xref: /openbmc/linux/security/selinux/ss/services.c (revision 94d964e5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Implementation of the security services.
4  *
5  * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
6  *	     James Morris <jmorris@redhat.com>
7  *
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *	Support for enhanced MLS infrastructure.
11  *	Support for context based audit filters.
12  *
13  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14  *
15  *	Added conditional policy language extensions
16  *
17  * Updated: Hewlett-Packard <paul@paul-moore.com>
18  *
19  *      Added support for NetLabel
20  *      Added support for the policy capability bitmap
21  *
22  * Updated: Chad Sellers <csellers@tresys.com>
23  *
24  *  Added validation of kernel classes and permissions
25  *
26  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27  *
28  *  Added support for bounds domain and audit messaged on masked permissions
29  *
30  * Updated: Guido Trentalancia <guido@trentalancia.com>
31  *
32  *  Added support for runtime switching of the policy type
33  *
34  * Copyright (C) 2008, 2009 NEC Corporation
35  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39  */
40 #include <linux/kernel.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/errno.h>
46 #include <linux/in.h>
47 #include <linux/sched.h>
48 #include <linux/audit.h>
49 #include <linux/vmalloc.h>
50 #include <linux/lsm_hooks.h>
51 #include <net/netlabel.h>
52 
53 #include "flask.h"
54 #include "avc.h"
55 #include "avc_ss.h"
56 #include "security.h"
57 #include "context.h"
58 #include "policydb.h"
59 #include "sidtab.h"
60 #include "services.h"
61 #include "conditional.h"
62 #include "mls.h"
63 #include "objsec.h"
64 #include "netlabel.h"
65 #include "xfrm.h"
66 #include "ebitmap.h"
67 #include "audit.h"
68 #include "policycap_names.h"
69 #include "ima.h"
70 
71 struct convert_context_args {
72 	struct selinux_state *state;
73 	struct policydb *oldp;
74 	struct policydb *newp;
75 };
76 
77 struct selinux_policy_convert_data {
78 	struct convert_context_args args;
79 	struct sidtab_convert_params sidtab_params;
80 };
81 
82 /* Forward declaration. */
83 static int context_struct_to_string(struct policydb *policydb,
84 				    struct context *context,
85 				    char **scontext,
86 				    u32 *scontext_len);
87 
88 static int sidtab_entry_to_string(struct policydb *policydb,
89 				  struct sidtab *sidtab,
90 				  struct sidtab_entry *entry,
91 				  char **scontext,
92 				  u32 *scontext_len);
93 
94 static void context_struct_compute_av(struct policydb *policydb,
95 				      struct context *scontext,
96 				      struct context *tcontext,
97 				      u16 tclass,
98 				      struct av_decision *avd,
99 				      struct extended_perms *xperms);
100 
101 static int selinux_set_mapping(struct policydb *pol,
102 			       struct security_class_mapping *map,
103 			       struct selinux_map *out_map)
104 {
105 	u16 i, j;
106 	unsigned k;
107 	bool print_unknown_handle = false;
108 
109 	/* Find number of classes in the input mapping */
110 	if (!map)
111 		return -EINVAL;
112 	i = 0;
113 	while (map[i].name)
114 		i++;
115 
116 	/* Allocate space for the class records, plus one for class zero */
117 	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
118 	if (!out_map->mapping)
119 		return -ENOMEM;
120 
121 	/* Store the raw class and permission values */
122 	j = 0;
123 	while (map[j].name) {
124 		struct security_class_mapping *p_in = map + (j++);
125 		struct selinux_mapping *p_out = out_map->mapping + j;
126 
127 		/* An empty class string skips ahead */
128 		if (!strcmp(p_in->name, "")) {
129 			p_out->num_perms = 0;
130 			continue;
131 		}
132 
133 		p_out->value = string_to_security_class(pol, p_in->name);
134 		if (!p_out->value) {
135 			pr_info("SELinux:  Class %s not defined in policy.\n",
136 			       p_in->name);
137 			if (pol->reject_unknown)
138 				goto err;
139 			p_out->num_perms = 0;
140 			print_unknown_handle = true;
141 			continue;
142 		}
143 
144 		k = 0;
145 		while (p_in->perms[k]) {
146 			/* An empty permission string skips ahead */
147 			if (!*p_in->perms[k]) {
148 				k++;
149 				continue;
150 			}
151 			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
152 							    p_in->perms[k]);
153 			if (!p_out->perms[k]) {
154 				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
155 				       p_in->perms[k], p_in->name);
156 				if (pol->reject_unknown)
157 					goto err;
158 				print_unknown_handle = true;
159 			}
160 
161 			k++;
162 		}
163 		p_out->num_perms = k;
164 	}
165 
166 	if (print_unknown_handle)
167 		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
168 		       pol->allow_unknown ? "allowed" : "denied");
169 
170 	out_map->size = i;
171 	return 0;
172 err:
173 	kfree(out_map->mapping);
174 	out_map->mapping = NULL;
175 	return -EINVAL;
176 }
177 
178 /*
179  * Get real, policy values from mapped values
180  */
181 
182 static u16 unmap_class(struct selinux_map *map, u16 tclass)
183 {
184 	if (tclass < map->size)
185 		return map->mapping[tclass].value;
186 
187 	return tclass;
188 }
189 
190 /*
191  * Get kernel value for class from its policy value
192  */
193 static u16 map_class(struct selinux_map *map, u16 pol_value)
194 {
195 	u16 i;
196 
197 	for (i = 1; i < map->size; i++) {
198 		if (map->mapping[i].value == pol_value)
199 			return i;
200 	}
201 
202 	return SECCLASS_NULL;
203 }
204 
205 static void map_decision(struct selinux_map *map,
206 			 u16 tclass, struct av_decision *avd,
207 			 int allow_unknown)
208 {
209 	if (tclass < map->size) {
210 		struct selinux_mapping *mapping = &map->mapping[tclass];
211 		unsigned int i, n = mapping->num_perms;
212 		u32 result;
213 
214 		for (i = 0, result = 0; i < n; i++) {
215 			if (avd->allowed & mapping->perms[i])
216 				result |= 1<<i;
217 			if (allow_unknown && !mapping->perms[i])
218 				result |= 1<<i;
219 		}
220 		avd->allowed = result;
221 
222 		for (i = 0, result = 0; i < n; i++)
223 			if (avd->auditallow & mapping->perms[i])
224 				result |= 1<<i;
225 		avd->auditallow = result;
226 
227 		for (i = 0, result = 0; i < n; i++) {
228 			if (avd->auditdeny & mapping->perms[i])
229 				result |= 1<<i;
230 			if (!allow_unknown && !mapping->perms[i])
231 				result |= 1<<i;
232 		}
233 		/*
234 		 * In case the kernel has a bug and requests a permission
235 		 * between num_perms and the maximum permission number, we
236 		 * should audit that denial
237 		 */
238 		for (; i < (sizeof(u32)*8); i++)
239 			result |= 1<<i;
240 		avd->auditdeny = result;
241 	}
242 }
243 
244 int security_mls_enabled(struct selinux_state *state)
245 {
246 	int mls_enabled;
247 	struct selinux_policy *policy;
248 
249 	if (!selinux_initialized(state))
250 		return 0;
251 
252 	rcu_read_lock();
253 	policy = rcu_dereference(state->policy);
254 	mls_enabled = policy->policydb.mls_enabled;
255 	rcu_read_unlock();
256 	return mls_enabled;
257 }
258 
259 /*
260  * Return the boolean value of a constraint expression
261  * when it is applied to the specified source and target
262  * security contexts.
263  *
264  * xcontext is a special beast...  It is used by the validatetrans rules
265  * only.  For these rules, scontext is the context before the transition,
266  * tcontext is the context after the transition, and xcontext is the context
267  * of the process performing the transition.  All other callers of
268  * constraint_expr_eval should pass in NULL for xcontext.
269  */
270 static int constraint_expr_eval(struct policydb *policydb,
271 				struct context *scontext,
272 				struct context *tcontext,
273 				struct context *xcontext,
274 				struct constraint_expr *cexpr)
275 {
276 	u32 val1, val2;
277 	struct context *c;
278 	struct role_datum *r1, *r2;
279 	struct mls_level *l1, *l2;
280 	struct constraint_expr *e;
281 	int s[CEXPR_MAXDEPTH];
282 	int sp = -1;
283 
284 	for (e = cexpr; e; e = e->next) {
285 		switch (e->expr_type) {
286 		case CEXPR_NOT:
287 			BUG_ON(sp < 0);
288 			s[sp] = !s[sp];
289 			break;
290 		case CEXPR_AND:
291 			BUG_ON(sp < 1);
292 			sp--;
293 			s[sp] &= s[sp + 1];
294 			break;
295 		case CEXPR_OR:
296 			BUG_ON(sp < 1);
297 			sp--;
298 			s[sp] |= s[sp + 1];
299 			break;
300 		case CEXPR_ATTR:
301 			if (sp == (CEXPR_MAXDEPTH - 1))
302 				return 0;
303 			switch (e->attr) {
304 			case CEXPR_USER:
305 				val1 = scontext->user;
306 				val2 = tcontext->user;
307 				break;
308 			case CEXPR_TYPE:
309 				val1 = scontext->type;
310 				val2 = tcontext->type;
311 				break;
312 			case CEXPR_ROLE:
313 				val1 = scontext->role;
314 				val2 = tcontext->role;
315 				r1 = policydb->role_val_to_struct[val1 - 1];
316 				r2 = policydb->role_val_to_struct[val2 - 1];
317 				switch (e->op) {
318 				case CEXPR_DOM:
319 					s[++sp] = ebitmap_get_bit(&r1->dominates,
320 								  val2 - 1);
321 					continue;
322 				case CEXPR_DOMBY:
323 					s[++sp] = ebitmap_get_bit(&r2->dominates,
324 								  val1 - 1);
325 					continue;
326 				case CEXPR_INCOMP:
327 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
328 								    val2 - 1) &&
329 						   !ebitmap_get_bit(&r2->dominates,
330 								    val1 - 1));
331 					continue;
332 				default:
333 					break;
334 				}
335 				break;
336 			case CEXPR_L1L2:
337 				l1 = &(scontext->range.level[0]);
338 				l2 = &(tcontext->range.level[0]);
339 				goto mls_ops;
340 			case CEXPR_L1H2:
341 				l1 = &(scontext->range.level[0]);
342 				l2 = &(tcontext->range.level[1]);
343 				goto mls_ops;
344 			case CEXPR_H1L2:
345 				l1 = &(scontext->range.level[1]);
346 				l2 = &(tcontext->range.level[0]);
347 				goto mls_ops;
348 			case CEXPR_H1H2:
349 				l1 = &(scontext->range.level[1]);
350 				l2 = &(tcontext->range.level[1]);
351 				goto mls_ops;
352 			case CEXPR_L1H1:
353 				l1 = &(scontext->range.level[0]);
354 				l2 = &(scontext->range.level[1]);
355 				goto mls_ops;
356 			case CEXPR_L2H2:
357 				l1 = &(tcontext->range.level[0]);
358 				l2 = &(tcontext->range.level[1]);
359 				goto mls_ops;
360 mls_ops:
361 			switch (e->op) {
362 			case CEXPR_EQ:
363 				s[++sp] = mls_level_eq(l1, l2);
364 				continue;
365 			case CEXPR_NEQ:
366 				s[++sp] = !mls_level_eq(l1, l2);
367 				continue;
368 			case CEXPR_DOM:
369 				s[++sp] = mls_level_dom(l1, l2);
370 				continue;
371 			case CEXPR_DOMBY:
372 				s[++sp] = mls_level_dom(l2, l1);
373 				continue;
374 			case CEXPR_INCOMP:
375 				s[++sp] = mls_level_incomp(l2, l1);
376 				continue;
377 			default:
378 				BUG();
379 				return 0;
380 			}
381 			break;
382 			default:
383 				BUG();
384 				return 0;
385 			}
386 
387 			switch (e->op) {
388 			case CEXPR_EQ:
389 				s[++sp] = (val1 == val2);
390 				break;
391 			case CEXPR_NEQ:
392 				s[++sp] = (val1 != val2);
393 				break;
394 			default:
395 				BUG();
396 				return 0;
397 			}
398 			break;
399 		case CEXPR_NAMES:
400 			if (sp == (CEXPR_MAXDEPTH-1))
401 				return 0;
402 			c = scontext;
403 			if (e->attr & CEXPR_TARGET)
404 				c = tcontext;
405 			else if (e->attr & CEXPR_XTARGET) {
406 				c = xcontext;
407 				if (!c) {
408 					BUG();
409 					return 0;
410 				}
411 			}
412 			if (e->attr & CEXPR_USER)
413 				val1 = c->user;
414 			else if (e->attr & CEXPR_ROLE)
415 				val1 = c->role;
416 			else if (e->attr & CEXPR_TYPE)
417 				val1 = c->type;
418 			else {
419 				BUG();
420 				return 0;
421 			}
422 
423 			switch (e->op) {
424 			case CEXPR_EQ:
425 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
426 				break;
427 			case CEXPR_NEQ:
428 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
429 				break;
430 			default:
431 				BUG();
432 				return 0;
433 			}
434 			break;
435 		default:
436 			BUG();
437 			return 0;
438 		}
439 	}
440 
441 	BUG_ON(sp != 0);
442 	return s[0];
443 }
444 
445 /*
446  * security_dump_masked_av - dumps masked permissions during
447  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
448  */
449 static int dump_masked_av_helper(void *k, void *d, void *args)
450 {
451 	struct perm_datum *pdatum = d;
452 	char **permission_names = args;
453 
454 	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
455 
456 	permission_names[pdatum->value - 1] = (char *)k;
457 
458 	return 0;
459 }
460 
461 static void security_dump_masked_av(struct policydb *policydb,
462 				    struct context *scontext,
463 				    struct context *tcontext,
464 				    u16 tclass,
465 				    u32 permissions,
466 				    const char *reason)
467 {
468 	struct common_datum *common_dat;
469 	struct class_datum *tclass_dat;
470 	struct audit_buffer *ab;
471 	char *tclass_name;
472 	char *scontext_name = NULL;
473 	char *tcontext_name = NULL;
474 	char *permission_names[32];
475 	int index;
476 	u32 length;
477 	bool need_comma = false;
478 
479 	if (!permissions)
480 		return;
481 
482 	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
483 	tclass_dat = policydb->class_val_to_struct[tclass - 1];
484 	common_dat = tclass_dat->comdatum;
485 
486 	/* init permission_names */
487 	if (common_dat &&
488 	    hashtab_map(&common_dat->permissions.table,
489 			dump_masked_av_helper, permission_names) < 0)
490 		goto out;
491 
492 	if (hashtab_map(&tclass_dat->permissions.table,
493 			dump_masked_av_helper, permission_names) < 0)
494 		goto out;
495 
496 	/* get scontext/tcontext in text form */
497 	if (context_struct_to_string(policydb, scontext,
498 				     &scontext_name, &length) < 0)
499 		goto out;
500 
501 	if (context_struct_to_string(policydb, tcontext,
502 				     &tcontext_name, &length) < 0)
503 		goto out;
504 
505 	/* audit a message */
506 	ab = audit_log_start(audit_context(),
507 			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
508 	if (!ab)
509 		goto out;
510 
511 	audit_log_format(ab, "op=security_compute_av reason=%s "
512 			 "scontext=%s tcontext=%s tclass=%s perms=",
513 			 reason, scontext_name, tcontext_name, tclass_name);
514 
515 	for (index = 0; index < 32; index++) {
516 		u32 mask = (1 << index);
517 
518 		if ((mask & permissions) == 0)
519 			continue;
520 
521 		audit_log_format(ab, "%s%s",
522 				 need_comma ? "," : "",
523 				 permission_names[index]
524 				 ? permission_names[index] : "????");
525 		need_comma = true;
526 	}
527 	audit_log_end(ab);
528 out:
529 	/* release scontext/tcontext */
530 	kfree(tcontext_name);
531 	kfree(scontext_name);
532 
533 	return;
534 }
535 
536 /*
537  * security_boundary_permission - drops violated permissions
538  * on boundary constraint.
539  */
540 static void type_attribute_bounds_av(struct policydb *policydb,
541 				     struct context *scontext,
542 				     struct context *tcontext,
543 				     u16 tclass,
544 				     struct av_decision *avd)
545 {
546 	struct context lo_scontext;
547 	struct context lo_tcontext, *tcontextp = tcontext;
548 	struct av_decision lo_avd;
549 	struct type_datum *source;
550 	struct type_datum *target;
551 	u32 masked = 0;
552 
553 	source = policydb->type_val_to_struct[scontext->type - 1];
554 	BUG_ON(!source);
555 
556 	if (!source->bounds)
557 		return;
558 
559 	target = policydb->type_val_to_struct[tcontext->type - 1];
560 	BUG_ON(!target);
561 
562 	memset(&lo_avd, 0, sizeof(lo_avd));
563 
564 	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
565 	lo_scontext.type = source->bounds;
566 
567 	if (target->bounds) {
568 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
569 		lo_tcontext.type = target->bounds;
570 		tcontextp = &lo_tcontext;
571 	}
572 
573 	context_struct_compute_av(policydb, &lo_scontext,
574 				  tcontextp,
575 				  tclass,
576 				  &lo_avd,
577 				  NULL);
578 
579 	masked = ~lo_avd.allowed & avd->allowed;
580 
581 	if (likely(!masked))
582 		return;		/* no masked permission */
583 
584 	/* mask violated permissions */
585 	avd->allowed &= ~masked;
586 
587 	/* audit masked permissions */
588 	security_dump_masked_av(policydb, scontext, tcontext,
589 				tclass, masked, "bounds");
590 }
591 
592 /*
593  * flag which drivers have permissions
594  * only looking for ioctl based extended permssions
595  */
596 void services_compute_xperms_drivers(
597 		struct extended_perms *xperms,
598 		struct avtab_node *node)
599 {
600 	unsigned int i;
601 
602 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
603 		/* if one or more driver has all permissions allowed */
604 		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
605 			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
606 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
607 		/* if allowing permissions within a driver */
608 		security_xperm_set(xperms->drivers.p,
609 					node->datum.u.xperms->driver);
610 	}
611 
612 	xperms->len = 1;
613 }
614 
615 /*
616  * Compute access vectors and extended permissions based on a context
617  * structure pair for the permissions in a particular class.
618  */
619 static void context_struct_compute_av(struct policydb *policydb,
620 				      struct context *scontext,
621 				      struct context *tcontext,
622 				      u16 tclass,
623 				      struct av_decision *avd,
624 				      struct extended_perms *xperms)
625 {
626 	struct constraint_node *constraint;
627 	struct role_allow *ra;
628 	struct avtab_key avkey;
629 	struct avtab_node *node;
630 	struct class_datum *tclass_datum;
631 	struct ebitmap *sattr, *tattr;
632 	struct ebitmap_node *snode, *tnode;
633 	unsigned int i, j;
634 
635 	avd->allowed = 0;
636 	avd->auditallow = 0;
637 	avd->auditdeny = 0xffffffff;
638 	if (xperms) {
639 		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
640 		xperms->len = 0;
641 	}
642 
643 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
644 		if (printk_ratelimit())
645 			pr_warn("SELinux:  Invalid class %hu\n", tclass);
646 		return;
647 	}
648 
649 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
650 
651 	/*
652 	 * If a specific type enforcement rule was defined for
653 	 * this permission check, then use it.
654 	 */
655 	avkey.target_class = tclass;
656 	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
657 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
658 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
659 	ebitmap_for_each_positive_bit(sattr, snode, i) {
660 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
661 			avkey.source_type = i + 1;
662 			avkey.target_type = j + 1;
663 			for (node = avtab_search_node(&policydb->te_avtab,
664 						      &avkey);
665 			     node;
666 			     node = avtab_search_node_next(node, avkey.specified)) {
667 				if (node->key.specified == AVTAB_ALLOWED)
668 					avd->allowed |= node->datum.u.data;
669 				else if (node->key.specified == AVTAB_AUDITALLOW)
670 					avd->auditallow |= node->datum.u.data;
671 				else if (node->key.specified == AVTAB_AUDITDENY)
672 					avd->auditdeny &= node->datum.u.data;
673 				else if (xperms && (node->key.specified & AVTAB_XPERMS))
674 					services_compute_xperms_drivers(xperms, node);
675 			}
676 
677 			/* Check conditional av table for additional permissions */
678 			cond_compute_av(&policydb->te_cond_avtab, &avkey,
679 					avd, xperms);
680 
681 		}
682 	}
683 
684 	/*
685 	 * Remove any permissions prohibited by a constraint (this includes
686 	 * the MLS policy).
687 	 */
688 	constraint = tclass_datum->constraints;
689 	while (constraint) {
690 		if ((constraint->permissions & (avd->allowed)) &&
691 		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
692 					  constraint->expr)) {
693 			avd->allowed &= ~(constraint->permissions);
694 		}
695 		constraint = constraint->next;
696 	}
697 
698 	/*
699 	 * If checking process transition permission and the
700 	 * role is changing, then check the (current_role, new_role)
701 	 * pair.
702 	 */
703 	if (tclass == policydb->process_class &&
704 	    (avd->allowed & policydb->process_trans_perms) &&
705 	    scontext->role != tcontext->role) {
706 		for (ra = policydb->role_allow; ra; ra = ra->next) {
707 			if (scontext->role == ra->role &&
708 			    tcontext->role == ra->new_role)
709 				break;
710 		}
711 		if (!ra)
712 			avd->allowed &= ~policydb->process_trans_perms;
713 	}
714 
715 	/*
716 	 * If the given source and target types have boundary
717 	 * constraint, lazy checks have to mask any violated
718 	 * permission and notice it to userspace via audit.
719 	 */
720 	type_attribute_bounds_av(policydb, scontext, tcontext,
721 				 tclass, avd);
722 }
723 
724 static int security_validtrans_handle_fail(struct selinux_state *state,
725 					struct selinux_policy *policy,
726 					struct sidtab_entry *oentry,
727 					struct sidtab_entry *nentry,
728 					struct sidtab_entry *tentry,
729 					u16 tclass)
730 {
731 	struct policydb *p = &policy->policydb;
732 	struct sidtab *sidtab = policy->sidtab;
733 	char *o = NULL, *n = NULL, *t = NULL;
734 	u32 olen, nlen, tlen;
735 
736 	if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
737 		goto out;
738 	if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
739 		goto out;
740 	if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
741 		goto out;
742 	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
743 		  "op=security_validate_transition seresult=denied"
744 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
745 		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
746 out:
747 	kfree(o);
748 	kfree(n);
749 	kfree(t);
750 
751 	if (!enforcing_enabled(state))
752 		return 0;
753 	return -EPERM;
754 }
755 
756 static int security_compute_validatetrans(struct selinux_state *state,
757 					  u32 oldsid, u32 newsid, u32 tasksid,
758 					  u16 orig_tclass, bool user)
759 {
760 	struct selinux_policy *policy;
761 	struct policydb *policydb;
762 	struct sidtab *sidtab;
763 	struct sidtab_entry *oentry;
764 	struct sidtab_entry *nentry;
765 	struct sidtab_entry *tentry;
766 	struct class_datum *tclass_datum;
767 	struct constraint_node *constraint;
768 	u16 tclass;
769 	int rc = 0;
770 
771 
772 	if (!selinux_initialized(state))
773 		return 0;
774 
775 	rcu_read_lock();
776 
777 	policy = rcu_dereference(state->policy);
778 	policydb = &policy->policydb;
779 	sidtab = policy->sidtab;
780 
781 	if (!user)
782 		tclass = unmap_class(&policy->map, orig_tclass);
783 	else
784 		tclass = orig_tclass;
785 
786 	if (!tclass || tclass > policydb->p_classes.nprim) {
787 		rc = -EINVAL;
788 		goto out;
789 	}
790 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
791 
792 	oentry = sidtab_search_entry(sidtab, oldsid);
793 	if (!oentry) {
794 		pr_err("SELinux: %s:  unrecognized SID %d\n",
795 			__func__, oldsid);
796 		rc = -EINVAL;
797 		goto out;
798 	}
799 
800 	nentry = sidtab_search_entry(sidtab, newsid);
801 	if (!nentry) {
802 		pr_err("SELinux: %s:  unrecognized SID %d\n",
803 			__func__, newsid);
804 		rc = -EINVAL;
805 		goto out;
806 	}
807 
808 	tentry = sidtab_search_entry(sidtab, tasksid);
809 	if (!tentry) {
810 		pr_err("SELinux: %s:  unrecognized SID %d\n",
811 			__func__, tasksid);
812 		rc = -EINVAL;
813 		goto out;
814 	}
815 
816 	constraint = tclass_datum->validatetrans;
817 	while (constraint) {
818 		if (!constraint_expr_eval(policydb, &oentry->context,
819 					  &nentry->context, &tentry->context,
820 					  constraint->expr)) {
821 			if (user)
822 				rc = -EPERM;
823 			else
824 				rc = security_validtrans_handle_fail(state,
825 								policy,
826 								oentry,
827 								nentry,
828 								tentry,
829 								tclass);
830 			goto out;
831 		}
832 		constraint = constraint->next;
833 	}
834 
835 out:
836 	rcu_read_unlock();
837 	return rc;
838 }
839 
840 int security_validate_transition_user(struct selinux_state *state,
841 				      u32 oldsid, u32 newsid, u32 tasksid,
842 				      u16 tclass)
843 {
844 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
845 					      tclass, true);
846 }
847 
848 int security_validate_transition(struct selinux_state *state,
849 				 u32 oldsid, u32 newsid, u32 tasksid,
850 				 u16 orig_tclass)
851 {
852 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
853 					      orig_tclass, false);
854 }
855 
856 /*
857  * security_bounded_transition - check whether the given
858  * transition is directed to bounded, or not.
859  * It returns 0, if @newsid is bounded by @oldsid.
860  * Otherwise, it returns error code.
861  *
862  * @state: SELinux state
863  * @oldsid : current security identifier
864  * @newsid : destinated security identifier
865  */
866 int security_bounded_transition(struct selinux_state *state,
867 				u32 old_sid, u32 new_sid)
868 {
869 	struct selinux_policy *policy;
870 	struct policydb *policydb;
871 	struct sidtab *sidtab;
872 	struct sidtab_entry *old_entry, *new_entry;
873 	struct type_datum *type;
874 	int index;
875 	int rc;
876 
877 	if (!selinux_initialized(state))
878 		return 0;
879 
880 	rcu_read_lock();
881 	policy = rcu_dereference(state->policy);
882 	policydb = &policy->policydb;
883 	sidtab = policy->sidtab;
884 
885 	rc = -EINVAL;
886 	old_entry = sidtab_search_entry(sidtab, old_sid);
887 	if (!old_entry) {
888 		pr_err("SELinux: %s: unrecognized SID %u\n",
889 		       __func__, old_sid);
890 		goto out;
891 	}
892 
893 	rc = -EINVAL;
894 	new_entry = sidtab_search_entry(sidtab, new_sid);
895 	if (!new_entry) {
896 		pr_err("SELinux: %s: unrecognized SID %u\n",
897 		       __func__, new_sid);
898 		goto out;
899 	}
900 
901 	rc = 0;
902 	/* type/domain unchanged */
903 	if (old_entry->context.type == new_entry->context.type)
904 		goto out;
905 
906 	index = new_entry->context.type;
907 	while (true) {
908 		type = policydb->type_val_to_struct[index - 1];
909 		BUG_ON(!type);
910 
911 		/* not bounded anymore */
912 		rc = -EPERM;
913 		if (!type->bounds)
914 			break;
915 
916 		/* @newsid is bounded by @oldsid */
917 		rc = 0;
918 		if (type->bounds == old_entry->context.type)
919 			break;
920 
921 		index = type->bounds;
922 	}
923 
924 	if (rc) {
925 		char *old_name = NULL;
926 		char *new_name = NULL;
927 		u32 length;
928 
929 		if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
930 					    &old_name, &length) &&
931 		    !sidtab_entry_to_string(policydb, sidtab, new_entry,
932 					    &new_name, &length)) {
933 			audit_log(audit_context(),
934 				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
935 				  "op=security_bounded_transition "
936 				  "seresult=denied "
937 				  "oldcontext=%s newcontext=%s",
938 				  old_name, new_name);
939 		}
940 		kfree(new_name);
941 		kfree(old_name);
942 	}
943 out:
944 	rcu_read_unlock();
945 
946 	return rc;
947 }
948 
949 static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
950 {
951 	avd->allowed = 0;
952 	avd->auditallow = 0;
953 	avd->auditdeny = 0xffffffff;
954 	if (policy)
955 		avd->seqno = policy->latest_granting;
956 	else
957 		avd->seqno = 0;
958 	avd->flags = 0;
959 }
960 
961 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
962 					struct avtab_node *node)
963 {
964 	unsigned int i;
965 
966 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
967 		if (xpermd->driver != node->datum.u.xperms->driver)
968 			return;
969 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
970 		if (!security_xperm_test(node->datum.u.xperms->perms.p,
971 					xpermd->driver))
972 			return;
973 	} else {
974 		BUG();
975 	}
976 
977 	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
978 		xpermd->used |= XPERMS_ALLOWED;
979 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
980 			memset(xpermd->allowed->p, 0xff,
981 					sizeof(xpermd->allowed->p));
982 		}
983 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
984 			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
985 				xpermd->allowed->p[i] |=
986 					node->datum.u.xperms->perms.p[i];
987 		}
988 	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
989 		xpermd->used |= XPERMS_AUDITALLOW;
990 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
991 			memset(xpermd->auditallow->p, 0xff,
992 					sizeof(xpermd->auditallow->p));
993 		}
994 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
995 			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
996 				xpermd->auditallow->p[i] |=
997 					node->datum.u.xperms->perms.p[i];
998 		}
999 	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
1000 		xpermd->used |= XPERMS_DONTAUDIT;
1001 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
1002 			memset(xpermd->dontaudit->p, 0xff,
1003 					sizeof(xpermd->dontaudit->p));
1004 		}
1005 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
1006 			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1007 				xpermd->dontaudit->p[i] |=
1008 					node->datum.u.xperms->perms.p[i];
1009 		}
1010 	} else {
1011 		BUG();
1012 	}
1013 }
1014 
1015 void security_compute_xperms_decision(struct selinux_state *state,
1016 				      u32 ssid,
1017 				      u32 tsid,
1018 				      u16 orig_tclass,
1019 				      u8 driver,
1020 				      struct extended_perms_decision *xpermd)
1021 {
1022 	struct selinux_policy *policy;
1023 	struct policydb *policydb;
1024 	struct sidtab *sidtab;
1025 	u16 tclass;
1026 	struct context *scontext, *tcontext;
1027 	struct avtab_key avkey;
1028 	struct avtab_node *node;
1029 	struct ebitmap *sattr, *tattr;
1030 	struct ebitmap_node *snode, *tnode;
1031 	unsigned int i, j;
1032 
1033 	xpermd->driver = driver;
1034 	xpermd->used = 0;
1035 	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1036 	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1037 	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1038 
1039 	rcu_read_lock();
1040 	if (!selinux_initialized(state))
1041 		goto allow;
1042 
1043 	policy = rcu_dereference(state->policy);
1044 	policydb = &policy->policydb;
1045 	sidtab = policy->sidtab;
1046 
1047 	scontext = sidtab_search(sidtab, ssid);
1048 	if (!scontext) {
1049 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1050 		       __func__, ssid);
1051 		goto out;
1052 	}
1053 
1054 	tcontext = sidtab_search(sidtab, tsid);
1055 	if (!tcontext) {
1056 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1057 		       __func__, tsid);
1058 		goto out;
1059 	}
1060 
1061 	tclass = unmap_class(&policy->map, orig_tclass);
1062 	if (unlikely(orig_tclass && !tclass)) {
1063 		if (policydb->allow_unknown)
1064 			goto allow;
1065 		goto out;
1066 	}
1067 
1068 
1069 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1070 		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1071 		goto out;
1072 	}
1073 
1074 	avkey.target_class = tclass;
1075 	avkey.specified = AVTAB_XPERMS;
1076 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1077 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1078 	ebitmap_for_each_positive_bit(sattr, snode, i) {
1079 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1080 			avkey.source_type = i + 1;
1081 			avkey.target_type = j + 1;
1082 			for (node = avtab_search_node(&policydb->te_avtab,
1083 						      &avkey);
1084 			     node;
1085 			     node = avtab_search_node_next(node, avkey.specified))
1086 				services_compute_xperms_decision(xpermd, node);
1087 
1088 			cond_compute_xperms(&policydb->te_cond_avtab,
1089 						&avkey, xpermd);
1090 		}
1091 	}
1092 out:
1093 	rcu_read_unlock();
1094 	return;
1095 allow:
1096 	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1097 	goto out;
1098 }
1099 
1100 /**
1101  * security_compute_av - Compute access vector decisions.
1102  * @state: SELinux state
1103  * @ssid: source security identifier
1104  * @tsid: target security identifier
1105  * @orig_tclass: target security class
1106  * @avd: access vector decisions
1107  * @xperms: extended permissions
1108  *
1109  * Compute a set of access vector decisions based on the
1110  * SID pair (@ssid, @tsid) for the permissions in @tclass.
1111  */
1112 void security_compute_av(struct selinux_state *state,
1113 			 u32 ssid,
1114 			 u32 tsid,
1115 			 u16 orig_tclass,
1116 			 struct av_decision *avd,
1117 			 struct extended_perms *xperms)
1118 {
1119 	struct selinux_policy *policy;
1120 	struct policydb *policydb;
1121 	struct sidtab *sidtab;
1122 	u16 tclass;
1123 	struct context *scontext = NULL, *tcontext = NULL;
1124 
1125 	rcu_read_lock();
1126 	policy = rcu_dereference(state->policy);
1127 	avd_init(policy, avd);
1128 	xperms->len = 0;
1129 	if (!selinux_initialized(state))
1130 		goto allow;
1131 
1132 	policydb = &policy->policydb;
1133 	sidtab = policy->sidtab;
1134 
1135 	scontext = sidtab_search(sidtab, ssid);
1136 	if (!scontext) {
1137 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1138 		       __func__, ssid);
1139 		goto out;
1140 	}
1141 
1142 	/* permissive domain? */
1143 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1144 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1145 
1146 	tcontext = sidtab_search(sidtab, tsid);
1147 	if (!tcontext) {
1148 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1149 		       __func__, tsid);
1150 		goto out;
1151 	}
1152 
1153 	tclass = unmap_class(&policy->map, orig_tclass);
1154 	if (unlikely(orig_tclass && !tclass)) {
1155 		if (policydb->allow_unknown)
1156 			goto allow;
1157 		goto out;
1158 	}
1159 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1160 				  xperms);
1161 	map_decision(&policy->map, orig_tclass, avd,
1162 		     policydb->allow_unknown);
1163 out:
1164 	rcu_read_unlock();
1165 	return;
1166 allow:
1167 	avd->allowed = 0xffffffff;
1168 	goto out;
1169 }
1170 
1171 void security_compute_av_user(struct selinux_state *state,
1172 			      u32 ssid,
1173 			      u32 tsid,
1174 			      u16 tclass,
1175 			      struct av_decision *avd)
1176 {
1177 	struct selinux_policy *policy;
1178 	struct policydb *policydb;
1179 	struct sidtab *sidtab;
1180 	struct context *scontext = NULL, *tcontext = NULL;
1181 
1182 	rcu_read_lock();
1183 	policy = rcu_dereference(state->policy);
1184 	avd_init(policy, avd);
1185 	if (!selinux_initialized(state))
1186 		goto allow;
1187 
1188 	policydb = &policy->policydb;
1189 	sidtab = policy->sidtab;
1190 
1191 	scontext = sidtab_search(sidtab, ssid);
1192 	if (!scontext) {
1193 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1194 		       __func__, ssid);
1195 		goto out;
1196 	}
1197 
1198 	/* permissive domain? */
1199 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1200 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1201 
1202 	tcontext = sidtab_search(sidtab, tsid);
1203 	if (!tcontext) {
1204 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1205 		       __func__, tsid);
1206 		goto out;
1207 	}
1208 
1209 	if (unlikely(!tclass)) {
1210 		if (policydb->allow_unknown)
1211 			goto allow;
1212 		goto out;
1213 	}
1214 
1215 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1216 				  NULL);
1217  out:
1218 	rcu_read_unlock();
1219 	return;
1220 allow:
1221 	avd->allowed = 0xffffffff;
1222 	goto out;
1223 }
1224 
1225 /*
1226  * Write the security context string representation of
1227  * the context structure `context' into a dynamically
1228  * allocated string of the correct size.  Set `*scontext'
1229  * to point to this string and set `*scontext_len' to
1230  * the length of the string.
1231  */
1232 static int context_struct_to_string(struct policydb *p,
1233 				    struct context *context,
1234 				    char **scontext, u32 *scontext_len)
1235 {
1236 	char *scontextp;
1237 
1238 	if (scontext)
1239 		*scontext = NULL;
1240 	*scontext_len = 0;
1241 
1242 	if (context->len) {
1243 		*scontext_len = context->len;
1244 		if (scontext) {
1245 			*scontext = kstrdup(context->str, GFP_ATOMIC);
1246 			if (!(*scontext))
1247 				return -ENOMEM;
1248 		}
1249 		return 0;
1250 	}
1251 
1252 	/* Compute the size of the context. */
1253 	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1254 	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1255 	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1256 	*scontext_len += mls_compute_context_len(p, context);
1257 
1258 	if (!scontext)
1259 		return 0;
1260 
1261 	/* Allocate space for the context; caller must free this space. */
1262 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1263 	if (!scontextp)
1264 		return -ENOMEM;
1265 	*scontext = scontextp;
1266 
1267 	/*
1268 	 * Copy the user name, role name and type name into the context.
1269 	 */
1270 	scontextp += sprintf(scontextp, "%s:%s:%s",
1271 		sym_name(p, SYM_USERS, context->user - 1),
1272 		sym_name(p, SYM_ROLES, context->role - 1),
1273 		sym_name(p, SYM_TYPES, context->type - 1));
1274 
1275 	mls_sid_to_context(p, context, &scontextp);
1276 
1277 	*scontextp = 0;
1278 
1279 	return 0;
1280 }
1281 
1282 static int sidtab_entry_to_string(struct policydb *p,
1283 				  struct sidtab *sidtab,
1284 				  struct sidtab_entry *entry,
1285 				  char **scontext, u32 *scontext_len)
1286 {
1287 	int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1288 
1289 	if (rc != -ENOENT)
1290 		return rc;
1291 
1292 	rc = context_struct_to_string(p, &entry->context, scontext,
1293 				      scontext_len);
1294 	if (!rc && scontext)
1295 		sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1296 	return rc;
1297 }
1298 
1299 #include "initial_sid_to_string.h"
1300 
1301 int security_sidtab_hash_stats(struct selinux_state *state, char *page)
1302 {
1303 	struct selinux_policy *policy;
1304 	int rc;
1305 
1306 	if (!selinux_initialized(state)) {
1307 		pr_err("SELinux: %s:  called before initial load_policy\n",
1308 		       __func__);
1309 		return -EINVAL;
1310 	}
1311 
1312 	rcu_read_lock();
1313 	policy = rcu_dereference(state->policy);
1314 	rc = sidtab_hash_stats(policy->sidtab, page);
1315 	rcu_read_unlock();
1316 
1317 	return rc;
1318 }
1319 
1320 const char *security_get_initial_sid_context(u32 sid)
1321 {
1322 	if (unlikely(sid > SECINITSID_NUM))
1323 		return NULL;
1324 	return initial_sid_to_string[sid];
1325 }
1326 
1327 static int security_sid_to_context_core(struct selinux_state *state,
1328 					u32 sid, char **scontext,
1329 					u32 *scontext_len, int force,
1330 					int only_invalid)
1331 {
1332 	struct selinux_policy *policy;
1333 	struct policydb *policydb;
1334 	struct sidtab *sidtab;
1335 	struct sidtab_entry *entry;
1336 	int rc = 0;
1337 
1338 	if (scontext)
1339 		*scontext = NULL;
1340 	*scontext_len  = 0;
1341 
1342 	if (!selinux_initialized(state)) {
1343 		if (sid <= SECINITSID_NUM) {
1344 			char *scontextp;
1345 			const char *s = initial_sid_to_string[sid];
1346 
1347 			if (!s)
1348 				return -EINVAL;
1349 			*scontext_len = strlen(s) + 1;
1350 			if (!scontext)
1351 				return 0;
1352 			scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1353 			if (!scontextp)
1354 				return -ENOMEM;
1355 			*scontext = scontextp;
1356 			return 0;
1357 		}
1358 		pr_err("SELinux: %s:  called before initial "
1359 		       "load_policy on unknown SID %d\n", __func__, sid);
1360 		return -EINVAL;
1361 	}
1362 	rcu_read_lock();
1363 	policy = rcu_dereference(state->policy);
1364 	policydb = &policy->policydb;
1365 	sidtab = policy->sidtab;
1366 
1367 	if (force)
1368 		entry = sidtab_search_entry_force(sidtab, sid);
1369 	else
1370 		entry = sidtab_search_entry(sidtab, sid);
1371 	if (!entry) {
1372 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1373 			__func__, sid);
1374 		rc = -EINVAL;
1375 		goto out_unlock;
1376 	}
1377 	if (only_invalid && !entry->context.len)
1378 		goto out_unlock;
1379 
1380 	rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1381 				    scontext_len);
1382 
1383 out_unlock:
1384 	rcu_read_unlock();
1385 	return rc;
1386 
1387 }
1388 
1389 /**
1390  * security_sid_to_context - Obtain a context for a given SID.
1391  * @state: SELinux state
1392  * @sid: security identifier, SID
1393  * @scontext: security context
1394  * @scontext_len: length in bytes
1395  *
1396  * Write the string representation of the context associated with @sid
1397  * into a dynamically allocated string of the correct size.  Set @scontext
1398  * to point to this string and set @scontext_len to the length of the string.
1399  */
1400 int security_sid_to_context(struct selinux_state *state,
1401 			    u32 sid, char **scontext, u32 *scontext_len)
1402 {
1403 	return security_sid_to_context_core(state, sid, scontext,
1404 					    scontext_len, 0, 0);
1405 }
1406 
1407 int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1408 				  char **scontext, u32 *scontext_len)
1409 {
1410 	return security_sid_to_context_core(state, sid, scontext,
1411 					    scontext_len, 1, 0);
1412 }
1413 
1414 /**
1415  * security_sid_to_context_inval - Obtain a context for a given SID if it
1416  *                                 is invalid.
1417  * @state: SELinux state
1418  * @sid: security identifier, SID
1419  * @scontext: security context
1420  * @scontext_len: length in bytes
1421  *
1422  * Write the string representation of the context associated with @sid
1423  * into a dynamically allocated string of the correct size, but only if the
1424  * context is invalid in the current policy.  Set @scontext to point to
1425  * this string (or NULL if the context is valid) and set @scontext_len to
1426  * the length of the string (or 0 if the context is valid).
1427  */
1428 int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1429 				  char **scontext, u32 *scontext_len)
1430 {
1431 	return security_sid_to_context_core(state, sid, scontext,
1432 					    scontext_len, 1, 1);
1433 }
1434 
1435 /*
1436  * Caveat:  Mutates scontext.
1437  */
1438 static int string_to_context_struct(struct policydb *pol,
1439 				    struct sidtab *sidtabp,
1440 				    char *scontext,
1441 				    struct context *ctx,
1442 				    u32 def_sid)
1443 {
1444 	struct role_datum *role;
1445 	struct type_datum *typdatum;
1446 	struct user_datum *usrdatum;
1447 	char *scontextp, *p, oldc;
1448 	int rc = 0;
1449 
1450 	context_init(ctx);
1451 
1452 	/* Parse the security context. */
1453 
1454 	rc = -EINVAL;
1455 	scontextp = (char *) scontext;
1456 
1457 	/* Extract the user. */
1458 	p = scontextp;
1459 	while (*p && *p != ':')
1460 		p++;
1461 
1462 	if (*p == 0)
1463 		goto out;
1464 
1465 	*p++ = 0;
1466 
1467 	usrdatum = symtab_search(&pol->p_users, scontextp);
1468 	if (!usrdatum)
1469 		goto out;
1470 
1471 	ctx->user = usrdatum->value;
1472 
1473 	/* Extract role. */
1474 	scontextp = p;
1475 	while (*p && *p != ':')
1476 		p++;
1477 
1478 	if (*p == 0)
1479 		goto out;
1480 
1481 	*p++ = 0;
1482 
1483 	role = symtab_search(&pol->p_roles, scontextp);
1484 	if (!role)
1485 		goto out;
1486 	ctx->role = role->value;
1487 
1488 	/* Extract type. */
1489 	scontextp = p;
1490 	while (*p && *p != ':')
1491 		p++;
1492 	oldc = *p;
1493 	*p++ = 0;
1494 
1495 	typdatum = symtab_search(&pol->p_types, scontextp);
1496 	if (!typdatum || typdatum->attribute)
1497 		goto out;
1498 
1499 	ctx->type = typdatum->value;
1500 
1501 	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1502 	if (rc)
1503 		goto out;
1504 
1505 	/* Check the validity of the new context. */
1506 	rc = -EINVAL;
1507 	if (!policydb_context_isvalid(pol, ctx))
1508 		goto out;
1509 	rc = 0;
1510 out:
1511 	if (rc)
1512 		context_destroy(ctx);
1513 	return rc;
1514 }
1515 
1516 static int security_context_to_sid_core(struct selinux_state *state,
1517 					const char *scontext, u32 scontext_len,
1518 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1519 					int force)
1520 {
1521 	struct selinux_policy *policy;
1522 	struct policydb *policydb;
1523 	struct sidtab *sidtab;
1524 	char *scontext2, *str = NULL;
1525 	struct context context;
1526 	int rc = 0;
1527 
1528 	/* An empty security context is never valid. */
1529 	if (!scontext_len)
1530 		return -EINVAL;
1531 
1532 	/* Copy the string to allow changes and ensure a NUL terminator */
1533 	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1534 	if (!scontext2)
1535 		return -ENOMEM;
1536 
1537 	if (!selinux_initialized(state)) {
1538 		int i;
1539 
1540 		for (i = 1; i < SECINITSID_NUM; i++) {
1541 			const char *s = initial_sid_to_string[i];
1542 
1543 			if (s && !strcmp(s, scontext2)) {
1544 				*sid = i;
1545 				goto out;
1546 			}
1547 		}
1548 		*sid = SECINITSID_KERNEL;
1549 		goto out;
1550 	}
1551 	*sid = SECSID_NULL;
1552 
1553 	if (force) {
1554 		/* Save another copy for storing in uninterpreted form */
1555 		rc = -ENOMEM;
1556 		str = kstrdup(scontext2, gfp_flags);
1557 		if (!str)
1558 			goto out;
1559 	}
1560 retry:
1561 	rcu_read_lock();
1562 	policy = rcu_dereference(state->policy);
1563 	policydb = &policy->policydb;
1564 	sidtab = policy->sidtab;
1565 	rc = string_to_context_struct(policydb, sidtab, scontext2,
1566 				      &context, def_sid);
1567 	if (rc == -EINVAL && force) {
1568 		context.str = str;
1569 		context.len = strlen(str) + 1;
1570 		str = NULL;
1571 	} else if (rc)
1572 		goto out_unlock;
1573 	rc = sidtab_context_to_sid(sidtab, &context, sid);
1574 	if (rc == -ESTALE) {
1575 		rcu_read_unlock();
1576 		if (context.str) {
1577 			str = context.str;
1578 			context.str = NULL;
1579 		}
1580 		context_destroy(&context);
1581 		goto retry;
1582 	}
1583 	context_destroy(&context);
1584 out_unlock:
1585 	rcu_read_unlock();
1586 out:
1587 	kfree(scontext2);
1588 	kfree(str);
1589 	return rc;
1590 }
1591 
1592 /**
1593  * security_context_to_sid - Obtain a SID for a given security context.
1594  * @state: SELinux state
1595  * @scontext: security context
1596  * @scontext_len: length in bytes
1597  * @sid: security identifier, SID
1598  * @gfp: context for the allocation
1599  *
1600  * Obtains a SID associated with the security context that
1601  * has the string representation specified by @scontext.
1602  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1603  * memory is available, or 0 on success.
1604  */
1605 int security_context_to_sid(struct selinux_state *state,
1606 			    const char *scontext, u32 scontext_len, u32 *sid,
1607 			    gfp_t gfp)
1608 {
1609 	return security_context_to_sid_core(state, scontext, scontext_len,
1610 					    sid, SECSID_NULL, gfp, 0);
1611 }
1612 
1613 int security_context_str_to_sid(struct selinux_state *state,
1614 				const char *scontext, u32 *sid, gfp_t gfp)
1615 {
1616 	return security_context_to_sid(state, scontext, strlen(scontext),
1617 				       sid, gfp);
1618 }
1619 
1620 /**
1621  * security_context_to_sid_default - Obtain a SID for a given security context,
1622  * falling back to specified default if needed.
1623  *
1624  * @state: SELinux state
1625  * @scontext: security context
1626  * @scontext_len: length in bytes
1627  * @sid: security identifier, SID
1628  * @def_sid: default SID to assign on error
1629  * @gfp_flags: the allocator get-free-page (GFP) flags
1630  *
1631  * Obtains a SID associated with the security context that
1632  * has the string representation specified by @scontext.
1633  * The default SID is passed to the MLS layer to be used to allow
1634  * kernel labeling of the MLS field if the MLS field is not present
1635  * (for upgrading to MLS without full relabel).
1636  * Implicitly forces adding of the context even if it cannot be mapped yet.
1637  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1638  * memory is available, or 0 on success.
1639  */
1640 int security_context_to_sid_default(struct selinux_state *state,
1641 				    const char *scontext, u32 scontext_len,
1642 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1643 {
1644 	return security_context_to_sid_core(state, scontext, scontext_len,
1645 					    sid, def_sid, gfp_flags, 1);
1646 }
1647 
1648 int security_context_to_sid_force(struct selinux_state *state,
1649 				  const char *scontext, u32 scontext_len,
1650 				  u32 *sid)
1651 {
1652 	return security_context_to_sid_core(state, scontext, scontext_len,
1653 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1654 }
1655 
1656 static int compute_sid_handle_invalid_context(
1657 	struct selinux_state *state,
1658 	struct selinux_policy *policy,
1659 	struct sidtab_entry *sentry,
1660 	struct sidtab_entry *tentry,
1661 	u16 tclass,
1662 	struct context *newcontext)
1663 {
1664 	struct policydb *policydb = &policy->policydb;
1665 	struct sidtab *sidtab = policy->sidtab;
1666 	char *s = NULL, *t = NULL, *n = NULL;
1667 	u32 slen, tlen, nlen;
1668 	struct audit_buffer *ab;
1669 
1670 	if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1671 		goto out;
1672 	if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1673 		goto out;
1674 	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1675 		goto out;
1676 	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1677 	if (!ab)
1678 		goto out;
1679 	audit_log_format(ab,
1680 			 "op=security_compute_sid invalid_context=");
1681 	/* no need to record the NUL with untrusted strings */
1682 	audit_log_n_untrustedstring(ab, n, nlen - 1);
1683 	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1684 			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1685 	audit_log_end(ab);
1686 out:
1687 	kfree(s);
1688 	kfree(t);
1689 	kfree(n);
1690 	if (!enforcing_enabled(state))
1691 		return 0;
1692 	return -EACCES;
1693 }
1694 
1695 static void filename_compute_type(struct policydb *policydb,
1696 				  struct context *newcontext,
1697 				  u32 stype, u32 ttype, u16 tclass,
1698 				  const char *objname)
1699 {
1700 	struct filename_trans_key ft;
1701 	struct filename_trans_datum *datum;
1702 
1703 	/*
1704 	 * Most filename trans rules are going to live in specific directories
1705 	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1706 	 * if the ttype does not contain any rules.
1707 	 */
1708 	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1709 		return;
1710 
1711 	ft.ttype = ttype;
1712 	ft.tclass = tclass;
1713 	ft.name = objname;
1714 
1715 	datum = policydb_filenametr_search(policydb, &ft);
1716 	while (datum) {
1717 		if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1718 			newcontext->type = datum->otype;
1719 			return;
1720 		}
1721 		datum = datum->next;
1722 	}
1723 }
1724 
1725 static int security_compute_sid(struct selinux_state *state,
1726 				u32 ssid,
1727 				u32 tsid,
1728 				u16 orig_tclass,
1729 				u32 specified,
1730 				const char *objname,
1731 				u32 *out_sid,
1732 				bool kern)
1733 {
1734 	struct selinux_policy *policy;
1735 	struct policydb *policydb;
1736 	struct sidtab *sidtab;
1737 	struct class_datum *cladatum;
1738 	struct context *scontext, *tcontext, newcontext;
1739 	struct sidtab_entry *sentry, *tentry;
1740 	struct avtab_key avkey;
1741 	struct avtab_datum *avdatum;
1742 	struct avtab_node *node;
1743 	u16 tclass;
1744 	int rc = 0;
1745 	bool sock;
1746 
1747 	if (!selinux_initialized(state)) {
1748 		switch (orig_tclass) {
1749 		case SECCLASS_PROCESS: /* kernel value */
1750 			*out_sid = ssid;
1751 			break;
1752 		default:
1753 			*out_sid = tsid;
1754 			break;
1755 		}
1756 		goto out;
1757 	}
1758 
1759 retry:
1760 	cladatum = NULL;
1761 	context_init(&newcontext);
1762 
1763 	rcu_read_lock();
1764 
1765 	policy = rcu_dereference(state->policy);
1766 
1767 	if (kern) {
1768 		tclass = unmap_class(&policy->map, orig_tclass);
1769 		sock = security_is_socket_class(orig_tclass);
1770 	} else {
1771 		tclass = orig_tclass;
1772 		sock = security_is_socket_class(map_class(&policy->map,
1773 							  tclass));
1774 	}
1775 
1776 	policydb = &policy->policydb;
1777 	sidtab = policy->sidtab;
1778 
1779 	sentry = sidtab_search_entry(sidtab, ssid);
1780 	if (!sentry) {
1781 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1782 		       __func__, ssid);
1783 		rc = -EINVAL;
1784 		goto out_unlock;
1785 	}
1786 	tentry = sidtab_search_entry(sidtab, tsid);
1787 	if (!tentry) {
1788 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1789 		       __func__, tsid);
1790 		rc = -EINVAL;
1791 		goto out_unlock;
1792 	}
1793 
1794 	scontext = &sentry->context;
1795 	tcontext = &tentry->context;
1796 
1797 	if (tclass && tclass <= policydb->p_classes.nprim)
1798 		cladatum = policydb->class_val_to_struct[tclass - 1];
1799 
1800 	/* Set the user identity. */
1801 	switch (specified) {
1802 	case AVTAB_TRANSITION:
1803 	case AVTAB_CHANGE:
1804 		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1805 			newcontext.user = tcontext->user;
1806 		} else {
1807 			/* notice this gets both DEFAULT_SOURCE and unset */
1808 			/* Use the process user identity. */
1809 			newcontext.user = scontext->user;
1810 		}
1811 		break;
1812 	case AVTAB_MEMBER:
1813 		/* Use the related object owner. */
1814 		newcontext.user = tcontext->user;
1815 		break;
1816 	}
1817 
1818 	/* Set the role to default values. */
1819 	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1820 		newcontext.role = scontext->role;
1821 	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1822 		newcontext.role = tcontext->role;
1823 	} else {
1824 		if ((tclass == policydb->process_class) || sock)
1825 			newcontext.role = scontext->role;
1826 		else
1827 			newcontext.role = OBJECT_R_VAL;
1828 	}
1829 
1830 	/* Set the type to default values. */
1831 	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1832 		newcontext.type = scontext->type;
1833 	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1834 		newcontext.type = tcontext->type;
1835 	} else {
1836 		if ((tclass == policydb->process_class) || sock) {
1837 			/* Use the type of process. */
1838 			newcontext.type = scontext->type;
1839 		} else {
1840 			/* Use the type of the related object. */
1841 			newcontext.type = tcontext->type;
1842 		}
1843 	}
1844 
1845 	/* Look for a type transition/member/change rule. */
1846 	avkey.source_type = scontext->type;
1847 	avkey.target_type = tcontext->type;
1848 	avkey.target_class = tclass;
1849 	avkey.specified = specified;
1850 	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1851 
1852 	/* If no permanent rule, also check for enabled conditional rules */
1853 	if (!avdatum) {
1854 		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1855 		for (; node; node = avtab_search_node_next(node, specified)) {
1856 			if (node->key.specified & AVTAB_ENABLED) {
1857 				avdatum = &node->datum;
1858 				break;
1859 			}
1860 		}
1861 	}
1862 
1863 	if (avdatum) {
1864 		/* Use the type from the type transition/member/change rule. */
1865 		newcontext.type = avdatum->u.data;
1866 	}
1867 
1868 	/* if we have a objname this is a file trans check so check those rules */
1869 	if (objname)
1870 		filename_compute_type(policydb, &newcontext, scontext->type,
1871 				      tcontext->type, tclass, objname);
1872 
1873 	/* Check for class-specific changes. */
1874 	if (specified & AVTAB_TRANSITION) {
1875 		/* Look for a role transition rule. */
1876 		struct role_trans_datum *rtd;
1877 		struct role_trans_key rtk = {
1878 			.role = scontext->role,
1879 			.type = tcontext->type,
1880 			.tclass = tclass,
1881 		};
1882 
1883 		rtd = policydb_roletr_search(policydb, &rtk);
1884 		if (rtd)
1885 			newcontext.role = rtd->new_role;
1886 	}
1887 
1888 	/* Set the MLS attributes.
1889 	   This is done last because it may allocate memory. */
1890 	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1891 			     &newcontext, sock);
1892 	if (rc)
1893 		goto out_unlock;
1894 
1895 	/* Check the validity of the context. */
1896 	if (!policydb_context_isvalid(policydb, &newcontext)) {
1897 		rc = compute_sid_handle_invalid_context(state, policy, sentry,
1898 							tentry, tclass,
1899 							&newcontext);
1900 		if (rc)
1901 			goto out_unlock;
1902 	}
1903 	/* Obtain the sid for the context. */
1904 	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1905 	if (rc == -ESTALE) {
1906 		rcu_read_unlock();
1907 		context_destroy(&newcontext);
1908 		goto retry;
1909 	}
1910 out_unlock:
1911 	rcu_read_unlock();
1912 	context_destroy(&newcontext);
1913 out:
1914 	return rc;
1915 }
1916 
1917 /**
1918  * security_transition_sid - Compute the SID for a new subject/object.
1919  * @state: SELinux state
1920  * @ssid: source security identifier
1921  * @tsid: target security identifier
1922  * @tclass: target security class
1923  * @qstr: object name
1924  * @out_sid: security identifier for new subject/object
1925  *
1926  * Compute a SID to use for labeling a new subject or object in the
1927  * class @tclass based on a SID pair (@ssid, @tsid).
1928  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1929  * if insufficient memory is available, or %0 if the new SID was
1930  * computed successfully.
1931  */
1932 int security_transition_sid(struct selinux_state *state,
1933 			    u32 ssid, u32 tsid, u16 tclass,
1934 			    const struct qstr *qstr, u32 *out_sid)
1935 {
1936 	return security_compute_sid(state, ssid, tsid, tclass,
1937 				    AVTAB_TRANSITION,
1938 				    qstr ? qstr->name : NULL, out_sid, true);
1939 }
1940 
1941 int security_transition_sid_user(struct selinux_state *state,
1942 				 u32 ssid, u32 tsid, u16 tclass,
1943 				 const char *objname, u32 *out_sid)
1944 {
1945 	return security_compute_sid(state, ssid, tsid, tclass,
1946 				    AVTAB_TRANSITION,
1947 				    objname, out_sid, false);
1948 }
1949 
1950 /**
1951  * security_member_sid - Compute the SID for member selection.
1952  * @state: SELinux state
1953  * @ssid: source security identifier
1954  * @tsid: target security identifier
1955  * @tclass: target security class
1956  * @out_sid: security identifier for selected member
1957  *
1958  * Compute a SID to use when selecting a member of a polyinstantiated
1959  * object of class @tclass based on a SID pair (@ssid, @tsid).
1960  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1961  * if insufficient memory is available, or %0 if the SID was
1962  * computed successfully.
1963  */
1964 int security_member_sid(struct selinux_state *state,
1965 			u32 ssid,
1966 			u32 tsid,
1967 			u16 tclass,
1968 			u32 *out_sid)
1969 {
1970 	return security_compute_sid(state, ssid, tsid, tclass,
1971 				    AVTAB_MEMBER, NULL,
1972 				    out_sid, false);
1973 }
1974 
1975 /**
1976  * security_change_sid - Compute the SID for object relabeling.
1977  * @state: SELinux state
1978  * @ssid: source security identifier
1979  * @tsid: target security identifier
1980  * @tclass: target security class
1981  * @out_sid: security identifier for selected member
1982  *
1983  * Compute a SID to use for relabeling an object of class @tclass
1984  * based on a SID pair (@ssid, @tsid).
1985  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1986  * if insufficient memory is available, or %0 if the SID was
1987  * computed successfully.
1988  */
1989 int security_change_sid(struct selinux_state *state,
1990 			u32 ssid,
1991 			u32 tsid,
1992 			u16 tclass,
1993 			u32 *out_sid)
1994 {
1995 	return security_compute_sid(state,
1996 				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1997 				    out_sid, false);
1998 }
1999 
2000 static inline int convert_context_handle_invalid_context(
2001 	struct selinux_state *state,
2002 	struct policydb *policydb,
2003 	struct context *context)
2004 {
2005 	char *s;
2006 	u32 len;
2007 
2008 	if (enforcing_enabled(state))
2009 		return -EINVAL;
2010 
2011 	if (!context_struct_to_string(policydb, context, &s, &len)) {
2012 		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
2013 			s);
2014 		kfree(s);
2015 	}
2016 	return 0;
2017 }
2018 
2019 /*
2020  * Convert the values in the security context
2021  * structure `oldc' from the values specified
2022  * in the policy `p->oldp' to the values specified
2023  * in the policy `p->newp', storing the new context
2024  * in `newc'.  Verify that the context is valid
2025  * under the new policy.
2026  */
2027 static int convert_context(struct context *oldc, struct context *newc, void *p)
2028 {
2029 	struct convert_context_args *args;
2030 	struct ocontext *oc;
2031 	struct role_datum *role;
2032 	struct type_datum *typdatum;
2033 	struct user_datum *usrdatum;
2034 	char *s;
2035 	u32 len;
2036 	int rc;
2037 
2038 	args = p;
2039 
2040 	if (oldc->str) {
2041 		s = kstrdup(oldc->str, GFP_KERNEL);
2042 		if (!s)
2043 			return -ENOMEM;
2044 
2045 		rc = string_to_context_struct(args->newp, NULL, s,
2046 					      newc, SECSID_NULL);
2047 		if (rc == -EINVAL) {
2048 			/*
2049 			 * Retain string representation for later mapping.
2050 			 *
2051 			 * IMPORTANT: We need to copy the contents of oldc->str
2052 			 * back into s again because string_to_context_struct()
2053 			 * may have garbled it.
2054 			 */
2055 			memcpy(s, oldc->str, oldc->len);
2056 			context_init(newc);
2057 			newc->str = s;
2058 			newc->len = oldc->len;
2059 			return 0;
2060 		}
2061 		kfree(s);
2062 		if (rc) {
2063 			/* Other error condition, e.g. ENOMEM. */
2064 			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2065 			       oldc->str, -rc);
2066 			return rc;
2067 		}
2068 		pr_info("SELinux:  Context %s became valid (mapped).\n",
2069 			oldc->str);
2070 		return 0;
2071 	}
2072 
2073 	context_init(newc);
2074 
2075 	/* Convert the user. */
2076 	usrdatum = symtab_search(&args->newp->p_users,
2077 				 sym_name(args->oldp,
2078 					  SYM_USERS, oldc->user - 1));
2079 	if (!usrdatum)
2080 		goto bad;
2081 	newc->user = usrdatum->value;
2082 
2083 	/* Convert the role. */
2084 	role = symtab_search(&args->newp->p_roles,
2085 			     sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2086 	if (!role)
2087 		goto bad;
2088 	newc->role = role->value;
2089 
2090 	/* Convert the type. */
2091 	typdatum = symtab_search(&args->newp->p_types,
2092 				 sym_name(args->oldp,
2093 					  SYM_TYPES, oldc->type - 1));
2094 	if (!typdatum)
2095 		goto bad;
2096 	newc->type = typdatum->value;
2097 
2098 	/* Convert the MLS fields if dealing with MLS policies */
2099 	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2100 		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2101 		if (rc)
2102 			goto bad;
2103 	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2104 		/*
2105 		 * Switching between non-MLS and MLS policy:
2106 		 * ensure that the MLS fields of the context for all
2107 		 * existing entries in the sidtab are filled in with a
2108 		 * suitable default value, likely taken from one of the
2109 		 * initial SIDs.
2110 		 */
2111 		oc = args->newp->ocontexts[OCON_ISID];
2112 		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2113 			oc = oc->next;
2114 		if (!oc) {
2115 			pr_err("SELinux:  unable to look up"
2116 				" the initial SIDs list\n");
2117 			goto bad;
2118 		}
2119 		rc = mls_range_set(newc, &oc->context[0].range);
2120 		if (rc)
2121 			goto bad;
2122 	}
2123 
2124 	/* Check the validity of the new context. */
2125 	if (!policydb_context_isvalid(args->newp, newc)) {
2126 		rc = convert_context_handle_invalid_context(args->state,
2127 							args->oldp,
2128 							oldc);
2129 		if (rc)
2130 			goto bad;
2131 	}
2132 
2133 	return 0;
2134 bad:
2135 	/* Map old representation to string and save it. */
2136 	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2137 	if (rc)
2138 		return rc;
2139 	context_destroy(newc);
2140 	newc->str = s;
2141 	newc->len = len;
2142 	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2143 		newc->str);
2144 	return 0;
2145 }
2146 
2147 static void security_load_policycaps(struct selinux_state *state,
2148 				struct selinux_policy *policy)
2149 {
2150 	struct policydb *p;
2151 	unsigned int i;
2152 	struct ebitmap_node *node;
2153 
2154 	p = &policy->policydb;
2155 
2156 	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2157 		WRITE_ONCE(state->policycap[i],
2158 			ebitmap_get_bit(&p->policycaps, i));
2159 
2160 	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2161 		pr_info("SELinux:  policy capability %s=%d\n",
2162 			selinux_policycap_names[i],
2163 			ebitmap_get_bit(&p->policycaps, i));
2164 
2165 	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2166 		if (i >= ARRAY_SIZE(selinux_policycap_names))
2167 			pr_info("SELinux:  unknown policy capability %u\n",
2168 				i);
2169 	}
2170 }
2171 
2172 static int security_preserve_bools(struct selinux_policy *oldpolicy,
2173 				struct selinux_policy *newpolicy);
2174 
2175 static void selinux_policy_free(struct selinux_policy *policy)
2176 {
2177 	if (!policy)
2178 		return;
2179 
2180 	sidtab_destroy(policy->sidtab);
2181 	kfree(policy->map.mapping);
2182 	policydb_destroy(&policy->policydb);
2183 	kfree(policy->sidtab);
2184 	kfree(policy);
2185 }
2186 
2187 static void selinux_policy_cond_free(struct selinux_policy *policy)
2188 {
2189 	cond_policydb_destroy_dup(&policy->policydb);
2190 	kfree(policy);
2191 }
2192 
2193 void selinux_policy_cancel(struct selinux_state *state,
2194 			   struct selinux_load_state *load_state)
2195 {
2196 	struct selinux_policy *oldpolicy;
2197 
2198 	oldpolicy = rcu_dereference_protected(state->policy,
2199 					lockdep_is_held(&state->policy_mutex));
2200 
2201 	sidtab_cancel_convert(oldpolicy->sidtab);
2202 	selinux_policy_free(load_state->policy);
2203 	kfree(load_state->convert_data);
2204 }
2205 
2206 static void selinux_notify_policy_change(struct selinux_state *state,
2207 					u32 seqno)
2208 {
2209 	/* Flush external caches and notify userspace of policy load */
2210 	avc_ss_reset(state->avc, seqno);
2211 	selnl_notify_policyload(seqno);
2212 	selinux_status_update_policyload(state, seqno);
2213 	selinux_netlbl_cache_invalidate();
2214 	selinux_xfrm_notify_policyload();
2215 	selinux_ima_measure_state_locked(state);
2216 }
2217 
2218 void selinux_policy_commit(struct selinux_state *state,
2219 			   struct selinux_load_state *load_state)
2220 {
2221 	struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2222 	unsigned long flags;
2223 	u32 seqno;
2224 
2225 	oldpolicy = rcu_dereference_protected(state->policy,
2226 					lockdep_is_held(&state->policy_mutex));
2227 
2228 	/* If switching between different policy types, log MLS status */
2229 	if (oldpolicy) {
2230 		if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2231 			pr_info("SELinux: Disabling MLS support...\n");
2232 		else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2233 			pr_info("SELinux: Enabling MLS support...\n");
2234 	}
2235 
2236 	/* Set latest granting seqno for new policy. */
2237 	if (oldpolicy)
2238 		newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2239 	else
2240 		newpolicy->latest_granting = 1;
2241 	seqno = newpolicy->latest_granting;
2242 
2243 	/* Install the new policy. */
2244 	if (oldpolicy) {
2245 		sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2246 		rcu_assign_pointer(state->policy, newpolicy);
2247 		sidtab_freeze_end(oldpolicy->sidtab, &flags);
2248 	} else {
2249 		rcu_assign_pointer(state->policy, newpolicy);
2250 	}
2251 
2252 	/* Load the policycaps from the new policy */
2253 	security_load_policycaps(state, newpolicy);
2254 
2255 	if (!selinux_initialized(state)) {
2256 		/*
2257 		 * After first policy load, the security server is
2258 		 * marked as initialized and ready to handle requests and
2259 		 * any objects created prior to policy load are then labeled.
2260 		 */
2261 		selinux_mark_initialized(state);
2262 		selinux_complete_init();
2263 	}
2264 
2265 	/* Free the old policy */
2266 	synchronize_rcu();
2267 	selinux_policy_free(oldpolicy);
2268 	kfree(load_state->convert_data);
2269 
2270 	/* Notify others of the policy change */
2271 	selinux_notify_policy_change(state, seqno);
2272 }
2273 
2274 /**
2275  * security_load_policy - Load a security policy configuration.
2276  * @state: SELinux state
2277  * @data: binary policy data
2278  * @len: length of data in bytes
2279  * @load_state: policy load state
2280  *
2281  * Load a new set of security policy configuration data,
2282  * validate it and convert the SID table as necessary.
2283  * This function will flush the access vector cache after
2284  * loading the new policy.
2285  */
2286 int security_load_policy(struct selinux_state *state, void *data, size_t len,
2287 			 struct selinux_load_state *load_state)
2288 {
2289 	struct selinux_policy *newpolicy, *oldpolicy;
2290 	struct selinux_policy_convert_data *convert_data;
2291 	int rc = 0;
2292 	struct policy_file file = { data, len }, *fp = &file;
2293 
2294 	newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2295 	if (!newpolicy)
2296 		return -ENOMEM;
2297 
2298 	newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2299 	if (!newpolicy->sidtab) {
2300 		rc = -ENOMEM;
2301 		goto err_policy;
2302 	}
2303 
2304 	rc = policydb_read(&newpolicy->policydb, fp);
2305 	if (rc)
2306 		goto err_sidtab;
2307 
2308 	newpolicy->policydb.len = len;
2309 	rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2310 				&newpolicy->map);
2311 	if (rc)
2312 		goto err_policydb;
2313 
2314 	rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2315 	if (rc) {
2316 		pr_err("SELinux:  unable to load the initial SIDs\n");
2317 		goto err_mapping;
2318 	}
2319 
2320 	if (!selinux_initialized(state)) {
2321 		/* First policy load, so no need to preserve state from old policy */
2322 		load_state->policy = newpolicy;
2323 		load_state->convert_data = NULL;
2324 		return 0;
2325 	}
2326 
2327 	oldpolicy = rcu_dereference_protected(state->policy,
2328 					lockdep_is_held(&state->policy_mutex));
2329 
2330 	/* Preserve active boolean values from the old policy */
2331 	rc = security_preserve_bools(oldpolicy, newpolicy);
2332 	if (rc) {
2333 		pr_err("SELinux:  unable to preserve booleans\n");
2334 		goto err_free_isids;
2335 	}
2336 
2337 	convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2338 	if (!convert_data) {
2339 		rc = -ENOMEM;
2340 		goto err_free_isids;
2341 	}
2342 
2343 	/*
2344 	 * Convert the internal representations of contexts
2345 	 * in the new SID table.
2346 	 */
2347 	convert_data->args.state = state;
2348 	convert_data->args.oldp = &oldpolicy->policydb;
2349 	convert_data->args.newp = &newpolicy->policydb;
2350 
2351 	convert_data->sidtab_params.func = convert_context;
2352 	convert_data->sidtab_params.args = &convert_data->args;
2353 	convert_data->sidtab_params.target = newpolicy->sidtab;
2354 
2355 	rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2356 	if (rc) {
2357 		pr_err("SELinux:  unable to convert the internal"
2358 			" representation of contexts in the new SID"
2359 			" table\n");
2360 		goto err_free_convert_data;
2361 	}
2362 
2363 	load_state->policy = newpolicy;
2364 	load_state->convert_data = convert_data;
2365 	return 0;
2366 
2367 err_free_convert_data:
2368 	kfree(convert_data);
2369 err_free_isids:
2370 	sidtab_destroy(newpolicy->sidtab);
2371 err_mapping:
2372 	kfree(newpolicy->map.mapping);
2373 err_policydb:
2374 	policydb_destroy(&newpolicy->policydb);
2375 err_sidtab:
2376 	kfree(newpolicy->sidtab);
2377 err_policy:
2378 	kfree(newpolicy);
2379 
2380 	return rc;
2381 }
2382 
2383 /**
2384  * ocontext_to_sid - Helper to safely get sid for an ocontext
2385  * @sidtab: SID table
2386  * @c: ocontext structure
2387  * @index: index of the context entry (0 or 1)
2388  * @out_sid: pointer to the resulting SID value
2389  *
2390  * For all ocontexts except OCON_ISID the SID fields are populated
2391  * on-demand when needed. Since updating the SID value is an SMP-sensitive
2392  * operation, this helper must be used to do that safely.
2393  *
2394  * WARNING: This function may return -ESTALE, indicating that the caller
2395  * must retry the operation after re-acquiring the policy pointer!
2396  */
2397 static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2398 			   size_t index, u32 *out_sid)
2399 {
2400 	int rc;
2401 	u32 sid;
2402 
2403 	/* Ensure the associated sidtab entry is visible to this thread. */
2404 	sid = smp_load_acquire(&c->sid[index]);
2405 	if (!sid) {
2406 		rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2407 		if (rc)
2408 			return rc;
2409 
2410 		/*
2411 		 * Ensure the new sidtab entry is visible to other threads
2412 		 * when they see the SID.
2413 		 */
2414 		smp_store_release(&c->sid[index], sid);
2415 	}
2416 	*out_sid = sid;
2417 	return 0;
2418 }
2419 
2420 /**
2421  * security_port_sid - Obtain the SID for a port.
2422  * @state: SELinux state
2423  * @protocol: protocol number
2424  * @port: port number
2425  * @out_sid: security identifier
2426  */
2427 int security_port_sid(struct selinux_state *state,
2428 		      u8 protocol, u16 port, u32 *out_sid)
2429 {
2430 	struct selinux_policy *policy;
2431 	struct policydb *policydb;
2432 	struct sidtab *sidtab;
2433 	struct ocontext *c;
2434 	int rc;
2435 
2436 	if (!selinux_initialized(state)) {
2437 		*out_sid = SECINITSID_PORT;
2438 		return 0;
2439 	}
2440 
2441 retry:
2442 	rc = 0;
2443 	rcu_read_lock();
2444 	policy = rcu_dereference(state->policy);
2445 	policydb = &policy->policydb;
2446 	sidtab = policy->sidtab;
2447 
2448 	c = policydb->ocontexts[OCON_PORT];
2449 	while (c) {
2450 		if (c->u.port.protocol == protocol &&
2451 		    c->u.port.low_port <= port &&
2452 		    c->u.port.high_port >= port)
2453 			break;
2454 		c = c->next;
2455 	}
2456 
2457 	if (c) {
2458 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2459 		if (rc == -ESTALE) {
2460 			rcu_read_unlock();
2461 			goto retry;
2462 		}
2463 		if (rc)
2464 			goto out;
2465 	} else {
2466 		*out_sid = SECINITSID_PORT;
2467 	}
2468 
2469 out:
2470 	rcu_read_unlock();
2471 	return rc;
2472 }
2473 
2474 /**
2475  * security_ib_pkey_sid - Obtain the SID for a pkey.
2476  * @state: SELinux state
2477  * @subnet_prefix: Subnet Prefix
2478  * @pkey_num: pkey number
2479  * @out_sid: security identifier
2480  */
2481 int security_ib_pkey_sid(struct selinux_state *state,
2482 			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2483 {
2484 	struct selinux_policy *policy;
2485 	struct policydb *policydb;
2486 	struct sidtab *sidtab;
2487 	struct ocontext *c;
2488 	int rc;
2489 
2490 	if (!selinux_initialized(state)) {
2491 		*out_sid = SECINITSID_UNLABELED;
2492 		return 0;
2493 	}
2494 
2495 retry:
2496 	rc = 0;
2497 	rcu_read_lock();
2498 	policy = rcu_dereference(state->policy);
2499 	policydb = &policy->policydb;
2500 	sidtab = policy->sidtab;
2501 
2502 	c = policydb->ocontexts[OCON_IBPKEY];
2503 	while (c) {
2504 		if (c->u.ibpkey.low_pkey <= pkey_num &&
2505 		    c->u.ibpkey.high_pkey >= pkey_num &&
2506 		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2507 			break;
2508 
2509 		c = c->next;
2510 	}
2511 
2512 	if (c) {
2513 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2514 		if (rc == -ESTALE) {
2515 			rcu_read_unlock();
2516 			goto retry;
2517 		}
2518 		if (rc)
2519 			goto out;
2520 	} else
2521 		*out_sid = SECINITSID_UNLABELED;
2522 
2523 out:
2524 	rcu_read_unlock();
2525 	return rc;
2526 }
2527 
2528 /**
2529  * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2530  * @state: SELinux state
2531  * @dev_name: device name
2532  * @port_num: port number
2533  * @out_sid: security identifier
2534  */
2535 int security_ib_endport_sid(struct selinux_state *state,
2536 			    const char *dev_name, u8 port_num, u32 *out_sid)
2537 {
2538 	struct selinux_policy *policy;
2539 	struct policydb *policydb;
2540 	struct sidtab *sidtab;
2541 	struct ocontext *c;
2542 	int rc;
2543 
2544 	if (!selinux_initialized(state)) {
2545 		*out_sid = SECINITSID_UNLABELED;
2546 		return 0;
2547 	}
2548 
2549 retry:
2550 	rc = 0;
2551 	rcu_read_lock();
2552 	policy = rcu_dereference(state->policy);
2553 	policydb = &policy->policydb;
2554 	sidtab = policy->sidtab;
2555 
2556 	c = policydb->ocontexts[OCON_IBENDPORT];
2557 	while (c) {
2558 		if (c->u.ibendport.port == port_num &&
2559 		    !strncmp(c->u.ibendport.dev_name,
2560 			     dev_name,
2561 			     IB_DEVICE_NAME_MAX))
2562 			break;
2563 
2564 		c = c->next;
2565 	}
2566 
2567 	if (c) {
2568 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2569 		if (rc == -ESTALE) {
2570 			rcu_read_unlock();
2571 			goto retry;
2572 		}
2573 		if (rc)
2574 			goto out;
2575 	} else
2576 		*out_sid = SECINITSID_UNLABELED;
2577 
2578 out:
2579 	rcu_read_unlock();
2580 	return rc;
2581 }
2582 
2583 /**
2584  * security_netif_sid - Obtain the SID for a network interface.
2585  * @state: SELinux state
2586  * @name: interface name
2587  * @if_sid: interface SID
2588  */
2589 int security_netif_sid(struct selinux_state *state,
2590 		       char *name, u32 *if_sid)
2591 {
2592 	struct selinux_policy *policy;
2593 	struct policydb *policydb;
2594 	struct sidtab *sidtab;
2595 	int rc;
2596 	struct ocontext *c;
2597 
2598 	if (!selinux_initialized(state)) {
2599 		*if_sid = SECINITSID_NETIF;
2600 		return 0;
2601 	}
2602 
2603 retry:
2604 	rc = 0;
2605 	rcu_read_lock();
2606 	policy = rcu_dereference(state->policy);
2607 	policydb = &policy->policydb;
2608 	sidtab = policy->sidtab;
2609 
2610 	c = policydb->ocontexts[OCON_NETIF];
2611 	while (c) {
2612 		if (strcmp(name, c->u.name) == 0)
2613 			break;
2614 		c = c->next;
2615 	}
2616 
2617 	if (c) {
2618 		rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2619 		if (rc == -ESTALE) {
2620 			rcu_read_unlock();
2621 			goto retry;
2622 		}
2623 		if (rc)
2624 			goto out;
2625 	} else
2626 		*if_sid = SECINITSID_NETIF;
2627 
2628 out:
2629 	rcu_read_unlock();
2630 	return rc;
2631 }
2632 
2633 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2634 {
2635 	int i, fail = 0;
2636 
2637 	for (i = 0; i < 4; i++)
2638 		if (addr[i] != (input[i] & mask[i])) {
2639 			fail = 1;
2640 			break;
2641 		}
2642 
2643 	return !fail;
2644 }
2645 
2646 /**
2647  * security_node_sid - Obtain the SID for a node (host).
2648  * @state: SELinux state
2649  * @domain: communication domain aka address family
2650  * @addrp: address
2651  * @addrlen: address length in bytes
2652  * @out_sid: security identifier
2653  */
2654 int security_node_sid(struct selinux_state *state,
2655 		      u16 domain,
2656 		      void *addrp,
2657 		      u32 addrlen,
2658 		      u32 *out_sid)
2659 {
2660 	struct selinux_policy *policy;
2661 	struct policydb *policydb;
2662 	struct sidtab *sidtab;
2663 	int rc;
2664 	struct ocontext *c;
2665 
2666 	if (!selinux_initialized(state)) {
2667 		*out_sid = SECINITSID_NODE;
2668 		return 0;
2669 	}
2670 
2671 retry:
2672 	rcu_read_lock();
2673 	policy = rcu_dereference(state->policy);
2674 	policydb = &policy->policydb;
2675 	sidtab = policy->sidtab;
2676 
2677 	switch (domain) {
2678 	case AF_INET: {
2679 		u32 addr;
2680 
2681 		rc = -EINVAL;
2682 		if (addrlen != sizeof(u32))
2683 			goto out;
2684 
2685 		addr = *((u32 *)addrp);
2686 
2687 		c = policydb->ocontexts[OCON_NODE];
2688 		while (c) {
2689 			if (c->u.node.addr == (addr & c->u.node.mask))
2690 				break;
2691 			c = c->next;
2692 		}
2693 		break;
2694 	}
2695 
2696 	case AF_INET6:
2697 		rc = -EINVAL;
2698 		if (addrlen != sizeof(u64) * 2)
2699 			goto out;
2700 		c = policydb->ocontexts[OCON_NODE6];
2701 		while (c) {
2702 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2703 						c->u.node6.mask))
2704 				break;
2705 			c = c->next;
2706 		}
2707 		break;
2708 
2709 	default:
2710 		rc = 0;
2711 		*out_sid = SECINITSID_NODE;
2712 		goto out;
2713 	}
2714 
2715 	if (c) {
2716 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2717 		if (rc == -ESTALE) {
2718 			rcu_read_unlock();
2719 			goto retry;
2720 		}
2721 		if (rc)
2722 			goto out;
2723 	} else {
2724 		*out_sid = SECINITSID_NODE;
2725 	}
2726 
2727 	rc = 0;
2728 out:
2729 	rcu_read_unlock();
2730 	return rc;
2731 }
2732 
2733 #define SIDS_NEL 25
2734 
2735 /**
2736  * security_get_user_sids - Obtain reachable SIDs for a user.
2737  * @state: SELinux state
2738  * @fromsid: starting SID
2739  * @username: username
2740  * @sids: array of reachable SIDs for user
2741  * @nel: number of elements in @sids
2742  *
2743  * Generate the set of SIDs for legal security contexts
2744  * for a given user that can be reached by @fromsid.
2745  * Set *@sids to point to a dynamically allocated
2746  * array containing the set of SIDs.  Set *@nel to the
2747  * number of elements in the array.
2748  */
2749 
2750 int security_get_user_sids(struct selinux_state *state,
2751 			   u32 fromsid,
2752 			   char *username,
2753 			   u32 **sids,
2754 			   u32 *nel)
2755 {
2756 	struct selinux_policy *policy;
2757 	struct policydb *policydb;
2758 	struct sidtab *sidtab;
2759 	struct context *fromcon, usercon;
2760 	u32 *mysids = NULL, *mysids2, sid;
2761 	u32 i, j, mynel, maxnel = SIDS_NEL;
2762 	struct user_datum *user;
2763 	struct role_datum *role;
2764 	struct ebitmap_node *rnode, *tnode;
2765 	int rc;
2766 
2767 	*sids = NULL;
2768 	*nel = 0;
2769 
2770 	if (!selinux_initialized(state))
2771 		return 0;
2772 
2773 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2774 	if (!mysids)
2775 		return -ENOMEM;
2776 
2777 retry:
2778 	mynel = 0;
2779 	rcu_read_lock();
2780 	policy = rcu_dereference(state->policy);
2781 	policydb = &policy->policydb;
2782 	sidtab = policy->sidtab;
2783 
2784 	context_init(&usercon);
2785 
2786 	rc = -EINVAL;
2787 	fromcon = sidtab_search(sidtab, fromsid);
2788 	if (!fromcon)
2789 		goto out_unlock;
2790 
2791 	rc = -EINVAL;
2792 	user = symtab_search(&policydb->p_users, username);
2793 	if (!user)
2794 		goto out_unlock;
2795 
2796 	usercon.user = user->value;
2797 
2798 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2799 		role = policydb->role_val_to_struct[i];
2800 		usercon.role = i + 1;
2801 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2802 			usercon.type = j + 1;
2803 
2804 			if (mls_setup_user_range(policydb, fromcon, user,
2805 						 &usercon))
2806 				continue;
2807 
2808 			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2809 			if (rc == -ESTALE) {
2810 				rcu_read_unlock();
2811 				goto retry;
2812 			}
2813 			if (rc)
2814 				goto out_unlock;
2815 			if (mynel < maxnel) {
2816 				mysids[mynel++] = sid;
2817 			} else {
2818 				rc = -ENOMEM;
2819 				maxnel += SIDS_NEL;
2820 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2821 				if (!mysids2)
2822 					goto out_unlock;
2823 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2824 				kfree(mysids);
2825 				mysids = mysids2;
2826 				mysids[mynel++] = sid;
2827 			}
2828 		}
2829 	}
2830 	rc = 0;
2831 out_unlock:
2832 	rcu_read_unlock();
2833 	if (rc || !mynel) {
2834 		kfree(mysids);
2835 		return rc;
2836 	}
2837 
2838 	rc = -ENOMEM;
2839 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2840 	if (!mysids2) {
2841 		kfree(mysids);
2842 		return rc;
2843 	}
2844 	for (i = 0, j = 0; i < mynel; i++) {
2845 		struct av_decision dummy_avd;
2846 		rc = avc_has_perm_noaudit(state,
2847 					  fromsid, mysids[i],
2848 					  SECCLASS_PROCESS, /* kernel value */
2849 					  PROCESS__TRANSITION, AVC_STRICT,
2850 					  &dummy_avd);
2851 		if (!rc)
2852 			mysids2[j++] = mysids[i];
2853 		cond_resched();
2854 	}
2855 	kfree(mysids);
2856 	*sids = mysids2;
2857 	*nel = j;
2858 	return 0;
2859 }
2860 
2861 /**
2862  * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2863  * @policy: policy
2864  * @fstype: filesystem type
2865  * @path: path from root of mount
2866  * @orig_sclass: file security class
2867  * @sid: SID for path
2868  *
2869  * Obtain a SID to use for a file in a filesystem that
2870  * cannot support xattr or use a fixed labeling behavior like
2871  * transition SIDs or task SIDs.
2872  *
2873  * WARNING: This function may return -ESTALE, indicating that the caller
2874  * must retry the operation after re-acquiring the policy pointer!
2875  */
2876 static inline int __security_genfs_sid(struct selinux_policy *policy,
2877 				       const char *fstype,
2878 				       char *path,
2879 				       u16 orig_sclass,
2880 				       u32 *sid)
2881 {
2882 	struct policydb *policydb = &policy->policydb;
2883 	struct sidtab *sidtab = policy->sidtab;
2884 	int len;
2885 	u16 sclass;
2886 	struct genfs *genfs;
2887 	struct ocontext *c;
2888 	int cmp = 0;
2889 
2890 	while (path[0] == '/' && path[1] == '/')
2891 		path++;
2892 
2893 	sclass = unmap_class(&policy->map, orig_sclass);
2894 	*sid = SECINITSID_UNLABELED;
2895 
2896 	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2897 		cmp = strcmp(fstype, genfs->fstype);
2898 		if (cmp <= 0)
2899 			break;
2900 	}
2901 
2902 	if (!genfs || cmp)
2903 		return -ENOENT;
2904 
2905 	for (c = genfs->head; c; c = c->next) {
2906 		len = strlen(c->u.name);
2907 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2908 		    (strncmp(c->u.name, path, len) == 0))
2909 			break;
2910 	}
2911 
2912 	if (!c)
2913 		return -ENOENT;
2914 
2915 	return ocontext_to_sid(sidtab, c, 0, sid);
2916 }
2917 
2918 /**
2919  * security_genfs_sid - Obtain a SID for a file in a filesystem
2920  * @state: SELinux state
2921  * @fstype: filesystem type
2922  * @path: path from root of mount
2923  * @orig_sclass: file security class
2924  * @sid: SID for path
2925  *
2926  * Acquire policy_rwlock before calling __security_genfs_sid() and release
2927  * it afterward.
2928  */
2929 int security_genfs_sid(struct selinux_state *state,
2930 		       const char *fstype,
2931 		       char *path,
2932 		       u16 orig_sclass,
2933 		       u32 *sid)
2934 {
2935 	struct selinux_policy *policy;
2936 	int retval;
2937 
2938 	if (!selinux_initialized(state)) {
2939 		*sid = SECINITSID_UNLABELED;
2940 		return 0;
2941 	}
2942 
2943 	do {
2944 		rcu_read_lock();
2945 		policy = rcu_dereference(state->policy);
2946 		retval = __security_genfs_sid(policy, fstype, path,
2947 					      orig_sclass, sid);
2948 		rcu_read_unlock();
2949 	} while (retval == -ESTALE);
2950 	return retval;
2951 }
2952 
2953 int selinux_policy_genfs_sid(struct selinux_policy *policy,
2954 			const char *fstype,
2955 			char *path,
2956 			u16 orig_sclass,
2957 			u32 *sid)
2958 {
2959 	/* no lock required, policy is not yet accessible by other threads */
2960 	return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2961 }
2962 
2963 /**
2964  * security_fs_use - Determine how to handle labeling for a filesystem.
2965  * @state: SELinux state
2966  * @sb: superblock in question
2967  */
2968 int security_fs_use(struct selinux_state *state, struct super_block *sb)
2969 {
2970 	struct selinux_policy *policy;
2971 	struct policydb *policydb;
2972 	struct sidtab *sidtab;
2973 	int rc;
2974 	struct ocontext *c;
2975 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2976 	const char *fstype = sb->s_type->name;
2977 
2978 	if (!selinux_initialized(state)) {
2979 		sbsec->behavior = SECURITY_FS_USE_NONE;
2980 		sbsec->sid = SECINITSID_UNLABELED;
2981 		return 0;
2982 	}
2983 
2984 retry:
2985 	rc = 0;
2986 	rcu_read_lock();
2987 	policy = rcu_dereference(state->policy);
2988 	policydb = &policy->policydb;
2989 	sidtab = policy->sidtab;
2990 
2991 	c = policydb->ocontexts[OCON_FSUSE];
2992 	while (c) {
2993 		if (strcmp(fstype, c->u.name) == 0)
2994 			break;
2995 		c = c->next;
2996 	}
2997 
2998 	if (c) {
2999 		sbsec->behavior = c->v.behavior;
3000 		rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
3001 		if (rc == -ESTALE) {
3002 			rcu_read_unlock();
3003 			goto retry;
3004 		}
3005 		if (rc)
3006 			goto out;
3007 	} else {
3008 		rc = __security_genfs_sid(policy, fstype, "/",
3009 					SECCLASS_DIR, &sbsec->sid);
3010 		if (rc == -ESTALE) {
3011 			rcu_read_unlock();
3012 			goto retry;
3013 		}
3014 		if (rc) {
3015 			sbsec->behavior = SECURITY_FS_USE_NONE;
3016 			rc = 0;
3017 		} else {
3018 			sbsec->behavior = SECURITY_FS_USE_GENFS;
3019 		}
3020 	}
3021 
3022 out:
3023 	rcu_read_unlock();
3024 	return rc;
3025 }
3026 
3027 int security_get_bools(struct selinux_policy *policy,
3028 		       u32 *len, char ***names, int **values)
3029 {
3030 	struct policydb *policydb;
3031 	u32 i;
3032 	int rc;
3033 
3034 	policydb = &policy->policydb;
3035 
3036 	*names = NULL;
3037 	*values = NULL;
3038 
3039 	rc = 0;
3040 	*len = policydb->p_bools.nprim;
3041 	if (!*len)
3042 		goto out;
3043 
3044 	rc = -ENOMEM;
3045 	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
3046 	if (!*names)
3047 		goto err;
3048 
3049 	rc = -ENOMEM;
3050 	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
3051 	if (!*values)
3052 		goto err;
3053 
3054 	for (i = 0; i < *len; i++) {
3055 		(*values)[i] = policydb->bool_val_to_struct[i]->state;
3056 
3057 		rc = -ENOMEM;
3058 		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3059 				      GFP_ATOMIC);
3060 		if (!(*names)[i])
3061 			goto err;
3062 	}
3063 	rc = 0;
3064 out:
3065 	return rc;
3066 err:
3067 	if (*names) {
3068 		for (i = 0; i < *len; i++)
3069 			kfree((*names)[i]);
3070 		kfree(*names);
3071 	}
3072 	kfree(*values);
3073 	*len = 0;
3074 	*names = NULL;
3075 	*values = NULL;
3076 	goto out;
3077 }
3078 
3079 
3080 int security_set_bools(struct selinux_state *state, u32 len, int *values)
3081 {
3082 	struct selinux_policy *newpolicy, *oldpolicy;
3083 	int rc;
3084 	u32 i, seqno = 0;
3085 
3086 	if (!selinux_initialized(state))
3087 		return -EINVAL;
3088 
3089 	oldpolicy = rcu_dereference_protected(state->policy,
3090 					lockdep_is_held(&state->policy_mutex));
3091 
3092 	/* Consistency check on number of booleans, should never fail */
3093 	if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3094 		return -EINVAL;
3095 
3096 	newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3097 	if (!newpolicy)
3098 		return -ENOMEM;
3099 
3100 	/*
3101 	 * Deep copy only the parts of the policydb that might be
3102 	 * modified as a result of changing booleans.
3103 	 */
3104 	rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3105 	if (rc) {
3106 		kfree(newpolicy);
3107 		return -ENOMEM;
3108 	}
3109 
3110 	/* Update the boolean states in the copy */
3111 	for (i = 0; i < len; i++) {
3112 		int new_state = !!values[i];
3113 		int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3114 
3115 		if (new_state != old_state) {
3116 			audit_log(audit_context(), GFP_ATOMIC,
3117 				AUDIT_MAC_CONFIG_CHANGE,
3118 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
3119 				sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3120 				new_state,
3121 				old_state,
3122 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
3123 				audit_get_sessionid(current));
3124 			newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3125 		}
3126 	}
3127 
3128 	/* Re-evaluate the conditional rules in the copy */
3129 	evaluate_cond_nodes(&newpolicy->policydb);
3130 
3131 	/* Set latest granting seqno for new policy */
3132 	newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3133 	seqno = newpolicy->latest_granting;
3134 
3135 	/* Install the new policy */
3136 	rcu_assign_pointer(state->policy, newpolicy);
3137 
3138 	/*
3139 	 * Free the conditional portions of the old policydb
3140 	 * that were copied for the new policy, and the oldpolicy
3141 	 * structure itself but not what it references.
3142 	 */
3143 	synchronize_rcu();
3144 	selinux_policy_cond_free(oldpolicy);
3145 
3146 	/* Notify others of the policy change */
3147 	selinux_notify_policy_change(state, seqno);
3148 	return 0;
3149 }
3150 
3151 int security_get_bool_value(struct selinux_state *state,
3152 			    u32 index)
3153 {
3154 	struct selinux_policy *policy;
3155 	struct policydb *policydb;
3156 	int rc;
3157 	u32 len;
3158 
3159 	if (!selinux_initialized(state))
3160 		return 0;
3161 
3162 	rcu_read_lock();
3163 	policy = rcu_dereference(state->policy);
3164 	policydb = &policy->policydb;
3165 
3166 	rc = -EFAULT;
3167 	len = policydb->p_bools.nprim;
3168 	if (index >= len)
3169 		goto out;
3170 
3171 	rc = policydb->bool_val_to_struct[index]->state;
3172 out:
3173 	rcu_read_unlock();
3174 	return rc;
3175 }
3176 
3177 static int security_preserve_bools(struct selinux_policy *oldpolicy,
3178 				struct selinux_policy *newpolicy)
3179 {
3180 	int rc, *bvalues = NULL;
3181 	char **bnames = NULL;
3182 	struct cond_bool_datum *booldatum;
3183 	u32 i, nbools = 0;
3184 
3185 	rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3186 	if (rc)
3187 		goto out;
3188 	for (i = 0; i < nbools; i++) {
3189 		booldatum = symtab_search(&newpolicy->policydb.p_bools,
3190 					bnames[i]);
3191 		if (booldatum)
3192 			booldatum->state = bvalues[i];
3193 	}
3194 	evaluate_cond_nodes(&newpolicy->policydb);
3195 
3196 out:
3197 	if (bnames) {
3198 		for (i = 0; i < nbools; i++)
3199 			kfree(bnames[i]);
3200 	}
3201 	kfree(bnames);
3202 	kfree(bvalues);
3203 	return rc;
3204 }
3205 
3206 /*
3207  * security_sid_mls_copy() - computes a new sid based on the given
3208  * sid and the mls portion of mls_sid.
3209  */
3210 int security_sid_mls_copy(struct selinux_state *state,
3211 			  u32 sid, u32 mls_sid, u32 *new_sid)
3212 {
3213 	struct selinux_policy *policy;
3214 	struct policydb *policydb;
3215 	struct sidtab *sidtab;
3216 	struct context *context1;
3217 	struct context *context2;
3218 	struct context newcon;
3219 	char *s;
3220 	u32 len;
3221 	int rc;
3222 
3223 	if (!selinux_initialized(state)) {
3224 		*new_sid = sid;
3225 		return 0;
3226 	}
3227 
3228 retry:
3229 	rc = 0;
3230 	context_init(&newcon);
3231 
3232 	rcu_read_lock();
3233 	policy = rcu_dereference(state->policy);
3234 	policydb = &policy->policydb;
3235 	sidtab = policy->sidtab;
3236 
3237 	if (!policydb->mls_enabled) {
3238 		*new_sid = sid;
3239 		goto out_unlock;
3240 	}
3241 
3242 	rc = -EINVAL;
3243 	context1 = sidtab_search(sidtab, sid);
3244 	if (!context1) {
3245 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3246 			__func__, sid);
3247 		goto out_unlock;
3248 	}
3249 
3250 	rc = -EINVAL;
3251 	context2 = sidtab_search(sidtab, mls_sid);
3252 	if (!context2) {
3253 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3254 			__func__, mls_sid);
3255 		goto out_unlock;
3256 	}
3257 
3258 	newcon.user = context1->user;
3259 	newcon.role = context1->role;
3260 	newcon.type = context1->type;
3261 	rc = mls_context_cpy(&newcon, context2);
3262 	if (rc)
3263 		goto out_unlock;
3264 
3265 	/* Check the validity of the new context. */
3266 	if (!policydb_context_isvalid(policydb, &newcon)) {
3267 		rc = convert_context_handle_invalid_context(state, policydb,
3268 							&newcon);
3269 		if (rc) {
3270 			if (!context_struct_to_string(policydb, &newcon, &s,
3271 						      &len)) {
3272 				struct audit_buffer *ab;
3273 
3274 				ab = audit_log_start(audit_context(),
3275 						     GFP_ATOMIC,
3276 						     AUDIT_SELINUX_ERR);
3277 				audit_log_format(ab,
3278 						 "op=security_sid_mls_copy invalid_context=");
3279 				/* don't record NUL with untrusted strings */
3280 				audit_log_n_untrustedstring(ab, s, len - 1);
3281 				audit_log_end(ab);
3282 				kfree(s);
3283 			}
3284 			goto out_unlock;
3285 		}
3286 	}
3287 	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3288 	if (rc == -ESTALE) {
3289 		rcu_read_unlock();
3290 		context_destroy(&newcon);
3291 		goto retry;
3292 	}
3293 out_unlock:
3294 	rcu_read_unlock();
3295 	context_destroy(&newcon);
3296 	return rc;
3297 }
3298 
3299 /**
3300  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3301  * @state: SELinux state
3302  * @nlbl_sid: NetLabel SID
3303  * @nlbl_type: NetLabel labeling protocol type
3304  * @xfrm_sid: XFRM SID
3305  * @peer_sid: network peer sid
3306  *
3307  * Description:
3308  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3309  * resolved into a single SID it is returned via @peer_sid and the function
3310  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3311  * returns a negative value.  A table summarizing the behavior is below:
3312  *
3313  *                                 | function return |      @sid
3314  *   ------------------------------+-----------------+-----------------
3315  *   no peer labels                |        0        |    SECSID_NULL
3316  *   single peer label             |        0        |    <peer_label>
3317  *   multiple, consistent labels   |        0        |    <peer_label>
3318  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3319  *
3320  */
3321 int security_net_peersid_resolve(struct selinux_state *state,
3322 				 u32 nlbl_sid, u32 nlbl_type,
3323 				 u32 xfrm_sid,
3324 				 u32 *peer_sid)
3325 {
3326 	struct selinux_policy *policy;
3327 	struct policydb *policydb;
3328 	struct sidtab *sidtab;
3329 	int rc;
3330 	struct context *nlbl_ctx;
3331 	struct context *xfrm_ctx;
3332 
3333 	*peer_sid = SECSID_NULL;
3334 
3335 	/* handle the common (which also happens to be the set of easy) cases
3336 	 * right away, these two if statements catch everything involving a
3337 	 * single or absent peer SID/label */
3338 	if (xfrm_sid == SECSID_NULL) {
3339 		*peer_sid = nlbl_sid;
3340 		return 0;
3341 	}
3342 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3343 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3344 	 * is present */
3345 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3346 		*peer_sid = xfrm_sid;
3347 		return 0;
3348 	}
3349 
3350 	if (!selinux_initialized(state))
3351 		return 0;
3352 
3353 	rcu_read_lock();
3354 	policy = rcu_dereference(state->policy);
3355 	policydb = &policy->policydb;
3356 	sidtab = policy->sidtab;
3357 
3358 	/*
3359 	 * We don't need to check initialized here since the only way both
3360 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3361 	 * security server was initialized and state->initialized was true.
3362 	 */
3363 	if (!policydb->mls_enabled) {
3364 		rc = 0;
3365 		goto out;
3366 	}
3367 
3368 	rc = -EINVAL;
3369 	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3370 	if (!nlbl_ctx) {
3371 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3372 		       __func__, nlbl_sid);
3373 		goto out;
3374 	}
3375 	rc = -EINVAL;
3376 	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3377 	if (!xfrm_ctx) {
3378 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3379 		       __func__, xfrm_sid);
3380 		goto out;
3381 	}
3382 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3383 	if (rc)
3384 		goto out;
3385 
3386 	/* at present NetLabel SIDs/labels really only carry MLS
3387 	 * information so if the MLS portion of the NetLabel SID
3388 	 * matches the MLS portion of the labeled XFRM SID/label
3389 	 * then pass along the XFRM SID as it is the most
3390 	 * expressive */
3391 	*peer_sid = xfrm_sid;
3392 out:
3393 	rcu_read_unlock();
3394 	return rc;
3395 }
3396 
3397 static int get_classes_callback(void *k, void *d, void *args)
3398 {
3399 	struct class_datum *datum = d;
3400 	char *name = k, **classes = args;
3401 	int value = datum->value - 1;
3402 
3403 	classes[value] = kstrdup(name, GFP_ATOMIC);
3404 	if (!classes[value])
3405 		return -ENOMEM;
3406 
3407 	return 0;
3408 }
3409 
3410 int security_get_classes(struct selinux_policy *policy,
3411 			 char ***classes, int *nclasses)
3412 {
3413 	struct policydb *policydb;
3414 	int rc;
3415 
3416 	policydb = &policy->policydb;
3417 
3418 	rc = -ENOMEM;
3419 	*nclasses = policydb->p_classes.nprim;
3420 	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3421 	if (!*classes)
3422 		goto out;
3423 
3424 	rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3425 			 *classes);
3426 	if (rc) {
3427 		int i;
3428 		for (i = 0; i < *nclasses; i++)
3429 			kfree((*classes)[i]);
3430 		kfree(*classes);
3431 	}
3432 
3433 out:
3434 	return rc;
3435 }
3436 
3437 static int get_permissions_callback(void *k, void *d, void *args)
3438 {
3439 	struct perm_datum *datum = d;
3440 	char *name = k, **perms = args;
3441 	int value = datum->value - 1;
3442 
3443 	perms[value] = kstrdup(name, GFP_ATOMIC);
3444 	if (!perms[value])
3445 		return -ENOMEM;
3446 
3447 	return 0;
3448 }
3449 
3450 int security_get_permissions(struct selinux_policy *policy,
3451 			     char *class, char ***perms, int *nperms)
3452 {
3453 	struct policydb *policydb;
3454 	int rc, i;
3455 	struct class_datum *match;
3456 
3457 	policydb = &policy->policydb;
3458 
3459 	rc = -EINVAL;
3460 	match = symtab_search(&policydb->p_classes, class);
3461 	if (!match) {
3462 		pr_err("SELinux: %s:  unrecognized class %s\n",
3463 			__func__, class);
3464 		goto out;
3465 	}
3466 
3467 	rc = -ENOMEM;
3468 	*nperms = match->permissions.nprim;
3469 	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3470 	if (!*perms)
3471 		goto out;
3472 
3473 	if (match->comdatum) {
3474 		rc = hashtab_map(&match->comdatum->permissions.table,
3475 				 get_permissions_callback, *perms);
3476 		if (rc)
3477 			goto err;
3478 	}
3479 
3480 	rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3481 			 *perms);
3482 	if (rc)
3483 		goto err;
3484 
3485 out:
3486 	return rc;
3487 
3488 err:
3489 	for (i = 0; i < *nperms; i++)
3490 		kfree((*perms)[i]);
3491 	kfree(*perms);
3492 	return rc;
3493 }
3494 
3495 int security_get_reject_unknown(struct selinux_state *state)
3496 {
3497 	struct selinux_policy *policy;
3498 	int value;
3499 
3500 	if (!selinux_initialized(state))
3501 		return 0;
3502 
3503 	rcu_read_lock();
3504 	policy = rcu_dereference(state->policy);
3505 	value = policy->policydb.reject_unknown;
3506 	rcu_read_unlock();
3507 	return value;
3508 }
3509 
3510 int security_get_allow_unknown(struct selinux_state *state)
3511 {
3512 	struct selinux_policy *policy;
3513 	int value;
3514 
3515 	if (!selinux_initialized(state))
3516 		return 0;
3517 
3518 	rcu_read_lock();
3519 	policy = rcu_dereference(state->policy);
3520 	value = policy->policydb.allow_unknown;
3521 	rcu_read_unlock();
3522 	return value;
3523 }
3524 
3525 /**
3526  * security_policycap_supported - Check for a specific policy capability
3527  * @state: SELinux state
3528  * @req_cap: capability
3529  *
3530  * Description:
3531  * This function queries the currently loaded policy to see if it supports the
3532  * capability specified by @req_cap.  Returns true (1) if the capability is
3533  * supported, false (0) if it isn't supported.
3534  *
3535  */
3536 int security_policycap_supported(struct selinux_state *state,
3537 				 unsigned int req_cap)
3538 {
3539 	struct selinux_policy *policy;
3540 	int rc;
3541 
3542 	if (!selinux_initialized(state))
3543 		return 0;
3544 
3545 	rcu_read_lock();
3546 	policy = rcu_dereference(state->policy);
3547 	rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3548 	rcu_read_unlock();
3549 
3550 	return rc;
3551 }
3552 
3553 struct selinux_audit_rule {
3554 	u32 au_seqno;
3555 	struct context au_ctxt;
3556 };
3557 
3558 void selinux_audit_rule_free(void *vrule)
3559 {
3560 	struct selinux_audit_rule *rule = vrule;
3561 
3562 	if (rule) {
3563 		context_destroy(&rule->au_ctxt);
3564 		kfree(rule);
3565 	}
3566 }
3567 
3568 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3569 {
3570 	struct selinux_state *state = &selinux_state;
3571 	struct selinux_policy *policy;
3572 	struct policydb *policydb;
3573 	struct selinux_audit_rule *tmprule;
3574 	struct role_datum *roledatum;
3575 	struct type_datum *typedatum;
3576 	struct user_datum *userdatum;
3577 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3578 	int rc = 0;
3579 
3580 	*rule = NULL;
3581 
3582 	if (!selinux_initialized(state))
3583 		return -EOPNOTSUPP;
3584 
3585 	switch (field) {
3586 	case AUDIT_SUBJ_USER:
3587 	case AUDIT_SUBJ_ROLE:
3588 	case AUDIT_SUBJ_TYPE:
3589 	case AUDIT_OBJ_USER:
3590 	case AUDIT_OBJ_ROLE:
3591 	case AUDIT_OBJ_TYPE:
3592 		/* only 'equals' and 'not equals' fit user, role, and type */
3593 		if (op != Audit_equal && op != Audit_not_equal)
3594 			return -EINVAL;
3595 		break;
3596 	case AUDIT_SUBJ_SEN:
3597 	case AUDIT_SUBJ_CLR:
3598 	case AUDIT_OBJ_LEV_LOW:
3599 	case AUDIT_OBJ_LEV_HIGH:
3600 		/* we do not allow a range, indicated by the presence of '-' */
3601 		if (strchr(rulestr, '-'))
3602 			return -EINVAL;
3603 		break;
3604 	default:
3605 		/* only the above fields are valid */
3606 		return -EINVAL;
3607 	}
3608 
3609 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3610 	if (!tmprule)
3611 		return -ENOMEM;
3612 
3613 	context_init(&tmprule->au_ctxt);
3614 
3615 	rcu_read_lock();
3616 	policy = rcu_dereference(state->policy);
3617 	policydb = &policy->policydb;
3618 
3619 	tmprule->au_seqno = policy->latest_granting;
3620 
3621 	switch (field) {
3622 	case AUDIT_SUBJ_USER:
3623 	case AUDIT_OBJ_USER:
3624 		rc = -EINVAL;
3625 		userdatum = symtab_search(&policydb->p_users, rulestr);
3626 		if (!userdatum)
3627 			goto out;
3628 		tmprule->au_ctxt.user = userdatum->value;
3629 		break;
3630 	case AUDIT_SUBJ_ROLE:
3631 	case AUDIT_OBJ_ROLE:
3632 		rc = -EINVAL;
3633 		roledatum = symtab_search(&policydb->p_roles, rulestr);
3634 		if (!roledatum)
3635 			goto out;
3636 		tmprule->au_ctxt.role = roledatum->value;
3637 		break;
3638 	case AUDIT_SUBJ_TYPE:
3639 	case AUDIT_OBJ_TYPE:
3640 		rc = -EINVAL;
3641 		typedatum = symtab_search(&policydb->p_types, rulestr);
3642 		if (!typedatum)
3643 			goto out;
3644 		tmprule->au_ctxt.type = typedatum->value;
3645 		break;
3646 	case AUDIT_SUBJ_SEN:
3647 	case AUDIT_SUBJ_CLR:
3648 	case AUDIT_OBJ_LEV_LOW:
3649 	case AUDIT_OBJ_LEV_HIGH:
3650 		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3651 				     GFP_ATOMIC);
3652 		if (rc)
3653 			goto out;
3654 		break;
3655 	}
3656 	rc = 0;
3657 out:
3658 	rcu_read_unlock();
3659 
3660 	if (rc) {
3661 		selinux_audit_rule_free(tmprule);
3662 		tmprule = NULL;
3663 	}
3664 
3665 	*rule = tmprule;
3666 
3667 	return rc;
3668 }
3669 
3670 /* Check to see if the rule contains any selinux fields */
3671 int selinux_audit_rule_known(struct audit_krule *rule)
3672 {
3673 	int i;
3674 
3675 	for (i = 0; i < rule->field_count; i++) {
3676 		struct audit_field *f = &rule->fields[i];
3677 		switch (f->type) {
3678 		case AUDIT_SUBJ_USER:
3679 		case AUDIT_SUBJ_ROLE:
3680 		case AUDIT_SUBJ_TYPE:
3681 		case AUDIT_SUBJ_SEN:
3682 		case AUDIT_SUBJ_CLR:
3683 		case AUDIT_OBJ_USER:
3684 		case AUDIT_OBJ_ROLE:
3685 		case AUDIT_OBJ_TYPE:
3686 		case AUDIT_OBJ_LEV_LOW:
3687 		case AUDIT_OBJ_LEV_HIGH:
3688 			return 1;
3689 		}
3690 	}
3691 
3692 	return 0;
3693 }
3694 
3695 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3696 {
3697 	struct selinux_state *state = &selinux_state;
3698 	struct selinux_policy *policy;
3699 	struct context *ctxt;
3700 	struct mls_level *level;
3701 	struct selinux_audit_rule *rule = vrule;
3702 	int match = 0;
3703 
3704 	if (unlikely(!rule)) {
3705 		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3706 		return -ENOENT;
3707 	}
3708 
3709 	if (!selinux_initialized(state))
3710 		return 0;
3711 
3712 	rcu_read_lock();
3713 
3714 	policy = rcu_dereference(state->policy);
3715 
3716 	if (rule->au_seqno < policy->latest_granting) {
3717 		match = -ESTALE;
3718 		goto out;
3719 	}
3720 
3721 	ctxt = sidtab_search(policy->sidtab, sid);
3722 	if (unlikely(!ctxt)) {
3723 		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3724 			  sid);
3725 		match = -ENOENT;
3726 		goto out;
3727 	}
3728 
3729 	/* a field/op pair that is not caught here will simply fall through
3730 	   without a match */
3731 	switch (field) {
3732 	case AUDIT_SUBJ_USER:
3733 	case AUDIT_OBJ_USER:
3734 		switch (op) {
3735 		case Audit_equal:
3736 			match = (ctxt->user == rule->au_ctxt.user);
3737 			break;
3738 		case Audit_not_equal:
3739 			match = (ctxt->user != rule->au_ctxt.user);
3740 			break;
3741 		}
3742 		break;
3743 	case AUDIT_SUBJ_ROLE:
3744 	case AUDIT_OBJ_ROLE:
3745 		switch (op) {
3746 		case Audit_equal:
3747 			match = (ctxt->role == rule->au_ctxt.role);
3748 			break;
3749 		case Audit_not_equal:
3750 			match = (ctxt->role != rule->au_ctxt.role);
3751 			break;
3752 		}
3753 		break;
3754 	case AUDIT_SUBJ_TYPE:
3755 	case AUDIT_OBJ_TYPE:
3756 		switch (op) {
3757 		case Audit_equal:
3758 			match = (ctxt->type == rule->au_ctxt.type);
3759 			break;
3760 		case Audit_not_equal:
3761 			match = (ctxt->type != rule->au_ctxt.type);
3762 			break;
3763 		}
3764 		break;
3765 	case AUDIT_SUBJ_SEN:
3766 	case AUDIT_SUBJ_CLR:
3767 	case AUDIT_OBJ_LEV_LOW:
3768 	case AUDIT_OBJ_LEV_HIGH:
3769 		level = ((field == AUDIT_SUBJ_SEN ||
3770 			  field == AUDIT_OBJ_LEV_LOW) ?
3771 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3772 		switch (op) {
3773 		case Audit_equal:
3774 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3775 					     level);
3776 			break;
3777 		case Audit_not_equal:
3778 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3779 					      level);
3780 			break;
3781 		case Audit_lt:
3782 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3783 					       level) &&
3784 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3785 					       level));
3786 			break;
3787 		case Audit_le:
3788 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3789 					      level);
3790 			break;
3791 		case Audit_gt:
3792 			match = (mls_level_dom(level,
3793 					      &rule->au_ctxt.range.level[0]) &&
3794 				 !mls_level_eq(level,
3795 					       &rule->au_ctxt.range.level[0]));
3796 			break;
3797 		case Audit_ge:
3798 			match = mls_level_dom(level,
3799 					      &rule->au_ctxt.range.level[0]);
3800 			break;
3801 		}
3802 	}
3803 
3804 out:
3805 	rcu_read_unlock();
3806 	return match;
3807 }
3808 
3809 static int aurule_avc_callback(u32 event)
3810 {
3811 	if (event == AVC_CALLBACK_RESET)
3812 		return audit_update_lsm_rules();
3813 	return 0;
3814 }
3815 
3816 static int __init aurule_init(void)
3817 {
3818 	int err;
3819 
3820 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3821 	if (err)
3822 		panic("avc_add_callback() failed, error %d\n", err);
3823 
3824 	return err;
3825 }
3826 __initcall(aurule_init);
3827 
3828 #ifdef CONFIG_NETLABEL
3829 /**
3830  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3831  * @secattr: the NetLabel packet security attributes
3832  * @sid: the SELinux SID
3833  *
3834  * Description:
3835  * Attempt to cache the context in @ctx, which was derived from the packet in
3836  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3837  * already been initialized.
3838  *
3839  */
3840 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3841 				      u32 sid)
3842 {
3843 	u32 *sid_cache;
3844 
3845 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3846 	if (sid_cache == NULL)
3847 		return;
3848 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3849 	if (secattr->cache == NULL) {
3850 		kfree(sid_cache);
3851 		return;
3852 	}
3853 
3854 	*sid_cache = sid;
3855 	secattr->cache->free = kfree;
3856 	secattr->cache->data = sid_cache;
3857 	secattr->flags |= NETLBL_SECATTR_CACHE;
3858 }
3859 
3860 /**
3861  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3862  * @state: SELinux state
3863  * @secattr: the NetLabel packet security attributes
3864  * @sid: the SELinux SID
3865  *
3866  * Description:
3867  * Convert the given NetLabel security attributes in @secattr into a
3868  * SELinux SID.  If the @secattr field does not contain a full SELinux
3869  * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3870  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3871  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3872  * conversion for future lookups.  Returns zero on success, negative values on
3873  * failure.
3874  *
3875  */
3876 int security_netlbl_secattr_to_sid(struct selinux_state *state,
3877 				   struct netlbl_lsm_secattr *secattr,
3878 				   u32 *sid)
3879 {
3880 	struct selinux_policy *policy;
3881 	struct policydb *policydb;
3882 	struct sidtab *sidtab;
3883 	int rc;
3884 	struct context *ctx;
3885 	struct context ctx_new;
3886 
3887 	if (!selinux_initialized(state)) {
3888 		*sid = SECSID_NULL;
3889 		return 0;
3890 	}
3891 
3892 retry:
3893 	rc = 0;
3894 	rcu_read_lock();
3895 	policy = rcu_dereference(state->policy);
3896 	policydb = &policy->policydb;
3897 	sidtab = policy->sidtab;
3898 
3899 	if (secattr->flags & NETLBL_SECATTR_CACHE)
3900 		*sid = *(u32 *)secattr->cache->data;
3901 	else if (secattr->flags & NETLBL_SECATTR_SECID)
3902 		*sid = secattr->attr.secid;
3903 	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3904 		rc = -EIDRM;
3905 		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3906 		if (ctx == NULL)
3907 			goto out;
3908 
3909 		context_init(&ctx_new);
3910 		ctx_new.user = ctx->user;
3911 		ctx_new.role = ctx->role;
3912 		ctx_new.type = ctx->type;
3913 		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3914 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3915 			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3916 			if (rc)
3917 				goto out;
3918 		}
3919 		rc = -EIDRM;
3920 		if (!mls_context_isvalid(policydb, &ctx_new)) {
3921 			ebitmap_destroy(&ctx_new.range.level[0].cat);
3922 			goto out;
3923 		}
3924 
3925 		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3926 		ebitmap_destroy(&ctx_new.range.level[0].cat);
3927 		if (rc == -ESTALE) {
3928 			rcu_read_unlock();
3929 			goto retry;
3930 		}
3931 		if (rc)
3932 			goto out;
3933 
3934 		security_netlbl_cache_add(secattr, *sid);
3935 	} else
3936 		*sid = SECSID_NULL;
3937 
3938 out:
3939 	rcu_read_unlock();
3940 	return rc;
3941 }
3942 
3943 /**
3944  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3945  * @state: SELinux state
3946  * @sid: the SELinux SID
3947  * @secattr: the NetLabel packet security attributes
3948  *
3949  * Description:
3950  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3951  * Returns zero on success, negative values on failure.
3952  *
3953  */
3954 int security_netlbl_sid_to_secattr(struct selinux_state *state,
3955 				   u32 sid, struct netlbl_lsm_secattr *secattr)
3956 {
3957 	struct selinux_policy *policy;
3958 	struct policydb *policydb;
3959 	int rc;
3960 	struct context *ctx;
3961 
3962 	if (!selinux_initialized(state))
3963 		return 0;
3964 
3965 	rcu_read_lock();
3966 	policy = rcu_dereference(state->policy);
3967 	policydb = &policy->policydb;
3968 
3969 	rc = -ENOENT;
3970 	ctx = sidtab_search(policy->sidtab, sid);
3971 	if (ctx == NULL)
3972 		goto out;
3973 
3974 	rc = -ENOMEM;
3975 	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3976 				  GFP_ATOMIC);
3977 	if (secattr->domain == NULL)
3978 		goto out;
3979 
3980 	secattr->attr.secid = sid;
3981 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3982 	mls_export_netlbl_lvl(policydb, ctx, secattr);
3983 	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3984 out:
3985 	rcu_read_unlock();
3986 	return rc;
3987 }
3988 #endif /* CONFIG_NETLABEL */
3989 
3990 /**
3991  * __security_read_policy - read the policy.
3992  * @policy: SELinux policy
3993  * @data: binary policy data
3994  * @len: length of data in bytes
3995  *
3996  */
3997 static int __security_read_policy(struct selinux_policy *policy,
3998 				  void *data, size_t *len)
3999 {
4000 	int rc;
4001 	struct policy_file fp;
4002 
4003 	fp.data = data;
4004 	fp.len = *len;
4005 
4006 	rc = policydb_write(&policy->policydb, &fp);
4007 	if (rc)
4008 		return rc;
4009 
4010 	*len = (unsigned long)fp.data - (unsigned long)data;
4011 	return 0;
4012 }
4013 
4014 /**
4015  * security_read_policy - read the policy.
4016  * @state: selinux_state
4017  * @data: binary policy data
4018  * @len: length of data in bytes
4019  *
4020  */
4021 int security_read_policy(struct selinux_state *state,
4022 			 void **data, size_t *len)
4023 {
4024 	struct selinux_policy *policy;
4025 
4026 	policy = rcu_dereference_protected(
4027 			state->policy, lockdep_is_held(&state->policy_mutex));
4028 	if (!policy)
4029 		return -EINVAL;
4030 
4031 	*len = policy->policydb.len;
4032 	*data = vmalloc_user(*len);
4033 	if (!*data)
4034 		return -ENOMEM;
4035 
4036 	return __security_read_policy(policy, *data, len);
4037 }
4038 
4039 /**
4040  * security_read_state_kernel - read the policy.
4041  * @state: selinux_state
4042  * @data: binary policy data
4043  * @len: length of data in bytes
4044  *
4045  * Allocates kernel memory for reading SELinux policy.
4046  * This function is for internal use only and should not
4047  * be used for returning data to user space.
4048  *
4049  * This function must be called with policy_mutex held.
4050  */
4051 int security_read_state_kernel(struct selinux_state *state,
4052 			       void **data, size_t *len)
4053 {
4054 	struct selinux_policy *policy;
4055 
4056 	policy = rcu_dereference_protected(
4057 			state->policy, lockdep_is_held(&state->policy_mutex));
4058 	if (!policy)
4059 		return -EINVAL;
4060 
4061 	*len = policy->policydb.len;
4062 	*data = vmalloc(*len);
4063 	if (!*data)
4064 		return -ENOMEM;
4065 
4066 	return __security_read_policy(policy, *data, len);
4067 }
4068