * @out_sid: security identifier for selected member
1313  *
1314  * Compute a SID to use for relabeling an object of class @tclass
1315  * based on a SID pair (@ssid, @tsid).
1316  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1317  * if insufficient memory is available, or %0 if the SID was
1318  * computed successfully.
1319  */
1320 int security_change_sid(u32 ssid,
1321 			u32 tsid,
1322 			u16 tclass,
1323 			u32 *out_sid)
1324 {
1325 	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid);
1326 }
1327 
1328 /*
1329  * Verify that each kernel class that is defined in the
1330  * policy is correct
1331  */
1332 static int validate_classes(struct policydb *p)
1333 {
1334 	int i, j;
1335 	struct class_datum *cladatum;
1336 	struct perm_datum *perdatum;
1337 	u32 nprim, tmp, common_pts_len, perm_val, pol_val;
1338 	u16 class_val;
1339 	const struct selinux_class_perm *kdefs = &selinux_class_perm;
1340 	const char *def_class, *def_perm, *pol_class;
1341 	struct symtab *perms;
1342 	bool print_unknown_handle = 0;
1343 
1344 	if (p->allow_unknown) {
1345 		u32 num_classes = kdefs->cts_len;
1346 		p->undefined_perms = kcalloc(num_classes, sizeof(u32), GFP_KERNEL);
1347 		if (!p->undefined_perms)
1348 			return -ENOMEM;
1349 	}
1350 
1351 	for (i = 1; i < kdefs->cts_len; i++) {
1352 		def_class = kdefs->class_to_string[i];
1353 		if (!def_class)
1354 			continue;
1355 		if (i > p->p_classes.nprim) {
1356 			printk(KERN_INFO
1357 			       "SELinux:  class %s not defined in policy\n",
1358 			       def_class);
1359 			if (p->reject_unknown)
1360 				return -EINVAL;
1361 			if (p->allow_unknown)
1362 				p->undefined_perms[i-1] = ~0U;
1363 			print_unknown_handle = 1;
1364 			continue;
1365 		}
1366 		pol_class = p->p_class_val_to_name[i-1];
1367 		if (strcmp(pol_class, def_class)) {
1368 			printk(KERN_ERR
1369 			       "SELinux:  class %d is incorrect, found %s but should be %s\n",
1370 			       i, pol_class, def_class);
1371 			return -EINVAL;
1372 		}
1373 	}
1374 	for (i = 0; i < kdefs->av_pts_len; i++) {
1375 		class_val = kdefs->av_perm_to_string[i].tclass;
1376 		perm_val = kdefs->av_perm_to_string[i].value;
1377 		def_perm = kdefs->av_perm_to_string[i].name;
1378 		if (class_val > p->p_classes.nprim)
1379 			continue;
1380 		pol_class = p->p_class_val_to_name[class_val-1];
1381 		cladatum = hashtab_search(p->p_classes.table, pol_class);
1382 		BUG_ON(!cladatum);
1383 		perms = &cladatum->permissions;
1384 		nprim = 1 << (perms->nprim - 1);
1385 		if (perm_val > nprim) {
1386 			printk(KERN_INFO
1387 			       "SELinux:  permission %s in class %s not defined in policy\n",
1388 			       def_perm, pol_class);
1389 			if (p->reject_unknown)
1390 				return -EINVAL;
1391 			if (p->allow_unknown)
1392 				p->undefined_perms[class_val-1] |= perm_val;
1393 			print_unknown_handle = 1;
1394 			continue;
1395 		}
1396 		perdatum = hashtab_search(perms->table, def_perm);
1397 		if (perdatum == NULL) {
1398 			printk(KERN_ERR
1399 			       "SELinux:  permission %s in class %s not found in policy, bad policy\n",
1400 			       def_perm, pol_class);
1401 			return -EINVAL;
1402 		}
1403 		pol_val = 1 << (perdatum->value - 1);
1404 		if (pol_val != perm_val) {
1405 			printk(KERN_ERR
1406 			       "SELinux:  permission %s in class %s has incorrect value\n",
1407 			       def_perm, pol_class);
1408 			return -EINVAL;
1409 		}
1410 	}
1411 	for (i = 0; i < kdefs->av_inherit_len; i++) {
1412 		class_val = kdefs->av_inherit[i].tclass;
1413 		if (class_val > p->p_classes.nprim)
1414 			continue;
1415 		pol_class = p->p_class_val_to_name[class_val-1];
1416 		cladatum = hashtab_search(p->p_classes.table, pol_class);
1417 		BUG_ON(!cladatum);
1418 		if (!cladatum->comdatum) {
1419 			printk(KERN_ERR
1420 			       "SELinux:  class %s should have an inherits clause but does not\n",
1421 			       pol_class);
1422 			return -EINVAL;
1423 		}
1424 		tmp = kdefs->av_inherit[i].common_base;
1425 		common_pts_len = 0;
1426 		while (!(tmp & 0x01)) {
1427 			common_pts_len++;
1428 			tmp >>= 1;
1429 		}
1430 		perms = &cladatum->comdatum->permissions;
1431 		for (j = 0; j < common_pts_len; j++) {
1432 			def_perm = kdefs->av_inherit[i].common_pts[j];
1433 			if (j >= perms->nprim) {
1434 				printk(KERN_INFO
1435 				       "SELinux:  permission %s in class %s not defined in policy\n",
1436 				       def_perm, pol_class);
1437 				if (p->reject_unknown)
1438 					return -EINVAL;
1439 				if (p->allow_unknown)
1440 					p->undefined_perms[class_val-1] |= (1 << j);
1441 				print_unknown_handle = 1;
1442 				continue;
1443 			}
1444 			perdatum = hashtab_search(perms->table, def_perm);
1445 			if (perdatum == NULL) {
1446 				printk(KERN_ERR
1447 				       "SELinux:  permission %s in class %s not found in policy, bad policy\n",
1448 				       def_perm, pol_class);
1449 				return -EINVAL;
1450 			}
1451 			if (perdatum->value != j + 1) {
1452 				printk(KERN_ERR
1453 				       "SELinux:  permission %s in class %s has incorrect value\n",
1454 				       def_perm, pol_class);
1455 				return -EINVAL;
1456 			}
1457 		}
1458 	}
1459 	if (print_unknown_handle)
1460 		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
1461 			(security_get_allow_unknown() ? "allowed" : "denied"));
1462 	return 0;
1463 }
1464 
1465 /* Clone the SID into the new SID table. */
1466 static int clone_sid(u32 sid,
1467 		     struct context *context,
1468 		     void *arg)
1469 {
1470 	struct sidtab *s = arg;
1471 
1472 	return sidtab_insert(s, sid, context);
1473 }
1474 
1475 static inline int convert_context_handle_invalid_context(struct context *context)
1476 {
1477 	int rc = 0;
1478 
1479 	if (selinux_enforcing) {
1480 		rc = -EINVAL;
1481 	} else {
1482 		char *s;
1483 		u32 len;
1484 
1485 		if (!context_struct_to_string(context, &s, &len)) {
1486 			printk(KERN_WARNING
1487 		       "SELinux:  Context %s would be invalid if enforcing\n",
1488 			       s);
1489 			kfree(s);
1490 		}
1491 	}
1492 	return rc;
1493 }
1494 
1495 struct convert_context_args {
1496 	struct policydb *oldp;
1497 	struct policydb *newp;
1498 };
1499 
1500 /*
1501  * Convert the values in the security context
1502  * structure `c' from the values specified
1503  * in the policy `p->oldp' to the values specified
1504  * in the policy `p->newp'.  Verify that the
1505  * context is valid under the new policy.
1506  */
1507 static int convert_context(u32 key,
1508 			   struct context *c,
1509 			   void *p)
1510 {
1511 	struct convert_context_args *args;
1512 	struct context oldc;
1513 	struct role_datum *role;
1514 	struct type_datum *typdatum;
1515 	struct user_datum *usrdatum;
1516 	char *s;
1517 	u32 len;
1518 	int rc;
1519 
1520 	args = p;
1521 
1522 	if (c->str) {
1523 		struct context ctx;
1524 		s = kstrdup(c->str, GFP_KERNEL);
1525 		if (!s) {
1526 			rc = -ENOMEM;
1527 			goto out;
1528 		}
1529 		rc = string_to_context_struct(args->newp, NULL, s,
1530 					      c->len, &ctx, SECSID_NULL);
1531 		kfree(s);
1532 		if (!rc) {
1533 			printk(KERN_INFO
1534 		       "SELinux:  Context %s became valid (mapped).\n",
1535 			       c->str);
1536 			/* Replace string with mapped representation. */
1537 			kfree(c->str);
1538 			memcpy(c, &ctx, sizeof(*c));
1539 			goto out;
1540 		} else if (rc == -EINVAL) {
1541 			/* Retain string representation for later mapping. */
1542 			rc = 0;
1543 			goto out;
1544 		} else {
1545 			/* Other error condition, e.g. ENOMEM. */
1546 			printk(KERN_ERR
1547 		       "SELinux:   Unable to map context %s, rc = %d.\n",
1548 			       c->str, -rc);
1549 			goto out;
1550 		}
1551 	}
1552 
1553 	rc = context_cpy(&oldc, c);
1554 	if (rc)
1555 		goto out;
1556 
1557 	rc = -EINVAL;
1558 
1559 	/* Convert the user. */
1560 	usrdatum = hashtab_search(args->newp->p_users.table,
1561 				  args->oldp->p_user_val_to_name[c->user - 1]);
1562 	if (!usrdatum)
1563 		goto bad;
1564 	c->user = usrdatum->value;
1565 
1566 	/* Convert the role. */
1567 	role = hashtab_search(args->newp->p_roles.table,
1568 			      args->oldp->p_role_val_to_name[c->role - 1]);
1569 	if (!role)
1570 		goto bad;
1571 	c->role = role->value;
1572 
1573 	/* Convert the type. */
1574 	typdatum = hashtab_search(args->newp->p_types.table,
1575 				  args->oldp->p_type_val_to_name[c->type - 1]);
1576 	if (!typdatum)
1577 		goto bad;
1578 	c->type = typdatum->value;
1579 
1580 	rc = mls_convert_context(args->oldp, args->newp, c);
1581 	if (rc)
1582 		goto bad;
1583 
1584 	/* Check the validity of the new context. */
1585 	if (!policydb_context_isvalid(args->newp, c)) {
1586 		rc = convert_context_handle_invalid_context(&oldc);
1587 		if (rc)
1588 			goto bad;
1589 	}
1590 
1591 	context_destroy(&oldc);
1592 	rc = 0;
1593 out:
1594 	return rc;
1595 bad:
1596 	/* Map old representation to string and save it. */
1597 	if (context_struct_to_string(&oldc, &s, &len))
1598 		return -ENOMEM;
1599 	context_destroy(&oldc);
1600 	context_destroy(c);
1601 	c->str = s;
1602 	c->len = len;
1603 	printk(KERN_INFO
1604 	       "SELinux:  Context %s became invalid (unmapped).\n",
1605 	       c->str);
1606 	rc = 0;
1607 	goto out;
1608 }
1609 
1610 static void security_load_policycaps(void)
1611 {
1612 	selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1613 						  POLICYDB_CAPABILITY_NETPEER);
1614 	selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1615 						  POLICYDB_CAPABILITY_OPENPERM);
1616 }
1617 
1618 extern void selinux_complete_init(void);
1619 static int security_preserve_bools(struct policydb *p);
1620 
1621 /**
1622  * security_load_policy - Load a security policy configuration.
1623  * @data: binary policy data
1624  * @len: length of data in bytes
1625  *
1626  * Load a new set of security policy configuration data,
1627  * validate it and convert the SID table as necessary.
1628  * This function will flush the access vector cache after
1629  * loading the new policy.
1630  */
1631 int security_load_policy(void *data, size_t len)
1632 {
1633 	struct policydb oldpolicydb, newpolicydb;
1634 	struct sidtab oldsidtab, newsidtab;
1635 	struct convert_context_args args;
1636 	u32 seqno;
1637 	int rc = 0;
1638 	struct policy_file file = { data, len }, *fp = &file;
1639 
1640 	if (!ss_initialized) {
1641 		avtab_cache_init();
1642 		if (policydb_read(&policydb, fp)) {
1643 			avtab_cache_destroy();
1644 			return -EINVAL;
1645 		}
1646 		if (policydb_load_isids(&policydb, &sidtab)) {
1647 			policydb_destroy(&policydb);
1648 			avtab_cache_destroy();
1649 			return -EINVAL;
1650 		}
1651 		/* Verify that the kernel defined classes are correct. */
1652 		if (validate_classes(&policydb)) {
1653 			printk(KERN_ERR
1654 			       "SELinux:  the definition of a class is incorrect\n");
1655 			sidtab_destroy(&sidtab);
1656 			policydb_destroy(&policydb);
1657 			avtab_cache_destroy();
1658 			return -EINVAL;
1659 		}
1660 		security_load_policycaps();
1661 		policydb_loaded_version = policydb.policyvers;
1662 		ss_initialized = 1;
1663 		seqno = ++latest_granting;
1664 		selinux_complete_init();
1665 		avc_ss_reset(seqno);
1666 		selnl_notify_policyload(seqno);
1667 		selinux_netlbl_cache_invalidate();
1668 		selinux_xfrm_notify_policyload();
1669 		return 0;
1670 	}
1671 
1672 #if 0
1673 	sidtab_hash_eval(&sidtab, "sids");
1674 #endif
1675 
1676 	if (policydb_read(&newpolicydb, fp))
1677 		return -EINVAL;
1678 
1679 	if (sidtab_init(&newsidtab)) {
1680 		policydb_destroy(&newpolicydb);
1681 		return -ENOMEM;
1682 	}
1683 
1684 	/* Verify that the kernel defined classes are correct. */
1685 	if (validate_classes(&newpolicydb)) {
1686 		printk(KERN_ERR
1687 		       "SELinux:  the definition of a class is incorrect\n");
1688 		rc = -EINVAL;
1689 		goto err;
1690 	}
1691 
1692 	rc = security_preserve_bools(&newpolicydb);
1693 	if (rc) {
1694 		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
1695 		goto err;
1696 	}
1697 
1698 	/* Clone the SID table. */
1699 	sidtab_shutdown(&sidtab);
1700 	if (sidtab_map(&sidtab, clone_sid, &newsidtab)) {
1701 		rc = -ENOMEM;
1702 		goto err;
1703 	}
1704 
1705 	/*
1706 	 * Convert the internal representations of contexts
1707 	 * in the new SID table.
1708 	 */
1709 	args.oldp = &policydb;
1710 	args.newp = &newpolicydb;
1711 	rc = sidtab_map(&newsidtab, convert_context, &args);
1712 	if (rc)
1713 		goto err;
1714 
1715 	/* Save the old policydb and SID table to free later. */
1716 	memcpy(&oldpolicydb, &policydb, sizeof policydb);
1717 	sidtab_set(&oldsidtab, &sidtab);
1718 
1719 	/* Install the new policydb and SID table. */
1720 	write_lock_irq(&policy_rwlock);
1721 	memcpy(&policydb, &newpolicydb, sizeof policydb);
1722 	sidtab_set(&sidtab, &newsidtab);
1723 	security_load_policycaps();
1724 	seqno = ++latest_granting;
1725 	policydb_loaded_version = policydb.policyvers;
1726 	write_unlock_irq(&policy_rwlock);
1727 
1728 	/* Free the old policydb and SID table. */
1729 	policydb_destroy(&oldpolicydb);
1730 	sidtab_destroy(&oldsidtab);
1731 
1732 	avc_ss_reset(seqno);
1733 	selnl_notify_policyload(seqno);
1734 	selinux_netlbl_cache_invalidate();
1735 	selinux_xfrm_notify_policyload();
1736 
1737 	return 0;
1738 
1739 err:
1740 	sidtab_destroy(&newsidtab);
1741 	policydb_destroy(&newpolicydb);
1742 	return rc;
1743 
1744 }
1745 
1746 /**
1747  * security_port_sid - Obtain the SID for a port.
1748  * @protocol: protocol number
1749  * @port: port number
1750  * @out_sid: security identifier
1751  */
1752 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
1753 {
1754 	struct ocontext *c;
1755 	int rc = 0;
1756 
1757 	read_lock(&policy_rwlock);
1758 
1759 	c = policydb.ocontexts[OCON_PORT];
1760 	while (c) {
1761 		if (c->u.port.protocol == protocol &&
1762 		    c->u.port.low_port <= port &&
1763 		    c->u.port.high_port >= port)
1764 			break;
1765 		c = c->next;
1766 	}
1767 
1768 	if (c) {
1769 		if (!c->sid[0]) {
1770 			rc = sidtab_context_to_sid(&sidtab,
1771 						   &c->context[0],
1772 						   &c->sid[0]);
1773 			if (rc)
1774 				goto out;
1775 		}
1776 		*out_sid = c->sid[0];
1777 	} else {
1778 		*out_sid = SECINITSID_PORT;
1779 	}
1780 
1781 out:
1782 	read_unlock(&policy_rwlock);
1783 	return rc;
1784 }
1785 
1786 /**
1787  * security_netif_sid - Obtain the SID for a network interface.
1788  * @name: interface name
1789  * @if_sid: interface SID
1790  */
1791 int security_netif_sid(char *name, u32 *if_sid)
1792 {
1793 	int rc = 0;
1794 	struct ocontext *c;
1795 
1796 	read_lock(&policy_rwlock);
1797 
1798 	c = policydb.ocontexts[OCON_NETIF];
1799 	while (c) {
1800 		if (strcmp(name, c->u.name) == 0)
1801 			break;
1802 		c = c->next;
1803 	}
1804 
1805 	if (c) {
1806 		if (!c->sid[0] || !c->sid[1]) {
1807 			rc = sidtab_context_to_sid(&sidtab,
1808 						  &c->context[0],
1809 						  &c->sid[0]);
1810 			if (rc)
1811 				goto out;
1812 			rc = sidtab_context_to_sid(&sidtab,
1813 						   &c->context[1],
1814 						   &c->sid[1]);
1815 			if (rc)
1816 				goto out;
1817 		}
1818 		*if_sid = c->sid[0];
1819 	} else
1820 		*if_sid = SECINITSID_NETIF;
1821 
1822 out:
1823 	read_unlock(&policy_rwlock);
1824 	return rc;
1825 }
1826 
1827 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
1828 {
1829 	int i, fail = 0;
1830 
1831 	for (i = 0; i < 4; i++)
1832 		if (addr[i] != (input[i] & mask[i])) {
1833 			fail = 1;
1834 			break;
1835 		}
1836 
1837 	return !fail;
1838 }
1839 
1840 /**
1841  * security_node_sid - Obtain the SID for a node (host).
1842  * @domain: communication domain aka address family
1843  * @addrp: address
1844  * @addrlen: address length in bytes
1845  * @out_sid: security identifier
1846  */
1847 int security_node_sid(u16 domain,
1848 		      void *addrp,
1849 		      u32 addrlen,
1850 		      u32 *out_sid)
1851 {
1852 	int rc = 0;
1853 	struct ocontext *c;
1854 
1855 	read_lock(&policy_rwlock);
1856 
1857 	switch (domain) {
1858 	case AF_INET: {
1859 		u32 addr;
1860 
1861 		if (addrlen != sizeof(u32)) {
1862 			rc = -EINVAL;
1863 			goto out;
1864 		}
1865 
1866 		addr = *((u32 *)addrp);
1867 
1868 		c = policydb.ocontexts[OCON_NODE];
1869 		while (c) {
1870 			if (c->u.node.addr == (addr & c->u.node.mask))
1871 				break;
1872 			c = c->next;
1873 		}
1874 		break;
1875 	}
1876 
1877 	case AF_INET6:
1878 		if (addrlen != sizeof(u64) * 2) {
1879 			rc = -EINVAL;
1880 			goto out;
1881 		}
1882 		c = policydb.ocontexts[OCON_NODE6];
1883 		while (c) {
1884 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
1885 						c->u.node6.mask))
1886 				break;
1887 			c = c->next;
1888 		}
1889 		break;
1890 
1891 	default:
1892 		*out_sid = SECINITSID_NODE;
1893 		goto out;
1894 	}
1895 
1896 	if (c) {
1897 		if (!c->sid[0]) {
1898 			rc = sidtab_context_to_sid(&sidtab,
1899 						   &c->context[0],
1900 						   &c->sid[0]);
1901 			if (rc)
1902 				goto out;
1903 		}
1904 		*out_sid = c->sid[0];
1905 	} else {
1906 		*out_sid = SECINITSID_NODE;
1907 	}
1908 
1909 out:
1910 	read_unlock(&policy_rwlock);
1911 	return rc;
1912 }
1913 
1914 #define SIDS_NEL 25
1915 
1916 /**
1917  * security_get_user_sids - Obtain reachable SIDs for a user.
1918  * @fromsid: starting SID
1919  * @username: username
1920  * @sids: array of reachable SIDs for user
1921  * @nel: number of elements in @sids
1922  *
1923  * Generate the set of SIDs for legal security contexts
1924  * for a given user that can be reached by @fromsid.
1925  * Set *@sids to point to a dynamically allocated
1926  * array containing the set of SIDs.  Set *@nel to the
1927  * number of elements in the array.
1928  */
1929 
1930 int security_get_user_sids(u32 fromsid,
1931 			   char *username,
1932 			   u32 **sids,
1933 			   u32 *nel)
1934 {
1935 	struct context *fromcon, usercon;
1936 	u32 *mysids = NULL, *mysids2, sid;
1937 	u32 mynel = 0, maxnel = SIDS_NEL;
1938 	struct user_datum *user;
1939 	struct role_datum *role;
1940 	struct ebitmap_node *rnode, *tnode;
1941 	int rc = 0, i, j;
1942 
1943 	*sids = NULL;
1944 	*nel = 0;
1945 
1946 	if (!ss_initialized)
1947 		goto out;
1948 
1949 	read_lock(&policy_rwlock);
1950 
1951 	context_init(&usercon);
1952 
1953 	fromcon = sidtab_search(&sidtab, fromsid);
1954 	if (!fromcon) {
1955 		rc = -EINVAL;
1956 		goto out_unlock;
1957 	}
1958 
1959 	user = hashtab_search(policydb.p_users.table, username);
1960 	if (!user) {
1961 		rc = -EINVAL;
1962 		goto out_unlock;
1963 	}
1964 	usercon.user = user->value;
1965 
1966 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
1967 	if (!mysids) {
1968 		rc = -ENOMEM;
1969 		goto out_unlock;
1970 	}
1971 
1972 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
1973 		role = policydb.role_val_to_struct[i];
1974 		usercon.role = i+1;
1975 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
1976 			usercon.type = j+1;
1977 
1978 			if (mls_setup_user_range(fromcon, user, &usercon))
1979 				continue;
1980 
1981 			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
1982 			if (rc)
1983 				goto out_unlock;
1984 			if (mynel < maxnel) {
1985 				mysids[mynel++] = sid;
1986 			} else {
1987 				maxnel += SIDS_NEL;
1988 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
1989 				if (!mysids2) {
1990 					rc = -ENOMEM;
1991 					goto out_unlock;
1992 				}
1993 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
1994 				kfree(mysids);
1995 				mysids = mysids2;
1996 				mysids[mynel++] = sid;
1997 			}
1998 		}
1999 	}
2000 
2001 out_unlock:
2002 	read_unlock(&policy_rwlock);
2003 	if (rc || !mynel) {
2004 		kfree(mysids);
2005 		goto out;
2006 	}
2007 
2008 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2009 	if (!mysids2) {
2010 		rc = -ENOMEM;
2011 		kfree(mysids);
2012 		goto out;
2013 	}
2014 	for (i = 0, j = 0; i < mynel; i++) {
2015 		rc = avc_has_perm_noaudit(fromsid, mysids[i],
2016 					  SECCLASS_PROCESS,
2017 					  PROCESS__TRANSITION, AVC_STRICT,
2018 					  NULL);
2019 		if (!rc)
2020 			mysids2[j++] = mysids[i];
2021 		cond_resched();
2022 	}
2023 	rc = 0;
2024 	kfree(mysids);
2025 	*sids = mysids2;
2026 	*nel = j;
2027 out:
2028 	return rc;
2029 }
2030 
2031 /**
2032  * security_genfs_sid - Obtain a SID for a file in a filesystem
2033  * @fstype: filesystem type
2034  * @path: path from root of mount
2035  * @sclass: file security class
2036  * @sid: SID for path
2037  *
2038  * Obtain a SID to use for a file in a filesystem that
2039  * cannot support xattr or use a fixed labeling behavior like
2040  * transition SIDs or task SIDs.
2041  */
2042 int security_genfs_sid(const char *fstype,
2043 		       char *path,
2044 		       u16 sclass,
2045 		       u32 *sid)
2046 {
2047 	int len;
2048 	struct genfs *genfs;
2049 	struct ocontext *c;
2050 	int rc = 0, cmp = 0;
2051 
2052 	while (path[0] == '/' && path[1] == '/')
2053 		path++;
2054 
2055 	read_lock(&policy_rwlock);
2056 
2057 	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2058 		cmp = strcmp(fstype, genfs->fstype);
2059 		if (cmp <= 0)
2060 			break;
2061 	}
2062 
2063 	if (!genfs || cmp) {
2064 		*sid = SECINITSID_UNLABELED;
2065 		rc = -ENOENT;
2066 		goto out;
2067 	}
2068 
2069 	for (c = genfs->head; c; c = c->next) {
2070 		len = strlen(c->u.name);
2071 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2072 		    (strncmp(c->u.name, path, len) == 0))
2073 			break;
2074 	}
2075 
2076 	if (!c) {
2077 		*sid = SECINITSID_UNLABELED;
2078 		rc = -ENOENT;
2079 		goto out;
2080 	}
2081 
2082 	if (!c->sid[0]) {
2083 		rc = sidtab_context_to_sid(&sidtab,
2084 					   &c->context[0],
2085 					   &c->sid[0]);
2086 		if (rc)
2087 			goto out;
2088 	}
2089 
2090 	*sid = c->sid[0];
2091 out:
2092 	read_unlock(&policy_rwlock);
2093 	return rc;
2094 }
2095 
2096 /**
2097  * security_fs_use - Determine how to handle labeling for a filesystem.
2098  * @fstype: filesystem type
2099  * @behavior: labeling behavior
2100  * @sid: SID for filesystem (superblock)
2101  */
2102 int security_fs_use(
2103 	const char *fstype,
2104 	unsigned int *behavior,
2105 	u32 *sid)
2106 {
2107 	int rc = 0;
2108 	struct ocontext *c;
2109 
2110 	read_lock(&policy_rwlock);
2111 
2112 	c = policydb.ocontexts[OCON_FSUSE];
2113 	while (c) {
2114 		if (strcmp(fstype, c->u.name) == 0)
2115 			break;
2116 		c = c->next;
2117 	}
2118 
2119 	if (c) {
2120 		*behavior = c->v.behavior;
2121 		if (!c->sid[0]) {
2122 			rc = sidtab_context_to_sid(&sidtab,
2123 						   &c->context[0],
2124 						   &c->sid[0]);
2125 			if (rc)
2126 				goto out;
2127 		}
2128 		*sid = c->sid[0];
2129 	} else {
2130 		rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
2131 		if (rc) {
2132 			*behavior = SECURITY_FS_USE_NONE;
2133 			rc = 0;
2134 		} else {
2135 			*behavior = SECURITY_FS_USE_GENFS;
2136 		}
2137 	}
2138 
2139 out:
2140 	read_unlock(&policy_rwlock);
2141 	return rc;
2142 }
2143 
2144 int security_get_bools(int *len, char ***names, int **values)
2145 {
2146 	int i, rc = -ENOMEM;
2147 
2148 	read_lock(&policy_rwlock);
2149 	*names = NULL;
2150 	*values = NULL;
2151 
2152 	*len = policydb.p_bools.nprim;
2153 	if (!*len) {
2154 		rc = 0;
2155 		goto out;
2156 	}
2157 
2158        *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2159 	if (!*names)
2160 		goto err;
2161 
2162        *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2163 	if (!*values)
2164 		goto err;
2165 
2166 	for (i = 0; i < *len; i++) {
2167 		size_t name_len;
2168 		(*values)[i] = policydb.bool_val_to_struct[i]->state;
2169 		name_len = strlen(policydb.p_bool_val_to_name[i]) + 1;
2170 	       (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
2171 		if (!(*names)[i])
2172 			goto err;
2173 		strncpy((*names)[i], policydb.p_bool_val_to_name[i], name_len);
2174 		(*names)[i][name_len - 1] = 0;
2175 	}
2176 	rc = 0;
2177 out:
2178 	read_unlock(&policy_rwlock);
2179 	return rc;
2180 err:
2181 	if (*names) {
2182 		for (i = 0; i < *len; i++)
2183 			kfree((*names)[i]);
2184 	}
2185 	kfree(*values);
2186 	goto out;
2187 }
2188 
2189 
2190 int security_set_bools(int len, int *values)
2191 {
2192 	int i, rc = 0;
2193 	int lenp, seqno = 0;
2194 	struct cond_node *cur;
2195 
2196 	write_lock_irq(&policy_rwlock);
2197 
2198 	lenp = policydb.p_bools.nprim;
2199 	if (len != lenp) {
2200 		rc = -EFAULT;
2201 		goto out;
2202 	}
2203 
2204 	for (i = 0; i < len; i++) {
2205 		if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2206 			audit_log(current->audit_context, GFP_ATOMIC,
2207 				AUDIT_MAC_CONFIG_CHANGE,
2208 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2209 				policydb.p_bool_val_to_name[i],
2210 				!!values[i],
2211 				policydb.bool_val_to_struct[i]->state,
2212 				audit_get_loginuid(current),
2213 				audit_get_sessionid(current));
2214 		}
2215 		if (values[i])
2216 			policydb.bool_val_to_struct[i]->state = 1;
2217 		else
2218 			policydb.bool_val_to_struct[i]->state = 0;
2219 	}
2220 
2221 	for (cur = policydb.cond_list; cur; cur = cur->next) {
2222 		rc = evaluate_cond_node(&policydb, cur);
2223 		if (rc)
2224 			goto out;
2225 	}
2226 
2227 	seqno = ++latest_granting;
2228 
2229 out:
2230 	write_unlock_irq(&policy_rwlock);
2231 	if (!rc) {
2232 		avc_ss_reset(seqno);
2233 		selnl_notify_policyload(seqno);
2234 		selinux_xfrm_notify_policyload();
2235 	}
2236 	return rc;
2237 }
2238 
2239 int security_get_bool_value(int bool)
2240 {
2241 	int rc = 0;
2242 	int len;
2243 
2244 	read_lock(&policy_rwlock);
2245 
2246 	len = policydb.p_bools.nprim;
2247 	if (bool >= len) {
2248 		rc = -EFAULT;
2249 		goto out;
2250 	}
2251 
2252 	rc = policydb.bool_val_to_struct[bool]->state;
2253 out:
2254 	read_unlock(&policy_rwlock);
2255 	return rc;
2256 }
2257 
2258 static int security_preserve_bools(struct policydb *p)
2259 {
2260 	int rc, nbools = 0, *bvalues = NULL, i;
2261 	char **bnames = NULL;
2262 	struct cond_bool_datum *booldatum;
2263 	struct cond_node *cur;
2264 
2265 	rc = security_get_bools(&nbools, &bnames, &bvalues);
2266 	if (rc)
2267 		goto out;
2268 	for (i = 0; i < nbools; i++) {
2269 		booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2270 		if (booldatum)
2271 			booldatum->state = bvalues[i];
2272 	}
2273 	for (cur = p->cond_list; cur; cur = cur->next) {
2274 		rc = evaluate_cond_node(p, cur);
2275 		if (rc)
2276 			goto out;
2277 	}
2278 
2279 out:
2280 	if (bnames) {
2281 		for (i = 0; i < nbools; i++)
2282 			kfree(bnames[i]);
2283 	}
2284 	kfree(bnames);
2285 	kfree(bvalues);
2286 	return rc;
2287 }
2288 
2289 /*
2290  * security_sid_mls_copy() - computes a new sid based on the given
2291  * sid and the mls portion of mls_sid.
2292  */
2293 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2294 {
2295 	struct context *context1;
2296 	struct context *context2;
2297 	struct context newcon;
2298 	char *s;
2299 	u32 len;
2300 	int rc = 0;
2301 
2302 	if (!ss_initialized || !selinux_mls_enabled) {
2303 		*new_sid = sid;
2304 		goto out;
2305 	}
2306 
2307 	context_init(&newcon);
2308 
2309 	read_lock(&policy_rwlock);
2310 	context1 = sidtab_search(&sidtab, sid);
2311 	if (!context1) {
2312 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2313 			__func__, sid);
2314 		rc = -EINVAL;
2315 		goto out_unlock;
2316 	}
2317 
2318 	context2 = sidtab_search(&sidtab, mls_sid);
2319 	if (!context2) {
2320 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2321 			__func__, mls_sid);
2322 		rc = -EINVAL;
2323 		goto out_unlock;
2324 	}
2325 
2326 	newcon.user = context1->user;
2327 	newcon.role = context1->role;
2328 	newcon.type = context1->type;
2329 	rc = mls_context_cpy(&newcon, context2);
2330 	if (rc)
2331 		goto out_unlock;
2332 
2333 	/* Check the validity of the new context. */
2334 	if (!policydb_context_isvalid(&policydb, &newcon)) {
2335 		rc = convert_context_handle_invalid_context(&newcon);
2336 		if (rc)
2337 			goto bad;
2338 	}
2339 
2340 	rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2341 	goto out_unlock;
2342 
2343 bad:
2344 	if (!context_struct_to_string(&newcon, &s, &len)) {
2345 		audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2346 			  "security_sid_mls_copy: invalid context %s", s);
2347 		kfree(s);
2348 	}
2349 
2350 out_unlock:
2351 	read_unlock(&policy_rwlock);
2352 	context_destroy(&newcon);
2353 out:
2354 	return rc;
2355 }
2356 
2357 /**
2358  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2359  * @nlbl_sid: NetLabel SID
2360  * @nlbl_type: NetLabel labeling protocol type
2361  * @xfrm_sid: XFRM SID
2362  *
2363  * Description:
2364  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2365  * resolved into a single SID it is returned via @peer_sid and the function
2366  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2367  * returns a negative value.  A table summarizing the behavior is below:
2368  *
2369  *                                 | function return |      @sid
2370  *   ------------------------------+-----------------+-----------------
2371  *   no peer labels                |        0        |    SECSID_NULL
2372  *   single peer label             |        0        |    <peer_label>
2373  *   multiple, consistent labels   |        0        |    <peer_label>
2374  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2375  *
2376  */
2377 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2378 				 u32 xfrm_sid,
2379 				 u32 *peer_sid)
2380 {
2381 	int rc;
2382 	struct context *nlbl_ctx;
2383 	struct context *xfrm_ctx;
2384 
2385 	/* handle the common (which also happens to be the set of easy) cases
2386 	 * right away, these two if statements catch everything involving a
2387 	 * single or absent peer SID/label */
2388 	if (xfrm_sid == SECSID_NULL) {
2389 		*peer_sid = nlbl_sid;
2390 		return 0;
2391 	}
2392 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2393 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2394 	 * is present */
2395 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2396 		*peer_sid = xfrm_sid;
2397 		return 0;
2398 	}
2399 
2400 	/* we don't need to check ss_initialized here since the only way both
2401 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2402 	 * security server was initialized and ss_initialized was true */
2403 	if (!selinux_mls_enabled) {
2404 		*peer_sid = SECSID_NULL;
2405 		return 0;
2406 	}
2407 
2408 	read_lock(&policy_rwlock);
2409 
2410 	nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2411 	if (!nlbl_ctx) {
2412 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2413 		       __func__, nlbl_sid);
2414 		rc = -EINVAL;
2415 		goto out_slowpath;
2416 	}
2417 	xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2418 	if (!xfrm_ctx) {
2419 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2420 		       __func__, xfrm_sid);
2421 		rc = -EINVAL;
2422 		goto out_slowpath;
2423 	}
2424 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2425 
2426 out_slowpath:
2427 	read_unlock(&policy_rwlock);
2428 	if (rc == 0)
2429 		/* at present NetLabel SIDs/labels really only carry MLS
2430 		 * information so if the MLS portion of the NetLabel SID
2431 		 * matches the MLS portion of the labeled XFRM SID/label
2432 		 * then pass along the XFRM SID as it is the most
2433 		 * expressive */
2434 		*peer_sid = xfrm_sid;
2435 	else
2436 		*peer_sid = SECSID_NULL;
2437 	return rc;
2438 }
2439 
2440 static int get_classes_callback(void *k, void *d, void *args)
2441 {
2442 	struct class_datum *datum = d;
2443 	char *name = k, **classes = args;
2444 	int value = datum->value - 1;
2445 
2446 	classes[value] = kstrdup(name, GFP_ATOMIC);
2447 	if (!classes[value])
2448 		return -ENOMEM;
2449 
2450 	return 0;
2451 }
2452 
2453 int security_get_classes(char ***classes, int *nclasses)
2454 {
2455 	int rc = -ENOMEM;
2456 
2457 	read_lock(&policy_rwlock);
2458 
2459 	*nclasses = policydb.p_classes.nprim;
2460 	*classes = kcalloc(*nclasses, sizeof(*classes), GFP_ATOMIC);
2461 	if (!*classes)
2462 		goto out;
2463 
2464 	rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2465 			*classes);
2466 	if (rc < 0) {
2467 		int i;
2468 		for (i = 0; i < *nclasses; i++)
2469 			kfree((*classes)[i]);
2470 		kfree(*classes);
2471 	}
2472 
2473 out:
2474 	read_unlock(&policy_rwlock);
2475 	return rc;
2476 }
2477 
2478 static int get_permissions_callback(void *k, void *d, void *args)
2479 {
2480 	struct perm_datum *datum = d;
2481 	char *name = k, **perms = args;
2482 	int value = datum->value - 1;
2483 
2484 	perms[value] = kstrdup(name, GFP_ATOMIC);
2485 	if (!perms[value])
2486 		return -ENOMEM;
2487 
2488 	return 0;
2489 }
2490 
2491 int security_get_permissions(char *class, char ***perms, int *nperms)
2492 {
2493 	int rc = -ENOMEM, i;
2494 	struct class_datum *match;
2495 
2496 	read_lock(&policy_rwlock);
2497 
2498 	match = hashtab_search(policydb.p_classes.table, class);
2499 	if (!match) {
2500 		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2501 			__func__, class);
2502 		rc = -EINVAL;
2503 		goto out;
2504 	}
2505 
2506 	*nperms = match->permissions.nprim;
2507 	*perms = kcalloc(*nperms, sizeof(*perms), GFP_ATOMIC);
2508 	if (!*perms)
2509 		goto out;
2510 
2511 	if (match->comdatum) {
2512 		rc = hashtab_map(match->comdatum->permissions.table,
2513 				get_permissions_callback, *perms);
2514 		if (rc < 0)
2515 			goto err;
2516 	}
2517 
2518 	rc = hashtab_map(match->permissions.table, get_permissions_callback,
2519 			*perms);
2520 	if (rc < 0)
2521 		goto err;
2522 
2523 out:
2524 	read_unlock(&policy_rwlock);
2525 	return rc;
2526 
2527 err:
2528 	read_unlock(&policy_rwlock);
2529 	for (i = 0; i < *nperms; i++)
2530 		kfree((*perms)[i]);
2531 	kfree(*perms);
2532 	return rc;
2533 }
2534 
2535 int security_get_reject_unknown(void)
2536 {
2537 	return policydb.reject_unknown;
2538 }
2539 
2540 int security_get_allow_unknown(void)
2541 {
2542 	return policydb.allow_unknown;
2543 }
2544 
2545 /**
2546  * security_policycap_supported - Check for a specific policy capability
2547  * @req_cap: capability
2548  *
2549  * Description:
2550  * This function queries the currently loaded policy to see if it supports the
2551  * capability specified by @req_cap.  Returns true (1) if the capability is
2552  * supported, false (0) if it isn't supported.
2553  *
2554  */
2555 int security_policycap_supported(unsigned int req_cap)
2556 {
2557 	int rc;
2558 
2559 	read_lock(&policy_rwlock);
2560 	rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2561 	read_unlock(&policy_rwlock);
2562 
2563 	return rc;
2564 }
2565 
2566 struct selinux_audit_rule {
2567 	u32 au_seqno;
2568 	struct context au_ctxt;
2569 };
2570 
2571 void selinux_audit_rule_free(void *vrule)
2572 {
2573 	struct selinux_audit_rule *rule = vrule;
2574 
2575 	if (rule) {
2576 		context_destroy(&rule->au_ctxt);
2577 		kfree(rule);
2578 	}
2579 }
2580 
2581 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2582 {
2583 	struct selinux_audit_rule *tmprule;
2584 	struct role_datum *roledatum;
2585 	struct type_datum *typedatum;
2586 	struct user_datum *userdatum;
2587 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2588 	int rc = 0;
2589 
2590 	*rule = NULL;
2591 
2592 	if (!ss_initialized)
2593 		return -EOPNOTSUPP;
2594 
2595 	switch (field) {
2596 	case AUDIT_SUBJ_USER:
2597 	case AUDIT_SUBJ_ROLE:
2598 	case AUDIT_SUBJ_TYPE:
2599 	case AUDIT_OBJ_USER:
2600 	case AUDIT_OBJ_ROLE:
2601 	case AUDIT_OBJ_TYPE:
2602 		/* only 'equals' and 'not equals' fit user, role, and type */
2603 		if (op != Audit_equal && op != Audit_not_equal)
2604 			return -EINVAL;
2605 		break;
2606 	case AUDIT_SUBJ_SEN:
2607 	case AUDIT_SUBJ_CLR:
2608 	case AUDIT_OBJ_LEV_LOW:
2609 	case AUDIT_OBJ_LEV_HIGH:
2610 		/* we do not allow a range, indicated by the presense of '-' */
2611 		if (strchr(rulestr, '-'))
2612 			return -EINVAL;
2613 		break;
2614 	default:
2615 		/* only the above fields are valid */
2616 		return -EINVAL;
2617 	}
2618 
2619 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2620 	if (!tmprule)
2621 		return -ENOMEM;
2622 
2623 	context_init(&tmprule->au_ctxt);
2624 
2625 	read_lock(&policy_rwlock);
2626 
2627 	tmprule->au_seqno = latest_granting;
2628 
2629 	switch (field) {
2630 	case AUDIT_SUBJ_USER:
2631 	case AUDIT_OBJ_USER:
2632 		userdatum = hashtab_search(policydb.p_users.table, rulestr);
2633 		if (!userdatum)
2634 			rc = -EINVAL;
2635 		else
2636 			tmprule->au_ctxt.user = userdatum->value;
2637 		break;
2638 	case AUDIT_SUBJ_ROLE:
2639 	case AUDIT_OBJ_ROLE:
2640 		roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2641 		if (!roledatum)
2642 			rc = -EINVAL;
2643 		else
2644 			tmprule->au_ctxt.role = roledatum->value;
2645 		break;
2646 	case AUDIT_SUBJ_TYPE:
2647 	case AUDIT_OBJ_TYPE:
2648 		typedatum = hashtab_search(policydb.p_types.table, rulestr);
2649 		if (!typedatum)
2650 			rc = -EINVAL;
2651 		else
2652 			tmprule->au_ctxt.type = typedatum->value;
2653 		break;
2654 	case AUDIT_SUBJ_SEN:
2655 	case AUDIT_SUBJ_CLR:
2656 	case AUDIT_OBJ_LEV_LOW:
2657 	case AUDIT_OBJ_LEV_HIGH:
2658 		rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2659 		break;
2660 	}
2661 
2662 	read_unlock(&policy_rwlock);
2663 
2664 	if (rc) {
2665 		selinux_audit_rule_free(tmprule);
2666 		tmprule = NULL;
2667 	}
2668 
2669 	*rule = tmprule;
2670 
2671 	return rc;
2672 }
2673 
2674 /* Check to see if the rule contains any selinux fields */
2675 int selinux_audit_rule_known(struct audit_krule *rule)
2676 {
2677 	int i;
2678 
2679 	for (i = 0; i < rule->field_count; i++) {
2680 		struct audit_field *f = &rule->fields[i];
2681 		switch (f->type) {
2682 		case AUDIT_SUBJ_USER:
2683 		case AUDIT_SUBJ_ROLE:
2684 		case AUDIT_SUBJ_TYPE:
2685 		case AUDIT_SUBJ_SEN:
2686 		case AUDIT_SUBJ_CLR:
2687 		case AUDIT_OBJ_USER:
2688 		case AUDIT_OBJ_ROLE:
2689 		case AUDIT_OBJ_TYPE:
2690 		case AUDIT_OBJ_LEV_LOW:
2691 		case AUDIT_OBJ_LEV_HIGH:
2692 			return 1;
2693 		}
2694 	}
2695 
2696 	return 0;
2697 }
2698 
2699 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2700 			     struct audit_context *actx)
2701 {
2702 	struct context *ctxt;
2703 	struct mls_level *level;
2704 	struct selinux_audit_rule *rule = vrule;
2705 	int match = 0;
2706 
2707 	if (!rule) {
2708 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2709 			  "selinux_audit_rule_match: missing rule\n");
2710 		return -ENOENT;
2711 	}
2712 
2713 	read_lock(&policy_rwlock);
2714 
2715 	if (rule->au_seqno < latest_granting) {
2716 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2717 			  "selinux_audit_rule_match: stale rule\n");
2718 		match = -ESTALE;
2719 		goto out;
2720 	}
2721 
2722 	ctxt = sidtab_search(&sidtab, sid);
2723 	if (!ctxt) {
2724 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2725 			  "selinux_audit_rule_match: unrecognized SID %d\n",
2726 			  sid);
2727 		match = -ENOENT;
2728 		goto out;
2729 	}
2730 
2731 	/* a field/op pair that is not caught here will simply fall through
2732 	   without a match */
2733 	switch (field) {
2734 	case AUDIT_SUBJ_USER:
2735 	case AUDIT_OBJ_USER:
2736 		switch (op) {
2737 		case Audit_equal:
2738 			match = (ctxt->user == rule->au_ctxt.user);
2739 			break;
2740 		case Audit_not_equal:
2741 			match = (ctxt->user != rule->au_ctxt.user);
2742 			break;
2743 		}
2744 		break;
2745 	case AUDIT_SUBJ_ROLE:
2746 	case AUDIT_OBJ_ROLE:
2747 		switch (op) {
2748 		case Audit_equal:
2749 			match = (ctxt->role == rule->au_ctxt.role);
2750 			break;
2751 		case Audit_not_equal:
2752 			match = (ctxt->role != rule->au_ctxt.role);
2753 			break;
2754 		}
2755 		break;
2756 	case AUDIT_SUBJ_TYPE:
2757 	case AUDIT_OBJ_TYPE:
2758 		switch (op) {
2759 		case Audit_equal:
2760 			match = (ctxt->type == rule->au_ctxt.type);
2761 			break;
2762 		case Audit_not_equal:
2763 			match = (ctxt->type != rule->au_ctxt.type);
2764 			break;
2765 		}
2766 		break;
2767 	case AUDIT_SUBJ_SEN:
2768 	case AUDIT_SUBJ_CLR:
2769 	case AUDIT_OBJ_LEV_LOW:
2770 	case AUDIT_OBJ_LEV_HIGH:
2771 		level = ((field == AUDIT_SUBJ_SEN ||
2772 			  field == AUDIT_OBJ_LEV_LOW) ?
2773 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
2774 		switch (op) {
2775 		case Audit_equal:
2776 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
2777 					     level);
2778 			break;
2779 		case Audit_not_equal:
2780 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
2781 					      level);
2782 			break;
2783 		case Audit_lt:
2784 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
2785 					       level) &&
2786 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
2787 					       level));
2788 			break;
2789 		case Audit_le:
2790 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
2791 					      level);
2792 			break;
2793 		case Audit_gt:
2794 			match = (mls_level_dom(level,
2795 					      &rule->au_ctxt.range.level[0]) &&
2796 				 !mls_level_eq(level,
2797 					       &rule->au_ctxt.range.level[0]));
2798 			break;
2799 		case Audit_ge:
2800 			match = mls_level_dom(level,
2801 					      &rule->au_ctxt.range.level[0]);
2802 			break;
2803 		}
2804 	}
2805 
2806 out:
2807 	read_unlock(&policy_rwlock);
2808 	return match;
2809 }
2810 
2811 static int (*aurule_callback)(void) = audit_update_lsm_rules;
2812 
2813 static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
2814 			       u16 class, u32 perms, u32 *retained)
2815 {
2816 	int err = 0;
2817 
2818 	if (event == AVC_CALLBACK_RESET && aurule_callback)
2819 		err = aurule_callback();
2820 	return err;
2821 }
2822 
2823 static int __init aurule_init(void)
2824 {
2825 	int err;
2826 
2827 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
2828 			       SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
2829 	if (err)
2830 		panic("avc_add_callback() failed, error %d\n", err);
2831 
2832 	return err;
2833 }
2834 __initcall(aurule_init);
2835 
2836 #ifdef CONFIG_NETLABEL
2837 /**
2838  * security_netlbl_cache_add - Add an entry to the NetLabel cache
2839  * @secattr: the NetLabel packet security attributes
2840  * @sid: the SELinux SID
2841  *
2842  * Description:
2843  * Attempt to cache the context in @ctx, which was derived from the packet in
2844  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
2845  * already been initialized.
2846  *
2847  */
2848 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
2849 				      u32 sid)
2850 {
2851 	u32 *sid_cache;
2852 
2853 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
2854 	if (sid_cache == NULL)
2855 		return;
2856 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
2857 	if (secattr->cache == NULL) {
2858 		kfree(sid_cache);
2859 		return;
2860 	}
2861 
2862 	*sid_cache = sid;
2863 	secattr->cache->free = kfree;
2864 	secattr->cache->data = sid_cache;
2865 	secattr->flags |= NETLBL_SECATTR_CACHE;
2866 }
2867 
2868 /**
2869  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
2870  * @secattr: the NetLabel packet security attributes
2871  * @sid: the SELinux SID
2872  *
2873  * Description:
2874  * Convert the given NetLabel security attributes in @secattr into a
2875  * SELinux SID.  If the @secattr field does not contain a full SELinux
2876  * SID/context then use SECINITSID_NETMSG as the foundation.  If possibile the
2877  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
2878  * allow the @secattr to be used by NetLabel to cache the secattr to SID
2879  * conversion for future lookups.  Returns zero on success, negative values on
2880  * failure.
2881  *
2882  */
2883 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
2884 				   u32 *sid)
2885 {
2886 	int rc = -EIDRM;
2887 	struct context *ctx;
2888 	struct context ctx_new;
2889 
2890 	if (!ss_initialized) {
2891 		*sid = SECSID_NULL;
2892 		return 0;
2893 	}
2894 
2895 	read_lock(&policy_rwlock);
2896 
2897 	if (secattr->flags & NETLBL_SECATTR_CACHE) {
2898 		*sid = *(u32 *)secattr->cache->data;
2899 		rc = 0;
2900 	} else if (secattr->flags & NETLBL_SECATTR_SECID) {
2901 		*sid = secattr->attr.secid;
2902 		rc = 0;
2903 	} else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
2904 		ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
2905 		if (ctx == NULL)
2906 			goto netlbl_secattr_to_sid_return;
2907 
2908 		context_init(&ctx_new);
2909 		ctx_new.user = ctx->user;
2910 		ctx_new.role = ctx->role;
2911 		ctx_new.type = ctx->type;
2912 		mls_import_netlbl_lvl(&ctx_new, secattr);
2913 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
2914 			if (ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
2915 						  secattr->attr.mls.cat) != 0)
2916 				goto netlbl_secattr_to_sid_return;
2917 			memcpy(&ctx_new.range.level[1].cat,
2918 			       &ctx_new.range.level[0].cat,
2919 			       sizeof(ctx_new.range.level[0].cat));
2920 		}
2921 		if (mls_context_isvalid(&policydb, &ctx_new) != 1)
2922 			goto netlbl_secattr_to_sid_return_cleanup;
2923 
2924 		rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
2925 		if (rc != 0)
2926 			goto netlbl_secattr_to_sid_return_cleanup;
2927 
2928 		security_netlbl_cache_add(secattr, *sid);
2929 
2930 		ebitmap_destroy(&ctx_new.range.level[0].cat);
2931 	} else {
2932 		*sid = SECSID_NULL;
2933 		rc = 0;
2934 	}
2935 
2936 netlbl_secattr_to_sid_return:
2937 	read_unlock(&policy_rwlock);
2938 	return rc;
2939 netlbl_secattr_to_sid_return_cleanup:
2940 	ebitmap_destroy(&ctx_new.range.level[0].cat);
2941 	goto netlbl_secattr_to_sid_return;
2942 }
2943 
2944 /**
2945  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
2946  * @sid: the SELinux SID
2947  * @secattr: the NetLabel packet security attributes
2948  *
2949  * Description:
2950  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
2951  * Returns zero on success, negative values on failure.
2952  *
2953  */
2954 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
2955 {
2956 	int rc;
2957 	struct context *ctx;
2958 
2959 	if (!ss_initialized)
2960 		return 0;
2961 
2962 	read_lock(&policy_rwlock);
2963 	ctx = sidtab_search(&sidtab, sid);
2964 	if (ctx == NULL) {
2965 		rc = -ENOENT;
2966 		goto netlbl_sid_to_secattr_failure;
2967 	}
2968 	secattr->domain = kstrdup(policydb.p_type_val_to_name[ctx->type - 1],
2969 				  GFP_ATOMIC);
2970 	if (secattr->domain == NULL) {
2971 		rc = -ENOMEM;
2972 		goto netlbl_sid_to_secattr_failure;
2973 	}
2974 	secattr->attr.secid = sid;
2975 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
2976 	mls_export_netlbl_lvl(ctx, secattr);
2977 	rc = mls_export_netlbl_cat(ctx, secattr);
2978 	if (rc != 0)
2979 		goto netlbl_sid_to_secattr_failure;
2980 	read_unlock(&policy_rwlock);
2981 
2982 	return 0;
2983 
2984 netlbl_sid_to_secattr_failure:
2985 	read_unlock(&policy_rwlock);
2986 	return rc;
2987 }
2988 #endif /* CONFIG_NETLABEL */
2989