xref: /openbmc/linux/security/selinux/ss/services.c (revision acf8aec3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Implementation of the security services.
4  *
5  * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
6  *	     James Morris <jmorris@redhat.com>
7  *
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *	Support for enhanced MLS infrastructure.
11  *	Support for context based audit filters.
12  *
13  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14  *
15  *	Added conditional policy language extensions
16  *
17  * Updated: Hewlett-Packard <paul@paul-moore.com>
18  *
19  *      Added support for NetLabel
20  *      Added support for the policy capability bitmap
21  *
22  * Updated: Chad Sellers <csellers@tresys.com>
23  *
24  *  Added validation of kernel classes and permissions
25  *
26  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27  *
28  *  Added support for bounds domain and audit messaged on masked permissions
29  *
30  * Updated: Guido Trentalancia <guido@trentalancia.com>
31  *
32  *  Added support for runtime switching of the policy type
33  *
34  * Copyright (C) 2008, 2009 NEC Corporation
35  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39  */
40 #include <linux/kernel.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/errno.h>
46 #include <linux/in.h>
47 #include <linux/sched.h>
48 #include <linux/audit.h>
49 #include <linux/vmalloc.h>
50 #include <net/netlabel.h>
51 
52 #include "flask.h"
53 #include "avc.h"
54 #include "avc_ss.h"
55 #include "security.h"
56 #include "context.h"
57 #include "policydb.h"
58 #include "sidtab.h"
59 #include "services.h"
60 #include "conditional.h"
61 #include "mls.h"
62 #include "objsec.h"
63 #include "netlabel.h"
64 #include "xfrm.h"
65 #include "ebitmap.h"
66 #include "audit.h"
67 #include "policycap_names.h"
68 #include "ima.h"
69 
70 /* Forward declaration. */
71 static int context_struct_to_string(struct policydb *policydb,
72 				    struct context *context,
73 				    char **scontext,
74 				    u32 *scontext_len);
75 
76 static int sidtab_entry_to_string(struct policydb *policydb,
77 				  struct sidtab *sidtab,
78 				  struct sidtab_entry *entry,
79 				  char **scontext,
80 				  u32 *scontext_len);
81 
82 static void context_struct_compute_av(struct policydb *policydb,
83 				      struct context *scontext,
84 				      struct context *tcontext,
85 				      u16 tclass,
86 				      struct av_decision *avd,
87 				      struct extended_perms *xperms);
88 
89 static int selinux_set_mapping(struct policydb *pol,
90 			       struct security_class_mapping *map,
91 			       struct selinux_map *out_map)
92 {
93 	u16 i, j;
94 	unsigned k;
95 	bool print_unknown_handle = false;
96 
97 	/* Find number of classes in the input mapping */
98 	if (!map)
99 		return -EINVAL;
100 	i = 0;
101 	while (map[i].name)
102 		i++;
103 
104 	/* Allocate space for the class records, plus one for class zero */
105 	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
106 	if (!out_map->mapping)
107 		return -ENOMEM;
108 
109 	/* Store the raw class and permission values */
110 	j = 0;
111 	while (map[j].name) {
112 		struct security_class_mapping *p_in = map + (j++);
113 		struct selinux_mapping *p_out = out_map->mapping + j;
114 
115 		/* An empty class string skips ahead */
116 		if (!strcmp(p_in->name, "")) {
117 			p_out->num_perms = 0;
118 			continue;
119 		}
120 
121 		p_out->value = string_to_security_class(pol, p_in->name);
122 		if (!p_out->value) {
123 			pr_info("SELinux:  Class %s not defined in policy.\n",
124 			       p_in->name);
125 			if (pol->reject_unknown)
126 				goto err;
127 			p_out->num_perms = 0;
128 			print_unknown_handle = true;
129 			continue;
130 		}
131 
132 		k = 0;
133 		while (p_in->perms[k]) {
134 			/* An empty permission string skips ahead */
135 			if (!*p_in->perms[k]) {
136 				k++;
137 				continue;
138 			}
139 			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
140 							    p_in->perms[k]);
141 			if (!p_out->perms[k]) {
142 				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
143 				       p_in->perms[k], p_in->name);
144 				if (pol->reject_unknown)
145 					goto err;
146 				print_unknown_handle = true;
147 			}
148 
149 			k++;
150 		}
151 		p_out->num_perms = k;
152 	}
153 
154 	if (print_unknown_handle)
155 		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
156 		       pol->allow_unknown ? "allowed" : "denied");
157 
158 	out_map->size = i;
159 	return 0;
160 err:
161 	kfree(out_map->mapping);
162 	out_map->mapping = NULL;
163 	return -EINVAL;
164 }
165 
166 /*
167  * Get real, policy values from mapped values
168  */
169 
170 static u16 unmap_class(struct selinux_map *map, u16 tclass)
171 {
172 	if (tclass < map->size)
173 		return map->mapping[tclass].value;
174 
175 	return tclass;
176 }
177 
178 /*
179  * Get kernel value for class from its policy value
180  */
181 static u16 map_class(struct selinux_map *map, u16 pol_value)
182 {
183 	u16 i;
184 
185 	for (i = 1; i < map->size; i++) {
186 		if (map->mapping[i].value == pol_value)
187 			return i;
188 	}
189 
190 	return SECCLASS_NULL;
191 }
192 
193 static void map_decision(struct selinux_map *map,
194 			 u16 tclass, struct av_decision *avd,
195 			 int allow_unknown)
196 {
197 	if (tclass < map->size) {
198 		struct selinux_mapping *mapping = &map->mapping[tclass];
199 		unsigned int i, n = mapping->num_perms;
200 		u32 result;
201 
202 		for (i = 0, result = 0; i < n; i++) {
203 			if (avd->allowed & mapping->perms[i])
204 				result |= 1<<i;
205 			if (allow_unknown && !mapping->perms[i])
206 				result |= 1<<i;
207 		}
208 		avd->allowed = result;
209 
210 		for (i = 0, result = 0; i < n; i++)
211 			if (avd->auditallow & mapping->perms[i])
212 				result |= 1<<i;
213 		avd->auditallow = result;
214 
215 		for (i = 0, result = 0; i < n; i++) {
216 			if (avd->auditdeny & mapping->perms[i])
217 				result |= 1<<i;
218 			if (!allow_unknown && !mapping->perms[i])
219 				result |= 1<<i;
220 		}
221 		/*
222 		 * In case the kernel has a bug and requests a permission
223 		 * between num_perms and the maximum permission number, we
224 		 * should audit that denial
225 		 */
226 		for (; i < (sizeof(u32)*8); i++)
227 			result |= 1<<i;
228 		avd->auditdeny = result;
229 	}
230 }
231 
232 int security_mls_enabled(struct selinux_state *state)
233 {
234 	int mls_enabled;
235 	struct selinux_policy *policy;
236 
237 	if (!selinux_initialized(state))
238 		return 0;
239 
240 	rcu_read_lock();
241 	policy = rcu_dereference(state->policy);
242 	mls_enabled = policy->policydb.mls_enabled;
243 	rcu_read_unlock();
244 	return mls_enabled;
245 }
246 
247 /*
248  * Return the boolean value of a constraint expression
249  * when it is applied to the specified source and target
250  * security contexts.
251  *
252  * xcontext is a special beast...  It is used by the validatetrans rules
253  * only.  For these rules, scontext is the context before the transition,
254  * tcontext is the context after the transition, and xcontext is the context
255  * of the process performing the transition.  All other callers of
256  * constraint_expr_eval should pass in NULL for xcontext.
257  */
258 static int constraint_expr_eval(struct policydb *policydb,
259 				struct context *scontext,
260 				struct context *tcontext,
261 				struct context *xcontext,
262 				struct constraint_expr *cexpr)
263 {
264 	u32 val1, val2;
265 	struct context *c;
266 	struct role_datum *r1, *r2;
267 	struct mls_level *l1, *l2;
268 	struct constraint_expr *e;
269 	int s[CEXPR_MAXDEPTH];
270 	int sp = -1;
271 
272 	for (e = cexpr; e; e = e->next) {
273 		switch (e->expr_type) {
274 		case CEXPR_NOT:
275 			BUG_ON(sp < 0);
276 			s[sp] = !s[sp];
277 			break;
278 		case CEXPR_AND:
279 			BUG_ON(sp < 1);
280 			sp--;
281 			s[sp] &= s[sp + 1];
282 			break;
283 		case CEXPR_OR:
284 			BUG_ON(sp < 1);
285 			sp--;
286 			s[sp] |= s[sp + 1];
287 			break;
288 		case CEXPR_ATTR:
289 			if (sp == (CEXPR_MAXDEPTH - 1))
290 				return 0;
291 			switch (e->attr) {
292 			case CEXPR_USER:
293 				val1 = scontext->user;
294 				val2 = tcontext->user;
295 				break;
296 			case CEXPR_TYPE:
297 				val1 = scontext->type;
298 				val2 = tcontext->type;
299 				break;
300 			case CEXPR_ROLE:
301 				val1 = scontext->role;
302 				val2 = tcontext->role;
303 				r1 = policydb->role_val_to_struct[val1 - 1];
304 				r2 = policydb->role_val_to_struct[val2 - 1];
305 				switch (e->op) {
306 				case CEXPR_DOM:
307 					s[++sp] = ebitmap_get_bit(&r1->dominates,
308 								  val2 - 1);
309 					continue;
310 				case CEXPR_DOMBY:
311 					s[++sp] = ebitmap_get_bit(&r2->dominates,
312 								  val1 - 1);
313 					continue;
314 				case CEXPR_INCOMP:
315 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
316 								    val2 - 1) &&
317 						   !ebitmap_get_bit(&r2->dominates,
318 								    val1 - 1));
319 					continue;
320 				default:
321 					break;
322 				}
323 				break;
324 			case CEXPR_L1L2:
325 				l1 = &(scontext->range.level[0]);
326 				l2 = &(tcontext->range.level[0]);
327 				goto mls_ops;
328 			case CEXPR_L1H2:
329 				l1 = &(scontext->range.level[0]);
330 				l2 = &(tcontext->range.level[1]);
331 				goto mls_ops;
332 			case CEXPR_H1L2:
333 				l1 = &(scontext->range.level[1]);
334 				l2 = &(tcontext->range.level[0]);
335 				goto mls_ops;
336 			case CEXPR_H1H2:
337 				l1 = &(scontext->range.level[1]);
338 				l2 = &(tcontext->range.level[1]);
339 				goto mls_ops;
340 			case CEXPR_L1H1:
341 				l1 = &(scontext->range.level[0]);
342 				l2 = &(scontext->range.level[1]);
343 				goto mls_ops;
344 			case CEXPR_L2H2:
345 				l1 = &(tcontext->range.level[0]);
346 				l2 = &(tcontext->range.level[1]);
347 				goto mls_ops;
348 mls_ops:
349 			switch (e->op) {
350 			case CEXPR_EQ:
351 				s[++sp] = mls_level_eq(l1, l2);
352 				continue;
353 			case CEXPR_NEQ:
354 				s[++sp] = !mls_level_eq(l1, l2);
355 				continue;
356 			case CEXPR_DOM:
357 				s[++sp] = mls_level_dom(l1, l2);
358 				continue;
359 			case CEXPR_DOMBY:
360 				s[++sp] = mls_level_dom(l2, l1);
361 				continue;
362 			case CEXPR_INCOMP:
363 				s[++sp] = mls_level_incomp(l2, l1);
364 				continue;
365 			default:
366 				BUG();
367 				return 0;
368 			}
369 			break;
370 			default:
371 				BUG();
372 				return 0;
373 			}
374 
375 			switch (e->op) {
376 			case CEXPR_EQ:
377 				s[++sp] = (val1 == val2);
378 				break;
379 			case CEXPR_NEQ:
380 				s[++sp] = (val1 != val2);
381 				break;
382 			default:
383 				BUG();
384 				return 0;
385 			}
386 			break;
387 		case CEXPR_NAMES:
388 			if (sp == (CEXPR_MAXDEPTH-1))
389 				return 0;
390 			c = scontext;
391 			if (e->attr & CEXPR_TARGET)
392 				c = tcontext;
393 			else if (e->attr & CEXPR_XTARGET) {
394 				c = xcontext;
395 				if (!c) {
396 					BUG();
397 					return 0;
398 				}
399 			}
400 			if (e->attr & CEXPR_USER)
401 				val1 = c->user;
402 			else if (e->attr & CEXPR_ROLE)
403 				val1 = c->role;
404 			else if (e->attr & CEXPR_TYPE)
405 				val1 = c->type;
406 			else {
407 				BUG();
408 				return 0;
409 			}
410 
411 			switch (e->op) {
412 			case CEXPR_EQ:
413 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
414 				break;
415 			case CEXPR_NEQ:
416 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
417 				break;
418 			default:
419 				BUG();
420 				return 0;
421 			}
422 			break;
423 		default:
424 			BUG();
425 			return 0;
426 		}
427 	}
428 
429 	BUG_ON(sp != 0);
430 	return s[0];
431 }
432 
433 /*
434  * security_dump_masked_av - dumps masked permissions during
435  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
436  */
437 static int dump_masked_av_helper(void *k, void *d, void *args)
438 {
439 	struct perm_datum *pdatum = d;
440 	char **permission_names = args;
441 
442 	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
443 
444 	permission_names[pdatum->value - 1] = (char *)k;
445 
446 	return 0;
447 }
448 
449 static void security_dump_masked_av(struct policydb *policydb,
450 				    struct context *scontext,
451 				    struct context *tcontext,
452 				    u16 tclass,
453 				    u32 permissions,
454 				    const char *reason)
455 {
456 	struct common_datum *common_dat;
457 	struct class_datum *tclass_dat;
458 	struct audit_buffer *ab;
459 	char *tclass_name;
460 	char *scontext_name = NULL;
461 	char *tcontext_name = NULL;
462 	char *permission_names[32];
463 	int index;
464 	u32 length;
465 	bool need_comma = false;
466 
467 	if (!permissions)
468 		return;
469 
470 	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
471 	tclass_dat = policydb->class_val_to_struct[tclass - 1];
472 	common_dat = tclass_dat->comdatum;
473 
474 	/* init permission_names */
475 	if (common_dat &&
476 	    hashtab_map(&common_dat->permissions.table,
477 			dump_masked_av_helper, permission_names) < 0)
478 		goto out;
479 
480 	if (hashtab_map(&tclass_dat->permissions.table,
481 			dump_masked_av_helper, permission_names) < 0)
482 		goto out;
483 
484 	/* get scontext/tcontext in text form */
485 	if (context_struct_to_string(policydb, scontext,
486 				     &scontext_name, &length) < 0)
487 		goto out;
488 
489 	if (context_struct_to_string(policydb, tcontext,
490 				     &tcontext_name, &length) < 0)
491 		goto out;
492 
493 	/* audit a message */
494 	ab = audit_log_start(audit_context(),
495 			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
496 	if (!ab)
497 		goto out;
498 
499 	audit_log_format(ab, "op=security_compute_av reason=%s "
500 			 "scontext=%s tcontext=%s tclass=%s perms=",
501 			 reason, scontext_name, tcontext_name, tclass_name);
502 
503 	for (index = 0; index < 32; index++) {
504 		u32 mask = (1 << index);
505 
506 		if ((mask & permissions) == 0)
507 			continue;
508 
509 		audit_log_format(ab, "%s%s",
510 				 need_comma ? "," : "",
511 				 permission_names[index]
512 				 ? permission_names[index] : "????");
513 		need_comma = true;
514 	}
515 	audit_log_end(ab);
516 out:
517 	/* release scontext/tcontext */
518 	kfree(tcontext_name);
519 	kfree(scontext_name);
520 
521 	return;
522 }
523 
524 /*
525  * security_boundary_permission - drops violated permissions
526  * on boundary constraint.
527  */
528 static void type_attribute_bounds_av(struct policydb *policydb,
529 				     struct context *scontext,
530 				     struct context *tcontext,
531 				     u16 tclass,
532 				     struct av_decision *avd)
533 {
534 	struct context lo_scontext;
535 	struct context lo_tcontext, *tcontextp = tcontext;
536 	struct av_decision lo_avd;
537 	struct type_datum *source;
538 	struct type_datum *target;
539 	u32 masked = 0;
540 
541 	source = policydb->type_val_to_struct[scontext->type - 1];
542 	BUG_ON(!source);
543 
544 	if (!source->bounds)
545 		return;
546 
547 	target = policydb->type_val_to_struct[tcontext->type - 1];
548 	BUG_ON(!target);
549 
550 	memset(&lo_avd, 0, sizeof(lo_avd));
551 
552 	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
553 	lo_scontext.type = source->bounds;
554 
555 	if (target->bounds) {
556 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
557 		lo_tcontext.type = target->bounds;
558 		tcontextp = &lo_tcontext;
559 	}
560 
561 	context_struct_compute_av(policydb, &lo_scontext,
562 				  tcontextp,
563 				  tclass,
564 				  &lo_avd,
565 				  NULL);
566 
567 	masked = ~lo_avd.allowed & avd->allowed;
568 
569 	if (likely(!masked))
570 		return;		/* no masked permission */
571 
572 	/* mask violated permissions */
573 	avd->allowed &= ~masked;
574 
575 	/* audit masked permissions */
576 	security_dump_masked_av(policydb, scontext, tcontext,
577 				tclass, masked, "bounds");
578 }
579 
580 /*
581  * flag which drivers have permissions
582  * only looking for ioctl based extended permssions
583  */
584 void services_compute_xperms_drivers(
585 		struct extended_perms *xperms,
586 		struct avtab_node *node)
587 {
588 	unsigned int i;
589 
590 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
591 		/* if one or more driver has all permissions allowed */
592 		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
593 			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
594 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
595 		/* if allowing permissions within a driver */
596 		security_xperm_set(xperms->drivers.p,
597 					node->datum.u.xperms->driver);
598 	}
599 
600 	xperms->len = 1;
601 }
602 
603 /*
604  * Compute access vectors and extended permissions based on a context
605  * structure pair for the permissions in a particular class.
606  */
607 static void context_struct_compute_av(struct policydb *policydb,
608 				      struct context *scontext,
609 				      struct context *tcontext,
610 				      u16 tclass,
611 				      struct av_decision *avd,
612 				      struct extended_perms *xperms)
613 {
614 	struct constraint_node *constraint;
615 	struct role_allow *ra;
616 	struct avtab_key avkey;
617 	struct avtab_node *node;
618 	struct class_datum *tclass_datum;
619 	struct ebitmap *sattr, *tattr;
620 	struct ebitmap_node *snode, *tnode;
621 	unsigned int i, j;
622 
623 	avd->allowed = 0;
624 	avd->auditallow = 0;
625 	avd->auditdeny = 0xffffffff;
626 	if (xperms) {
627 		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
628 		xperms->len = 0;
629 	}
630 
631 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
632 		if (printk_ratelimit())
633 			pr_warn("SELinux:  Invalid class %hu\n", tclass);
634 		return;
635 	}
636 
637 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
638 
639 	/*
640 	 * If a specific type enforcement rule was defined for
641 	 * this permission check, then use it.
642 	 */
643 	avkey.target_class = tclass;
644 	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
645 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
646 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
647 	ebitmap_for_each_positive_bit(sattr, snode, i) {
648 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
649 			avkey.source_type = i + 1;
650 			avkey.target_type = j + 1;
651 			for (node = avtab_search_node(&policydb->te_avtab,
652 						      &avkey);
653 			     node;
654 			     node = avtab_search_node_next(node, avkey.specified)) {
655 				if (node->key.specified == AVTAB_ALLOWED)
656 					avd->allowed |= node->datum.u.data;
657 				else if (node->key.specified == AVTAB_AUDITALLOW)
658 					avd->auditallow |= node->datum.u.data;
659 				else if (node->key.specified == AVTAB_AUDITDENY)
660 					avd->auditdeny &= node->datum.u.data;
661 				else if (xperms && (node->key.specified & AVTAB_XPERMS))
662 					services_compute_xperms_drivers(xperms, node);
663 			}
664 
665 			/* Check conditional av table for additional permissions */
666 			cond_compute_av(&policydb->te_cond_avtab, &avkey,
667 					avd, xperms);
668 
669 		}
670 	}
671 
672 	/*
673 	 * Remove any permissions prohibited by a constraint (this includes
674 	 * the MLS policy).
675 	 */
676 	constraint = tclass_datum->constraints;
677 	while (constraint) {
678 		if ((constraint->permissions & (avd->allowed)) &&
679 		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
680 					  constraint->expr)) {
681 			avd->allowed &= ~(constraint->permissions);
682 		}
683 		constraint = constraint->next;
684 	}
685 
686 	/*
687 	 * If checking process transition permission and the
688 	 * role is changing, then check the (current_role, new_role)
689 	 * pair.
690 	 */
691 	if (tclass == policydb->process_class &&
692 	    (avd->allowed & policydb->process_trans_perms) &&
693 	    scontext->role != tcontext->role) {
694 		for (ra = policydb->role_allow; ra; ra = ra->next) {
695 			if (scontext->role == ra->role &&
696 			    tcontext->role == ra->new_role)
697 				break;
698 		}
699 		if (!ra)
700 			avd->allowed &= ~policydb->process_trans_perms;
701 	}
702 
703 	/*
704 	 * If the given source and target types have boundary
705 	 * constraint, lazy checks have to mask any violated
706 	 * permission and notice it to userspace via audit.
707 	 */
708 	type_attribute_bounds_av(policydb, scontext, tcontext,
709 				 tclass, avd);
710 }
711 
712 static int security_validtrans_handle_fail(struct selinux_state *state,
713 					struct selinux_policy *policy,
714 					struct sidtab_entry *oentry,
715 					struct sidtab_entry *nentry,
716 					struct sidtab_entry *tentry,
717 					u16 tclass)
718 {
719 	struct policydb *p = &policy->policydb;
720 	struct sidtab *sidtab = policy->sidtab;
721 	char *o = NULL, *n = NULL, *t = NULL;
722 	u32 olen, nlen, tlen;
723 
724 	if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
725 		goto out;
726 	if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
727 		goto out;
728 	if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
729 		goto out;
730 	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
731 		  "op=security_validate_transition seresult=denied"
732 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
733 		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
734 out:
735 	kfree(o);
736 	kfree(n);
737 	kfree(t);
738 
739 	if (!enforcing_enabled(state))
740 		return 0;
741 	return -EPERM;
742 }
743 
744 static int security_compute_validatetrans(struct selinux_state *state,
745 					  u32 oldsid, u32 newsid, u32 tasksid,
746 					  u16 orig_tclass, bool user)
747 {
748 	struct selinux_policy *policy;
749 	struct policydb *policydb;
750 	struct sidtab *sidtab;
751 	struct sidtab_entry *oentry;
752 	struct sidtab_entry *nentry;
753 	struct sidtab_entry *tentry;
754 	struct class_datum *tclass_datum;
755 	struct constraint_node *constraint;
756 	u16 tclass;
757 	int rc = 0;
758 
759 
760 	if (!selinux_initialized(state))
761 		return 0;
762 
763 	rcu_read_lock();
764 
765 	policy = rcu_dereference(state->policy);
766 	policydb = &policy->policydb;
767 	sidtab = policy->sidtab;
768 
769 	if (!user)
770 		tclass = unmap_class(&policy->map, orig_tclass);
771 	else
772 		tclass = orig_tclass;
773 
774 	if (!tclass || tclass > policydb->p_classes.nprim) {
775 		rc = -EINVAL;
776 		goto out;
777 	}
778 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
779 
780 	oentry = sidtab_search_entry(sidtab, oldsid);
781 	if (!oentry) {
782 		pr_err("SELinux: %s:  unrecognized SID %d\n",
783 			__func__, oldsid);
784 		rc = -EINVAL;
785 		goto out;
786 	}
787 
788 	nentry = sidtab_search_entry(sidtab, newsid);
789 	if (!nentry) {
790 		pr_err("SELinux: %s:  unrecognized SID %d\n",
791 			__func__, newsid);
792 		rc = -EINVAL;
793 		goto out;
794 	}
795 
796 	tentry = sidtab_search_entry(sidtab, tasksid);
797 	if (!tentry) {
798 		pr_err("SELinux: %s:  unrecognized SID %d\n",
799 			__func__, tasksid);
800 		rc = -EINVAL;
801 		goto out;
802 	}
803 
804 	constraint = tclass_datum->validatetrans;
805 	while (constraint) {
806 		if (!constraint_expr_eval(policydb, &oentry->context,
807 					  &nentry->context, &tentry->context,
808 					  constraint->expr)) {
809 			if (user)
810 				rc = -EPERM;
811 			else
812 				rc = security_validtrans_handle_fail(state,
813 								policy,
814 								oentry,
815 								nentry,
816 								tentry,
817 								tclass);
818 			goto out;
819 		}
820 		constraint = constraint->next;
821 	}
822 
823 out:
824 	rcu_read_unlock();
825 	return rc;
826 }
827 
828 int security_validate_transition_user(struct selinux_state *state,
829 				      u32 oldsid, u32 newsid, u32 tasksid,
830 				      u16 tclass)
831 {
832 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
833 					      tclass, true);
834 }
835 
836 int security_validate_transition(struct selinux_state *state,
837 				 u32 oldsid, u32 newsid, u32 tasksid,
838 				 u16 orig_tclass)
839 {
840 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
841 					      orig_tclass, false);
842 }
843 
844 /*
845  * security_bounded_transition - check whether the given
846  * transition is directed to bounded, or not.
847  * It returns 0, if @newsid is bounded by @oldsid.
848  * Otherwise, it returns error code.
849  *
850  * @oldsid : current security identifier
851  * @newsid : destinated security identifier
852  */
853 int security_bounded_transition(struct selinux_state *state,
854 				u32 old_sid, u32 new_sid)
855 {
856 	struct selinux_policy *policy;
857 	struct policydb *policydb;
858 	struct sidtab *sidtab;
859 	struct sidtab_entry *old_entry, *new_entry;
860 	struct type_datum *type;
861 	int index;
862 	int rc;
863 
864 	if (!selinux_initialized(state))
865 		return 0;
866 
867 	rcu_read_lock();
868 	policy = rcu_dereference(state->policy);
869 	policydb = &policy->policydb;
870 	sidtab = policy->sidtab;
871 
872 	rc = -EINVAL;
873 	old_entry = sidtab_search_entry(sidtab, old_sid);
874 	if (!old_entry) {
875 		pr_err("SELinux: %s: unrecognized SID %u\n",
876 		       __func__, old_sid);
877 		goto out;
878 	}
879 
880 	rc = -EINVAL;
881 	new_entry = sidtab_search_entry(sidtab, new_sid);
882 	if (!new_entry) {
883 		pr_err("SELinux: %s: unrecognized SID %u\n",
884 		       __func__, new_sid);
885 		goto out;
886 	}
887 
888 	rc = 0;
889 	/* type/domain unchanged */
890 	if (old_entry->context.type == new_entry->context.type)
891 		goto out;
892 
893 	index = new_entry->context.type;
894 	while (true) {
895 		type = policydb->type_val_to_struct[index - 1];
896 		BUG_ON(!type);
897 
898 		/* not bounded anymore */
899 		rc = -EPERM;
900 		if (!type->bounds)
901 			break;
902 
903 		/* @newsid is bounded by @oldsid */
904 		rc = 0;
905 		if (type->bounds == old_entry->context.type)
906 			break;
907 
908 		index = type->bounds;
909 	}
910 
911 	if (rc) {
912 		char *old_name = NULL;
913 		char *new_name = NULL;
914 		u32 length;
915 
916 		if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
917 					    &old_name, &length) &&
918 		    !sidtab_entry_to_string(policydb, sidtab, new_entry,
919 					    &new_name, &length)) {
920 			audit_log(audit_context(),
921 				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
922 				  "op=security_bounded_transition "
923 				  "seresult=denied "
924 				  "oldcontext=%s newcontext=%s",
925 				  old_name, new_name);
926 		}
927 		kfree(new_name);
928 		kfree(old_name);
929 	}
930 out:
931 	rcu_read_unlock();
932 
933 	return rc;
934 }
935 
936 static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
937 {
938 	avd->allowed = 0;
939 	avd->auditallow = 0;
940 	avd->auditdeny = 0xffffffff;
941 	if (policy)
942 		avd->seqno = policy->latest_granting;
943 	else
944 		avd->seqno = 0;
945 	avd->flags = 0;
946 }
947 
948 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
949 					struct avtab_node *node)
950 {
951 	unsigned int i;
952 
953 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
954 		if (xpermd->driver != node->datum.u.xperms->driver)
955 			return;
956 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
957 		if (!security_xperm_test(node->datum.u.xperms->perms.p,
958 					xpermd->driver))
959 			return;
960 	} else {
961 		BUG();
962 	}
963 
964 	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
965 		xpermd->used |= XPERMS_ALLOWED;
966 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
967 			memset(xpermd->allowed->p, 0xff,
968 					sizeof(xpermd->allowed->p));
969 		}
970 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
971 			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
972 				xpermd->allowed->p[i] |=
973 					node->datum.u.xperms->perms.p[i];
974 		}
975 	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
976 		xpermd->used |= XPERMS_AUDITALLOW;
977 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
978 			memset(xpermd->auditallow->p, 0xff,
979 					sizeof(xpermd->auditallow->p));
980 		}
981 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
982 			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
983 				xpermd->auditallow->p[i] |=
984 					node->datum.u.xperms->perms.p[i];
985 		}
986 	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
987 		xpermd->used |= XPERMS_DONTAUDIT;
988 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
989 			memset(xpermd->dontaudit->p, 0xff,
990 					sizeof(xpermd->dontaudit->p));
991 		}
992 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
993 			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
994 				xpermd->dontaudit->p[i] |=
995 					node->datum.u.xperms->perms.p[i];
996 		}
997 	} else {
998 		BUG();
999 	}
1000 }
1001 
1002 void security_compute_xperms_decision(struct selinux_state *state,
1003 				      u32 ssid,
1004 				      u32 tsid,
1005 				      u16 orig_tclass,
1006 				      u8 driver,
1007 				      struct extended_perms_decision *xpermd)
1008 {
1009 	struct selinux_policy *policy;
1010 	struct policydb *policydb;
1011 	struct sidtab *sidtab;
1012 	u16 tclass;
1013 	struct context *scontext, *tcontext;
1014 	struct avtab_key avkey;
1015 	struct avtab_node *node;
1016 	struct ebitmap *sattr, *tattr;
1017 	struct ebitmap_node *snode, *tnode;
1018 	unsigned int i, j;
1019 
1020 	xpermd->driver = driver;
1021 	xpermd->used = 0;
1022 	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1023 	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1024 	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1025 
1026 	rcu_read_lock();
1027 	if (!selinux_initialized(state))
1028 		goto allow;
1029 
1030 	policy = rcu_dereference(state->policy);
1031 	policydb = &policy->policydb;
1032 	sidtab = policy->sidtab;
1033 
1034 	scontext = sidtab_search(sidtab, ssid);
1035 	if (!scontext) {
1036 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1037 		       __func__, ssid);
1038 		goto out;
1039 	}
1040 
1041 	tcontext = sidtab_search(sidtab, tsid);
1042 	if (!tcontext) {
1043 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1044 		       __func__, tsid);
1045 		goto out;
1046 	}
1047 
1048 	tclass = unmap_class(&policy->map, orig_tclass);
1049 	if (unlikely(orig_tclass && !tclass)) {
1050 		if (policydb->allow_unknown)
1051 			goto allow;
1052 		goto out;
1053 	}
1054 
1055 
1056 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1057 		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1058 		goto out;
1059 	}
1060 
1061 	avkey.target_class = tclass;
1062 	avkey.specified = AVTAB_XPERMS;
1063 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1064 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1065 	ebitmap_for_each_positive_bit(sattr, snode, i) {
1066 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1067 			avkey.source_type = i + 1;
1068 			avkey.target_type = j + 1;
1069 			for (node = avtab_search_node(&policydb->te_avtab,
1070 						      &avkey);
1071 			     node;
1072 			     node = avtab_search_node_next(node, avkey.specified))
1073 				services_compute_xperms_decision(xpermd, node);
1074 
1075 			cond_compute_xperms(&policydb->te_cond_avtab,
1076 						&avkey, xpermd);
1077 		}
1078 	}
1079 out:
1080 	rcu_read_unlock();
1081 	return;
1082 allow:
1083 	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1084 	goto out;
1085 }
1086 
1087 /**
1088  * security_compute_av - Compute access vector decisions.
1089  * @ssid: source security identifier
1090  * @tsid: target security identifier
1091  * @tclass: target security class
1092  * @avd: access vector decisions
1093  * @xperms: extended permissions
1094  *
1095  * Compute a set of access vector decisions based on the
1096  * SID pair (@ssid, @tsid) for the permissions in @tclass.
1097  */
1098 void security_compute_av(struct selinux_state *state,
1099 			 u32 ssid,
1100 			 u32 tsid,
1101 			 u16 orig_tclass,
1102 			 struct av_decision *avd,
1103 			 struct extended_perms *xperms)
1104 {
1105 	struct selinux_policy *policy;
1106 	struct policydb *policydb;
1107 	struct sidtab *sidtab;
1108 	u16 tclass;
1109 	struct context *scontext = NULL, *tcontext = NULL;
1110 
1111 	rcu_read_lock();
1112 	policy = rcu_dereference(state->policy);
1113 	avd_init(policy, avd);
1114 	xperms->len = 0;
1115 	if (!selinux_initialized(state))
1116 		goto allow;
1117 
1118 	policydb = &policy->policydb;
1119 	sidtab = policy->sidtab;
1120 
1121 	scontext = sidtab_search(sidtab, ssid);
1122 	if (!scontext) {
1123 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1124 		       __func__, ssid);
1125 		goto out;
1126 	}
1127 
1128 	/* permissive domain? */
1129 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1130 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1131 
1132 	tcontext = sidtab_search(sidtab, tsid);
1133 	if (!tcontext) {
1134 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1135 		       __func__, tsid);
1136 		goto out;
1137 	}
1138 
1139 	tclass = unmap_class(&policy->map, orig_tclass);
1140 	if (unlikely(orig_tclass && !tclass)) {
1141 		if (policydb->allow_unknown)
1142 			goto allow;
1143 		goto out;
1144 	}
1145 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1146 				  xperms);
1147 	map_decision(&policy->map, orig_tclass, avd,
1148 		     policydb->allow_unknown);
1149 out:
1150 	rcu_read_unlock();
1151 	return;
1152 allow:
1153 	avd->allowed = 0xffffffff;
1154 	goto out;
1155 }
1156 
1157 void security_compute_av_user(struct selinux_state *state,
1158 			      u32 ssid,
1159 			      u32 tsid,
1160 			      u16 tclass,
1161 			      struct av_decision *avd)
1162 {
1163 	struct selinux_policy *policy;
1164 	struct policydb *policydb;
1165 	struct sidtab *sidtab;
1166 	struct context *scontext = NULL, *tcontext = NULL;
1167 
1168 	rcu_read_lock();
1169 	policy = rcu_dereference(state->policy);
1170 	avd_init(policy, avd);
1171 	if (!selinux_initialized(state))
1172 		goto allow;
1173 
1174 	policydb = &policy->policydb;
1175 	sidtab = policy->sidtab;
1176 
1177 	scontext = sidtab_search(sidtab, ssid);
1178 	if (!scontext) {
1179 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1180 		       __func__, ssid);
1181 		goto out;
1182 	}
1183 
1184 	/* permissive domain? */
1185 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1186 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1187 
1188 	tcontext = sidtab_search(sidtab, tsid);
1189 	if (!tcontext) {
1190 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1191 		       __func__, tsid);
1192 		goto out;
1193 	}
1194 
1195 	if (unlikely(!tclass)) {
1196 		if (policydb->allow_unknown)
1197 			goto allow;
1198 		goto out;
1199 	}
1200 
1201 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1202 				  NULL);
1203  out:
1204 	rcu_read_unlock();
1205 	return;
1206 allow:
1207 	avd->allowed = 0xffffffff;
1208 	goto out;
1209 }
1210 
1211 /*
1212  * Write the security context string representation of
1213  * the context structure `context' into a dynamically
1214  * allocated string of the correct size.  Set `*scontext'
1215  * to point to this string and set `*scontext_len' to
1216  * the length of the string.
1217  */
1218 static int context_struct_to_string(struct policydb *p,
1219 				    struct context *context,
1220 				    char **scontext, u32 *scontext_len)
1221 {
1222 	char *scontextp;
1223 
1224 	if (scontext)
1225 		*scontext = NULL;
1226 	*scontext_len = 0;
1227 
1228 	if (context->len) {
1229 		*scontext_len = context->len;
1230 		if (scontext) {
1231 			*scontext = kstrdup(context->str, GFP_ATOMIC);
1232 			if (!(*scontext))
1233 				return -ENOMEM;
1234 		}
1235 		return 0;
1236 	}
1237 
1238 	/* Compute the size of the context. */
1239 	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1240 	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1241 	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1242 	*scontext_len += mls_compute_context_len(p, context);
1243 
1244 	if (!scontext)
1245 		return 0;
1246 
1247 	/* Allocate space for the context; caller must free this space. */
1248 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1249 	if (!scontextp)
1250 		return -ENOMEM;
1251 	*scontext = scontextp;
1252 
1253 	/*
1254 	 * Copy the user name, role name and type name into the context.
1255 	 */
1256 	scontextp += sprintf(scontextp, "%s:%s:%s",
1257 		sym_name(p, SYM_USERS, context->user - 1),
1258 		sym_name(p, SYM_ROLES, context->role - 1),
1259 		sym_name(p, SYM_TYPES, context->type - 1));
1260 
1261 	mls_sid_to_context(p, context, &scontextp);
1262 
1263 	*scontextp = 0;
1264 
1265 	return 0;
1266 }
1267 
1268 static int sidtab_entry_to_string(struct policydb *p,
1269 				  struct sidtab *sidtab,
1270 				  struct sidtab_entry *entry,
1271 				  char **scontext, u32 *scontext_len)
1272 {
1273 	int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1274 
1275 	if (rc != -ENOENT)
1276 		return rc;
1277 
1278 	rc = context_struct_to_string(p, &entry->context, scontext,
1279 				      scontext_len);
1280 	if (!rc && scontext)
1281 		sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1282 	return rc;
1283 }
1284 
1285 #include "initial_sid_to_string.h"
1286 
1287 int security_sidtab_hash_stats(struct selinux_state *state, char *page)
1288 {
1289 	struct selinux_policy *policy;
1290 	int rc;
1291 
1292 	if (!selinux_initialized(state)) {
1293 		pr_err("SELinux: %s:  called before initial load_policy\n",
1294 		       __func__);
1295 		return -EINVAL;
1296 	}
1297 
1298 	rcu_read_lock();
1299 	policy = rcu_dereference(state->policy);
1300 	rc = sidtab_hash_stats(policy->sidtab, page);
1301 	rcu_read_unlock();
1302 
1303 	return rc;
1304 }
1305 
1306 const char *security_get_initial_sid_context(u32 sid)
1307 {
1308 	if (unlikely(sid > SECINITSID_NUM))
1309 		return NULL;
1310 	return initial_sid_to_string[sid];
1311 }
1312 
1313 static int security_sid_to_context_core(struct selinux_state *state,
1314 					u32 sid, char **scontext,
1315 					u32 *scontext_len, int force,
1316 					int only_invalid)
1317 {
1318 	struct selinux_policy *policy;
1319 	struct policydb *policydb;
1320 	struct sidtab *sidtab;
1321 	struct sidtab_entry *entry;
1322 	int rc = 0;
1323 
1324 	if (scontext)
1325 		*scontext = NULL;
1326 	*scontext_len  = 0;
1327 
1328 	if (!selinux_initialized(state)) {
1329 		if (sid <= SECINITSID_NUM) {
1330 			char *scontextp;
1331 			const char *s = initial_sid_to_string[sid];
1332 
1333 			if (!s)
1334 				return -EINVAL;
1335 			*scontext_len = strlen(s) + 1;
1336 			if (!scontext)
1337 				return 0;
1338 			scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1339 			if (!scontextp)
1340 				return -ENOMEM;
1341 			*scontext = scontextp;
1342 			return 0;
1343 		}
1344 		pr_err("SELinux: %s:  called before initial "
1345 		       "load_policy on unknown SID %d\n", __func__, sid);
1346 		return -EINVAL;
1347 	}
1348 	rcu_read_lock();
1349 	policy = rcu_dereference(state->policy);
1350 	policydb = &policy->policydb;
1351 	sidtab = policy->sidtab;
1352 
1353 	if (force)
1354 		entry = sidtab_search_entry_force(sidtab, sid);
1355 	else
1356 		entry = sidtab_search_entry(sidtab, sid);
1357 	if (!entry) {
1358 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1359 			__func__, sid);
1360 		rc = -EINVAL;
1361 		goto out_unlock;
1362 	}
1363 	if (only_invalid && !entry->context.len)
1364 		goto out_unlock;
1365 
1366 	rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1367 				    scontext_len);
1368 
1369 out_unlock:
1370 	rcu_read_unlock();
1371 	return rc;
1372 
1373 }
1374 
1375 /**
1376  * security_sid_to_context - Obtain a context for a given SID.
1377  * @sid: security identifier, SID
1378  * @scontext: security context
1379  * @scontext_len: length in bytes
1380  *
1381  * Write the string representation of the context associated with @sid
1382  * into a dynamically allocated string of the correct size.  Set @scontext
1383  * to point to this string and set @scontext_len to the length of the string.
1384  */
1385 int security_sid_to_context(struct selinux_state *state,
1386 			    u32 sid, char **scontext, u32 *scontext_len)
1387 {
1388 	return security_sid_to_context_core(state, sid, scontext,
1389 					    scontext_len, 0, 0);
1390 }
1391 
1392 int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1393 				  char **scontext, u32 *scontext_len)
1394 {
1395 	return security_sid_to_context_core(state, sid, scontext,
1396 					    scontext_len, 1, 0);
1397 }
1398 
1399 /**
1400  * security_sid_to_context_inval - Obtain a context for a given SID if it
1401  *                                 is invalid.
1402  * @sid: security identifier, SID
1403  * @scontext: security context
1404  * @scontext_len: length in bytes
1405  *
1406  * Write the string representation of the context associated with @sid
1407  * into a dynamically allocated string of the correct size, but only if the
1408  * context is invalid in the current policy.  Set @scontext to point to
1409  * this string (or NULL if the context is valid) and set @scontext_len to
1410  * the length of the string (or 0 if the context is valid).
1411  */
1412 int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1413 				  char **scontext, u32 *scontext_len)
1414 {
1415 	return security_sid_to_context_core(state, sid, scontext,
1416 					    scontext_len, 1, 1);
1417 }
1418 
1419 /*
1420  * Caveat:  Mutates scontext.
1421  */
1422 static int string_to_context_struct(struct policydb *pol,
1423 				    struct sidtab *sidtabp,
1424 				    char *scontext,
1425 				    struct context *ctx,
1426 				    u32 def_sid)
1427 {
1428 	struct role_datum *role;
1429 	struct type_datum *typdatum;
1430 	struct user_datum *usrdatum;
1431 	char *scontextp, *p, oldc;
1432 	int rc = 0;
1433 
1434 	context_init(ctx);
1435 
1436 	/* Parse the security context. */
1437 
1438 	rc = -EINVAL;
1439 	scontextp = (char *) scontext;
1440 
1441 	/* Extract the user. */
1442 	p = scontextp;
1443 	while (*p && *p != ':')
1444 		p++;
1445 
1446 	if (*p == 0)
1447 		goto out;
1448 
1449 	*p++ = 0;
1450 
1451 	usrdatum = symtab_search(&pol->p_users, scontextp);
1452 	if (!usrdatum)
1453 		goto out;
1454 
1455 	ctx->user = usrdatum->value;
1456 
1457 	/* Extract role. */
1458 	scontextp = p;
1459 	while (*p && *p != ':')
1460 		p++;
1461 
1462 	if (*p == 0)
1463 		goto out;
1464 
1465 	*p++ = 0;
1466 
1467 	role = symtab_search(&pol->p_roles, scontextp);
1468 	if (!role)
1469 		goto out;
1470 	ctx->role = role->value;
1471 
1472 	/* Extract type. */
1473 	scontextp = p;
1474 	while (*p && *p != ':')
1475 		p++;
1476 	oldc = *p;
1477 	*p++ = 0;
1478 
1479 	typdatum = symtab_search(&pol->p_types, scontextp);
1480 	if (!typdatum || typdatum->attribute)
1481 		goto out;
1482 
1483 	ctx->type = typdatum->value;
1484 
1485 	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1486 	if (rc)
1487 		goto out;
1488 
1489 	/* Check the validity of the new context. */
1490 	rc = -EINVAL;
1491 	if (!policydb_context_isvalid(pol, ctx))
1492 		goto out;
1493 	rc = 0;
1494 out:
1495 	if (rc)
1496 		context_destroy(ctx);
1497 	return rc;
1498 }
1499 
1500 static int security_context_to_sid_core(struct selinux_state *state,
1501 					const char *scontext, u32 scontext_len,
1502 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1503 					int force)
1504 {
1505 	struct selinux_policy *policy;
1506 	struct policydb *policydb;
1507 	struct sidtab *sidtab;
1508 	char *scontext2, *str = NULL;
1509 	struct context context;
1510 	int rc = 0;
1511 
1512 	/* An empty security context is never valid. */
1513 	if (!scontext_len)
1514 		return -EINVAL;
1515 
1516 	/* Copy the string to allow changes and ensure a NUL terminator */
1517 	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1518 	if (!scontext2)
1519 		return -ENOMEM;
1520 
1521 	if (!selinux_initialized(state)) {
1522 		int i;
1523 
1524 		for (i = 1; i < SECINITSID_NUM; i++) {
1525 			const char *s = initial_sid_to_string[i];
1526 
1527 			if (s && !strcmp(s, scontext2)) {
1528 				*sid = i;
1529 				goto out;
1530 			}
1531 		}
1532 		*sid = SECINITSID_KERNEL;
1533 		goto out;
1534 	}
1535 	*sid = SECSID_NULL;
1536 
1537 	if (force) {
1538 		/* Save another copy for storing in uninterpreted form */
1539 		rc = -ENOMEM;
1540 		str = kstrdup(scontext2, gfp_flags);
1541 		if (!str)
1542 			goto out;
1543 	}
1544 	rcu_read_lock();
1545 	policy = rcu_dereference(state->policy);
1546 	policydb = &policy->policydb;
1547 	sidtab = policy->sidtab;
1548 	rc = string_to_context_struct(policydb, sidtab, scontext2,
1549 				      &context, def_sid);
1550 	if (rc == -EINVAL && force) {
1551 		context.str = str;
1552 		context.len = strlen(str) + 1;
1553 		str = NULL;
1554 	} else if (rc)
1555 		goto out_unlock;
1556 	rc = sidtab_context_to_sid(sidtab, &context, sid);
1557 	context_destroy(&context);
1558 out_unlock:
1559 	rcu_read_unlock();
1560 out:
1561 	kfree(scontext2);
1562 	kfree(str);
1563 	return rc;
1564 }
1565 
1566 /**
1567  * security_context_to_sid - Obtain a SID for a given security context.
1568  * @scontext: security context
1569  * @scontext_len: length in bytes
1570  * @sid: security identifier, SID
1571  * @gfp: context for the allocation
1572  *
1573  * Obtains a SID associated with the security context that
1574  * has the string representation specified by @scontext.
1575  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1576  * memory is available, or 0 on success.
1577  */
1578 int security_context_to_sid(struct selinux_state *state,
1579 			    const char *scontext, u32 scontext_len, u32 *sid,
1580 			    gfp_t gfp)
1581 {
1582 	return security_context_to_sid_core(state, scontext, scontext_len,
1583 					    sid, SECSID_NULL, gfp, 0);
1584 }
1585 
1586 int security_context_str_to_sid(struct selinux_state *state,
1587 				const char *scontext, u32 *sid, gfp_t gfp)
1588 {
1589 	return security_context_to_sid(state, scontext, strlen(scontext),
1590 				       sid, gfp);
1591 }
1592 
1593 /**
1594  * security_context_to_sid_default - Obtain a SID for a given security context,
1595  * falling back to specified default if needed.
1596  *
1597  * @scontext: security context
1598  * @scontext_len: length in bytes
1599  * @sid: security identifier, SID
1600  * @def_sid: default SID to assign on error
1601  *
1602  * Obtains a SID associated with the security context that
1603  * has the string representation specified by @scontext.
1604  * The default SID is passed to the MLS layer to be used to allow
1605  * kernel labeling of the MLS field if the MLS field is not present
1606  * (for upgrading to MLS without full relabel).
1607  * Implicitly forces adding of the context even if it cannot be mapped yet.
1608  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1609  * memory is available, or 0 on success.
1610  */
1611 int security_context_to_sid_default(struct selinux_state *state,
1612 				    const char *scontext, u32 scontext_len,
1613 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1614 {
1615 	return security_context_to_sid_core(state, scontext, scontext_len,
1616 					    sid, def_sid, gfp_flags, 1);
1617 }
1618 
1619 int security_context_to_sid_force(struct selinux_state *state,
1620 				  const char *scontext, u32 scontext_len,
1621 				  u32 *sid)
1622 {
1623 	return security_context_to_sid_core(state, scontext, scontext_len,
1624 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1625 }
1626 
1627 static int compute_sid_handle_invalid_context(
1628 	struct selinux_state *state,
1629 	struct selinux_policy *policy,
1630 	struct sidtab_entry *sentry,
1631 	struct sidtab_entry *tentry,
1632 	u16 tclass,
1633 	struct context *newcontext)
1634 {
1635 	struct policydb *policydb = &policy->policydb;
1636 	struct sidtab *sidtab = policy->sidtab;
1637 	char *s = NULL, *t = NULL, *n = NULL;
1638 	u32 slen, tlen, nlen;
1639 	struct audit_buffer *ab;
1640 
1641 	if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1642 		goto out;
1643 	if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1644 		goto out;
1645 	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1646 		goto out;
1647 	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1648 	audit_log_format(ab,
1649 			 "op=security_compute_sid invalid_context=");
1650 	/* no need to record the NUL with untrusted strings */
1651 	audit_log_n_untrustedstring(ab, n, nlen - 1);
1652 	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1653 			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1654 	audit_log_end(ab);
1655 out:
1656 	kfree(s);
1657 	kfree(t);
1658 	kfree(n);
1659 	if (!enforcing_enabled(state))
1660 		return 0;
1661 	return -EACCES;
1662 }
1663 
1664 static void filename_compute_type(struct policydb *policydb,
1665 				  struct context *newcontext,
1666 				  u32 stype, u32 ttype, u16 tclass,
1667 				  const char *objname)
1668 {
1669 	struct filename_trans_key ft;
1670 	struct filename_trans_datum *datum;
1671 
1672 	/*
1673 	 * Most filename trans rules are going to live in specific directories
1674 	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1675 	 * if the ttype does not contain any rules.
1676 	 */
1677 	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1678 		return;
1679 
1680 	ft.ttype = ttype;
1681 	ft.tclass = tclass;
1682 	ft.name = objname;
1683 
1684 	datum = policydb_filenametr_search(policydb, &ft);
1685 	while (datum) {
1686 		if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1687 			newcontext->type = datum->otype;
1688 			return;
1689 		}
1690 		datum = datum->next;
1691 	}
1692 }
1693 
1694 static int security_compute_sid(struct selinux_state *state,
1695 				u32 ssid,
1696 				u32 tsid,
1697 				u16 orig_tclass,
1698 				u32 specified,
1699 				const char *objname,
1700 				u32 *out_sid,
1701 				bool kern)
1702 {
1703 	struct selinux_policy *policy;
1704 	struct policydb *policydb;
1705 	struct sidtab *sidtab;
1706 	struct class_datum *cladatum = NULL;
1707 	struct context *scontext, *tcontext, newcontext;
1708 	struct sidtab_entry *sentry, *tentry;
1709 	struct avtab_key avkey;
1710 	struct avtab_datum *avdatum;
1711 	struct avtab_node *node;
1712 	u16 tclass;
1713 	int rc = 0;
1714 	bool sock;
1715 
1716 	if (!selinux_initialized(state)) {
1717 		switch (orig_tclass) {
1718 		case SECCLASS_PROCESS: /* kernel value */
1719 			*out_sid = ssid;
1720 			break;
1721 		default:
1722 			*out_sid = tsid;
1723 			break;
1724 		}
1725 		goto out;
1726 	}
1727 
1728 	context_init(&newcontext);
1729 
1730 	rcu_read_lock();
1731 
1732 	policy = rcu_dereference(state->policy);
1733 
1734 	if (kern) {
1735 		tclass = unmap_class(&policy->map, orig_tclass);
1736 		sock = security_is_socket_class(orig_tclass);
1737 	} else {
1738 		tclass = orig_tclass;
1739 		sock = security_is_socket_class(map_class(&policy->map,
1740 							  tclass));
1741 	}
1742 
1743 	policydb = &policy->policydb;
1744 	sidtab = policy->sidtab;
1745 
1746 	sentry = sidtab_search_entry(sidtab, ssid);
1747 	if (!sentry) {
1748 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1749 		       __func__, ssid);
1750 		rc = -EINVAL;
1751 		goto out_unlock;
1752 	}
1753 	tentry = sidtab_search_entry(sidtab, tsid);
1754 	if (!tentry) {
1755 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1756 		       __func__, tsid);
1757 		rc = -EINVAL;
1758 		goto out_unlock;
1759 	}
1760 
1761 	scontext = &sentry->context;
1762 	tcontext = &tentry->context;
1763 
1764 	if (tclass && tclass <= policydb->p_classes.nprim)
1765 		cladatum = policydb->class_val_to_struct[tclass - 1];
1766 
1767 	/* Set the user identity. */
1768 	switch (specified) {
1769 	case AVTAB_TRANSITION:
1770 	case AVTAB_CHANGE:
1771 		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1772 			newcontext.user = tcontext->user;
1773 		} else {
1774 			/* notice this gets both DEFAULT_SOURCE and unset */
1775 			/* Use the process user identity. */
1776 			newcontext.user = scontext->user;
1777 		}
1778 		break;
1779 	case AVTAB_MEMBER:
1780 		/* Use the related object owner. */
1781 		newcontext.user = tcontext->user;
1782 		break;
1783 	}
1784 
1785 	/* Set the role to default values. */
1786 	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1787 		newcontext.role = scontext->role;
1788 	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1789 		newcontext.role = tcontext->role;
1790 	} else {
1791 		if ((tclass == policydb->process_class) || sock)
1792 			newcontext.role = scontext->role;
1793 		else
1794 			newcontext.role = OBJECT_R_VAL;
1795 	}
1796 
1797 	/* Set the type to default values. */
1798 	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1799 		newcontext.type = scontext->type;
1800 	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1801 		newcontext.type = tcontext->type;
1802 	} else {
1803 		if ((tclass == policydb->process_class) || sock) {
1804 			/* Use the type of process. */
1805 			newcontext.type = scontext->type;
1806 		} else {
1807 			/* Use the type of the related object. */
1808 			newcontext.type = tcontext->type;
1809 		}
1810 	}
1811 
1812 	/* Look for a type transition/member/change rule. */
1813 	avkey.source_type = scontext->type;
1814 	avkey.target_type = tcontext->type;
1815 	avkey.target_class = tclass;
1816 	avkey.specified = specified;
1817 	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1818 
1819 	/* If no permanent rule, also check for enabled conditional rules */
1820 	if (!avdatum) {
1821 		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1822 		for (; node; node = avtab_search_node_next(node, specified)) {
1823 			if (node->key.specified & AVTAB_ENABLED) {
1824 				avdatum = &node->datum;
1825 				break;
1826 			}
1827 		}
1828 	}
1829 
1830 	if (avdatum) {
1831 		/* Use the type from the type transition/member/change rule. */
1832 		newcontext.type = avdatum->u.data;
1833 	}
1834 
1835 	/* if we have a objname this is a file trans check so check those rules */
1836 	if (objname)
1837 		filename_compute_type(policydb, &newcontext, scontext->type,
1838 				      tcontext->type, tclass, objname);
1839 
1840 	/* Check for class-specific changes. */
1841 	if (specified & AVTAB_TRANSITION) {
1842 		/* Look for a role transition rule. */
1843 		struct role_trans_datum *rtd;
1844 		struct role_trans_key rtk = {
1845 			.role = scontext->role,
1846 			.type = tcontext->type,
1847 			.tclass = tclass,
1848 		};
1849 
1850 		rtd = policydb_roletr_search(policydb, &rtk);
1851 		if (rtd)
1852 			newcontext.role = rtd->new_role;
1853 	}
1854 
1855 	/* Set the MLS attributes.
1856 	   This is done last because it may allocate memory. */
1857 	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1858 			     &newcontext, sock);
1859 	if (rc)
1860 		goto out_unlock;
1861 
1862 	/* Check the validity of the context. */
1863 	if (!policydb_context_isvalid(policydb, &newcontext)) {
1864 		rc = compute_sid_handle_invalid_context(state, policy, sentry,
1865 							tentry, tclass,
1866 							&newcontext);
1867 		if (rc)
1868 			goto out_unlock;
1869 	}
1870 	/* Obtain the sid for the context. */
1871 	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1872 out_unlock:
1873 	rcu_read_unlock();
1874 	context_destroy(&newcontext);
1875 out:
1876 	return rc;
1877 }
1878 
1879 /**
1880  * security_transition_sid - Compute the SID for a new subject/object.
1881  * @ssid: source security identifier
1882  * @tsid: target security identifier
1883  * @tclass: target security class
1884  * @out_sid: security identifier for new subject/object
1885  *
1886  * Compute a SID to use for labeling a new subject or object in the
1887  * class @tclass based on a SID pair (@ssid, @tsid).
1888  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1889  * if insufficient memory is available, or %0 if the new SID was
1890  * computed successfully.
1891  */
1892 int security_transition_sid(struct selinux_state *state,
1893 			    u32 ssid, u32 tsid, u16 tclass,
1894 			    const struct qstr *qstr, u32 *out_sid)
1895 {
1896 	return security_compute_sid(state, ssid, tsid, tclass,
1897 				    AVTAB_TRANSITION,
1898 				    qstr ? qstr->name : NULL, out_sid, true);
1899 }
1900 
1901 int security_transition_sid_user(struct selinux_state *state,
1902 				 u32 ssid, u32 tsid, u16 tclass,
1903 				 const char *objname, u32 *out_sid)
1904 {
1905 	return security_compute_sid(state, ssid, tsid, tclass,
1906 				    AVTAB_TRANSITION,
1907 				    objname, out_sid, false);
1908 }
1909 
1910 /**
1911  * security_member_sid - Compute the SID for member selection.
1912  * @ssid: source security identifier
1913  * @tsid: target security identifier
1914  * @tclass: target security class
1915  * @out_sid: security identifier for selected member
1916  *
1917  * Compute a SID to use when selecting a member of a polyinstantiated
1918  * object of class @tclass based on a SID pair (@ssid, @tsid).
1919  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1920  * if insufficient memory is available, or %0 if the SID was
1921  * computed successfully.
1922  */
1923 int security_member_sid(struct selinux_state *state,
1924 			u32 ssid,
1925 			u32 tsid,
1926 			u16 tclass,
1927 			u32 *out_sid)
1928 {
1929 	return security_compute_sid(state, ssid, tsid, tclass,
1930 				    AVTAB_MEMBER, NULL,
1931 				    out_sid, false);
1932 }
1933 
1934 /**
1935  * security_change_sid - Compute the SID for object relabeling.
1936  * @ssid: source security identifier
1937  * @tsid: target security identifier
1938  * @tclass: target security class
1939  * @out_sid: security identifier for selected member
1940  *
1941  * Compute a SID to use for relabeling an object of class @tclass
1942  * based on a SID pair (@ssid, @tsid).
1943  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1944  * if insufficient memory is available, or %0 if the SID was
1945  * computed successfully.
1946  */
1947 int security_change_sid(struct selinux_state *state,
1948 			u32 ssid,
1949 			u32 tsid,
1950 			u16 tclass,
1951 			u32 *out_sid)
1952 {
1953 	return security_compute_sid(state,
1954 				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1955 				    out_sid, false);
1956 }
1957 
1958 static inline int convert_context_handle_invalid_context(
1959 	struct selinux_state *state,
1960 	struct policydb *policydb,
1961 	struct context *context)
1962 {
1963 	char *s;
1964 	u32 len;
1965 
1966 	if (enforcing_enabled(state))
1967 		return -EINVAL;
1968 
1969 	if (!context_struct_to_string(policydb, context, &s, &len)) {
1970 		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
1971 			s);
1972 		kfree(s);
1973 	}
1974 	return 0;
1975 }
1976 
1977 struct convert_context_args {
1978 	struct selinux_state *state;
1979 	struct policydb *oldp;
1980 	struct policydb *newp;
1981 };
1982 
1983 /*
1984  * Convert the values in the security context
1985  * structure `oldc' from the values specified
1986  * in the policy `p->oldp' to the values specified
1987  * in the policy `p->newp', storing the new context
1988  * in `newc'.  Verify that the context is valid
1989  * under the new policy.
1990  */
1991 static int convert_context(struct context *oldc, struct context *newc, void *p)
1992 {
1993 	struct convert_context_args *args;
1994 	struct ocontext *oc;
1995 	struct role_datum *role;
1996 	struct type_datum *typdatum;
1997 	struct user_datum *usrdatum;
1998 	char *s;
1999 	u32 len;
2000 	int rc;
2001 
2002 	args = p;
2003 
2004 	if (oldc->str) {
2005 		s = kstrdup(oldc->str, GFP_KERNEL);
2006 		if (!s)
2007 			return -ENOMEM;
2008 
2009 		rc = string_to_context_struct(args->newp, NULL, s,
2010 					      newc, SECSID_NULL);
2011 		if (rc == -EINVAL) {
2012 			/*
2013 			 * Retain string representation for later mapping.
2014 			 *
2015 			 * IMPORTANT: We need to copy the contents of oldc->str
2016 			 * back into s again because string_to_context_struct()
2017 			 * may have garbled it.
2018 			 */
2019 			memcpy(s, oldc->str, oldc->len);
2020 			context_init(newc);
2021 			newc->str = s;
2022 			newc->len = oldc->len;
2023 			return 0;
2024 		}
2025 		kfree(s);
2026 		if (rc) {
2027 			/* Other error condition, e.g. ENOMEM. */
2028 			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2029 			       oldc->str, -rc);
2030 			return rc;
2031 		}
2032 		pr_info("SELinux:  Context %s became valid (mapped).\n",
2033 			oldc->str);
2034 		return 0;
2035 	}
2036 
2037 	context_init(newc);
2038 
2039 	/* Convert the user. */
2040 	rc = -EINVAL;
2041 	usrdatum = symtab_search(&args->newp->p_users,
2042 				 sym_name(args->oldp,
2043 					  SYM_USERS, oldc->user - 1));
2044 	if (!usrdatum)
2045 		goto bad;
2046 	newc->user = usrdatum->value;
2047 
2048 	/* Convert the role. */
2049 	rc = -EINVAL;
2050 	role = symtab_search(&args->newp->p_roles,
2051 			     sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2052 	if (!role)
2053 		goto bad;
2054 	newc->role = role->value;
2055 
2056 	/* Convert the type. */
2057 	rc = -EINVAL;
2058 	typdatum = symtab_search(&args->newp->p_types,
2059 				 sym_name(args->oldp,
2060 					  SYM_TYPES, oldc->type - 1));
2061 	if (!typdatum)
2062 		goto bad;
2063 	newc->type = typdatum->value;
2064 
2065 	/* Convert the MLS fields if dealing with MLS policies */
2066 	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2067 		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2068 		if (rc)
2069 			goto bad;
2070 	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2071 		/*
2072 		 * Switching between non-MLS and MLS policy:
2073 		 * ensure that the MLS fields of the context for all
2074 		 * existing entries in the sidtab are filled in with a
2075 		 * suitable default value, likely taken from one of the
2076 		 * initial SIDs.
2077 		 */
2078 		oc = args->newp->ocontexts[OCON_ISID];
2079 		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2080 			oc = oc->next;
2081 		rc = -EINVAL;
2082 		if (!oc) {
2083 			pr_err("SELinux:  unable to look up"
2084 				" the initial SIDs list\n");
2085 			goto bad;
2086 		}
2087 		rc = mls_range_set(newc, &oc->context[0].range);
2088 		if (rc)
2089 			goto bad;
2090 	}
2091 
2092 	/* Check the validity of the new context. */
2093 	if (!policydb_context_isvalid(args->newp, newc)) {
2094 		rc = convert_context_handle_invalid_context(args->state,
2095 							args->oldp,
2096 							oldc);
2097 		if (rc)
2098 			goto bad;
2099 	}
2100 
2101 	return 0;
2102 bad:
2103 	/* Map old representation to string and save it. */
2104 	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2105 	if (rc)
2106 		return rc;
2107 	context_destroy(newc);
2108 	newc->str = s;
2109 	newc->len = len;
2110 	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2111 		newc->str);
2112 	return 0;
2113 }
2114 
2115 static void security_load_policycaps(struct selinux_state *state,
2116 				struct selinux_policy *policy)
2117 {
2118 	struct policydb *p;
2119 	unsigned int i;
2120 	struct ebitmap_node *node;
2121 
2122 	p = &policy->policydb;
2123 
2124 	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2125 		WRITE_ONCE(state->policycap[i],
2126 			ebitmap_get_bit(&p->policycaps, i));
2127 
2128 	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2129 		pr_info("SELinux:  policy capability %s=%d\n",
2130 			selinux_policycap_names[i],
2131 			ebitmap_get_bit(&p->policycaps, i));
2132 
2133 	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2134 		if (i >= ARRAY_SIZE(selinux_policycap_names))
2135 			pr_info("SELinux:  unknown policy capability %u\n",
2136 				i);
2137 	}
2138 }
2139 
2140 static int security_preserve_bools(struct selinux_policy *oldpolicy,
2141 				struct selinux_policy *newpolicy);
2142 
2143 static void selinux_policy_free(struct selinux_policy *policy)
2144 {
2145 	if (!policy)
2146 		return;
2147 
2148 	sidtab_destroy(policy->sidtab);
2149 	kfree(policy->map.mapping);
2150 	policydb_destroy(&policy->policydb);
2151 	kfree(policy->sidtab);
2152 	kfree(policy);
2153 }
2154 
2155 static void selinux_policy_cond_free(struct selinux_policy *policy)
2156 {
2157 	cond_policydb_destroy_dup(&policy->policydb);
2158 	kfree(policy);
2159 }
2160 
2161 void selinux_policy_cancel(struct selinux_state *state,
2162 			struct selinux_policy *policy)
2163 {
2164 	struct selinux_policy *oldpolicy;
2165 
2166 	oldpolicy = rcu_dereference_protected(state->policy,
2167 					lockdep_is_held(&state->policy_mutex));
2168 
2169 	sidtab_cancel_convert(oldpolicy->sidtab);
2170 	selinux_policy_free(policy);
2171 }
2172 
2173 static void selinux_notify_policy_change(struct selinux_state *state,
2174 					u32 seqno)
2175 {
2176 	/* Flush external caches and notify userspace of policy load */
2177 	avc_ss_reset(state->avc, seqno);
2178 	selnl_notify_policyload(seqno);
2179 	selinux_status_update_policyload(state, seqno);
2180 	selinux_netlbl_cache_invalidate();
2181 	selinux_xfrm_notify_policyload();
2182 	selinux_ima_measure_state(state);
2183 }
2184 
2185 void selinux_policy_commit(struct selinux_state *state,
2186 			struct selinux_policy *newpolicy)
2187 {
2188 	struct selinux_policy *oldpolicy;
2189 	u32 seqno;
2190 
2191 	oldpolicy = rcu_dereference_protected(state->policy,
2192 					lockdep_is_held(&state->policy_mutex));
2193 
2194 	/* If switching between different policy types, log MLS status */
2195 	if (oldpolicy) {
2196 		if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2197 			pr_info("SELinux: Disabling MLS support...\n");
2198 		else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2199 			pr_info("SELinux: Enabling MLS support...\n");
2200 	}
2201 
2202 	/* Set latest granting seqno for new policy. */
2203 	if (oldpolicy)
2204 		newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2205 	else
2206 		newpolicy->latest_granting = 1;
2207 	seqno = newpolicy->latest_granting;
2208 
2209 	/* Install the new policy. */
2210 	rcu_assign_pointer(state->policy, newpolicy);
2211 
2212 	/* Load the policycaps from the new policy */
2213 	security_load_policycaps(state, newpolicy);
2214 
2215 	if (!selinux_initialized(state)) {
2216 		/*
2217 		 * After first policy load, the security server is
2218 		 * marked as initialized and ready to handle requests and
2219 		 * any objects created prior to policy load are then labeled.
2220 		 */
2221 		selinux_mark_initialized(state);
2222 		selinux_complete_init();
2223 	}
2224 
2225 	/* Free the old policy */
2226 	synchronize_rcu();
2227 	selinux_policy_free(oldpolicy);
2228 
2229 	/* Notify others of the policy change */
2230 	selinux_notify_policy_change(state, seqno);
2231 }
2232 
2233 /**
2234  * security_load_policy - Load a security policy configuration.
2235  * @data: binary policy data
2236  * @len: length of data in bytes
2237  *
2238  * Load a new set of security policy configuration data,
2239  * validate it and convert the SID table as necessary.
2240  * This function will flush the access vector cache after
2241  * loading the new policy.
2242  */
2243 int security_load_policy(struct selinux_state *state, void *data, size_t len,
2244 			struct selinux_policy **newpolicyp)
2245 {
2246 	struct selinux_policy *newpolicy, *oldpolicy;
2247 	struct sidtab_convert_params convert_params;
2248 	struct convert_context_args args;
2249 	int rc = 0;
2250 	struct policy_file file = { data, len }, *fp = &file;
2251 
2252 	newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2253 	if (!newpolicy)
2254 		return -ENOMEM;
2255 
2256 	newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2257 	if (!newpolicy->sidtab) {
2258 		rc = -ENOMEM;
2259 		goto err_policy;
2260 	}
2261 
2262 	rc = policydb_read(&newpolicy->policydb, fp);
2263 	if (rc)
2264 		goto err_sidtab;
2265 
2266 	newpolicy->policydb.len = len;
2267 	rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2268 				&newpolicy->map);
2269 	if (rc)
2270 		goto err_policydb;
2271 
2272 	rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2273 	if (rc) {
2274 		pr_err("SELinux:  unable to load the initial SIDs\n");
2275 		goto err_mapping;
2276 	}
2277 
2278 
2279 	if (!selinux_initialized(state)) {
2280 		/* First policy load, so no need to preserve state from old policy */
2281 		*newpolicyp = newpolicy;
2282 		return 0;
2283 	}
2284 
2285 	oldpolicy = rcu_dereference_protected(state->policy,
2286 					lockdep_is_held(&state->policy_mutex));
2287 
2288 	/* Preserve active boolean values from the old policy */
2289 	rc = security_preserve_bools(oldpolicy, newpolicy);
2290 	if (rc) {
2291 		pr_err("SELinux:  unable to preserve booleans\n");
2292 		goto err_free_isids;
2293 	}
2294 
2295 	/*
2296 	 * Convert the internal representations of contexts
2297 	 * in the new SID table.
2298 	 */
2299 	args.state = state;
2300 	args.oldp = &oldpolicy->policydb;
2301 	args.newp = &newpolicy->policydb;
2302 
2303 	convert_params.func = convert_context;
2304 	convert_params.args = &args;
2305 	convert_params.target = newpolicy->sidtab;
2306 
2307 	rc = sidtab_convert(oldpolicy->sidtab, &convert_params);
2308 	if (rc) {
2309 		pr_err("SELinux:  unable to convert the internal"
2310 			" representation of contexts in the new SID"
2311 			" table\n");
2312 		goto err_free_isids;
2313 	}
2314 
2315 	*newpolicyp = newpolicy;
2316 	return 0;
2317 
2318 err_free_isids:
2319 	sidtab_destroy(newpolicy->sidtab);
2320 err_mapping:
2321 	kfree(newpolicy->map.mapping);
2322 err_policydb:
2323 	policydb_destroy(&newpolicy->policydb);
2324 err_sidtab:
2325 	kfree(newpolicy->sidtab);
2326 err_policy:
2327 	kfree(newpolicy);
2328 
2329 	return rc;
2330 }
2331 
2332 /**
2333  * security_port_sid - Obtain the SID for a port.
2334  * @protocol: protocol number
2335  * @port: port number
2336  * @out_sid: security identifier
2337  */
2338 int security_port_sid(struct selinux_state *state,
2339 		      u8 protocol, u16 port, u32 *out_sid)
2340 {
2341 	struct selinux_policy *policy;
2342 	struct policydb *policydb;
2343 	struct sidtab *sidtab;
2344 	struct ocontext *c;
2345 	int rc = 0;
2346 
2347 	if (!selinux_initialized(state)) {
2348 		*out_sid = SECINITSID_PORT;
2349 		return 0;
2350 	}
2351 
2352 	rcu_read_lock();
2353 	policy = rcu_dereference(state->policy);
2354 	policydb = &policy->policydb;
2355 	sidtab = policy->sidtab;
2356 
2357 	c = policydb->ocontexts[OCON_PORT];
2358 	while (c) {
2359 		if (c->u.port.protocol == protocol &&
2360 		    c->u.port.low_port <= port &&
2361 		    c->u.port.high_port >= port)
2362 			break;
2363 		c = c->next;
2364 	}
2365 
2366 	if (c) {
2367 		if (!c->sid[0]) {
2368 			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2369 						   &c->sid[0]);
2370 			if (rc)
2371 				goto out;
2372 		}
2373 		*out_sid = c->sid[0];
2374 	} else {
2375 		*out_sid = SECINITSID_PORT;
2376 	}
2377 
2378 out:
2379 	rcu_read_unlock();
2380 	return rc;
2381 }
2382 
2383 /**
2384  * security_pkey_sid - Obtain the SID for a pkey.
2385  * @subnet_prefix: Subnet Prefix
2386  * @pkey_num: pkey number
2387  * @out_sid: security identifier
2388  */
2389 int security_ib_pkey_sid(struct selinux_state *state,
2390 			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2391 {
2392 	struct selinux_policy *policy;
2393 	struct policydb *policydb;
2394 	struct sidtab *sidtab;
2395 	struct ocontext *c;
2396 	int rc = 0;
2397 
2398 	if (!selinux_initialized(state)) {
2399 		*out_sid = SECINITSID_UNLABELED;
2400 		return 0;
2401 	}
2402 
2403 	rcu_read_lock();
2404 	policy = rcu_dereference(state->policy);
2405 	policydb = &policy->policydb;
2406 	sidtab = policy->sidtab;
2407 
2408 	c = policydb->ocontexts[OCON_IBPKEY];
2409 	while (c) {
2410 		if (c->u.ibpkey.low_pkey <= pkey_num &&
2411 		    c->u.ibpkey.high_pkey >= pkey_num &&
2412 		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2413 			break;
2414 
2415 		c = c->next;
2416 	}
2417 
2418 	if (c) {
2419 		if (!c->sid[0]) {
2420 			rc = sidtab_context_to_sid(sidtab,
2421 						   &c->context[0],
2422 						   &c->sid[0]);
2423 			if (rc)
2424 				goto out;
2425 		}
2426 		*out_sid = c->sid[0];
2427 	} else
2428 		*out_sid = SECINITSID_UNLABELED;
2429 
2430 out:
2431 	rcu_read_unlock();
2432 	return rc;
2433 }
2434 
2435 /**
2436  * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2437  * @dev_name: device name
2438  * @port: port number
2439  * @out_sid: security identifier
2440  */
2441 int security_ib_endport_sid(struct selinux_state *state,
2442 			    const char *dev_name, u8 port_num, u32 *out_sid)
2443 {
2444 	struct selinux_policy *policy;
2445 	struct policydb *policydb;
2446 	struct sidtab *sidtab;
2447 	struct ocontext *c;
2448 	int rc = 0;
2449 
2450 	if (!selinux_initialized(state)) {
2451 		*out_sid = SECINITSID_UNLABELED;
2452 		return 0;
2453 	}
2454 
2455 	rcu_read_lock();
2456 	policy = rcu_dereference(state->policy);
2457 	policydb = &policy->policydb;
2458 	sidtab = policy->sidtab;
2459 
2460 	c = policydb->ocontexts[OCON_IBENDPORT];
2461 	while (c) {
2462 		if (c->u.ibendport.port == port_num &&
2463 		    !strncmp(c->u.ibendport.dev_name,
2464 			     dev_name,
2465 			     IB_DEVICE_NAME_MAX))
2466 			break;
2467 
2468 		c = c->next;
2469 	}
2470 
2471 	if (c) {
2472 		if (!c->sid[0]) {
2473 			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2474 						   &c->sid[0]);
2475 			if (rc)
2476 				goto out;
2477 		}
2478 		*out_sid = c->sid[0];
2479 	} else
2480 		*out_sid = SECINITSID_UNLABELED;
2481 
2482 out:
2483 	rcu_read_unlock();
2484 	return rc;
2485 }
2486 
2487 /**
2488  * security_netif_sid - Obtain the SID for a network interface.
2489  * @name: interface name
2490  * @if_sid: interface SID
2491  */
2492 int security_netif_sid(struct selinux_state *state,
2493 		       char *name, u32 *if_sid)
2494 {
2495 	struct selinux_policy *policy;
2496 	struct policydb *policydb;
2497 	struct sidtab *sidtab;
2498 	int rc = 0;
2499 	struct ocontext *c;
2500 
2501 	if (!selinux_initialized(state)) {
2502 		*if_sid = SECINITSID_NETIF;
2503 		return 0;
2504 	}
2505 
2506 	rcu_read_lock();
2507 	policy = rcu_dereference(state->policy);
2508 	policydb = &policy->policydb;
2509 	sidtab = policy->sidtab;
2510 
2511 	c = policydb->ocontexts[OCON_NETIF];
2512 	while (c) {
2513 		if (strcmp(name, c->u.name) == 0)
2514 			break;
2515 		c = c->next;
2516 	}
2517 
2518 	if (c) {
2519 		if (!c->sid[0] || !c->sid[1]) {
2520 			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2521 						   &c->sid[0]);
2522 			if (rc)
2523 				goto out;
2524 			rc = sidtab_context_to_sid(sidtab, &c->context[1],
2525 						   &c->sid[1]);
2526 			if (rc)
2527 				goto out;
2528 		}
2529 		*if_sid = c->sid[0];
2530 	} else
2531 		*if_sid = SECINITSID_NETIF;
2532 
2533 out:
2534 	rcu_read_unlock();
2535 	return rc;
2536 }
2537 
2538 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2539 {
2540 	int i, fail = 0;
2541 
2542 	for (i = 0; i < 4; i++)
2543 		if (addr[i] != (input[i] & mask[i])) {
2544 			fail = 1;
2545 			break;
2546 		}
2547 
2548 	return !fail;
2549 }
2550 
2551 /**
2552  * security_node_sid - Obtain the SID for a node (host).
2553  * @domain: communication domain aka address family
2554  * @addrp: address
2555  * @addrlen: address length in bytes
2556  * @out_sid: security identifier
2557  */
2558 int security_node_sid(struct selinux_state *state,
2559 		      u16 domain,
2560 		      void *addrp,
2561 		      u32 addrlen,
2562 		      u32 *out_sid)
2563 {
2564 	struct selinux_policy *policy;
2565 	struct policydb *policydb;
2566 	struct sidtab *sidtab;
2567 	int rc;
2568 	struct ocontext *c;
2569 
2570 	if (!selinux_initialized(state)) {
2571 		*out_sid = SECINITSID_NODE;
2572 		return 0;
2573 	}
2574 
2575 	rcu_read_lock();
2576 	policy = rcu_dereference(state->policy);
2577 	policydb = &policy->policydb;
2578 	sidtab = policy->sidtab;
2579 
2580 	switch (domain) {
2581 	case AF_INET: {
2582 		u32 addr;
2583 
2584 		rc = -EINVAL;
2585 		if (addrlen != sizeof(u32))
2586 			goto out;
2587 
2588 		addr = *((u32 *)addrp);
2589 
2590 		c = policydb->ocontexts[OCON_NODE];
2591 		while (c) {
2592 			if (c->u.node.addr == (addr & c->u.node.mask))
2593 				break;
2594 			c = c->next;
2595 		}
2596 		break;
2597 	}
2598 
2599 	case AF_INET6:
2600 		rc = -EINVAL;
2601 		if (addrlen != sizeof(u64) * 2)
2602 			goto out;
2603 		c = policydb->ocontexts[OCON_NODE6];
2604 		while (c) {
2605 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2606 						c->u.node6.mask))
2607 				break;
2608 			c = c->next;
2609 		}
2610 		break;
2611 
2612 	default:
2613 		rc = 0;
2614 		*out_sid = SECINITSID_NODE;
2615 		goto out;
2616 	}
2617 
2618 	if (c) {
2619 		if (!c->sid[0]) {
2620 			rc = sidtab_context_to_sid(sidtab,
2621 						   &c->context[0],
2622 						   &c->sid[0]);
2623 			if (rc)
2624 				goto out;
2625 		}
2626 		*out_sid = c->sid[0];
2627 	} else {
2628 		*out_sid = SECINITSID_NODE;
2629 	}
2630 
2631 	rc = 0;
2632 out:
2633 	rcu_read_unlock();
2634 	return rc;
2635 }
2636 
2637 #define SIDS_NEL 25
2638 
2639 /**
2640  * security_get_user_sids - Obtain reachable SIDs for a user.
2641  * @fromsid: starting SID
2642  * @username: username
2643  * @sids: array of reachable SIDs for user
2644  * @nel: number of elements in @sids
2645  *
2646  * Generate the set of SIDs for legal security contexts
2647  * for a given user that can be reached by @fromsid.
2648  * Set *@sids to point to a dynamically allocated
2649  * array containing the set of SIDs.  Set *@nel to the
2650  * number of elements in the array.
2651  */
2652 
2653 int security_get_user_sids(struct selinux_state *state,
2654 			   u32 fromsid,
2655 			   char *username,
2656 			   u32 **sids,
2657 			   u32 *nel)
2658 {
2659 	struct selinux_policy *policy;
2660 	struct policydb *policydb;
2661 	struct sidtab *sidtab;
2662 	struct context *fromcon, usercon;
2663 	u32 *mysids = NULL, *mysids2, sid;
2664 	u32 mynel = 0, maxnel = SIDS_NEL;
2665 	struct user_datum *user;
2666 	struct role_datum *role;
2667 	struct ebitmap_node *rnode, *tnode;
2668 	int rc = 0, i, j;
2669 
2670 	*sids = NULL;
2671 	*nel = 0;
2672 
2673 	if (!selinux_initialized(state))
2674 		goto out;
2675 
2676 	rcu_read_lock();
2677 	policy = rcu_dereference(state->policy);
2678 	policydb = &policy->policydb;
2679 	sidtab = policy->sidtab;
2680 
2681 	context_init(&usercon);
2682 
2683 	rc = -EINVAL;
2684 	fromcon = sidtab_search(sidtab, fromsid);
2685 	if (!fromcon)
2686 		goto out_unlock;
2687 
2688 	rc = -EINVAL;
2689 	user = symtab_search(&policydb->p_users, username);
2690 	if (!user)
2691 		goto out_unlock;
2692 
2693 	usercon.user = user->value;
2694 
2695 	rc = -ENOMEM;
2696 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2697 	if (!mysids)
2698 		goto out_unlock;
2699 
2700 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2701 		role = policydb->role_val_to_struct[i];
2702 		usercon.role = i + 1;
2703 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2704 			usercon.type = j + 1;
2705 
2706 			if (mls_setup_user_range(policydb, fromcon, user,
2707 						 &usercon))
2708 				continue;
2709 
2710 			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2711 			if (rc)
2712 				goto out_unlock;
2713 			if (mynel < maxnel) {
2714 				mysids[mynel++] = sid;
2715 			} else {
2716 				rc = -ENOMEM;
2717 				maxnel += SIDS_NEL;
2718 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2719 				if (!mysids2)
2720 					goto out_unlock;
2721 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2722 				kfree(mysids);
2723 				mysids = mysids2;
2724 				mysids[mynel++] = sid;
2725 			}
2726 		}
2727 	}
2728 	rc = 0;
2729 out_unlock:
2730 	rcu_read_unlock();
2731 	if (rc || !mynel) {
2732 		kfree(mysids);
2733 		goto out;
2734 	}
2735 
2736 	rc = -ENOMEM;
2737 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2738 	if (!mysids2) {
2739 		kfree(mysids);
2740 		goto out;
2741 	}
2742 	for (i = 0, j = 0; i < mynel; i++) {
2743 		struct av_decision dummy_avd;
2744 		rc = avc_has_perm_noaudit(state,
2745 					  fromsid, mysids[i],
2746 					  SECCLASS_PROCESS, /* kernel value */
2747 					  PROCESS__TRANSITION, AVC_STRICT,
2748 					  &dummy_avd);
2749 		if (!rc)
2750 			mysids2[j++] = mysids[i];
2751 		cond_resched();
2752 	}
2753 	rc = 0;
2754 	kfree(mysids);
2755 	*sids = mysids2;
2756 	*nel = j;
2757 out:
2758 	return rc;
2759 }
2760 
2761 /**
2762  * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2763  * @fstype: filesystem type
2764  * @path: path from root of mount
2765  * @sclass: file security class
2766  * @sid: SID for path
2767  *
2768  * Obtain a SID to use for a file in a filesystem that
2769  * cannot support xattr or use a fixed labeling behavior like
2770  * transition SIDs or task SIDs.
2771  */
2772 static inline int __security_genfs_sid(struct selinux_policy *policy,
2773 				       const char *fstype,
2774 				       char *path,
2775 				       u16 orig_sclass,
2776 				       u32 *sid)
2777 {
2778 	struct policydb *policydb = &policy->policydb;
2779 	struct sidtab *sidtab = policy->sidtab;
2780 	int len;
2781 	u16 sclass;
2782 	struct genfs *genfs;
2783 	struct ocontext *c;
2784 	int rc, cmp = 0;
2785 
2786 	while (path[0] == '/' && path[1] == '/')
2787 		path++;
2788 
2789 	sclass = unmap_class(&policy->map, orig_sclass);
2790 	*sid = SECINITSID_UNLABELED;
2791 
2792 	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2793 		cmp = strcmp(fstype, genfs->fstype);
2794 		if (cmp <= 0)
2795 			break;
2796 	}
2797 
2798 	rc = -ENOENT;
2799 	if (!genfs || cmp)
2800 		goto out;
2801 
2802 	for (c = genfs->head; c; c = c->next) {
2803 		len = strlen(c->u.name);
2804 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2805 		    (strncmp(c->u.name, path, len) == 0))
2806 			break;
2807 	}
2808 
2809 	rc = -ENOENT;
2810 	if (!c)
2811 		goto out;
2812 
2813 	if (!c->sid[0]) {
2814 		rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2815 		if (rc)
2816 			goto out;
2817 	}
2818 
2819 	*sid = c->sid[0];
2820 	rc = 0;
2821 out:
2822 	return rc;
2823 }
2824 
2825 /**
2826  * security_genfs_sid - Obtain a SID for a file in a filesystem
2827  * @fstype: filesystem type
2828  * @path: path from root of mount
2829  * @sclass: file security class
2830  * @sid: SID for path
2831  *
2832  * Acquire policy_rwlock before calling __security_genfs_sid() and release
2833  * it afterward.
2834  */
2835 int security_genfs_sid(struct selinux_state *state,
2836 		       const char *fstype,
2837 		       char *path,
2838 		       u16 orig_sclass,
2839 		       u32 *sid)
2840 {
2841 	struct selinux_policy *policy;
2842 	int retval;
2843 
2844 	if (!selinux_initialized(state)) {
2845 		*sid = SECINITSID_UNLABELED;
2846 		return 0;
2847 	}
2848 
2849 	rcu_read_lock();
2850 	policy = rcu_dereference(state->policy);
2851 	retval = __security_genfs_sid(policy,
2852 				fstype, path, orig_sclass, sid);
2853 	rcu_read_unlock();
2854 	return retval;
2855 }
2856 
2857 int selinux_policy_genfs_sid(struct selinux_policy *policy,
2858 			const char *fstype,
2859 			char *path,
2860 			u16 orig_sclass,
2861 			u32 *sid)
2862 {
2863 	/* no lock required, policy is not yet accessible by other threads */
2864 	return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2865 }
2866 
2867 /**
2868  * security_fs_use - Determine how to handle labeling for a filesystem.
2869  * @sb: superblock in question
2870  */
2871 int security_fs_use(struct selinux_state *state, struct super_block *sb)
2872 {
2873 	struct selinux_policy *policy;
2874 	struct policydb *policydb;
2875 	struct sidtab *sidtab;
2876 	int rc = 0;
2877 	struct ocontext *c;
2878 	struct superblock_security_struct *sbsec = sb->s_security;
2879 	const char *fstype = sb->s_type->name;
2880 
2881 	if (!selinux_initialized(state)) {
2882 		sbsec->behavior = SECURITY_FS_USE_NONE;
2883 		sbsec->sid = SECINITSID_UNLABELED;
2884 		return 0;
2885 	}
2886 
2887 	rcu_read_lock();
2888 	policy = rcu_dereference(state->policy);
2889 	policydb = &policy->policydb;
2890 	sidtab = policy->sidtab;
2891 
2892 	c = policydb->ocontexts[OCON_FSUSE];
2893 	while (c) {
2894 		if (strcmp(fstype, c->u.name) == 0)
2895 			break;
2896 		c = c->next;
2897 	}
2898 
2899 	if (c) {
2900 		sbsec->behavior = c->v.behavior;
2901 		if (!c->sid[0]) {
2902 			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2903 						   &c->sid[0]);
2904 			if (rc)
2905 				goto out;
2906 		}
2907 		sbsec->sid = c->sid[0];
2908 	} else {
2909 		rc = __security_genfs_sid(policy, fstype, "/",
2910 					SECCLASS_DIR, &sbsec->sid);
2911 		if (rc) {
2912 			sbsec->behavior = SECURITY_FS_USE_NONE;
2913 			rc = 0;
2914 		} else {
2915 			sbsec->behavior = SECURITY_FS_USE_GENFS;
2916 		}
2917 	}
2918 
2919 out:
2920 	rcu_read_unlock();
2921 	return rc;
2922 }
2923 
2924 int security_get_bools(struct selinux_policy *policy,
2925 		       u32 *len, char ***names, int **values)
2926 {
2927 	struct policydb *policydb;
2928 	u32 i;
2929 	int rc;
2930 
2931 	policydb = &policy->policydb;
2932 
2933 	*names = NULL;
2934 	*values = NULL;
2935 
2936 	rc = 0;
2937 	*len = policydb->p_bools.nprim;
2938 	if (!*len)
2939 		goto out;
2940 
2941 	rc = -ENOMEM;
2942 	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2943 	if (!*names)
2944 		goto err;
2945 
2946 	rc = -ENOMEM;
2947 	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2948 	if (!*values)
2949 		goto err;
2950 
2951 	for (i = 0; i < *len; i++) {
2952 		(*values)[i] = policydb->bool_val_to_struct[i]->state;
2953 
2954 		rc = -ENOMEM;
2955 		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2956 				      GFP_ATOMIC);
2957 		if (!(*names)[i])
2958 			goto err;
2959 	}
2960 	rc = 0;
2961 out:
2962 	return rc;
2963 err:
2964 	if (*names) {
2965 		for (i = 0; i < *len; i++)
2966 			kfree((*names)[i]);
2967 		kfree(*names);
2968 	}
2969 	kfree(*values);
2970 	*len = 0;
2971 	*names = NULL;
2972 	*values = NULL;
2973 	goto out;
2974 }
2975 
2976 
2977 int security_set_bools(struct selinux_state *state, u32 len, int *values)
2978 {
2979 	struct selinux_policy *newpolicy, *oldpolicy;
2980 	int rc;
2981 	u32 i, seqno = 0;
2982 
2983 	if (!selinux_initialized(state))
2984 		return -EINVAL;
2985 
2986 	oldpolicy = rcu_dereference_protected(state->policy,
2987 					lockdep_is_held(&state->policy_mutex));
2988 
2989 	/* Consistency check on number of booleans, should never fail */
2990 	if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
2991 		return -EINVAL;
2992 
2993 	newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
2994 	if (!newpolicy)
2995 		return -ENOMEM;
2996 
2997 	/*
2998 	 * Deep copy only the parts of the policydb that might be
2999 	 * modified as a result of changing booleans.
3000 	 */
3001 	rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3002 	if (rc) {
3003 		kfree(newpolicy);
3004 		return -ENOMEM;
3005 	}
3006 
3007 	/* Update the boolean states in the copy */
3008 	for (i = 0; i < len; i++) {
3009 		int new_state = !!values[i];
3010 		int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3011 
3012 		if (new_state != old_state) {
3013 			audit_log(audit_context(), GFP_ATOMIC,
3014 				AUDIT_MAC_CONFIG_CHANGE,
3015 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
3016 				sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3017 				new_state,
3018 				old_state,
3019 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
3020 				audit_get_sessionid(current));
3021 			newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3022 		}
3023 	}
3024 
3025 	/* Re-evaluate the conditional rules in the copy */
3026 	evaluate_cond_nodes(&newpolicy->policydb);
3027 
3028 	/* Set latest granting seqno for new policy */
3029 	newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3030 	seqno = newpolicy->latest_granting;
3031 
3032 	/* Install the new policy */
3033 	rcu_assign_pointer(state->policy, newpolicy);
3034 
3035 	/*
3036 	 * Free the conditional portions of the old policydb
3037 	 * that were copied for the new policy, and the oldpolicy
3038 	 * structure itself but not what it references.
3039 	 */
3040 	synchronize_rcu();
3041 	selinux_policy_cond_free(oldpolicy);
3042 
3043 	/* Notify others of the policy change */
3044 	selinux_notify_policy_change(state, seqno);
3045 	return 0;
3046 }
3047 
3048 int security_get_bool_value(struct selinux_state *state,
3049 			    u32 index)
3050 {
3051 	struct selinux_policy *policy;
3052 	struct policydb *policydb;
3053 	int rc;
3054 	u32 len;
3055 
3056 	if (!selinux_initialized(state))
3057 		return 0;
3058 
3059 	rcu_read_lock();
3060 	policy = rcu_dereference(state->policy);
3061 	policydb = &policy->policydb;
3062 
3063 	rc = -EFAULT;
3064 	len = policydb->p_bools.nprim;
3065 	if (index >= len)
3066 		goto out;
3067 
3068 	rc = policydb->bool_val_to_struct[index]->state;
3069 out:
3070 	rcu_read_unlock();
3071 	return rc;
3072 }
3073 
3074 static int security_preserve_bools(struct selinux_policy *oldpolicy,
3075 				struct selinux_policy *newpolicy)
3076 {
3077 	int rc, *bvalues = NULL;
3078 	char **bnames = NULL;
3079 	struct cond_bool_datum *booldatum;
3080 	u32 i, nbools = 0;
3081 
3082 	rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3083 	if (rc)
3084 		goto out;
3085 	for (i = 0; i < nbools; i++) {
3086 		booldatum = symtab_search(&newpolicy->policydb.p_bools,
3087 					bnames[i]);
3088 		if (booldatum)
3089 			booldatum->state = bvalues[i];
3090 	}
3091 	evaluate_cond_nodes(&newpolicy->policydb);
3092 
3093 out:
3094 	if (bnames) {
3095 		for (i = 0; i < nbools; i++)
3096 			kfree(bnames[i]);
3097 	}
3098 	kfree(bnames);
3099 	kfree(bvalues);
3100 	return rc;
3101 }
3102 
3103 /*
3104  * security_sid_mls_copy() - computes a new sid based on the given
3105  * sid and the mls portion of mls_sid.
3106  */
3107 int security_sid_mls_copy(struct selinux_state *state,
3108 			  u32 sid, u32 mls_sid, u32 *new_sid)
3109 {
3110 	struct selinux_policy *policy;
3111 	struct policydb *policydb;
3112 	struct sidtab *sidtab;
3113 	struct context *context1;
3114 	struct context *context2;
3115 	struct context newcon;
3116 	char *s;
3117 	u32 len;
3118 	int rc;
3119 
3120 	rc = 0;
3121 	if (!selinux_initialized(state)) {
3122 		*new_sid = sid;
3123 		goto out;
3124 	}
3125 
3126 	context_init(&newcon);
3127 
3128 	rcu_read_lock();
3129 	policy = rcu_dereference(state->policy);
3130 	policydb = &policy->policydb;
3131 	sidtab = policy->sidtab;
3132 
3133 	if (!policydb->mls_enabled) {
3134 		*new_sid = sid;
3135 		goto out_unlock;
3136 	}
3137 
3138 	rc = -EINVAL;
3139 	context1 = sidtab_search(sidtab, sid);
3140 	if (!context1) {
3141 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3142 			__func__, sid);
3143 		goto out_unlock;
3144 	}
3145 
3146 	rc = -EINVAL;
3147 	context2 = sidtab_search(sidtab, mls_sid);
3148 	if (!context2) {
3149 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3150 			__func__, mls_sid);
3151 		goto out_unlock;
3152 	}
3153 
3154 	newcon.user = context1->user;
3155 	newcon.role = context1->role;
3156 	newcon.type = context1->type;
3157 	rc = mls_context_cpy(&newcon, context2);
3158 	if (rc)
3159 		goto out_unlock;
3160 
3161 	/* Check the validity of the new context. */
3162 	if (!policydb_context_isvalid(policydb, &newcon)) {
3163 		rc = convert_context_handle_invalid_context(state, policydb,
3164 							&newcon);
3165 		if (rc) {
3166 			if (!context_struct_to_string(policydb, &newcon, &s,
3167 						      &len)) {
3168 				struct audit_buffer *ab;
3169 
3170 				ab = audit_log_start(audit_context(),
3171 						     GFP_ATOMIC,
3172 						     AUDIT_SELINUX_ERR);
3173 				audit_log_format(ab,
3174 						 "op=security_sid_mls_copy invalid_context=");
3175 				/* don't record NUL with untrusted strings */
3176 				audit_log_n_untrustedstring(ab, s, len - 1);
3177 				audit_log_end(ab);
3178 				kfree(s);
3179 			}
3180 			goto out_unlock;
3181 		}
3182 	}
3183 	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3184 out_unlock:
3185 	rcu_read_unlock();
3186 	context_destroy(&newcon);
3187 out:
3188 	return rc;
3189 }
3190 
3191 /**
3192  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3193  * @nlbl_sid: NetLabel SID
3194  * @nlbl_type: NetLabel labeling protocol type
3195  * @xfrm_sid: XFRM SID
3196  *
3197  * Description:
3198  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3199  * resolved into a single SID it is returned via @peer_sid and the function
3200  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3201  * returns a negative value.  A table summarizing the behavior is below:
3202  *
3203  *                                 | function return |      @sid
3204  *   ------------------------------+-----------------+-----------------
3205  *   no peer labels                |        0        |    SECSID_NULL
3206  *   single peer label             |        0        |    <peer_label>
3207  *   multiple, consistent labels   |        0        |    <peer_label>
3208  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3209  *
3210  */
3211 int security_net_peersid_resolve(struct selinux_state *state,
3212 				 u32 nlbl_sid, u32 nlbl_type,
3213 				 u32 xfrm_sid,
3214 				 u32 *peer_sid)
3215 {
3216 	struct selinux_policy *policy;
3217 	struct policydb *policydb;
3218 	struct sidtab *sidtab;
3219 	int rc;
3220 	struct context *nlbl_ctx;
3221 	struct context *xfrm_ctx;
3222 
3223 	*peer_sid = SECSID_NULL;
3224 
3225 	/* handle the common (which also happens to be the set of easy) cases
3226 	 * right away, these two if statements catch everything involving a
3227 	 * single or absent peer SID/label */
3228 	if (xfrm_sid == SECSID_NULL) {
3229 		*peer_sid = nlbl_sid;
3230 		return 0;
3231 	}
3232 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3233 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3234 	 * is present */
3235 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3236 		*peer_sid = xfrm_sid;
3237 		return 0;
3238 	}
3239 
3240 	if (!selinux_initialized(state))
3241 		return 0;
3242 
3243 	rcu_read_lock();
3244 	policy = rcu_dereference(state->policy);
3245 	policydb = &policy->policydb;
3246 	sidtab = policy->sidtab;
3247 
3248 	/*
3249 	 * We don't need to check initialized here since the only way both
3250 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3251 	 * security server was initialized and state->initialized was true.
3252 	 */
3253 	if (!policydb->mls_enabled) {
3254 		rc = 0;
3255 		goto out;
3256 	}
3257 
3258 	rc = -EINVAL;
3259 	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3260 	if (!nlbl_ctx) {
3261 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3262 		       __func__, nlbl_sid);
3263 		goto out;
3264 	}
3265 	rc = -EINVAL;
3266 	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3267 	if (!xfrm_ctx) {
3268 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3269 		       __func__, xfrm_sid);
3270 		goto out;
3271 	}
3272 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3273 	if (rc)
3274 		goto out;
3275 
3276 	/* at present NetLabel SIDs/labels really only carry MLS
3277 	 * information so if the MLS portion of the NetLabel SID
3278 	 * matches the MLS portion of the labeled XFRM SID/label
3279 	 * then pass along the XFRM SID as it is the most
3280 	 * expressive */
3281 	*peer_sid = xfrm_sid;
3282 out:
3283 	rcu_read_unlock();
3284 	return rc;
3285 }
3286 
3287 static int get_classes_callback(void *k, void *d, void *args)
3288 {
3289 	struct class_datum *datum = d;
3290 	char *name = k, **classes = args;
3291 	int value = datum->value - 1;
3292 
3293 	classes[value] = kstrdup(name, GFP_ATOMIC);
3294 	if (!classes[value])
3295 		return -ENOMEM;
3296 
3297 	return 0;
3298 }
3299 
3300 int security_get_classes(struct selinux_policy *policy,
3301 			 char ***classes, int *nclasses)
3302 {
3303 	struct policydb *policydb;
3304 	int rc;
3305 
3306 	policydb = &policy->policydb;
3307 
3308 	rc = -ENOMEM;
3309 	*nclasses = policydb->p_classes.nprim;
3310 	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3311 	if (!*classes)
3312 		goto out;
3313 
3314 	rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3315 			 *classes);
3316 	if (rc) {
3317 		int i;
3318 		for (i = 0; i < *nclasses; i++)
3319 			kfree((*classes)[i]);
3320 		kfree(*classes);
3321 	}
3322 
3323 out:
3324 	return rc;
3325 }
3326 
3327 static int get_permissions_callback(void *k, void *d, void *args)
3328 {
3329 	struct perm_datum *datum = d;
3330 	char *name = k, **perms = args;
3331 	int value = datum->value - 1;
3332 
3333 	perms[value] = kstrdup(name, GFP_ATOMIC);
3334 	if (!perms[value])
3335 		return -ENOMEM;
3336 
3337 	return 0;
3338 }
3339 
3340 int security_get_permissions(struct selinux_policy *policy,
3341 			     char *class, char ***perms, int *nperms)
3342 {
3343 	struct policydb *policydb;
3344 	int rc, i;
3345 	struct class_datum *match;
3346 
3347 	policydb = &policy->policydb;
3348 
3349 	rc = -EINVAL;
3350 	match = symtab_search(&policydb->p_classes, class);
3351 	if (!match) {
3352 		pr_err("SELinux: %s:  unrecognized class %s\n",
3353 			__func__, class);
3354 		goto out;
3355 	}
3356 
3357 	rc = -ENOMEM;
3358 	*nperms = match->permissions.nprim;
3359 	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3360 	if (!*perms)
3361 		goto out;
3362 
3363 	if (match->comdatum) {
3364 		rc = hashtab_map(&match->comdatum->permissions.table,
3365 				 get_permissions_callback, *perms);
3366 		if (rc)
3367 			goto err;
3368 	}
3369 
3370 	rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3371 			 *perms);
3372 	if (rc)
3373 		goto err;
3374 
3375 out:
3376 	return rc;
3377 
3378 err:
3379 	for (i = 0; i < *nperms; i++)
3380 		kfree((*perms)[i]);
3381 	kfree(*perms);
3382 	return rc;
3383 }
3384 
3385 int security_get_reject_unknown(struct selinux_state *state)
3386 {
3387 	struct selinux_policy *policy;
3388 	int value;
3389 
3390 	if (!selinux_initialized(state))
3391 		return 0;
3392 
3393 	rcu_read_lock();
3394 	policy = rcu_dereference(state->policy);
3395 	value = policy->policydb.reject_unknown;
3396 	rcu_read_unlock();
3397 	return value;
3398 }
3399 
3400 int security_get_allow_unknown(struct selinux_state *state)
3401 {
3402 	struct selinux_policy *policy;
3403 	int value;
3404 
3405 	if (!selinux_initialized(state))
3406 		return 0;
3407 
3408 	rcu_read_lock();
3409 	policy = rcu_dereference(state->policy);
3410 	value = policy->policydb.allow_unknown;
3411 	rcu_read_unlock();
3412 	return value;
3413 }
3414 
3415 /**
3416  * security_policycap_supported - Check for a specific policy capability
3417  * @req_cap: capability
3418  *
3419  * Description:
3420  * This function queries the currently loaded policy to see if it supports the
3421  * capability specified by @req_cap.  Returns true (1) if the capability is
3422  * supported, false (0) if it isn't supported.
3423  *
3424  */
3425 int security_policycap_supported(struct selinux_state *state,
3426 				 unsigned int req_cap)
3427 {
3428 	struct selinux_policy *policy;
3429 	int rc;
3430 
3431 	if (!selinux_initialized(state))
3432 		return 0;
3433 
3434 	rcu_read_lock();
3435 	policy = rcu_dereference(state->policy);
3436 	rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3437 	rcu_read_unlock();
3438 
3439 	return rc;
3440 }
3441 
3442 struct selinux_audit_rule {
3443 	u32 au_seqno;
3444 	struct context au_ctxt;
3445 };
3446 
3447 void selinux_audit_rule_free(void *vrule)
3448 {
3449 	struct selinux_audit_rule *rule = vrule;
3450 
3451 	if (rule) {
3452 		context_destroy(&rule->au_ctxt);
3453 		kfree(rule);
3454 	}
3455 }
3456 
3457 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3458 {
3459 	struct selinux_state *state = &selinux_state;
3460 	struct selinux_policy *policy;
3461 	struct policydb *policydb;
3462 	struct selinux_audit_rule *tmprule;
3463 	struct role_datum *roledatum;
3464 	struct type_datum *typedatum;
3465 	struct user_datum *userdatum;
3466 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3467 	int rc = 0;
3468 
3469 	*rule = NULL;
3470 
3471 	if (!selinux_initialized(state))
3472 		return -EOPNOTSUPP;
3473 
3474 	switch (field) {
3475 	case AUDIT_SUBJ_USER:
3476 	case AUDIT_SUBJ_ROLE:
3477 	case AUDIT_SUBJ_TYPE:
3478 	case AUDIT_OBJ_USER:
3479 	case AUDIT_OBJ_ROLE:
3480 	case AUDIT_OBJ_TYPE:
3481 		/* only 'equals' and 'not equals' fit user, role, and type */
3482 		if (op != Audit_equal && op != Audit_not_equal)
3483 			return -EINVAL;
3484 		break;
3485 	case AUDIT_SUBJ_SEN:
3486 	case AUDIT_SUBJ_CLR:
3487 	case AUDIT_OBJ_LEV_LOW:
3488 	case AUDIT_OBJ_LEV_HIGH:
3489 		/* we do not allow a range, indicated by the presence of '-' */
3490 		if (strchr(rulestr, '-'))
3491 			return -EINVAL;
3492 		break;
3493 	default:
3494 		/* only the above fields are valid */
3495 		return -EINVAL;
3496 	}
3497 
3498 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3499 	if (!tmprule)
3500 		return -ENOMEM;
3501 
3502 	context_init(&tmprule->au_ctxt);
3503 
3504 	rcu_read_lock();
3505 	policy = rcu_dereference(state->policy);
3506 	policydb = &policy->policydb;
3507 
3508 	tmprule->au_seqno = policy->latest_granting;
3509 
3510 	switch (field) {
3511 	case AUDIT_SUBJ_USER:
3512 	case AUDIT_OBJ_USER:
3513 		rc = -EINVAL;
3514 		userdatum = symtab_search(&policydb->p_users, rulestr);
3515 		if (!userdatum)
3516 			goto out;
3517 		tmprule->au_ctxt.user = userdatum->value;
3518 		break;
3519 	case AUDIT_SUBJ_ROLE:
3520 	case AUDIT_OBJ_ROLE:
3521 		rc = -EINVAL;
3522 		roledatum = symtab_search(&policydb->p_roles, rulestr);
3523 		if (!roledatum)
3524 			goto out;
3525 		tmprule->au_ctxt.role = roledatum->value;
3526 		break;
3527 	case AUDIT_SUBJ_TYPE:
3528 	case AUDIT_OBJ_TYPE:
3529 		rc = -EINVAL;
3530 		typedatum = symtab_search(&policydb->p_types, rulestr);
3531 		if (!typedatum)
3532 			goto out;
3533 		tmprule->au_ctxt.type = typedatum->value;
3534 		break;
3535 	case AUDIT_SUBJ_SEN:
3536 	case AUDIT_SUBJ_CLR:
3537 	case AUDIT_OBJ_LEV_LOW:
3538 	case AUDIT_OBJ_LEV_HIGH:
3539 		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3540 				     GFP_ATOMIC);
3541 		if (rc)
3542 			goto out;
3543 		break;
3544 	}
3545 	rc = 0;
3546 out:
3547 	rcu_read_unlock();
3548 
3549 	if (rc) {
3550 		selinux_audit_rule_free(tmprule);
3551 		tmprule = NULL;
3552 	}
3553 
3554 	*rule = tmprule;
3555 
3556 	return rc;
3557 }
3558 
3559 /* Check to see if the rule contains any selinux fields */
3560 int selinux_audit_rule_known(struct audit_krule *rule)
3561 {
3562 	int i;
3563 
3564 	for (i = 0; i < rule->field_count; i++) {
3565 		struct audit_field *f = &rule->fields[i];
3566 		switch (f->type) {
3567 		case AUDIT_SUBJ_USER:
3568 		case AUDIT_SUBJ_ROLE:
3569 		case AUDIT_SUBJ_TYPE:
3570 		case AUDIT_SUBJ_SEN:
3571 		case AUDIT_SUBJ_CLR:
3572 		case AUDIT_OBJ_USER:
3573 		case AUDIT_OBJ_ROLE:
3574 		case AUDIT_OBJ_TYPE:
3575 		case AUDIT_OBJ_LEV_LOW:
3576 		case AUDIT_OBJ_LEV_HIGH:
3577 			return 1;
3578 		}
3579 	}
3580 
3581 	return 0;
3582 }
3583 
3584 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3585 {
3586 	struct selinux_state *state = &selinux_state;
3587 	struct selinux_policy *policy;
3588 	struct context *ctxt;
3589 	struct mls_level *level;
3590 	struct selinux_audit_rule *rule = vrule;
3591 	int match = 0;
3592 
3593 	if (unlikely(!rule)) {
3594 		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3595 		return -ENOENT;
3596 	}
3597 
3598 	if (!selinux_initialized(state))
3599 		return 0;
3600 
3601 	rcu_read_lock();
3602 
3603 	policy = rcu_dereference(state->policy);
3604 
3605 	if (rule->au_seqno < policy->latest_granting) {
3606 		match = -ESTALE;
3607 		goto out;
3608 	}
3609 
3610 	ctxt = sidtab_search(policy->sidtab, sid);
3611 	if (unlikely(!ctxt)) {
3612 		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3613 			  sid);
3614 		match = -ENOENT;
3615 		goto out;
3616 	}
3617 
3618 	/* a field/op pair that is not caught here will simply fall through
3619 	   without a match */
3620 	switch (field) {
3621 	case AUDIT_SUBJ_USER:
3622 	case AUDIT_OBJ_USER:
3623 		switch (op) {
3624 		case Audit_equal:
3625 			match = (ctxt->user == rule->au_ctxt.user);
3626 			break;
3627 		case Audit_not_equal:
3628 			match = (ctxt->user != rule->au_ctxt.user);
3629 			break;
3630 		}
3631 		break;
3632 	case AUDIT_SUBJ_ROLE:
3633 	case AUDIT_OBJ_ROLE:
3634 		switch (op) {
3635 		case Audit_equal:
3636 			match = (ctxt->role == rule->au_ctxt.role);
3637 			break;
3638 		case Audit_not_equal:
3639 			match = (ctxt->role != rule->au_ctxt.role);
3640 			break;
3641 		}
3642 		break;
3643 	case AUDIT_SUBJ_TYPE:
3644 	case AUDIT_OBJ_TYPE:
3645 		switch (op) {
3646 		case Audit_equal:
3647 			match = (ctxt->type == rule->au_ctxt.type);
3648 			break;
3649 		case Audit_not_equal:
3650 			match = (ctxt->type != rule->au_ctxt.type);
3651 			break;
3652 		}
3653 		break;
3654 	case AUDIT_SUBJ_SEN:
3655 	case AUDIT_SUBJ_CLR:
3656 	case AUDIT_OBJ_LEV_LOW:
3657 	case AUDIT_OBJ_LEV_HIGH:
3658 		level = ((field == AUDIT_SUBJ_SEN ||
3659 			  field == AUDIT_OBJ_LEV_LOW) ?
3660 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3661 		switch (op) {
3662 		case Audit_equal:
3663 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3664 					     level);
3665 			break;
3666 		case Audit_not_equal:
3667 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3668 					      level);
3669 			break;
3670 		case Audit_lt:
3671 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3672 					       level) &&
3673 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3674 					       level));
3675 			break;
3676 		case Audit_le:
3677 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3678 					      level);
3679 			break;
3680 		case Audit_gt:
3681 			match = (mls_level_dom(level,
3682 					      &rule->au_ctxt.range.level[0]) &&
3683 				 !mls_level_eq(level,
3684 					       &rule->au_ctxt.range.level[0]));
3685 			break;
3686 		case Audit_ge:
3687 			match = mls_level_dom(level,
3688 					      &rule->au_ctxt.range.level[0]);
3689 			break;
3690 		}
3691 	}
3692 
3693 out:
3694 	rcu_read_unlock();
3695 	return match;
3696 }
3697 
3698 static int aurule_avc_callback(u32 event)
3699 {
3700 	if (event == AVC_CALLBACK_RESET)
3701 		return audit_update_lsm_rules();
3702 	return 0;
3703 }
3704 
3705 static int __init aurule_init(void)
3706 {
3707 	int err;
3708 
3709 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3710 	if (err)
3711 		panic("avc_add_callback() failed, error %d\n", err);
3712 
3713 	return err;
3714 }
3715 __initcall(aurule_init);
3716 
3717 #ifdef CONFIG_NETLABEL
3718 /**
3719  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3720  * @secattr: the NetLabel packet security attributes
3721  * @sid: the SELinux SID
3722  *
3723  * Description:
3724  * Attempt to cache the context in @ctx, which was derived from the packet in
3725  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3726  * already been initialized.
3727  *
3728  */
3729 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3730 				      u32 sid)
3731 {
3732 	u32 *sid_cache;
3733 
3734 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3735 	if (sid_cache == NULL)
3736 		return;
3737 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3738 	if (secattr->cache == NULL) {
3739 		kfree(sid_cache);
3740 		return;
3741 	}
3742 
3743 	*sid_cache = sid;
3744 	secattr->cache->free = kfree;
3745 	secattr->cache->data = sid_cache;
3746 	secattr->flags |= NETLBL_SECATTR_CACHE;
3747 }
3748 
3749 /**
3750  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3751  * @secattr: the NetLabel packet security attributes
3752  * @sid: the SELinux SID
3753  *
3754  * Description:
3755  * Convert the given NetLabel security attributes in @secattr into a
3756  * SELinux SID.  If the @secattr field does not contain a full SELinux
3757  * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3758  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3759  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3760  * conversion for future lookups.  Returns zero on success, negative values on
3761  * failure.
3762  *
3763  */
3764 int security_netlbl_secattr_to_sid(struct selinux_state *state,
3765 				   struct netlbl_lsm_secattr *secattr,
3766 				   u32 *sid)
3767 {
3768 	struct selinux_policy *policy;
3769 	struct policydb *policydb;
3770 	struct sidtab *sidtab;
3771 	int rc;
3772 	struct context *ctx;
3773 	struct context ctx_new;
3774 
3775 	if (!selinux_initialized(state)) {
3776 		*sid = SECSID_NULL;
3777 		return 0;
3778 	}
3779 
3780 	rcu_read_lock();
3781 	policy = rcu_dereference(state->policy);
3782 	policydb = &policy->policydb;
3783 	sidtab = policy->sidtab;
3784 
3785 	if (secattr->flags & NETLBL_SECATTR_CACHE)
3786 		*sid = *(u32 *)secattr->cache->data;
3787 	else if (secattr->flags & NETLBL_SECATTR_SECID)
3788 		*sid = secattr->attr.secid;
3789 	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3790 		rc = -EIDRM;
3791 		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3792 		if (ctx == NULL)
3793 			goto out;
3794 
3795 		context_init(&ctx_new);
3796 		ctx_new.user = ctx->user;
3797 		ctx_new.role = ctx->role;
3798 		ctx_new.type = ctx->type;
3799 		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3800 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3801 			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3802 			if (rc)
3803 				goto out;
3804 		}
3805 		rc = -EIDRM;
3806 		if (!mls_context_isvalid(policydb, &ctx_new))
3807 			goto out_free;
3808 
3809 		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3810 		if (rc)
3811 			goto out_free;
3812 
3813 		security_netlbl_cache_add(secattr, *sid);
3814 
3815 		ebitmap_destroy(&ctx_new.range.level[0].cat);
3816 	} else
3817 		*sid = SECSID_NULL;
3818 
3819 	rcu_read_unlock();
3820 	return 0;
3821 out_free:
3822 	ebitmap_destroy(&ctx_new.range.level[0].cat);
3823 out:
3824 	rcu_read_unlock();
3825 	return rc;
3826 }
3827 
3828 /**
3829  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3830  * @sid: the SELinux SID
3831  * @secattr: the NetLabel packet security attributes
3832  *
3833  * Description:
3834  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3835  * Returns zero on success, negative values on failure.
3836  *
3837  */
3838 int security_netlbl_sid_to_secattr(struct selinux_state *state,
3839 				   u32 sid, struct netlbl_lsm_secattr *secattr)
3840 {
3841 	struct selinux_policy *policy;
3842 	struct policydb *policydb;
3843 	int rc;
3844 	struct context *ctx;
3845 
3846 	if (!selinux_initialized(state))
3847 		return 0;
3848 
3849 	rcu_read_lock();
3850 	policy = rcu_dereference(state->policy);
3851 	policydb = &policy->policydb;
3852 
3853 	rc = -ENOENT;
3854 	ctx = sidtab_search(policy->sidtab, sid);
3855 	if (ctx == NULL)
3856 		goto out;
3857 
3858 	rc = -ENOMEM;
3859 	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3860 				  GFP_ATOMIC);
3861 	if (secattr->domain == NULL)
3862 		goto out;
3863 
3864 	secattr->attr.secid = sid;
3865 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3866 	mls_export_netlbl_lvl(policydb, ctx, secattr);
3867 	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3868 out:
3869 	rcu_read_unlock();
3870 	return rc;
3871 }
3872 #endif /* CONFIG_NETLABEL */
3873 
3874 /**
3875  * __security_read_policy - read the policy.
3876  * @policy: SELinux policy
3877  * @data: binary policy data
3878  * @len: length of data in bytes
3879  *
3880  */
3881 static int __security_read_policy(struct selinux_policy *policy,
3882 				  void *data, size_t *len)
3883 {
3884 	int rc;
3885 	struct policy_file fp;
3886 
3887 	fp.data = data;
3888 	fp.len = *len;
3889 
3890 	rc = policydb_write(&policy->policydb, &fp);
3891 	if (rc)
3892 		return rc;
3893 
3894 	*len = (unsigned long)fp.data - (unsigned long)data;
3895 	return 0;
3896 }
3897 
3898 /**
3899  * security_read_policy - read the policy.
3900  * @state: selinux_state
3901  * @data: binary policy data
3902  * @len: length of data in bytes
3903  *
3904  */
3905 int security_read_policy(struct selinux_state *state,
3906 			 void **data, size_t *len)
3907 {
3908 	struct selinux_policy *policy;
3909 
3910 	policy = rcu_dereference_protected(
3911 			state->policy, lockdep_is_held(&state->policy_mutex));
3912 	if (!policy)
3913 		return -EINVAL;
3914 
3915 	*len = policy->policydb.len;
3916 	*data = vmalloc_user(*len);
3917 	if (!*data)
3918 		return -ENOMEM;
3919 
3920 	return __security_read_policy(policy, *data, len);
3921 }
3922 
3923 /**
3924  * security_read_state_kernel - read the policy.
3925  * @state: selinux_state
3926  * @data: binary policy data
3927  * @len: length of data in bytes
3928  *
3929  * Allocates kernel memory for reading SELinux policy.
3930  * This function is for internal use only and should not
3931  * be used for returning data to user space.
3932  *
3933  * This function must be called with policy_mutex held.
3934  */
3935 int security_read_state_kernel(struct selinux_state *state,
3936 			       void **data, size_t *len)
3937 {
3938 	struct selinux_policy *policy;
3939 
3940 	policy = rcu_dereference_protected(
3941 			state->policy, lockdep_is_held(&state->policy_mutex));
3942 	if (!policy)
3943 		return -EINVAL;
3944 
3945 	*len = policy->policydb.len;
3946 	*data = vmalloc(*len);
3947 	if (!*data)
3948 		return -ENOMEM;
3949 
3950 	return __security_read_policy(policy, *data, len);
3951 }
3952