xref: /openbmc/linux/security/selinux/ss/services.c (revision a09d2831)
1 /*
2  * Implementation of the security services.
3  *
4  * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5  *	     James Morris <jmorris@redhat.com>
6  *
7  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8  *
9  *	Support for enhanced MLS infrastructure.
10  *	Support for context based audit filters.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *	Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul.moore@hp.com>
17  *
18  *      Added support for NetLabel
19  *      Added support for the policy capability bitmap
20  *
21  * Updated: Chad Sellers <csellers@tresys.com>
22  *
23  *  Added validation of kernel classes and permissions
24  *
25  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
26  *
27  *  Added support for bounds domain and audit messaged on masked permissions
28  *
29  * Copyright (C) 2008, 2009 NEC Corporation
30  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
31  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
32  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
33  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
34  *	This program is free software; you can redistribute it and/or modify
35  *	it under the terms of the GNU General Public License as published by
36  *	the Free Software Foundation, version 2.
37  */
38 #include <linux/kernel.h>
39 #include <linux/slab.h>
40 #include <linux/string.h>
41 #include <linux/spinlock.h>
42 #include <linux/rcupdate.h>
43 #include <linux/errno.h>
44 #include <linux/in.h>
45 #include <linux/sched.h>
46 #include <linux/audit.h>
47 #include <linux/mutex.h>
48 #include <linux/selinux.h>
49 #include <net/netlabel.h>
50 
51 #include "flask.h"
52 #include "avc.h"
53 #include "avc_ss.h"
54 #include "security.h"
55 #include "context.h"
56 #include "policydb.h"
57 #include "sidtab.h"
58 #include "services.h"
59 #include "conditional.h"
60 #include "mls.h"
61 #include "objsec.h"
62 #include "netlabel.h"
63 #include "xfrm.h"
64 #include "ebitmap.h"
65 #include "audit.h"
66 
67 extern void selnl_notify_policyload(u32 seqno);
68 
69 int selinux_policycap_netpeer;
70 int selinux_policycap_openperm;
71 
72 static DEFINE_RWLOCK(policy_rwlock);
73 
74 static struct sidtab sidtab;
75 struct policydb policydb;
76 int ss_initialized;
77 
78 /*
79  * The largest sequence number that has been used when
80  * providing an access decision to the access vector cache.
81  * The sequence number only changes when a policy change
82  * occurs.
83  */
84 static u32 latest_granting;
85 
86 /* Forward declaration. */
87 static int context_struct_to_string(struct context *context, char **scontext,
88 				    u32 *scontext_len);
89 
90 static int context_struct_compute_av(struct context *scontext,
91 				     struct context *tcontext,
92 				     u16 tclass,
93 				     u32 requested,
94 				     struct av_decision *avd);
95 
96 struct selinux_mapping {
97 	u16 value; /* policy value */
98 	unsigned num_perms;
99 	u32 perms[sizeof(u32) * 8];
100 };
101 
102 static struct selinux_mapping *current_mapping;
103 static u16 current_mapping_size;
104 
105 static int selinux_set_mapping(struct policydb *pol,
106 			       struct security_class_mapping *map,
107 			       struct selinux_mapping **out_map_p,
108 			       u16 *out_map_size)
109 {
110 	struct selinux_mapping *out_map = NULL;
111 	size_t size = sizeof(struct selinux_mapping);
112 	u16 i, j;
113 	unsigned k;
114 	bool print_unknown_handle = false;
115 
116 	/* Find number of classes in the input mapping */
117 	if (!map)
118 		return -EINVAL;
119 	i = 0;
120 	while (map[i].name)
121 		i++;
122 
123 	/* Allocate space for the class records, plus one for class zero */
124 	out_map = kcalloc(++i, size, GFP_ATOMIC);
125 	if (!out_map)
126 		return -ENOMEM;
127 
128 	/* Store the raw class and permission values */
129 	j = 0;
130 	while (map[j].name) {
131 		struct security_class_mapping *p_in = map + (j++);
132 		struct selinux_mapping *p_out = out_map + j;
133 
134 		/* An empty class string skips ahead */
135 		if (!strcmp(p_in->name, "")) {
136 			p_out->num_perms = 0;
137 			continue;
138 		}
139 
140 		p_out->value = string_to_security_class(pol, p_in->name);
141 		if (!p_out->value) {
142 			printk(KERN_INFO
143 			       "SELinux:  Class %s not defined in policy.\n",
144 			       p_in->name);
145 			if (pol->reject_unknown)
146 				goto err;
147 			p_out->num_perms = 0;
148 			print_unknown_handle = true;
149 			continue;
150 		}
151 
152 		k = 0;
153 		while (p_in->perms && p_in->perms[k]) {
154 			/* An empty permission string skips ahead */
155 			if (!*p_in->perms[k]) {
156 				k++;
157 				continue;
158 			}
159 			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
160 							    p_in->perms[k]);
161 			if (!p_out->perms[k]) {
162 				printk(KERN_INFO
163 				       "SELinux:  Permission %s in class %s not defined in policy.\n",
164 				       p_in->perms[k], p_in->name);
165 				if (pol->reject_unknown)
166 					goto err;
167 				print_unknown_handle = true;
168 			}
169 
170 			k++;
171 		}
172 		p_out->num_perms = k;
173 	}
174 
175 	if (print_unknown_handle)
176 		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
177 		       pol->allow_unknown ? "allowed" : "denied");
178 
179 	*out_map_p = out_map;
180 	*out_map_size = i;
181 	return 0;
182 err:
183 	kfree(out_map);
184 	return -EINVAL;
185 }
186 
187 /*
188  * Get real, policy values from mapped values
189  */
190 
191 static u16 unmap_class(u16 tclass)
192 {
193 	if (tclass < current_mapping_size)
194 		return current_mapping[tclass].value;
195 
196 	return tclass;
197 }
198 
199 static u32 unmap_perm(u16 tclass, u32 tperm)
200 {
201 	if (tclass < current_mapping_size) {
202 		unsigned i;
203 		u32 kperm = 0;
204 
205 		for (i = 0; i < current_mapping[tclass].num_perms; i++)
206 			if (tperm & (1<<i)) {
207 				kperm |= current_mapping[tclass].perms[i];
208 				tperm &= ~(1<<i);
209 			}
210 		return kperm;
211 	}
212 
213 	return tperm;
214 }
215 
216 static void map_decision(u16 tclass, struct av_decision *avd,
217 			 int allow_unknown)
218 {
219 	if (tclass < current_mapping_size) {
220 		unsigned i, n = current_mapping[tclass].num_perms;
221 		u32 result;
222 
223 		for (i = 0, result = 0; i < n; i++) {
224 			if (avd->allowed & current_mapping[tclass].perms[i])
225 				result |= 1<<i;
226 			if (allow_unknown && !current_mapping[tclass].perms[i])
227 				result |= 1<<i;
228 		}
229 		avd->allowed = result;
230 
231 		for (i = 0, result = 0; i < n; i++)
232 			if (avd->auditallow & current_mapping[tclass].perms[i])
233 				result |= 1<<i;
234 		avd->auditallow = result;
235 
236 		for (i = 0, result = 0; i < n; i++) {
237 			if (avd->auditdeny & current_mapping[tclass].perms[i])
238 				result |= 1<<i;
239 			if (!allow_unknown && !current_mapping[tclass].perms[i])
240 				result |= 1<<i;
241 		}
242 		/*
243 		 * In case the kernel has a bug and requests a permission
244 		 * between num_perms and the maximum permission number, we
245 		 * should audit that denial
246 		 */
247 		for (; i < (sizeof(u32)*8); i++)
248 			result |= 1<<i;
249 		avd->auditdeny = result;
250 	}
251 }
252 
253 
254 /*
255  * Return the boolean value of a constraint expression
256  * when it is applied to the specified source and target
257  * security contexts.
258  *
259  * xcontext is a special beast...  It is used by the validatetrans rules
260  * only.  For these rules, scontext is the context before the transition,
261  * tcontext is the context after the transition, and xcontext is the context
262  * of the process performing the transition.  All other callers of
263  * constraint_expr_eval should pass in NULL for xcontext.
264  */
265 static int constraint_expr_eval(struct context *scontext,
266 				struct context *tcontext,
267 				struct context *xcontext,
268 				struct constraint_expr *cexpr)
269 {
270 	u32 val1, val2;
271 	struct context *c;
272 	struct role_datum *r1, *r2;
273 	struct mls_level *l1, *l2;
274 	struct constraint_expr *e;
275 	int s[CEXPR_MAXDEPTH];
276 	int sp = -1;
277 
278 	for (e = cexpr; e; e = e->next) {
279 		switch (e->expr_type) {
280 		case CEXPR_NOT:
281 			BUG_ON(sp < 0);
282 			s[sp] = !s[sp];
283 			break;
284 		case CEXPR_AND:
285 			BUG_ON(sp < 1);
286 			sp--;
287 			s[sp] &= s[sp+1];
288 			break;
289 		case CEXPR_OR:
290 			BUG_ON(sp < 1);
291 			sp--;
292 			s[sp] |= s[sp+1];
293 			break;
294 		case CEXPR_ATTR:
295 			if (sp == (CEXPR_MAXDEPTH-1))
296 				return 0;
297 			switch (e->attr) {
298 			case CEXPR_USER:
299 				val1 = scontext->user;
300 				val2 = tcontext->user;
301 				break;
302 			case CEXPR_TYPE:
303 				val1 = scontext->type;
304 				val2 = tcontext->type;
305 				break;
306 			case CEXPR_ROLE:
307 				val1 = scontext->role;
308 				val2 = tcontext->role;
309 				r1 = policydb.role_val_to_struct[val1 - 1];
310 				r2 = policydb.role_val_to_struct[val2 - 1];
311 				switch (e->op) {
312 				case CEXPR_DOM:
313 					s[++sp] = ebitmap_get_bit(&r1->dominates,
314 								  val2 - 1);
315 					continue;
316 				case CEXPR_DOMBY:
317 					s[++sp] = ebitmap_get_bit(&r2->dominates,
318 								  val1 - 1);
319 					continue;
320 				case CEXPR_INCOMP:
321 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
322 								    val2 - 1) &&
323 						   !ebitmap_get_bit(&r2->dominates,
324 								    val1 - 1));
325 					continue;
326 				default:
327 					break;
328 				}
329 				break;
330 			case CEXPR_L1L2:
331 				l1 = &(scontext->range.level[0]);
332 				l2 = &(tcontext->range.level[0]);
333 				goto mls_ops;
334 			case CEXPR_L1H2:
335 				l1 = &(scontext->range.level[0]);
336 				l2 = &(tcontext->range.level[1]);
337 				goto mls_ops;
338 			case CEXPR_H1L2:
339 				l1 = &(scontext->range.level[1]);
340 				l2 = &(tcontext->range.level[0]);
341 				goto mls_ops;
342 			case CEXPR_H1H2:
343 				l1 = &(scontext->range.level[1]);
344 				l2 = &(tcontext->range.level[1]);
345 				goto mls_ops;
346 			case CEXPR_L1H1:
347 				l1 = &(scontext->range.level[0]);
348 				l2 = &(scontext->range.level[1]);
349 				goto mls_ops;
350 			case CEXPR_L2H2:
351 				l1 = &(tcontext->range.level[0]);
352 				l2 = &(tcontext->range.level[1]);
353 				goto mls_ops;
354 mls_ops:
355 			switch (e->op) {
356 			case CEXPR_EQ:
357 				s[++sp] = mls_level_eq(l1, l2);
358 				continue;
359 			case CEXPR_NEQ:
360 				s[++sp] = !mls_level_eq(l1, l2);
361 				continue;
362 			case CEXPR_DOM:
363 				s[++sp] = mls_level_dom(l1, l2);
364 				continue;
365 			case CEXPR_DOMBY:
366 				s[++sp] = mls_level_dom(l2, l1);
367 				continue;
368 			case CEXPR_INCOMP:
369 				s[++sp] = mls_level_incomp(l2, l1);
370 				continue;
371 			default:
372 				BUG();
373 				return 0;
374 			}
375 			break;
376 			default:
377 				BUG();
378 				return 0;
379 			}
380 
381 			switch (e->op) {
382 			case CEXPR_EQ:
383 				s[++sp] = (val1 == val2);
384 				break;
385 			case CEXPR_NEQ:
386 				s[++sp] = (val1 != val2);
387 				break;
388 			default:
389 				BUG();
390 				return 0;
391 			}
392 			break;
393 		case CEXPR_NAMES:
394 			if (sp == (CEXPR_MAXDEPTH-1))
395 				return 0;
396 			c = scontext;
397 			if (e->attr & CEXPR_TARGET)
398 				c = tcontext;
399 			else if (e->attr & CEXPR_XTARGET) {
400 				c = xcontext;
401 				if (!c) {
402 					BUG();
403 					return 0;
404 				}
405 			}
406 			if (e->attr & CEXPR_USER)
407 				val1 = c->user;
408 			else if (e->attr & CEXPR_ROLE)
409 				val1 = c->role;
410 			else if (e->attr & CEXPR_TYPE)
411 				val1 = c->type;
412 			else {
413 				BUG();
414 				return 0;
415 			}
416 
417 			switch (e->op) {
418 			case CEXPR_EQ:
419 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
420 				break;
421 			case CEXPR_NEQ:
422 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
423 				break;
424 			default:
425 				BUG();
426 				return 0;
427 			}
428 			break;
429 		default:
430 			BUG();
431 			return 0;
432 		}
433 	}
434 
435 	BUG_ON(sp != 0);
436 	return s[0];
437 }
438 
439 /*
440  * security_dump_masked_av - dumps masked permissions during
441  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
442  */
443 static int dump_masked_av_helper(void *k, void *d, void *args)
444 {
445 	struct perm_datum *pdatum = d;
446 	char **permission_names = args;
447 
448 	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
449 
450 	permission_names[pdatum->value - 1] = (char *)k;
451 
452 	return 0;
453 }
454 
455 static void security_dump_masked_av(struct context *scontext,
456 				    struct context *tcontext,
457 				    u16 tclass,
458 				    u32 permissions,
459 				    const char *reason)
460 {
461 	struct common_datum *common_dat;
462 	struct class_datum *tclass_dat;
463 	struct audit_buffer *ab;
464 	char *tclass_name;
465 	char *scontext_name = NULL;
466 	char *tcontext_name = NULL;
467 	char *permission_names[32];
468 	int index, length;
469 	bool need_comma = false;
470 
471 	if (!permissions)
472 		return;
473 
474 	tclass_name = policydb.p_class_val_to_name[tclass - 1];
475 	tclass_dat = policydb.class_val_to_struct[tclass - 1];
476 	common_dat = tclass_dat->comdatum;
477 
478 	/* init permission_names */
479 	if (common_dat &&
480 	    hashtab_map(common_dat->permissions.table,
481 			dump_masked_av_helper, permission_names) < 0)
482 		goto out;
483 
484 	if (hashtab_map(tclass_dat->permissions.table,
485 			dump_masked_av_helper, permission_names) < 0)
486 		goto out;
487 
488 	/* get scontext/tcontext in text form */
489 	if (context_struct_to_string(scontext,
490 				     &scontext_name, &length) < 0)
491 		goto out;
492 
493 	if (context_struct_to_string(tcontext,
494 				     &tcontext_name, &length) < 0)
495 		goto out;
496 
497 	/* audit a message */
498 	ab = audit_log_start(current->audit_context,
499 			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
500 	if (!ab)
501 		goto out;
502 
503 	audit_log_format(ab, "op=security_compute_av reason=%s "
504 			 "scontext=%s tcontext=%s tclass=%s perms=",
505 			 reason, scontext_name, tcontext_name, tclass_name);
506 
507 	for (index = 0; index < 32; index++) {
508 		u32 mask = (1 << index);
509 
510 		if ((mask & permissions) == 0)
511 			continue;
512 
513 		audit_log_format(ab, "%s%s",
514 				 need_comma ? "," : "",
515 				 permission_names[index]
516 				 ? permission_names[index] : "????");
517 		need_comma = true;
518 	}
519 	audit_log_end(ab);
520 out:
521 	/* release scontext/tcontext */
522 	kfree(tcontext_name);
523 	kfree(scontext_name);
524 
525 	return;
526 }
527 
528 /*
529  * security_boundary_permission - drops violated permissions
530  * on boundary constraint.
531  */
532 static void type_attribute_bounds_av(struct context *scontext,
533 				     struct context *tcontext,
534 				     u16 tclass,
535 				     u32 requested,
536 				     struct av_decision *avd)
537 {
538 	struct context lo_scontext;
539 	struct context lo_tcontext;
540 	struct av_decision lo_avd;
541 	struct type_datum *source
542 		= policydb.type_val_to_struct[scontext->type - 1];
543 	struct type_datum *target
544 		= policydb.type_val_to_struct[tcontext->type - 1];
545 	u32 masked = 0;
546 
547 	if (source->bounds) {
548 		memset(&lo_avd, 0, sizeof(lo_avd));
549 
550 		memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
551 		lo_scontext.type = source->bounds;
552 
553 		context_struct_compute_av(&lo_scontext,
554 					  tcontext,
555 					  tclass,
556 					  requested,
557 					  &lo_avd);
558 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
559 			return;		/* no masked permission */
560 		masked = ~lo_avd.allowed & avd->allowed;
561 	}
562 
563 	if (target->bounds) {
564 		memset(&lo_avd, 0, sizeof(lo_avd));
565 
566 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
567 		lo_tcontext.type = target->bounds;
568 
569 		context_struct_compute_av(scontext,
570 					  &lo_tcontext,
571 					  tclass,
572 					  requested,
573 					  &lo_avd);
574 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
575 			return;		/* no masked permission */
576 		masked = ~lo_avd.allowed & avd->allowed;
577 	}
578 
579 	if (source->bounds && target->bounds) {
580 		memset(&lo_avd, 0, sizeof(lo_avd));
581 		/*
582 		 * lo_scontext and lo_tcontext are already
583 		 * set up.
584 		 */
585 
586 		context_struct_compute_av(&lo_scontext,
587 					  &lo_tcontext,
588 					  tclass,
589 					  requested,
590 					  &lo_avd);
591 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
592 			return;		/* no masked permission */
593 		masked = ~lo_avd.allowed & avd->allowed;
594 	}
595 
596 	if (masked) {
597 		/* mask violated permissions */
598 		avd->allowed &= ~masked;
599 
600 		/* audit masked permissions */
601 		security_dump_masked_av(scontext, tcontext,
602 					tclass, masked, "bounds");
603 	}
604 }
605 
606 /*
607  * Compute access vectors based on a context structure pair for
608  * the permissions in a particular class.
609  */
610 static int context_struct_compute_av(struct context *scontext,
611 				     struct context *tcontext,
612 				     u16 tclass,
613 				     u32 requested,
614 				     struct av_decision *avd)
615 {
616 	struct constraint_node *constraint;
617 	struct role_allow *ra;
618 	struct avtab_key avkey;
619 	struct avtab_node *node;
620 	struct class_datum *tclass_datum;
621 	struct ebitmap *sattr, *tattr;
622 	struct ebitmap_node *snode, *tnode;
623 	unsigned int i, j;
624 
625 	/*
626 	 * Initialize the access vectors to the default values.
627 	 */
628 	avd->allowed = 0;
629 	avd->auditallow = 0;
630 	avd->auditdeny = 0xffffffff;
631 	avd->seqno = latest_granting;
632 	avd->flags = 0;
633 
634 	if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
635 		if (printk_ratelimit())
636 			printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
637 		return -EINVAL;
638 	}
639 
640 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
641 
642 	/*
643 	 * If a specific type enforcement rule was defined for
644 	 * this permission check, then use it.
645 	 */
646 	avkey.target_class = tclass;
647 	avkey.specified = AVTAB_AV;
648 	sattr = &policydb.type_attr_map[scontext->type - 1];
649 	tattr = &policydb.type_attr_map[tcontext->type - 1];
650 	ebitmap_for_each_positive_bit(sattr, snode, i) {
651 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
652 			avkey.source_type = i + 1;
653 			avkey.target_type = j + 1;
654 			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
655 			     node;
656 			     node = avtab_search_node_next(node, avkey.specified)) {
657 				if (node->key.specified == AVTAB_ALLOWED)
658 					avd->allowed |= node->datum.data;
659 				else if (node->key.specified == AVTAB_AUDITALLOW)
660 					avd->auditallow |= node->datum.data;
661 				else if (node->key.specified == AVTAB_AUDITDENY)
662 					avd->auditdeny &= node->datum.data;
663 			}
664 
665 			/* Check conditional av table for additional permissions */
666 			cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
667 
668 		}
669 	}
670 
671 	/*
672 	 * Remove any permissions prohibited by a constraint (this includes
673 	 * the MLS policy).
674 	 */
675 	constraint = tclass_datum->constraints;
676 	while (constraint) {
677 		if ((constraint->permissions & (avd->allowed)) &&
678 		    !constraint_expr_eval(scontext, tcontext, NULL,
679 					  constraint->expr)) {
680 			avd->allowed &= ~(constraint->permissions);
681 		}
682 		constraint = constraint->next;
683 	}
684 
685 	/*
686 	 * If checking process transition permission and the
687 	 * role is changing, then check the (current_role, new_role)
688 	 * pair.
689 	 */
690 	if (tclass == policydb.process_class &&
691 	    (avd->allowed & policydb.process_trans_perms) &&
692 	    scontext->role != tcontext->role) {
693 		for (ra = policydb.role_allow; ra; ra = ra->next) {
694 			if (scontext->role == ra->role &&
695 			    tcontext->role == ra->new_role)
696 				break;
697 		}
698 		if (!ra)
699 			avd->allowed &= ~policydb.process_trans_perms;
700 	}
701 
702 	/*
703 	 * If the given source and target types have boundary
704 	 * constraint, lazy checks have to mask any violated
705 	 * permission and notice it to userspace via audit.
706 	 */
707 	type_attribute_bounds_av(scontext, tcontext,
708 				 tclass, requested, avd);
709 
710 	return 0;
711 }
712 
713 static int security_validtrans_handle_fail(struct context *ocontext,
714 					   struct context *ncontext,
715 					   struct context *tcontext,
716 					   u16 tclass)
717 {
718 	char *o = NULL, *n = NULL, *t = NULL;
719 	u32 olen, nlen, tlen;
720 
721 	if (context_struct_to_string(ocontext, &o, &olen) < 0)
722 		goto out;
723 	if (context_struct_to_string(ncontext, &n, &nlen) < 0)
724 		goto out;
725 	if (context_struct_to_string(tcontext, &t, &tlen) < 0)
726 		goto out;
727 	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
728 		  "security_validate_transition:  denied for"
729 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
730 		  o, n, t, policydb.p_class_val_to_name[tclass-1]);
731 out:
732 	kfree(o);
733 	kfree(n);
734 	kfree(t);
735 
736 	if (!selinux_enforcing)
737 		return 0;
738 	return -EPERM;
739 }
740 
741 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
742 				 u16 orig_tclass)
743 {
744 	struct context *ocontext;
745 	struct context *ncontext;
746 	struct context *tcontext;
747 	struct class_datum *tclass_datum;
748 	struct constraint_node *constraint;
749 	u16 tclass;
750 	int rc = 0;
751 
752 	if (!ss_initialized)
753 		return 0;
754 
755 	read_lock(&policy_rwlock);
756 
757 	tclass = unmap_class(orig_tclass);
758 
759 	if (!tclass || tclass > policydb.p_classes.nprim) {
760 		printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
761 			__func__, tclass);
762 		rc = -EINVAL;
763 		goto out;
764 	}
765 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
766 
767 	ocontext = sidtab_search(&sidtab, oldsid);
768 	if (!ocontext) {
769 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
770 			__func__, oldsid);
771 		rc = -EINVAL;
772 		goto out;
773 	}
774 
775 	ncontext = sidtab_search(&sidtab, newsid);
776 	if (!ncontext) {
777 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
778 			__func__, newsid);
779 		rc = -EINVAL;
780 		goto out;
781 	}
782 
783 	tcontext = sidtab_search(&sidtab, tasksid);
784 	if (!tcontext) {
785 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
786 			__func__, tasksid);
787 		rc = -EINVAL;
788 		goto out;
789 	}
790 
791 	constraint = tclass_datum->validatetrans;
792 	while (constraint) {
793 		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
794 					  constraint->expr)) {
795 			rc = security_validtrans_handle_fail(ocontext, ncontext,
796 							     tcontext, tclass);
797 			goto out;
798 		}
799 		constraint = constraint->next;
800 	}
801 
802 out:
803 	read_unlock(&policy_rwlock);
804 	return rc;
805 }
806 
807 /*
808  * security_bounded_transition - check whether the given
809  * transition is directed to bounded, or not.
810  * It returns 0, if @newsid is bounded by @oldsid.
811  * Otherwise, it returns error code.
812  *
813  * @oldsid : current security identifier
814  * @newsid : destinated security identifier
815  */
816 int security_bounded_transition(u32 old_sid, u32 new_sid)
817 {
818 	struct context *old_context, *new_context;
819 	struct type_datum *type;
820 	int index;
821 	int rc = -EINVAL;
822 
823 	read_lock(&policy_rwlock);
824 
825 	old_context = sidtab_search(&sidtab, old_sid);
826 	if (!old_context) {
827 		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
828 		       __func__, old_sid);
829 		goto out;
830 	}
831 
832 	new_context = sidtab_search(&sidtab, new_sid);
833 	if (!new_context) {
834 		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
835 		       __func__, new_sid);
836 		goto out;
837 	}
838 
839 	/* type/domain unchanged */
840 	if (old_context->type == new_context->type) {
841 		rc = 0;
842 		goto out;
843 	}
844 
845 	index = new_context->type;
846 	while (true) {
847 		type = policydb.type_val_to_struct[index - 1];
848 		BUG_ON(!type);
849 
850 		/* not bounded anymore */
851 		if (!type->bounds) {
852 			rc = -EPERM;
853 			break;
854 		}
855 
856 		/* @newsid is bounded by @oldsid */
857 		if (type->bounds == old_context->type) {
858 			rc = 0;
859 			break;
860 		}
861 		index = type->bounds;
862 	}
863 
864 	if (rc) {
865 		char *old_name = NULL;
866 		char *new_name = NULL;
867 		int length;
868 
869 		if (!context_struct_to_string(old_context,
870 					      &old_name, &length) &&
871 		    !context_struct_to_string(new_context,
872 					      &new_name, &length)) {
873 			audit_log(current->audit_context,
874 				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
875 				  "op=security_bounded_transition "
876 				  "result=denied "
877 				  "oldcontext=%s newcontext=%s",
878 				  old_name, new_name);
879 		}
880 		kfree(new_name);
881 		kfree(old_name);
882 	}
883 out:
884 	read_unlock(&policy_rwlock);
885 
886 	return rc;
887 }
888 
889 
890 static int security_compute_av_core(u32 ssid,
891 				    u32 tsid,
892 				    u16 tclass,
893 				    u32 requested,
894 				    struct av_decision *avd)
895 {
896 	struct context *scontext = NULL, *tcontext = NULL;
897 	int rc = 0;
898 
899 	scontext = sidtab_search(&sidtab, ssid);
900 	if (!scontext) {
901 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
902 		       __func__, ssid);
903 		return -EINVAL;
904 	}
905 	tcontext = sidtab_search(&sidtab, tsid);
906 	if (!tcontext) {
907 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
908 		       __func__, tsid);
909 		return -EINVAL;
910 	}
911 
912 	rc = context_struct_compute_av(scontext, tcontext, tclass,
913 				       requested, avd);
914 
915 	/* permissive domain? */
916 	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
917 		avd->flags |= AVD_FLAGS_PERMISSIVE;
918 
919 	return rc;
920 }
921 
922 /**
923  * security_compute_av - Compute access vector decisions.
924  * @ssid: source security identifier
925  * @tsid: target security identifier
926  * @tclass: target security class
927  * @requested: requested permissions
928  * @avd: access vector decisions
929  *
930  * Compute a set of access vector decisions based on the
931  * SID pair (@ssid, @tsid) for the permissions in @tclass.
932  * Return -%EINVAL if any of the parameters are invalid or %0
933  * if the access vector decisions were computed successfully.
934  */
935 int security_compute_av(u32 ssid,
936 			u32 tsid,
937 			u16 orig_tclass,
938 			u32 orig_requested,
939 			struct av_decision *avd)
940 {
941 	u16 tclass;
942 	u32 requested;
943 	int rc;
944 
945 	read_lock(&policy_rwlock);
946 
947 	if (!ss_initialized)
948 		goto allow;
949 
950 	requested = unmap_perm(orig_tclass, orig_requested);
951 	tclass = unmap_class(orig_tclass);
952 	if (unlikely(orig_tclass && !tclass)) {
953 		if (policydb.allow_unknown)
954 			goto allow;
955 		rc = -EINVAL;
956 		goto out;
957 	}
958 	rc = security_compute_av_core(ssid, tsid, tclass, requested, avd);
959 	map_decision(orig_tclass, avd, policydb.allow_unknown);
960 out:
961 	read_unlock(&policy_rwlock);
962 	return rc;
963 allow:
964 	avd->allowed = 0xffffffff;
965 	avd->auditallow = 0;
966 	avd->auditdeny = 0xffffffff;
967 	avd->seqno = latest_granting;
968 	avd->flags = 0;
969 	rc = 0;
970 	goto out;
971 }
972 
973 int security_compute_av_user(u32 ssid,
974 			     u32 tsid,
975 			     u16 tclass,
976 			     u32 requested,
977 			     struct av_decision *avd)
978 {
979 	int rc;
980 
981 	if (!ss_initialized) {
982 		avd->allowed = 0xffffffff;
983 		avd->auditallow = 0;
984 		avd->auditdeny = 0xffffffff;
985 		avd->seqno = latest_granting;
986 		return 0;
987 	}
988 
989 	read_lock(&policy_rwlock);
990 	rc = security_compute_av_core(ssid, tsid, tclass, requested, avd);
991 	read_unlock(&policy_rwlock);
992 	return rc;
993 }
994 
995 /*
996  * Write the security context string representation of
997  * the context structure `context' into a dynamically
998  * allocated string of the correct size.  Set `*scontext'
999  * to point to this string and set `*scontext_len' to
1000  * the length of the string.
1001  */
1002 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
1003 {
1004 	char *scontextp;
1005 
1006 	*scontext = NULL;
1007 	*scontext_len = 0;
1008 
1009 	if (context->len) {
1010 		*scontext_len = context->len;
1011 		*scontext = kstrdup(context->str, GFP_ATOMIC);
1012 		if (!(*scontext))
1013 			return -ENOMEM;
1014 		return 0;
1015 	}
1016 
1017 	/* Compute the size of the context. */
1018 	*scontext_len += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1;
1019 	*scontext_len += strlen(policydb.p_role_val_to_name[context->role - 1]) + 1;
1020 	*scontext_len += strlen(policydb.p_type_val_to_name[context->type - 1]) + 1;
1021 	*scontext_len += mls_compute_context_len(context);
1022 
1023 	/* Allocate space for the context; caller must free this space. */
1024 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1025 	if (!scontextp)
1026 		return -ENOMEM;
1027 	*scontext = scontextp;
1028 
1029 	/*
1030 	 * Copy the user name, role name and type name into the context.
1031 	 */
1032 	sprintf(scontextp, "%s:%s:%s",
1033 		policydb.p_user_val_to_name[context->user - 1],
1034 		policydb.p_role_val_to_name[context->role - 1],
1035 		policydb.p_type_val_to_name[context->type - 1]);
1036 	scontextp += strlen(policydb.p_user_val_to_name[context->user - 1]) +
1037 		     1 + strlen(policydb.p_role_val_to_name[context->role - 1]) +
1038 		     1 + strlen(policydb.p_type_val_to_name[context->type - 1]);
1039 
1040 	mls_sid_to_context(context, &scontextp);
1041 
1042 	*scontextp = 0;
1043 
1044 	return 0;
1045 }
1046 
1047 #include "initial_sid_to_string.h"
1048 
1049 const char *security_get_initial_sid_context(u32 sid)
1050 {
1051 	if (unlikely(sid > SECINITSID_NUM))
1052 		return NULL;
1053 	return initial_sid_to_string[sid];
1054 }
1055 
1056 static int security_sid_to_context_core(u32 sid, char **scontext,
1057 					u32 *scontext_len, int force)
1058 {
1059 	struct context *context;
1060 	int rc = 0;
1061 
1062 	*scontext = NULL;
1063 	*scontext_len  = 0;
1064 
1065 	if (!ss_initialized) {
1066 		if (sid <= SECINITSID_NUM) {
1067 			char *scontextp;
1068 
1069 			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1070 			scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1071 			if (!scontextp) {
1072 				rc = -ENOMEM;
1073 				goto out;
1074 			}
1075 			strcpy(scontextp, initial_sid_to_string[sid]);
1076 			*scontext = scontextp;
1077 			goto out;
1078 		}
1079 		printk(KERN_ERR "SELinux: %s:  called before initial "
1080 		       "load_policy on unknown SID %d\n", __func__, sid);
1081 		rc = -EINVAL;
1082 		goto out;
1083 	}
1084 	read_lock(&policy_rwlock);
1085 	if (force)
1086 		context = sidtab_search_force(&sidtab, sid);
1087 	else
1088 		context = sidtab_search(&sidtab, sid);
1089 	if (!context) {
1090 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1091 			__func__, sid);
1092 		rc = -EINVAL;
1093 		goto out_unlock;
1094 	}
1095 	rc = context_struct_to_string(context, scontext, scontext_len);
1096 out_unlock:
1097 	read_unlock(&policy_rwlock);
1098 out:
1099 	return rc;
1100 
1101 }
1102 
1103 /**
1104  * security_sid_to_context - Obtain a context for a given SID.
1105  * @sid: security identifier, SID
1106  * @scontext: security context
1107  * @scontext_len: length in bytes
1108  *
1109  * Write the string representation of the context associated with @sid
1110  * into a dynamically allocated string of the correct size.  Set @scontext
1111  * to point to this string and set @scontext_len to the length of the string.
1112  */
1113 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1114 {
1115 	return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1116 }
1117 
1118 int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1119 {
1120 	return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1121 }
1122 
1123 /*
1124  * Caveat:  Mutates scontext.
1125  */
1126 static int string_to_context_struct(struct policydb *pol,
1127 				    struct sidtab *sidtabp,
1128 				    char *scontext,
1129 				    u32 scontext_len,
1130 				    struct context *ctx,
1131 				    u32 def_sid)
1132 {
1133 	struct role_datum *role;
1134 	struct type_datum *typdatum;
1135 	struct user_datum *usrdatum;
1136 	char *scontextp, *p, oldc;
1137 	int rc = 0;
1138 
1139 	context_init(ctx);
1140 
1141 	/* Parse the security context. */
1142 
1143 	rc = -EINVAL;
1144 	scontextp = (char *) scontext;
1145 
1146 	/* Extract the user. */
1147 	p = scontextp;
1148 	while (*p && *p != ':')
1149 		p++;
1150 
1151 	if (*p == 0)
1152 		goto out;
1153 
1154 	*p++ = 0;
1155 
1156 	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1157 	if (!usrdatum)
1158 		goto out;
1159 
1160 	ctx->user = usrdatum->value;
1161 
1162 	/* Extract role. */
1163 	scontextp = p;
1164 	while (*p && *p != ':')
1165 		p++;
1166 
1167 	if (*p == 0)
1168 		goto out;
1169 
1170 	*p++ = 0;
1171 
1172 	role = hashtab_search(pol->p_roles.table, scontextp);
1173 	if (!role)
1174 		goto out;
1175 	ctx->role = role->value;
1176 
1177 	/* Extract type. */
1178 	scontextp = p;
1179 	while (*p && *p != ':')
1180 		p++;
1181 	oldc = *p;
1182 	*p++ = 0;
1183 
1184 	typdatum = hashtab_search(pol->p_types.table, scontextp);
1185 	if (!typdatum || typdatum->attribute)
1186 		goto out;
1187 
1188 	ctx->type = typdatum->value;
1189 
1190 	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1191 	if (rc)
1192 		goto out;
1193 
1194 	if ((p - scontext) < scontext_len) {
1195 		rc = -EINVAL;
1196 		goto out;
1197 	}
1198 
1199 	/* Check the validity of the new context. */
1200 	if (!policydb_context_isvalid(pol, ctx)) {
1201 		rc = -EINVAL;
1202 		goto out;
1203 	}
1204 	rc = 0;
1205 out:
1206 	if (rc)
1207 		context_destroy(ctx);
1208 	return rc;
1209 }
1210 
1211 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1212 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1213 					int force)
1214 {
1215 	char *scontext2, *str = NULL;
1216 	struct context context;
1217 	int rc = 0;
1218 
1219 	if (!ss_initialized) {
1220 		int i;
1221 
1222 		for (i = 1; i < SECINITSID_NUM; i++) {
1223 			if (!strcmp(initial_sid_to_string[i], scontext)) {
1224 				*sid = i;
1225 				return 0;
1226 			}
1227 		}
1228 		*sid = SECINITSID_KERNEL;
1229 		return 0;
1230 	}
1231 	*sid = SECSID_NULL;
1232 
1233 	/* Copy the string so that we can modify the copy as we parse it. */
1234 	scontext2 = kmalloc(scontext_len+1, gfp_flags);
1235 	if (!scontext2)
1236 		return -ENOMEM;
1237 	memcpy(scontext2, scontext, scontext_len);
1238 	scontext2[scontext_len] = 0;
1239 
1240 	if (force) {
1241 		/* Save another copy for storing in uninterpreted form */
1242 		str = kstrdup(scontext2, gfp_flags);
1243 		if (!str) {
1244 			kfree(scontext2);
1245 			return -ENOMEM;
1246 		}
1247 	}
1248 
1249 	read_lock(&policy_rwlock);
1250 	rc = string_to_context_struct(&policydb, &sidtab,
1251 				      scontext2, scontext_len,
1252 				      &context, def_sid);
1253 	if (rc == -EINVAL && force) {
1254 		context.str = str;
1255 		context.len = scontext_len;
1256 		str = NULL;
1257 	} else if (rc)
1258 		goto out;
1259 	rc = sidtab_context_to_sid(&sidtab, &context, sid);
1260 	context_destroy(&context);
1261 out:
1262 	read_unlock(&policy_rwlock);
1263 	kfree(scontext2);
1264 	kfree(str);
1265 	return rc;
1266 }
1267 
1268 /**
1269  * security_context_to_sid - Obtain a SID for a given security context.
1270  * @scontext: security context
1271  * @scontext_len: length in bytes
1272  * @sid: security identifier, SID
1273  *
1274  * Obtains a SID associated with the security context that
1275  * has the string representation specified by @scontext.
1276  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1277  * memory is available, or 0 on success.
1278  */
1279 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
1280 {
1281 	return security_context_to_sid_core(scontext, scontext_len,
1282 					    sid, SECSID_NULL, GFP_KERNEL, 0);
1283 }
1284 
1285 /**
1286  * security_context_to_sid_default - Obtain a SID for a given security context,
1287  * falling back to specified default if needed.
1288  *
1289  * @scontext: security context
1290  * @scontext_len: length in bytes
1291  * @sid: security identifier, SID
1292  * @def_sid: default SID to assign on error
1293  *
1294  * Obtains a SID associated with the security context that
1295  * has the string representation specified by @scontext.
1296  * The default SID is passed to the MLS layer to be used to allow
1297  * kernel labeling of the MLS field if the MLS field is not present
1298  * (for upgrading to MLS without full relabel).
1299  * Implicitly forces adding of the context even if it cannot be mapped yet.
1300  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1301  * memory is available, or 0 on success.
1302  */
1303 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1304 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1305 {
1306 	return security_context_to_sid_core(scontext, scontext_len,
1307 					    sid, def_sid, gfp_flags, 1);
1308 }
1309 
1310 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1311 				  u32 *sid)
1312 {
1313 	return security_context_to_sid_core(scontext, scontext_len,
1314 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1315 }
1316 
1317 static int compute_sid_handle_invalid_context(
1318 	struct context *scontext,
1319 	struct context *tcontext,
1320 	u16 tclass,
1321 	struct context *newcontext)
1322 {
1323 	char *s = NULL, *t = NULL, *n = NULL;
1324 	u32 slen, tlen, nlen;
1325 
1326 	if (context_struct_to_string(scontext, &s, &slen) < 0)
1327 		goto out;
1328 	if (context_struct_to_string(tcontext, &t, &tlen) < 0)
1329 		goto out;
1330 	if (context_struct_to_string(newcontext, &n, &nlen) < 0)
1331 		goto out;
1332 	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1333 		  "security_compute_sid:  invalid context %s"
1334 		  " for scontext=%s"
1335 		  " tcontext=%s"
1336 		  " tclass=%s",
1337 		  n, s, t, policydb.p_class_val_to_name[tclass-1]);
1338 out:
1339 	kfree(s);
1340 	kfree(t);
1341 	kfree(n);
1342 	if (!selinux_enforcing)
1343 		return 0;
1344 	return -EACCES;
1345 }
1346 
1347 static int security_compute_sid(u32 ssid,
1348 				u32 tsid,
1349 				u16 orig_tclass,
1350 				u32 specified,
1351 				u32 *out_sid,
1352 				bool kern)
1353 {
1354 	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1355 	struct role_trans *roletr = NULL;
1356 	struct avtab_key avkey;
1357 	struct avtab_datum *avdatum;
1358 	struct avtab_node *node;
1359 	u16 tclass;
1360 	int rc = 0;
1361 
1362 	if (!ss_initialized) {
1363 		switch (orig_tclass) {
1364 		case SECCLASS_PROCESS: /* kernel value */
1365 			*out_sid = ssid;
1366 			break;
1367 		default:
1368 			*out_sid = tsid;
1369 			break;
1370 		}
1371 		goto out;
1372 	}
1373 
1374 	context_init(&newcontext);
1375 
1376 	read_lock(&policy_rwlock);
1377 
1378 	if (kern)
1379 		tclass = unmap_class(orig_tclass);
1380 	else
1381 		tclass = orig_tclass;
1382 
1383 	scontext = sidtab_search(&sidtab, ssid);
1384 	if (!scontext) {
1385 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1386 		       __func__, ssid);
1387 		rc = -EINVAL;
1388 		goto out_unlock;
1389 	}
1390 	tcontext = sidtab_search(&sidtab, tsid);
1391 	if (!tcontext) {
1392 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1393 		       __func__, tsid);
1394 		rc = -EINVAL;
1395 		goto out_unlock;
1396 	}
1397 
1398 	/* Set the user identity. */
1399 	switch (specified) {
1400 	case AVTAB_TRANSITION:
1401 	case AVTAB_CHANGE:
1402 		/* Use the process user identity. */
1403 		newcontext.user = scontext->user;
1404 		break;
1405 	case AVTAB_MEMBER:
1406 		/* Use the related object owner. */
1407 		newcontext.user = tcontext->user;
1408 		break;
1409 	}
1410 
1411 	/* Set the role and type to default values. */
1412 	if (tclass == policydb.process_class) {
1413 		/* Use the current role and type of process. */
1414 		newcontext.role = scontext->role;
1415 		newcontext.type = scontext->type;
1416 	} else {
1417 		/* Use the well-defined object role. */
1418 		newcontext.role = OBJECT_R_VAL;
1419 		/* Use the type of the related object. */
1420 		newcontext.type = tcontext->type;
1421 	}
1422 
1423 	/* Look for a type transition/member/change rule. */
1424 	avkey.source_type = scontext->type;
1425 	avkey.target_type = tcontext->type;
1426 	avkey.target_class = tclass;
1427 	avkey.specified = specified;
1428 	avdatum = avtab_search(&policydb.te_avtab, &avkey);
1429 
1430 	/* If no permanent rule, also check for enabled conditional rules */
1431 	if (!avdatum) {
1432 		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1433 		for (; node; node = avtab_search_node_next(node, specified)) {
1434 			if (node->key.specified & AVTAB_ENABLED) {
1435 				avdatum = &node->datum;
1436 				break;
1437 			}
1438 		}
1439 	}
1440 
1441 	if (avdatum) {
1442 		/* Use the type from the type transition/member/change rule. */
1443 		newcontext.type = avdatum->data;
1444 	}
1445 
1446 	/* Check for class-specific changes. */
1447 	if  (tclass == policydb.process_class) {
1448 		if (specified & AVTAB_TRANSITION) {
1449 			/* Look for a role transition rule. */
1450 			for (roletr = policydb.role_tr; roletr;
1451 			     roletr = roletr->next) {
1452 				if (roletr->role == scontext->role &&
1453 				    roletr->type == tcontext->type) {
1454 					/* Use the role transition rule. */
1455 					newcontext.role = roletr->new_role;
1456 					break;
1457 				}
1458 			}
1459 		}
1460 	}
1461 
1462 	/* Set the MLS attributes.
1463 	   This is done last because it may allocate memory. */
1464 	rc = mls_compute_sid(scontext, tcontext, tclass, specified, &newcontext);
1465 	if (rc)
1466 		goto out_unlock;
1467 
1468 	/* Check the validity of the context. */
1469 	if (!policydb_context_isvalid(&policydb, &newcontext)) {
1470 		rc = compute_sid_handle_invalid_context(scontext,
1471 							tcontext,
1472 							tclass,
1473 							&newcontext);
1474 		if (rc)
1475 			goto out_unlock;
1476 	}
1477 	/* Obtain the sid for the context. */
1478 	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1479 out_unlock:
1480 	read_unlock(&policy_rwlock);
1481 	context_destroy(&newcontext);
1482 out:
1483 	return rc;
1484 }
1485 
1486 /**
1487  * security_transition_sid - Compute the SID for a new subject/object.
1488  * @ssid: source security identifier
1489  * @tsid: target security identifier
1490  * @tclass: target security class
1491  * @out_sid: security identifier for new subject/object
1492  *
1493  * Compute a SID to use for labeling a new subject or object in the
1494  * class @tclass based on a SID pair (@ssid, @tsid).
1495  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1496  * if insufficient memory is available, or %0 if the new SID was
1497  * computed successfully.
1498  */
1499 int security_transition_sid(u32 ssid,
1500 			    u32 tsid,
1501 			    u16 tclass,
1502 			    u32 *out_sid)
1503 {
1504 	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1505 				    out_sid, true);
1506 }
1507 
1508 int security_transition_sid_user(u32 ssid,
1509 				 u32 tsid,
1510 				 u16 tclass,
1511 				 u32 *out_sid)
1512 {
1513 	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1514 				    out_sid, false);
1515 }
1516 
1517 /**
1518  * security_member_sid - Compute the SID for member selection.
1519  * @ssid: source security identifier
1520  * @tsid: target security identifier
1521  * @tclass: target security class
1522  * @out_sid: security identifier for selected member
1523  *
1524  * Compute a SID to use when selecting a member of a polyinstantiated
1525  * object of class @tclass based on a SID pair (@ssid, @tsid).
1526  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1527  * if insufficient memory is available, or %0 if the SID was
1528  * computed successfully.
1529  */
1530 int security_member_sid(u32 ssid,
1531 			u32 tsid,
1532 			u16 tclass,
1533 			u32 *out_sid)
1534 {
1535 	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid,
1536 				    false);
1537 }
1538 
1539 /**
1540  * security_change_sid - Compute the SID for object relabeling.
1541  * @ssid: source security identifier
1542  * @tsid: target security identifier
1543  * @tclass: target security class
1544  * @out_sid: security identifier for selected member
1545  *
1546  * Compute a SID to use for relabeling an object of class @tclass
1547  * based on a SID pair (@ssid, @tsid).
1548  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1549  * if insufficient memory is available, or %0 if the SID was
1550  * computed successfully.
1551  */
1552 int security_change_sid(u32 ssid,
1553 			u32 tsid,
1554 			u16 tclass,
1555 			u32 *out_sid)
1556 {
1557 	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid,
1558 				    false);
1559 }
1560 
1561 /* Clone the SID into the new SID table. */
1562 static int clone_sid(u32 sid,
1563 		     struct context *context,
1564 		     void *arg)
1565 {
1566 	struct sidtab *s = arg;
1567 
1568 	return sidtab_insert(s, sid, context);
1569 }
1570 
1571 static inline int convert_context_handle_invalid_context(struct context *context)
1572 {
1573 	int rc = 0;
1574 
1575 	if (selinux_enforcing) {
1576 		rc = -EINVAL;
1577 	} else {
1578 		char *s;
1579 		u32 len;
1580 
1581 		if (!context_struct_to_string(context, &s, &len)) {
1582 			printk(KERN_WARNING
1583 		       "SELinux:  Context %s would be invalid if enforcing\n",
1584 			       s);
1585 			kfree(s);
1586 		}
1587 	}
1588 	return rc;
1589 }
1590 
1591 struct convert_context_args {
1592 	struct policydb *oldp;
1593 	struct policydb *newp;
1594 };
1595 
1596 /*
1597  * Convert the values in the security context
1598  * structure `c' from the values specified
1599  * in the policy `p->oldp' to the values specified
1600  * in the policy `p->newp'.  Verify that the
1601  * context is valid under the new policy.
1602  */
1603 static int convert_context(u32 key,
1604 			   struct context *c,
1605 			   void *p)
1606 {
1607 	struct convert_context_args *args;
1608 	struct context oldc;
1609 	struct role_datum *role;
1610 	struct type_datum *typdatum;
1611 	struct user_datum *usrdatum;
1612 	char *s;
1613 	u32 len;
1614 	int rc;
1615 
1616 	args = p;
1617 
1618 	if (c->str) {
1619 		struct context ctx;
1620 		s = kstrdup(c->str, GFP_KERNEL);
1621 		if (!s) {
1622 			rc = -ENOMEM;
1623 			goto out;
1624 		}
1625 		rc = string_to_context_struct(args->newp, NULL, s,
1626 					      c->len, &ctx, SECSID_NULL);
1627 		kfree(s);
1628 		if (!rc) {
1629 			printk(KERN_INFO
1630 		       "SELinux:  Context %s became valid (mapped).\n",
1631 			       c->str);
1632 			/* Replace string with mapped representation. */
1633 			kfree(c->str);
1634 			memcpy(c, &ctx, sizeof(*c));
1635 			goto out;
1636 		} else if (rc == -EINVAL) {
1637 			/* Retain string representation for later mapping. */
1638 			rc = 0;
1639 			goto out;
1640 		} else {
1641 			/* Other error condition, e.g. ENOMEM. */
1642 			printk(KERN_ERR
1643 		       "SELinux:   Unable to map context %s, rc = %d.\n",
1644 			       c->str, -rc);
1645 			goto out;
1646 		}
1647 	}
1648 
1649 	rc = context_cpy(&oldc, c);
1650 	if (rc)
1651 		goto out;
1652 
1653 	rc = -EINVAL;
1654 
1655 	/* Convert the user. */
1656 	usrdatum = hashtab_search(args->newp->p_users.table,
1657 				  args->oldp->p_user_val_to_name[c->user - 1]);
1658 	if (!usrdatum)
1659 		goto bad;
1660 	c->user = usrdatum->value;
1661 
1662 	/* Convert the role. */
1663 	role = hashtab_search(args->newp->p_roles.table,
1664 			      args->oldp->p_role_val_to_name[c->role - 1]);
1665 	if (!role)
1666 		goto bad;
1667 	c->role = role->value;
1668 
1669 	/* Convert the type. */
1670 	typdatum = hashtab_search(args->newp->p_types.table,
1671 				  args->oldp->p_type_val_to_name[c->type - 1]);
1672 	if (!typdatum)
1673 		goto bad;
1674 	c->type = typdatum->value;
1675 
1676 	rc = mls_convert_context(args->oldp, args->newp, c);
1677 	if (rc)
1678 		goto bad;
1679 
1680 	/* Check the validity of the new context. */
1681 	if (!policydb_context_isvalid(args->newp, c)) {
1682 		rc = convert_context_handle_invalid_context(&oldc);
1683 		if (rc)
1684 			goto bad;
1685 	}
1686 
1687 	context_destroy(&oldc);
1688 	rc = 0;
1689 out:
1690 	return rc;
1691 bad:
1692 	/* Map old representation to string and save it. */
1693 	if (context_struct_to_string(&oldc, &s, &len))
1694 		return -ENOMEM;
1695 	context_destroy(&oldc);
1696 	context_destroy(c);
1697 	c->str = s;
1698 	c->len = len;
1699 	printk(KERN_INFO
1700 	       "SELinux:  Context %s became invalid (unmapped).\n",
1701 	       c->str);
1702 	rc = 0;
1703 	goto out;
1704 }
1705 
1706 static void security_load_policycaps(void)
1707 {
1708 	selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1709 						  POLICYDB_CAPABILITY_NETPEER);
1710 	selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1711 						  POLICYDB_CAPABILITY_OPENPERM);
1712 }
1713 
1714 extern void selinux_complete_init(void);
1715 static int security_preserve_bools(struct policydb *p);
1716 
1717 /**
1718  * security_load_policy - Load a security policy configuration.
1719  * @data: binary policy data
1720  * @len: length of data in bytes
1721  *
1722  * Load a new set of security policy configuration data,
1723  * validate it and convert the SID table as necessary.
1724  * This function will flush the access vector cache after
1725  * loading the new policy.
1726  */
1727 int security_load_policy(void *data, size_t len)
1728 {
1729 	struct policydb oldpolicydb, newpolicydb;
1730 	struct sidtab oldsidtab, newsidtab;
1731 	struct selinux_mapping *oldmap, *map = NULL;
1732 	struct convert_context_args args;
1733 	u32 seqno;
1734 	u16 map_size;
1735 	int rc = 0;
1736 	struct policy_file file = { data, len }, *fp = &file;
1737 
1738 	if (!ss_initialized) {
1739 		avtab_cache_init();
1740 		if (policydb_read(&policydb, fp)) {
1741 			avtab_cache_destroy();
1742 			return -EINVAL;
1743 		}
1744 		if (selinux_set_mapping(&policydb, secclass_map,
1745 					&current_mapping,
1746 					&current_mapping_size)) {
1747 			policydb_destroy(&policydb);
1748 			avtab_cache_destroy();
1749 			return -EINVAL;
1750 		}
1751 		if (policydb_load_isids(&policydb, &sidtab)) {
1752 			policydb_destroy(&policydb);
1753 			avtab_cache_destroy();
1754 			return -EINVAL;
1755 		}
1756 		security_load_policycaps();
1757 		ss_initialized = 1;
1758 		seqno = ++latest_granting;
1759 		selinux_complete_init();
1760 		avc_ss_reset(seqno);
1761 		selnl_notify_policyload(seqno);
1762 		selinux_netlbl_cache_invalidate();
1763 		selinux_xfrm_notify_policyload();
1764 		return 0;
1765 	}
1766 
1767 #if 0
1768 	sidtab_hash_eval(&sidtab, "sids");
1769 #endif
1770 
1771 	if (policydb_read(&newpolicydb, fp))
1772 		return -EINVAL;
1773 
1774 	if (sidtab_init(&newsidtab)) {
1775 		policydb_destroy(&newpolicydb);
1776 		return -ENOMEM;
1777 	}
1778 
1779 	if (selinux_set_mapping(&newpolicydb, secclass_map,
1780 				&map, &map_size))
1781 		goto err;
1782 
1783 	rc = security_preserve_bools(&newpolicydb);
1784 	if (rc) {
1785 		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
1786 		goto err;
1787 	}
1788 
1789 	/* Clone the SID table. */
1790 	sidtab_shutdown(&sidtab);
1791 	if (sidtab_map(&sidtab, clone_sid, &newsidtab)) {
1792 		rc = -ENOMEM;
1793 		goto err;
1794 	}
1795 
1796 	/*
1797 	 * Convert the internal representations of contexts
1798 	 * in the new SID table.
1799 	 */
1800 	args.oldp = &policydb;
1801 	args.newp = &newpolicydb;
1802 	rc = sidtab_map(&newsidtab, convert_context, &args);
1803 	if (rc)
1804 		goto err;
1805 
1806 	/* Save the old policydb and SID table to free later. */
1807 	memcpy(&oldpolicydb, &policydb, sizeof policydb);
1808 	sidtab_set(&oldsidtab, &sidtab);
1809 
1810 	/* Install the new policydb and SID table. */
1811 	write_lock_irq(&policy_rwlock);
1812 	memcpy(&policydb, &newpolicydb, sizeof policydb);
1813 	sidtab_set(&sidtab, &newsidtab);
1814 	security_load_policycaps();
1815 	oldmap = current_mapping;
1816 	current_mapping = map;
1817 	current_mapping_size = map_size;
1818 	seqno = ++latest_granting;
1819 	write_unlock_irq(&policy_rwlock);
1820 
1821 	/* Free the old policydb and SID table. */
1822 	policydb_destroy(&oldpolicydb);
1823 	sidtab_destroy(&oldsidtab);
1824 	kfree(oldmap);
1825 
1826 	avc_ss_reset(seqno);
1827 	selnl_notify_policyload(seqno);
1828 	selinux_netlbl_cache_invalidate();
1829 	selinux_xfrm_notify_policyload();
1830 
1831 	return 0;
1832 
1833 err:
1834 	kfree(map);
1835 	sidtab_destroy(&newsidtab);
1836 	policydb_destroy(&newpolicydb);
1837 	return rc;
1838 
1839 }
1840 
1841 /**
1842  * security_port_sid - Obtain the SID for a port.
1843  * @protocol: protocol number
1844  * @port: port number
1845  * @out_sid: security identifier
1846  */
1847 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
1848 {
1849 	struct ocontext *c;
1850 	int rc = 0;
1851 
1852 	read_lock(&policy_rwlock);
1853 
1854 	c = policydb.ocontexts[OCON_PORT];
1855 	while (c) {
1856 		if (c->u.port.protocol == protocol &&
1857 		    c->u.port.low_port <= port &&
1858 		    c->u.port.high_port >= port)
1859 			break;
1860 		c = c->next;
1861 	}
1862 
1863 	if (c) {
1864 		if (!c->sid[0]) {
1865 			rc = sidtab_context_to_sid(&sidtab,
1866 						   &c->context[0],
1867 						   &c->sid[0]);
1868 			if (rc)
1869 				goto out;
1870 		}
1871 		*out_sid = c->sid[0];
1872 	} else {
1873 		*out_sid = SECINITSID_PORT;
1874 	}
1875 
1876 out:
1877 	read_unlock(&policy_rwlock);
1878 	return rc;
1879 }
1880 
1881 /**
1882  * security_netif_sid - Obtain the SID for a network interface.
1883  * @name: interface name
1884  * @if_sid: interface SID
1885  */
1886 int security_netif_sid(char *name, u32 *if_sid)
1887 {
1888 	int rc = 0;
1889 	struct ocontext *c;
1890 
1891 	read_lock(&policy_rwlock);
1892 
1893 	c = policydb.ocontexts[OCON_NETIF];
1894 	while (c) {
1895 		if (strcmp(name, c->u.name) == 0)
1896 			break;
1897 		c = c->next;
1898 	}
1899 
1900 	if (c) {
1901 		if (!c->sid[0] || !c->sid[1]) {
1902 			rc = sidtab_context_to_sid(&sidtab,
1903 						  &c->context[0],
1904 						  &c->sid[0]);
1905 			if (rc)
1906 				goto out;
1907 			rc = sidtab_context_to_sid(&sidtab,
1908 						   &c->context[1],
1909 						   &c->sid[1]);
1910 			if (rc)
1911 				goto out;
1912 		}
1913 		*if_sid = c->sid[0];
1914 	} else
1915 		*if_sid = SECINITSID_NETIF;
1916 
1917 out:
1918 	read_unlock(&policy_rwlock);
1919 	return rc;
1920 }
1921 
1922 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
1923 {
1924 	int i, fail = 0;
1925 
1926 	for (i = 0; i < 4; i++)
1927 		if (addr[i] != (input[i] & mask[i])) {
1928 			fail = 1;
1929 			break;
1930 		}
1931 
1932 	return !fail;
1933 }
1934 
1935 /**
1936  * security_node_sid - Obtain the SID for a node (host).
1937  * @domain: communication domain aka address family
1938  * @addrp: address
1939  * @addrlen: address length in bytes
1940  * @out_sid: security identifier
1941  */
1942 int security_node_sid(u16 domain,
1943 		      void *addrp,
1944 		      u32 addrlen,
1945 		      u32 *out_sid)
1946 {
1947 	int rc = 0;
1948 	struct ocontext *c;
1949 
1950 	read_lock(&policy_rwlock);
1951 
1952 	switch (domain) {
1953 	case AF_INET: {
1954 		u32 addr;
1955 
1956 		if (addrlen != sizeof(u32)) {
1957 			rc = -EINVAL;
1958 			goto out;
1959 		}
1960 
1961 		addr = *((u32 *)addrp);
1962 
1963 		c = policydb.ocontexts[OCON_NODE];
1964 		while (c) {
1965 			if (c->u.node.addr == (addr & c->u.node.mask))
1966 				break;
1967 			c = c->next;
1968 		}
1969 		break;
1970 	}
1971 
1972 	case AF_INET6:
1973 		if (addrlen != sizeof(u64) * 2) {
1974 			rc = -EINVAL;
1975 			goto out;
1976 		}
1977 		c = policydb.ocontexts[OCON_NODE6];
1978 		while (c) {
1979 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
1980 						c->u.node6.mask))
1981 				break;
1982 			c = c->next;
1983 		}
1984 		break;
1985 
1986 	default:
1987 		*out_sid = SECINITSID_NODE;
1988 		goto out;
1989 	}
1990 
1991 	if (c) {
1992 		if (!c->sid[0]) {
1993 			rc = sidtab_context_to_sid(&sidtab,
1994 						   &c->context[0],
1995 						   &c->sid[0]);
1996 			if (rc)
1997 				goto out;
1998 		}
1999 		*out_sid = c->sid[0];
2000 	} else {
2001 		*out_sid = SECINITSID_NODE;
2002 	}
2003 
2004 out:
2005 	read_unlock(&policy_rwlock);
2006 	return rc;
2007 }
2008 
2009 #define SIDS_NEL 25
2010 
2011 /**
2012  * security_get_user_sids - Obtain reachable SIDs for a user.
2013  * @fromsid: starting SID
2014  * @username: username
2015  * @sids: array of reachable SIDs for user
2016  * @nel: number of elements in @sids
2017  *
2018  * Generate the set of SIDs for legal security contexts
2019  * for a given user that can be reached by @fromsid.
2020  * Set *@sids to point to a dynamically allocated
2021  * array containing the set of SIDs.  Set *@nel to the
2022  * number of elements in the array.
2023  */
2024 
2025 int security_get_user_sids(u32 fromsid,
2026 			   char *username,
2027 			   u32 **sids,
2028 			   u32 *nel)
2029 {
2030 	struct context *fromcon, usercon;
2031 	u32 *mysids = NULL, *mysids2, sid;
2032 	u32 mynel = 0, maxnel = SIDS_NEL;
2033 	struct user_datum *user;
2034 	struct role_datum *role;
2035 	struct ebitmap_node *rnode, *tnode;
2036 	int rc = 0, i, j;
2037 
2038 	*sids = NULL;
2039 	*nel = 0;
2040 
2041 	if (!ss_initialized)
2042 		goto out;
2043 
2044 	read_lock(&policy_rwlock);
2045 
2046 	context_init(&usercon);
2047 
2048 	fromcon = sidtab_search(&sidtab, fromsid);
2049 	if (!fromcon) {
2050 		rc = -EINVAL;
2051 		goto out_unlock;
2052 	}
2053 
2054 	user = hashtab_search(policydb.p_users.table, username);
2055 	if (!user) {
2056 		rc = -EINVAL;
2057 		goto out_unlock;
2058 	}
2059 	usercon.user = user->value;
2060 
2061 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2062 	if (!mysids) {
2063 		rc = -ENOMEM;
2064 		goto out_unlock;
2065 	}
2066 
2067 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2068 		role = policydb.role_val_to_struct[i];
2069 		usercon.role = i+1;
2070 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2071 			usercon.type = j+1;
2072 
2073 			if (mls_setup_user_range(fromcon, user, &usercon))
2074 				continue;
2075 
2076 			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2077 			if (rc)
2078 				goto out_unlock;
2079 			if (mynel < maxnel) {
2080 				mysids[mynel++] = sid;
2081 			} else {
2082 				maxnel += SIDS_NEL;
2083 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2084 				if (!mysids2) {
2085 					rc = -ENOMEM;
2086 					goto out_unlock;
2087 				}
2088 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2089 				kfree(mysids);
2090 				mysids = mysids2;
2091 				mysids[mynel++] = sid;
2092 			}
2093 		}
2094 	}
2095 
2096 out_unlock:
2097 	read_unlock(&policy_rwlock);
2098 	if (rc || !mynel) {
2099 		kfree(mysids);
2100 		goto out;
2101 	}
2102 
2103 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2104 	if (!mysids2) {
2105 		rc = -ENOMEM;
2106 		kfree(mysids);
2107 		goto out;
2108 	}
2109 	for (i = 0, j = 0; i < mynel; i++) {
2110 		rc = avc_has_perm_noaudit(fromsid, mysids[i],
2111 					  SECCLASS_PROCESS, /* kernel value */
2112 					  PROCESS__TRANSITION, AVC_STRICT,
2113 					  NULL);
2114 		if (!rc)
2115 			mysids2[j++] = mysids[i];
2116 		cond_resched();
2117 	}
2118 	rc = 0;
2119 	kfree(mysids);
2120 	*sids = mysids2;
2121 	*nel = j;
2122 out:
2123 	return rc;
2124 }
2125 
2126 /**
2127  * security_genfs_sid - Obtain a SID for a file in a filesystem
2128  * @fstype: filesystem type
2129  * @path: path from root of mount
2130  * @sclass: file security class
2131  * @sid: SID for path
2132  *
2133  * Obtain a SID to use for a file in a filesystem that
2134  * cannot support xattr or use a fixed labeling behavior like
2135  * transition SIDs or task SIDs.
2136  */
2137 int security_genfs_sid(const char *fstype,
2138 		       char *path,
2139 		       u16 orig_sclass,
2140 		       u32 *sid)
2141 {
2142 	int len;
2143 	u16 sclass;
2144 	struct genfs *genfs;
2145 	struct ocontext *c;
2146 	int rc = 0, cmp = 0;
2147 
2148 	while (path[0] == '/' && path[1] == '/')
2149 		path++;
2150 
2151 	read_lock(&policy_rwlock);
2152 
2153 	sclass = unmap_class(orig_sclass);
2154 
2155 	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2156 		cmp = strcmp(fstype, genfs->fstype);
2157 		if (cmp <= 0)
2158 			break;
2159 	}
2160 
2161 	if (!genfs || cmp) {
2162 		*sid = SECINITSID_UNLABELED;
2163 		rc = -ENOENT;
2164 		goto out;
2165 	}
2166 
2167 	for (c = genfs->head; c; c = c->next) {
2168 		len = strlen(c->u.name);
2169 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2170 		    (strncmp(c->u.name, path, len) == 0))
2171 			break;
2172 	}
2173 
2174 	if (!c) {
2175 		*sid = SECINITSID_UNLABELED;
2176 		rc = -ENOENT;
2177 		goto out;
2178 	}
2179 
2180 	if (!c->sid[0]) {
2181 		rc = sidtab_context_to_sid(&sidtab,
2182 					   &c->context[0],
2183 					   &c->sid[0]);
2184 		if (rc)
2185 			goto out;
2186 	}
2187 
2188 	*sid = c->sid[0];
2189 out:
2190 	read_unlock(&policy_rwlock);
2191 	return rc;
2192 }
2193 
2194 /**
2195  * security_fs_use - Determine how to handle labeling for a filesystem.
2196  * @fstype: filesystem type
2197  * @behavior: labeling behavior
2198  * @sid: SID for filesystem (superblock)
2199  */
2200 int security_fs_use(
2201 	const char *fstype,
2202 	unsigned int *behavior,
2203 	u32 *sid)
2204 {
2205 	int rc = 0;
2206 	struct ocontext *c;
2207 
2208 	read_lock(&policy_rwlock);
2209 
2210 	c = policydb.ocontexts[OCON_FSUSE];
2211 	while (c) {
2212 		if (strcmp(fstype, c->u.name) == 0)
2213 			break;
2214 		c = c->next;
2215 	}
2216 
2217 	if (c) {
2218 		*behavior = c->v.behavior;
2219 		if (!c->sid[0]) {
2220 			rc = sidtab_context_to_sid(&sidtab,
2221 						   &c->context[0],
2222 						   &c->sid[0]);
2223 			if (rc)
2224 				goto out;
2225 		}
2226 		*sid = c->sid[0];
2227 	} else {
2228 		rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
2229 		if (rc) {
2230 			*behavior = SECURITY_FS_USE_NONE;
2231 			rc = 0;
2232 		} else {
2233 			*behavior = SECURITY_FS_USE_GENFS;
2234 		}
2235 	}
2236 
2237 out:
2238 	read_unlock(&policy_rwlock);
2239 	return rc;
2240 }
2241 
2242 int security_get_bools(int *len, char ***names, int **values)
2243 {
2244 	int i, rc = -ENOMEM;
2245 
2246 	read_lock(&policy_rwlock);
2247 	*names = NULL;
2248 	*values = NULL;
2249 
2250 	*len = policydb.p_bools.nprim;
2251 	if (!*len) {
2252 		rc = 0;
2253 		goto out;
2254 	}
2255 
2256        *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2257 	if (!*names)
2258 		goto err;
2259 
2260        *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2261 	if (!*values)
2262 		goto err;
2263 
2264 	for (i = 0; i < *len; i++) {
2265 		size_t name_len;
2266 		(*values)[i] = policydb.bool_val_to_struct[i]->state;
2267 		name_len = strlen(policydb.p_bool_val_to_name[i]) + 1;
2268 	       (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
2269 		if (!(*names)[i])
2270 			goto err;
2271 		strncpy((*names)[i], policydb.p_bool_val_to_name[i], name_len);
2272 		(*names)[i][name_len - 1] = 0;
2273 	}
2274 	rc = 0;
2275 out:
2276 	read_unlock(&policy_rwlock);
2277 	return rc;
2278 err:
2279 	if (*names) {
2280 		for (i = 0; i < *len; i++)
2281 			kfree((*names)[i]);
2282 	}
2283 	kfree(*values);
2284 	goto out;
2285 }
2286 
2287 
2288 int security_set_bools(int len, int *values)
2289 {
2290 	int i, rc = 0;
2291 	int lenp, seqno = 0;
2292 	struct cond_node *cur;
2293 
2294 	write_lock_irq(&policy_rwlock);
2295 
2296 	lenp = policydb.p_bools.nprim;
2297 	if (len != lenp) {
2298 		rc = -EFAULT;
2299 		goto out;
2300 	}
2301 
2302 	for (i = 0; i < len; i++) {
2303 		if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2304 			audit_log(current->audit_context, GFP_ATOMIC,
2305 				AUDIT_MAC_CONFIG_CHANGE,
2306 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2307 				policydb.p_bool_val_to_name[i],
2308 				!!values[i],
2309 				policydb.bool_val_to_struct[i]->state,
2310 				audit_get_loginuid(current),
2311 				audit_get_sessionid(current));
2312 		}
2313 		if (values[i])
2314 			policydb.bool_val_to_struct[i]->state = 1;
2315 		else
2316 			policydb.bool_val_to_struct[i]->state = 0;
2317 	}
2318 
2319 	for (cur = policydb.cond_list; cur; cur = cur->next) {
2320 		rc = evaluate_cond_node(&policydb, cur);
2321 		if (rc)
2322 			goto out;
2323 	}
2324 
2325 	seqno = ++latest_granting;
2326 
2327 out:
2328 	write_unlock_irq(&policy_rwlock);
2329 	if (!rc) {
2330 		avc_ss_reset(seqno);
2331 		selnl_notify_policyload(seqno);
2332 		selinux_xfrm_notify_policyload();
2333 	}
2334 	return rc;
2335 }
2336 
2337 int security_get_bool_value(int bool)
2338 {
2339 	int rc = 0;
2340 	int len;
2341 
2342 	read_lock(&policy_rwlock);
2343 
2344 	len = policydb.p_bools.nprim;
2345 	if (bool >= len) {
2346 		rc = -EFAULT;
2347 		goto out;
2348 	}
2349 
2350 	rc = policydb.bool_val_to_struct[bool]->state;
2351 out:
2352 	read_unlock(&policy_rwlock);
2353 	return rc;
2354 }
2355 
2356 static int security_preserve_bools(struct policydb *p)
2357 {
2358 	int rc, nbools = 0, *bvalues = NULL, i;
2359 	char **bnames = NULL;
2360 	struct cond_bool_datum *booldatum;
2361 	struct cond_node *cur;
2362 
2363 	rc = security_get_bools(&nbools, &bnames, &bvalues);
2364 	if (rc)
2365 		goto out;
2366 	for (i = 0; i < nbools; i++) {
2367 		booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2368 		if (booldatum)
2369 			booldatum->state = bvalues[i];
2370 	}
2371 	for (cur = p->cond_list; cur; cur = cur->next) {
2372 		rc = evaluate_cond_node(p, cur);
2373 		if (rc)
2374 			goto out;
2375 	}
2376 
2377 out:
2378 	if (bnames) {
2379 		for (i = 0; i < nbools; i++)
2380 			kfree(bnames[i]);
2381 	}
2382 	kfree(bnames);
2383 	kfree(bvalues);
2384 	return rc;
2385 }
2386 
2387 /*
2388  * security_sid_mls_copy() - computes a new sid based on the given
2389  * sid and the mls portion of mls_sid.
2390  */
2391 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2392 {
2393 	struct context *context1;
2394 	struct context *context2;
2395 	struct context newcon;
2396 	char *s;
2397 	u32 len;
2398 	int rc = 0;
2399 
2400 	if (!ss_initialized || !selinux_mls_enabled) {
2401 		*new_sid = sid;
2402 		goto out;
2403 	}
2404 
2405 	context_init(&newcon);
2406 
2407 	read_lock(&policy_rwlock);
2408 	context1 = sidtab_search(&sidtab, sid);
2409 	if (!context1) {
2410 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2411 			__func__, sid);
2412 		rc = -EINVAL;
2413 		goto out_unlock;
2414 	}
2415 
2416 	context2 = sidtab_search(&sidtab, mls_sid);
2417 	if (!context2) {
2418 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2419 			__func__, mls_sid);
2420 		rc = -EINVAL;
2421 		goto out_unlock;
2422 	}
2423 
2424 	newcon.user = context1->user;
2425 	newcon.role = context1->role;
2426 	newcon.type = context1->type;
2427 	rc = mls_context_cpy(&newcon, context2);
2428 	if (rc)
2429 		goto out_unlock;
2430 
2431 	/* Check the validity of the new context. */
2432 	if (!policydb_context_isvalid(&policydb, &newcon)) {
2433 		rc = convert_context_handle_invalid_context(&newcon);
2434 		if (rc)
2435 			goto bad;
2436 	}
2437 
2438 	rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2439 	goto out_unlock;
2440 
2441 bad:
2442 	if (!context_struct_to_string(&newcon, &s, &len)) {
2443 		audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2444 			  "security_sid_mls_copy: invalid context %s", s);
2445 		kfree(s);
2446 	}
2447 
2448 out_unlock:
2449 	read_unlock(&policy_rwlock);
2450 	context_destroy(&newcon);
2451 out:
2452 	return rc;
2453 }
2454 
2455 /**
2456  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2457  * @nlbl_sid: NetLabel SID
2458  * @nlbl_type: NetLabel labeling protocol type
2459  * @xfrm_sid: XFRM SID
2460  *
2461  * Description:
2462  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2463  * resolved into a single SID it is returned via @peer_sid and the function
2464  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2465  * returns a negative value.  A table summarizing the behavior is below:
2466  *
2467  *                                 | function return |      @sid
2468  *   ------------------------------+-----------------+-----------------
2469  *   no peer labels                |        0        |    SECSID_NULL
2470  *   single peer label             |        0        |    <peer_label>
2471  *   multiple, consistent labels   |        0        |    <peer_label>
2472  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2473  *
2474  */
2475 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2476 				 u32 xfrm_sid,
2477 				 u32 *peer_sid)
2478 {
2479 	int rc;
2480 	struct context *nlbl_ctx;
2481 	struct context *xfrm_ctx;
2482 
2483 	/* handle the common (which also happens to be the set of easy) cases
2484 	 * right away, these two if statements catch everything involving a
2485 	 * single or absent peer SID/label */
2486 	if (xfrm_sid == SECSID_NULL) {
2487 		*peer_sid = nlbl_sid;
2488 		return 0;
2489 	}
2490 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2491 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2492 	 * is present */
2493 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2494 		*peer_sid = xfrm_sid;
2495 		return 0;
2496 	}
2497 
2498 	/* we don't need to check ss_initialized here since the only way both
2499 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2500 	 * security server was initialized and ss_initialized was true */
2501 	if (!selinux_mls_enabled) {
2502 		*peer_sid = SECSID_NULL;
2503 		return 0;
2504 	}
2505 
2506 	read_lock(&policy_rwlock);
2507 
2508 	nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2509 	if (!nlbl_ctx) {
2510 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2511 		       __func__, nlbl_sid);
2512 		rc = -EINVAL;
2513 		goto out_slowpath;
2514 	}
2515 	xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2516 	if (!xfrm_ctx) {
2517 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2518 		       __func__, xfrm_sid);
2519 		rc = -EINVAL;
2520 		goto out_slowpath;
2521 	}
2522 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2523 
2524 out_slowpath:
2525 	read_unlock(&policy_rwlock);
2526 	if (rc == 0)
2527 		/* at present NetLabel SIDs/labels really only carry MLS
2528 		 * information so if the MLS portion of the NetLabel SID
2529 		 * matches the MLS portion of the labeled XFRM SID/label
2530 		 * then pass along the XFRM SID as it is the most
2531 		 * expressive */
2532 		*peer_sid = xfrm_sid;
2533 	else
2534 		*peer_sid = SECSID_NULL;
2535 	return rc;
2536 }
2537 
2538 static int get_classes_callback(void *k, void *d, void *args)
2539 {
2540 	struct class_datum *datum = d;
2541 	char *name = k, **classes = args;
2542 	int value = datum->value - 1;
2543 
2544 	classes[value] = kstrdup(name, GFP_ATOMIC);
2545 	if (!classes[value])
2546 		return -ENOMEM;
2547 
2548 	return 0;
2549 }
2550 
2551 int security_get_classes(char ***classes, int *nclasses)
2552 {
2553 	int rc = -ENOMEM;
2554 
2555 	read_lock(&policy_rwlock);
2556 
2557 	*nclasses = policydb.p_classes.nprim;
2558 	*classes = kcalloc(*nclasses, sizeof(*classes), GFP_ATOMIC);
2559 	if (!*classes)
2560 		goto out;
2561 
2562 	rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2563 			*classes);
2564 	if (rc < 0) {
2565 		int i;
2566 		for (i = 0; i < *nclasses; i++)
2567 			kfree((*classes)[i]);
2568 		kfree(*classes);
2569 	}
2570 
2571 out:
2572 	read_unlock(&policy_rwlock);
2573 	return rc;
2574 }
2575 
2576 static int get_permissions_callback(void *k, void *d, void *args)
2577 {
2578 	struct perm_datum *datum = d;
2579 	char *name = k, **perms = args;
2580 	int value = datum->value - 1;
2581 
2582 	perms[value] = kstrdup(name, GFP_ATOMIC);
2583 	if (!perms[value])
2584 		return -ENOMEM;
2585 
2586 	return 0;
2587 }
2588 
2589 int security_get_permissions(char *class, char ***perms, int *nperms)
2590 {
2591 	int rc = -ENOMEM, i;
2592 	struct class_datum *match;
2593 
2594 	read_lock(&policy_rwlock);
2595 
2596 	match = hashtab_search(policydb.p_classes.table, class);
2597 	if (!match) {
2598 		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2599 			__func__, class);
2600 		rc = -EINVAL;
2601 		goto out;
2602 	}
2603 
2604 	*nperms = match->permissions.nprim;
2605 	*perms = kcalloc(*nperms, sizeof(*perms), GFP_ATOMIC);
2606 	if (!*perms)
2607 		goto out;
2608 
2609 	if (match->comdatum) {
2610 		rc = hashtab_map(match->comdatum->permissions.table,
2611 				get_permissions_callback, *perms);
2612 		if (rc < 0)
2613 			goto err;
2614 	}
2615 
2616 	rc = hashtab_map(match->permissions.table, get_permissions_callback,
2617 			*perms);
2618 	if (rc < 0)
2619 		goto err;
2620 
2621 out:
2622 	read_unlock(&policy_rwlock);
2623 	return rc;
2624 
2625 err:
2626 	read_unlock(&policy_rwlock);
2627 	for (i = 0; i < *nperms; i++)
2628 		kfree((*perms)[i]);
2629 	kfree(*perms);
2630 	return rc;
2631 }
2632 
2633 int security_get_reject_unknown(void)
2634 {
2635 	return policydb.reject_unknown;
2636 }
2637 
2638 int security_get_allow_unknown(void)
2639 {
2640 	return policydb.allow_unknown;
2641 }
2642 
2643 /**
2644  * security_policycap_supported - Check for a specific policy capability
2645  * @req_cap: capability
2646  *
2647  * Description:
2648  * This function queries the currently loaded policy to see if it supports the
2649  * capability specified by @req_cap.  Returns true (1) if the capability is
2650  * supported, false (0) if it isn't supported.
2651  *
2652  */
2653 int security_policycap_supported(unsigned int req_cap)
2654 {
2655 	int rc;
2656 
2657 	read_lock(&policy_rwlock);
2658 	rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2659 	read_unlock(&policy_rwlock);
2660 
2661 	return rc;
2662 }
2663 
2664 struct selinux_audit_rule {
2665 	u32 au_seqno;
2666 	struct context au_ctxt;
2667 };
2668 
2669 void selinux_audit_rule_free(void *vrule)
2670 {
2671 	struct selinux_audit_rule *rule = vrule;
2672 
2673 	if (rule) {
2674 		context_destroy(&rule->au_ctxt);
2675 		kfree(rule);
2676 	}
2677 }
2678 
2679 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2680 {
2681 	struct selinux_audit_rule *tmprule;
2682 	struct role_datum *roledatum;
2683 	struct type_datum *typedatum;
2684 	struct user_datum *userdatum;
2685 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2686 	int rc = 0;
2687 
2688 	*rule = NULL;
2689 
2690 	if (!ss_initialized)
2691 		return -EOPNOTSUPP;
2692 
2693 	switch (field) {
2694 	case AUDIT_SUBJ_USER:
2695 	case AUDIT_SUBJ_ROLE:
2696 	case AUDIT_SUBJ_TYPE:
2697 	case AUDIT_OBJ_USER:
2698 	case AUDIT_OBJ_ROLE:
2699 	case AUDIT_OBJ_TYPE:
2700 		/* only 'equals' and 'not equals' fit user, role, and type */
2701 		if (op != Audit_equal && op != Audit_not_equal)
2702 			return -EINVAL;
2703 		break;
2704 	case AUDIT_SUBJ_SEN:
2705 	case AUDIT_SUBJ_CLR:
2706 	case AUDIT_OBJ_LEV_LOW:
2707 	case AUDIT_OBJ_LEV_HIGH:
2708 		/* we do not allow a range, indicated by the presense of '-' */
2709 		if (strchr(rulestr, '-'))
2710 			return -EINVAL;
2711 		break;
2712 	default:
2713 		/* only the above fields are valid */
2714 		return -EINVAL;
2715 	}
2716 
2717 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2718 	if (!tmprule)
2719 		return -ENOMEM;
2720 
2721 	context_init(&tmprule->au_ctxt);
2722 
2723 	read_lock(&policy_rwlock);
2724 
2725 	tmprule->au_seqno = latest_granting;
2726 
2727 	switch (field) {
2728 	case AUDIT_SUBJ_USER:
2729 	case AUDIT_OBJ_USER:
2730 		userdatum = hashtab_search(policydb.p_users.table, rulestr);
2731 		if (!userdatum)
2732 			rc = -EINVAL;
2733 		else
2734 			tmprule->au_ctxt.user = userdatum->value;
2735 		break;
2736 	case AUDIT_SUBJ_ROLE:
2737 	case AUDIT_OBJ_ROLE:
2738 		roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2739 		if (!roledatum)
2740 			rc = -EINVAL;
2741 		else
2742 			tmprule->au_ctxt.role = roledatum->value;
2743 		break;
2744 	case AUDIT_SUBJ_TYPE:
2745 	case AUDIT_OBJ_TYPE:
2746 		typedatum = hashtab_search(policydb.p_types.table, rulestr);
2747 		if (!typedatum)
2748 			rc = -EINVAL;
2749 		else
2750 			tmprule->au_ctxt.type = typedatum->value;
2751 		break;
2752 	case AUDIT_SUBJ_SEN:
2753 	case AUDIT_SUBJ_CLR:
2754 	case AUDIT_OBJ_LEV_LOW:
2755 	case AUDIT_OBJ_LEV_HIGH:
2756 		rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2757 		break;
2758 	}
2759 
2760 	read_unlock(&policy_rwlock);
2761 
2762 	if (rc) {
2763 		selinux_audit_rule_free(tmprule);
2764 		tmprule = NULL;
2765 	}
2766 
2767 	*rule = tmprule;
2768 
2769 	return rc;
2770 }
2771 
2772 /* Check to see if the rule contains any selinux fields */
2773 int selinux_audit_rule_known(struct audit_krule *rule)
2774 {
2775 	int i;
2776 
2777 	for (i = 0; i < rule->field_count; i++) {
2778 		struct audit_field *f = &rule->fields[i];
2779 		switch (f->type) {
2780 		case AUDIT_SUBJ_USER:
2781 		case AUDIT_SUBJ_ROLE:
2782 		case AUDIT_SUBJ_TYPE:
2783 		case AUDIT_SUBJ_SEN:
2784 		case AUDIT_SUBJ_CLR:
2785 		case AUDIT_OBJ_USER:
2786 		case AUDIT_OBJ_ROLE:
2787 		case AUDIT_OBJ_TYPE:
2788 		case AUDIT_OBJ_LEV_LOW:
2789 		case AUDIT_OBJ_LEV_HIGH:
2790 			return 1;
2791 		}
2792 	}
2793 
2794 	return 0;
2795 }
2796 
2797 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2798 			     struct audit_context *actx)
2799 {
2800 	struct context *ctxt;
2801 	struct mls_level *level;
2802 	struct selinux_audit_rule *rule = vrule;
2803 	int match = 0;
2804 
2805 	if (!rule) {
2806 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2807 			  "selinux_audit_rule_match: missing rule\n");
2808 		return -ENOENT;
2809 	}
2810 
2811 	read_lock(&policy_rwlock);
2812 
2813 	if (rule->au_seqno < latest_granting) {
2814 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2815 			  "selinux_audit_rule_match: stale rule\n");
2816 		match = -ESTALE;
2817 		goto out;
2818 	}
2819 
2820 	ctxt = sidtab_search(&sidtab, sid);
2821 	if (!ctxt) {
2822 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2823 			  "selinux_audit_rule_match: unrecognized SID %d\n",
2824 			  sid);
2825 		match = -ENOENT;
2826 		goto out;
2827 	}
2828 
2829 	/* a field/op pair that is not caught here will simply fall through
2830 	   without a match */
2831 	switch (field) {
2832 	case AUDIT_SUBJ_USER:
2833 	case AUDIT_OBJ_USER:
2834 		switch (op) {
2835 		case Audit_equal:
2836 			match = (ctxt->user == rule->au_ctxt.user);
2837 			break;
2838 		case Audit_not_equal:
2839 			match = (ctxt->user != rule->au_ctxt.user);
2840 			break;
2841 		}
2842 		break;
2843 	case AUDIT_SUBJ_ROLE:
2844 	case AUDIT_OBJ_ROLE:
2845 		switch (op) {
2846 		case Audit_equal:
2847 			match = (ctxt->role == rule->au_ctxt.role);
2848 			break;
2849 		case Audit_not_equal:
2850 			match = (ctxt->role != rule->au_ctxt.role);
2851 			break;
2852 		}
2853 		break;
2854 	case AUDIT_SUBJ_TYPE:
2855 	case AUDIT_OBJ_TYPE:
2856 		switch (op) {
2857 		case Audit_equal:
2858 			match = (ctxt->type == rule->au_ctxt.type);
2859 			break;
2860 		case Audit_not_equal:
2861 			match = (ctxt->type != rule->au_ctxt.type);
2862 			break;
2863 		}
2864 		break;
2865 	case AUDIT_SUBJ_SEN:
2866 	case AUDIT_SUBJ_CLR:
2867 	case AUDIT_OBJ_LEV_LOW:
2868 	case AUDIT_OBJ_LEV_HIGH:
2869 		level = ((field == AUDIT_SUBJ_SEN ||
2870 			  field == AUDIT_OBJ_LEV_LOW) ?
2871 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
2872 		switch (op) {
2873 		case Audit_equal:
2874 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
2875 					     level);
2876 			break;
2877 		case Audit_not_equal:
2878 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
2879 					      level);
2880 			break;
2881 		case Audit_lt:
2882 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
2883 					       level) &&
2884 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
2885 					       level));
2886 			break;
2887 		case Audit_le:
2888 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
2889 					      level);
2890 			break;
2891 		case Audit_gt:
2892 			match = (mls_level_dom(level,
2893 					      &rule->au_ctxt.range.level[0]) &&
2894 				 !mls_level_eq(level,
2895 					       &rule->au_ctxt.range.level[0]));
2896 			break;
2897 		case Audit_ge:
2898 			match = mls_level_dom(level,
2899 					      &rule->au_ctxt.range.level[0]);
2900 			break;
2901 		}
2902 	}
2903 
2904 out:
2905 	read_unlock(&policy_rwlock);
2906 	return match;
2907 }
2908 
2909 static int (*aurule_callback)(void) = audit_update_lsm_rules;
2910 
2911 static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
2912 			       u16 class, u32 perms, u32 *retained)
2913 {
2914 	int err = 0;
2915 
2916 	if (event == AVC_CALLBACK_RESET && aurule_callback)
2917 		err = aurule_callback();
2918 	return err;
2919 }
2920 
2921 static int __init aurule_init(void)
2922 {
2923 	int err;
2924 
2925 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
2926 			       SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
2927 	if (err)
2928 		panic("avc_add_callback() failed, error %d\n", err);
2929 
2930 	return err;
2931 }
2932 __initcall(aurule_init);
2933 
2934 #ifdef CONFIG_NETLABEL
2935 /**
2936  * security_netlbl_cache_add - Add an entry to the NetLabel cache
2937  * @secattr: the NetLabel packet security attributes
2938  * @sid: the SELinux SID
2939  *
2940  * Description:
2941  * Attempt to cache the context in @ctx, which was derived from the packet in
2942  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
2943  * already been initialized.
2944  *
2945  */
2946 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
2947 				      u32 sid)
2948 {
2949 	u32 *sid_cache;
2950 
2951 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
2952 	if (sid_cache == NULL)
2953 		return;
2954 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
2955 	if (secattr->cache == NULL) {
2956 		kfree(sid_cache);
2957 		return;
2958 	}
2959 
2960 	*sid_cache = sid;
2961 	secattr->cache->free = kfree;
2962 	secattr->cache->data = sid_cache;
2963 	secattr->flags |= NETLBL_SECATTR_CACHE;
2964 }
2965 
2966 /**
2967  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
2968  * @secattr: the NetLabel packet security attributes
2969  * @sid: the SELinux SID
2970  *
2971  * Description:
2972  * Convert the given NetLabel security attributes in @secattr into a
2973  * SELinux SID.  If the @secattr field does not contain a full SELinux
2974  * SID/context then use SECINITSID_NETMSG as the foundation.  If possibile the
2975  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
2976  * allow the @secattr to be used by NetLabel to cache the secattr to SID
2977  * conversion for future lookups.  Returns zero on success, negative values on
2978  * failure.
2979  *
2980  */
2981 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
2982 				   u32 *sid)
2983 {
2984 	int rc = -EIDRM;
2985 	struct context *ctx;
2986 	struct context ctx_new;
2987 
2988 	if (!ss_initialized) {
2989 		*sid = SECSID_NULL;
2990 		return 0;
2991 	}
2992 
2993 	read_lock(&policy_rwlock);
2994 
2995 	if (secattr->flags & NETLBL_SECATTR_CACHE) {
2996 		*sid = *(u32 *)secattr->cache->data;
2997 		rc = 0;
2998 	} else if (secattr->flags & NETLBL_SECATTR_SECID) {
2999 		*sid = secattr->attr.secid;
3000 		rc = 0;
3001 	} else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3002 		ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3003 		if (ctx == NULL)
3004 			goto netlbl_secattr_to_sid_return;
3005 
3006 		context_init(&ctx_new);
3007 		ctx_new.user = ctx->user;
3008 		ctx_new.role = ctx->role;
3009 		ctx_new.type = ctx->type;
3010 		mls_import_netlbl_lvl(&ctx_new, secattr);
3011 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3012 			if (ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
3013 						  secattr->attr.mls.cat) != 0)
3014 				goto netlbl_secattr_to_sid_return;
3015 			memcpy(&ctx_new.range.level[1].cat,
3016 			       &ctx_new.range.level[0].cat,
3017 			       sizeof(ctx_new.range.level[0].cat));
3018 		}
3019 		if (mls_context_isvalid(&policydb, &ctx_new) != 1)
3020 			goto netlbl_secattr_to_sid_return_cleanup;
3021 
3022 		rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3023 		if (rc != 0)
3024 			goto netlbl_secattr_to_sid_return_cleanup;
3025 
3026 		security_netlbl_cache_add(secattr, *sid);
3027 
3028 		ebitmap_destroy(&ctx_new.range.level[0].cat);
3029 	} else {
3030 		*sid = SECSID_NULL;
3031 		rc = 0;
3032 	}
3033 
3034 netlbl_secattr_to_sid_return:
3035 	read_unlock(&policy_rwlock);
3036 	return rc;
3037 netlbl_secattr_to_sid_return_cleanup:
3038 	ebitmap_destroy(&ctx_new.range.level[0].cat);
3039 	goto netlbl_secattr_to_sid_return;
3040 }
3041 
3042 /**
3043  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3044  * @sid: the SELinux SID
3045  * @secattr: the NetLabel packet security attributes
3046  *
3047  * Description:
3048  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3049  * Returns zero on success, negative values on failure.
3050  *
3051  */
3052 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3053 {
3054 	int rc;
3055 	struct context *ctx;
3056 
3057 	if (!ss_initialized)
3058 		return 0;
3059 
3060 	read_lock(&policy_rwlock);
3061 	ctx = sidtab_search(&sidtab, sid);
3062 	if (ctx == NULL) {
3063 		rc = -ENOENT;
3064 		goto netlbl_sid_to_secattr_failure;
3065 	}
3066 	secattr->domain = kstrdup(policydb.p_type_val_to_name[ctx->type - 1],
3067 				  GFP_ATOMIC);
3068 	if (secattr->domain == NULL) {
3069 		rc = -ENOMEM;
3070 		goto netlbl_sid_to_secattr_failure;
3071 	}
3072 	secattr->attr.secid = sid;
3073 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3074 	mls_export_netlbl_lvl(ctx, secattr);
3075 	rc = mls_export_netlbl_cat(ctx, secattr);
3076 	if (rc != 0)
3077 		goto netlbl_sid_to_secattr_failure;
3078 	read_unlock(&policy_rwlock);
3079 
3080 	return 0;
3081 
3082 netlbl_sid_to_secattr_failure:
3083 	read_unlock(&policy_rwlock);
3084 	return rc;
3085 }
3086 #endif /* CONFIG_NETLABEL */
3087