xref: /openbmc/linux/security/selinux/ss/services.c (revision 8b0adbe3e38dbe5aae9edf6f5159ffdca7cfbdf1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Implementation of the security services.
4  *
5  * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
6  *	     James Morris <jmorris@redhat.com>
7  *
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *	Support for enhanced MLS infrastructure.
11  *	Support for context based audit filters.
12  *
13  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14  *
15  *	Added conditional policy language extensions
16  *
17  * Updated: Hewlett-Packard <paul@paul-moore.com>
18  *
19  *      Added support for NetLabel
20  *      Added support for the policy capability bitmap
21  *
22  * Updated: Chad Sellers <csellers@tresys.com>
23  *
24  *  Added validation of kernel classes and permissions
25  *
26  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27  *
28  *  Added support for bounds domain and audit messaged on masked permissions
29  *
30  * Updated: Guido Trentalancia <guido@trentalancia.com>
31  *
32  *  Added support for runtime switching of the policy type
33  *
34  * Copyright (C) 2008, 2009 NEC Corporation
35  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39  */
40 #include <linux/kernel.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/errno.h>
46 #include <linux/in.h>
47 #include <linux/sched.h>
48 #include <linux/audit.h>
49 #include <linux/vmalloc.h>
50 #include <net/netlabel.h>
51 
52 #include "flask.h"
53 #include "avc.h"
54 #include "avc_ss.h"
55 #include "security.h"
56 #include "context.h"
57 #include "policydb.h"
58 #include "sidtab.h"
59 #include "services.h"
60 #include "conditional.h"
61 #include "mls.h"
62 #include "objsec.h"
63 #include "netlabel.h"
64 #include "xfrm.h"
65 #include "ebitmap.h"
66 #include "audit.h"
67 #include "policycap_names.h"
68 #include "ima.h"
69 
70 struct convert_context_args {
71 	struct selinux_state *state;
72 	struct policydb *oldp;
73 	struct policydb *newp;
74 };
75 
76 struct selinux_policy_convert_data {
77 	struct convert_context_args args;
78 	struct sidtab_convert_params sidtab_params;
79 };
80 
81 /* Forward declaration. */
82 static int context_struct_to_string(struct policydb *policydb,
83 				    struct context *context,
84 				    char **scontext,
85 				    u32 *scontext_len);
86 
87 static int sidtab_entry_to_string(struct policydb *policydb,
88 				  struct sidtab *sidtab,
89 				  struct sidtab_entry *entry,
90 				  char **scontext,
91 				  u32 *scontext_len);
92 
93 static void context_struct_compute_av(struct policydb *policydb,
94 				      struct context *scontext,
95 				      struct context *tcontext,
96 				      u16 tclass,
97 				      struct av_decision *avd,
98 				      struct extended_perms *xperms);
99 
100 static int selinux_set_mapping(struct policydb *pol,
101 			       struct security_class_mapping *map,
102 			       struct selinux_map *out_map)
103 {
104 	u16 i, j;
105 	unsigned k;
106 	bool print_unknown_handle = false;
107 
108 	/* Find number of classes in the input mapping */
109 	if (!map)
110 		return -EINVAL;
111 	i = 0;
112 	while (map[i].name)
113 		i++;
114 
115 	/* Allocate space for the class records, plus one for class zero */
116 	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
117 	if (!out_map->mapping)
118 		return -ENOMEM;
119 
120 	/* Store the raw class and permission values */
121 	j = 0;
122 	while (map[j].name) {
123 		struct security_class_mapping *p_in = map + (j++);
124 		struct selinux_mapping *p_out = out_map->mapping + j;
125 
126 		/* An empty class string skips ahead */
127 		if (!strcmp(p_in->name, "")) {
128 			p_out->num_perms = 0;
129 			continue;
130 		}
131 
132 		p_out->value = string_to_security_class(pol, p_in->name);
133 		if (!p_out->value) {
134 			pr_info("SELinux:  Class %s not defined in policy.\n",
135 			       p_in->name);
136 			if (pol->reject_unknown)
137 				goto err;
138 			p_out->num_perms = 0;
139 			print_unknown_handle = true;
140 			continue;
141 		}
142 
143 		k = 0;
144 		while (p_in->perms[k]) {
145 			/* An empty permission string skips ahead */
146 			if (!*p_in->perms[k]) {
147 				k++;
148 				continue;
149 			}
150 			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
151 							    p_in->perms[k]);
152 			if (!p_out->perms[k]) {
153 				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
154 				       p_in->perms[k], p_in->name);
155 				if (pol->reject_unknown)
156 					goto err;
157 				print_unknown_handle = true;
158 			}
159 
160 			k++;
161 		}
162 		p_out->num_perms = k;
163 	}
164 
165 	if (print_unknown_handle)
166 		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
167 		       pol->allow_unknown ? "allowed" : "denied");
168 
169 	out_map->size = i;
170 	return 0;
171 err:
172 	kfree(out_map->mapping);
173 	out_map->mapping = NULL;
174 	return -EINVAL;
175 }
176 
177 /*
178  * Get real, policy values from mapped values
179  */
180 
181 static u16 unmap_class(struct selinux_map *map, u16 tclass)
182 {
183 	if (tclass < map->size)
184 		return map->mapping[tclass].value;
185 
186 	return tclass;
187 }
188 
189 /*
190  * Get kernel value for class from its policy value
191  */
192 static u16 map_class(struct selinux_map *map, u16 pol_value)
193 {
194 	u16 i;
195 
196 	for (i = 1; i < map->size; i++) {
197 		if (map->mapping[i].value == pol_value)
198 			return i;
199 	}
200 
201 	return SECCLASS_NULL;
202 }
203 
204 static void map_decision(struct selinux_map *map,
205 			 u16 tclass, struct av_decision *avd,
206 			 int allow_unknown)
207 {
208 	if (tclass < map->size) {
209 		struct selinux_mapping *mapping = &map->mapping[tclass];
210 		unsigned int i, n = mapping->num_perms;
211 		u32 result;
212 
213 		for (i = 0, result = 0; i < n; i++) {
214 			if (avd->allowed & mapping->perms[i])
215 				result |= 1<<i;
216 			if (allow_unknown && !mapping->perms[i])
217 				result |= 1<<i;
218 		}
219 		avd->allowed = result;
220 
221 		for (i = 0, result = 0; i < n; i++)
222 			if (avd->auditallow & mapping->perms[i])
223 				result |= 1<<i;
224 		avd->auditallow = result;
225 
226 		for (i = 0, result = 0; i < n; i++) {
227 			if (avd->auditdeny & mapping->perms[i])
228 				result |= 1<<i;
229 			if (!allow_unknown && !mapping->perms[i])
230 				result |= 1<<i;
231 		}
232 		/*
233 		 * In case the kernel has a bug and requests a permission
234 		 * between num_perms and the maximum permission number, we
235 		 * should audit that denial
236 		 */
237 		for (; i < (sizeof(u32)*8); i++)
238 			result |= 1<<i;
239 		avd->auditdeny = result;
240 	}
241 }
242 
243 int security_mls_enabled(struct selinux_state *state)
244 {
245 	int mls_enabled;
246 	struct selinux_policy *policy;
247 
248 	if (!selinux_initialized(state))
249 		return 0;
250 
251 	rcu_read_lock();
252 	policy = rcu_dereference(state->policy);
253 	mls_enabled = policy->policydb.mls_enabled;
254 	rcu_read_unlock();
255 	return mls_enabled;
256 }
257 
258 /*
259  * Return the boolean value of a constraint expression
260  * when it is applied to the specified source and target
261  * security contexts.
262  *
263  * xcontext is a special beast...  It is used by the validatetrans rules
264  * only.  For these rules, scontext is the context before the transition,
265  * tcontext is the context after the transition, and xcontext is the context
266  * of the process performing the transition.  All other callers of
267  * constraint_expr_eval should pass in NULL for xcontext.
268  */
269 static int constraint_expr_eval(struct policydb *policydb,
270 				struct context *scontext,
271 				struct context *tcontext,
272 				struct context *xcontext,
273 				struct constraint_expr *cexpr)
274 {
275 	u32 val1, val2;
276 	struct context *c;
277 	struct role_datum *r1, *r2;
278 	struct mls_level *l1, *l2;
279 	struct constraint_expr *e;
280 	int s[CEXPR_MAXDEPTH];
281 	int sp = -1;
282 
283 	for (e = cexpr; e; e = e->next) {
284 		switch (e->expr_type) {
285 		case CEXPR_NOT:
286 			BUG_ON(sp < 0);
287 			s[sp] = !s[sp];
288 			break;
289 		case CEXPR_AND:
290 			BUG_ON(sp < 1);
291 			sp--;
292 			s[sp] &= s[sp + 1];
293 			break;
294 		case CEXPR_OR:
295 			BUG_ON(sp < 1);
296 			sp--;
297 			s[sp] |= s[sp + 1];
298 			break;
299 		case CEXPR_ATTR:
300 			if (sp == (CEXPR_MAXDEPTH - 1))
301 				return 0;
302 			switch (e->attr) {
303 			case CEXPR_USER:
304 				val1 = scontext->user;
305 				val2 = tcontext->user;
306 				break;
307 			case CEXPR_TYPE:
308 				val1 = scontext->type;
309 				val2 = tcontext->type;
310 				break;
311 			case CEXPR_ROLE:
312 				val1 = scontext->role;
313 				val2 = tcontext->role;
314 				r1 = policydb->role_val_to_struct[val1 - 1];
315 				r2 = policydb->role_val_to_struct[val2 - 1];
316 				switch (e->op) {
317 				case CEXPR_DOM:
318 					s[++sp] = ebitmap_get_bit(&r1->dominates,
319 								  val2 - 1);
320 					continue;
321 				case CEXPR_DOMBY:
322 					s[++sp] = ebitmap_get_bit(&r2->dominates,
323 								  val1 - 1);
324 					continue;
325 				case CEXPR_INCOMP:
326 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
327 								    val2 - 1) &&
328 						   !ebitmap_get_bit(&r2->dominates,
329 								    val1 - 1));
330 					continue;
331 				default:
332 					break;
333 				}
334 				break;
335 			case CEXPR_L1L2:
336 				l1 = &(scontext->range.level[0]);
337 				l2 = &(tcontext->range.level[0]);
338 				goto mls_ops;
339 			case CEXPR_L1H2:
340 				l1 = &(scontext->range.level[0]);
341 				l2 = &(tcontext->range.level[1]);
342 				goto mls_ops;
343 			case CEXPR_H1L2:
344 				l1 = &(scontext->range.level[1]);
345 				l2 = &(tcontext->range.level[0]);
346 				goto mls_ops;
347 			case CEXPR_H1H2:
348 				l1 = &(scontext->range.level[1]);
349 				l2 = &(tcontext->range.level[1]);
350 				goto mls_ops;
351 			case CEXPR_L1H1:
352 				l1 = &(scontext->range.level[0]);
353 				l2 = &(scontext->range.level[1]);
354 				goto mls_ops;
355 			case CEXPR_L2H2:
356 				l1 = &(tcontext->range.level[0]);
357 				l2 = &(tcontext->range.level[1]);
358 				goto mls_ops;
359 mls_ops:
360 			switch (e->op) {
361 			case CEXPR_EQ:
362 				s[++sp] = mls_level_eq(l1, l2);
363 				continue;
364 			case CEXPR_NEQ:
365 				s[++sp] = !mls_level_eq(l1, l2);
366 				continue;
367 			case CEXPR_DOM:
368 				s[++sp] = mls_level_dom(l1, l2);
369 				continue;
370 			case CEXPR_DOMBY:
371 				s[++sp] = mls_level_dom(l2, l1);
372 				continue;
373 			case CEXPR_INCOMP:
374 				s[++sp] = mls_level_incomp(l2, l1);
375 				continue;
376 			default:
377 				BUG();
378 				return 0;
379 			}
380 			break;
381 			default:
382 				BUG();
383 				return 0;
384 			}
385 
386 			switch (e->op) {
387 			case CEXPR_EQ:
388 				s[++sp] = (val1 == val2);
389 				break;
390 			case CEXPR_NEQ:
391 				s[++sp] = (val1 != val2);
392 				break;
393 			default:
394 				BUG();
395 				return 0;
396 			}
397 			break;
398 		case CEXPR_NAMES:
399 			if (sp == (CEXPR_MAXDEPTH-1))
400 				return 0;
401 			c = scontext;
402 			if (e->attr & CEXPR_TARGET)
403 				c = tcontext;
404 			else if (e->attr & CEXPR_XTARGET) {
405 				c = xcontext;
406 				if (!c) {
407 					BUG();
408 					return 0;
409 				}
410 			}
411 			if (e->attr & CEXPR_USER)
412 				val1 = c->user;
413 			else if (e->attr & CEXPR_ROLE)
414 				val1 = c->role;
415 			else if (e->attr & CEXPR_TYPE)
416 				val1 = c->type;
417 			else {
418 				BUG();
419 				return 0;
420 			}
421 
422 			switch (e->op) {
423 			case CEXPR_EQ:
424 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
425 				break;
426 			case CEXPR_NEQ:
427 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
428 				break;
429 			default:
430 				BUG();
431 				return 0;
432 			}
433 			break;
434 		default:
435 			BUG();
436 			return 0;
437 		}
438 	}
439 
440 	BUG_ON(sp != 0);
441 	return s[0];
442 }
443 
444 /*
445  * security_dump_masked_av - dumps masked permissions during
446  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
447  */
448 static int dump_masked_av_helper(void *k, void *d, void *args)
449 {
450 	struct perm_datum *pdatum = d;
451 	char **permission_names = args;
452 
453 	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
454 
455 	permission_names[pdatum->value - 1] = (char *)k;
456 
457 	return 0;
458 }
459 
460 static void security_dump_masked_av(struct policydb *policydb,
461 				    struct context *scontext,
462 				    struct context *tcontext,
463 				    u16 tclass,
464 				    u32 permissions,
465 				    const char *reason)
466 {
467 	struct common_datum *common_dat;
468 	struct class_datum *tclass_dat;
469 	struct audit_buffer *ab;
470 	char *tclass_name;
471 	char *scontext_name = NULL;
472 	char *tcontext_name = NULL;
473 	char *permission_names[32];
474 	int index;
475 	u32 length;
476 	bool need_comma = false;
477 
478 	if (!permissions)
479 		return;
480 
481 	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
482 	tclass_dat = policydb->class_val_to_struct[tclass - 1];
483 	common_dat = tclass_dat->comdatum;
484 
485 	/* init permission_names */
486 	if (common_dat &&
487 	    hashtab_map(&common_dat->permissions.table,
488 			dump_masked_av_helper, permission_names) < 0)
489 		goto out;
490 
491 	if (hashtab_map(&tclass_dat->permissions.table,
492 			dump_masked_av_helper, permission_names) < 0)
493 		goto out;
494 
495 	/* get scontext/tcontext in text form */
496 	if (context_struct_to_string(policydb, scontext,
497 				     &scontext_name, &length) < 0)
498 		goto out;
499 
500 	if (context_struct_to_string(policydb, tcontext,
501 				     &tcontext_name, &length) < 0)
502 		goto out;
503 
504 	/* audit a message */
505 	ab = audit_log_start(audit_context(),
506 			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
507 	if (!ab)
508 		goto out;
509 
510 	audit_log_format(ab, "op=security_compute_av reason=%s "
511 			 "scontext=%s tcontext=%s tclass=%s perms=",
512 			 reason, scontext_name, tcontext_name, tclass_name);
513 
514 	for (index = 0; index < 32; index++) {
515 		u32 mask = (1 << index);
516 
517 		if ((mask & permissions) == 0)
518 			continue;
519 
520 		audit_log_format(ab, "%s%s",
521 				 need_comma ? "," : "",
522 				 permission_names[index]
523 				 ? permission_names[index] : "????");
524 		need_comma = true;
525 	}
526 	audit_log_end(ab);
527 out:
528 	/* release scontext/tcontext */
529 	kfree(tcontext_name);
530 	kfree(scontext_name);
531 
532 	return;
533 }
534 
535 /*
536  * security_boundary_permission - drops violated permissions
537  * on boundary constraint.
538  */
539 static void type_attribute_bounds_av(struct policydb *policydb,
540 				     struct context *scontext,
541 				     struct context *tcontext,
542 				     u16 tclass,
543 				     struct av_decision *avd)
544 {
545 	struct context lo_scontext;
546 	struct context lo_tcontext, *tcontextp = tcontext;
547 	struct av_decision lo_avd;
548 	struct type_datum *source;
549 	struct type_datum *target;
550 	u32 masked = 0;
551 
552 	source = policydb->type_val_to_struct[scontext->type - 1];
553 	BUG_ON(!source);
554 
555 	if (!source->bounds)
556 		return;
557 
558 	target = policydb->type_val_to_struct[tcontext->type - 1];
559 	BUG_ON(!target);
560 
561 	memset(&lo_avd, 0, sizeof(lo_avd));
562 
563 	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
564 	lo_scontext.type = source->bounds;
565 
566 	if (target->bounds) {
567 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
568 		lo_tcontext.type = target->bounds;
569 		tcontextp = &lo_tcontext;
570 	}
571 
572 	context_struct_compute_av(policydb, &lo_scontext,
573 				  tcontextp,
574 				  tclass,
575 				  &lo_avd,
576 				  NULL);
577 
578 	masked = ~lo_avd.allowed & avd->allowed;
579 
580 	if (likely(!masked))
581 		return;		/* no masked permission */
582 
583 	/* mask violated permissions */
584 	avd->allowed &= ~masked;
585 
586 	/* audit masked permissions */
587 	security_dump_masked_av(policydb, scontext, tcontext,
588 				tclass, masked, "bounds");
589 }
590 
591 /*
592  * flag which drivers have permissions
593  * only looking for ioctl based extended permssions
594  */
595 void services_compute_xperms_drivers(
596 		struct extended_perms *xperms,
597 		struct avtab_node *node)
598 {
599 	unsigned int i;
600 
601 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
602 		/* if one or more driver has all permissions allowed */
603 		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
604 			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
605 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
606 		/* if allowing permissions within a driver */
607 		security_xperm_set(xperms->drivers.p,
608 					node->datum.u.xperms->driver);
609 	}
610 
611 	xperms->len = 1;
612 }
613 
614 /*
615  * Compute access vectors and extended permissions based on a context
616  * structure pair for the permissions in a particular class.
617  */
618 static void context_struct_compute_av(struct policydb *policydb,
619 				      struct context *scontext,
620 				      struct context *tcontext,
621 				      u16 tclass,
622 				      struct av_decision *avd,
623 				      struct extended_perms *xperms)
624 {
625 	struct constraint_node *constraint;
626 	struct role_allow *ra;
627 	struct avtab_key avkey;
628 	struct avtab_node *node;
629 	struct class_datum *tclass_datum;
630 	struct ebitmap *sattr, *tattr;
631 	struct ebitmap_node *snode, *tnode;
632 	unsigned int i, j;
633 
634 	avd->allowed = 0;
635 	avd->auditallow = 0;
636 	avd->auditdeny = 0xffffffff;
637 	if (xperms) {
638 		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
639 		xperms->len = 0;
640 	}
641 
642 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
643 		if (printk_ratelimit())
644 			pr_warn("SELinux:  Invalid class %hu\n", tclass);
645 		return;
646 	}
647 
648 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
649 
650 	/*
651 	 * If a specific type enforcement rule was defined for
652 	 * this permission check, then use it.
653 	 */
654 	avkey.target_class = tclass;
655 	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
656 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
657 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
658 	ebitmap_for_each_positive_bit(sattr, snode, i) {
659 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
660 			avkey.source_type = i + 1;
661 			avkey.target_type = j + 1;
662 			for (node = avtab_search_node(&policydb->te_avtab,
663 						      &avkey);
664 			     node;
665 			     node = avtab_search_node_next(node, avkey.specified)) {
666 				if (node->key.specified == AVTAB_ALLOWED)
667 					avd->allowed |= node->datum.u.data;
668 				else if (node->key.specified == AVTAB_AUDITALLOW)
669 					avd->auditallow |= node->datum.u.data;
670 				else if (node->key.specified == AVTAB_AUDITDENY)
671 					avd->auditdeny &= node->datum.u.data;
672 				else if (xperms && (node->key.specified & AVTAB_XPERMS))
673 					services_compute_xperms_drivers(xperms, node);
674 			}
675 
676 			/* Check conditional av table for additional permissions */
677 			cond_compute_av(&policydb->te_cond_avtab, &avkey,
678 					avd, xperms);
679 
680 		}
681 	}
682 
683 	/*
684 	 * Remove any permissions prohibited by a constraint (this includes
685 	 * the MLS policy).
686 	 */
687 	constraint = tclass_datum->constraints;
688 	while (constraint) {
689 		if ((constraint->permissions & (avd->allowed)) &&
690 		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
691 					  constraint->expr)) {
692 			avd->allowed &= ~(constraint->permissions);
693 		}
694 		constraint = constraint->next;
695 	}
696 
697 	/*
698 	 * If checking process transition permission and the
699 	 * role is changing, then check the (current_role, new_role)
700 	 * pair.
701 	 */
702 	if (tclass == policydb->process_class &&
703 	    (avd->allowed & policydb->process_trans_perms) &&
704 	    scontext->role != tcontext->role) {
705 		for (ra = policydb->role_allow; ra; ra = ra->next) {
706 			if (scontext->role == ra->role &&
707 			    tcontext->role == ra->new_role)
708 				break;
709 		}
710 		if (!ra)
711 			avd->allowed &= ~policydb->process_trans_perms;
712 	}
713 
714 	/*
715 	 * If the given source and target types have boundary
716 	 * constraint, lazy checks have to mask any violated
717 	 * permission and notice it to userspace via audit.
718 	 */
719 	type_attribute_bounds_av(policydb, scontext, tcontext,
720 				 tclass, avd);
721 }
722 
723 static int security_validtrans_handle_fail(struct selinux_state *state,
724 					struct selinux_policy *policy,
725 					struct sidtab_entry *oentry,
726 					struct sidtab_entry *nentry,
727 					struct sidtab_entry *tentry,
728 					u16 tclass)
729 {
730 	struct policydb *p = &policy->policydb;
731 	struct sidtab *sidtab = policy->sidtab;
732 	char *o = NULL, *n = NULL, *t = NULL;
733 	u32 olen, nlen, tlen;
734 
735 	if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
736 		goto out;
737 	if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
738 		goto out;
739 	if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
740 		goto out;
741 	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
742 		  "op=security_validate_transition seresult=denied"
743 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
744 		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
745 out:
746 	kfree(o);
747 	kfree(n);
748 	kfree(t);
749 
750 	if (!enforcing_enabled(state))
751 		return 0;
752 	return -EPERM;
753 }
754 
755 static int security_compute_validatetrans(struct selinux_state *state,
756 					  u32 oldsid, u32 newsid, u32 tasksid,
757 					  u16 orig_tclass, bool user)
758 {
759 	struct selinux_policy *policy;
760 	struct policydb *policydb;
761 	struct sidtab *sidtab;
762 	struct sidtab_entry *oentry;
763 	struct sidtab_entry *nentry;
764 	struct sidtab_entry *tentry;
765 	struct class_datum *tclass_datum;
766 	struct constraint_node *constraint;
767 	u16 tclass;
768 	int rc = 0;
769 
770 
771 	if (!selinux_initialized(state))
772 		return 0;
773 
774 	rcu_read_lock();
775 
776 	policy = rcu_dereference(state->policy);
777 	policydb = &policy->policydb;
778 	sidtab = policy->sidtab;
779 
780 	if (!user)
781 		tclass = unmap_class(&policy->map, orig_tclass);
782 	else
783 		tclass = orig_tclass;
784 
785 	if (!tclass || tclass > policydb->p_classes.nprim) {
786 		rc = -EINVAL;
787 		goto out;
788 	}
789 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
790 
791 	oentry = sidtab_search_entry(sidtab, oldsid);
792 	if (!oentry) {
793 		pr_err("SELinux: %s:  unrecognized SID %d\n",
794 			__func__, oldsid);
795 		rc = -EINVAL;
796 		goto out;
797 	}
798 
799 	nentry = sidtab_search_entry(sidtab, newsid);
800 	if (!nentry) {
801 		pr_err("SELinux: %s:  unrecognized SID %d\n",
802 			__func__, newsid);
803 		rc = -EINVAL;
804 		goto out;
805 	}
806 
807 	tentry = sidtab_search_entry(sidtab, tasksid);
808 	if (!tentry) {
809 		pr_err("SELinux: %s:  unrecognized SID %d\n",
810 			__func__, tasksid);
811 		rc = -EINVAL;
812 		goto out;
813 	}
814 
815 	constraint = tclass_datum->validatetrans;
816 	while (constraint) {
817 		if (!constraint_expr_eval(policydb, &oentry->context,
818 					  &nentry->context, &tentry->context,
819 					  constraint->expr)) {
820 			if (user)
821 				rc = -EPERM;
822 			else
823 				rc = security_validtrans_handle_fail(state,
824 								policy,
825 								oentry,
826 								nentry,
827 								tentry,
828 								tclass);
829 			goto out;
830 		}
831 		constraint = constraint->next;
832 	}
833 
834 out:
835 	rcu_read_unlock();
836 	return rc;
837 }
838 
839 int security_validate_transition_user(struct selinux_state *state,
840 				      u32 oldsid, u32 newsid, u32 tasksid,
841 				      u16 tclass)
842 {
843 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
844 					      tclass, true);
845 }
846 
847 int security_validate_transition(struct selinux_state *state,
848 				 u32 oldsid, u32 newsid, u32 tasksid,
849 				 u16 orig_tclass)
850 {
851 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
852 					      orig_tclass, false);
853 }
854 
855 /*
856  * security_bounded_transition - check whether the given
857  * transition is directed to bounded, or not.
858  * It returns 0, if @newsid is bounded by @oldsid.
859  * Otherwise, it returns error code.
860  *
861  * @oldsid : current security identifier
862  * @newsid : destinated security identifier
863  */
864 int security_bounded_transition(struct selinux_state *state,
865 				u32 old_sid, u32 new_sid)
866 {
867 	struct selinux_policy *policy;
868 	struct policydb *policydb;
869 	struct sidtab *sidtab;
870 	struct sidtab_entry *old_entry, *new_entry;
871 	struct type_datum *type;
872 	int index;
873 	int rc;
874 
875 	if (!selinux_initialized(state))
876 		return 0;
877 
878 	rcu_read_lock();
879 	policy = rcu_dereference(state->policy);
880 	policydb = &policy->policydb;
881 	sidtab = policy->sidtab;
882 
883 	rc = -EINVAL;
884 	old_entry = sidtab_search_entry(sidtab, old_sid);
885 	if (!old_entry) {
886 		pr_err("SELinux: %s: unrecognized SID %u\n",
887 		       __func__, old_sid);
888 		goto out;
889 	}
890 
891 	rc = -EINVAL;
892 	new_entry = sidtab_search_entry(sidtab, new_sid);
893 	if (!new_entry) {
894 		pr_err("SELinux: %s: unrecognized SID %u\n",
895 		       __func__, new_sid);
896 		goto out;
897 	}
898 
899 	rc = 0;
900 	/* type/domain unchanged */
901 	if (old_entry->context.type == new_entry->context.type)
902 		goto out;
903 
904 	index = new_entry->context.type;
905 	while (true) {
906 		type = policydb->type_val_to_struct[index - 1];
907 		BUG_ON(!type);
908 
909 		/* not bounded anymore */
910 		rc = -EPERM;
911 		if (!type->bounds)
912 			break;
913 
914 		/* @newsid is bounded by @oldsid */
915 		rc = 0;
916 		if (type->bounds == old_entry->context.type)
917 			break;
918 
919 		index = type->bounds;
920 	}
921 
922 	if (rc) {
923 		char *old_name = NULL;
924 		char *new_name = NULL;
925 		u32 length;
926 
927 		if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
928 					    &old_name, &length) &&
929 		    !sidtab_entry_to_string(policydb, sidtab, new_entry,
930 					    &new_name, &length)) {
931 			audit_log(audit_context(),
932 				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
933 				  "op=security_bounded_transition "
934 				  "seresult=denied "
935 				  "oldcontext=%s newcontext=%s",
936 				  old_name, new_name);
937 		}
938 		kfree(new_name);
939 		kfree(old_name);
940 	}
941 out:
942 	rcu_read_unlock();
943 
944 	return rc;
945 }
946 
947 static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
948 {
949 	avd->allowed = 0;
950 	avd->auditallow = 0;
951 	avd->auditdeny = 0xffffffff;
952 	if (policy)
953 		avd->seqno = policy->latest_granting;
954 	else
955 		avd->seqno = 0;
956 	avd->flags = 0;
957 }
958 
959 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
960 					struct avtab_node *node)
961 {
962 	unsigned int i;
963 
964 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
965 		if (xpermd->driver != node->datum.u.xperms->driver)
966 			return;
967 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
968 		if (!security_xperm_test(node->datum.u.xperms->perms.p,
969 					xpermd->driver))
970 			return;
971 	} else {
972 		BUG();
973 	}
974 
975 	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
976 		xpermd->used |= XPERMS_ALLOWED;
977 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
978 			memset(xpermd->allowed->p, 0xff,
979 					sizeof(xpermd->allowed->p));
980 		}
981 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
982 			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
983 				xpermd->allowed->p[i] |=
984 					node->datum.u.xperms->perms.p[i];
985 		}
986 	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
987 		xpermd->used |= XPERMS_AUDITALLOW;
988 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
989 			memset(xpermd->auditallow->p, 0xff,
990 					sizeof(xpermd->auditallow->p));
991 		}
992 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
993 			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
994 				xpermd->auditallow->p[i] |=
995 					node->datum.u.xperms->perms.p[i];
996 		}
997 	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
998 		xpermd->used |= XPERMS_DONTAUDIT;
999 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
1000 			memset(xpermd->dontaudit->p, 0xff,
1001 					sizeof(xpermd->dontaudit->p));
1002 		}
1003 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
1004 			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1005 				xpermd->dontaudit->p[i] |=
1006 					node->datum.u.xperms->perms.p[i];
1007 		}
1008 	} else {
1009 		BUG();
1010 	}
1011 }
1012 
1013 void security_compute_xperms_decision(struct selinux_state *state,
1014 				      u32 ssid,
1015 				      u32 tsid,
1016 				      u16 orig_tclass,
1017 				      u8 driver,
1018 				      struct extended_perms_decision *xpermd)
1019 {
1020 	struct selinux_policy *policy;
1021 	struct policydb *policydb;
1022 	struct sidtab *sidtab;
1023 	u16 tclass;
1024 	struct context *scontext, *tcontext;
1025 	struct avtab_key avkey;
1026 	struct avtab_node *node;
1027 	struct ebitmap *sattr, *tattr;
1028 	struct ebitmap_node *snode, *tnode;
1029 	unsigned int i, j;
1030 
1031 	xpermd->driver = driver;
1032 	xpermd->used = 0;
1033 	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1034 	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1035 	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1036 
1037 	rcu_read_lock();
1038 	if (!selinux_initialized(state))
1039 		goto allow;
1040 
1041 	policy = rcu_dereference(state->policy);
1042 	policydb = &policy->policydb;
1043 	sidtab = policy->sidtab;
1044 
1045 	scontext = sidtab_search(sidtab, ssid);
1046 	if (!scontext) {
1047 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1048 		       __func__, ssid);
1049 		goto out;
1050 	}
1051 
1052 	tcontext = sidtab_search(sidtab, tsid);
1053 	if (!tcontext) {
1054 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1055 		       __func__, tsid);
1056 		goto out;
1057 	}
1058 
1059 	tclass = unmap_class(&policy->map, orig_tclass);
1060 	if (unlikely(orig_tclass && !tclass)) {
1061 		if (policydb->allow_unknown)
1062 			goto allow;
1063 		goto out;
1064 	}
1065 
1066 
1067 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1068 		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1069 		goto out;
1070 	}
1071 
1072 	avkey.target_class = tclass;
1073 	avkey.specified = AVTAB_XPERMS;
1074 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1075 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1076 	ebitmap_for_each_positive_bit(sattr, snode, i) {
1077 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1078 			avkey.source_type = i + 1;
1079 			avkey.target_type = j + 1;
1080 			for (node = avtab_search_node(&policydb->te_avtab,
1081 						      &avkey);
1082 			     node;
1083 			     node = avtab_search_node_next(node, avkey.specified))
1084 				services_compute_xperms_decision(xpermd, node);
1085 
1086 			cond_compute_xperms(&policydb->te_cond_avtab,
1087 						&avkey, xpermd);
1088 		}
1089 	}
1090 out:
1091 	rcu_read_unlock();
1092 	return;
1093 allow:
1094 	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1095 	goto out;
1096 }
1097 
1098 /**
1099  * security_compute_av - Compute access vector decisions.
1100  * @ssid: source security identifier
1101  * @tsid: target security identifier
1102  * @tclass: target security class
1103  * @avd: access vector decisions
1104  * @xperms: extended permissions
1105  *
1106  * Compute a set of access vector decisions based on the
1107  * SID pair (@ssid, @tsid) for the permissions in @tclass.
1108  */
1109 void security_compute_av(struct selinux_state *state,
1110 			 u32 ssid,
1111 			 u32 tsid,
1112 			 u16 orig_tclass,
1113 			 struct av_decision *avd,
1114 			 struct extended_perms *xperms)
1115 {
1116 	struct selinux_policy *policy;
1117 	struct policydb *policydb;
1118 	struct sidtab *sidtab;
1119 	u16 tclass;
1120 	struct context *scontext = NULL, *tcontext = NULL;
1121 
1122 	rcu_read_lock();
1123 	policy = rcu_dereference(state->policy);
1124 	avd_init(policy, avd);
1125 	xperms->len = 0;
1126 	if (!selinux_initialized(state))
1127 		goto allow;
1128 
1129 	policydb = &policy->policydb;
1130 	sidtab = policy->sidtab;
1131 
1132 	scontext = sidtab_search(sidtab, ssid);
1133 	if (!scontext) {
1134 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1135 		       __func__, ssid);
1136 		goto out;
1137 	}
1138 
1139 	/* permissive domain? */
1140 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1141 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1142 
1143 	tcontext = sidtab_search(sidtab, tsid);
1144 	if (!tcontext) {
1145 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1146 		       __func__, tsid);
1147 		goto out;
1148 	}
1149 
1150 	tclass = unmap_class(&policy->map, orig_tclass);
1151 	if (unlikely(orig_tclass && !tclass)) {
1152 		if (policydb->allow_unknown)
1153 			goto allow;
1154 		goto out;
1155 	}
1156 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1157 				  xperms);
1158 	map_decision(&policy->map, orig_tclass, avd,
1159 		     policydb->allow_unknown);
1160 out:
1161 	rcu_read_unlock();
1162 	return;
1163 allow:
1164 	avd->allowed = 0xffffffff;
1165 	goto out;
1166 }
1167 
1168 void security_compute_av_user(struct selinux_state *state,
1169 			      u32 ssid,
1170 			      u32 tsid,
1171 			      u16 tclass,
1172 			      struct av_decision *avd)
1173 {
1174 	struct selinux_policy *policy;
1175 	struct policydb *policydb;
1176 	struct sidtab *sidtab;
1177 	struct context *scontext = NULL, *tcontext = NULL;
1178 
1179 	rcu_read_lock();
1180 	policy = rcu_dereference(state->policy);
1181 	avd_init(policy, avd);
1182 	if (!selinux_initialized(state))
1183 		goto allow;
1184 
1185 	policydb = &policy->policydb;
1186 	sidtab = policy->sidtab;
1187 
1188 	scontext = sidtab_search(sidtab, ssid);
1189 	if (!scontext) {
1190 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1191 		       __func__, ssid);
1192 		goto out;
1193 	}
1194 
1195 	/* permissive domain? */
1196 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1197 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1198 
1199 	tcontext = sidtab_search(sidtab, tsid);
1200 	if (!tcontext) {
1201 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1202 		       __func__, tsid);
1203 		goto out;
1204 	}
1205 
1206 	if (unlikely(!tclass)) {
1207 		if (policydb->allow_unknown)
1208 			goto allow;
1209 		goto out;
1210 	}
1211 
1212 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1213 				  NULL);
1214  out:
1215 	rcu_read_unlock();
1216 	return;
1217 allow:
1218 	avd->allowed = 0xffffffff;
1219 	goto out;
1220 }
1221 
1222 /*
1223  * Write the security context string representation of
1224  * the context structure `context' into a dynamically
1225  * allocated string of the correct size.  Set `*scontext'
1226  * to point to this string and set `*scontext_len' to
1227  * the length of the string.
1228  */
1229 static int context_struct_to_string(struct policydb *p,
1230 				    struct context *context,
1231 				    char **scontext, u32 *scontext_len)
1232 {
1233 	char *scontextp;
1234 
1235 	if (scontext)
1236 		*scontext = NULL;
1237 	*scontext_len = 0;
1238 
1239 	if (context->len) {
1240 		*scontext_len = context->len;
1241 		if (scontext) {
1242 			*scontext = kstrdup(context->str, GFP_ATOMIC);
1243 			if (!(*scontext))
1244 				return -ENOMEM;
1245 		}
1246 		return 0;
1247 	}
1248 
1249 	/* Compute the size of the context. */
1250 	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1251 	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1252 	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1253 	*scontext_len += mls_compute_context_len(p, context);
1254 
1255 	if (!scontext)
1256 		return 0;
1257 
1258 	/* Allocate space for the context; caller must free this space. */
1259 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1260 	if (!scontextp)
1261 		return -ENOMEM;
1262 	*scontext = scontextp;
1263 
1264 	/*
1265 	 * Copy the user name, role name and type name into the context.
1266 	 */
1267 	scontextp += sprintf(scontextp, "%s:%s:%s",
1268 		sym_name(p, SYM_USERS, context->user - 1),
1269 		sym_name(p, SYM_ROLES, context->role - 1),
1270 		sym_name(p, SYM_TYPES, context->type - 1));
1271 
1272 	mls_sid_to_context(p, context, &scontextp);
1273 
1274 	*scontextp = 0;
1275 
1276 	return 0;
1277 }
1278 
1279 static int sidtab_entry_to_string(struct policydb *p,
1280 				  struct sidtab *sidtab,
1281 				  struct sidtab_entry *entry,
1282 				  char **scontext, u32 *scontext_len)
1283 {
1284 	int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1285 
1286 	if (rc != -ENOENT)
1287 		return rc;
1288 
1289 	rc = context_struct_to_string(p, &entry->context, scontext,
1290 				      scontext_len);
1291 	if (!rc && scontext)
1292 		sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1293 	return rc;
1294 }
1295 
1296 #include "initial_sid_to_string.h"
1297 
1298 int security_sidtab_hash_stats(struct selinux_state *state, char *page)
1299 {
1300 	struct selinux_policy *policy;
1301 	int rc;
1302 
1303 	if (!selinux_initialized(state)) {
1304 		pr_err("SELinux: %s:  called before initial load_policy\n",
1305 		       __func__);
1306 		return -EINVAL;
1307 	}
1308 
1309 	rcu_read_lock();
1310 	policy = rcu_dereference(state->policy);
1311 	rc = sidtab_hash_stats(policy->sidtab, page);
1312 	rcu_read_unlock();
1313 
1314 	return rc;
1315 }
1316 
1317 const char *security_get_initial_sid_context(u32 sid)
1318 {
1319 	if (unlikely(sid > SECINITSID_NUM))
1320 		return NULL;
1321 	return initial_sid_to_string[sid];
1322 }
1323 
1324 static int security_sid_to_context_core(struct selinux_state *state,
1325 					u32 sid, char **scontext,
1326 					u32 *scontext_len, int force,
1327 					int only_invalid)
1328 {
1329 	struct selinux_policy *policy;
1330 	struct policydb *policydb;
1331 	struct sidtab *sidtab;
1332 	struct sidtab_entry *entry;
1333 	int rc = 0;
1334 
1335 	if (scontext)
1336 		*scontext = NULL;
1337 	*scontext_len  = 0;
1338 
1339 	if (!selinux_initialized(state)) {
1340 		if (sid <= SECINITSID_NUM) {
1341 			char *scontextp;
1342 			const char *s = initial_sid_to_string[sid];
1343 
1344 			if (!s)
1345 				return -EINVAL;
1346 			*scontext_len = strlen(s) + 1;
1347 			if (!scontext)
1348 				return 0;
1349 			scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1350 			if (!scontextp)
1351 				return -ENOMEM;
1352 			*scontext = scontextp;
1353 			return 0;
1354 		}
1355 		pr_err("SELinux: %s:  called before initial "
1356 		       "load_policy on unknown SID %d\n", __func__, sid);
1357 		return -EINVAL;
1358 	}
1359 	rcu_read_lock();
1360 	policy = rcu_dereference(state->policy);
1361 	policydb = &policy->policydb;
1362 	sidtab = policy->sidtab;
1363 
1364 	if (force)
1365 		entry = sidtab_search_entry_force(sidtab, sid);
1366 	else
1367 		entry = sidtab_search_entry(sidtab, sid);
1368 	if (!entry) {
1369 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1370 			__func__, sid);
1371 		rc = -EINVAL;
1372 		goto out_unlock;
1373 	}
1374 	if (only_invalid && !entry->context.len)
1375 		goto out_unlock;
1376 
1377 	rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1378 				    scontext_len);
1379 
1380 out_unlock:
1381 	rcu_read_unlock();
1382 	return rc;
1383 
1384 }
1385 
1386 /**
1387  * security_sid_to_context - Obtain a context for a given SID.
1388  * @sid: security identifier, SID
1389  * @scontext: security context
1390  * @scontext_len: length in bytes
1391  *
1392  * Write the string representation of the context associated with @sid
1393  * into a dynamically allocated string of the correct size.  Set @scontext
1394  * to point to this string and set @scontext_len to the length of the string.
1395  */
1396 int security_sid_to_context(struct selinux_state *state,
1397 			    u32 sid, char **scontext, u32 *scontext_len)
1398 {
1399 	return security_sid_to_context_core(state, sid, scontext,
1400 					    scontext_len, 0, 0);
1401 }
1402 
1403 int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1404 				  char **scontext, u32 *scontext_len)
1405 {
1406 	return security_sid_to_context_core(state, sid, scontext,
1407 					    scontext_len, 1, 0);
1408 }
1409 
1410 /**
1411  * security_sid_to_context_inval - Obtain a context for a given SID if it
1412  *                                 is invalid.
1413  * @sid: security identifier, SID
1414  * @scontext: security context
1415  * @scontext_len: length in bytes
1416  *
1417  * Write the string representation of the context associated with @sid
1418  * into a dynamically allocated string of the correct size, but only if the
1419  * context is invalid in the current policy.  Set @scontext to point to
1420  * this string (or NULL if the context is valid) and set @scontext_len to
1421  * the length of the string (or 0 if the context is valid).
1422  */
1423 int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1424 				  char **scontext, u32 *scontext_len)
1425 {
1426 	return security_sid_to_context_core(state, sid, scontext,
1427 					    scontext_len, 1, 1);
1428 }
1429 
1430 /*
1431  * Caveat:  Mutates scontext.
1432  */
1433 static int string_to_context_struct(struct policydb *pol,
1434 				    struct sidtab *sidtabp,
1435 				    char *scontext,
1436 				    struct context *ctx,
1437 				    u32 def_sid)
1438 {
1439 	struct role_datum *role;
1440 	struct type_datum *typdatum;
1441 	struct user_datum *usrdatum;
1442 	char *scontextp, *p, oldc;
1443 	int rc = 0;
1444 
1445 	context_init(ctx);
1446 
1447 	/* Parse the security context. */
1448 
1449 	rc = -EINVAL;
1450 	scontextp = (char *) scontext;
1451 
1452 	/* Extract the user. */
1453 	p = scontextp;
1454 	while (*p && *p != ':')
1455 		p++;
1456 
1457 	if (*p == 0)
1458 		goto out;
1459 
1460 	*p++ = 0;
1461 
1462 	usrdatum = symtab_search(&pol->p_users, scontextp);
1463 	if (!usrdatum)
1464 		goto out;
1465 
1466 	ctx->user = usrdatum->value;
1467 
1468 	/* Extract role. */
1469 	scontextp = p;
1470 	while (*p && *p != ':')
1471 		p++;
1472 
1473 	if (*p == 0)
1474 		goto out;
1475 
1476 	*p++ = 0;
1477 
1478 	role = symtab_search(&pol->p_roles, scontextp);
1479 	if (!role)
1480 		goto out;
1481 	ctx->role = role->value;
1482 
1483 	/* Extract type. */
1484 	scontextp = p;
1485 	while (*p && *p != ':')
1486 		p++;
1487 	oldc = *p;
1488 	*p++ = 0;
1489 
1490 	typdatum = symtab_search(&pol->p_types, scontextp);
1491 	if (!typdatum || typdatum->attribute)
1492 		goto out;
1493 
1494 	ctx->type = typdatum->value;
1495 
1496 	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1497 	if (rc)
1498 		goto out;
1499 
1500 	/* Check the validity of the new context. */
1501 	rc = -EINVAL;
1502 	if (!policydb_context_isvalid(pol, ctx))
1503 		goto out;
1504 	rc = 0;
1505 out:
1506 	if (rc)
1507 		context_destroy(ctx);
1508 	return rc;
1509 }
1510 
1511 static int security_context_to_sid_core(struct selinux_state *state,
1512 					const char *scontext, u32 scontext_len,
1513 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1514 					int force)
1515 {
1516 	struct selinux_policy *policy;
1517 	struct policydb *policydb;
1518 	struct sidtab *sidtab;
1519 	char *scontext2, *str = NULL;
1520 	struct context context;
1521 	int rc = 0;
1522 
1523 	/* An empty security context is never valid. */
1524 	if (!scontext_len)
1525 		return -EINVAL;
1526 
1527 	/* Copy the string to allow changes and ensure a NUL terminator */
1528 	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1529 	if (!scontext2)
1530 		return -ENOMEM;
1531 
1532 	if (!selinux_initialized(state)) {
1533 		int i;
1534 
1535 		for (i = 1; i < SECINITSID_NUM; i++) {
1536 			const char *s = initial_sid_to_string[i];
1537 
1538 			if (s && !strcmp(s, scontext2)) {
1539 				*sid = i;
1540 				goto out;
1541 			}
1542 		}
1543 		*sid = SECINITSID_KERNEL;
1544 		goto out;
1545 	}
1546 	*sid = SECSID_NULL;
1547 
1548 	if (force) {
1549 		/* Save another copy for storing in uninterpreted form */
1550 		rc = -ENOMEM;
1551 		str = kstrdup(scontext2, gfp_flags);
1552 		if (!str)
1553 			goto out;
1554 	}
1555 	rcu_read_lock();
1556 	policy = rcu_dereference(state->policy);
1557 	policydb = &policy->policydb;
1558 	sidtab = policy->sidtab;
1559 	rc = string_to_context_struct(policydb, sidtab, scontext2,
1560 				      &context, def_sid);
1561 	if (rc == -EINVAL && force) {
1562 		context.str = str;
1563 		context.len = strlen(str) + 1;
1564 		str = NULL;
1565 	} else if (rc)
1566 		goto out_unlock;
1567 	rc = sidtab_context_to_sid(sidtab, &context, sid);
1568 	context_destroy(&context);
1569 out_unlock:
1570 	rcu_read_unlock();
1571 out:
1572 	kfree(scontext2);
1573 	kfree(str);
1574 	return rc;
1575 }
1576 
1577 /**
1578  * security_context_to_sid - Obtain a SID for a given security context.
1579  * @scontext: security context
1580  * @scontext_len: length in bytes
1581  * @sid: security identifier, SID
1582  * @gfp: context for the allocation
1583  *
1584  * Obtains a SID associated with the security context that
1585  * has the string representation specified by @scontext.
1586  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1587  * memory is available, or 0 on success.
1588  */
1589 int security_context_to_sid(struct selinux_state *state,
1590 			    const char *scontext, u32 scontext_len, u32 *sid,
1591 			    gfp_t gfp)
1592 {
1593 	return security_context_to_sid_core(state, scontext, scontext_len,
1594 					    sid, SECSID_NULL, gfp, 0);
1595 }
1596 
1597 int security_context_str_to_sid(struct selinux_state *state,
1598 				const char *scontext, u32 *sid, gfp_t gfp)
1599 {
1600 	return security_context_to_sid(state, scontext, strlen(scontext),
1601 				       sid, gfp);
1602 }
1603 
1604 /**
1605  * security_context_to_sid_default - Obtain a SID for a given security context,
1606  * falling back to specified default if needed.
1607  *
1608  * @scontext: security context
1609  * @scontext_len: length in bytes
1610  * @sid: security identifier, SID
1611  * @def_sid: default SID to assign on error
1612  *
1613  * Obtains a SID associated with the security context that
1614  * has the string representation specified by @scontext.
1615  * The default SID is passed to the MLS layer to be used to allow
1616  * kernel labeling of the MLS field if the MLS field is not present
1617  * (for upgrading to MLS without full relabel).
1618  * Implicitly forces adding of the context even if it cannot be mapped yet.
1619  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1620  * memory is available, or 0 on success.
1621  */
1622 int security_context_to_sid_default(struct selinux_state *state,
1623 				    const char *scontext, u32 scontext_len,
1624 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1625 {
1626 	return security_context_to_sid_core(state, scontext, scontext_len,
1627 					    sid, def_sid, gfp_flags, 1);
1628 }
1629 
1630 int security_context_to_sid_force(struct selinux_state *state,
1631 				  const char *scontext, u32 scontext_len,
1632 				  u32 *sid)
1633 {
1634 	return security_context_to_sid_core(state, scontext, scontext_len,
1635 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1636 }
1637 
1638 static int compute_sid_handle_invalid_context(
1639 	struct selinux_state *state,
1640 	struct selinux_policy *policy,
1641 	struct sidtab_entry *sentry,
1642 	struct sidtab_entry *tentry,
1643 	u16 tclass,
1644 	struct context *newcontext)
1645 {
1646 	struct policydb *policydb = &policy->policydb;
1647 	struct sidtab *sidtab = policy->sidtab;
1648 	char *s = NULL, *t = NULL, *n = NULL;
1649 	u32 slen, tlen, nlen;
1650 	struct audit_buffer *ab;
1651 
1652 	if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1653 		goto out;
1654 	if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1655 		goto out;
1656 	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1657 		goto out;
1658 	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1659 	audit_log_format(ab,
1660 			 "op=security_compute_sid invalid_context=");
1661 	/* no need to record the NUL with untrusted strings */
1662 	audit_log_n_untrustedstring(ab, n, nlen - 1);
1663 	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1664 			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1665 	audit_log_end(ab);
1666 out:
1667 	kfree(s);
1668 	kfree(t);
1669 	kfree(n);
1670 	if (!enforcing_enabled(state))
1671 		return 0;
1672 	return -EACCES;
1673 }
1674 
1675 static void filename_compute_type(struct policydb *policydb,
1676 				  struct context *newcontext,
1677 				  u32 stype, u32 ttype, u16 tclass,
1678 				  const char *objname)
1679 {
1680 	struct filename_trans_key ft;
1681 	struct filename_trans_datum *datum;
1682 
1683 	/*
1684 	 * Most filename trans rules are going to live in specific directories
1685 	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1686 	 * if the ttype does not contain any rules.
1687 	 */
1688 	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1689 		return;
1690 
1691 	ft.ttype = ttype;
1692 	ft.tclass = tclass;
1693 	ft.name = objname;
1694 
1695 	datum = policydb_filenametr_search(policydb, &ft);
1696 	while (datum) {
1697 		if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1698 			newcontext->type = datum->otype;
1699 			return;
1700 		}
1701 		datum = datum->next;
1702 	}
1703 }
1704 
1705 static int security_compute_sid(struct selinux_state *state,
1706 				u32 ssid,
1707 				u32 tsid,
1708 				u16 orig_tclass,
1709 				u32 specified,
1710 				const char *objname,
1711 				u32 *out_sid,
1712 				bool kern)
1713 {
1714 	struct selinux_policy *policy;
1715 	struct policydb *policydb;
1716 	struct sidtab *sidtab;
1717 	struct class_datum *cladatum = NULL;
1718 	struct context *scontext, *tcontext, newcontext;
1719 	struct sidtab_entry *sentry, *tentry;
1720 	struct avtab_key avkey;
1721 	struct avtab_datum *avdatum;
1722 	struct avtab_node *node;
1723 	u16 tclass;
1724 	int rc = 0;
1725 	bool sock;
1726 
1727 	if (!selinux_initialized(state)) {
1728 		switch (orig_tclass) {
1729 		case SECCLASS_PROCESS: /* kernel value */
1730 			*out_sid = ssid;
1731 			break;
1732 		default:
1733 			*out_sid = tsid;
1734 			break;
1735 		}
1736 		goto out;
1737 	}
1738 
1739 	context_init(&newcontext);
1740 
1741 	rcu_read_lock();
1742 
1743 	policy = rcu_dereference(state->policy);
1744 
1745 	if (kern) {
1746 		tclass = unmap_class(&policy->map, orig_tclass);
1747 		sock = security_is_socket_class(orig_tclass);
1748 	} else {
1749 		tclass = orig_tclass;
1750 		sock = security_is_socket_class(map_class(&policy->map,
1751 							  tclass));
1752 	}
1753 
1754 	policydb = &policy->policydb;
1755 	sidtab = policy->sidtab;
1756 
1757 	sentry = sidtab_search_entry(sidtab, ssid);
1758 	if (!sentry) {
1759 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1760 		       __func__, ssid);
1761 		rc = -EINVAL;
1762 		goto out_unlock;
1763 	}
1764 	tentry = sidtab_search_entry(sidtab, tsid);
1765 	if (!tentry) {
1766 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1767 		       __func__, tsid);
1768 		rc = -EINVAL;
1769 		goto out_unlock;
1770 	}
1771 
1772 	scontext = &sentry->context;
1773 	tcontext = &tentry->context;
1774 
1775 	if (tclass && tclass <= policydb->p_classes.nprim)
1776 		cladatum = policydb->class_val_to_struct[tclass - 1];
1777 
1778 	/* Set the user identity. */
1779 	switch (specified) {
1780 	case AVTAB_TRANSITION:
1781 	case AVTAB_CHANGE:
1782 		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1783 			newcontext.user = tcontext->user;
1784 		} else {
1785 			/* notice this gets both DEFAULT_SOURCE and unset */
1786 			/* Use the process user identity. */
1787 			newcontext.user = scontext->user;
1788 		}
1789 		break;
1790 	case AVTAB_MEMBER:
1791 		/* Use the related object owner. */
1792 		newcontext.user = tcontext->user;
1793 		break;
1794 	}
1795 
1796 	/* Set the role to default values. */
1797 	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1798 		newcontext.role = scontext->role;
1799 	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1800 		newcontext.role = tcontext->role;
1801 	} else {
1802 		if ((tclass == policydb->process_class) || sock)
1803 			newcontext.role = scontext->role;
1804 		else
1805 			newcontext.role = OBJECT_R_VAL;
1806 	}
1807 
1808 	/* Set the type to default values. */
1809 	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1810 		newcontext.type = scontext->type;
1811 	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1812 		newcontext.type = tcontext->type;
1813 	} else {
1814 		if ((tclass == policydb->process_class) || sock) {
1815 			/* Use the type of process. */
1816 			newcontext.type = scontext->type;
1817 		} else {
1818 			/* Use the type of the related object. */
1819 			newcontext.type = tcontext->type;
1820 		}
1821 	}
1822 
1823 	/* Look for a type transition/member/change rule. */
1824 	avkey.source_type = scontext->type;
1825 	avkey.target_type = tcontext->type;
1826 	avkey.target_class = tclass;
1827 	avkey.specified = specified;
1828 	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1829 
1830 	/* If no permanent rule, also check for enabled conditional rules */
1831 	if (!avdatum) {
1832 		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1833 		for (; node; node = avtab_search_node_next(node, specified)) {
1834 			if (node->key.specified & AVTAB_ENABLED) {
1835 				avdatum = &node->datum;
1836 				break;
1837 			}
1838 		}
1839 	}
1840 
1841 	if (avdatum) {
1842 		/* Use the type from the type transition/member/change rule. */
1843 		newcontext.type = avdatum->u.data;
1844 	}
1845 
1846 	/* if we have a objname this is a file trans check so check those rules */
1847 	if (objname)
1848 		filename_compute_type(policydb, &newcontext, scontext->type,
1849 				      tcontext->type, tclass, objname);
1850 
1851 	/* Check for class-specific changes. */
1852 	if (specified & AVTAB_TRANSITION) {
1853 		/* Look for a role transition rule. */
1854 		struct role_trans_datum *rtd;
1855 		struct role_trans_key rtk = {
1856 			.role = scontext->role,
1857 			.type = tcontext->type,
1858 			.tclass = tclass,
1859 		};
1860 
1861 		rtd = policydb_roletr_search(policydb, &rtk);
1862 		if (rtd)
1863 			newcontext.role = rtd->new_role;
1864 	}
1865 
1866 	/* Set the MLS attributes.
1867 	   This is done last because it may allocate memory. */
1868 	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1869 			     &newcontext, sock);
1870 	if (rc)
1871 		goto out_unlock;
1872 
1873 	/* Check the validity of the context. */
1874 	if (!policydb_context_isvalid(policydb, &newcontext)) {
1875 		rc = compute_sid_handle_invalid_context(state, policy, sentry,
1876 							tentry, tclass,
1877 							&newcontext);
1878 		if (rc)
1879 			goto out_unlock;
1880 	}
1881 	/* Obtain the sid for the context. */
1882 	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1883 out_unlock:
1884 	rcu_read_unlock();
1885 	context_destroy(&newcontext);
1886 out:
1887 	return rc;
1888 }
1889 
1890 /**
1891  * security_transition_sid - Compute the SID for a new subject/object.
1892  * @ssid: source security identifier
1893  * @tsid: target security identifier
1894  * @tclass: target security class
1895  * @out_sid: security identifier for new subject/object
1896  *
1897  * Compute a SID to use for labeling a new subject or object in the
1898  * class @tclass based on a SID pair (@ssid, @tsid).
1899  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1900  * if insufficient memory is available, or %0 if the new SID was
1901  * computed successfully.
1902  */
1903 int security_transition_sid(struct selinux_state *state,
1904 			    u32 ssid, u32 tsid, u16 tclass,
1905 			    const struct qstr *qstr, u32 *out_sid)
1906 {
1907 	return security_compute_sid(state, ssid, tsid, tclass,
1908 				    AVTAB_TRANSITION,
1909 				    qstr ? qstr->name : NULL, out_sid, true);
1910 }
1911 
1912 int security_transition_sid_user(struct selinux_state *state,
1913 				 u32 ssid, u32 tsid, u16 tclass,
1914 				 const char *objname, u32 *out_sid)
1915 {
1916 	return security_compute_sid(state, ssid, tsid, tclass,
1917 				    AVTAB_TRANSITION,
1918 				    objname, out_sid, false);
1919 }
1920 
1921 /**
1922  * security_member_sid - Compute the SID for member selection.
1923  * @ssid: source security identifier
1924  * @tsid: target security identifier
1925  * @tclass: target security class
1926  * @out_sid: security identifier for selected member
1927  *
1928  * Compute a SID to use when selecting a member of a polyinstantiated
1929  * object of class @tclass based on a SID pair (@ssid, @tsid).
1930  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1931  * if insufficient memory is available, or %0 if the SID was
1932  * computed successfully.
1933  */
1934 int security_member_sid(struct selinux_state *state,
1935 			u32 ssid,
1936 			u32 tsid,
1937 			u16 tclass,
1938 			u32 *out_sid)
1939 {
1940 	return security_compute_sid(state, ssid, tsid, tclass,
1941 				    AVTAB_MEMBER, NULL,
1942 				    out_sid, false);
1943 }
1944 
1945 /**
1946  * security_change_sid - Compute the SID for object relabeling.
1947  * @ssid: source security identifier
1948  * @tsid: target security identifier
1949  * @tclass: target security class
1950  * @out_sid: security identifier for selected member
1951  *
1952  * Compute a SID to use for relabeling an object of class @tclass
1953  * based on a SID pair (@ssid, @tsid).
1954  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1955  * if insufficient memory is available, or %0 if the SID was
1956  * computed successfully.
1957  */
1958 int security_change_sid(struct selinux_state *state,
1959 			u32 ssid,
1960 			u32 tsid,
1961 			u16 tclass,
1962 			u32 *out_sid)
1963 {
1964 	return security_compute_sid(state,
1965 				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1966 				    out_sid, false);
1967 }
1968 
1969 static inline int convert_context_handle_invalid_context(
1970 	struct selinux_state *state,
1971 	struct policydb *policydb,
1972 	struct context *context)
1973 {
1974 	char *s;
1975 	u32 len;
1976 
1977 	if (enforcing_enabled(state))
1978 		return -EINVAL;
1979 
1980 	if (!context_struct_to_string(policydb, context, &s, &len)) {
1981 		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
1982 			s);
1983 		kfree(s);
1984 	}
1985 	return 0;
1986 }
1987 
1988 /*
1989  * Convert the values in the security context
1990  * structure `oldc' from the values specified
1991  * in the policy `p->oldp' to the values specified
1992  * in the policy `p->newp', storing the new context
1993  * in `newc'.  Verify that the context is valid
1994  * under the new policy.
1995  */
1996 static int convert_context(struct context *oldc, struct context *newc, void *p)
1997 {
1998 	struct convert_context_args *args;
1999 	struct ocontext *oc;
2000 	struct role_datum *role;
2001 	struct type_datum *typdatum;
2002 	struct user_datum *usrdatum;
2003 	char *s;
2004 	u32 len;
2005 	int rc;
2006 
2007 	args = p;
2008 
2009 	if (oldc->str) {
2010 		s = kstrdup(oldc->str, GFP_KERNEL);
2011 		if (!s)
2012 			return -ENOMEM;
2013 
2014 		rc = string_to_context_struct(args->newp, NULL, s,
2015 					      newc, SECSID_NULL);
2016 		if (rc == -EINVAL) {
2017 			/*
2018 			 * Retain string representation for later mapping.
2019 			 *
2020 			 * IMPORTANT: We need to copy the contents of oldc->str
2021 			 * back into s again because string_to_context_struct()
2022 			 * may have garbled it.
2023 			 */
2024 			memcpy(s, oldc->str, oldc->len);
2025 			context_init(newc);
2026 			newc->str = s;
2027 			newc->len = oldc->len;
2028 			return 0;
2029 		}
2030 		kfree(s);
2031 		if (rc) {
2032 			/* Other error condition, e.g. ENOMEM. */
2033 			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2034 			       oldc->str, -rc);
2035 			return rc;
2036 		}
2037 		pr_info("SELinux:  Context %s became valid (mapped).\n",
2038 			oldc->str);
2039 		return 0;
2040 	}
2041 
2042 	context_init(newc);
2043 
2044 	/* Convert the user. */
2045 	rc = -EINVAL;
2046 	usrdatum = symtab_search(&args->newp->p_users,
2047 				 sym_name(args->oldp,
2048 					  SYM_USERS, oldc->user - 1));
2049 	if (!usrdatum)
2050 		goto bad;
2051 	newc->user = usrdatum->value;
2052 
2053 	/* Convert the role. */
2054 	rc = -EINVAL;
2055 	role = symtab_search(&args->newp->p_roles,
2056 			     sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2057 	if (!role)
2058 		goto bad;
2059 	newc->role = role->value;
2060 
2061 	/* Convert the type. */
2062 	rc = -EINVAL;
2063 	typdatum = symtab_search(&args->newp->p_types,
2064 				 sym_name(args->oldp,
2065 					  SYM_TYPES, oldc->type - 1));
2066 	if (!typdatum)
2067 		goto bad;
2068 	newc->type = typdatum->value;
2069 
2070 	/* Convert the MLS fields if dealing with MLS policies */
2071 	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2072 		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2073 		if (rc)
2074 			goto bad;
2075 	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2076 		/*
2077 		 * Switching between non-MLS and MLS policy:
2078 		 * ensure that the MLS fields of the context for all
2079 		 * existing entries in the sidtab are filled in with a
2080 		 * suitable default value, likely taken from one of the
2081 		 * initial SIDs.
2082 		 */
2083 		oc = args->newp->ocontexts[OCON_ISID];
2084 		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2085 			oc = oc->next;
2086 		rc = -EINVAL;
2087 		if (!oc) {
2088 			pr_err("SELinux:  unable to look up"
2089 				" the initial SIDs list\n");
2090 			goto bad;
2091 		}
2092 		rc = mls_range_set(newc, &oc->context[0].range);
2093 		if (rc)
2094 			goto bad;
2095 	}
2096 
2097 	/* Check the validity of the new context. */
2098 	if (!policydb_context_isvalid(args->newp, newc)) {
2099 		rc = convert_context_handle_invalid_context(args->state,
2100 							args->oldp,
2101 							oldc);
2102 		if (rc)
2103 			goto bad;
2104 	}
2105 
2106 	return 0;
2107 bad:
2108 	/* Map old representation to string and save it. */
2109 	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2110 	if (rc)
2111 		return rc;
2112 	context_destroy(newc);
2113 	newc->str = s;
2114 	newc->len = len;
2115 	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2116 		newc->str);
2117 	return 0;
2118 }
2119 
2120 static void security_load_policycaps(struct selinux_state *state,
2121 				struct selinux_policy *policy)
2122 {
2123 	struct policydb *p;
2124 	unsigned int i;
2125 	struct ebitmap_node *node;
2126 
2127 	p = &policy->policydb;
2128 
2129 	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2130 		WRITE_ONCE(state->policycap[i],
2131 			ebitmap_get_bit(&p->policycaps, i));
2132 
2133 	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2134 		pr_info("SELinux:  policy capability %s=%d\n",
2135 			selinux_policycap_names[i],
2136 			ebitmap_get_bit(&p->policycaps, i));
2137 
2138 	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2139 		if (i >= ARRAY_SIZE(selinux_policycap_names))
2140 			pr_info("SELinux:  unknown policy capability %u\n",
2141 				i);
2142 	}
2143 }
2144 
2145 static int security_preserve_bools(struct selinux_policy *oldpolicy,
2146 				struct selinux_policy *newpolicy);
2147 
2148 static void selinux_policy_free(struct selinux_policy *policy)
2149 {
2150 	if (!policy)
2151 		return;
2152 
2153 	sidtab_destroy(policy->sidtab);
2154 	kfree(policy->map.mapping);
2155 	policydb_destroy(&policy->policydb);
2156 	kfree(policy->sidtab);
2157 	kfree(policy);
2158 }
2159 
2160 static void selinux_policy_cond_free(struct selinux_policy *policy)
2161 {
2162 	cond_policydb_destroy_dup(&policy->policydb);
2163 	kfree(policy);
2164 }
2165 
2166 void selinux_policy_cancel(struct selinux_state *state,
2167 			   struct selinux_load_state *load_state)
2168 {
2169 	struct selinux_policy *oldpolicy;
2170 
2171 	oldpolicy = rcu_dereference_protected(state->policy,
2172 					lockdep_is_held(&state->policy_mutex));
2173 
2174 	sidtab_cancel_convert(oldpolicy->sidtab);
2175 	selinux_policy_free(load_state->policy);
2176 	kfree(load_state->convert_data);
2177 }
2178 
2179 static void selinux_notify_policy_change(struct selinux_state *state,
2180 					u32 seqno)
2181 {
2182 	/* Flush external caches and notify userspace of policy load */
2183 	avc_ss_reset(state->avc, seqno);
2184 	selnl_notify_policyload(seqno);
2185 	selinux_status_update_policyload(state, seqno);
2186 	selinux_netlbl_cache_invalidate();
2187 	selinux_xfrm_notify_policyload();
2188 	selinux_ima_measure_state(state);
2189 }
2190 
2191 void selinux_policy_commit(struct selinux_state *state,
2192 			   struct selinux_load_state *load_state)
2193 {
2194 	struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2195 	u32 seqno;
2196 
2197 	oldpolicy = rcu_dereference_protected(state->policy,
2198 					lockdep_is_held(&state->policy_mutex));
2199 
2200 	/* If switching between different policy types, log MLS status */
2201 	if (oldpolicy) {
2202 		if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2203 			pr_info("SELinux: Disabling MLS support...\n");
2204 		else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2205 			pr_info("SELinux: Enabling MLS support...\n");
2206 	}
2207 
2208 	/* Set latest granting seqno for new policy. */
2209 	if (oldpolicy)
2210 		newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2211 	else
2212 		newpolicy->latest_granting = 1;
2213 	seqno = newpolicy->latest_granting;
2214 
2215 	/* Install the new policy. */
2216 	rcu_assign_pointer(state->policy, newpolicy);
2217 
2218 	/* Load the policycaps from the new policy */
2219 	security_load_policycaps(state, newpolicy);
2220 
2221 	if (!selinux_initialized(state)) {
2222 		/*
2223 		 * After first policy load, the security server is
2224 		 * marked as initialized and ready to handle requests and
2225 		 * any objects created prior to policy load are then labeled.
2226 		 */
2227 		selinux_mark_initialized(state);
2228 		selinux_complete_init();
2229 	}
2230 
2231 	/* Free the old policy */
2232 	synchronize_rcu();
2233 	selinux_policy_free(oldpolicy);
2234 	kfree(load_state->convert_data);
2235 
2236 	/* Notify others of the policy change */
2237 	selinux_notify_policy_change(state, seqno);
2238 }
2239 
2240 /**
2241  * security_load_policy - Load a security policy configuration.
2242  * @data: binary policy data
2243  * @len: length of data in bytes
2244  *
2245  * Load a new set of security policy configuration data,
2246  * validate it and convert the SID table as necessary.
2247  * This function will flush the access vector cache after
2248  * loading the new policy.
2249  */
2250 int security_load_policy(struct selinux_state *state, void *data, size_t len,
2251 			 struct selinux_load_state *load_state)
2252 {
2253 	struct selinux_policy *newpolicy, *oldpolicy;
2254 	struct selinux_policy_convert_data *convert_data;
2255 	int rc = 0;
2256 	struct policy_file file = { data, len }, *fp = &file;
2257 
2258 	newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2259 	if (!newpolicy)
2260 		return -ENOMEM;
2261 
2262 	newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2263 	if (!newpolicy->sidtab) {
2264 		rc = -ENOMEM;
2265 		goto err_policy;
2266 	}
2267 
2268 	rc = policydb_read(&newpolicy->policydb, fp);
2269 	if (rc)
2270 		goto err_sidtab;
2271 
2272 	newpolicy->policydb.len = len;
2273 	rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2274 				&newpolicy->map);
2275 	if (rc)
2276 		goto err_policydb;
2277 
2278 	rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2279 	if (rc) {
2280 		pr_err("SELinux:  unable to load the initial SIDs\n");
2281 		goto err_mapping;
2282 	}
2283 
2284 	if (!selinux_initialized(state)) {
2285 		/* First policy load, so no need to preserve state from old policy */
2286 		load_state->policy = newpolicy;
2287 		load_state->convert_data = NULL;
2288 		return 0;
2289 	}
2290 
2291 	oldpolicy = rcu_dereference_protected(state->policy,
2292 					lockdep_is_held(&state->policy_mutex));
2293 
2294 	/* Preserve active boolean values from the old policy */
2295 	rc = security_preserve_bools(oldpolicy, newpolicy);
2296 	if (rc) {
2297 		pr_err("SELinux:  unable to preserve booleans\n");
2298 		goto err_free_isids;
2299 	}
2300 
2301 	convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2302 	if (!convert_data) {
2303 		rc = -ENOMEM;
2304 		goto err_free_isids;
2305 	}
2306 
2307 	/*
2308 	 * Convert the internal representations of contexts
2309 	 * in the new SID table.
2310 	 */
2311 	convert_data->args.state = state;
2312 	convert_data->args.oldp = &oldpolicy->policydb;
2313 	convert_data->args.newp = &newpolicy->policydb;
2314 
2315 	convert_data->sidtab_params.func = convert_context;
2316 	convert_data->sidtab_params.args = &convert_data->args;
2317 	convert_data->sidtab_params.target = newpolicy->sidtab;
2318 
2319 	rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2320 	if (rc) {
2321 		pr_err("SELinux:  unable to convert the internal"
2322 			" representation of contexts in the new SID"
2323 			" table\n");
2324 		goto err_free_convert_data;
2325 	}
2326 
2327 	load_state->policy = newpolicy;
2328 	load_state->convert_data = convert_data;
2329 	return 0;
2330 
2331 err_free_convert_data:
2332 	kfree(convert_data);
2333 err_free_isids:
2334 	sidtab_destroy(newpolicy->sidtab);
2335 err_mapping:
2336 	kfree(newpolicy->map.mapping);
2337 err_policydb:
2338 	policydb_destroy(&newpolicy->policydb);
2339 err_sidtab:
2340 	kfree(newpolicy->sidtab);
2341 err_policy:
2342 	kfree(newpolicy);
2343 
2344 	return rc;
2345 }
2346 
2347 /**
2348  * security_port_sid - Obtain the SID for a port.
2349  * @protocol: protocol number
2350  * @port: port number
2351  * @out_sid: security identifier
2352  */
2353 int security_port_sid(struct selinux_state *state,
2354 		      u8 protocol, u16 port, u32 *out_sid)
2355 {
2356 	struct selinux_policy *policy;
2357 	struct policydb *policydb;
2358 	struct sidtab *sidtab;
2359 	struct ocontext *c;
2360 	int rc = 0;
2361 
2362 	if (!selinux_initialized(state)) {
2363 		*out_sid = SECINITSID_PORT;
2364 		return 0;
2365 	}
2366 
2367 	rcu_read_lock();
2368 	policy = rcu_dereference(state->policy);
2369 	policydb = &policy->policydb;
2370 	sidtab = policy->sidtab;
2371 
2372 	c = policydb->ocontexts[OCON_PORT];
2373 	while (c) {
2374 		if (c->u.port.protocol == protocol &&
2375 		    c->u.port.low_port <= port &&
2376 		    c->u.port.high_port >= port)
2377 			break;
2378 		c = c->next;
2379 	}
2380 
2381 	if (c) {
2382 		if (!c->sid[0]) {
2383 			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2384 						   &c->sid[0]);
2385 			if (rc)
2386 				goto out;
2387 		}
2388 		*out_sid = c->sid[0];
2389 	} else {
2390 		*out_sid = SECINITSID_PORT;
2391 	}
2392 
2393 out:
2394 	rcu_read_unlock();
2395 	return rc;
2396 }
2397 
2398 /**
2399  * security_pkey_sid - Obtain the SID for a pkey.
2400  * @subnet_prefix: Subnet Prefix
2401  * @pkey_num: pkey number
2402  * @out_sid: security identifier
2403  */
2404 int security_ib_pkey_sid(struct selinux_state *state,
2405 			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2406 {
2407 	struct selinux_policy *policy;
2408 	struct policydb *policydb;
2409 	struct sidtab *sidtab;
2410 	struct ocontext *c;
2411 	int rc = 0;
2412 
2413 	if (!selinux_initialized(state)) {
2414 		*out_sid = SECINITSID_UNLABELED;
2415 		return 0;
2416 	}
2417 
2418 	rcu_read_lock();
2419 	policy = rcu_dereference(state->policy);
2420 	policydb = &policy->policydb;
2421 	sidtab = policy->sidtab;
2422 
2423 	c = policydb->ocontexts[OCON_IBPKEY];
2424 	while (c) {
2425 		if (c->u.ibpkey.low_pkey <= pkey_num &&
2426 		    c->u.ibpkey.high_pkey >= pkey_num &&
2427 		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2428 			break;
2429 
2430 		c = c->next;
2431 	}
2432 
2433 	if (c) {
2434 		if (!c->sid[0]) {
2435 			rc = sidtab_context_to_sid(sidtab,
2436 						   &c->context[0],
2437 						   &c->sid[0]);
2438 			if (rc)
2439 				goto out;
2440 		}
2441 		*out_sid = c->sid[0];
2442 	} else
2443 		*out_sid = SECINITSID_UNLABELED;
2444 
2445 out:
2446 	rcu_read_unlock();
2447 	return rc;
2448 }
2449 
2450 /**
2451  * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2452  * @dev_name: device name
2453  * @port: port number
2454  * @out_sid: security identifier
2455  */
2456 int security_ib_endport_sid(struct selinux_state *state,
2457 			    const char *dev_name, u8 port_num, u32 *out_sid)
2458 {
2459 	struct selinux_policy *policy;
2460 	struct policydb *policydb;
2461 	struct sidtab *sidtab;
2462 	struct ocontext *c;
2463 	int rc = 0;
2464 
2465 	if (!selinux_initialized(state)) {
2466 		*out_sid = SECINITSID_UNLABELED;
2467 		return 0;
2468 	}
2469 
2470 	rcu_read_lock();
2471 	policy = rcu_dereference(state->policy);
2472 	policydb = &policy->policydb;
2473 	sidtab = policy->sidtab;
2474 
2475 	c = policydb->ocontexts[OCON_IBENDPORT];
2476 	while (c) {
2477 		if (c->u.ibendport.port == port_num &&
2478 		    !strncmp(c->u.ibendport.dev_name,
2479 			     dev_name,
2480 			     IB_DEVICE_NAME_MAX))
2481 			break;
2482 
2483 		c = c->next;
2484 	}
2485 
2486 	if (c) {
2487 		if (!c->sid[0]) {
2488 			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2489 						   &c->sid[0]);
2490 			if (rc)
2491 				goto out;
2492 		}
2493 		*out_sid = c->sid[0];
2494 	} else
2495 		*out_sid = SECINITSID_UNLABELED;
2496 
2497 out:
2498 	rcu_read_unlock();
2499 	return rc;
2500 }
2501 
2502 /**
2503  * security_netif_sid - Obtain the SID for a network interface.
2504  * @name: interface name
2505  * @if_sid: interface SID
2506  */
2507 int security_netif_sid(struct selinux_state *state,
2508 		       char *name, u32 *if_sid)
2509 {
2510 	struct selinux_policy *policy;
2511 	struct policydb *policydb;
2512 	struct sidtab *sidtab;
2513 	int rc = 0;
2514 	struct ocontext *c;
2515 
2516 	if (!selinux_initialized(state)) {
2517 		*if_sid = SECINITSID_NETIF;
2518 		return 0;
2519 	}
2520 
2521 	rcu_read_lock();
2522 	policy = rcu_dereference(state->policy);
2523 	policydb = &policy->policydb;
2524 	sidtab = policy->sidtab;
2525 
2526 	c = policydb->ocontexts[OCON_NETIF];
2527 	while (c) {
2528 		if (strcmp(name, c->u.name) == 0)
2529 			break;
2530 		c = c->next;
2531 	}
2532 
2533 	if (c) {
2534 		if (!c->sid[0] || !c->sid[1]) {
2535 			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2536 						   &c->sid[0]);
2537 			if (rc)
2538 				goto out;
2539 			rc = sidtab_context_to_sid(sidtab, &c->context[1],
2540 						   &c->sid[1]);
2541 			if (rc)
2542 				goto out;
2543 		}
2544 		*if_sid = c->sid[0];
2545 	} else
2546 		*if_sid = SECINITSID_NETIF;
2547 
2548 out:
2549 	rcu_read_unlock();
2550 	return rc;
2551 }
2552 
2553 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2554 {
2555 	int i, fail = 0;
2556 
2557 	for (i = 0; i < 4; i++)
2558 		if (addr[i] != (input[i] & mask[i])) {
2559 			fail = 1;
2560 			break;
2561 		}
2562 
2563 	return !fail;
2564 }
2565 
2566 /**
2567  * security_node_sid - Obtain the SID for a node (host).
2568  * @domain: communication domain aka address family
2569  * @addrp: address
2570  * @addrlen: address length in bytes
2571  * @out_sid: security identifier
2572  */
2573 int security_node_sid(struct selinux_state *state,
2574 		      u16 domain,
2575 		      void *addrp,
2576 		      u32 addrlen,
2577 		      u32 *out_sid)
2578 {
2579 	struct selinux_policy *policy;
2580 	struct policydb *policydb;
2581 	struct sidtab *sidtab;
2582 	int rc;
2583 	struct ocontext *c;
2584 
2585 	if (!selinux_initialized(state)) {
2586 		*out_sid = SECINITSID_NODE;
2587 		return 0;
2588 	}
2589 
2590 	rcu_read_lock();
2591 	policy = rcu_dereference(state->policy);
2592 	policydb = &policy->policydb;
2593 	sidtab = policy->sidtab;
2594 
2595 	switch (domain) {
2596 	case AF_INET: {
2597 		u32 addr;
2598 
2599 		rc = -EINVAL;
2600 		if (addrlen != sizeof(u32))
2601 			goto out;
2602 
2603 		addr = *((u32 *)addrp);
2604 
2605 		c = policydb->ocontexts[OCON_NODE];
2606 		while (c) {
2607 			if (c->u.node.addr == (addr & c->u.node.mask))
2608 				break;
2609 			c = c->next;
2610 		}
2611 		break;
2612 	}
2613 
2614 	case AF_INET6:
2615 		rc = -EINVAL;
2616 		if (addrlen != sizeof(u64) * 2)
2617 			goto out;
2618 		c = policydb->ocontexts[OCON_NODE6];
2619 		while (c) {
2620 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2621 						c->u.node6.mask))
2622 				break;
2623 			c = c->next;
2624 		}
2625 		break;
2626 
2627 	default:
2628 		rc = 0;
2629 		*out_sid = SECINITSID_NODE;
2630 		goto out;
2631 	}
2632 
2633 	if (c) {
2634 		if (!c->sid[0]) {
2635 			rc = sidtab_context_to_sid(sidtab,
2636 						   &c->context[0],
2637 						   &c->sid[0]);
2638 			if (rc)
2639 				goto out;
2640 		}
2641 		*out_sid = c->sid[0];
2642 	} else {
2643 		*out_sid = SECINITSID_NODE;
2644 	}
2645 
2646 	rc = 0;
2647 out:
2648 	rcu_read_unlock();
2649 	return rc;
2650 }
2651 
2652 #define SIDS_NEL 25
2653 
2654 /**
2655  * security_get_user_sids - Obtain reachable SIDs for a user.
2656  * @fromsid: starting SID
2657  * @username: username
2658  * @sids: array of reachable SIDs for user
2659  * @nel: number of elements in @sids
2660  *
2661  * Generate the set of SIDs for legal security contexts
2662  * for a given user that can be reached by @fromsid.
2663  * Set *@sids to point to a dynamically allocated
2664  * array containing the set of SIDs.  Set *@nel to the
2665  * number of elements in the array.
2666  */
2667 
2668 int security_get_user_sids(struct selinux_state *state,
2669 			   u32 fromsid,
2670 			   char *username,
2671 			   u32 **sids,
2672 			   u32 *nel)
2673 {
2674 	struct selinux_policy *policy;
2675 	struct policydb *policydb;
2676 	struct sidtab *sidtab;
2677 	struct context *fromcon, usercon;
2678 	u32 *mysids = NULL, *mysids2, sid;
2679 	u32 mynel = 0, maxnel = SIDS_NEL;
2680 	struct user_datum *user;
2681 	struct role_datum *role;
2682 	struct ebitmap_node *rnode, *tnode;
2683 	int rc = 0, i, j;
2684 
2685 	*sids = NULL;
2686 	*nel = 0;
2687 
2688 	if (!selinux_initialized(state))
2689 		goto out;
2690 
2691 	rcu_read_lock();
2692 	policy = rcu_dereference(state->policy);
2693 	policydb = &policy->policydb;
2694 	sidtab = policy->sidtab;
2695 
2696 	context_init(&usercon);
2697 
2698 	rc = -EINVAL;
2699 	fromcon = sidtab_search(sidtab, fromsid);
2700 	if (!fromcon)
2701 		goto out_unlock;
2702 
2703 	rc = -EINVAL;
2704 	user = symtab_search(&policydb->p_users, username);
2705 	if (!user)
2706 		goto out_unlock;
2707 
2708 	usercon.user = user->value;
2709 
2710 	rc = -ENOMEM;
2711 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2712 	if (!mysids)
2713 		goto out_unlock;
2714 
2715 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2716 		role = policydb->role_val_to_struct[i];
2717 		usercon.role = i + 1;
2718 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2719 			usercon.type = j + 1;
2720 
2721 			if (mls_setup_user_range(policydb, fromcon, user,
2722 						 &usercon))
2723 				continue;
2724 
2725 			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2726 			if (rc)
2727 				goto out_unlock;
2728 			if (mynel < maxnel) {
2729 				mysids[mynel++] = sid;
2730 			} else {
2731 				rc = -ENOMEM;
2732 				maxnel += SIDS_NEL;
2733 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2734 				if (!mysids2)
2735 					goto out_unlock;
2736 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2737 				kfree(mysids);
2738 				mysids = mysids2;
2739 				mysids[mynel++] = sid;
2740 			}
2741 		}
2742 	}
2743 	rc = 0;
2744 out_unlock:
2745 	rcu_read_unlock();
2746 	if (rc || !mynel) {
2747 		kfree(mysids);
2748 		goto out;
2749 	}
2750 
2751 	rc = -ENOMEM;
2752 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2753 	if (!mysids2) {
2754 		kfree(mysids);
2755 		goto out;
2756 	}
2757 	for (i = 0, j = 0; i < mynel; i++) {
2758 		struct av_decision dummy_avd;
2759 		rc = avc_has_perm_noaudit(state,
2760 					  fromsid, mysids[i],
2761 					  SECCLASS_PROCESS, /* kernel value */
2762 					  PROCESS__TRANSITION, AVC_STRICT,
2763 					  &dummy_avd);
2764 		if (!rc)
2765 			mysids2[j++] = mysids[i];
2766 		cond_resched();
2767 	}
2768 	rc = 0;
2769 	kfree(mysids);
2770 	*sids = mysids2;
2771 	*nel = j;
2772 out:
2773 	return rc;
2774 }
2775 
2776 /**
2777  * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2778  * @fstype: filesystem type
2779  * @path: path from root of mount
2780  * @sclass: file security class
2781  * @sid: SID for path
2782  *
2783  * Obtain a SID to use for a file in a filesystem that
2784  * cannot support xattr or use a fixed labeling behavior like
2785  * transition SIDs or task SIDs.
2786  */
2787 static inline int __security_genfs_sid(struct selinux_policy *policy,
2788 				       const char *fstype,
2789 				       char *path,
2790 				       u16 orig_sclass,
2791 				       u32 *sid)
2792 {
2793 	struct policydb *policydb = &policy->policydb;
2794 	struct sidtab *sidtab = policy->sidtab;
2795 	int len;
2796 	u16 sclass;
2797 	struct genfs *genfs;
2798 	struct ocontext *c;
2799 	int rc, cmp = 0;
2800 
2801 	while (path[0] == '/' && path[1] == '/')
2802 		path++;
2803 
2804 	sclass = unmap_class(&policy->map, orig_sclass);
2805 	*sid = SECINITSID_UNLABELED;
2806 
2807 	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2808 		cmp = strcmp(fstype, genfs->fstype);
2809 		if (cmp <= 0)
2810 			break;
2811 	}
2812 
2813 	rc = -ENOENT;
2814 	if (!genfs || cmp)
2815 		goto out;
2816 
2817 	for (c = genfs->head; c; c = c->next) {
2818 		len = strlen(c->u.name);
2819 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2820 		    (strncmp(c->u.name, path, len) == 0))
2821 			break;
2822 	}
2823 
2824 	rc = -ENOENT;
2825 	if (!c)
2826 		goto out;
2827 
2828 	if (!c->sid[0]) {
2829 		rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2830 		if (rc)
2831 			goto out;
2832 	}
2833 
2834 	*sid = c->sid[0];
2835 	rc = 0;
2836 out:
2837 	return rc;
2838 }
2839 
2840 /**
2841  * security_genfs_sid - Obtain a SID for a file in a filesystem
2842  * @fstype: filesystem type
2843  * @path: path from root of mount
2844  * @sclass: file security class
2845  * @sid: SID for path
2846  *
2847  * Acquire policy_rwlock before calling __security_genfs_sid() and release
2848  * it afterward.
2849  */
2850 int security_genfs_sid(struct selinux_state *state,
2851 		       const char *fstype,
2852 		       char *path,
2853 		       u16 orig_sclass,
2854 		       u32 *sid)
2855 {
2856 	struct selinux_policy *policy;
2857 	int retval;
2858 
2859 	if (!selinux_initialized(state)) {
2860 		*sid = SECINITSID_UNLABELED;
2861 		return 0;
2862 	}
2863 
2864 	rcu_read_lock();
2865 	policy = rcu_dereference(state->policy);
2866 	retval = __security_genfs_sid(policy,
2867 				fstype, path, orig_sclass, sid);
2868 	rcu_read_unlock();
2869 	return retval;
2870 }
2871 
2872 int selinux_policy_genfs_sid(struct selinux_policy *policy,
2873 			const char *fstype,
2874 			char *path,
2875 			u16 orig_sclass,
2876 			u32 *sid)
2877 {
2878 	/* no lock required, policy is not yet accessible by other threads */
2879 	return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2880 }
2881 
2882 /**
2883  * security_fs_use - Determine how to handle labeling for a filesystem.
2884  * @sb: superblock in question
2885  */
2886 int security_fs_use(struct selinux_state *state, struct super_block *sb)
2887 {
2888 	struct selinux_policy *policy;
2889 	struct policydb *policydb;
2890 	struct sidtab *sidtab;
2891 	int rc = 0;
2892 	struct ocontext *c;
2893 	struct superblock_security_struct *sbsec = sb->s_security;
2894 	const char *fstype = sb->s_type->name;
2895 
2896 	if (!selinux_initialized(state)) {
2897 		sbsec->behavior = SECURITY_FS_USE_NONE;
2898 		sbsec->sid = SECINITSID_UNLABELED;
2899 		return 0;
2900 	}
2901 
2902 	rcu_read_lock();
2903 	policy = rcu_dereference(state->policy);
2904 	policydb = &policy->policydb;
2905 	sidtab = policy->sidtab;
2906 
2907 	c = policydb->ocontexts[OCON_FSUSE];
2908 	while (c) {
2909 		if (strcmp(fstype, c->u.name) == 0)
2910 			break;
2911 		c = c->next;
2912 	}
2913 
2914 	if (c) {
2915 		sbsec->behavior = c->v.behavior;
2916 		if (!c->sid[0]) {
2917 			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2918 						   &c->sid[0]);
2919 			if (rc)
2920 				goto out;
2921 		}
2922 		sbsec->sid = c->sid[0];
2923 	} else {
2924 		rc = __security_genfs_sid(policy, fstype, "/",
2925 					SECCLASS_DIR, &sbsec->sid);
2926 		if (rc) {
2927 			sbsec->behavior = SECURITY_FS_USE_NONE;
2928 			rc = 0;
2929 		} else {
2930 			sbsec->behavior = SECURITY_FS_USE_GENFS;
2931 		}
2932 	}
2933 
2934 out:
2935 	rcu_read_unlock();
2936 	return rc;
2937 }
2938 
2939 int security_get_bools(struct selinux_policy *policy,
2940 		       u32 *len, char ***names, int **values)
2941 {
2942 	struct policydb *policydb;
2943 	u32 i;
2944 	int rc;
2945 
2946 	policydb = &policy->policydb;
2947 
2948 	*names = NULL;
2949 	*values = NULL;
2950 
2951 	rc = 0;
2952 	*len = policydb->p_bools.nprim;
2953 	if (!*len)
2954 		goto out;
2955 
2956 	rc = -ENOMEM;
2957 	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2958 	if (!*names)
2959 		goto err;
2960 
2961 	rc = -ENOMEM;
2962 	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2963 	if (!*values)
2964 		goto err;
2965 
2966 	for (i = 0; i < *len; i++) {
2967 		(*values)[i] = policydb->bool_val_to_struct[i]->state;
2968 
2969 		rc = -ENOMEM;
2970 		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2971 				      GFP_ATOMIC);
2972 		if (!(*names)[i])
2973 			goto err;
2974 	}
2975 	rc = 0;
2976 out:
2977 	return rc;
2978 err:
2979 	if (*names) {
2980 		for (i = 0; i < *len; i++)
2981 			kfree((*names)[i]);
2982 		kfree(*names);
2983 	}
2984 	kfree(*values);
2985 	*len = 0;
2986 	*names = NULL;
2987 	*values = NULL;
2988 	goto out;
2989 }
2990 
2991 
2992 int security_set_bools(struct selinux_state *state, u32 len, int *values)
2993 {
2994 	struct selinux_policy *newpolicy, *oldpolicy;
2995 	int rc;
2996 	u32 i, seqno = 0;
2997 
2998 	if (!selinux_initialized(state))
2999 		return -EINVAL;
3000 
3001 	oldpolicy = rcu_dereference_protected(state->policy,
3002 					lockdep_is_held(&state->policy_mutex));
3003 
3004 	/* Consistency check on number of booleans, should never fail */
3005 	if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3006 		return -EINVAL;
3007 
3008 	newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3009 	if (!newpolicy)
3010 		return -ENOMEM;
3011 
3012 	/*
3013 	 * Deep copy only the parts of the policydb that might be
3014 	 * modified as a result of changing booleans.
3015 	 */
3016 	rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3017 	if (rc) {
3018 		kfree(newpolicy);
3019 		return -ENOMEM;
3020 	}
3021 
3022 	/* Update the boolean states in the copy */
3023 	for (i = 0; i < len; i++) {
3024 		int new_state = !!values[i];
3025 		int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3026 
3027 		if (new_state != old_state) {
3028 			audit_log(audit_context(), GFP_ATOMIC,
3029 				AUDIT_MAC_CONFIG_CHANGE,
3030 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
3031 				sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3032 				new_state,
3033 				old_state,
3034 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
3035 				audit_get_sessionid(current));
3036 			newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3037 		}
3038 	}
3039 
3040 	/* Re-evaluate the conditional rules in the copy */
3041 	evaluate_cond_nodes(&newpolicy->policydb);
3042 
3043 	/* Set latest granting seqno for new policy */
3044 	newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3045 	seqno = newpolicy->latest_granting;
3046 
3047 	/* Install the new policy */
3048 	rcu_assign_pointer(state->policy, newpolicy);
3049 
3050 	/*
3051 	 * Free the conditional portions of the old policydb
3052 	 * that were copied for the new policy, and the oldpolicy
3053 	 * structure itself but not what it references.
3054 	 */
3055 	synchronize_rcu();
3056 	selinux_policy_cond_free(oldpolicy);
3057 
3058 	/* Notify others of the policy change */
3059 	selinux_notify_policy_change(state, seqno);
3060 	return 0;
3061 }
3062 
3063 int security_get_bool_value(struct selinux_state *state,
3064 			    u32 index)
3065 {
3066 	struct selinux_policy *policy;
3067 	struct policydb *policydb;
3068 	int rc;
3069 	u32 len;
3070 
3071 	if (!selinux_initialized(state))
3072 		return 0;
3073 
3074 	rcu_read_lock();
3075 	policy = rcu_dereference(state->policy);
3076 	policydb = &policy->policydb;
3077 
3078 	rc = -EFAULT;
3079 	len = policydb->p_bools.nprim;
3080 	if (index >= len)
3081 		goto out;
3082 
3083 	rc = policydb->bool_val_to_struct[index]->state;
3084 out:
3085 	rcu_read_unlock();
3086 	return rc;
3087 }
3088 
3089 static int security_preserve_bools(struct selinux_policy *oldpolicy,
3090 				struct selinux_policy *newpolicy)
3091 {
3092 	int rc, *bvalues = NULL;
3093 	char **bnames = NULL;
3094 	struct cond_bool_datum *booldatum;
3095 	u32 i, nbools = 0;
3096 
3097 	rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3098 	if (rc)
3099 		goto out;
3100 	for (i = 0; i < nbools; i++) {
3101 		booldatum = symtab_search(&newpolicy->policydb.p_bools,
3102 					bnames[i]);
3103 		if (booldatum)
3104 			booldatum->state = bvalues[i];
3105 	}
3106 	evaluate_cond_nodes(&newpolicy->policydb);
3107 
3108 out:
3109 	if (bnames) {
3110 		for (i = 0; i < nbools; i++)
3111 			kfree(bnames[i]);
3112 	}
3113 	kfree(bnames);
3114 	kfree(bvalues);
3115 	return rc;
3116 }
3117 
3118 /*
3119  * security_sid_mls_copy() - computes a new sid based on the given
3120  * sid and the mls portion of mls_sid.
3121  */
3122 int security_sid_mls_copy(struct selinux_state *state,
3123 			  u32 sid, u32 mls_sid, u32 *new_sid)
3124 {
3125 	struct selinux_policy *policy;
3126 	struct policydb *policydb;
3127 	struct sidtab *sidtab;
3128 	struct context *context1;
3129 	struct context *context2;
3130 	struct context newcon;
3131 	char *s;
3132 	u32 len;
3133 	int rc;
3134 
3135 	rc = 0;
3136 	if (!selinux_initialized(state)) {
3137 		*new_sid = sid;
3138 		goto out;
3139 	}
3140 
3141 	context_init(&newcon);
3142 
3143 	rcu_read_lock();
3144 	policy = rcu_dereference(state->policy);
3145 	policydb = &policy->policydb;
3146 	sidtab = policy->sidtab;
3147 
3148 	if (!policydb->mls_enabled) {
3149 		*new_sid = sid;
3150 		goto out_unlock;
3151 	}
3152 
3153 	rc = -EINVAL;
3154 	context1 = sidtab_search(sidtab, sid);
3155 	if (!context1) {
3156 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3157 			__func__, sid);
3158 		goto out_unlock;
3159 	}
3160 
3161 	rc = -EINVAL;
3162 	context2 = sidtab_search(sidtab, mls_sid);
3163 	if (!context2) {
3164 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3165 			__func__, mls_sid);
3166 		goto out_unlock;
3167 	}
3168 
3169 	newcon.user = context1->user;
3170 	newcon.role = context1->role;
3171 	newcon.type = context1->type;
3172 	rc = mls_context_cpy(&newcon, context2);
3173 	if (rc)
3174 		goto out_unlock;
3175 
3176 	/* Check the validity of the new context. */
3177 	if (!policydb_context_isvalid(policydb, &newcon)) {
3178 		rc = convert_context_handle_invalid_context(state, policydb,
3179 							&newcon);
3180 		if (rc) {
3181 			if (!context_struct_to_string(policydb, &newcon, &s,
3182 						      &len)) {
3183 				struct audit_buffer *ab;
3184 
3185 				ab = audit_log_start(audit_context(),
3186 						     GFP_ATOMIC,
3187 						     AUDIT_SELINUX_ERR);
3188 				audit_log_format(ab,
3189 						 "op=security_sid_mls_copy invalid_context=");
3190 				/* don't record NUL with untrusted strings */
3191 				audit_log_n_untrustedstring(ab, s, len - 1);
3192 				audit_log_end(ab);
3193 				kfree(s);
3194 			}
3195 			goto out_unlock;
3196 		}
3197 	}
3198 	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3199 out_unlock:
3200 	rcu_read_unlock();
3201 	context_destroy(&newcon);
3202 out:
3203 	return rc;
3204 }
3205 
3206 /**
3207  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3208  * @nlbl_sid: NetLabel SID
3209  * @nlbl_type: NetLabel labeling protocol type
3210  * @xfrm_sid: XFRM SID
3211  *
3212  * Description:
3213  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3214  * resolved into a single SID it is returned via @peer_sid and the function
3215  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3216  * returns a negative value.  A table summarizing the behavior is below:
3217  *
3218  *                                 | function return |      @sid
3219  *   ------------------------------+-----------------+-----------------
3220  *   no peer labels                |        0        |    SECSID_NULL
3221  *   single peer label             |        0        |    <peer_label>
3222  *   multiple, consistent labels   |        0        |    <peer_label>
3223  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3224  *
3225  */
3226 int security_net_peersid_resolve(struct selinux_state *state,
3227 				 u32 nlbl_sid, u32 nlbl_type,
3228 				 u32 xfrm_sid,
3229 				 u32 *peer_sid)
3230 {
3231 	struct selinux_policy *policy;
3232 	struct policydb *policydb;
3233 	struct sidtab *sidtab;
3234 	int rc;
3235 	struct context *nlbl_ctx;
3236 	struct context *xfrm_ctx;
3237 
3238 	*peer_sid = SECSID_NULL;
3239 
3240 	/* handle the common (which also happens to be the set of easy) cases
3241 	 * right away, these two if statements catch everything involving a
3242 	 * single or absent peer SID/label */
3243 	if (xfrm_sid == SECSID_NULL) {
3244 		*peer_sid = nlbl_sid;
3245 		return 0;
3246 	}
3247 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3248 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3249 	 * is present */
3250 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3251 		*peer_sid = xfrm_sid;
3252 		return 0;
3253 	}
3254 
3255 	if (!selinux_initialized(state))
3256 		return 0;
3257 
3258 	rcu_read_lock();
3259 	policy = rcu_dereference(state->policy);
3260 	policydb = &policy->policydb;
3261 	sidtab = policy->sidtab;
3262 
3263 	/*
3264 	 * We don't need to check initialized here since the only way both
3265 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3266 	 * security server was initialized and state->initialized was true.
3267 	 */
3268 	if (!policydb->mls_enabled) {
3269 		rc = 0;
3270 		goto out;
3271 	}
3272 
3273 	rc = -EINVAL;
3274 	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3275 	if (!nlbl_ctx) {
3276 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3277 		       __func__, nlbl_sid);
3278 		goto out;
3279 	}
3280 	rc = -EINVAL;
3281 	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3282 	if (!xfrm_ctx) {
3283 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3284 		       __func__, xfrm_sid);
3285 		goto out;
3286 	}
3287 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3288 	if (rc)
3289 		goto out;
3290 
3291 	/* at present NetLabel SIDs/labels really only carry MLS
3292 	 * information so if the MLS portion of the NetLabel SID
3293 	 * matches the MLS portion of the labeled XFRM SID/label
3294 	 * then pass along the XFRM SID as it is the most
3295 	 * expressive */
3296 	*peer_sid = xfrm_sid;
3297 out:
3298 	rcu_read_unlock();
3299 	return rc;
3300 }
3301 
3302 static int get_classes_callback(void *k, void *d, void *args)
3303 {
3304 	struct class_datum *datum = d;
3305 	char *name = k, **classes = args;
3306 	int value = datum->value - 1;
3307 
3308 	classes[value] = kstrdup(name, GFP_ATOMIC);
3309 	if (!classes[value])
3310 		return -ENOMEM;
3311 
3312 	return 0;
3313 }
3314 
3315 int security_get_classes(struct selinux_policy *policy,
3316 			 char ***classes, int *nclasses)
3317 {
3318 	struct policydb *policydb;
3319 	int rc;
3320 
3321 	policydb = &policy->policydb;
3322 
3323 	rc = -ENOMEM;
3324 	*nclasses = policydb->p_classes.nprim;
3325 	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3326 	if (!*classes)
3327 		goto out;
3328 
3329 	rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3330 			 *classes);
3331 	if (rc) {
3332 		int i;
3333 		for (i = 0; i < *nclasses; i++)
3334 			kfree((*classes)[i]);
3335 		kfree(*classes);
3336 	}
3337 
3338 out:
3339 	return rc;
3340 }
3341 
3342 static int get_permissions_callback(void *k, void *d, void *args)
3343 {
3344 	struct perm_datum *datum = d;
3345 	char *name = k, **perms = args;
3346 	int value = datum->value - 1;
3347 
3348 	perms[value] = kstrdup(name, GFP_ATOMIC);
3349 	if (!perms[value])
3350 		return -ENOMEM;
3351 
3352 	return 0;
3353 }
3354 
3355 int security_get_permissions(struct selinux_policy *policy,
3356 			     char *class, char ***perms, int *nperms)
3357 {
3358 	struct policydb *policydb;
3359 	int rc, i;
3360 	struct class_datum *match;
3361 
3362 	policydb = &policy->policydb;
3363 
3364 	rc = -EINVAL;
3365 	match = symtab_search(&policydb->p_classes, class);
3366 	if (!match) {
3367 		pr_err("SELinux: %s:  unrecognized class %s\n",
3368 			__func__, class);
3369 		goto out;
3370 	}
3371 
3372 	rc = -ENOMEM;
3373 	*nperms = match->permissions.nprim;
3374 	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3375 	if (!*perms)
3376 		goto out;
3377 
3378 	if (match->comdatum) {
3379 		rc = hashtab_map(&match->comdatum->permissions.table,
3380 				 get_permissions_callback, *perms);
3381 		if (rc)
3382 			goto err;
3383 	}
3384 
3385 	rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3386 			 *perms);
3387 	if (rc)
3388 		goto err;
3389 
3390 out:
3391 	return rc;
3392 
3393 err:
3394 	for (i = 0; i < *nperms; i++)
3395 		kfree((*perms)[i]);
3396 	kfree(*perms);
3397 	return rc;
3398 }
3399 
3400 int security_get_reject_unknown(struct selinux_state *state)
3401 {
3402 	struct selinux_policy *policy;
3403 	int value;
3404 
3405 	if (!selinux_initialized(state))
3406 		return 0;
3407 
3408 	rcu_read_lock();
3409 	policy = rcu_dereference(state->policy);
3410 	value = policy->policydb.reject_unknown;
3411 	rcu_read_unlock();
3412 	return value;
3413 }
3414 
3415 int security_get_allow_unknown(struct selinux_state *state)
3416 {
3417 	struct selinux_policy *policy;
3418 	int value;
3419 
3420 	if (!selinux_initialized(state))
3421 		return 0;
3422 
3423 	rcu_read_lock();
3424 	policy = rcu_dereference(state->policy);
3425 	value = policy->policydb.allow_unknown;
3426 	rcu_read_unlock();
3427 	return value;
3428 }
3429 
3430 /**
3431  * security_policycap_supported - Check for a specific policy capability
3432  * @req_cap: capability
3433  *
3434  * Description:
3435  * This function queries the currently loaded policy to see if it supports the
3436  * capability specified by @req_cap.  Returns true (1) if the capability is
3437  * supported, false (0) if it isn't supported.
3438  *
3439  */
3440 int security_policycap_supported(struct selinux_state *state,
3441 				 unsigned int req_cap)
3442 {
3443 	struct selinux_policy *policy;
3444 	int rc;
3445 
3446 	if (!selinux_initialized(state))
3447 		return 0;
3448 
3449 	rcu_read_lock();
3450 	policy = rcu_dereference(state->policy);
3451 	rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3452 	rcu_read_unlock();
3453 
3454 	return rc;
3455 }
3456 
3457 struct selinux_audit_rule {
3458 	u32 au_seqno;
3459 	struct context au_ctxt;
3460 };
3461 
3462 void selinux_audit_rule_free(void *vrule)
3463 {
3464 	struct selinux_audit_rule *rule = vrule;
3465 
3466 	if (rule) {
3467 		context_destroy(&rule->au_ctxt);
3468 		kfree(rule);
3469 	}
3470 }
3471 
3472 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3473 {
3474 	struct selinux_state *state = &selinux_state;
3475 	struct selinux_policy *policy;
3476 	struct policydb *policydb;
3477 	struct selinux_audit_rule *tmprule;
3478 	struct role_datum *roledatum;
3479 	struct type_datum *typedatum;
3480 	struct user_datum *userdatum;
3481 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3482 	int rc = 0;
3483 
3484 	*rule = NULL;
3485 
3486 	if (!selinux_initialized(state))
3487 		return -EOPNOTSUPP;
3488 
3489 	switch (field) {
3490 	case AUDIT_SUBJ_USER:
3491 	case AUDIT_SUBJ_ROLE:
3492 	case AUDIT_SUBJ_TYPE:
3493 	case AUDIT_OBJ_USER:
3494 	case AUDIT_OBJ_ROLE:
3495 	case AUDIT_OBJ_TYPE:
3496 		/* only 'equals' and 'not equals' fit user, role, and type */
3497 		if (op != Audit_equal && op != Audit_not_equal)
3498 			return -EINVAL;
3499 		break;
3500 	case AUDIT_SUBJ_SEN:
3501 	case AUDIT_SUBJ_CLR:
3502 	case AUDIT_OBJ_LEV_LOW:
3503 	case AUDIT_OBJ_LEV_HIGH:
3504 		/* we do not allow a range, indicated by the presence of '-' */
3505 		if (strchr(rulestr, '-'))
3506 			return -EINVAL;
3507 		break;
3508 	default:
3509 		/* only the above fields are valid */
3510 		return -EINVAL;
3511 	}
3512 
3513 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3514 	if (!tmprule)
3515 		return -ENOMEM;
3516 
3517 	context_init(&tmprule->au_ctxt);
3518 
3519 	rcu_read_lock();
3520 	policy = rcu_dereference(state->policy);
3521 	policydb = &policy->policydb;
3522 
3523 	tmprule->au_seqno = policy->latest_granting;
3524 
3525 	switch (field) {
3526 	case AUDIT_SUBJ_USER:
3527 	case AUDIT_OBJ_USER:
3528 		rc = -EINVAL;
3529 		userdatum = symtab_search(&policydb->p_users, rulestr);
3530 		if (!userdatum)
3531 			goto out;
3532 		tmprule->au_ctxt.user = userdatum->value;
3533 		break;
3534 	case AUDIT_SUBJ_ROLE:
3535 	case AUDIT_OBJ_ROLE:
3536 		rc = -EINVAL;
3537 		roledatum = symtab_search(&policydb->p_roles, rulestr);
3538 		if (!roledatum)
3539 			goto out;
3540 		tmprule->au_ctxt.role = roledatum->value;
3541 		break;
3542 	case AUDIT_SUBJ_TYPE:
3543 	case AUDIT_OBJ_TYPE:
3544 		rc = -EINVAL;
3545 		typedatum = symtab_search(&policydb->p_types, rulestr);
3546 		if (!typedatum)
3547 			goto out;
3548 		tmprule->au_ctxt.type = typedatum->value;
3549 		break;
3550 	case AUDIT_SUBJ_SEN:
3551 	case AUDIT_SUBJ_CLR:
3552 	case AUDIT_OBJ_LEV_LOW:
3553 	case AUDIT_OBJ_LEV_HIGH:
3554 		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3555 				     GFP_ATOMIC);
3556 		if (rc)
3557 			goto out;
3558 		break;
3559 	}
3560 	rc = 0;
3561 out:
3562 	rcu_read_unlock();
3563 
3564 	if (rc) {
3565 		selinux_audit_rule_free(tmprule);
3566 		tmprule = NULL;
3567 	}
3568 
3569 	*rule = tmprule;
3570 
3571 	return rc;
3572 }
3573 
3574 /* Check to see if the rule contains any selinux fields */
3575 int selinux_audit_rule_known(struct audit_krule *rule)
3576 {
3577 	int i;
3578 
3579 	for (i = 0; i < rule->field_count; i++) {
3580 		struct audit_field *f = &rule->fields[i];
3581 		switch (f->type) {
3582 		case AUDIT_SUBJ_USER:
3583 		case AUDIT_SUBJ_ROLE:
3584 		case AUDIT_SUBJ_TYPE:
3585 		case AUDIT_SUBJ_SEN:
3586 		case AUDIT_SUBJ_CLR:
3587 		case AUDIT_OBJ_USER:
3588 		case AUDIT_OBJ_ROLE:
3589 		case AUDIT_OBJ_TYPE:
3590 		case AUDIT_OBJ_LEV_LOW:
3591 		case AUDIT_OBJ_LEV_HIGH:
3592 			return 1;
3593 		}
3594 	}
3595 
3596 	return 0;
3597 }
3598 
3599 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3600 {
3601 	struct selinux_state *state = &selinux_state;
3602 	struct selinux_policy *policy;
3603 	struct context *ctxt;
3604 	struct mls_level *level;
3605 	struct selinux_audit_rule *rule = vrule;
3606 	int match = 0;
3607 
3608 	if (unlikely(!rule)) {
3609 		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3610 		return -ENOENT;
3611 	}
3612 
3613 	if (!selinux_initialized(state))
3614 		return 0;
3615 
3616 	rcu_read_lock();
3617 
3618 	policy = rcu_dereference(state->policy);
3619 
3620 	if (rule->au_seqno < policy->latest_granting) {
3621 		match = -ESTALE;
3622 		goto out;
3623 	}
3624 
3625 	ctxt = sidtab_search(policy->sidtab, sid);
3626 	if (unlikely(!ctxt)) {
3627 		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3628 			  sid);
3629 		match = -ENOENT;
3630 		goto out;
3631 	}
3632 
3633 	/* a field/op pair that is not caught here will simply fall through
3634 	   without a match */
3635 	switch (field) {
3636 	case AUDIT_SUBJ_USER:
3637 	case AUDIT_OBJ_USER:
3638 		switch (op) {
3639 		case Audit_equal:
3640 			match = (ctxt->user == rule->au_ctxt.user);
3641 			break;
3642 		case Audit_not_equal:
3643 			match = (ctxt->user != rule->au_ctxt.user);
3644 			break;
3645 		}
3646 		break;
3647 	case AUDIT_SUBJ_ROLE:
3648 	case AUDIT_OBJ_ROLE:
3649 		switch (op) {
3650 		case Audit_equal:
3651 			match = (ctxt->role == rule->au_ctxt.role);
3652 			break;
3653 		case Audit_not_equal:
3654 			match = (ctxt->role != rule->au_ctxt.role);
3655 			break;
3656 		}
3657 		break;
3658 	case AUDIT_SUBJ_TYPE:
3659 	case AUDIT_OBJ_TYPE:
3660 		switch (op) {
3661 		case Audit_equal:
3662 			match = (ctxt->type == rule->au_ctxt.type);
3663 			break;
3664 		case Audit_not_equal:
3665 			match = (ctxt->type != rule->au_ctxt.type);
3666 			break;
3667 		}
3668 		break;
3669 	case AUDIT_SUBJ_SEN:
3670 	case AUDIT_SUBJ_CLR:
3671 	case AUDIT_OBJ_LEV_LOW:
3672 	case AUDIT_OBJ_LEV_HIGH:
3673 		level = ((field == AUDIT_SUBJ_SEN ||
3674 			  field == AUDIT_OBJ_LEV_LOW) ?
3675 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3676 		switch (op) {
3677 		case Audit_equal:
3678 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3679 					     level);
3680 			break;
3681 		case Audit_not_equal:
3682 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3683 					      level);
3684 			break;
3685 		case Audit_lt:
3686 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3687 					       level) &&
3688 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3689 					       level));
3690 			break;
3691 		case Audit_le:
3692 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3693 					      level);
3694 			break;
3695 		case Audit_gt:
3696 			match = (mls_level_dom(level,
3697 					      &rule->au_ctxt.range.level[0]) &&
3698 				 !mls_level_eq(level,
3699 					       &rule->au_ctxt.range.level[0]));
3700 			break;
3701 		case Audit_ge:
3702 			match = mls_level_dom(level,
3703 					      &rule->au_ctxt.range.level[0]);
3704 			break;
3705 		}
3706 	}
3707 
3708 out:
3709 	rcu_read_unlock();
3710 	return match;
3711 }
3712 
3713 static int aurule_avc_callback(u32 event)
3714 {
3715 	if (event == AVC_CALLBACK_RESET)
3716 		return audit_update_lsm_rules();
3717 	return 0;
3718 }
3719 
3720 static int __init aurule_init(void)
3721 {
3722 	int err;
3723 
3724 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3725 	if (err)
3726 		panic("avc_add_callback() failed, error %d\n", err);
3727 
3728 	return err;
3729 }
3730 __initcall(aurule_init);
3731 
3732 #ifdef CONFIG_NETLABEL
3733 /**
3734  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3735  * @secattr: the NetLabel packet security attributes
3736  * @sid: the SELinux SID
3737  *
3738  * Description:
3739  * Attempt to cache the context in @ctx, which was derived from the packet in
3740  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3741  * already been initialized.
3742  *
3743  */
3744 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3745 				      u32 sid)
3746 {
3747 	u32 *sid_cache;
3748 
3749 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3750 	if (sid_cache == NULL)
3751 		return;
3752 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3753 	if (secattr->cache == NULL) {
3754 		kfree(sid_cache);
3755 		return;
3756 	}
3757 
3758 	*sid_cache = sid;
3759 	secattr->cache->free = kfree;
3760 	secattr->cache->data = sid_cache;
3761 	secattr->flags |= NETLBL_SECATTR_CACHE;
3762 }
3763 
3764 /**
3765  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3766  * @secattr: the NetLabel packet security attributes
3767  * @sid: the SELinux SID
3768  *
3769  * Description:
3770  * Convert the given NetLabel security attributes in @secattr into a
3771  * SELinux SID.  If the @secattr field does not contain a full SELinux
3772  * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3773  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3774  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3775  * conversion for future lookups.  Returns zero on success, negative values on
3776  * failure.
3777  *
3778  */
3779 int security_netlbl_secattr_to_sid(struct selinux_state *state,
3780 				   struct netlbl_lsm_secattr *secattr,
3781 				   u32 *sid)
3782 {
3783 	struct selinux_policy *policy;
3784 	struct policydb *policydb;
3785 	struct sidtab *sidtab;
3786 	int rc;
3787 	struct context *ctx;
3788 	struct context ctx_new;
3789 
3790 	if (!selinux_initialized(state)) {
3791 		*sid = SECSID_NULL;
3792 		return 0;
3793 	}
3794 
3795 	rcu_read_lock();
3796 	policy = rcu_dereference(state->policy);
3797 	policydb = &policy->policydb;
3798 	sidtab = policy->sidtab;
3799 
3800 	if (secattr->flags & NETLBL_SECATTR_CACHE)
3801 		*sid = *(u32 *)secattr->cache->data;
3802 	else if (secattr->flags & NETLBL_SECATTR_SECID)
3803 		*sid = secattr->attr.secid;
3804 	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3805 		rc = -EIDRM;
3806 		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3807 		if (ctx == NULL)
3808 			goto out;
3809 
3810 		context_init(&ctx_new);
3811 		ctx_new.user = ctx->user;
3812 		ctx_new.role = ctx->role;
3813 		ctx_new.type = ctx->type;
3814 		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3815 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3816 			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3817 			if (rc)
3818 				goto out;
3819 		}
3820 		rc = -EIDRM;
3821 		if (!mls_context_isvalid(policydb, &ctx_new))
3822 			goto out_free;
3823 
3824 		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3825 		if (rc)
3826 			goto out_free;
3827 
3828 		security_netlbl_cache_add(secattr, *sid);
3829 
3830 		ebitmap_destroy(&ctx_new.range.level[0].cat);
3831 	} else
3832 		*sid = SECSID_NULL;
3833 
3834 	rcu_read_unlock();
3835 	return 0;
3836 out_free:
3837 	ebitmap_destroy(&ctx_new.range.level[0].cat);
3838 out:
3839 	rcu_read_unlock();
3840 	return rc;
3841 }
3842 
3843 /**
3844  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3845  * @sid: the SELinux SID
3846  * @secattr: the NetLabel packet security attributes
3847  *
3848  * Description:
3849  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3850  * Returns zero on success, negative values on failure.
3851  *
3852  */
3853 int security_netlbl_sid_to_secattr(struct selinux_state *state,
3854 				   u32 sid, struct netlbl_lsm_secattr *secattr)
3855 {
3856 	struct selinux_policy *policy;
3857 	struct policydb *policydb;
3858 	int rc;
3859 	struct context *ctx;
3860 
3861 	if (!selinux_initialized(state))
3862 		return 0;
3863 
3864 	rcu_read_lock();
3865 	policy = rcu_dereference(state->policy);
3866 	policydb = &policy->policydb;
3867 
3868 	rc = -ENOENT;
3869 	ctx = sidtab_search(policy->sidtab, sid);
3870 	if (ctx == NULL)
3871 		goto out;
3872 
3873 	rc = -ENOMEM;
3874 	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3875 				  GFP_ATOMIC);
3876 	if (secattr->domain == NULL)
3877 		goto out;
3878 
3879 	secattr->attr.secid = sid;
3880 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3881 	mls_export_netlbl_lvl(policydb, ctx, secattr);
3882 	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3883 out:
3884 	rcu_read_unlock();
3885 	return rc;
3886 }
3887 #endif /* CONFIG_NETLABEL */
3888 
3889 /**
3890  * __security_read_policy - read the policy.
3891  * @policy: SELinux policy
3892  * @data: binary policy data
3893  * @len: length of data in bytes
3894  *
3895  */
3896 static int __security_read_policy(struct selinux_policy *policy,
3897 				  void *data, size_t *len)
3898 {
3899 	int rc;
3900 	struct policy_file fp;
3901 
3902 	fp.data = data;
3903 	fp.len = *len;
3904 
3905 	rc = policydb_write(&policy->policydb, &fp);
3906 	if (rc)
3907 		return rc;
3908 
3909 	*len = (unsigned long)fp.data - (unsigned long)data;
3910 	return 0;
3911 }
3912 
3913 /**
3914  * security_read_policy - read the policy.
3915  * @state: selinux_state
3916  * @data: binary policy data
3917  * @len: length of data in bytes
3918  *
3919  */
3920 int security_read_policy(struct selinux_state *state,
3921 			 void **data, size_t *len)
3922 {
3923 	struct selinux_policy *policy;
3924 
3925 	policy = rcu_dereference_protected(
3926 			state->policy, lockdep_is_held(&state->policy_mutex));
3927 	if (!policy)
3928 		return -EINVAL;
3929 
3930 	*len = policy->policydb.len;
3931 	*data = vmalloc_user(*len);
3932 	if (!*data)
3933 		return -ENOMEM;
3934 
3935 	return __security_read_policy(policy, *data, len);
3936 }
3937 
3938 /**
3939  * security_read_state_kernel - read the policy.
3940  * @state: selinux_state
3941  * @data: binary policy data
3942  * @len: length of data in bytes
3943  *
3944  * Allocates kernel memory for reading SELinux policy.
3945  * This function is for internal use only and should not
3946  * be used for returning data to user space.
3947  *
3948  * This function must be called with policy_mutex held.
3949  */
3950 int security_read_state_kernel(struct selinux_state *state,
3951 			       void **data, size_t *len)
3952 {
3953 	struct selinux_policy *policy;
3954 
3955 	policy = rcu_dereference_protected(
3956 			state->policy, lockdep_is_held(&state->policy_mutex));
3957 	if (!policy)
3958 		return -EINVAL;
3959 
3960 	*len = policy->policydb.len;
3961 	*data = vmalloc(*len);
3962 	if (!*data)
3963 		return -ENOMEM;
3964 
3965 	return __security_read_policy(policy, *data, len);
3966 }
3967