xref: /openbmc/linux/security/selinux/ss/services.c (revision 8cb5d748)
1 /*
2  * Implementation of the security services.
3  *
4  * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
5  *	     James Morris <jmorris@redhat.com>
6  *
7  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8  *
9  *	Support for enhanced MLS infrastructure.
10  *	Support for context based audit filters.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *	Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul@paul-moore.com>
17  *
18  *      Added support for NetLabel
19  *      Added support for the policy capability bitmap
20  *
21  * Updated: Chad Sellers <csellers@tresys.com>
22  *
23  *  Added validation of kernel classes and permissions
24  *
25  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
26  *
27  *  Added support for bounds domain and audit messaged on masked permissions
28  *
29  * Updated: Guido Trentalancia <guido@trentalancia.com>
30  *
31  *  Added support for runtime switching of the policy type
32  *
33  * Copyright (C) 2008, 2009 NEC Corporation
34  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38  *	This program is free software; you can redistribute it and/or modify
39  *	it under the terms of the GNU General Public License as published by
40  *	the Free Software Foundation, version 2.
41  */
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/errno.h>
48 #include <linux/in.h>
49 #include <linux/sched.h>
50 #include <linux/audit.h>
51 #include <linux/mutex.h>
52 #include <linux/selinux.h>
53 #include <linux/flex_array.h>
54 #include <linux/vmalloc.h>
55 #include <net/netlabel.h>
56 
57 #include "flask.h"
58 #include "avc.h"
59 #include "avc_ss.h"
60 #include "security.h"
61 #include "context.h"
62 #include "policydb.h"
63 #include "sidtab.h"
64 #include "services.h"
65 #include "conditional.h"
66 #include "mls.h"
67 #include "objsec.h"
68 #include "netlabel.h"
69 #include "xfrm.h"
70 #include "ebitmap.h"
71 #include "audit.h"
72 
73 /* Policy capability names */
74 char *selinux_policycap_names[__POLICYDB_CAPABILITY_MAX] = {
75 	"network_peer_controls",
76 	"open_perms",
77 	"extended_socket_class",
78 	"always_check_network",
79 	"cgroup_seclabel",
80 	"nnp_nosuid_transition"
81 };
82 
83 int selinux_policycap_netpeer;
84 int selinux_policycap_openperm;
85 int selinux_policycap_extsockclass;
86 int selinux_policycap_alwaysnetwork;
87 int selinux_policycap_cgroupseclabel;
88 int selinux_policycap_nnp_nosuid_transition;
89 
90 static DEFINE_RWLOCK(policy_rwlock);
91 
92 static struct sidtab sidtab;
93 struct policydb policydb;
94 int ss_initialized;
95 
96 /*
97  * The largest sequence number that has been used when
98  * providing an access decision to the access vector cache.
99  * The sequence number only changes when a policy change
100  * occurs.
101  */
102 static u32 latest_granting;
103 
104 /* Forward declaration. */
105 static int context_struct_to_string(struct context *context, char **scontext,
106 				    u32 *scontext_len);
107 
108 static void context_struct_compute_av(struct context *scontext,
109 					struct context *tcontext,
110 					u16 tclass,
111 					struct av_decision *avd,
112 					struct extended_perms *xperms);
113 
114 struct selinux_mapping {
115 	u16 value; /* policy value */
116 	unsigned num_perms;
117 	u32 perms[sizeof(u32) * 8];
118 };
119 
120 static struct selinux_mapping *current_mapping;
121 static u16 current_mapping_size;
122 
123 static int selinux_set_mapping(struct policydb *pol,
124 			       struct security_class_mapping *map,
125 			       struct selinux_mapping **out_map_p,
126 			       u16 *out_map_size)
127 {
128 	struct selinux_mapping *out_map = NULL;
129 	size_t size = sizeof(struct selinux_mapping);
130 	u16 i, j;
131 	unsigned k;
132 	bool print_unknown_handle = false;
133 
134 	/* Find number of classes in the input mapping */
135 	if (!map)
136 		return -EINVAL;
137 	i = 0;
138 	while (map[i].name)
139 		i++;
140 
141 	/* Allocate space for the class records, plus one for class zero */
142 	out_map = kcalloc(++i, size, GFP_ATOMIC);
143 	if (!out_map)
144 		return -ENOMEM;
145 
146 	/* Store the raw class and permission values */
147 	j = 0;
148 	while (map[j].name) {
149 		struct security_class_mapping *p_in = map + (j++);
150 		struct selinux_mapping *p_out = out_map + j;
151 
152 		/* An empty class string skips ahead */
153 		if (!strcmp(p_in->name, "")) {
154 			p_out->num_perms = 0;
155 			continue;
156 		}
157 
158 		p_out->value = string_to_security_class(pol, p_in->name);
159 		if (!p_out->value) {
160 			printk(KERN_INFO
161 			       "SELinux:  Class %s not defined in policy.\n",
162 			       p_in->name);
163 			if (pol->reject_unknown)
164 				goto err;
165 			p_out->num_perms = 0;
166 			print_unknown_handle = true;
167 			continue;
168 		}
169 
170 		k = 0;
171 		while (p_in->perms[k]) {
172 			/* An empty permission string skips ahead */
173 			if (!*p_in->perms[k]) {
174 				k++;
175 				continue;
176 			}
177 			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
178 							    p_in->perms[k]);
179 			if (!p_out->perms[k]) {
180 				printk(KERN_INFO
181 				       "SELinux:  Permission %s in class %s not defined in policy.\n",
182 				       p_in->perms[k], p_in->name);
183 				if (pol->reject_unknown)
184 					goto err;
185 				print_unknown_handle = true;
186 			}
187 
188 			k++;
189 		}
190 		p_out->num_perms = k;
191 	}
192 
193 	if (print_unknown_handle)
194 		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
195 		       pol->allow_unknown ? "allowed" : "denied");
196 
197 	*out_map_p = out_map;
198 	*out_map_size = i;
199 	return 0;
200 err:
201 	kfree(out_map);
202 	return -EINVAL;
203 }
204 
205 /*
206  * Get real, policy values from mapped values
207  */
208 
209 static u16 unmap_class(u16 tclass)
210 {
211 	if (tclass < current_mapping_size)
212 		return current_mapping[tclass].value;
213 
214 	return tclass;
215 }
216 
217 /*
218  * Get kernel value for class from its policy value
219  */
220 static u16 map_class(u16 pol_value)
221 {
222 	u16 i;
223 
224 	for (i = 1; i < current_mapping_size; i++) {
225 		if (current_mapping[i].value == pol_value)
226 			return i;
227 	}
228 
229 	return SECCLASS_NULL;
230 }
231 
232 static void map_decision(u16 tclass, struct av_decision *avd,
233 			 int allow_unknown)
234 {
235 	if (tclass < current_mapping_size) {
236 		unsigned i, n = current_mapping[tclass].num_perms;
237 		u32 result;
238 
239 		for (i = 0, result = 0; i < n; i++) {
240 			if (avd->allowed & current_mapping[tclass].perms[i])
241 				result |= 1<<i;
242 			if (allow_unknown && !current_mapping[tclass].perms[i])
243 				result |= 1<<i;
244 		}
245 		avd->allowed = result;
246 
247 		for (i = 0, result = 0; i < n; i++)
248 			if (avd->auditallow & current_mapping[tclass].perms[i])
249 				result |= 1<<i;
250 		avd->auditallow = result;
251 
252 		for (i = 0, result = 0; i < n; i++) {
253 			if (avd->auditdeny & current_mapping[tclass].perms[i])
254 				result |= 1<<i;
255 			if (!allow_unknown && !current_mapping[tclass].perms[i])
256 				result |= 1<<i;
257 		}
258 		/*
259 		 * In case the kernel has a bug and requests a permission
260 		 * between num_perms and the maximum permission number, we
261 		 * should audit that denial
262 		 */
263 		for (; i < (sizeof(u32)*8); i++)
264 			result |= 1<<i;
265 		avd->auditdeny = result;
266 	}
267 }
268 
269 int security_mls_enabled(void)
270 {
271 	return policydb.mls_enabled;
272 }
273 
274 /*
275  * Return the boolean value of a constraint expression
276  * when it is applied to the specified source and target
277  * security contexts.
278  *
279  * xcontext is a special beast...  It is used by the validatetrans rules
280  * only.  For these rules, scontext is the context before the transition,
281  * tcontext is the context after the transition, and xcontext is the context
282  * of the process performing the transition.  All other callers of
283  * constraint_expr_eval should pass in NULL for xcontext.
284  */
285 static int constraint_expr_eval(struct context *scontext,
286 				struct context *tcontext,
287 				struct context *xcontext,
288 				struct constraint_expr *cexpr)
289 {
290 	u32 val1, val2;
291 	struct context *c;
292 	struct role_datum *r1, *r2;
293 	struct mls_level *l1, *l2;
294 	struct constraint_expr *e;
295 	int s[CEXPR_MAXDEPTH];
296 	int sp = -1;
297 
298 	for (e = cexpr; e; e = e->next) {
299 		switch (e->expr_type) {
300 		case CEXPR_NOT:
301 			BUG_ON(sp < 0);
302 			s[sp] = !s[sp];
303 			break;
304 		case CEXPR_AND:
305 			BUG_ON(sp < 1);
306 			sp--;
307 			s[sp] &= s[sp + 1];
308 			break;
309 		case CEXPR_OR:
310 			BUG_ON(sp < 1);
311 			sp--;
312 			s[sp] |= s[sp + 1];
313 			break;
314 		case CEXPR_ATTR:
315 			if (sp == (CEXPR_MAXDEPTH - 1))
316 				return 0;
317 			switch (e->attr) {
318 			case CEXPR_USER:
319 				val1 = scontext->user;
320 				val2 = tcontext->user;
321 				break;
322 			case CEXPR_TYPE:
323 				val1 = scontext->type;
324 				val2 = tcontext->type;
325 				break;
326 			case CEXPR_ROLE:
327 				val1 = scontext->role;
328 				val2 = tcontext->role;
329 				r1 = policydb.role_val_to_struct[val1 - 1];
330 				r2 = policydb.role_val_to_struct[val2 - 1];
331 				switch (e->op) {
332 				case CEXPR_DOM:
333 					s[++sp] = ebitmap_get_bit(&r1->dominates,
334 								  val2 - 1);
335 					continue;
336 				case CEXPR_DOMBY:
337 					s[++sp] = ebitmap_get_bit(&r2->dominates,
338 								  val1 - 1);
339 					continue;
340 				case CEXPR_INCOMP:
341 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
342 								    val2 - 1) &&
343 						   !ebitmap_get_bit(&r2->dominates,
344 								    val1 - 1));
345 					continue;
346 				default:
347 					break;
348 				}
349 				break;
350 			case CEXPR_L1L2:
351 				l1 = &(scontext->range.level[0]);
352 				l2 = &(tcontext->range.level[0]);
353 				goto mls_ops;
354 			case CEXPR_L1H2:
355 				l1 = &(scontext->range.level[0]);
356 				l2 = &(tcontext->range.level[1]);
357 				goto mls_ops;
358 			case CEXPR_H1L2:
359 				l1 = &(scontext->range.level[1]);
360 				l2 = &(tcontext->range.level[0]);
361 				goto mls_ops;
362 			case CEXPR_H1H2:
363 				l1 = &(scontext->range.level[1]);
364 				l2 = &(tcontext->range.level[1]);
365 				goto mls_ops;
366 			case CEXPR_L1H1:
367 				l1 = &(scontext->range.level[0]);
368 				l2 = &(scontext->range.level[1]);
369 				goto mls_ops;
370 			case CEXPR_L2H2:
371 				l1 = &(tcontext->range.level[0]);
372 				l2 = &(tcontext->range.level[1]);
373 				goto mls_ops;
374 mls_ops:
375 			switch (e->op) {
376 			case CEXPR_EQ:
377 				s[++sp] = mls_level_eq(l1, l2);
378 				continue;
379 			case CEXPR_NEQ:
380 				s[++sp] = !mls_level_eq(l1, l2);
381 				continue;
382 			case CEXPR_DOM:
383 				s[++sp] = mls_level_dom(l1, l2);
384 				continue;
385 			case CEXPR_DOMBY:
386 				s[++sp] = mls_level_dom(l2, l1);
387 				continue;
388 			case CEXPR_INCOMP:
389 				s[++sp] = mls_level_incomp(l2, l1);
390 				continue;
391 			default:
392 				BUG();
393 				return 0;
394 			}
395 			break;
396 			default:
397 				BUG();
398 				return 0;
399 			}
400 
401 			switch (e->op) {
402 			case CEXPR_EQ:
403 				s[++sp] = (val1 == val2);
404 				break;
405 			case CEXPR_NEQ:
406 				s[++sp] = (val1 != val2);
407 				break;
408 			default:
409 				BUG();
410 				return 0;
411 			}
412 			break;
413 		case CEXPR_NAMES:
414 			if (sp == (CEXPR_MAXDEPTH-1))
415 				return 0;
416 			c = scontext;
417 			if (e->attr & CEXPR_TARGET)
418 				c = tcontext;
419 			else if (e->attr & CEXPR_XTARGET) {
420 				c = xcontext;
421 				if (!c) {
422 					BUG();
423 					return 0;
424 				}
425 			}
426 			if (e->attr & CEXPR_USER)
427 				val1 = c->user;
428 			else if (e->attr & CEXPR_ROLE)
429 				val1 = c->role;
430 			else if (e->attr & CEXPR_TYPE)
431 				val1 = c->type;
432 			else {
433 				BUG();
434 				return 0;
435 			}
436 
437 			switch (e->op) {
438 			case CEXPR_EQ:
439 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
440 				break;
441 			case CEXPR_NEQ:
442 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
443 				break;
444 			default:
445 				BUG();
446 				return 0;
447 			}
448 			break;
449 		default:
450 			BUG();
451 			return 0;
452 		}
453 	}
454 
455 	BUG_ON(sp != 0);
456 	return s[0];
457 }
458 
459 /*
460  * security_dump_masked_av - dumps masked permissions during
461  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
462  */
463 static int dump_masked_av_helper(void *k, void *d, void *args)
464 {
465 	struct perm_datum *pdatum = d;
466 	char **permission_names = args;
467 
468 	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
469 
470 	permission_names[pdatum->value - 1] = (char *)k;
471 
472 	return 0;
473 }
474 
475 static void security_dump_masked_av(struct context *scontext,
476 				    struct context *tcontext,
477 				    u16 tclass,
478 				    u32 permissions,
479 				    const char *reason)
480 {
481 	struct common_datum *common_dat;
482 	struct class_datum *tclass_dat;
483 	struct audit_buffer *ab;
484 	char *tclass_name;
485 	char *scontext_name = NULL;
486 	char *tcontext_name = NULL;
487 	char *permission_names[32];
488 	int index;
489 	u32 length;
490 	bool need_comma = false;
491 
492 	if (!permissions)
493 		return;
494 
495 	tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
496 	tclass_dat = policydb.class_val_to_struct[tclass - 1];
497 	common_dat = tclass_dat->comdatum;
498 
499 	/* init permission_names */
500 	if (common_dat &&
501 	    hashtab_map(common_dat->permissions.table,
502 			dump_masked_av_helper, permission_names) < 0)
503 		goto out;
504 
505 	if (hashtab_map(tclass_dat->permissions.table,
506 			dump_masked_av_helper, permission_names) < 0)
507 		goto out;
508 
509 	/* get scontext/tcontext in text form */
510 	if (context_struct_to_string(scontext,
511 				     &scontext_name, &length) < 0)
512 		goto out;
513 
514 	if (context_struct_to_string(tcontext,
515 				     &tcontext_name, &length) < 0)
516 		goto out;
517 
518 	/* audit a message */
519 	ab = audit_log_start(current->audit_context,
520 			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
521 	if (!ab)
522 		goto out;
523 
524 	audit_log_format(ab, "op=security_compute_av reason=%s "
525 			 "scontext=%s tcontext=%s tclass=%s perms=",
526 			 reason, scontext_name, tcontext_name, tclass_name);
527 
528 	for (index = 0; index < 32; index++) {
529 		u32 mask = (1 << index);
530 
531 		if ((mask & permissions) == 0)
532 			continue;
533 
534 		audit_log_format(ab, "%s%s",
535 				 need_comma ? "," : "",
536 				 permission_names[index]
537 				 ? permission_names[index] : "????");
538 		need_comma = true;
539 	}
540 	audit_log_end(ab);
541 out:
542 	/* release scontext/tcontext */
543 	kfree(tcontext_name);
544 	kfree(scontext_name);
545 
546 	return;
547 }
548 
549 /*
550  * security_boundary_permission - drops violated permissions
551  * on boundary constraint.
552  */
553 static void type_attribute_bounds_av(struct context *scontext,
554 				     struct context *tcontext,
555 				     u16 tclass,
556 				     struct av_decision *avd)
557 {
558 	struct context lo_scontext;
559 	struct context lo_tcontext, *tcontextp = tcontext;
560 	struct av_decision lo_avd;
561 	struct type_datum *source;
562 	struct type_datum *target;
563 	u32 masked = 0;
564 
565 	source = flex_array_get_ptr(policydb.type_val_to_struct_array,
566 				    scontext->type - 1);
567 	BUG_ON(!source);
568 
569 	if (!source->bounds)
570 		return;
571 
572 	target = flex_array_get_ptr(policydb.type_val_to_struct_array,
573 				    tcontext->type - 1);
574 	BUG_ON(!target);
575 
576 	memset(&lo_avd, 0, sizeof(lo_avd));
577 
578 	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
579 	lo_scontext.type = source->bounds;
580 
581 	if (target->bounds) {
582 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
583 		lo_tcontext.type = target->bounds;
584 		tcontextp = &lo_tcontext;
585 	}
586 
587 	context_struct_compute_av(&lo_scontext,
588 				  tcontextp,
589 				  tclass,
590 				  &lo_avd,
591 				  NULL);
592 
593 	masked = ~lo_avd.allowed & avd->allowed;
594 
595 	if (likely(!masked))
596 		return;		/* no masked permission */
597 
598 	/* mask violated permissions */
599 	avd->allowed &= ~masked;
600 
601 	/* audit masked permissions */
602 	security_dump_masked_av(scontext, tcontext,
603 				tclass, masked, "bounds");
604 }
605 
606 /*
607  * flag which drivers have permissions
608  * only looking for ioctl based extended permssions
609  */
610 void services_compute_xperms_drivers(
611 		struct extended_perms *xperms,
612 		struct avtab_node *node)
613 {
614 	unsigned int i;
615 
616 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
617 		/* if one or more driver has all permissions allowed */
618 		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
619 			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
620 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
621 		/* if allowing permissions within a driver */
622 		security_xperm_set(xperms->drivers.p,
623 					node->datum.u.xperms->driver);
624 	}
625 
626 	/* If no ioctl commands are allowed, ignore auditallow and auditdeny */
627 	if (node->key.specified & AVTAB_XPERMS_ALLOWED)
628 		xperms->len = 1;
629 }
630 
631 /*
632  * Compute access vectors and extended permissions based on a context
633  * structure pair for the permissions in a particular class.
634  */
635 static void context_struct_compute_av(struct context *scontext,
636 					struct context *tcontext,
637 					u16 tclass,
638 					struct av_decision *avd,
639 					struct extended_perms *xperms)
640 {
641 	struct constraint_node *constraint;
642 	struct role_allow *ra;
643 	struct avtab_key avkey;
644 	struct avtab_node *node;
645 	struct class_datum *tclass_datum;
646 	struct ebitmap *sattr, *tattr;
647 	struct ebitmap_node *snode, *tnode;
648 	unsigned int i, j;
649 
650 	avd->allowed = 0;
651 	avd->auditallow = 0;
652 	avd->auditdeny = 0xffffffff;
653 	if (xperms) {
654 		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
655 		xperms->len = 0;
656 	}
657 
658 	if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
659 		if (printk_ratelimit())
660 			printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
661 		return;
662 	}
663 
664 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
665 
666 	/*
667 	 * If a specific type enforcement rule was defined for
668 	 * this permission check, then use it.
669 	 */
670 	avkey.target_class = tclass;
671 	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
672 	sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
673 	BUG_ON(!sattr);
674 	tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
675 	BUG_ON(!tattr);
676 	ebitmap_for_each_positive_bit(sattr, snode, i) {
677 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
678 			avkey.source_type = i + 1;
679 			avkey.target_type = j + 1;
680 			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
681 			     node;
682 			     node = avtab_search_node_next(node, avkey.specified)) {
683 				if (node->key.specified == AVTAB_ALLOWED)
684 					avd->allowed |= node->datum.u.data;
685 				else if (node->key.specified == AVTAB_AUDITALLOW)
686 					avd->auditallow |= node->datum.u.data;
687 				else if (node->key.specified == AVTAB_AUDITDENY)
688 					avd->auditdeny &= node->datum.u.data;
689 				else if (xperms && (node->key.specified & AVTAB_XPERMS))
690 					services_compute_xperms_drivers(xperms, node);
691 			}
692 
693 			/* Check conditional av table for additional permissions */
694 			cond_compute_av(&policydb.te_cond_avtab, &avkey,
695 					avd, xperms);
696 
697 		}
698 	}
699 
700 	/*
701 	 * Remove any permissions prohibited by a constraint (this includes
702 	 * the MLS policy).
703 	 */
704 	constraint = tclass_datum->constraints;
705 	while (constraint) {
706 		if ((constraint->permissions & (avd->allowed)) &&
707 		    !constraint_expr_eval(scontext, tcontext, NULL,
708 					  constraint->expr)) {
709 			avd->allowed &= ~(constraint->permissions);
710 		}
711 		constraint = constraint->next;
712 	}
713 
714 	/*
715 	 * If checking process transition permission and the
716 	 * role is changing, then check the (current_role, new_role)
717 	 * pair.
718 	 */
719 	if (tclass == policydb.process_class &&
720 	    (avd->allowed & policydb.process_trans_perms) &&
721 	    scontext->role != tcontext->role) {
722 		for (ra = policydb.role_allow; ra; ra = ra->next) {
723 			if (scontext->role == ra->role &&
724 			    tcontext->role == ra->new_role)
725 				break;
726 		}
727 		if (!ra)
728 			avd->allowed &= ~policydb.process_trans_perms;
729 	}
730 
731 	/*
732 	 * If the given source and target types have boundary
733 	 * constraint, lazy checks have to mask any violated
734 	 * permission and notice it to userspace via audit.
735 	 */
736 	type_attribute_bounds_av(scontext, tcontext,
737 				 tclass, avd);
738 }
739 
740 static int security_validtrans_handle_fail(struct context *ocontext,
741 					   struct context *ncontext,
742 					   struct context *tcontext,
743 					   u16 tclass)
744 {
745 	char *o = NULL, *n = NULL, *t = NULL;
746 	u32 olen, nlen, tlen;
747 
748 	if (context_struct_to_string(ocontext, &o, &olen))
749 		goto out;
750 	if (context_struct_to_string(ncontext, &n, &nlen))
751 		goto out;
752 	if (context_struct_to_string(tcontext, &t, &tlen))
753 		goto out;
754 	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
755 		  "op=security_validate_transition seresult=denied"
756 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
757 		  o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
758 out:
759 	kfree(o);
760 	kfree(n);
761 	kfree(t);
762 
763 	if (!selinux_enforcing)
764 		return 0;
765 	return -EPERM;
766 }
767 
768 static int security_compute_validatetrans(u32 oldsid, u32 newsid, u32 tasksid,
769 					  u16 orig_tclass, bool user)
770 {
771 	struct context *ocontext;
772 	struct context *ncontext;
773 	struct context *tcontext;
774 	struct class_datum *tclass_datum;
775 	struct constraint_node *constraint;
776 	u16 tclass;
777 	int rc = 0;
778 
779 	if (!ss_initialized)
780 		return 0;
781 
782 	read_lock(&policy_rwlock);
783 
784 	if (!user)
785 		tclass = unmap_class(orig_tclass);
786 	else
787 		tclass = orig_tclass;
788 
789 	if (!tclass || tclass > policydb.p_classes.nprim) {
790 		rc = -EINVAL;
791 		goto out;
792 	}
793 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
794 
795 	ocontext = sidtab_search(&sidtab, oldsid);
796 	if (!ocontext) {
797 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
798 			__func__, oldsid);
799 		rc = -EINVAL;
800 		goto out;
801 	}
802 
803 	ncontext = sidtab_search(&sidtab, newsid);
804 	if (!ncontext) {
805 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
806 			__func__, newsid);
807 		rc = -EINVAL;
808 		goto out;
809 	}
810 
811 	tcontext = sidtab_search(&sidtab, tasksid);
812 	if (!tcontext) {
813 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
814 			__func__, tasksid);
815 		rc = -EINVAL;
816 		goto out;
817 	}
818 
819 	constraint = tclass_datum->validatetrans;
820 	while (constraint) {
821 		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
822 					  constraint->expr)) {
823 			if (user)
824 				rc = -EPERM;
825 			else
826 				rc = security_validtrans_handle_fail(ocontext,
827 								     ncontext,
828 								     tcontext,
829 								     tclass);
830 			goto out;
831 		}
832 		constraint = constraint->next;
833 	}
834 
835 out:
836 	read_unlock(&policy_rwlock);
837 	return rc;
838 }
839 
840 int security_validate_transition_user(u32 oldsid, u32 newsid, u32 tasksid,
841 					u16 tclass)
842 {
843 	return security_compute_validatetrans(oldsid, newsid, tasksid,
844 						tclass, true);
845 }
846 
847 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
848 				 u16 orig_tclass)
849 {
850 	return security_compute_validatetrans(oldsid, newsid, tasksid,
851 						orig_tclass, false);
852 }
853 
854 /*
855  * security_bounded_transition - check whether the given
856  * transition is directed to bounded, or not.
857  * It returns 0, if @newsid is bounded by @oldsid.
858  * Otherwise, it returns error code.
859  *
860  * @oldsid : current security identifier
861  * @newsid : destinated security identifier
862  */
863 int security_bounded_transition(u32 old_sid, u32 new_sid)
864 {
865 	struct context *old_context, *new_context;
866 	struct type_datum *type;
867 	int index;
868 	int rc;
869 
870 	read_lock(&policy_rwlock);
871 
872 	rc = -EINVAL;
873 	old_context = sidtab_search(&sidtab, old_sid);
874 	if (!old_context) {
875 		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
876 		       __func__, old_sid);
877 		goto out;
878 	}
879 
880 	rc = -EINVAL;
881 	new_context = sidtab_search(&sidtab, new_sid);
882 	if (!new_context) {
883 		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
884 		       __func__, new_sid);
885 		goto out;
886 	}
887 
888 	rc = 0;
889 	/* type/domain unchanged */
890 	if (old_context->type == new_context->type)
891 		goto out;
892 
893 	index = new_context->type;
894 	while (true) {
895 		type = flex_array_get_ptr(policydb.type_val_to_struct_array,
896 					  index - 1);
897 		BUG_ON(!type);
898 
899 		/* not bounded anymore */
900 		rc = -EPERM;
901 		if (!type->bounds)
902 			break;
903 
904 		/* @newsid is bounded by @oldsid */
905 		rc = 0;
906 		if (type->bounds == old_context->type)
907 			break;
908 
909 		index = type->bounds;
910 	}
911 
912 	if (rc) {
913 		char *old_name = NULL;
914 		char *new_name = NULL;
915 		u32 length;
916 
917 		if (!context_struct_to_string(old_context,
918 					      &old_name, &length) &&
919 		    !context_struct_to_string(new_context,
920 					      &new_name, &length)) {
921 			audit_log(current->audit_context,
922 				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
923 				  "op=security_bounded_transition "
924 				  "seresult=denied "
925 				  "oldcontext=%s newcontext=%s",
926 				  old_name, new_name);
927 		}
928 		kfree(new_name);
929 		kfree(old_name);
930 	}
931 out:
932 	read_unlock(&policy_rwlock);
933 
934 	return rc;
935 }
936 
937 static void avd_init(struct av_decision *avd)
938 {
939 	avd->allowed = 0;
940 	avd->auditallow = 0;
941 	avd->auditdeny = 0xffffffff;
942 	avd->seqno = latest_granting;
943 	avd->flags = 0;
944 }
945 
946 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
947 					struct avtab_node *node)
948 {
949 	unsigned int i;
950 
951 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
952 		if (xpermd->driver != node->datum.u.xperms->driver)
953 			return;
954 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
955 		if (!security_xperm_test(node->datum.u.xperms->perms.p,
956 					xpermd->driver))
957 			return;
958 	} else {
959 		BUG();
960 	}
961 
962 	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
963 		xpermd->used |= XPERMS_ALLOWED;
964 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
965 			memset(xpermd->allowed->p, 0xff,
966 					sizeof(xpermd->allowed->p));
967 		}
968 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
969 			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
970 				xpermd->allowed->p[i] |=
971 					node->datum.u.xperms->perms.p[i];
972 		}
973 	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
974 		xpermd->used |= XPERMS_AUDITALLOW;
975 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
976 			memset(xpermd->auditallow->p, 0xff,
977 					sizeof(xpermd->auditallow->p));
978 		}
979 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
980 			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
981 				xpermd->auditallow->p[i] |=
982 					node->datum.u.xperms->perms.p[i];
983 		}
984 	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
985 		xpermd->used |= XPERMS_DONTAUDIT;
986 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
987 			memset(xpermd->dontaudit->p, 0xff,
988 					sizeof(xpermd->dontaudit->p));
989 		}
990 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
991 			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
992 				xpermd->dontaudit->p[i] |=
993 					node->datum.u.xperms->perms.p[i];
994 		}
995 	} else {
996 		BUG();
997 	}
998 }
999 
1000 void security_compute_xperms_decision(u32 ssid,
1001 				u32 tsid,
1002 				u16 orig_tclass,
1003 				u8 driver,
1004 				struct extended_perms_decision *xpermd)
1005 {
1006 	u16 tclass;
1007 	struct context *scontext, *tcontext;
1008 	struct avtab_key avkey;
1009 	struct avtab_node *node;
1010 	struct ebitmap *sattr, *tattr;
1011 	struct ebitmap_node *snode, *tnode;
1012 	unsigned int i, j;
1013 
1014 	xpermd->driver = driver;
1015 	xpermd->used = 0;
1016 	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1017 	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1018 	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1019 
1020 	read_lock(&policy_rwlock);
1021 	if (!ss_initialized)
1022 		goto allow;
1023 
1024 	scontext = sidtab_search(&sidtab, ssid);
1025 	if (!scontext) {
1026 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1027 		       __func__, ssid);
1028 		goto out;
1029 	}
1030 
1031 	tcontext = sidtab_search(&sidtab, tsid);
1032 	if (!tcontext) {
1033 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1034 		       __func__, tsid);
1035 		goto out;
1036 	}
1037 
1038 	tclass = unmap_class(orig_tclass);
1039 	if (unlikely(orig_tclass && !tclass)) {
1040 		if (policydb.allow_unknown)
1041 			goto allow;
1042 		goto out;
1043 	}
1044 
1045 
1046 	if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
1047 		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1048 		goto out;
1049 	}
1050 
1051 	avkey.target_class = tclass;
1052 	avkey.specified = AVTAB_XPERMS;
1053 	sattr = flex_array_get(policydb.type_attr_map_array,
1054 				scontext->type - 1);
1055 	BUG_ON(!sattr);
1056 	tattr = flex_array_get(policydb.type_attr_map_array,
1057 				tcontext->type - 1);
1058 	BUG_ON(!tattr);
1059 	ebitmap_for_each_positive_bit(sattr, snode, i) {
1060 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1061 			avkey.source_type = i + 1;
1062 			avkey.target_type = j + 1;
1063 			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
1064 			     node;
1065 			     node = avtab_search_node_next(node, avkey.specified))
1066 				services_compute_xperms_decision(xpermd, node);
1067 
1068 			cond_compute_xperms(&policydb.te_cond_avtab,
1069 						&avkey, xpermd);
1070 		}
1071 	}
1072 out:
1073 	read_unlock(&policy_rwlock);
1074 	return;
1075 allow:
1076 	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1077 	goto out;
1078 }
1079 
1080 /**
1081  * security_compute_av - Compute access vector decisions.
1082  * @ssid: source security identifier
1083  * @tsid: target security identifier
1084  * @tclass: target security class
1085  * @avd: access vector decisions
1086  * @xperms: extended permissions
1087  *
1088  * Compute a set of access vector decisions based on the
1089  * SID pair (@ssid, @tsid) for the permissions in @tclass.
1090  */
1091 void security_compute_av(u32 ssid,
1092 			 u32 tsid,
1093 			 u16 orig_tclass,
1094 			 struct av_decision *avd,
1095 			 struct extended_perms *xperms)
1096 {
1097 	u16 tclass;
1098 	struct context *scontext = NULL, *tcontext = NULL;
1099 
1100 	read_lock(&policy_rwlock);
1101 	avd_init(avd);
1102 	xperms->len = 0;
1103 	if (!ss_initialized)
1104 		goto allow;
1105 
1106 	scontext = sidtab_search(&sidtab, ssid);
1107 	if (!scontext) {
1108 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1109 		       __func__, ssid);
1110 		goto out;
1111 	}
1112 
1113 	/* permissive domain? */
1114 	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
1115 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1116 
1117 	tcontext = sidtab_search(&sidtab, tsid);
1118 	if (!tcontext) {
1119 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1120 		       __func__, tsid);
1121 		goto out;
1122 	}
1123 
1124 	tclass = unmap_class(orig_tclass);
1125 	if (unlikely(orig_tclass && !tclass)) {
1126 		if (policydb.allow_unknown)
1127 			goto allow;
1128 		goto out;
1129 	}
1130 	context_struct_compute_av(scontext, tcontext, tclass, avd, xperms);
1131 	map_decision(orig_tclass, avd, policydb.allow_unknown);
1132 out:
1133 	read_unlock(&policy_rwlock);
1134 	return;
1135 allow:
1136 	avd->allowed = 0xffffffff;
1137 	goto out;
1138 }
1139 
1140 void security_compute_av_user(u32 ssid,
1141 			      u32 tsid,
1142 			      u16 tclass,
1143 			      struct av_decision *avd)
1144 {
1145 	struct context *scontext = NULL, *tcontext = NULL;
1146 
1147 	read_lock(&policy_rwlock);
1148 	avd_init(avd);
1149 	if (!ss_initialized)
1150 		goto allow;
1151 
1152 	scontext = sidtab_search(&sidtab, ssid);
1153 	if (!scontext) {
1154 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1155 		       __func__, ssid);
1156 		goto out;
1157 	}
1158 
1159 	/* permissive domain? */
1160 	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
1161 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1162 
1163 	tcontext = sidtab_search(&sidtab, tsid);
1164 	if (!tcontext) {
1165 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1166 		       __func__, tsid);
1167 		goto out;
1168 	}
1169 
1170 	if (unlikely(!tclass)) {
1171 		if (policydb.allow_unknown)
1172 			goto allow;
1173 		goto out;
1174 	}
1175 
1176 	context_struct_compute_av(scontext, tcontext, tclass, avd, NULL);
1177  out:
1178 	read_unlock(&policy_rwlock);
1179 	return;
1180 allow:
1181 	avd->allowed = 0xffffffff;
1182 	goto out;
1183 }
1184 
1185 /*
1186  * Write the security context string representation of
1187  * the context structure `context' into a dynamically
1188  * allocated string of the correct size.  Set `*scontext'
1189  * to point to this string and set `*scontext_len' to
1190  * the length of the string.
1191  */
1192 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
1193 {
1194 	char *scontextp;
1195 
1196 	if (scontext)
1197 		*scontext = NULL;
1198 	*scontext_len = 0;
1199 
1200 	if (context->len) {
1201 		*scontext_len = context->len;
1202 		if (scontext) {
1203 			*scontext = kstrdup(context->str, GFP_ATOMIC);
1204 			if (!(*scontext))
1205 				return -ENOMEM;
1206 		}
1207 		return 0;
1208 	}
1209 
1210 	/* Compute the size of the context. */
1211 	*scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1212 	*scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1213 	*scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1214 	*scontext_len += mls_compute_context_len(context);
1215 
1216 	if (!scontext)
1217 		return 0;
1218 
1219 	/* Allocate space for the context; caller must free this space. */
1220 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1221 	if (!scontextp)
1222 		return -ENOMEM;
1223 	*scontext = scontextp;
1224 
1225 	/*
1226 	 * Copy the user name, role name and type name into the context.
1227 	 */
1228 	scontextp += sprintf(scontextp, "%s:%s:%s",
1229 		sym_name(&policydb, SYM_USERS, context->user - 1),
1230 		sym_name(&policydb, SYM_ROLES, context->role - 1),
1231 		sym_name(&policydb, SYM_TYPES, context->type - 1));
1232 
1233 	mls_sid_to_context(context, &scontextp);
1234 
1235 	*scontextp = 0;
1236 
1237 	return 0;
1238 }
1239 
1240 #include "initial_sid_to_string.h"
1241 
1242 const char *security_get_initial_sid_context(u32 sid)
1243 {
1244 	if (unlikely(sid > SECINITSID_NUM))
1245 		return NULL;
1246 	return initial_sid_to_string[sid];
1247 }
1248 
1249 static int security_sid_to_context_core(u32 sid, char **scontext,
1250 					u32 *scontext_len, int force)
1251 {
1252 	struct context *context;
1253 	int rc = 0;
1254 
1255 	if (scontext)
1256 		*scontext = NULL;
1257 	*scontext_len  = 0;
1258 
1259 	if (!ss_initialized) {
1260 		if (sid <= SECINITSID_NUM) {
1261 			char *scontextp;
1262 
1263 			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1264 			if (!scontext)
1265 				goto out;
1266 			scontextp = kmemdup(initial_sid_to_string[sid],
1267 					    *scontext_len, GFP_ATOMIC);
1268 			if (!scontextp) {
1269 				rc = -ENOMEM;
1270 				goto out;
1271 			}
1272 			*scontext = scontextp;
1273 			goto out;
1274 		}
1275 		printk(KERN_ERR "SELinux: %s:  called before initial "
1276 		       "load_policy on unknown SID %d\n", __func__, sid);
1277 		rc = -EINVAL;
1278 		goto out;
1279 	}
1280 	read_lock(&policy_rwlock);
1281 	if (force)
1282 		context = sidtab_search_force(&sidtab, sid);
1283 	else
1284 		context = sidtab_search(&sidtab, sid);
1285 	if (!context) {
1286 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1287 			__func__, sid);
1288 		rc = -EINVAL;
1289 		goto out_unlock;
1290 	}
1291 	rc = context_struct_to_string(context, scontext, scontext_len);
1292 out_unlock:
1293 	read_unlock(&policy_rwlock);
1294 out:
1295 	return rc;
1296 
1297 }
1298 
1299 /**
1300  * security_sid_to_context - Obtain a context for a given SID.
1301  * @sid: security identifier, SID
1302  * @scontext: security context
1303  * @scontext_len: length in bytes
1304  *
1305  * Write the string representation of the context associated with @sid
1306  * into a dynamically allocated string of the correct size.  Set @scontext
1307  * to point to this string and set @scontext_len to the length of the string.
1308  */
1309 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1310 {
1311 	return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1312 }
1313 
1314 int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1315 {
1316 	return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1317 }
1318 
1319 /*
1320  * Caveat:  Mutates scontext.
1321  */
1322 static int string_to_context_struct(struct policydb *pol,
1323 				    struct sidtab *sidtabp,
1324 				    char *scontext,
1325 				    u32 scontext_len,
1326 				    struct context *ctx,
1327 				    u32 def_sid)
1328 {
1329 	struct role_datum *role;
1330 	struct type_datum *typdatum;
1331 	struct user_datum *usrdatum;
1332 	char *scontextp, *p, oldc;
1333 	int rc = 0;
1334 
1335 	context_init(ctx);
1336 
1337 	/* Parse the security context. */
1338 
1339 	rc = -EINVAL;
1340 	scontextp = (char *) scontext;
1341 
1342 	/* Extract the user. */
1343 	p = scontextp;
1344 	while (*p && *p != ':')
1345 		p++;
1346 
1347 	if (*p == 0)
1348 		goto out;
1349 
1350 	*p++ = 0;
1351 
1352 	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1353 	if (!usrdatum)
1354 		goto out;
1355 
1356 	ctx->user = usrdatum->value;
1357 
1358 	/* Extract role. */
1359 	scontextp = p;
1360 	while (*p && *p != ':')
1361 		p++;
1362 
1363 	if (*p == 0)
1364 		goto out;
1365 
1366 	*p++ = 0;
1367 
1368 	role = hashtab_search(pol->p_roles.table, scontextp);
1369 	if (!role)
1370 		goto out;
1371 	ctx->role = role->value;
1372 
1373 	/* Extract type. */
1374 	scontextp = p;
1375 	while (*p && *p != ':')
1376 		p++;
1377 	oldc = *p;
1378 	*p++ = 0;
1379 
1380 	typdatum = hashtab_search(pol->p_types.table, scontextp);
1381 	if (!typdatum || typdatum->attribute)
1382 		goto out;
1383 
1384 	ctx->type = typdatum->value;
1385 
1386 	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1387 	if (rc)
1388 		goto out;
1389 
1390 	rc = -EINVAL;
1391 	if ((p - scontext) < scontext_len)
1392 		goto out;
1393 
1394 	/* Check the validity of the new context. */
1395 	if (!policydb_context_isvalid(pol, ctx))
1396 		goto out;
1397 	rc = 0;
1398 out:
1399 	if (rc)
1400 		context_destroy(ctx);
1401 	return rc;
1402 }
1403 
1404 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1405 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1406 					int force)
1407 {
1408 	char *scontext2, *str = NULL;
1409 	struct context context;
1410 	int rc = 0;
1411 
1412 	/* An empty security context is never valid. */
1413 	if (!scontext_len)
1414 		return -EINVAL;
1415 
1416 	if (!ss_initialized) {
1417 		int i;
1418 
1419 		for (i = 1; i < SECINITSID_NUM; i++) {
1420 			if (!strcmp(initial_sid_to_string[i], scontext)) {
1421 				*sid = i;
1422 				return 0;
1423 			}
1424 		}
1425 		*sid = SECINITSID_KERNEL;
1426 		return 0;
1427 	}
1428 	*sid = SECSID_NULL;
1429 
1430 	/* Copy the string so that we can modify the copy as we parse it. */
1431 	scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1432 	if (!scontext2)
1433 		return -ENOMEM;
1434 	memcpy(scontext2, scontext, scontext_len);
1435 	scontext2[scontext_len] = 0;
1436 
1437 	if (force) {
1438 		/* Save another copy for storing in uninterpreted form */
1439 		rc = -ENOMEM;
1440 		str = kstrdup(scontext2, gfp_flags);
1441 		if (!str)
1442 			goto out;
1443 	}
1444 
1445 	read_lock(&policy_rwlock);
1446 	rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1447 				      scontext_len, &context, def_sid);
1448 	if (rc == -EINVAL && force) {
1449 		context.str = str;
1450 		context.len = scontext_len;
1451 		str = NULL;
1452 	} else if (rc)
1453 		goto out_unlock;
1454 	rc = sidtab_context_to_sid(&sidtab, &context, sid);
1455 	context_destroy(&context);
1456 out_unlock:
1457 	read_unlock(&policy_rwlock);
1458 out:
1459 	kfree(scontext2);
1460 	kfree(str);
1461 	return rc;
1462 }
1463 
1464 /**
1465  * security_context_to_sid - Obtain a SID for a given security context.
1466  * @scontext: security context
1467  * @scontext_len: length in bytes
1468  * @sid: security identifier, SID
1469  * @gfp: context for the allocation
1470  *
1471  * Obtains a SID associated with the security context that
1472  * has the string representation specified by @scontext.
1473  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1474  * memory is available, or 0 on success.
1475  */
1476 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
1477 			    gfp_t gfp)
1478 {
1479 	return security_context_to_sid_core(scontext, scontext_len,
1480 					    sid, SECSID_NULL, gfp, 0);
1481 }
1482 
1483 int security_context_str_to_sid(const char *scontext, u32 *sid, gfp_t gfp)
1484 {
1485 	return security_context_to_sid(scontext, strlen(scontext), sid, gfp);
1486 }
1487 
1488 /**
1489  * security_context_to_sid_default - Obtain a SID for a given security context,
1490  * falling back to specified default if needed.
1491  *
1492  * @scontext: security context
1493  * @scontext_len: length in bytes
1494  * @sid: security identifier, SID
1495  * @def_sid: default SID to assign on error
1496  *
1497  * Obtains a SID associated with the security context that
1498  * has the string representation specified by @scontext.
1499  * The default SID is passed to the MLS layer to be used to allow
1500  * kernel labeling of the MLS field if the MLS field is not present
1501  * (for upgrading to MLS without full relabel).
1502  * Implicitly forces adding of the context even if it cannot be mapped yet.
1503  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1504  * memory is available, or 0 on success.
1505  */
1506 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1507 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1508 {
1509 	return security_context_to_sid_core(scontext, scontext_len,
1510 					    sid, def_sid, gfp_flags, 1);
1511 }
1512 
1513 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1514 				  u32 *sid)
1515 {
1516 	return security_context_to_sid_core(scontext, scontext_len,
1517 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1518 }
1519 
1520 static int compute_sid_handle_invalid_context(
1521 	struct context *scontext,
1522 	struct context *tcontext,
1523 	u16 tclass,
1524 	struct context *newcontext)
1525 {
1526 	char *s = NULL, *t = NULL, *n = NULL;
1527 	u32 slen, tlen, nlen;
1528 
1529 	if (context_struct_to_string(scontext, &s, &slen))
1530 		goto out;
1531 	if (context_struct_to_string(tcontext, &t, &tlen))
1532 		goto out;
1533 	if (context_struct_to_string(newcontext, &n, &nlen))
1534 		goto out;
1535 	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1536 		  "op=security_compute_sid invalid_context=%s"
1537 		  " scontext=%s"
1538 		  " tcontext=%s"
1539 		  " tclass=%s",
1540 		  n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
1541 out:
1542 	kfree(s);
1543 	kfree(t);
1544 	kfree(n);
1545 	if (!selinux_enforcing)
1546 		return 0;
1547 	return -EACCES;
1548 }
1549 
1550 static void filename_compute_type(struct policydb *p, struct context *newcontext,
1551 				  u32 stype, u32 ttype, u16 tclass,
1552 				  const char *objname)
1553 {
1554 	struct filename_trans ft;
1555 	struct filename_trans_datum *otype;
1556 
1557 	/*
1558 	 * Most filename trans rules are going to live in specific directories
1559 	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1560 	 * if the ttype does not contain any rules.
1561 	 */
1562 	if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1563 		return;
1564 
1565 	ft.stype = stype;
1566 	ft.ttype = ttype;
1567 	ft.tclass = tclass;
1568 	ft.name = objname;
1569 
1570 	otype = hashtab_search(p->filename_trans, &ft);
1571 	if (otype)
1572 		newcontext->type = otype->otype;
1573 }
1574 
1575 static int security_compute_sid(u32 ssid,
1576 				u32 tsid,
1577 				u16 orig_tclass,
1578 				u32 specified,
1579 				const char *objname,
1580 				u32 *out_sid,
1581 				bool kern)
1582 {
1583 	struct class_datum *cladatum = NULL;
1584 	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1585 	struct role_trans *roletr = NULL;
1586 	struct avtab_key avkey;
1587 	struct avtab_datum *avdatum;
1588 	struct avtab_node *node;
1589 	u16 tclass;
1590 	int rc = 0;
1591 	bool sock;
1592 
1593 	if (!ss_initialized) {
1594 		switch (orig_tclass) {
1595 		case SECCLASS_PROCESS: /* kernel value */
1596 			*out_sid = ssid;
1597 			break;
1598 		default:
1599 			*out_sid = tsid;
1600 			break;
1601 		}
1602 		goto out;
1603 	}
1604 
1605 	context_init(&newcontext);
1606 
1607 	read_lock(&policy_rwlock);
1608 
1609 	if (kern) {
1610 		tclass = unmap_class(orig_tclass);
1611 		sock = security_is_socket_class(orig_tclass);
1612 	} else {
1613 		tclass = orig_tclass;
1614 		sock = security_is_socket_class(map_class(tclass));
1615 	}
1616 
1617 	scontext = sidtab_search(&sidtab, ssid);
1618 	if (!scontext) {
1619 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1620 		       __func__, ssid);
1621 		rc = -EINVAL;
1622 		goto out_unlock;
1623 	}
1624 	tcontext = sidtab_search(&sidtab, tsid);
1625 	if (!tcontext) {
1626 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1627 		       __func__, tsid);
1628 		rc = -EINVAL;
1629 		goto out_unlock;
1630 	}
1631 
1632 	if (tclass && tclass <= policydb.p_classes.nprim)
1633 		cladatum = policydb.class_val_to_struct[tclass - 1];
1634 
1635 	/* Set the user identity. */
1636 	switch (specified) {
1637 	case AVTAB_TRANSITION:
1638 	case AVTAB_CHANGE:
1639 		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1640 			newcontext.user = tcontext->user;
1641 		} else {
1642 			/* notice this gets both DEFAULT_SOURCE and unset */
1643 			/* Use the process user identity. */
1644 			newcontext.user = scontext->user;
1645 		}
1646 		break;
1647 	case AVTAB_MEMBER:
1648 		/* Use the related object owner. */
1649 		newcontext.user = tcontext->user;
1650 		break;
1651 	}
1652 
1653 	/* Set the role to default values. */
1654 	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1655 		newcontext.role = scontext->role;
1656 	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1657 		newcontext.role = tcontext->role;
1658 	} else {
1659 		if ((tclass == policydb.process_class) || (sock == true))
1660 			newcontext.role = scontext->role;
1661 		else
1662 			newcontext.role = OBJECT_R_VAL;
1663 	}
1664 
1665 	/* Set the type to default values. */
1666 	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1667 		newcontext.type = scontext->type;
1668 	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1669 		newcontext.type = tcontext->type;
1670 	} else {
1671 		if ((tclass == policydb.process_class) || (sock == true)) {
1672 			/* Use the type of process. */
1673 			newcontext.type = scontext->type;
1674 		} else {
1675 			/* Use the type of the related object. */
1676 			newcontext.type = tcontext->type;
1677 		}
1678 	}
1679 
1680 	/* Look for a type transition/member/change rule. */
1681 	avkey.source_type = scontext->type;
1682 	avkey.target_type = tcontext->type;
1683 	avkey.target_class = tclass;
1684 	avkey.specified = specified;
1685 	avdatum = avtab_search(&policydb.te_avtab, &avkey);
1686 
1687 	/* If no permanent rule, also check for enabled conditional rules */
1688 	if (!avdatum) {
1689 		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1690 		for (; node; node = avtab_search_node_next(node, specified)) {
1691 			if (node->key.specified & AVTAB_ENABLED) {
1692 				avdatum = &node->datum;
1693 				break;
1694 			}
1695 		}
1696 	}
1697 
1698 	if (avdatum) {
1699 		/* Use the type from the type transition/member/change rule. */
1700 		newcontext.type = avdatum->u.data;
1701 	}
1702 
1703 	/* if we have a objname this is a file trans check so check those rules */
1704 	if (objname)
1705 		filename_compute_type(&policydb, &newcontext, scontext->type,
1706 				      tcontext->type, tclass, objname);
1707 
1708 	/* Check for class-specific changes. */
1709 	if (specified & AVTAB_TRANSITION) {
1710 		/* Look for a role transition rule. */
1711 		for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
1712 			if ((roletr->role == scontext->role) &&
1713 			    (roletr->type == tcontext->type) &&
1714 			    (roletr->tclass == tclass)) {
1715 				/* Use the role transition rule. */
1716 				newcontext.role = roletr->new_role;
1717 				break;
1718 			}
1719 		}
1720 	}
1721 
1722 	/* Set the MLS attributes.
1723 	   This is done last because it may allocate memory. */
1724 	rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1725 			     &newcontext, sock);
1726 	if (rc)
1727 		goto out_unlock;
1728 
1729 	/* Check the validity of the context. */
1730 	if (!policydb_context_isvalid(&policydb, &newcontext)) {
1731 		rc = compute_sid_handle_invalid_context(scontext,
1732 							tcontext,
1733 							tclass,
1734 							&newcontext);
1735 		if (rc)
1736 			goto out_unlock;
1737 	}
1738 	/* Obtain the sid for the context. */
1739 	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1740 out_unlock:
1741 	read_unlock(&policy_rwlock);
1742 	context_destroy(&newcontext);
1743 out:
1744 	return rc;
1745 }
1746 
1747 /**
1748  * security_transition_sid - Compute the SID for a new subject/object.
1749  * @ssid: source security identifier
1750  * @tsid: target security identifier
1751  * @tclass: target security class
1752  * @out_sid: security identifier for new subject/object
1753  *
1754  * Compute a SID to use for labeling a new subject or object in the
1755  * class @tclass based on a SID pair (@ssid, @tsid).
1756  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1757  * if insufficient memory is available, or %0 if the new SID was
1758  * computed successfully.
1759  */
1760 int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1761 			    const struct qstr *qstr, u32 *out_sid)
1762 {
1763 	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1764 				    qstr ? qstr->name : NULL, out_sid, true);
1765 }
1766 
1767 int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1768 				 const char *objname, u32 *out_sid)
1769 {
1770 	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1771 				    objname, out_sid, false);
1772 }
1773 
1774 /**
1775  * security_member_sid - Compute the SID for member selection.
1776  * @ssid: source security identifier
1777  * @tsid: target security identifier
1778  * @tclass: target security class
1779  * @out_sid: security identifier for selected member
1780  *
1781  * Compute a SID to use when selecting a member of a polyinstantiated
1782  * object of class @tclass based on a SID pair (@ssid, @tsid).
1783  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1784  * if insufficient memory is available, or %0 if the SID was
1785  * computed successfully.
1786  */
1787 int security_member_sid(u32 ssid,
1788 			u32 tsid,
1789 			u16 tclass,
1790 			u32 *out_sid)
1791 {
1792 	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
1793 				    out_sid, false);
1794 }
1795 
1796 /**
1797  * security_change_sid - Compute the SID for object relabeling.
1798  * @ssid: source security identifier
1799  * @tsid: target security identifier
1800  * @tclass: target security class
1801  * @out_sid: security identifier for selected member
1802  *
1803  * Compute a SID to use for relabeling an object of class @tclass
1804  * based on a SID pair (@ssid, @tsid).
1805  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1806  * if insufficient memory is available, or %0 if the SID was
1807  * computed successfully.
1808  */
1809 int security_change_sid(u32 ssid,
1810 			u32 tsid,
1811 			u16 tclass,
1812 			u32 *out_sid)
1813 {
1814 	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1815 				    out_sid, false);
1816 }
1817 
1818 /* Clone the SID into the new SID table. */
1819 static int clone_sid(u32 sid,
1820 		     struct context *context,
1821 		     void *arg)
1822 {
1823 	struct sidtab *s = arg;
1824 
1825 	if (sid > SECINITSID_NUM)
1826 		return sidtab_insert(s, sid, context);
1827 	else
1828 		return 0;
1829 }
1830 
1831 static inline int convert_context_handle_invalid_context(struct context *context)
1832 {
1833 	char *s;
1834 	u32 len;
1835 
1836 	if (selinux_enforcing)
1837 		return -EINVAL;
1838 
1839 	if (!context_struct_to_string(context, &s, &len)) {
1840 		printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
1841 		kfree(s);
1842 	}
1843 	return 0;
1844 }
1845 
1846 struct convert_context_args {
1847 	struct policydb *oldp;
1848 	struct policydb *newp;
1849 };
1850 
1851 /*
1852  * Convert the values in the security context
1853  * structure `c' from the values specified
1854  * in the policy `p->oldp' to the values specified
1855  * in the policy `p->newp'.  Verify that the
1856  * context is valid under the new policy.
1857  */
1858 static int convert_context(u32 key,
1859 			   struct context *c,
1860 			   void *p)
1861 {
1862 	struct convert_context_args *args;
1863 	struct context oldc;
1864 	struct ocontext *oc;
1865 	struct mls_range *range;
1866 	struct role_datum *role;
1867 	struct type_datum *typdatum;
1868 	struct user_datum *usrdatum;
1869 	char *s;
1870 	u32 len;
1871 	int rc = 0;
1872 
1873 	if (key <= SECINITSID_NUM)
1874 		goto out;
1875 
1876 	args = p;
1877 
1878 	if (c->str) {
1879 		struct context ctx;
1880 
1881 		rc = -ENOMEM;
1882 		s = kstrdup(c->str, GFP_KERNEL);
1883 		if (!s)
1884 			goto out;
1885 
1886 		rc = string_to_context_struct(args->newp, NULL, s,
1887 					      c->len, &ctx, SECSID_NULL);
1888 		kfree(s);
1889 		if (!rc) {
1890 			printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1891 			       c->str);
1892 			/* Replace string with mapped representation. */
1893 			kfree(c->str);
1894 			memcpy(c, &ctx, sizeof(*c));
1895 			goto out;
1896 		} else if (rc == -EINVAL) {
1897 			/* Retain string representation for later mapping. */
1898 			rc = 0;
1899 			goto out;
1900 		} else {
1901 			/* Other error condition, e.g. ENOMEM. */
1902 			printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1903 			       c->str, -rc);
1904 			goto out;
1905 		}
1906 	}
1907 
1908 	rc = context_cpy(&oldc, c);
1909 	if (rc)
1910 		goto out;
1911 
1912 	/* Convert the user. */
1913 	rc = -EINVAL;
1914 	usrdatum = hashtab_search(args->newp->p_users.table,
1915 				  sym_name(args->oldp, SYM_USERS, c->user - 1));
1916 	if (!usrdatum)
1917 		goto bad;
1918 	c->user = usrdatum->value;
1919 
1920 	/* Convert the role. */
1921 	rc = -EINVAL;
1922 	role = hashtab_search(args->newp->p_roles.table,
1923 			      sym_name(args->oldp, SYM_ROLES, c->role - 1));
1924 	if (!role)
1925 		goto bad;
1926 	c->role = role->value;
1927 
1928 	/* Convert the type. */
1929 	rc = -EINVAL;
1930 	typdatum = hashtab_search(args->newp->p_types.table,
1931 				  sym_name(args->oldp, SYM_TYPES, c->type - 1));
1932 	if (!typdatum)
1933 		goto bad;
1934 	c->type = typdatum->value;
1935 
1936 	/* Convert the MLS fields if dealing with MLS policies */
1937 	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1938 		rc = mls_convert_context(args->oldp, args->newp, c);
1939 		if (rc)
1940 			goto bad;
1941 	} else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1942 		/*
1943 		 * Switching between MLS and non-MLS policy:
1944 		 * free any storage used by the MLS fields in the
1945 		 * context for all existing entries in the sidtab.
1946 		 */
1947 		mls_context_destroy(c);
1948 	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1949 		/*
1950 		 * Switching between non-MLS and MLS policy:
1951 		 * ensure that the MLS fields of the context for all
1952 		 * existing entries in the sidtab are filled in with a
1953 		 * suitable default value, likely taken from one of the
1954 		 * initial SIDs.
1955 		 */
1956 		oc = args->newp->ocontexts[OCON_ISID];
1957 		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1958 			oc = oc->next;
1959 		rc = -EINVAL;
1960 		if (!oc) {
1961 			printk(KERN_ERR "SELinux:  unable to look up"
1962 				" the initial SIDs list\n");
1963 			goto bad;
1964 		}
1965 		range = &oc->context[0].range;
1966 		rc = mls_range_set(c, range);
1967 		if (rc)
1968 			goto bad;
1969 	}
1970 
1971 	/* Check the validity of the new context. */
1972 	if (!policydb_context_isvalid(args->newp, c)) {
1973 		rc = convert_context_handle_invalid_context(&oldc);
1974 		if (rc)
1975 			goto bad;
1976 	}
1977 
1978 	context_destroy(&oldc);
1979 
1980 	rc = 0;
1981 out:
1982 	return rc;
1983 bad:
1984 	/* Map old representation to string and save it. */
1985 	rc = context_struct_to_string(&oldc, &s, &len);
1986 	if (rc)
1987 		return rc;
1988 	context_destroy(&oldc);
1989 	context_destroy(c);
1990 	c->str = s;
1991 	c->len = len;
1992 	printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
1993 	       c->str);
1994 	rc = 0;
1995 	goto out;
1996 }
1997 
1998 static void security_load_policycaps(void)
1999 {
2000 	unsigned int i;
2001 	struct ebitmap_node *node;
2002 
2003 	selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
2004 						  POLICYDB_CAPABILITY_NETPEER);
2005 	selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
2006 						  POLICYDB_CAPABILITY_OPENPERM);
2007 	selinux_policycap_extsockclass = ebitmap_get_bit(&policydb.policycaps,
2008 					  POLICYDB_CAPABILITY_EXTSOCKCLASS);
2009 	selinux_policycap_alwaysnetwork = ebitmap_get_bit(&policydb.policycaps,
2010 						  POLICYDB_CAPABILITY_ALWAYSNETWORK);
2011 	selinux_policycap_cgroupseclabel =
2012 		ebitmap_get_bit(&policydb.policycaps,
2013 				POLICYDB_CAPABILITY_CGROUPSECLABEL);
2014 	selinux_policycap_nnp_nosuid_transition =
2015 		ebitmap_get_bit(&policydb.policycaps,
2016 				POLICYDB_CAPABILITY_NNP_NOSUID_TRANSITION);
2017 
2018 	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2019 		pr_info("SELinux:  policy capability %s=%d\n",
2020 			selinux_policycap_names[i],
2021 			ebitmap_get_bit(&policydb.policycaps, i));
2022 
2023 	ebitmap_for_each_positive_bit(&policydb.policycaps, node, i) {
2024 		if (i >= ARRAY_SIZE(selinux_policycap_names))
2025 			pr_info("SELinux:  unknown policy capability %u\n",
2026 				i);
2027 	}
2028 }
2029 
2030 static int security_preserve_bools(struct policydb *p);
2031 
2032 /**
2033  * security_load_policy - Load a security policy configuration.
2034  * @data: binary policy data
2035  * @len: length of data in bytes
2036  *
2037  * Load a new set of security policy configuration data,
2038  * validate it and convert the SID table as necessary.
2039  * This function will flush the access vector cache after
2040  * loading the new policy.
2041  */
2042 int security_load_policy(void *data, size_t len)
2043 {
2044 	struct policydb *oldpolicydb, *newpolicydb;
2045 	struct sidtab oldsidtab, newsidtab;
2046 	struct selinux_mapping *oldmap, *map = NULL;
2047 	struct convert_context_args args;
2048 	u32 seqno;
2049 	u16 map_size;
2050 	int rc = 0;
2051 	struct policy_file file = { data, len }, *fp = &file;
2052 
2053 	oldpolicydb = kzalloc(2 * sizeof(*oldpolicydb), GFP_KERNEL);
2054 	if (!oldpolicydb) {
2055 		rc = -ENOMEM;
2056 		goto out;
2057 	}
2058 	newpolicydb = oldpolicydb + 1;
2059 
2060 	if (!ss_initialized) {
2061 		avtab_cache_init();
2062 		ebitmap_cache_init();
2063 		rc = policydb_read(&policydb, fp);
2064 		if (rc) {
2065 			avtab_cache_destroy();
2066 			ebitmap_cache_destroy();
2067 			goto out;
2068 		}
2069 
2070 		policydb.len = len;
2071 		rc = selinux_set_mapping(&policydb, secclass_map,
2072 					 &current_mapping,
2073 					 &current_mapping_size);
2074 		if (rc) {
2075 			policydb_destroy(&policydb);
2076 			avtab_cache_destroy();
2077 			ebitmap_cache_destroy();
2078 			goto out;
2079 		}
2080 
2081 		rc = policydb_load_isids(&policydb, &sidtab);
2082 		if (rc) {
2083 			policydb_destroy(&policydb);
2084 			avtab_cache_destroy();
2085 			ebitmap_cache_destroy();
2086 			goto out;
2087 		}
2088 
2089 		security_load_policycaps();
2090 		ss_initialized = 1;
2091 		seqno = ++latest_granting;
2092 		selinux_complete_init();
2093 		avc_ss_reset(seqno);
2094 		selnl_notify_policyload(seqno);
2095 		selinux_status_update_policyload(seqno);
2096 		selinux_netlbl_cache_invalidate();
2097 		selinux_xfrm_notify_policyload();
2098 		goto out;
2099 	}
2100 
2101 #if 0
2102 	sidtab_hash_eval(&sidtab, "sids");
2103 #endif
2104 
2105 	rc = policydb_read(newpolicydb, fp);
2106 	if (rc)
2107 		goto out;
2108 
2109 	newpolicydb->len = len;
2110 	/* If switching between different policy types, log MLS status */
2111 	if (policydb.mls_enabled && !newpolicydb->mls_enabled)
2112 		printk(KERN_INFO "SELinux: Disabling MLS support...\n");
2113 	else if (!policydb.mls_enabled && newpolicydb->mls_enabled)
2114 		printk(KERN_INFO "SELinux: Enabling MLS support...\n");
2115 
2116 	rc = policydb_load_isids(newpolicydb, &newsidtab);
2117 	if (rc) {
2118 		printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
2119 		policydb_destroy(newpolicydb);
2120 		goto out;
2121 	}
2122 
2123 	rc = selinux_set_mapping(newpolicydb, secclass_map, &map, &map_size);
2124 	if (rc)
2125 		goto err;
2126 
2127 	rc = security_preserve_bools(newpolicydb);
2128 	if (rc) {
2129 		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
2130 		goto err;
2131 	}
2132 
2133 	/* Clone the SID table. */
2134 	sidtab_shutdown(&sidtab);
2135 
2136 	rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
2137 	if (rc)
2138 		goto err;
2139 
2140 	/*
2141 	 * Convert the internal representations of contexts
2142 	 * in the new SID table.
2143 	 */
2144 	args.oldp = &policydb;
2145 	args.newp = newpolicydb;
2146 	rc = sidtab_map(&newsidtab, convert_context, &args);
2147 	if (rc) {
2148 		printk(KERN_ERR "SELinux:  unable to convert the internal"
2149 			" representation of contexts in the new SID"
2150 			" table\n");
2151 		goto err;
2152 	}
2153 
2154 	/* Save the old policydb and SID table to free later. */
2155 	memcpy(oldpolicydb, &policydb, sizeof(policydb));
2156 	sidtab_set(&oldsidtab, &sidtab);
2157 
2158 	/* Install the new policydb and SID table. */
2159 	write_lock_irq(&policy_rwlock);
2160 	memcpy(&policydb, newpolicydb, sizeof(policydb));
2161 	sidtab_set(&sidtab, &newsidtab);
2162 	security_load_policycaps();
2163 	oldmap = current_mapping;
2164 	current_mapping = map;
2165 	current_mapping_size = map_size;
2166 	seqno = ++latest_granting;
2167 	write_unlock_irq(&policy_rwlock);
2168 
2169 	/* Free the old policydb and SID table. */
2170 	policydb_destroy(oldpolicydb);
2171 	sidtab_destroy(&oldsidtab);
2172 	kfree(oldmap);
2173 
2174 	avc_ss_reset(seqno);
2175 	selnl_notify_policyload(seqno);
2176 	selinux_status_update_policyload(seqno);
2177 	selinux_netlbl_cache_invalidate();
2178 	selinux_xfrm_notify_policyload();
2179 
2180 	rc = 0;
2181 	goto out;
2182 
2183 err:
2184 	kfree(map);
2185 	sidtab_destroy(&newsidtab);
2186 	policydb_destroy(newpolicydb);
2187 
2188 out:
2189 	kfree(oldpolicydb);
2190 	return rc;
2191 }
2192 
2193 size_t security_policydb_len(void)
2194 {
2195 	size_t len;
2196 
2197 	read_lock(&policy_rwlock);
2198 	len = policydb.len;
2199 	read_unlock(&policy_rwlock);
2200 
2201 	return len;
2202 }
2203 
2204 /**
2205  * security_port_sid - Obtain the SID for a port.
2206  * @protocol: protocol number
2207  * @port: port number
2208  * @out_sid: security identifier
2209  */
2210 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
2211 {
2212 	struct ocontext *c;
2213 	int rc = 0;
2214 
2215 	read_lock(&policy_rwlock);
2216 
2217 	c = policydb.ocontexts[OCON_PORT];
2218 	while (c) {
2219 		if (c->u.port.protocol == protocol &&
2220 		    c->u.port.low_port <= port &&
2221 		    c->u.port.high_port >= port)
2222 			break;
2223 		c = c->next;
2224 	}
2225 
2226 	if (c) {
2227 		if (!c->sid[0]) {
2228 			rc = sidtab_context_to_sid(&sidtab,
2229 						   &c->context[0],
2230 						   &c->sid[0]);
2231 			if (rc)
2232 				goto out;
2233 		}
2234 		*out_sid = c->sid[0];
2235 	} else {
2236 		*out_sid = SECINITSID_PORT;
2237 	}
2238 
2239 out:
2240 	read_unlock(&policy_rwlock);
2241 	return rc;
2242 }
2243 
2244 /**
2245  * security_pkey_sid - Obtain the SID for a pkey.
2246  * @subnet_prefix: Subnet Prefix
2247  * @pkey_num: pkey number
2248  * @out_sid: security identifier
2249  */
2250 int security_ib_pkey_sid(u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2251 {
2252 	struct ocontext *c;
2253 	int rc = 0;
2254 
2255 	read_lock(&policy_rwlock);
2256 
2257 	c = policydb.ocontexts[OCON_IBPKEY];
2258 	while (c) {
2259 		if (c->u.ibpkey.low_pkey <= pkey_num &&
2260 		    c->u.ibpkey.high_pkey >= pkey_num &&
2261 		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2262 			break;
2263 
2264 		c = c->next;
2265 	}
2266 
2267 	if (c) {
2268 		if (!c->sid[0]) {
2269 			rc = sidtab_context_to_sid(&sidtab,
2270 						   &c->context[0],
2271 						   &c->sid[0]);
2272 			if (rc)
2273 				goto out;
2274 		}
2275 		*out_sid = c->sid[0];
2276 	} else
2277 		*out_sid = SECINITSID_UNLABELED;
2278 
2279 out:
2280 	read_unlock(&policy_rwlock);
2281 	return rc;
2282 }
2283 
2284 /**
2285  * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2286  * @dev_name: device name
2287  * @port: port number
2288  * @out_sid: security identifier
2289  */
2290 int security_ib_endport_sid(const char *dev_name, u8 port_num, u32 *out_sid)
2291 {
2292 	struct ocontext *c;
2293 	int rc = 0;
2294 
2295 	read_lock(&policy_rwlock);
2296 
2297 	c = policydb.ocontexts[OCON_IBENDPORT];
2298 	while (c) {
2299 		if (c->u.ibendport.port == port_num &&
2300 		    !strncmp(c->u.ibendport.dev_name,
2301 			     dev_name,
2302 			     IB_DEVICE_NAME_MAX))
2303 			break;
2304 
2305 		c = c->next;
2306 	}
2307 
2308 	if (c) {
2309 		if (!c->sid[0]) {
2310 			rc = sidtab_context_to_sid(&sidtab,
2311 						   &c->context[0],
2312 						   &c->sid[0]);
2313 			if (rc)
2314 				goto out;
2315 		}
2316 		*out_sid = c->sid[0];
2317 	} else
2318 		*out_sid = SECINITSID_UNLABELED;
2319 
2320 out:
2321 	read_unlock(&policy_rwlock);
2322 	return rc;
2323 }
2324 
2325 /**
2326  * security_netif_sid - Obtain the SID for a network interface.
2327  * @name: interface name
2328  * @if_sid: interface SID
2329  */
2330 int security_netif_sid(char *name, u32 *if_sid)
2331 {
2332 	int rc = 0;
2333 	struct ocontext *c;
2334 
2335 	read_lock(&policy_rwlock);
2336 
2337 	c = policydb.ocontexts[OCON_NETIF];
2338 	while (c) {
2339 		if (strcmp(name, c->u.name) == 0)
2340 			break;
2341 		c = c->next;
2342 	}
2343 
2344 	if (c) {
2345 		if (!c->sid[0] || !c->sid[1]) {
2346 			rc = sidtab_context_to_sid(&sidtab,
2347 						  &c->context[0],
2348 						  &c->sid[0]);
2349 			if (rc)
2350 				goto out;
2351 			rc = sidtab_context_to_sid(&sidtab,
2352 						   &c->context[1],
2353 						   &c->sid[1]);
2354 			if (rc)
2355 				goto out;
2356 		}
2357 		*if_sid = c->sid[0];
2358 	} else
2359 		*if_sid = SECINITSID_NETIF;
2360 
2361 out:
2362 	read_unlock(&policy_rwlock);
2363 	return rc;
2364 }
2365 
2366 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2367 {
2368 	int i, fail = 0;
2369 
2370 	for (i = 0; i < 4; i++)
2371 		if (addr[i] != (input[i] & mask[i])) {
2372 			fail = 1;
2373 			break;
2374 		}
2375 
2376 	return !fail;
2377 }
2378 
2379 /**
2380  * security_node_sid - Obtain the SID for a node (host).
2381  * @domain: communication domain aka address family
2382  * @addrp: address
2383  * @addrlen: address length in bytes
2384  * @out_sid: security identifier
2385  */
2386 int security_node_sid(u16 domain,
2387 		      void *addrp,
2388 		      u32 addrlen,
2389 		      u32 *out_sid)
2390 {
2391 	int rc;
2392 	struct ocontext *c;
2393 
2394 	read_lock(&policy_rwlock);
2395 
2396 	switch (domain) {
2397 	case AF_INET: {
2398 		u32 addr;
2399 
2400 		rc = -EINVAL;
2401 		if (addrlen != sizeof(u32))
2402 			goto out;
2403 
2404 		addr = *((u32 *)addrp);
2405 
2406 		c = policydb.ocontexts[OCON_NODE];
2407 		while (c) {
2408 			if (c->u.node.addr == (addr & c->u.node.mask))
2409 				break;
2410 			c = c->next;
2411 		}
2412 		break;
2413 	}
2414 
2415 	case AF_INET6:
2416 		rc = -EINVAL;
2417 		if (addrlen != sizeof(u64) * 2)
2418 			goto out;
2419 		c = policydb.ocontexts[OCON_NODE6];
2420 		while (c) {
2421 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2422 						c->u.node6.mask))
2423 				break;
2424 			c = c->next;
2425 		}
2426 		break;
2427 
2428 	default:
2429 		rc = 0;
2430 		*out_sid = SECINITSID_NODE;
2431 		goto out;
2432 	}
2433 
2434 	if (c) {
2435 		if (!c->sid[0]) {
2436 			rc = sidtab_context_to_sid(&sidtab,
2437 						   &c->context[0],
2438 						   &c->sid[0]);
2439 			if (rc)
2440 				goto out;
2441 		}
2442 		*out_sid = c->sid[0];
2443 	} else {
2444 		*out_sid = SECINITSID_NODE;
2445 	}
2446 
2447 	rc = 0;
2448 out:
2449 	read_unlock(&policy_rwlock);
2450 	return rc;
2451 }
2452 
2453 #define SIDS_NEL 25
2454 
2455 /**
2456  * security_get_user_sids - Obtain reachable SIDs for a user.
2457  * @fromsid: starting SID
2458  * @username: username
2459  * @sids: array of reachable SIDs for user
2460  * @nel: number of elements in @sids
2461  *
2462  * Generate the set of SIDs for legal security contexts
2463  * for a given user that can be reached by @fromsid.
2464  * Set *@sids to point to a dynamically allocated
2465  * array containing the set of SIDs.  Set *@nel to the
2466  * number of elements in the array.
2467  */
2468 
2469 int security_get_user_sids(u32 fromsid,
2470 			   char *username,
2471 			   u32 **sids,
2472 			   u32 *nel)
2473 {
2474 	struct context *fromcon, usercon;
2475 	u32 *mysids = NULL, *mysids2, sid;
2476 	u32 mynel = 0, maxnel = SIDS_NEL;
2477 	struct user_datum *user;
2478 	struct role_datum *role;
2479 	struct ebitmap_node *rnode, *tnode;
2480 	int rc = 0, i, j;
2481 
2482 	*sids = NULL;
2483 	*nel = 0;
2484 
2485 	if (!ss_initialized)
2486 		goto out;
2487 
2488 	read_lock(&policy_rwlock);
2489 
2490 	context_init(&usercon);
2491 
2492 	rc = -EINVAL;
2493 	fromcon = sidtab_search(&sidtab, fromsid);
2494 	if (!fromcon)
2495 		goto out_unlock;
2496 
2497 	rc = -EINVAL;
2498 	user = hashtab_search(policydb.p_users.table, username);
2499 	if (!user)
2500 		goto out_unlock;
2501 
2502 	usercon.user = user->value;
2503 
2504 	rc = -ENOMEM;
2505 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2506 	if (!mysids)
2507 		goto out_unlock;
2508 
2509 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2510 		role = policydb.role_val_to_struct[i];
2511 		usercon.role = i + 1;
2512 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2513 			usercon.type = j + 1;
2514 
2515 			if (mls_setup_user_range(fromcon, user, &usercon))
2516 				continue;
2517 
2518 			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2519 			if (rc)
2520 				goto out_unlock;
2521 			if (mynel < maxnel) {
2522 				mysids[mynel++] = sid;
2523 			} else {
2524 				rc = -ENOMEM;
2525 				maxnel += SIDS_NEL;
2526 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2527 				if (!mysids2)
2528 					goto out_unlock;
2529 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2530 				kfree(mysids);
2531 				mysids = mysids2;
2532 				mysids[mynel++] = sid;
2533 			}
2534 		}
2535 	}
2536 	rc = 0;
2537 out_unlock:
2538 	read_unlock(&policy_rwlock);
2539 	if (rc || !mynel) {
2540 		kfree(mysids);
2541 		goto out;
2542 	}
2543 
2544 	rc = -ENOMEM;
2545 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2546 	if (!mysids2) {
2547 		kfree(mysids);
2548 		goto out;
2549 	}
2550 	for (i = 0, j = 0; i < mynel; i++) {
2551 		struct av_decision dummy_avd;
2552 		rc = avc_has_perm_noaudit(fromsid, mysids[i],
2553 					  SECCLASS_PROCESS, /* kernel value */
2554 					  PROCESS__TRANSITION, AVC_STRICT,
2555 					  &dummy_avd);
2556 		if (!rc)
2557 			mysids2[j++] = mysids[i];
2558 		cond_resched();
2559 	}
2560 	rc = 0;
2561 	kfree(mysids);
2562 	*sids = mysids2;
2563 	*nel = j;
2564 out:
2565 	return rc;
2566 }
2567 
2568 /**
2569  * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2570  * @fstype: filesystem type
2571  * @path: path from root of mount
2572  * @sclass: file security class
2573  * @sid: SID for path
2574  *
2575  * Obtain a SID to use for a file in a filesystem that
2576  * cannot support xattr or use a fixed labeling behavior like
2577  * transition SIDs or task SIDs.
2578  *
2579  * The caller must acquire the policy_rwlock before calling this function.
2580  */
2581 static inline int __security_genfs_sid(const char *fstype,
2582 				       char *path,
2583 				       u16 orig_sclass,
2584 				       u32 *sid)
2585 {
2586 	int len;
2587 	u16 sclass;
2588 	struct genfs *genfs;
2589 	struct ocontext *c;
2590 	int rc, cmp = 0;
2591 
2592 	while (path[0] == '/' && path[1] == '/')
2593 		path++;
2594 
2595 	sclass = unmap_class(orig_sclass);
2596 	*sid = SECINITSID_UNLABELED;
2597 
2598 	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2599 		cmp = strcmp(fstype, genfs->fstype);
2600 		if (cmp <= 0)
2601 			break;
2602 	}
2603 
2604 	rc = -ENOENT;
2605 	if (!genfs || cmp)
2606 		goto out;
2607 
2608 	for (c = genfs->head; c; c = c->next) {
2609 		len = strlen(c->u.name);
2610 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2611 		    (strncmp(c->u.name, path, len) == 0))
2612 			break;
2613 	}
2614 
2615 	rc = -ENOENT;
2616 	if (!c)
2617 		goto out;
2618 
2619 	if (!c->sid[0]) {
2620 		rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2621 		if (rc)
2622 			goto out;
2623 	}
2624 
2625 	*sid = c->sid[0];
2626 	rc = 0;
2627 out:
2628 	return rc;
2629 }
2630 
2631 /**
2632  * security_genfs_sid - Obtain a SID for a file in a filesystem
2633  * @fstype: filesystem type
2634  * @path: path from root of mount
2635  * @sclass: file security class
2636  * @sid: SID for path
2637  *
2638  * Acquire policy_rwlock before calling __security_genfs_sid() and release
2639  * it afterward.
2640  */
2641 int security_genfs_sid(const char *fstype,
2642 		       char *path,
2643 		       u16 orig_sclass,
2644 		       u32 *sid)
2645 {
2646 	int retval;
2647 
2648 	read_lock(&policy_rwlock);
2649 	retval = __security_genfs_sid(fstype, path, orig_sclass, sid);
2650 	read_unlock(&policy_rwlock);
2651 	return retval;
2652 }
2653 
2654 /**
2655  * security_fs_use - Determine how to handle labeling for a filesystem.
2656  * @sb: superblock in question
2657  */
2658 int security_fs_use(struct super_block *sb)
2659 {
2660 	int rc = 0;
2661 	struct ocontext *c;
2662 	struct superblock_security_struct *sbsec = sb->s_security;
2663 	const char *fstype = sb->s_type->name;
2664 
2665 	read_lock(&policy_rwlock);
2666 
2667 	c = policydb.ocontexts[OCON_FSUSE];
2668 	while (c) {
2669 		if (strcmp(fstype, c->u.name) == 0)
2670 			break;
2671 		c = c->next;
2672 	}
2673 
2674 	if (c) {
2675 		sbsec->behavior = c->v.behavior;
2676 		if (!c->sid[0]) {
2677 			rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2678 						   &c->sid[0]);
2679 			if (rc)
2680 				goto out;
2681 		}
2682 		sbsec->sid = c->sid[0];
2683 	} else {
2684 		rc = __security_genfs_sid(fstype, "/", SECCLASS_DIR,
2685 					  &sbsec->sid);
2686 		if (rc) {
2687 			sbsec->behavior = SECURITY_FS_USE_NONE;
2688 			rc = 0;
2689 		} else {
2690 			sbsec->behavior = SECURITY_FS_USE_GENFS;
2691 		}
2692 	}
2693 
2694 out:
2695 	read_unlock(&policy_rwlock);
2696 	return rc;
2697 }
2698 
2699 int security_get_bools(int *len, char ***names, int **values)
2700 {
2701 	int i, rc;
2702 
2703 	read_lock(&policy_rwlock);
2704 	*names = NULL;
2705 	*values = NULL;
2706 
2707 	rc = 0;
2708 	*len = policydb.p_bools.nprim;
2709 	if (!*len)
2710 		goto out;
2711 
2712 	rc = -ENOMEM;
2713 	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2714 	if (!*names)
2715 		goto err;
2716 
2717 	rc = -ENOMEM;
2718 	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2719 	if (!*values)
2720 		goto err;
2721 
2722 	for (i = 0; i < *len; i++) {
2723 		(*values)[i] = policydb.bool_val_to_struct[i]->state;
2724 
2725 		rc = -ENOMEM;
2726 		(*names)[i] = kstrdup(sym_name(&policydb, SYM_BOOLS, i), GFP_ATOMIC);
2727 		if (!(*names)[i])
2728 			goto err;
2729 	}
2730 	rc = 0;
2731 out:
2732 	read_unlock(&policy_rwlock);
2733 	return rc;
2734 err:
2735 	if (*names) {
2736 		for (i = 0; i < *len; i++)
2737 			kfree((*names)[i]);
2738 	}
2739 	kfree(*values);
2740 	goto out;
2741 }
2742 
2743 
2744 int security_set_bools(int len, int *values)
2745 {
2746 	int i, rc;
2747 	int lenp, seqno = 0;
2748 	struct cond_node *cur;
2749 
2750 	write_lock_irq(&policy_rwlock);
2751 
2752 	rc = -EFAULT;
2753 	lenp = policydb.p_bools.nprim;
2754 	if (len != lenp)
2755 		goto out;
2756 
2757 	for (i = 0; i < len; i++) {
2758 		if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2759 			audit_log(current->audit_context, GFP_ATOMIC,
2760 				AUDIT_MAC_CONFIG_CHANGE,
2761 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2762 				sym_name(&policydb, SYM_BOOLS, i),
2763 				!!values[i],
2764 				policydb.bool_val_to_struct[i]->state,
2765 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
2766 				audit_get_sessionid(current));
2767 		}
2768 		if (values[i])
2769 			policydb.bool_val_to_struct[i]->state = 1;
2770 		else
2771 			policydb.bool_val_to_struct[i]->state = 0;
2772 	}
2773 
2774 	for (cur = policydb.cond_list; cur; cur = cur->next) {
2775 		rc = evaluate_cond_node(&policydb, cur);
2776 		if (rc)
2777 			goto out;
2778 	}
2779 
2780 	seqno = ++latest_granting;
2781 	rc = 0;
2782 out:
2783 	write_unlock_irq(&policy_rwlock);
2784 	if (!rc) {
2785 		avc_ss_reset(seqno);
2786 		selnl_notify_policyload(seqno);
2787 		selinux_status_update_policyload(seqno);
2788 		selinux_xfrm_notify_policyload();
2789 	}
2790 	return rc;
2791 }
2792 
2793 int security_get_bool_value(int index)
2794 {
2795 	int rc;
2796 	int len;
2797 
2798 	read_lock(&policy_rwlock);
2799 
2800 	rc = -EFAULT;
2801 	len = policydb.p_bools.nprim;
2802 	if (index >= len)
2803 		goto out;
2804 
2805 	rc = policydb.bool_val_to_struct[index]->state;
2806 out:
2807 	read_unlock(&policy_rwlock);
2808 	return rc;
2809 }
2810 
2811 static int security_preserve_bools(struct policydb *p)
2812 {
2813 	int rc, nbools = 0, *bvalues = NULL, i;
2814 	char **bnames = NULL;
2815 	struct cond_bool_datum *booldatum;
2816 	struct cond_node *cur;
2817 
2818 	rc = security_get_bools(&nbools, &bnames, &bvalues);
2819 	if (rc)
2820 		goto out;
2821 	for (i = 0; i < nbools; i++) {
2822 		booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2823 		if (booldatum)
2824 			booldatum->state = bvalues[i];
2825 	}
2826 	for (cur = p->cond_list; cur; cur = cur->next) {
2827 		rc = evaluate_cond_node(p, cur);
2828 		if (rc)
2829 			goto out;
2830 	}
2831 
2832 out:
2833 	if (bnames) {
2834 		for (i = 0; i < nbools; i++)
2835 			kfree(bnames[i]);
2836 	}
2837 	kfree(bnames);
2838 	kfree(bvalues);
2839 	return rc;
2840 }
2841 
2842 /*
2843  * security_sid_mls_copy() - computes a new sid based on the given
2844  * sid and the mls portion of mls_sid.
2845  */
2846 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2847 {
2848 	struct context *context1;
2849 	struct context *context2;
2850 	struct context newcon;
2851 	char *s;
2852 	u32 len;
2853 	int rc;
2854 
2855 	rc = 0;
2856 	if (!ss_initialized || !policydb.mls_enabled) {
2857 		*new_sid = sid;
2858 		goto out;
2859 	}
2860 
2861 	context_init(&newcon);
2862 
2863 	read_lock(&policy_rwlock);
2864 
2865 	rc = -EINVAL;
2866 	context1 = sidtab_search(&sidtab, sid);
2867 	if (!context1) {
2868 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2869 			__func__, sid);
2870 		goto out_unlock;
2871 	}
2872 
2873 	rc = -EINVAL;
2874 	context2 = sidtab_search(&sidtab, mls_sid);
2875 	if (!context2) {
2876 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2877 			__func__, mls_sid);
2878 		goto out_unlock;
2879 	}
2880 
2881 	newcon.user = context1->user;
2882 	newcon.role = context1->role;
2883 	newcon.type = context1->type;
2884 	rc = mls_context_cpy(&newcon, context2);
2885 	if (rc)
2886 		goto out_unlock;
2887 
2888 	/* Check the validity of the new context. */
2889 	if (!policydb_context_isvalid(&policydb, &newcon)) {
2890 		rc = convert_context_handle_invalid_context(&newcon);
2891 		if (rc) {
2892 			if (!context_struct_to_string(&newcon, &s, &len)) {
2893 				audit_log(current->audit_context,
2894 					  GFP_ATOMIC, AUDIT_SELINUX_ERR,
2895 					  "op=security_sid_mls_copy "
2896 					  "invalid_context=%s", s);
2897 				kfree(s);
2898 			}
2899 			goto out_unlock;
2900 		}
2901 	}
2902 
2903 	rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2904 out_unlock:
2905 	read_unlock(&policy_rwlock);
2906 	context_destroy(&newcon);
2907 out:
2908 	return rc;
2909 }
2910 
2911 /**
2912  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2913  * @nlbl_sid: NetLabel SID
2914  * @nlbl_type: NetLabel labeling protocol type
2915  * @xfrm_sid: XFRM SID
2916  *
2917  * Description:
2918  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2919  * resolved into a single SID it is returned via @peer_sid and the function
2920  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2921  * returns a negative value.  A table summarizing the behavior is below:
2922  *
2923  *                                 | function return |      @sid
2924  *   ------------------------------+-----------------+-----------------
2925  *   no peer labels                |        0        |    SECSID_NULL
2926  *   single peer label             |        0        |    <peer_label>
2927  *   multiple, consistent labels   |        0        |    <peer_label>
2928  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2929  *
2930  */
2931 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2932 				 u32 xfrm_sid,
2933 				 u32 *peer_sid)
2934 {
2935 	int rc;
2936 	struct context *nlbl_ctx;
2937 	struct context *xfrm_ctx;
2938 
2939 	*peer_sid = SECSID_NULL;
2940 
2941 	/* handle the common (which also happens to be the set of easy) cases
2942 	 * right away, these two if statements catch everything involving a
2943 	 * single or absent peer SID/label */
2944 	if (xfrm_sid == SECSID_NULL) {
2945 		*peer_sid = nlbl_sid;
2946 		return 0;
2947 	}
2948 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2949 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2950 	 * is present */
2951 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2952 		*peer_sid = xfrm_sid;
2953 		return 0;
2954 	}
2955 
2956 	/* we don't need to check ss_initialized here since the only way both
2957 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2958 	 * security server was initialized and ss_initialized was true */
2959 	if (!policydb.mls_enabled)
2960 		return 0;
2961 
2962 	read_lock(&policy_rwlock);
2963 
2964 	rc = -EINVAL;
2965 	nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2966 	if (!nlbl_ctx) {
2967 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2968 		       __func__, nlbl_sid);
2969 		goto out;
2970 	}
2971 	rc = -EINVAL;
2972 	xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2973 	if (!xfrm_ctx) {
2974 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2975 		       __func__, xfrm_sid);
2976 		goto out;
2977 	}
2978 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2979 	if (rc)
2980 		goto out;
2981 
2982 	/* at present NetLabel SIDs/labels really only carry MLS
2983 	 * information so if the MLS portion of the NetLabel SID
2984 	 * matches the MLS portion of the labeled XFRM SID/label
2985 	 * then pass along the XFRM SID as it is the most
2986 	 * expressive */
2987 	*peer_sid = xfrm_sid;
2988 out:
2989 	read_unlock(&policy_rwlock);
2990 	return rc;
2991 }
2992 
2993 static int get_classes_callback(void *k, void *d, void *args)
2994 {
2995 	struct class_datum *datum = d;
2996 	char *name = k, **classes = args;
2997 	int value = datum->value - 1;
2998 
2999 	classes[value] = kstrdup(name, GFP_ATOMIC);
3000 	if (!classes[value])
3001 		return -ENOMEM;
3002 
3003 	return 0;
3004 }
3005 
3006 int security_get_classes(char ***classes, int *nclasses)
3007 {
3008 	int rc;
3009 
3010 	read_lock(&policy_rwlock);
3011 
3012 	rc = -ENOMEM;
3013 	*nclasses = policydb.p_classes.nprim;
3014 	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3015 	if (!*classes)
3016 		goto out;
3017 
3018 	rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
3019 			*classes);
3020 	if (rc) {
3021 		int i;
3022 		for (i = 0; i < *nclasses; i++)
3023 			kfree((*classes)[i]);
3024 		kfree(*classes);
3025 	}
3026 
3027 out:
3028 	read_unlock(&policy_rwlock);
3029 	return rc;
3030 }
3031 
3032 static int get_permissions_callback(void *k, void *d, void *args)
3033 {
3034 	struct perm_datum *datum = d;
3035 	char *name = k, **perms = args;
3036 	int value = datum->value - 1;
3037 
3038 	perms[value] = kstrdup(name, GFP_ATOMIC);
3039 	if (!perms[value])
3040 		return -ENOMEM;
3041 
3042 	return 0;
3043 }
3044 
3045 int security_get_permissions(char *class, char ***perms, int *nperms)
3046 {
3047 	int rc, i;
3048 	struct class_datum *match;
3049 
3050 	read_lock(&policy_rwlock);
3051 
3052 	rc = -EINVAL;
3053 	match = hashtab_search(policydb.p_classes.table, class);
3054 	if (!match) {
3055 		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
3056 			__func__, class);
3057 		goto out;
3058 	}
3059 
3060 	rc = -ENOMEM;
3061 	*nperms = match->permissions.nprim;
3062 	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3063 	if (!*perms)
3064 		goto out;
3065 
3066 	if (match->comdatum) {
3067 		rc = hashtab_map(match->comdatum->permissions.table,
3068 				get_permissions_callback, *perms);
3069 		if (rc)
3070 			goto err;
3071 	}
3072 
3073 	rc = hashtab_map(match->permissions.table, get_permissions_callback,
3074 			*perms);
3075 	if (rc)
3076 		goto err;
3077 
3078 out:
3079 	read_unlock(&policy_rwlock);
3080 	return rc;
3081 
3082 err:
3083 	read_unlock(&policy_rwlock);
3084 	for (i = 0; i < *nperms; i++)
3085 		kfree((*perms)[i]);
3086 	kfree(*perms);
3087 	return rc;
3088 }
3089 
3090 int security_get_reject_unknown(void)
3091 {
3092 	return policydb.reject_unknown;
3093 }
3094 
3095 int security_get_allow_unknown(void)
3096 {
3097 	return policydb.allow_unknown;
3098 }
3099 
3100 /**
3101  * security_policycap_supported - Check for a specific policy capability
3102  * @req_cap: capability
3103  *
3104  * Description:
3105  * This function queries the currently loaded policy to see if it supports the
3106  * capability specified by @req_cap.  Returns true (1) if the capability is
3107  * supported, false (0) if it isn't supported.
3108  *
3109  */
3110 int security_policycap_supported(unsigned int req_cap)
3111 {
3112 	int rc;
3113 
3114 	read_lock(&policy_rwlock);
3115 	rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
3116 	read_unlock(&policy_rwlock);
3117 
3118 	return rc;
3119 }
3120 
3121 struct selinux_audit_rule {
3122 	u32 au_seqno;
3123 	struct context au_ctxt;
3124 };
3125 
3126 void selinux_audit_rule_free(void *vrule)
3127 {
3128 	struct selinux_audit_rule *rule = vrule;
3129 
3130 	if (rule) {
3131 		context_destroy(&rule->au_ctxt);
3132 		kfree(rule);
3133 	}
3134 }
3135 
3136 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3137 {
3138 	struct selinux_audit_rule *tmprule;
3139 	struct role_datum *roledatum;
3140 	struct type_datum *typedatum;
3141 	struct user_datum *userdatum;
3142 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3143 	int rc = 0;
3144 
3145 	*rule = NULL;
3146 
3147 	if (!ss_initialized)
3148 		return -EOPNOTSUPP;
3149 
3150 	switch (field) {
3151 	case AUDIT_SUBJ_USER:
3152 	case AUDIT_SUBJ_ROLE:
3153 	case AUDIT_SUBJ_TYPE:
3154 	case AUDIT_OBJ_USER:
3155 	case AUDIT_OBJ_ROLE:
3156 	case AUDIT_OBJ_TYPE:
3157 		/* only 'equals' and 'not equals' fit user, role, and type */
3158 		if (op != Audit_equal && op != Audit_not_equal)
3159 			return -EINVAL;
3160 		break;
3161 	case AUDIT_SUBJ_SEN:
3162 	case AUDIT_SUBJ_CLR:
3163 	case AUDIT_OBJ_LEV_LOW:
3164 	case AUDIT_OBJ_LEV_HIGH:
3165 		/* we do not allow a range, indicated by the presence of '-' */
3166 		if (strchr(rulestr, '-'))
3167 			return -EINVAL;
3168 		break;
3169 	default:
3170 		/* only the above fields are valid */
3171 		return -EINVAL;
3172 	}
3173 
3174 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3175 	if (!tmprule)
3176 		return -ENOMEM;
3177 
3178 	context_init(&tmprule->au_ctxt);
3179 
3180 	read_lock(&policy_rwlock);
3181 
3182 	tmprule->au_seqno = latest_granting;
3183 
3184 	switch (field) {
3185 	case AUDIT_SUBJ_USER:
3186 	case AUDIT_OBJ_USER:
3187 		rc = -EINVAL;
3188 		userdatum = hashtab_search(policydb.p_users.table, rulestr);
3189 		if (!userdatum)
3190 			goto out;
3191 		tmprule->au_ctxt.user = userdatum->value;
3192 		break;
3193 	case AUDIT_SUBJ_ROLE:
3194 	case AUDIT_OBJ_ROLE:
3195 		rc = -EINVAL;
3196 		roledatum = hashtab_search(policydb.p_roles.table, rulestr);
3197 		if (!roledatum)
3198 			goto out;
3199 		tmprule->au_ctxt.role = roledatum->value;
3200 		break;
3201 	case AUDIT_SUBJ_TYPE:
3202 	case AUDIT_OBJ_TYPE:
3203 		rc = -EINVAL;
3204 		typedatum = hashtab_search(policydb.p_types.table, rulestr);
3205 		if (!typedatum)
3206 			goto out;
3207 		tmprule->au_ctxt.type = typedatum->value;
3208 		break;
3209 	case AUDIT_SUBJ_SEN:
3210 	case AUDIT_SUBJ_CLR:
3211 	case AUDIT_OBJ_LEV_LOW:
3212 	case AUDIT_OBJ_LEV_HIGH:
3213 		rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
3214 		if (rc)
3215 			goto out;
3216 		break;
3217 	}
3218 	rc = 0;
3219 out:
3220 	read_unlock(&policy_rwlock);
3221 
3222 	if (rc) {
3223 		selinux_audit_rule_free(tmprule);
3224 		tmprule = NULL;
3225 	}
3226 
3227 	*rule = tmprule;
3228 
3229 	return rc;
3230 }
3231 
3232 /* Check to see if the rule contains any selinux fields */
3233 int selinux_audit_rule_known(struct audit_krule *rule)
3234 {
3235 	int i;
3236 
3237 	for (i = 0; i < rule->field_count; i++) {
3238 		struct audit_field *f = &rule->fields[i];
3239 		switch (f->type) {
3240 		case AUDIT_SUBJ_USER:
3241 		case AUDIT_SUBJ_ROLE:
3242 		case AUDIT_SUBJ_TYPE:
3243 		case AUDIT_SUBJ_SEN:
3244 		case AUDIT_SUBJ_CLR:
3245 		case AUDIT_OBJ_USER:
3246 		case AUDIT_OBJ_ROLE:
3247 		case AUDIT_OBJ_TYPE:
3248 		case AUDIT_OBJ_LEV_LOW:
3249 		case AUDIT_OBJ_LEV_HIGH:
3250 			return 1;
3251 		}
3252 	}
3253 
3254 	return 0;
3255 }
3256 
3257 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
3258 			     struct audit_context *actx)
3259 {
3260 	struct context *ctxt;
3261 	struct mls_level *level;
3262 	struct selinux_audit_rule *rule = vrule;
3263 	int match = 0;
3264 
3265 	if (unlikely(!rule)) {
3266 		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3267 		return -ENOENT;
3268 	}
3269 
3270 	read_lock(&policy_rwlock);
3271 
3272 	if (rule->au_seqno < latest_granting) {
3273 		match = -ESTALE;
3274 		goto out;
3275 	}
3276 
3277 	ctxt = sidtab_search(&sidtab, sid);
3278 	if (unlikely(!ctxt)) {
3279 		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3280 			  sid);
3281 		match = -ENOENT;
3282 		goto out;
3283 	}
3284 
3285 	/* a field/op pair that is not caught here will simply fall through
3286 	   without a match */
3287 	switch (field) {
3288 	case AUDIT_SUBJ_USER:
3289 	case AUDIT_OBJ_USER:
3290 		switch (op) {
3291 		case Audit_equal:
3292 			match = (ctxt->user == rule->au_ctxt.user);
3293 			break;
3294 		case Audit_not_equal:
3295 			match = (ctxt->user != rule->au_ctxt.user);
3296 			break;
3297 		}
3298 		break;
3299 	case AUDIT_SUBJ_ROLE:
3300 	case AUDIT_OBJ_ROLE:
3301 		switch (op) {
3302 		case Audit_equal:
3303 			match = (ctxt->role == rule->au_ctxt.role);
3304 			break;
3305 		case Audit_not_equal:
3306 			match = (ctxt->role != rule->au_ctxt.role);
3307 			break;
3308 		}
3309 		break;
3310 	case AUDIT_SUBJ_TYPE:
3311 	case AUDIT_OBJ_TYPE:
3312 		switch (op) {
3313 		case Audit_equal:
3314 			match = (ctxt->type == rule->au_ctxt.type);
3315 			break;
3316 		case Audit_not_equal:
3317 			match = (ctxt->type != rule->au_ctxt.type);
3318 			break;
3319 		}
3320 		break;
3321 	case AUDIT_SUBJ_SEN:
3322 	case AUDIT_SUBJ_CLR:
3323 	case AUDIT_OBJ_LEV_LOW:
3324 	case AUDIT_OBJ_LEV_HIGH:
3325 		level = ((field == AUDIT_SUBJ_SEN ||
3326 			  field == AUDIT_OBJ_LEV_LOW) ?
3327 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3328 		switch (op) {
3329 		case Audit_equal:
3330 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3331 					     level);
3332 			break;
3333 		case Audit_not_equal:
3334 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3335 					      level);
3336 			break;
3337 		case Audit_lt:
3338 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3339 					       level) &&
3340 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3341 					       level));
3342 			break;
3343 		case Audit_le:
3344 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3345 					      level);
3346 			break;
3347 		case Audit_gt:
3348 			match = (mls_level_dom(level,
3349 					      &rule->au_ctxt.range.level[0]) &&
3350 				 !mls_level_eq(level,
3351 					       &rule->au_ctxt.range.level[0]));
3352 			break;
3353 		case Audit_ge:
3354 			match = mls_level_dom(level,
3355 					      &rule->au_ctxt.range.level[0]);
3356 			break;
3357 		}
3358 	}
3359 
3360 out:
3361 	read_unlock(&policy_rwlock);
3362 	return match;
3363 }
3364 
3365 static int (*aurule_callback)(void) = audit_update_lsm_rules;
3366 
3367 static int aurule_avc_callback(u32 event)
3368 {
3369 	int err = 0;
3370 
3371 	if (event == AVC_CALLBACK_RESET && aurule_callback)
3372 		err = aurule_callback();
3373 	return err;
3374 }
3375 
3376 static int __init aurule_init(void)
3377 {
3378 	int err;
3379 
3380 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3381 	if (err)
3382 		panic("avc_add_callback() failed, error %d\n", err);
3383 
3384 	return err;
3385 }
3386 __initcall(aurule_init);
3387 
3388 #ifdef CONFIG_NETLABEL
3389 /**
3390  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3391  * @secattr: the NetLabel packet security attributes
3392  * @sid: the SELinux SID
3393  *
3394  * Description:
3395  * Attempt to cache the context in @ctx, which was derived from the packet in
3396  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3397  * already been initialized.
3398  *
3399  */
3400 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3401 				      u32 sid)
3402 {
3403 	u32 *sid_cache;
3404 
3405 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3406 	if (sid_cache == NULL)
3407 		return;
3408 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3409 	if (secattr->cache == NULL) {
3410 		kfree(sid_cache);
3411 		return;
3412 	}
3413 
3414 	*sid_cache = sid;
3415 	secattr->cache->free = kfree;
3416 	secattr->cache->data = sid_cache;
3417 	secattr->flags |= NETLBL_SECATTR_CACHE;
3418 }
3419 
3420 /**
3421  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3422  * @secattr: the NetLabel packet security attributes
3423  * @sid: the SELinux SID
3424  *
3425  * Description:
3426  * Convert the given NetLabel security attributes in @secattr into a
3427  * SELinux SID.  If the @secattr field does not contain a full SELinux
3428  * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3429  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3430  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3431  * conversion for future lookups.  Returns zero on success, negative values on
3432  * failure.
3433  *
3434  */
3435 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3436 				   u32 *sid)
3437 {
3438 	int rc;
3439 	struct context *ctx;
3440 	struct context ctx_new;
3441 
3442 	if (!ss_initialized) {
3443 		*sid = SECSID_NULL;
3444 		return 0;
3445 	}
3446 
3447 	read_lock(&policy_rwlock);
3448 
3449 	if (secattr->flags & NETLBL_SECATTR_CACHE)
3450 		*sid = *(u32 *)secattr->cache->data;
3451 	else if (secattr->flags & NETLBL_SECATTR_SECID)
3452 		*sid = secattr->attr.secid;
3453 	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3454 		rc = -EIDRM;
3455 		ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3456 		if (ctx == NULL)
3457 			goto out;
3458 
3459 		context_init(&ctx_new);
3460 		ctx_new.user = ctx->user;
3461 		ctx_new.role = ctx->role;
3462 		ctx_new.type = ctx->type;
3463 		mls_import_netlbl_lvl(&ctx_new, secattr);
3464 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3465 			rc = mls_import_netlbl_cat(&ctx_new, secattr);
3466 			if (rc)
3467 				goto out;
3468 		}
3469 		rc = -EIDRM;
3470 		if (!mls_context_isvalid(&policydb, &ctx_new))
3471 			goto out_free;
3472 
3473 		rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3474 		if (rc)
3475 			goto out_free;
3476 
3477 		security_netlbl_cache_add(secattr, *sid);
3478 
3479 		ebitmap_destroy(&ctx_new.range.level[0].cat);
3480 	} else
3481 		*sid = SECSID_NULL;
3482 
3483 	read_unlock(&policy_rwlock);
3484 	return 0;
3485 out_free:
3486 	ebitmap_destroy(&ctx_new.range.level[0].cat);
3487 out:
3488 	read_unlock(&policy_rwlock);
3489 	return rc;
3490 }
3491 
3492 /**
3493  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3494  * @sid: the SELinux SID
3495  * @secattr: the NetLabel packet security attributes
3496  *
3497  * Description:
3498  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3499  * Returns zero on success, negative values on failure.
3500  *
3501  */
3502 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3503 {
3504 	int rc;
3505 	struct context *ctx;
3506 
3507 	if (!ss_initialized)
3508 		return 0;
3509 
3510 	read_lock(&policy_rwlock);
3511 
3512 	rc = -ENOENT;
3513 	ctx = sidtab_search(&sidtab, sid);
3514 	if (ctx == NULL)
3515 		goto out;
3516 
3517 	rc = -ENOMEM;
3518 	secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3519 				  GFP_ATOMIC);
3520 	if (secattr->domain == NULL)
3521 		goto out;
3522 
3523 	secattr->attr.secid = sid;
3524 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3525 	mls_export_netlbl_lvl(ctx, secattr);
3526 	rc = mls_export_netlbl_cat(ctx, secattr);
3527 out:
3528 	read_unlock(&policy_rwlock);
3529 	return rc;
3530 }
3531 #endif /* CONFIG_NETLABEL */
3532 
3533 /**
3534  * security_read_policy - read the policy.
3535  * @data: binary policy data
3536  * @len: length of data in bytes
3537  *
3538  */
3539 int security_read_policy(void **data, size_t *len)
3540 {
3541 	int rc;
3542 	struct policy_file fp;
3543 
3544 	if (!ss_initialized)
3545 		return -EINVAL;
3546 
3547 	*len = security_policydb_len();
3548 
3549 	*data = vmalloc_user(*len);
3550 	if (!*data)
3551 		return -ENOMEM;
3552 
3553 	fp.data = *data;
3554 	fp.len = *len;
3555 
3556 	read_lock(&policy_rwlock);
3557 	rc = policydb_write(&policydb, &fp);
3558 	read_unlock(&policy_rwlock);
3559 
3560 	if (rc)
3561 		return rc;
3562 
3563 	*len = (unsigned long)fp.data - (unsigned long)*data;
3564 	return 0;
3565 
3566 }
3567