xref: /openbmc/linux/security/selinux/ss/services.c (revision 84b102f5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Implementation of the security services.
4  *
5  * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
6  *	     James Morris <jmorris@redhat.com>
7  *
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *	Support for enhanced MLS infrastructure.
11  *	Support for context based audit filters.
12  *
13  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14  *
15  *	Added conditional policy language extensions
16  *
17  * Updated: Hewlett-Packard <paul@paul-moore.com>
18  *
19  *      Added support for NetLabel
20  *      Added support for the policy capability bitmap
21  *
22  * Updated: Chad Sellers <csellers@tresys.com>
23  *
24  *  Added validation of kernel classes and permissions
25  *
26  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27  *
28  *  Added support for bounds domain and audit messaged on masked permissions
29  *
30  * Updated: Guido Trentalancia <guido@trentalancia.com>
31  *
32  *  Added support for runtime switching of the policy type
33  *
34  * Copyright (C) 2008, 2009 NEC Corporation
35  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39  */
40 #include <linux/kernel.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/errno.h>
46 #include <linux/in.h>
47 #include <linux/sched.h>
48 #include <linux/audit.h>
49 #include <linux/vmalloc.h>
50 #include <net/netlabel.h>
51 
52 #include "flask.h"
53 #include "avc.h"
54 #include "avc_ss.h"
55 #include "security.h"
56 #include "context.h"
57 #include "policydb.h"
58 #include "sidtab.h"
59 #include "services.h"
60 #include "conditional.h"
61 #include "mls.h"
62 #include "objsec.h"
63 #include "netlabel.h"
64 #include "xfrm.h"
65 #include "ebitmap.h"
66 #include "audit.h"
67 #include "policycap_names.h"
68 
69 /* Forward declaration. */
70 static int context_struct_to_string(struct policydb *policydb,
71 				    struct context *context,
72 				    char **scontext,
73 				    u32 *scontext_len);
74 
75 static int sidtab_entry_to_string(struct policydb *policydb,
76 				  struct sidtab *sidtab,
77 				  struct sidtab_entry *entry,
78 				  char **scontext,
79 				  u32 *scontext_len);
80 
81 static void context_struct_compute_av(struct policydb *policydb,
82 				      struct context *scontext,
83 				      struct context *tcontext,
84 				      u16 tclass,
85 				      struct av_decision *avd,
86 				      struct extended_perms *xperms);
87 
88 static int selinux_set_mapping(struct policydb *pol,
89 			       struct security_class_mapping *map,
90 			       struct selinux_map *out_map)
91 {
92 	u16 i, j;
93 	unsigned k;
94 	bool print_unknown_handle = false;
95 
96 	/* Find number of classes in the input mapping */
97 	if (!map)
98 		return -EINVAL;
99 	i = 0;
100 	while (map[i].name)
101 		i++;
102 
103 	/* Allocate space for the class records, plus one for class zero */
104 	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
105 	if (!out_map->mapping)
106 		return -ENOMEM;
107 
108 	/* Store the raw class and permission values */
109 	j = 0;
110 	while (map[j].name) {
111 		struct security_class_mapping *p_in = map + (j++);
112 		struct selinux_mapping *p_out = out_map->mapping + j;
113 
114 		/* An empty class string skips ahead */
115 		if (!strcmp(p_in->name, "")) {
116 			p_out->num_perms = 0;
117 			continue;
118 		}
119 
120 		p_out->value = string_to_security_class(pol, p_in->name);
121 		if (!p_out->value) {
122 			pr_info("SELinux:  Class %s not defined in policy.\n",
123 			       p_in->name);
124 			if (pol->reject_unknown)
125 				goto err;
126 			p_out->num_perms = 0;
127 			print_unknown_handle = true;
128 			continue;
129 		}
130 
131 		k = 0;
132 		while (p_in->perms[k]) {
133 			/* An empty permission string skips ahead */
134 			if (!*p_in->perms[k]) {
135 				k++;
136 				continue;
137 			}
138 			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
139 							    p_in->perms[k]);
140 			if (!p_out->perms[k]) {
141 				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
142 				       p_in->perms[k], p_in->name);
143 				if (pol->reject_unknown)
144 					goto err;
145 				print_unknown_handle = true;
146 			}
147 
148 			k++;
149 		}
150 		p_out->num_perms = k;
151 	}
152 
153 	if (print_unknown_handle)
154 		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
155 		       pol->allow_unknown ? "allowed" : "denied");
156 
157 	out_map->size = i;
158 	return 0;
159 err:
160 	kfree(out_map->mapping);
161 	out_map->mapping = NULL;
162 	return -EINVAL;
163 }
164 
165 /*
166  * Get real, policy values from mapped values
167  */
168 
169 static u16 unmap_class(struct selinux_map *map, u16 tclass)
170 {
171 	if (tclass < map->size)
172 		return map->mapping[tclass].value;
173 
174 	return tclass;
175 }
176 
177 /*
178  * Get kernel value for class from its policy value
179  */
180 static u16 map_class(struct selinux_map *map, u16 pol_value)
181 {
182 	u16 i;
183 
184 	for (i = 1; i < map->size; i++) {
185 		if (map->mapping[i].value == pol_value)
186 			return i;
187 	}
188 
189 	return SECCLASS_NULL;
190 }
191 
192 static void map_decision(struct selinux_map *map,
193 			 u16 tclass, struct av_decision *avd,
194 			 int allow_unknown)
195 {
196 	if (tclass < map->size) {
197 		struct selinux_mapping *mapping = &map->mapping[tclass];
198 		unsigned int i, n = mapping->num_perms;
199 		u32 result;
200 
201 		for (i = 0, result = 0; i < n; i++) {
202 			if (avd->allowed & mapping->perms[i])
203 				result |= 1<<i;
204 			if (allow_unknown && !mapping->perms[i])
205 				result |= 1<<i;
206 		}
207 		avd->allowed = result;
208 
209 		for (i = 0, result = 0; i < n; i++)
210 			if (avd->auditallow & mapping->perms[i])
211 				result |= 1<<i;
212 		avd->auditallow = result;
213 
214 		for (i = 0, result = 0; i < n; i++) {
215 			if (avd->auditdeny & mapping->perms[i])
216 				result |= 1<<i;
217 			if (!allow_unknown && !mapping->perms[i])
218 				result |= 1<<i;
219 		}
220 		/*
221 		 * In case the kernel has a bug and requests a permission
222 		 * between num_perms and the maximum permission number, we
223 		 * should audit that denial
224 		 */
225 		for (; i < (sizeof(u32)*8); i++)
226 			result |= 1<<i;
227 		avd->auditdeny = result;
228 	}
229 }
230 
231 int security_mls_enabled(struct selinux_state *state)
232 {
233 	int mls_enabled;
234 	struct selinux_policy *policy;
235 
236 	if (!selinux_initialized(state))
237 		return 0;
238 
239 	rcu_read_lock();
240 	policy = rcu_dereference(state->policy);
241 	mls_enabled = policy->policydb.mls_enabled;
242 	rcu_read_unlock();
243 	return mls_enabled;
244 }
245 
246 /*
247  * Return the boolean value of a constraint expression
248  * when it is applied to the specified source and target
249  * security contexts.
250  *
251  * xcontext is a special beast...  It is used by the validatetrans rules
252  * only.  For these rules, scontext is the context before the transition,
253  * tcontext is the context after the transition, and xcontext is the context
254  * of the process performing the transition.  All other callers of
255  * constraint_expr_eval should pass in NULL for xcontext.
256  */
257 static int constraint_expr_eval(struct policydb *policydb,
258 				struct context *scontext,
259 				struct context *tcontext,
260 				struct context *xcontext,
261 				struct constraint_expr *cexpr)
262 {
263 	u32 val1, val2;
264 	struct context *c;
265 	struct role_datum *r1, *r2;
266 	struct mls_level *l1, *l2;
267 	struct constraint_expr *e;
268 	int s[CEXPR_MAXDEPTH];
269 	int sp = -1;
270 
271 	for (e = cexpr; e; e = e->next) {
272 		switch (e->expr_type) {
273 		case CEXPR_NOT:
274 			BUG_ON(sp < 0);
275 			s[sp] = !s[sp];
276 			break;
277 		case CEXPR_AND:
278 			BUG_ON(sp < 1);
279 			sp--;
280 			s[sp] &= s[sp + 1];
281 			break;
282 		case CEXPR_OR:
283 			BUG_ON(sp < 1);
284 			sp--;
285 			s[sp] |= s[sp + 1];
286 			break;
287 		case CEXPR_ATTR:
288 			if (sp == (CEXPR_MAXDEPTH - 1))
289 				return 0;
290 			switch (e->attr) {
291 			case CEXPR_USER:
292 				val1 = scontext->user;
293 				val2 = tcontext->user;
294 				break;
295 			case CEXPR_TYPE:
296 				val1 = scontext->type;
297 				val2 = tcontext->type;
298 				break;
299 			case CEXPR_ROLE:
300 				val1 = scontext->role;
301 				val2 = tcontext->role;
302 				r1 = policydb->role_val_to_struct[val1 - 1];
303 				r2 = policydb->role_val_to_struct[val2 - 1];
304 				switch (e->op) {
305 				case CEXPR_DOM:
306 					s[++sp] = ebitmap_get_bit(&r1->dominates,
307 								  val2 - 1);
308 					continue;
309 				case CEXPR_DOMBY:
310 					s[++sp] = ebitmap_get_bit(&r2->dominates,
311 								  val1 - 1);
312 					continue;
313 				case CEXPR_INCOMP:
314 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
315 								    val2 - 1) &&
316 						   !ebitmap_get_bit(&r2->dominates,
317 								    val1 - 1));
318 					continue;
319 				default:
320 					break;
321 				}
322 				break;
323 			case CEXPR_L1L2:
324 				l1 = &(scontext->range.level[0]);
325 				l2 = &(tcontext->range.level[0]);
326 				goto mls_ops;
327 			case CEXPR_L1H2:
328 				l1 = &(scontext->range.level[0]);
329 				l2 = &(tcontext->range.level[1]);
330 				goto mls_ops;
331 			case CEXPR_H1L2:
332 				l1 = &(scontext->range.level[1]);
333 				l2 = &(tcontext->range.level[0]);
334 				goto mls_ops;
335 			case CEXPR_H1H2:
336 				l1 = &(scontext->range.level[1]);
337 				l2 = &(tcontext->range.level[1]);
338 				goto mls_ops;
339 			case CEXPR_L1H1:
340 				l1 = &(scontext->range.level[0]);
341 				l2 = &(scontext->range.level[1]);
342 				goto mls_ops;
343 			case CEXPR_L2H2:
344 				l1 = &(tcontext->range.level[0]);
345 				l2 = &(tcontext->range.level[1]);
346 				goto mls_ops;
347 mls_ops:
348 			switch (e->op) {
349 			case CEXPR_EQ:
350 				s[++sp] = mls_level_eq(l1, l2);
351 				continue;
352 			case CEXPR_NEQ:
353 				s[++sp] = !mls_level_eq(l1, l2);
354 				continue;
355 			case CEXPR_DOM:
356 				s[++sp] = mls_level_dom(l1, l2);
357 				continue;
358 			case CEXPR_DOMBY:
359 				s[++sp] = mls_level_dom(l2, l1);
360 				continue;
361 			case CEXPR_INCOMP:
362 				s[++sp] = mls_level_incomp(l2, l1);
363 				continue;
364 			default:
365 				BUG();
366 				return 0;
367 			}
368 			break;
369 			default:
370 				BUG();
371 				return 0;
372 			}
373 
374 			switch (e->op) {
375 			case CEXPR_EQ:
376 				s[++sp] = (val1 == val2);
377 				break;
378 			case CEXPR_NEQ:
379 				s[++sp] = (val1 != val2);
380 				break;
381 			default:
382 				BUG();
383 				return 0;
384 			}
385 			break;
386 		case CEXPR_NAMES:
387 			if (sp == (CEXPR_MAXDEPTH-1))
388 				return 0;
389 			c = scontext;
390 			if (e->attr & CEXPR_TARGET)
391 				c = tcontext;
392 			else if (e->attr & CEXPR_XTARGET) {
393 				c = xcontext;
394 				if (!c) {
395 					BUG();
396 					return 0;
397 				}
398 			}
399 			if (e->attr & CEXPR_USER)
400 				val1 = c->user;
401 			else if (e->attr & CEXPR_ROLE)
402 				val1 = c->role;
403 			else if (e->attr & CEXPR_TYPE)
404 				val1 = c->type;
405 			else {
406 				BUG();
407 				return 0;
408 			}
409 
410 			switch (e->op) {
411 			case CEXPR_EQ:
412 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
413 				break;
414 			case CEXPR_NEQ:
415 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
416 				break;
417 			default:
418 				BUG();
419 				return 0;
420 			}
421 			break;
422 		default:
423 			BUG();
424 			return 0;
425 		}
426 	}
427 
428 	BUG_ON(sp != 0);
429 	return s[0];
430 }
431 
432 /*
433  * security_dump_masked_av - dumps masked permissions during
434  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
435  */
436 static int dump_masked_av_helper(void *k, void *d, void *args)
437 {
438 	struct perm_datum *pdatum = d;
439 	char **permission_names = args;
440 
441 	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
442 
443 	permission_names[pdatum->value - 1] = (char *)k;
444 
445 	return 0;
446 }
447 
448 static void security_dump_masked_av(struct policydb *policydb,
449 				    struct context *scontext,
450 				    struct context *tcontext,
451 				    u16 tclass,
452 				    u32 permissions,
453 				    const char *reason)
454 {
455 	struct common_datum *common_dat;
456 	struct class_datum *tclass_dat;
457 	struct audit_buffer *ab;
458 	char *tclass_name;
459 	char *scontext_name = NULL;
460 	char *tcontext_name = NULL;
461 	char *permission_names[32];
462 	int index;
463 	u32 length;
464 	bool need_comma = false;
465 
466 	if (!permissions)
467 		return;
468 
469 	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
470 	tclass_dat = policydb->class_val_to_struct[tclass - 1];
471 	common_dat = tclass_dat->comdatum;
472 
473 	/* init permission_names */
474 	if (common_dat &&
475 	    hashtab_map(&common_dat->permissions.table,
476 			dump_masked_av_helper, permission_names) < 0)
477 		goto out;
478 
479 	if (hashtab_map(&tclass_dat->permissions.table,
480 			dump_masked_av_helper, permission_names) < 0)
481 		goto out;
482 
483 	/* get scontext/tcontext in text form */
484 	if (context_struct_to_string(policydb, scontext,
485 				     &scontext_name, &length) < 0)
486 		goto out;
487 
488 	if (context_struct_to_string(policydb, tcontext,
489 				     &tcontext_name, &length) < 0)
490 		goto out;
491 
492 	/* audit a message */
493 	ab = audit_log_start(audit_context(),
494 			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
495 	if (!ab)
496 		goto out;
497 
498 	audit_log_format(ab, "op=security_compute_av reason=%s "
499 			 "scontext=%s tcontext=%s tclass=%s perms=",
500 			 reason, scontext_name, tcontext_name, tclass_name);
501 
502 	for (index = 0; index < 32; index++) {
503 		u32 mask = (1 << index);
504 
505 		if ((mask & permissions) == 0)
506 			continue;
507 
508 		audit_log_format(ab, "%s%s",
509 				 need_comma ? "," : "",
510 				 permission_names[index]
511 				 ? permission_names[index] : "????");
512 		need_comma = true;
513 	}
514 	audit_log_end(ab);
515 out:
516 	/* release scontext/tcontext */
517 	kfree(tcontext_name);
518 	kfree(scontext_name);
519 
520 	return;
521 }
522 
523 /*
524  * security_boundary_permission - drops violated permissions
525  * on boundary constraint.
526  */
527 static void type_attribute_bounds_av(struct policydb *policydb,
528 				     struct context *scontext,
529 				     struct context *tcontext,
530 				     u16 tclass,
531 				     struct av_decision *avd)
532 {
533 	struct context lo_scontext;
534 	struct context lo_tcontext, *tcontextp = tcontext;
535 	struct av_decision lo_avd;
536 	struct type_datum *source;
537 	struct type_datum *target;
538 	u32 masked = 0;
539 
540 	source = policydb->type_val_to_struct[scontext->type - 1];
541 	BUG_ON(!source);
542 
543 	if (!source->bounds)
544 		return;
545 
546 	target = policydb->type_val_to_struct[tcontext->type - 1];
547 	BUG_ON(!target);
548 
549 	memset(&lo_avd, 0, sizeof(lo_avd));
550 
551 	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
552 	lo_scontext.type = source->bounds;
553 
554 	if (target->bounds) {
555 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
556 		lo_tcontext.type = target->bounds;
557 		tcontextp = &lo_tcontext;
558 	}
559 
560 	context_struct_compute_av(policydb, &lo_scontext,
561 				  tcontextp,
562 				  tclass,
563 				  &lo_avd,
564 				  NULL);
565 
566 	masked = ~lo_avd.allowed & avd->allowed;
567 
568 	if (likely(!masked))
569 		return;		/* no masked permission */
570 
571 	/* mask violated permissions */
572 	avd->allowed &= ~masked;
573 
574 	/* audit masked permissions */
575 	security_dump_masked_av(policydb, scontext, tcontext,
576 				tclass, masked, "bounds");
577 }
578 
579 /*
580  * flag which drivers have permissions
581  * only looking for ioctl based extended permssions
582  */
583 void services_compute_xperms_drivers(
584 		struct extended_perms *xperms,
585 		struct avtab_node *node)
586 {
587 	unsigned int i;
588 
589 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
590 		/* if one or more driver has all permissions allowed */
591 		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
592 			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
593 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
594 		/* if allowing permissions within a driver */
595 		security_xperm_set(xperms->drivers.p,
596 					node->datum.u.xperms->driver);
597 	}
598 
599 	xperms->len = 1;
600 }
601 
602 /*
603  * Compute access vectors and extended permissions based on a context
604  * structure pair for the permissions in a particular class.
605  */
606 static void context_struct_compute_av(struct policydb *policydb,
607 				      struct context *scontext,
608 				      struct context *tcontext,
609 				      u16 tclass,
610 				      struct av_decision *avd,
611 				      struct extended_perms *xperms)
612 {
613 	struct constraint_node *constraint;
614 	struct role_allow *ra;
615 	struct avtab_key avkey;
616 	struct avtab_node *node;
617 	struct class_datum *tclass_datum;
618 	struct ebitmap *sattr, *tattr;
619 	struct ebitmap_node *snode, *tnode;
620 	unsigned int i, j;
621 
622 	avd->allowed = 0;
623 	avd->auditallow = 0;
624 	avd->auditdeny = 0xffffffff;
625 	if (xperms) {
626 		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
627 		xperms->len = 0;
628 	}
629 
630 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
631 		if (printk_ratelimit())
632 			pr_warn("SELinux:  Invalid class %hu\n", tclass);
633 		return;
634 	}
635 
636 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
637 
638 	/*
639 	 * If a specific type enforcement rule was defined for
640 	 * this permission check, then use it.
641 	 */
642 	avkey.target_class = tclass;
643 	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
644 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
645 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
646 	ebitmap_for_each_positive_bit(sattr, snode, i) {
647 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
648 			avkey.source_type = i + 1;
649 			avkey.target_type = j + 1;
650 			for (node = avtab_search_node(&policydb->te_avtab,
651 						      &avkey);
652 			     node;
653 			     node = avtab_search_node_next(node, avkey.specified)) {
654 				if (node->key.specified == AVTAB_ALLOWED)
655 					avd->allowed |= node->datum.u.data;
656 				else if (node->key.specified == AVTAB_AUDITALLOW)
657 					avd->auditallow |= node->datum.u.data;
658 				else if (node->key.specified == AVTAB_AUDITDENY)
659 					avd->auditdeny &= node->datum.u.data;
660 				else if (xperms && (node->key.specified & AVTAB_XPERMS))
661 					services_compute_xperms_drivers(xperms, node);
662 			}
663 
664 			/* Check conditional av table for additional permissions */
665 			cond_compute_av(&policydb->te_cond_avtab, &avkey,
666 					avd, xperms);
667 
668 		}
669 	}
670 
671 	/*
672 	 * Remove any permissions prohibited by a constraint (this includes
673 	 * the MLS policy).
674 	 */
675 	constraint = tclass_datum->constraints;
676 	while (constraint) {
677 		if ((constraint->permissions & (avd->allowed)) &&
678 		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
679 					  constraint->expr)) {
680 			avd->allowed &= ~(constraint->permissions);
681 		}
682 		constraint = constraint->next;
683 	}
684 
685 	/*
686 	 * If checking process transition permission and the
687 	 * role is changing, then check the (current_role, new_role)
688 	 * pair.
689 	 */
690 	if (tclass == policydb->process_class &&
691 	    (avd->allowed & policydb->process_trans_perms) &&
692 	    scontext->role != tcontext->role) {
693 		for (ra = policydb->role_allow; ra; ra = ra->next) {
694 			if (scontext->role == ra->role &&
695 			    tcontext->role == ra->new_role)
696 				break;
697 		}
698 		if (!ra)
699 			avd->allowed &= ~policydb->process_trans_perms;
700 	}
701 
702 	/*
703 	 * If the given source and target types have boundary
704 	 * constraint, lazy checks have to mask any violated
705 	 * permission and notice it to userspace via audit.
706 	 */
707 	type_attribute_bounds_av(policydb, scontext, tcontext,
708 				 tclass, avd);
709 }
710 
711 static int security_validtrans_handle_fail(struct selinux_state *state,
712 					struct selinux_policy *policy,
713 					struct sidtab_entry *oentry,
714 					struct sidtab_entry *nentry,
715 					struct sidtab_entry *tentry,
716 					u16 tclass)
717 {
718 	struct policydb *p = &policy->policydb;
719 	struct sidtab *sidtab = policy->sidtab;
720 	char *o = NULL, *n = NULL, *t = NULL;
721 	u32 olen, nlen, tlen;
722 
723 	if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
724 		goto out;
725 	if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
726 		goto out;
727 	if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
728 		goto out;
729 	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
730 		  "op=security_validate_transition seresult=denied"
731 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
732 		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
733 out:
734 	kfree(o);
735 	kfree(n);
736 	kfree(t);
737 
738 	if (!enforcing_enabled(state))
739 		return 0;
740 	return -EPERM;
741 }
742 
743 static int security_compute_validatetrans(struct selinux_state *state,
744 					  u32 oldsid, u32 newsid, u32 tasksid,
745 					  u16 orig_tclass, bool user)
746 {
747 	struct selinux_policy *policy;
748 	struct policydb *policydb;
749 	struct sidtab *sidtab;
750 	struct sidtab_entry *oentry;
751 	struct sidtab_entry *nentry;
752 	struct sidtab_entry *tentry;
753 	struct class_datum *tclass_datum;
754 	struct constraint_node *constraint;
755 	u16 tclass;
756 	int rc = 0;
757 
758 
759 	if (!selinux_initialized(state))
760 		return 0;
761 
762 	rcu_read_lock();
763 
764 	policy = rcu_dereference(state->policy);
765 	policydb = &policy->policydb;
766 	sidtab = policy->sidtab;
767 
768 	if (!user)
769 		tclass = unmap_class(&policy->map, orig_tclass);
770 	else
771 		tclass = orig_tclass;
772 
773 	if (!tclass || tclass > policydb->p_classes.nprim) {
774 		rc = -EINVAL;
775 		goto out;
776 	}
777 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
778 
779 	oentry = sidtab_search_entry(sidtab, oldsid);
780 	if (!oentry) {
781 		pr_err("SELinux: %s:  unrecognized SID %d\n",
782 			__func__, oldsid);
783 		rc = -EINVAL;
784 		goto out;
785 	}
786 
787 	nentry = sidtab_search_entry(sidtab, newsid);
788 	if (!nentry) {
789 		pr_err("SELinux: %s:  unrecognized SID %d\n",
790 			__func__, newsid);
791 		rc = -EINVAL;
792 		goto out;
793 	}
794 
795 	tentry = sidtab_search_entry(sidtab, tasksid);
796 	if (!tentry) {
797 		pr_err("SELinux: %s:  unrecognized SID %d\n",
798 			__func__, tasksid);
799 		rc = -EINVAL;
800 		goto out;
801 	}
802 
803 	constraint = tclass_datum->validatetrans;
804 	while (constraint) {
805 		if (!constraint_expr_eval(policydb, &oentry->context,
806 					  &nentry->context, &tentry->context,
807 					  constraint->expr)) {
808 			if (user)
809 				rc = -EPERM;
810 			else
811 				rc = security_validtrans_handle_fail(state,
812 								policy,
813 								oentry,
814 								nentry,
815 								tentry,
816 								tclass);
817 			goto out;
818 		}
819 		constraint = constraint->next;
820 	}
821 
822 out:
823 	rcu_read_unlock();
824 	return rc;
825 }
826 
827 int security_validate_transition_user(struct selinux_state *state,
828 				      u32 oldsid, u32 newsid, u32 tasksid,
829 				      u16 tclass)
830 {
831 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
832 					      tclass, true);
833 }
834 
835 int security_validate_transition(struct selinux_state *state,
836 				 u32 oldsid, u32 newsid, u32 tasksid,
837 				 u16 orig_tclass)
838 {
839 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
840 					      orig_tclass, false);
841 }
842 
843 /*
844  * security_bounded_transition - check whether the given
845  * transition is directed to bounded, or not.
846  * It returns 0, if @newsid is bounded by @oldsid.
847  * Otherwise, it returns error code.
848  *
849  * @oldsid : current security identifier
850  * @newsid : destinated security identifier
851  */
852 int security_bounded_transition(struct selinux_state *state,
853 				u32 old_sid, u32 new_sid)
854 {
855 	struct selinux_policy *policy;
856 	struct policydb *policydb;
857 	struct sidtab *sidtab;
858 	struct sidtab_entry *old_entry, *new_entry;
859 	struct type_datum *type;
860 	int index;
861 	int rc;
862 
863 	if (!selinux_initialized(state))
864 		return 0;
865 
866 	rcu_read_lock();
867 	policy = rcu_dereference(state->policy);
868 	policydb = &policy->policydb;
869 	sidtab = policy->sidtab;
870 
871 	rc = -EINVAL;
872 	old_entry = sidtab_search_entry(sidtab, old_sid);
873 	if (!old_entry) {
874 		pr_err("SELinux: %s: unrecognized SID %u\n",
875 		       __func__, old_sid);
876 		goto out;
877 	}
878 
879 	rc = -EINVAL;
880 	new_entry = sidtab_search_entry(sidtab, new_sid);
881 	if (!new_entry) {
882 		pr_err("SELinux: %s: unrecognized SID %u\n",
883 		       __func__, new_sid);
884 		goto out;
885 	}
886 
887 	rc = 0;
888 	/* type/domain unchanged */
889 	if (old_entry->context.type == new_entry->context.type)
890 		goto out;
891 
892 	index = new_entry->context.type;
893 	while (true) {
894 		type = policydb->type_val_to_struct[index - 1];
895 		BUG_ON(!type);
896 
897 		/* not bounded anymore */
898 		rc = -EPERM;
899 		if (!type->bounds)
900 			break;
901 
902 		/* @newsid is bounded by @oldsid */
903 		rc = 0;
904 		if (type->bounds == old_entry->context.type)
905 			break;
906 
907 		index = type->bounds;
908 	}
909 
910 	if (rc) {
911 		char *old_name = NULL;
912 		char *new_name = NULL;
913 		u32 length;
914 
915 		if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
916 					    &old_name, &length) &&
917 		    !sidtab_entry_to_string(policydb, sidtab, new_entry,
918 					    &new_name, &length)) {
919 			audit_log(audit_context(),
920 				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
921 				  "op=security_bounded_transition "
922 				  "seresult=denied "
923 				  "oldcontext=%s newcontext=%s",
924 				  old_name, new_name);
925 		}
926 		kfree(new_name);
927 		kfree(old_name);
928 	}
929 out:
930 	rcu_read_unlock();
931 
932 	return rc;
933 }
934 
935 static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
936 {
937 	avd->allowed = 0;
938 	avd->auditallow = 0;
939 	avd->auditdeny = 0xffffffff;
940 	if (policy)
941 		avd->seqno = policy->latest_granting;
942 	else
943 		avd->seqno = 0;
944 	avd->flags = 0;
945 }
946 
947 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
948 					struct avtab_node *node)
949 {
950 	unsigned int i;
951 
952 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
953 		if (xpermd->driver != node->datum.u.xperms->driver)
954 			return;
955 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
956 		if (!security_xperm_test(node->datum.u.xperms->perms.p,
957 					xpermd->driver))
958 			return;
959 	} else {
960 		BUG();
961 	}
962 
963 	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
964 		xpermd->used |= XPERMS_ALLOWED;
965 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
966 			memset(xpermd->allowed->p, 0xff,
967 					sizeof(xpermd->allowed->p));
968 		}
969 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
970 			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
971 				xpermd->allowed->p[i] |=
972 					node->datum.u.xperms->perms.p[i];
973 		}
974 	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
975 		xpermd->used |= XPERMS_AUDITALLOW;
976 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
977 			memset(xpermd->auditallow->p, 0xff,
978 					sizeof(xpermd->auditallow->p));
979 		}
980 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
981 			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
982 				xpermd->auditallow->p[i] |=
983 					node->datum.u.xperms->perms.p[i];
984 		}
985 	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
986 		xpermd->used |= XPERMS_DONTAUDIT;
987 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
988 			memset(xpermd->dontaudit->p, 0xff,
989 					sizeof(xpermd->dontaudit->p));
990 		}
991 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
992 			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
993 				xpermd->dontaudit->p[i] |=
994 					node->datum.u.xperms->perms.p[i];
995 		}
996 	} else {
997 		BUG();
998 	}
999 }
1000 
1001 void security_compute_xperms_decision(struct selinux_state *state,
1002 				      u32 ssid,
1003 				      u32 tsid,
1004 				      u16 orig_tclass,
1005 				      u8 driver,
1006 				      struct extended_perms_decision *xpermd)
1007 {
1008 	struct selinux_policy *policy;
1009 	struct policydb *policydb;
1010 	struct sidtab *sidtab;
1011 	u16 tclass;
1012 	struct context *scontext, *tcontext;
1013 	struct avtab_key avkey;
1014 	struct avtab_node *node;
1015 	struct ebitmap *sattr, *tattr;
1016 	struct ebitmap_node *snode, *tnode;
1017 	unsigned int i, j;
1018 
1019 	xpermd->driver = driver;
1020 	xpermd->used = 0;
1021 	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1022 	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1023 	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1024 
1025 	rcu_read_lock();
1026 	if (!selinux_initialized(state))
1027 		goto allow;
1028 
1029 	policy = rcu_dereference(state->policy);
1030 	policydb = &policy->policydb;
1031 	sidtab = policy->sidtab;
1032 
1033 	scontext = sidtab_search(sidtab, ssid);
1034 	if (!scontext) {
1035 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1036 		       __func__, ssid);
1037 		goto out;
1038 	}
1039 
1040 	tcontext = sidtab_search(sidtab, tsid);
1041 	if (!tcontext) {
1042 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1043 		       __func__, tsid);
1044 		goto out;
1045 	}
1046 
1047 	tclass = unmap_class(&policy->map, orig_tclass);
1048 	if (unlikely(orig_tclass && !tclass)) {
1049 		if (policydb->allow_unknown)
1050 			goto allow;
1051 		goto out;
1052 	}
1053 
1054 
1055 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1056 		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1057 		goto out;
1058 	}
1059 
1060 	avkey.target_class = tclass;
1061 	avkey.specified = AVTAB_XPERMS;
1062 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1063 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1064 	ebitmap_for_each_positive_bit(sattr, snode, i) {
1065 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1066 			avkey.source_type = i + 1;
1067 			avkey.target_type = j + 1;
1068 			for (node = avtab_search_node(&policydb->te_avtab,
1069 						      &avkey);
1070 			     node;
1071 			     node = avtab_search_node_next(node, avkey.specified))
1072 				services_compute_xperms_decision(xpermd, node);
1073 
1074 			cond_compute_xperms(&policydb->te_cond_avtab,
1075 						&avkey, xpermd);
1076 		}
1077 	}
1078 out:
1079 	rcu_read_unlock();
1080 	return;
1081 allow:
1082 	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1083 	goto out;
1084 }
1085 
1086 /**
1087  * security_compute_av - Compute access vector decisions.
1088  * @ssid: source security identifier
1089  * @tsid: target security identifier
1090  * @tclass: target security class
1091  * @avd: access vector decisions
1092  * @xperms: extended permissions
1093  *
1094  * Compute a set of access vector decisions based on the
1095  * SID pair (@ssid, @tsid) for the permissions in @tclass.
1096  */
1097 void security_compute_av(struct selinux_state *state,
1098 			 u32 ssid,
1099 			 u32 tsid,
1100 			 u16 orig_tclass,
1101 			 struct av_decision *avd,
1102 			 struct extended_perms *xperms)
1103 {
1104 	struct selinux_policy *policy;
1105 	struct policydb *policydb;
1106 	struct sidtab *sidtab;
1107 	u16 tclass;
1108 	struct context *scontext = NULL, *tcontext = NULL;
1109 
1110 	rcu_read_lock();
1111 	policy = rcu_dereference(state->policy);
1112 	avd_init(policy, avd);
1113 	xperms->len = 0;
1114 	if (!selinux_initialized(state))
1115 		goto allow;
1116 
1117 	policydb = &policy->policydb;
1118 	sidtab = policy->sidtab;
1119 
1120 	scontext = sidtab_search(sidtab, ssid);
1121 	if (!scontext) {
1122 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1123 		       __func__, ssid);
1124 		goto out;
1125 	}
1126 
1127 	/* permissive domain? */
1128 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1129 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1130 
1131 	tcontext = sidtab_search(sidtab, tsid);
1132 	if (!tcontext) {
1133 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1134 		       __func__, tsid);
1135 		goto out;
1136 	}
1137 
1138 	tclass = unmap_class(&policy->map, orig_tclass);
1139 	if (unlikely(orig_tclass && !tclass)) {
1140 		if (policydb->allow_unknown)
1141 			goto allow;
1142 		goto out;
1143 	}
1144 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1145 				  xperms);
1146 	map_decision(&policy->map, orig_tclass, avd,
1147 		     policydb->allow_unknown);
1148 out:
1149 	rcu_read_unlock();
1150 	return;
1151 allow:
1152 	avd->allowed = 0xffffffff;
1153 	goto out;
1154 }
1155 
1156 void security_compute_av_user(struct selinux_state *state,
1157 			      u32 ssid,
1158 			      u32 tsid,
1159 			      u16 tclass,
1160 			      struct av_decision *avd)
1161 {
1162 	struct selinux_policy *policy;
1163 	struct policydb *policydb;
1164 	struct sidtab *sidtab;
1165 	struct context *scontext = NULL, *tcontext = NULL;
1166 
1167 	rcu_read_lock();
1168 	policy = rcu_dereference(state->policy);
1169 	avd_init(policy, avd);
1170 	if (!selinux_initialized(state))
1171 		goto allow;
1172 
1173 	policydb = &policy->policydb;
1174 	sidtab = policy->sidtab;
1175 
1176 	scontext = sidtab_search(sidtab, ssid);
1177 	if (!scontext) {
1178 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1179 		       __func__, ssid);
1180 		goto out;
1181 	}
1182 
1183 	/* permissive domain? */
1184 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1185 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1186 
1187 	tcontext = sidtab_search(sidtab, tsid);
1188 	if (!tcontext) {
1189 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1190 		       __func__, tsid);
1191 		goto out;
1192 	}
1193 
1194 	if (unlikely(!tclass)) {
1195 		if (policydb->allow_unknown)
1196 			goto allow;
1197 		goto out;
1198 	}
1199 
1200 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1201 				  NULL);
1202  out:
1203 	rcu_read_unlock();
1204 	return;
1205 allow:
1206 	avd->allowed = 0xffffffff;
1207 	goto out;
1208 }
1209 
1210 /*
1211  * Write the security context string representation of
1212  * the context structure `context' into a dynamically
1213  * allocated string of the correct size.  Set `*scontext'
1214  * to point to this string and set `*scontext_len' to
1215  * the length of the string.
1216  */
1217 static int context_struct_to_string(struct policydb *p,
1218 				    struct context *context,
1219 				    char **scontext, u32 *scontext_len)
1220 {
1221 	char *scontextp;
1222 
1223 	if (scontext)
1224 		*scontext = NULL;
1225 	*scontext_len = 0;
1226 
1227 	if (context->len) {
1228 		*scontext_len = context->len;
1229 		if (scontext) {
1230 			*scontext = kstrdup(context->str, GFP_ATOMIC);
1231 			if (!(*scontext))
1232 				return -ENOMEM;
1233 		}
1234 		return 0;
1235 	}
1236 
1237 	/* Compute the size of the context. */
1238 	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1239 	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1240 	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1241 	*scontext_len += mls_compute_context_len(p, context);
1242 
1243 	if (!scontext)
1244 		return 0;
1245 
1246 	/* Allocate space for the context; caller must free this space. */
1247 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1248 	if (!scontextp)
1249 		return -ENOMEM;
1250 	*scontext = scontextp;
1251 
1252 	/*
1253 	 * Copy the user name, role name and type name into the context.
1254 	 */
1255 	scontextp += sprintf(scontextp, "%s:%s:%s",
1256 		sym_name(p, SYM_USERS, context->user - 1),
1257 		sym_name(p, SYM_ROLES, context->role - 1),
1258 		sym_name(p, SYM_TYPES, context->type - 1));
1259 
1260 	mls_sid_to_context(p, context, &scontextp);
1261 
1262 	*scontextp = 0;
1263 
1264 	return 0;
1265 }
1266 
1267 static int sidtab_entry_to_string(struct policydb *p,
1268 				  struct sidtab *sidtab,
1269 				  struct sidtab_entry *entry,
1270 				  char **scontext, u32 *scontext_len)
1271 {
1272 	int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1273 
1274 	if (rc != -ENOENT)
1275 		return rc;
1276 
1277 	rc = context_struct_to_string(p, &entry->context, scontext,
1278 				      scontext_len);
1279 	if (!rc && scontext)
1280 		sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1281 	return rc;
1282 }
1283 
1284 #include "initial_sid_to_string.h"
1285 
1286 int security_sidtab_hash_stats(struct selinux_state *state, char *page)
1287 {
1288 	struct selinux_policy *policy;
1289 	int rc;
1290 
1291 	if (!selinux_initialized(state)) {
1292 		pr_err("SELinux: %s:  called before initial load_policy\n",
1293 		       __func__);
1294 		return -EINVAL;
1295 	}
1296 
1297 	rcu_read_lock();
1298 	policy = rcu_dereference(state->policy);
1299 	rc = sidtab_hash_stats(policy->sidtab, page);
1300 	rcu_read_unlock();
1301 
1302 	return rc;
1303 }
1304 
1305 const char *security_get_initial_sid_context(u32 sid)
1306 {
1307 	if (unlikely(sid > SECINITSID_NUM))
1308 		return NULL;
1309 	return initial_sid_to_string[sid];
1310 }
1311 
1312 static int security_sid_to_context_core(struct selinux_state *state,
1313 					u32 sid, char **scontext,
1314 					u32 *scontext_len, int force,
1315 					int only_invalid)
1316 {
1317 	struct selinux_policy *policy;
1318 	struct policydb *policydb;
1319 	struct sidtab *sidtab;
1320 	struct sidtab_entry *entry;
1321 	int rc = 0;
1322 
1323 	if (scontext)
1324 		*scontext = NULL;
1325 	*scontext_len  = 0;
1326 
1327 	if (!selinux_initialized(state)) {
1328 		if (sid <= SECINITSID_NUM) {
1329 			char *scontextp;
1330 			const char *s = initial_sid_to_string[sid];
1331 
1332 			if (!s)
1333 				return -EINVAL;
1334 			*scontext_len = strlen(s) + 1;
1335 			if (!scontext)
1336 				return 0;
1337 			scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1338 			if (!scontextp)
1339 				return -ENOMEM;
1340 			*scontext = scontextp;
1341 			return 0;
1342 		}
1343 		pr_err("SELinux: %s:  called before initial "
1344 		       "load_policy on unknown SID %d\n", __func__, sid);
1345 		return -EINVAL;
1346 	}
1347 	rcu_read_lock();
1348 	policy = rcu_dereference(state->policy);
1349 	policydb = &policy->policydb;
1350 	sidtab = policy->sidtab;
1351 
1352 	if (force)
1353 		entry = sidtab_search_entry_force(sidtab, sid);
1354 	else
1355 		entry = sidtab_search_entry(sidtab, sid);
1356 	if (!entry) {
1357 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1358 			__func__, sid);
1359 		rc = -EINVAL;
1360 		goto out_unlock;
1361 	}
1362 	if (only_invalid && !entry->context.len)
1363 		goto out_unlock;
1364 
1365 	rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1366 				    scontext_len);
1367 
1368 out_unlock:
1369 	rcu_read_unlock();
1370 	return rc;
1371 
1372 }
1373 
1374 /**
1375  * security_sid_to_context - Obtain a context for a given SID.
1376  * @sid: security identifier, SID
1377  * @scontext: security context
1378  * @scontext_len: length in bytes
1379  *
1380  * Write the string representation of the context associated with @sid
1381  * into a dynamically allocated string of the correct size.  Set @scontext
1382  * to point to this string and set @scontext_len to the length of the string.
1383  */
1384 int security_sid_to_context(struct selinux_state *state,
1385 			    u32 sid, char **scontext, u32 *scontext_len)
1386 {
1387 	return security_sid_to_context_core(state, sid, scontext,
1388 					    scontext_len, 0, 0);
1389 }
1390 
1391 int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1392 				  char **scontext, u32 *scontext_len)
1393 {
1394 	return security_sid_to_context_core(state, sid, scontext,
1395 					    scontext_len, 1, 0);
1396 }
1397 
1398 /**
1399  * security_sid_to_context_inval - Obtain a context for a given SID if it
1400  *                                 is invalid.
1401  * @sid: security identifier, SID
1402  * @scontext: security context
1403  * @scontext_len: length in bytes
1404  *
1405  * Write the string representation of the context associated with @sid
1406  * into a dynamically allocated string of the correct size, but only if the
1407  * context is invalid in the current policy.  Set @scontext to point to
1408  * this string (or NULL if the context is valid) and set @scontext_len to
1409  * the length of the string (or 0 if the context is valid).
1410  */
1411 int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1412 				  char **scontext, u32 *scontext_len)
1413 {
1414 	return security_sid_to_context_core(state, sid, scontext,
1415 					    scontext_len, 1, 1);
1416 }
1417 
1418 /*
1419  * Caveat:  Mutates scontext.
1420  */
1421 static int string_to_context_struct(struct policydb *pol,
1422 				    struct sidtab *sidtabp,
1423 				    char *scontext,
1424 				    struct context *ctx,
1425 				    u32 def_sid)
1426 {
1427 	struct role_datum *role;
1428 	struct type_datum *typdatum;
1429 	struct user_datum *usrdatum;
1430 	char *scontextp, *p, oldc;
1431 	int rc = 0;
1432 
1433 	context_init(ctx);
1434 
1435 	/* Parse the security context. */
1436 
1437 	rc = -EINVAL;
1438 	scontextp = (char *) scontext;
1439 
1440 	/* Extract the user. */
1441 	p = scontextp;
1442 	while (*p && *p != ':')
1443 		p++;
1444 
1445 	if (*p == 0)
1446 		goto out;
1447 
1448 	*p++ = 0;
1449 
1450 	usrdatum = symtab_search(&pol->p_users, scontextp);
1451 	if (!usrdatum)
1452 		goto out;
1453 
1454 	ctx->user = usrdatum->value;
1455 
1456 	/* Extract role. */
1457 	scontextp = p;
1458 	while (*p && *p != ':')
1459 		p++;
1460 
1461 	if (*p == 0)
1462 		goto out;
1463 
1464 	*p++ = 0;
1465 
1466 	role = symtab_search(&pol->p_roles, scontextp);
1467 	if (!role)
1468 		goto out;
1469 	ctx->role = role->value;
1470 
1471 	/* Extract type. */
1472 	scontextp = p;
1473 	while (*p && *p != ':')
1474 		p++;
1475 	oldc = *p;
1476 	*p++ = 0;
1477 
1478 	typdatum = symtab_search(&pol->p_types, scontextp);
1479 	if (!typdatum || typdatum->attribute)
1480 		goto out;
1481 
1482 	ctx->type = typdatum->value;
1483 
1484 	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1485 	if (rc)
1486 		goto out;
1487 
1488 	/* Check the validity of the new context. */
1489 	rc = -EINVAL;
1490 	if (!policydb_context_isvalid(pol, ctx))
1491 		goto out;
1492 	rc = 0;
1493 out:
1494 	if (rc)
1495 		context_destroy(ctx);
1496 	return rc;
1497 }
1498 
1499 static int security_context_to_sid_core(struct selinux_state *state,
1500 					const char *scontext, u32 scontext_len,
1501 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1502 					int force)
1503 {
1504 	struct selinux_policy *policy;
1505 	struct policydb *policydb;
1506 	struct sidtab *sidtab;
1507 	char *scontext2, *str = NULL;
1508 	struct context context;
1509 	int rc = 0;
1510 
1511 	/* An empty security context is never valid. */
1512 	if (!scontext_len)
1513 		return -EINVAL;
1514 
1515 	/* Copy the string to allow changes and ensure a NUL terminator */
1516 	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1517 	if (!scontext2)
1518 		return -ENOMEM;
1519 
1520 	if (!selinux_initialized(state)) {
1521 		int i;
1522 
1523 		for (i = 1; i < SECINITSID_NUM; i++) {
1524 			const char *s = initial_sid_to_string[i];
1525 
1526 			if (s && !strcmp(s, scontext2)) {
1527 				*sid = i;
1528 				goto out;
1529 			}
1530 		}
1531 		*sid = SECINITSID_KERNEL;
1532 		goto out;
1533 	}
1534 	*sid = SECSID_NULL;
1535 
1536 	if (force) {
1537 		/* Save another copy for storing in uninterpreted form */
1538 		rc = -ENOMEM;
1539 		str = kstrdup(scontext2, gfp_flags);
1540 		if (!str)
1541 			goto out;
1542 	}
1543 	rcu_read_lock();
1544 	policy = rcu_dereference(state->policy);
1545 	policydb = &policy->policydb;
1546 	sidtab = policy->sidtab;
1547 	rc = string_to_context_struct(policydb, sidtab, scontext2,
1548 				      &context, def_sid);
1549 	if (rc == -EINVAL && force) {
1550 		context.str = str;
1551 		context.len = strlen(str) + 1;
1552 		str = NULL;
1553 	} else if (rc)
1554 		goto out_unlock;
1555 	rc = sidtab_context_to_sid(sidtab, &context, sid);
1556 	context_destroy(&context);
1557 out_unlock:
1558 	rcu_read_unlock();
1559 out:
1560 	kfree(scontext2);
1561 	kfree(str);
1562 	return rc;
1563 }
1564 
1565 /**
1566  * security_context_to_sid - Obtain a SID for a given security context.
1567  * @scontext: security context
1568  * @scontext_len: length in bytes
1569  * @sid: security identifier, SID
1570  * @gfp: context for the allocation
1571  *
1572  * Obtains a SID associated with the security context that
1573  * has the string representation specified by @scontext.
1574  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1575  * memory is available, or 0 on success.
1576  */
1577 int security_context_to_sid(struct selinux_state *state,
1578 			    const char *scontext, u32 scontext_len, u32 *sid,
1579 			    gfp_t gfp)
1580 {
1581 	return security_context_to_sid_core(state, scontext, scontext_len,
1582 					    sid, SECSID_NULL, gfp, 0);
1583 }
1584 
1585 int security_context_str_to_sid(struct selinux_state *state,
1586 				const char *scontext, u32 *sid, gfp_t gfp)
1587 {
1588 	return security_context_to_sid(state, scontext, strlen(scontext),
1589 				       sid, gfp);
1590 }
1591 
1592 /**
1593  * security_context_to_sid_default - Obtain a SID for a given security context,
1594  * falling back to specified default if needed.
1595  *
1596  * @scontext: security context
1597  * @scontext_len: length in bytes
1598  * @sid: security identifier, SID
1599  * @def_sid: default SID to assign on error
1600  *
1601  * Obtains a SID associated with the security context that
1602  * has the string representation specified by @scontext.
1603  * The default SID is passed to the MLS layer to be used to allow
1604  * kernel labeling of the MLS field if the MLS field is not present
1605  * (for upgrading to MLS without full relabel).
1606  * Implicitly forces adding of the context even if it cannot be mapped yet.
1607  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1608  * memory is available, or 0 on success.
1609  */
1610 int security_context_to_sid_default(struct selinux_state *state,
1611 				    const char *scontext, u32 scontext_len,
1612 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1613 {
1614 	return security_context_to_sid_core(state, scontext, scontext_len,
1615 					    sid, def_sid, gfp_flags, 1);
1616 }
1617 
1618 int security_context_to_sid_force(struct selinux_state *state,
1619 				  const char *scontext, u32 scontext_len,
1620 				  u32 *sid)
1621 {
1622 	return security_context_to_sid_core(state, scontext, scontext_len,
1623 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1624 }
1625 
1626 static int compute_sid_handle_invalid_context(
1627 	struct selinux_state *state,
1628 	struct selinux_policy *policy,
1629 	struct sidtab_entry *sentry,
1630 	struct sidtab_entry *tentry,
1631 	u16 tclass,
1632 	struct context *newcontext)
1633 {
1634 	struct policydb *policydb = &policy->policydb;
1635 	struct sidtab *sidtab = policy->sidtab;
1636 	char *s = NULL, *t = NULL, *n = NULL;
1637 	u32 slen, tlen, nlen;
1638 	struct audit_buffer *ab;
1639 
1640 	if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1641 		goto out;
1642 	if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1643 		goto out;
1644 	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1645 		goto out;
1646 	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1647 	audit_log_format(ab,
1648 			 "op=security_compute_sid invalid_context=");
1649 	/* no need to record the NUL with untrusted strings */
1650 	audit_log_n_untrustedstring(ab, n, nlen - 1);
1651 	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1652 			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1653 	audit_log_end(ab);
1654 out:
1655 	kfree(s);
1656 	kfree(t);
1657 	kfree(n);
1658 	if (!enforcing_enabled(state))
1659 		return 0;
1660 	return -EACCES;
1661 }
1662 
1663 static void filename_compute_type(struct policydb *policydb,
1664 				  struct context *newcontext,
1665 				  u32 stype, u32 ttype, u16 tclass,
1666 				  const char *objname)
1667 {
1668 	struct filename_trans_key ft;
1669 	struct filename_trans_datum *datum;
1670 
1671 	/*
1672 	 * Most filename trans rules are going to live in specific directories
1673 	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1674 	 * if the ttype does not contain any rules.
1675 	 */
1676 	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1677 		return;
1678 
1679 	ft.ttype = ttype;
1680 	ft.tclass = tclass;
1681 	ft.name = objname;
1682 
1683 	datum = policydb_filenametr_search(policydb, &ft);
1684 	while (datum) {
1685 		if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1686 			newcontext->type = datum->otype;
1687 			return;
1688 		}
1689 		datum = datum->next;
1690 	}
1691 }
1692 
1693 static int security_compute_sid(struct selinux_state *state,
1694 				u32 ssid,
1695 				u32 tsid,
1696 				u16 orig_tclass,
1697 				u32 specified,
1698 				const char *objname,
1699 				u32 *out_sid,
1700 				bool kern)
1701 {
1702 	struct selinux_policy *policy;
1703 	struct policydb *policydb;
1704 	struct sidtab *sidtab;
1705 	struct class_datum *cladatum = NULL;
1706 	struct context *scontext, *tcontext, newcontext;
1707 	struct sidtab_entry *sentry, *tentry;
1708 	struct avtab_key avkey;
1709 	struct avtab_datum *avdatum;
1710 	struct avtab_node *node;
1711 	u16 tclass;
1712 	int rc = 0;
1713 	bool sock;
1714 
1715 	if (!selinux_initialized(state)) {
1716 		switch (orig_tclass) {
1717 		case SECCLASS_PROCESS: /* kernel value */
1718 			*out_sid = ssid;
1719 			break;
1720 		default:
1721 			*out_sid = tsid;
1722 			break;
1723 		}
1724 		goto out;
1725 	}
1726 
1727 	context_init(&newcontext);
1728 
1729 	rcu_read_lock();
1730 
1731 	policy = rcu_dereference(state->policy);
1732 
1733 	if (kern) {
1734 		tclass = unmap_class(&policy->map, orig_tclass);
1735 		sock = security_is_socket_class(orig_tclass);
1736 	} else {
1737 		tclass = orig_tclass;
1738 		sock = security_is_socket_class(map_class(&policy->map,
1739 							  tclass));
1740 	}
1741 
1742 	policydb = &policy->policydb;
1743 	sidtab = policy->sidtab;
1744 
1745 	sentry = sidtab_search_entry(sidtab, ssid);
1746 	if (!sentry) {
1747 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1748 		       __func__, ssid);
1749 		rc = -EINVAL;
1750 		goto out_unlock;
1751 	}
1752 	tentry = sidtab_search_entry(sidtab, tsid);
1753 	if (!tentry) {
1754 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1755 		       __func__, tsid);
1756 		rc = -EINVAL;
1757 		goto out_unlock;
1758 	}
1759 
1760 	scontext = &sentry->context;
1761 	tcontext = &tentry->context;
1762 
1763 	if (tclass && tclass <= policydb->p_classes.nprim)
1764 		cladatum = policydb->class_val_to_struct[tclass - 1];
1765 
1766 	/* Set the user identity. */
1767 	switch (specified) {
1768 	case AVTAB_TRANSITION:
1769 	case AVTAB_CHANGE:
1770 		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1771 			newcontext.user = tcontext->user;
1772 		} else {
1773 			/* notice this gets both DEFAULT_SOURCE and unset */
1774 			/* Use the process user identity. */
1775 			newcontext.user = scontext->user;
1776 		}
1777 		break;
1778 	case AVTAB_MEMBER:
1779 		/* Use the related object owner. */
1780 		newcontext.user = tcontext->user;
1781 		break;
1782 	}
1783 
1784 	/* Set the role to default values. */
1785 	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1786 		newcontext.role = scontext->role;
1787 	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1788 		newcontext.role = tcontext->role;
1789 	} else {
1790 		if ((tclass == policydb->process_class) || sock)
1791 			newcontext.role = scontext->role;
1792 		else
1793 			newcontext.role = OBJECT_R_VAL;
1794 	}
1795 
1796 	/* Set the type to default values. */
1797 	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1798 		newcontext.type = scontext->type;
1799 	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1800 		newcontext.type = tcontext->type;
1801 	} else {
1802 		if ((tclass == policydb->process_class) || sock) {
1803 			/* Use the type of process. */
1804 			newcontext.type = scontext->type;
1805 		} else {
1806 			/* Use the type of the related object. */
1807 			newcontext.type = tcontext->type;
1808 		}
1809 	}
1810 
1811 	/* Look for a type transition/member/change rule. */
1812 	avkey.source_type = scontext->type;
1813 	avkey.target_type = tcontext->type;
1814 	avkey.target_class = tclass;
1815 	avkey.specified = specified;
1816 	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1817 
1818 	/* If no permanent rule, also check for enabled conditional rules */
1819 	if (!avdatum) {
1820 		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1821 		for (; node; node = avtab_search_node_next(node, specified)) {
1822 			if (node->key.specified & AVTAB_ENABLED) {
1823 				avdatum = &node->datum;
1824 				break;
1825 			}
1826 		}
1827 	}
1828 
1829 	if (avdatum) {
1830 		/* Use the type from the type transition/member/change rule. */
1831 		newcontext.type = avdatum->u.data;
1832 	}
1833 
1834 	/* if we have a objname this is a file trans check so check those rules */
1835 	if (objname)
1836 		filename_compute_type(policydb, &newcontext, scontext->type,
1837 				      tcontext->type, tclass, objname);
1838 
1839 	/* Check for class-specific changes. */
1840 	if (specified & AVTAB_TRANSITION) {
1841 		/* Look for a role transition rule. */
1842 		struct role_trans_datum *rtd;
1843 		struct role_trans_key rtk = {
1844 			.role = scontext->role,
1845 			.type = tcontext->type,
1846 			.tclass = tclass,
1847 		};
1848 
1849 		rtd = policydb_roletr_search(policydb, &rtk);
1850 		if (rtd)
1851 			newcontext.role = rtd->new_role;
1852 	}
1853 
1854 	/* Set the MLS attributes.
1855 	   This is done last because it may allocate memory. */
1856 	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1857 			     &newcontext, sock);
1858 	if (rc)
1859 		goto out_unlock;
1860 
1861 	/* Check the validity of the context. */
1862 	if (!policydb_context_isvalid(policydb, &newcontext)) {
1863 		rc = compute_sid_handle_invalid_context(state, policy, sentry,
1864 							tentry, tclass,
1865 							&newcontext);
1866 		if (rc)
1867 			goto out_unlock;
1868 	}
1869 	/* Obtain the sid for the context. */
1870 	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1871 out_unlock:
1872 	rcu_read_unlock();
1873 	context_destroy(&newcontext);
1874 out:
1875 	return rc;
1876 }
1877 
1878 /**
1879  * security_transition_sid - Compute the SID for a new subject/object.
1880  * @ssid: source security identifier
1881  * @tsid: target security identifier
1882  * @tclass: target security class
1883  * @out_sid: security identifier for new subject/object
1884  *
1885  * Compute a SID to use for labeling a new subject or object in the
1886  * class @tclass based on a SID pair (@ssid, @tsid).
1887  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1888  * if insufficient memory is available, or %0 if the new SID was
1889  * computed successfully.
1890  */
1891 int security_transition_sid(struct selinux_state *state,
1892 			    u32 ssid, u32 tsid, u16 tclass,
1893 			    const struct qstr *qstr, u32 *out_sid)
1894 {
1895 	return security_compute_sid(state, ssid, tsid, tclass,
1896 				    AVTAB_TRANSITION,
1897 				    qstr ? qstr->name : NULL, out_sid, true);
1898 }
1899 
1900 int security_transition_sid_user(struct selinux_state *state,
1901 				 u32 ssid, u32 tsid, u16 tclass,
1902 				 const char *objname, u32 *out_sid)
1903 {
1904 	return security_compute_sid(state, ssid, tsid, tclass,
1905 				    AVTAB_TRANSITION,
1906 				    objname, out_sid, false);
1907 }
1908 
1909 /**
1910  * security_member_sid - Compute the SID for member selection.
1911  * @ssid: source security identifier
1912  * @tsid: target security identifier
1913  * @tclass: target security class
1914  * @out_sid: security identifier for selected member
1915  *
1916  * Compute a SID to use when selecting a member of a polyinstantiated
1917  * object of class @tclass based on a SID pair (@ssid, @tsid).
1918  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1919  * if insufficient memory is available, or %0 if the SID was
1920  * computed successfully.
1921  */
1922 int security_member_sid(struct selinux_state *state,
1923 			u32 ssid,
1924 			u32 tsid,
1925 			u16 tclass,
1926 			u32 *out_sid)
1927 {
1928 	return security_compute_sid(state, ssid, tsid, tclass,
1929 				    AVTAB_MEMBER, NULL,
1930 				    out_sid, false);
1931 }
1932 
1933 /**
1934  * security_change_sid - Compute the SID for object relabeling.
1935  * @ssid: source security identifier
1936  * @tsid: target security identifier
1937  * @tclass: target security class
1938  * @out_sid: security identifier for selected member
1939  *
1940  * Compute a SID to use for relabeling an object of class @tclass
1941  * based on a SID pair (@ssid, @tsid).
1942  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1943  * if insufficient memory is available, or %0 if the SID was
1944  * computed successfully.
1945  */
1946 int security_change_sid(struct selinux_state *state,
1947 			u32 ssid,
1948 			u32 tsid,
1949 			u16 tclass,
1950 			u32 *out_sid)
1951 {
1952 	return security_compute_sid(state,
1953 				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1954 				    out_sid, false);
1955 }
1956 
1957 static inline int convert_context_handle_invalid_context(
1958 	struct selinux_state *state,
1959 	struct policydb *policydb,
1960 	struct context *context)
1961 {
1962 	char *s;
1963 	u32 len;
1964 
1965 	if (enforcing_enabled(state))
1966 		return -EINVAL;
1967 
1968 	if (!context_struct_to_string(policydb, context, &s, &len)) {
1969 		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
1970 			s);
1971 		kfree(s);
1972 	}
1973 	return 0;
1974 }
1975 
1976 struct convert_context_args {
1977 	struct selinux_state *state;
1978 	struct policydb *oldp;
1979 	struct policydb *newp;
1980 };
1981 
1982 /*
1983  * Convert the values in the security context
1984  * structure `oldc' from the values specified
1985  * in the policy `p->oldp' to the values specified
1986  * in the policy `p->newp', storing the new context
1987  * in `newc'.  Verify that the context is valid
1988  * under the new policy.
1989  */
1990 static int convert_context(struct context *oldc, struct context *newc, void *p)
1991 {
1992 	struct convert_context_args *args;
1993 	struct ocontext *oc;
1994 	struct role_datum *role;
1995 	struct type_datum *typdatum;
1996 	struct user_datum *usrdatum;
1997 	char *s;
1998 	u32 len;
1999 	int rc;
2000 
2001 	args = p;
2002 
2003 	if (oldc->str) {
2004 		s = kstrdup(oldc->str, GFP_KERNEL);
2005 		if (!s)
2006 			return -ENOMEM;
2007 
2008 		rc = string_to_context_struct(args->newp, NULL, s,
2009 					      newc, SECSID_NULL);
2010 		if (rc == -EINVAL) {
2011 			/*
2012 			 * Retain string representation for later mapping.
2013 			 *
2014 			 * IMPORTANT: We need to copy the contents of oldc->str
2015 			 * back into s again because string_to_context_struct()
2016 			 * may have garbled it.
2017 			 */
2018 			memcpy(s, oldc->str, oldc->len);
2019 			context_init(newc);
2020 			newc->str = s;
2021 			newc->len = oldc->len;
2022 			return 0;
2023 		}
2024 		kfree(s);
2025 		if (rc) {
2026 			/* Other error condition, e.g. ENOMEM. */
2027 			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2028 			       oldc->str, -rc);
2029 			return rc;
2030 		}
2031 		pr_info("SELinux:  Context %s became valid (mapped).\n",
2032 			oldc->str);
2033 		return 0;
2034 	}
2035 
2036 	context_init(newc);
2037 
2038 	/* Convert the user. */
2039 	rc = -EINVAL;
2040 	usrdatum = symtab_search(&args->newp->p_users,
2041 				 sym_name(args->oldp,
2042 					  SYM_USERS, oldc->user - 1));
2043 	if (!usrdatum)
2044 		goto bad;
2045 	newc->user = usrdatum->value;
2046 
2047 	/* Convert the role. */
2048 	rc = -EINVAL;
2049 	role = symtab_search(&args->newp->p_roles,
2050 			     sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2051 	if (!role)
2052 		goto bad;
2053 	newc->role = role->value;
2054 
2055 	/* Convert the type. */
2056 	rc = -EINVAL;
2057 	typdatum = symtab_search(&args->newp->p_types,
2058 				 sym_name(args->oldp,
2059 					  SYM_TYPES, oldc->type - 1));
2060 	if (!typdatum)
2061 		goto bad;
2062 	newc->type = typdatum->value;
2063 
2064 	/* Convert the MLS fields if dealing with MLS policies */
2065 	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2066 		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2067 		if (rc)
2068 			goto bad;
2069 	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2070 		/*
2071 		 * Switching between non-MLS and MLS policy:
2072 		 * ensure that the MLS fields of the context for all
2073 		 * existing entries in the sidtab are filled in with a
2074 		 * suitable default value, likely taken from one of the
2075 		 * initial SIDs.
2076 		 */
2077 		oc = args->newp->ocontexts[OCON_ISID];
2078 		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2079 			oc = oc->next;
2080 		rc = -EINVAL;
2081 		if (!oc) {
2082 			pr_err("SELinux:  unable to look up"
2083 				" the initial SIDs list\n");
2084 			goto bad;
2085 		}
2086 		rc = mls_range_set(newc, &oc->context[0].range);
2087 		if (rc)
2088 			goto bad;
2089 	}
2090 
2091 	/* Check the validity of the new context. */
2092 	if (!policydb_context_isvalid(args->newp, newc)) {
2093 		rc = convert_context_handle_invalid_context(args->state,
2094 							args->oldp,
2095 							oldc);
2096 		if (rc)
2097 			goto bad;
2098 	}
2099 
2100 	return 0;
2101 bad:
2102 	/* Map old representation to string and save it. */
2103 	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2104 	if (rc)
2105 		return rc;
2106 	context_destroy(newc);
2107 	newc->str = s;
2108 	newc->len = len;
2109 	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2110 		newc->str);
2111 	return 0;
2112 }
2113 
2114 static void security_load_policycaps(struct selinux_state *state,
2115 				struct selinux_policy *policy)
2116 {
2117 	struct policydb *p;
2118 	unsigned int i;
2119 	struct ebitmap_node *node;
2120 
2121 	p = &policy->policydb;
2122 
2123 	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2124 		WRITE_ONCE(state->policycap[i],
2125 			ebitmap_get_bit(&p->policycaps, i));
2126 
2127 	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2128 		pr_info("SELinux:  policy capability %s=%d\n",
2129 			selinux_policycap_names[i],
2130 			ebitmap_get_bit(&p->policycaps, i));
2131 
2132 	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2133 		if (i >= ARRAY_SIZE(selinux_policycap_names))
2134 			pr_info("SELinux:  unknown policy capability %u\n",
2135 				i);
2136 	}
2137 }
2138 
2139 static int security_preserve_bools(struct selinux_policy *oldpolicy,
2140 				struct selinux_policy *newpolicy);
2141 
2142 static void selinux_policy_free(struct selinux_policy *policy)
2143 {
2144 	if (!policy)
2145 		return;
2146 
2147 	sidtab_destroy(policy->sidtab);
2148 	kfree(policy->map.mapping);
2149 	policydb_destroy(&policy->policydb);
2150 	kfree(policy->sidtab);
2151 	kfree(policy);
2152 }
2153 
2154 static void selinux_policy_cond_free(struct selinux_policy *policy)
2155 {
2156 	cond_policydb_destroy_dup(&policy->policydb);
2157 	kfree(policy);
2158 }
2159 
2160 void selinux_policy_cancel(struct selinux_state *state,
2161 			struct selinux_policy *policy)
2162 {
2163 	struct selinux_policy *oldpolicy;
2164 
2165 	oldpolicy = rcu_dereference_protected(state->policy,
2166 					lockdep_is_held(&state->policy_mutex));
2167 
2168 	sidtab_cancel_convert(oldpolicy->sidtab);
2169 	selinux_policy_free(policy);
2170 }
2171 
2172 static void selinux_notify_policy_change(struct selinux_state *state,
2173 					u32 seqno)
2174 {
2175 	/* Flush external caches and notify userspace of policy load */
2176 	avc_ss_reset(state->avc, seqno);
2177 	selnl_notify_policyload(seqno);
2178 	selinux_status_update_policyload(state, seqno);
2179 	selinux_netlbl_cache_invalidate();
2180 	selinux_xfrm_notify_policyload();
2181 }
2182 
2183 void selinux_policy_commit(struct selinux_state *state,
2184 			struct selinux_policy *newpolicy)
2185 {
2186 	struct selinux_policy *oldpolicy;
2187 	u32 seqno;
2188 
2189 	oldpolicy = rcu_dereference_protected(state->policy,
2190 					lockdep_is_held(&state->policy_mutex));
2191 
2192 	/* If switching between different policy types, log MLS status */
2193 	if (oldpolicy) {
2194 		if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2195 			pr_info("SELinux: Disabling MLS support...\n");
2196 		else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2197 			pr_info("SELinux: Enabling MLS support...\n");
2198 	}
2199 
2200 	/* Set latest granting seqno for new policy. */
2201 	if (oldpolicy)
2202 		newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2203 	else
2204 		newpolicy->latest_granting = 1;
2205 	seqno = newpolicy->latest_granting;
2206 
2207 	/* Install the new policy. */
2208 	rcu_assign_pointer(state->policy, newpolicy);
2209 
2210 	/* Load the policycaps from the new policy */
2211 	security_load_policycaps(state, newpolicy);
2212 
2213 	if (!selinux_initialized(state)) {
2214 		/*
2215 		 * After first policy load, the security server is
2216 		 * marked as initialized and ready to handle requests and
2217 		 * any objects created prior to policy load are then labeled.
2218 		 */
2219 		selinux_mark_initialized(state);
2220 		selinux_complete_init();
2221 	}
2222 
2223 	/* Free the old policy */
2224 	synchronize_rcu();
2225 	selinux_policy_free(oldpolicy);
2226 
2227 	/* Notify others of the policy change */
2228 	selinux_notify_policy_change(state, seqno);
2229 }
2230 
2231 /**
2232  * security_load_policy - Load a security policy configuration.
2233  * @data: binary policy data
2234  * @len: length of data in bytes
2235  *
2236  * Load a new set of security policy configuration data,
2237  * validate it and convert the SID table as necessary.
2238  * This function will flush the access vector cache after
2239  * loading the new policy.
2240  */
2241 int security_load_policy(struct selinux_state *state, void *data, size_t len,
2242 			struct selinux_policy **newpolicyp)
2243 {
2244 	struct selinux_policy *newpolicy, *oldpolicy;
2245 	struct sidtab_convert_params convert_params;
2246 	struct convert_context_args args;
2247 	int rc = 0;
2248 	struct policy_file file = { data, len }, *fp = &file;
2249 
2250 	newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2251 	if (!newpolicy)
2252 		return -ENOMEM;
2253 
2254 	newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2255 	if (!newpolicy->sidtab) {
2256 		rc = -ENOMEM;
2257 		goto err_policy;
2258 	}
2259 
2260 	rc = policydb_read(&newpolicy->policydb, fp);
2261 	if (rc)
2262 		goto err_sidtab;
2263 
2264 	newpolicy->policydb.len = len;
2265 	rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2266 				&newpolicy->map);
2267 	if (rc)
2268 		goto err_policydb;
2269 
2270 	rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2271 	if (rc) {
2272 		pr_err("SELinux:  unable to load the initial SIDs\n");
2273 		goto err_mapping;
2274 	}
2275 
2276 
2277 	if (!selinux_initialized(state)) {
2278 		/* First policy load, so no need to preserve state from old policy */
2279 		*newpolicyp = newpolicy;
2280 		return 0;
2281 	}
2282 
2283 	oldpolicy = rcu_dereference_protected(state->policy,
2284 					lockdep_is_held(&state->policy_mutex));
2285 
2286 	/* Preserve active boolean values from the old policy */
2287 	rc = security_preserve_bools(oldpolicy, newpolicy);
2288 	if (rc) {
2289 		pr_err("SELinux:  unable to preserve booleans\n");
2290 		goto err_free_isids;
2291 	}
2292 
2293 	/*
2294 	 * Convert the internal representations of contexts
2295 	 * in the new SID table.
2296 	 */
2297 	args.state = state;
2298 	args.oldp = &oldpolicy->policydb;
2299 	args.newp = &newpolicy->policydb;
2300 
2301 	convert_params.func = convert_context;
2302 	convert_params.args = &args;
2303 	convert_params.target = newpolicy->sidtab;
2304 
2305 	rc = sidtab_convert(oldpolicy->sidtab, &convert_params);
2306 	if (rc) {
2307 		pr_err("SELinux:  unable to convert the internal"
2308 			" representation of contexts in the new SID"
2309 			" table\n");
2310 		goto err_free_isids;
2311 	}
2312 
2313 	*newpolicyp = newpolicy;
2314 	return 0;
2315 
2316 err_free_isids:
2317 	sidtab_destroy(newpolicy->sidtab);
2318 err_mapping:
2319 	kfree(newpolicy->map.mapping);
2320 err_policydb:
2321 	policydb_destroy(&newpolicy->policydb);
2322 err_sidtab:
2323 	kfree(newpolicy->sidtab);
2324 err_policy:
2325 	kfree(newpolicy);
2326 
2327 	return rc;
2328 }
2329 
2330 /**
2331  * security_port_sid - Obtain the SID for a port.
2332  * @protocol: protocol number
2333  * @port: port number
2334  * @out_sid: security identifier
2335  */
2336 int security_port_sid(struct selinux_state *state,
2337 		      u8 protocol, u16 port, u32 *out_sid)
2338 {
2339 	struct selinux_policy *policy;
2340 	struct policydb *policydb;
2341 	struct sidtab *sidtab;
2342 	struct ocontext *c;
2343 	int rc = 0;
2344 
2345 	if (!selinux_initialized(state)) {
2346 		*out_sid = SECINITSID_PORT;
2347 		return 0;
2348 	}
2349 
2350 	rcu_read_lock();
2351 	policy = rcu_dereference(state->policy);
2352 	policydb = &policy->policydb;
2353 	sidtab = policy->sidtab;
2354 
2355 	c = policydb->ocontexts[OCON_PORT];
2356 	while (c) {
2357 		if (c->u.port.protocol == protocol &&
2358 		    c->u.port.low_port <= port &&
2359 		    c->u.port.high_port >= port)
2360 			break;
2361 		c = c->next;
2362 	}
2363 
2364 	if (c) {
2365 		if (!c->sid[0]) {
2366 			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2367 						   &c->sid[0]);
2368 			if (rc)
2369 				goto out;
2370 		}
2371 		*out_sid = c->sid[0];
2372 	} else {
2373 		*out_sid = SECINITSID_PORT;
2374 	}
2375 
2376 out:
2377 	rcu_read_unlock();
2378 	return rc;
2379 }
2380 
2381 /**
2382  * security_pkey_sid - Obtain the SID for a pkey.
2383  * @subnet_prefix: Subnet Prefix
2384  * @pkey_num: pkey number
2385  * @out_sid: security identifier
2386  */
2387 int security_ib_pkey_sid(struct selinux_state *state,
2388 			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2389 {
2390 	struct selinux_policy *policy;
2391 	struct policydb *policydb;
2392 	struct sidtab *sidtab;
2393 	struct ocontext *c;
2394 	int rc = 0;
2395 
2396 	if (!selinux_initialized(state)) {
2397 		*out_sid = SECINITSID_UNLABELED;
2398 		return 0;
2399 	}
2400 
2401 	rcu_read_lock();
2402 	policy = rcu_dereference(state->policy);
2403 	policydb = &policy->policydb;
2404 	sidtab = policy->sidtab;
2405 
2406 	c = policydb->ocontexts[OCON_IBPKEY];
2407 	while (c) {
2408 		if (c->u.ibpkey.low_pkey <= pkey_num &&
2409 		    c->u.ibpkey.high_pkey >= pkey_num &&
2410 		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2411 			break;
2412 
2413 		c = c->next;
2414 	}
2415 
2416 	if (c) {
2417 		if (!c->sid[0]) {
2418 			rc = sidtab_context_to_sid(sidtab,
2419 						   &c->context[0],
2420 						   &c->sid[0]);
2421 			if (rc)
2422 				goto out;
2423 		}
2424 		*out_sid = c->sid[0];
2425 	} else
2426 		*out_sid = SECINITSID_UNLABELED;
2427 
2428 out:
2429 	rcu_read_unlock();
2430 	return rc;
2431 }
2432 
2433 /**
2434  * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2435  * @dev_name: device name
2436  * @port: port number
2437  * @out_sid: security identifier
2438  */
2439 int security_ib_endport_sid(struct selinux_state *state,
2440 			    const char *dev_name, u8 port_num, u32 *out_sid)
2441 {
2442 	struct selinux_policy *policy;
2443 	struct policydb *policydb;
2444 	struct sidtab *sidtab;
2445 	struct ocontext *c;
2446 	int rc = 0;
2447 
2448 	if (!selinux_initialized(state)) {
2449 		*out_sid = SECINITSID_UNLABELED;
2450 		return 0;
2451 	}
2452 
2453 	rcu_read_lock();
2454 	policy = rcu_dereference(state->policy);
2455 	policydb = &policy->policydb;
2456 	sidtab = policy->sidtab;
2457 
2458 	c = policydb->ocontexts[OCON_IBENDPORT];
2459 	while (c) {
2460 		if (c->u.ibendport.port == port_num &&
2461 		    !strncmp(c->u.ibendport.dev_name,
2462 			     dev_name,
2463 			     IB_DEVICE_NAME_MAX))
2464 			break;
2465 
2466 		c = c->next;
2467 	}
2468 
2469 	if (c) {
2470 		if (!c->sid[0]) {
2471 			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2472 						   &c->sid[0]);
2473 			if (rc)
2474 				goto out;
2475 		}
2476 		*out_sid = c->sid[0];
2477 	} else
2478 		*out_sid = SECINITSID_UNLABELED;
2479 
2480 out:
2481 	rcu_read_unlock();
2482 	return rc;
2483 }
2484 
2485 /**
2486  * security_netif_sid - Obtain the SID for a network interface.
2487  * @name: interface name
2488  * @if_sid: interface SID
2489  */
2490 int security_netif_sid(struct selinux_state *state,
2491 		       char *name, u32 *if_sid)
2492 {
2493 	struct selinux_policy *policy;
2494 	struct policydb *policydb;
2495 	struct sidtab *sidtab;
2496 	int rc = 0;
2497 	struct ocontext *c;
2498 
2499 	if (!selinux_initialized(state)) {
2500 		*if_sid = SECINITSID_NETIF;
2501 		return 0;
2502 	}
2503 
2504 	rcu_read_lock();
2505 	policy = rcu_dereference(state->policy);
2506 	policydb = &policy->policydb;
2507 	sidtab = policy->sidtab;
2508 
2509 	c = policydb->ocontexts[OCON_NETIF];
2510 	while (c) {
2511 		if (strcmp(name, c->u.name) == 0)
2512 			break;
2513 		c = c->next;
2514 	}
2515 
2516 	if (c) {
2517 		if (!c->sid[0] || !c->sid[1]) {
2518 			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2519 						   &c->sid[0]);
2520 			if (rc)
2521 				goto out;
2522 			rc = sidtab_context_to_sid(sidtab, &c->context[1],
2523 						   &c->sid[1]);
2524 			if (rc)
2525 				goto out;
2526 		}
2527 		*if_sid = c->sid[0];
2528 	} else
2529 		*if_sid = SECINITSID_NETIF;
2530 
2531 out:
2532 	rcu_read_unlock();
2533 	return rc;
2534 }
2535 
2536 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2537 {
2538 	int i, fail = 0;
2539 
2540 	for (i = 0; i < 4; i++)
2541 		if (addr[i] != (input[i] & mask[i])) {
2542 			fail = 1;
2543 			break;
2544 		}
2545 
2546 	return !fail;
2547 }
2548 
2549 /**
2550  * security_node_sid - Obtain the SID for a node (host).
2551  * @domain: communication domain aka address family
2552  * @addrp: address
2553  * @addrlen: address length in bytes
2554  * @out_sid: security identifier
2555  */
2556 int security_node_sid(struct selinux_state *state,
2557 		      u16 domain,
2558 		      void *addrp,
2559 		      u32 addrlen,
2560 		      u32 *out_sid)
2561 {
2562 	struct selinux_policy *policy;
2563 	struct policydb *policydb;
2564 	struct sidtab *sidtab;
2565 	int rc;
2566 	struct ocontext *c;
2567 
2568 	if (!selinux_initialized(state)) {
2569 		*out_sid = SECINITSID_NODE;
2570 		return 0;
2571 	}
2572 
2573 	rcu_read_lock();
2574 	policy = rcu_dereference(state->policy);
2575 	policydb = &policy->policydb;
2576 	sidtab = policy->sidtab;
2577 
2578 	switch (domain) {
2579 	case AF_INET: {
2580 		u32 addr;
2581 
2582 		rc = -EINVAL;
2583 		if (addrlen != sizeof(u32))
2584 			goto out;
2585 
2586 		addr = *((u32 *)addrp);
2587 
2588 		c = policydb->ocontexts[OCON_NODE];
2589 		while (c) {
2590 			if (c->u.node.addr == (addr & c->u.node.mask))
2591 				break;
2592 			c = c->next;
2593 		}
2594 		break;
2595 	}
2596 
2597 	case AF_INET6:
2598 		rc = -EINVAL;
2599 		if (addrlen != sizeof(u64) * 2)
2600 			goto out;
2601 		c = policydb->ocontexts[OCON_NODE6];
2602 		while (c) {
2603 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2604 						c->u.node6.mask))
2605 				break;
2606 			c = c->next;
2607 		}
2608 		break;
2609 
2610 	default:
2611 		rc = 0;
2612 		*out_sid = SECINITSID_NODE;
2613 		goto out;
2614 	}
2615 
2616 	if (c) {
2617 		if (!c->sid[0]) {
2618 			rc = sidtab_context_to_sid(sidtab,
2619 						   &c->context[0],
2620 						   &c->sid[0]);
2621 			if (rc)
2622 				goto out;
2623 		}
2624 		*out_sid = c->sid[0];
2625 	} else {
2626 		*out_sid = SECINITSID_NODE;
2627 	}
2628 
2629 	rc = 0;
2630 out:
2631 	rcu_read_unlock();
2632 	return rc;
2633 }
2634 
2635 #define SIDS_NEL 25
2636 
2637 /**
2638  * security_get_user_sids - Obtain reachable SIDs for a user.
2639  * @fromsid: starting SID
2640  * @username: username
2641  * @sids: array of reachable SIDs for user
2642  * @nel: number of elements in @sids
2643  *
2644  * Generate the set of SIDs for legal security contexts
2645  * for a given user that can be reached by @fromsid.
2646  * Set *@sids to point to a dynamically allocated
2647  * array containing the set of SIDs.  Set *@nel to the
2648  * number of elements in the array.
2649  */
2650 
2651 int security_get_user_sids(struct selinux_state *state,
2652 			   u32 fromsid,
2653 			   char *username,
2654 			   u32 **sids,
2655 			   u32 *nel)
2656 {
2657 	struct selinux_policy *policy;
2658 	struct policydb *policydb;
2659 	struct sidtab *sidtab;
2660 	struct context *fromcon, usercon;
2661 	u32 *mysids = NULL, *mysids2, sid;
2662 	u32 mynel = 0, maxnel = SIDS_NEL;
2663 	struct user_datum *user;
2664 	struct role_datum *role;
2665 	struct ebitmap_node *rnode, *tnode;
2666 	int rc = 0, i, j;
2667 
2668 	*sids = NULL;
2669 	*nel = 0;
2670 
2671 	if (!selinux_initialized(state))
2672 		goto out;
2673 
2674 	rcu_read_lock();
2675 	policy = rcu_dereference(state->policy);
2676 	policydb = &policy->policydb;
2677 	sidtab = policy->sidtab;
2678 
2679 	context_init(&usercon);
2680 
2681 	rc = -EINVAL;
2682 	fromcon = sidtab_search(sidtab, fromsid);
2683 	if (!fromcon)
2684 		goto out_unlock;
2685 
2686 	rc = -EINVAL;
2687 	user = symtab_search(&policydb->p_users, username);
2688 	if (!user)
2689 		goto out_unlock;
2690 
2691 	usercon.user = user->value;
2692 
2693 	rc = -ENOMEM;
2694 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2695 	if (!mysids)
2696 		goto out_unlock;
2697 
2698 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2699 		role = policydb->role_val_to_struct[i];
2700 		usercon.role = i + 1;
2701 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2702 			usercon.type = j + 1;
2703 
2704 			if (mls_setup_user_range(policydb, fromcon, user,
2705 						 &usercon))
2706 				continue;
2707 
2708 			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2709 			if (rc)
2710 				goto out_unlock;
2711 			if (mynel < maxnel) {
2712 				mysids[mynel++] = sid;
2713 			} else {
2714 				rc = -ENOMEM;
2715 				maxnel += SIDS_NEL;
2716 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2717 				if (!mysids2)
2718 					goto out_unlock;
2719 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2720 				kfree(mysids);
2721 				mysids = mysids2;
2722 				mysids[mynel++] = sid;
2723 			}
2724 		}
2725 	}
2726 	rc = 0;
2727 out_unlock:
2728 	rcu_read_unlock();
2729 	if (rc || !mynel) {
2730 		kfree(mysids);
2731 		goto out;
2732 	}
2733 
2734 	rc = -ENOMEM;
2735 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2736 	if (!mysids2) {
2737 		kfree(mysids);
2738 		goto out;
2739 	}
2740 	for (i = 0, j = 0; i < mynel; i++) {
2741 		struct av_decision dummy_avd;
2742 		rc = avc_has_perm_noaudit(state,
2743 					  fromsid, mysids[i],
2744 					  SECCLASS_PROCESS, /* kernel value */
2745 					  PROCESS__TRANSITION, AVC_STRICT,
2746 					  &dummy_avd);
2747 		if (!rc)
2748 			mysids2[j++] = mysids[i];
2749 		cond_resched();
2750 	}
2751 	rc = 0;
2752 	kfree(mysids);
2753 	*sids = mysids2;
2754 	*nel = j;
2755 out:
2756 	return rc;
2757 }
2758 
2759 /**
2760  * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2761  * @fstype: filesystem type
2762  * @path: path from root of mount
2763  * @sclass: file security class
2764  * @sid: SID for path
2765  *
2766  * Obtain a SID to use for a file in a filesystem that
2767  * cannot support xattr or use a fixed labeling behavior like
2768  * transition SIDs or task SIDs.
2769  */
2770 static inline int __security_genfs_sid(struct selinux_policy *policy,
2771 				       const char *fstype,
2772 				       char *path,
2773 				       u16 orig_sclass,
2774 				       u32 *sid)
2775 {
2776 	struct policydb *policydb = &policy->policydb;
2777 	struct sidtab *sidtab = policy->sidtab;
2778 	int len;
2779 	u16 sclass;
2780 	struct genfs *genfs;
2781 	struct ocontext *c;
2782 	int rc, cmp = 0;
2783 
2784 	while (path[0] == '/' && path[1] == '/')
2785 		path++;
2786 
2787 	sclass = unmap_class(&policy->map, orig_sclass);
2788 	*sid = SECINITSID_UNLABELED;
2789 
2790 	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2791 		cmp = strcmp(fstype, genfs->fstype);
2792 		if (cmp <= 0)
2793 			break;
2794 	}
2795 
2796 	rc = -ENOENT;
2797 	if (!genfs || cmp)
2798 		goto out;
2799 
2800 	for (c = genfs->head; c; c = c->next) {
2801 		len = strlen(c->u.name);
2802 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2803 		    (strncmp(c->u.name, path, len) == 0))
2804 			break;
2805 	}
2806 
2807 	rc = -ENOENT;
2808 	if (!c)
2809 		goto out;
2810 
2811 	if (!c->sid[0]) {
2812 		rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2813 		if (rc)
2814 			goto out;
2815 	}
2816 
2817 	*sid = c->sid[0];
2818 	rc = 0;
2819 out:
2820 	return rc;
2821 }
2822 
2823 /**
2824  * security_genfs_sid - Obtain a SID for a file in a filesystem
2825  * @fstype: filesystem type
2826  * @path: path from root of mount
2827  * @sclass: file security class
2828  * @sid: SID for path
2829  *
2830  * Acquire policy_rwlock before calling __security_genfs_sid() and release
2831  * it afterward.
2832  */
2833 int security_genfs_sid(struct selinux_state *state,
2834 		       const char *fstype,
2835 		       char *path,
2836 		       u16 orig_sclass,
2837 		       u32 *sid)
2838 {
2839 	struct selinux_policy *policy;
2840 	int retval;
2841 
2842 	if (!selinux_initialized(state)) {
2843 		*sid = SECINITSID_UNLABELED;
2844 		return 0;
2845 	}
2846 
2847 	rcu_read_lock();
2848 	policy = rcu_dereference(state->policy);
2849 	retval = __security_genfs_sid(policy,
2850 				fstype, path, orig_sclass, sid);
2851 	rcu_read_unlock();
2852 	return retval;
2853 }
2854 
2855 int selinux_policy_genfs_sid(struct selinux_policy *policy,
2856 			const char *fstype,
2857 			char *path,
2858 			u16 orig_sclass,
2859 			u32 *sid)
2860 {
2861 	/* no lock required, policy is not yet accessible by other threads */
2862 	return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2863 }
2864 
2865 /**
2866  * security_fs_use - Determine how to handle labeling for a filesystem.
2867  * @sb: superblock in question
2868  */
2869 int security_fs_use(struct selinux_state *state, struct super_block *sb)
2870 {
2871 	struct selinux_policy *policy;
2872 	struct policydb *policydb;
2873 	struct sidtab *sidtab;
2874 	int rc = 0;
2875 	struct ocontext *c;
2876 	struct superblock_security_struct *sbsec = sb->s_security;
2877 	const char *fstype = sb->s_type->name;
2878 
2879 	if (!selinux_initialized(state)) {
2880 		sbsec->behavior = SECURITY_FS_USE_NONE;
2881 		sbsec->sid = SECINITSID_UNLABELED;
2882 		return 0;
2883 	}
2884 
2885 	rcu_read_lock();
2886 	policy = rcu_dereference(state->policy);
2887 	policydb = &policy->policydb;
2888 	sidtab = policy->sidtab;
2889 
2890 	c = policydb->ocontexts[OCON_FSUSE];
2891 	while (c) {
2892 		if (strcmp(fstype, c->u.name) == 0)
2893 			break;
2894 		c = c->next;
2895 	}
2896 
2897 	if (c) {
2898 		sbsec->behavior = c->v.behavior;
2899 		if (!c->sid[0]) {
2900 			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2901 						   &c->sid[0]);
2902 			if (rc)
2903 				goto out;
2904 		}
2905 		sbsec->sid = c->sid[0];
2906 	} else {
2907 		rc = __security_genfs_sid(policy, fstype, "/",
2908 					SECCLASS_DIR, &sbsec->sid);
2909 		if (rc) {
2910 			sbsec->behavior = SECURITY_FS_USE_NONE;
2911 			rc = 0;
2912 		} else {
2913 			sbsec->behavior = SECURITY_FS_USE_GENFS;
2914 		}
2915 	}
2916 
2917 out:
2918 	rcu_read_unlock();
2919 	return rc;
2920 }
2921 
2922 int security_get_bools(struct selinux_policy *policy,
2923 		       u32 *len, char ***names, int **values)
2924 {
2925 	struct policydb *policydb;
2926 	u32 i;
2927 	int rc;
2928 
2929 	policydb = &policy->policydb;
2930 
2931 	*names = NULL;
2932 	*values = NULL;
2933 
2934 	rc = 0;
2935 	*len = policydb->p_bools.nprim;
2936 	if (!*len)
2937 		goto out;
2938 
2939 	rc = -ENOMEM;
2940 	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2941 	if (!*names)
2942 		goto err;
2943 
2944 	rc = -ENOMEM;
2945 	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2946 	if (!*values)
2947 		goto err;
2948 
2949 	for (i = 0; i < *len; i++) {
2950 		(*values)[i] = policydb->bool_val_to_struct[i]->state;
2951 
2952 		rc = -ENOMEM;
2953 		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2954 				      GFP_ATOMIC);
2955 		if (!(*names)[i])
2956 			goto err;
2957 	}
2958 	rc = 0;
2959 out:
2960 	return rc;
2961 err:
2962 	if (*names) {
2963 		for (i = 0; i < *len; i++)
2964 			kfree((*names)[i]);
2965 		kfree(*names);
2966 	}
2967 	kfree(*values);
2968 	*len = 0;
2969 	*names = NULL;
2970 	*values = NULL;
2971 	goto out;
2972 }
2973 
2974 
2975 int security_set_bools(struct selinux_state *state, u32 len, int *values)
2976 {
2977 	struct selinux_policy *newpolicy, *oldpolicy;
2978 	int rc;
2979 	u32 i, seqno = 0;
2980 
2981 	if (!selinux_initialized(state))
2982 		return -EINVAL;
2983 
2984 	oldpolicy = rcu_dereference_protected(state->policy,
2985 					lockdep_is_held(&state->policy_mutex));
2986 
2987 	/* Consistency check on number of booleans, should never fail */
2988 	if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
2989 		return -EINVAL;
2990 
2991 	newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
2992 	if (!newpolicy)
2993 		return -ENOMEM;
2994 
2995 	/*
2996 	 * Deep copy only the parts of the policydb that might be
2997 	 * modified as a result of changing booleans.
2998 	 */
2999 	rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3000 	if (rc) {
3001 		kfree(newpolicy);
3002 		return -ENOMEM;
3003 	}
3004 
3005 	/* Update the boolean states in the copy */
3006 	for (i = 0; i < len; i++) {
3007 		int new_state = !!values[i];
3008 		int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3009 
3010 		if (new_state != old_state) {
3011 			audit_log(audit_context(), GFP_ATOMIC,
3012 				AUDIT_MAC_CONFIG_CHANGE,
3013 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
3014 				sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3015 				new_state,
3016 				old_state,
3017 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
3018 				audit_get_sessionid(current));
3019 			newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3020 		}
3021 	}
3022 
3023 	/* Re-evaluate the conditional rules in the copy */
3024 	evaluate_cond_nodes(&newpolicy->policydb);
3025 
3026 	/* Set latest granting seqno for new policy */
3027 	newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3028 	seqno = newpolicy->latest_granting;
3029 
3030 	/* Install the new policy */
3031 	rcu_assign_pointer(state->policy, newpolicy);
3032 
3033 	/*
3034 	 * Free the conditional portions of the old policydb
3035 	 * that were copied for the new policy, and the oldpolicy
3036 	 * structure itself but not what it references.
3037 	 */
3038 	synchronize_rcu();
3039 	selinux_policy_cond_free(oldpolicy);
3040 
3041 	/* Notify others of the policy change */
3042 	selinux_notify_policy_change(state, seqno);
3043 	return 0;
3044 }
3045 
3046 int security_get_bool_value(struct selinux_state *state,
3047 			    u32 index)
3048 {
3049 	struct selinux_policy *policy;
3050 	struct policydb *policydb;
3051 	int rc;
3052 	u32 len;
3053 
3054 	if (!selinux_initialized(state))
3055 		return 0;
3056 
3057 	rcu_read_lock();
3058 	policy = rcu_dereference(state->policy);
3059 	policydb = &policy->policydb;
3060 
3061 	rc = -EFAULT;
3062 	len = policydb->p_bools.nprim;
3063 	if (index >= len)
3064 		goto out;
3065 
3066 	rc = policydb->bool_val_to_struct[index]->state;
3067 out:
3068 	rcu_read_unlock();
3069 	return rc;
3070 }
3071 
3072 static int security_preserve_bools(struct selinux_policy *oldpolicy,
3073 				struct selinux_policy *newpolicy)
3074 {
3075 	int rc, *bvalues = NULL;
3076 	char **bnames = NULL;
3077 	struct cond_bool_datum *booldatum;
3078 	u32 i, nbools = 0;
3079 
3080 	rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3081 	if (rc)
3082 		goto out;
3083 	for (i = 0; i < nbools; i++) {
3084 		booldatum = symtab_search(&newpolicy->policydb.p_bools,
3085 					bnames[i]);
3086 		if (booldatum)
3087 			booldatum->state = bvalues[i];
3088 	}
3089 	evaluate_cond_nodes(&newpolicy->policydb);
3090 
3091 out:
3092 	if (bnames) {
3093 		for (i = 0; i < nbools; i++)
3094 			kfree(bnames[i]);
3095 	}
3096 	kfree(bnames);
3097 	kfree(bvalues);
3098 	return rc;
3099 }
3100 
3101 /*
3102  * security_sid_mls_copy() - computes a new sid based on the given
3103  * sid and the mls portion of mls_sid.
3104  */
3105 int security_sid_mls_copy(struct selinux_state *state,
3106 			  u32 sid, u32 mls_sid, u32 *new_sid)
3107 {
3108 	struct selinux_policy *policy;
3109 	struct policydb *policydb;
3110 	struct sidtab *sidtab;
3111 	struct context *context1;
3112 	struct context *context2;
3113 	struct context newcon;
3114 	char *s;
3115 	u32 len;
3116 	int rc;
3117 
3118 	rc = 0;
3119 	if (!selinux_initialized(state)) {
3120 		*new_sid = sid;
3121 		goto out;
3122 	}
3123 
3124 	context_init(&newcon);
3125 
3126 	rcu_read_lock();
3127 	policy = rcu_dereference(state->policy);
3128 	policydb = &policy->policydb;
3129 	sidtab = policy->sidtab;
3130 
3131 	if (!policydb->mls_enabled) {
3132 		*new_sid = sid;
3133 		goto out_unlock;
3134 	}
3135 
3136 	rc = -EINVAL;
3137 	context1 = sidtab_search(sidtab, sid);
3138 	if (!context1) {
3139 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3140 			__func__, sid);
3141 		goto out_unlock;
3142 	}
3143 
3144 	rc = -EINVAL;
3145 	context2 = sidtab_search(sidtab, mls_sid);
3146 	if (!context2) {
3147 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3148 			__func__, mls_sid);
3149 		goto out_unlock;
3150 	}
3151 
3152 	newcon.user = context1->user;
3153 	newcon.role = context1->role;
3154 	newcon.type = context1->type;
3155 	rc = mls_context_cpy(&newcon, context2);
3156 	if (rc)
3157 		goto out_unlock;
3158 
3159 	/* Check the validity of the new context. */
3160 	if (!policydb_context_isvalid(policydb, &newcon)) {
3161 		rc = convert_context_handle_invalid_context(state, policydb,
3162 							&newcon);
3163 		if (rc) {
3164 			if (!context_struct_to_string(policydb, &newcon, &s,
3165 						      &len)) {
3166 				struct audit_buffer *ab;
3167 
3168 				ab = audit_log_start(audit_context(),
3169 						     GFP_ATOMIC,
3170 						     AUDIT_SELINUX_ERR);
3171 				audit_log_format(ab,
3172 						 "op=security_sid_mls_copy invalid_context=");
3173 				/* don't record NUL with untrusted strings */
3174 				audit_log_n_untrustedstring(ab, s, len - 1);
3175 				audit_log_end(ab);
3176 				kfree(s);
3177 			}
3178 			goto out_unlock;
3179 		}
3180 	}
3181 	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3182 out_unlock:
3183 	rcu_read_unlock();
3184 	context_destroy(&newcon);
3185 out:
3186 	return rc;
3187 }
3188 
3189 /**
3190  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3191  * @nlbl_sid: NetLabel SID
3192  * @nlbl_type: NetLabel labeling protocol type
3193  * @xfrm_sid: XFRM SID
3194  *
3195  * Description:
3196  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3197  * resolved into a single SID it is returned via @peer_sid and the function
3198  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3199  * returns a negative value.  A table summarizing the behavior is below:
3200  *
3201  *                                 | function return |      @sid
3202  *   ------------------------------+-----------------+-----------------
3203  *   no peer labels                |        0        |    SECSID_NULL
3204  *   single peer label             |        0        |    <peer_label>
3205  *   multiple, consistent labels   |        0        |    <peer_label>
3206  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3207  *
3208  */
3209 int security_net_peersid_resolve(struct selinux_state *state,
3210 				 u32 nlbl_sid, u32 nlbl_type,
3211 				 u32 xfrm_sid,
3212 				 u32 *peer_sid)
3213 {
3214 	struct selinux_policy *policy;
3215 	struct policydb *policydb;
3216 	struct sidtab *sidtab;
3217 	int rc;
3218 	struct context *nlbl_ctx;
3219 	struct context *xfrm_ctx;
3220 
3221 	*peer_sid = SECSID_NULL;
3222 
3223 	/* handle the common (which also happens to be the set of easy) cases
3224 	 * right away, these two if statements catch everything involving a
3225 	 * single or absent peer SID/label */
3226 	if (xfrm_sid == SECSID_NULL) {
3227 		*peer_sid = nlbl_sid;
3228 		return 0;
3229 	}
3230 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3231 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3232 	 * is present */
3233 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3234 		*peer_sid = xfrm_sid;
3235 		return 0;
3236 	}
3237 
3238 	if (!selinux_initialized(state))
3239 		return 0;
3240 
3241 	rcu_read_lock();
3242 	policy = rcu_dereference(state->policy);
3243 	policydb = &policy->policydb;
3244 	sidtab = policy->sidtab;
3245 
3246 	/*
3247 	 * We don't need to check initialized here since the only way both
3248 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3249 	 * security server was initialized and state->initialized was true.
3250 	 */
3251 	if (!policydb->mls_enabled) {
3252 		rc = 0;
3253 		goto out;
3254 	}
3255 
3256 	rc = -EINVAL;
3257 	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3258 	if (!nlbl_ctx) {
3259 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3260 		       __func__, nlbl_sid);
3261 		goto out;
3262 	}
3263 	rc = -EINVAL;
3264 	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3265 	if (!xfrm_ctx) {
3266 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3267 		       __func__, xfrm_sid);
3268 		goto out;
3269 	}
3270 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3271 	if (rc)
3272 		goto out;
3273 
3274 	/* at present NetLabel SIDs/labels really only carry MLS
3275 	 * information so if the MLS portion of the NetLabel SID
3276 	 * matches the MLS portion of the labeled XFRM SID/label
3277 	 * then pass along the XFRM SID as it is the most
3278 	 * expressive */
3279 	*peer_sid = xfrm_sid;
3280 out:
3281 	rcu_read_unlock();
3282 	return rc;
3283 }
3284 
3285 static int get_classes_callback(void *k, void *d, void *args)
3286 {
3287 	struct class_datum *datum = d;
3288 	char *name = k, **classes = args;
3289 	int value = datum->value - 1;
3290 
3291 	classes[value] = kstrdup(name, GFP_ATOMIC);
3292 	if (!classes[value])
3293 		return -ENOMEM;
3294 
3295 	return 0;
3296 }
3297 
3298 int security_get_classes(struct selinux_policy *policy,
3299 			 char ***classes, int *nclasses)
3300 {
3301 	struct policydb *policydb;
3302 	int rc;
3303 
3304 	policydb = &policy->policydb;
3305 
3306 	rc = -ENOMEM;
3307 	*nclasses = policydb->p_classes.nprim;
3308 	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3309 	if (!*classes)
3310 		goto out;
3311 
3312 	rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3313 			 *classes);
3314 	if (rc) {
3315 		int i;
3316 		for (i = 0; i < *nclasses; i++)
3317 			kfree((*classes)[i]);
3318 		kfree(*classes);
3319 	}
3320 
3321 out:
3322 	return rc;
3323 }
3324 
3325 static int get_permissions_callback(void *k, void *d, void *args)
3326 {
3327 	struct perm_datum *datum = d;
3328 	char *name = k, **perms = args;
3329 	int value = datum->value - 1;
3330 
3331 	perms[value] = kstrdup(name, GFP_ATOMIC);
3332 	if (!perms[value])
3333 		return -ENOMEM;
3334 
3335 	return 0;
3336 }
3337 
3338 int security_get_permissions(struct selinux_policy *policy,
3339 			     char *class, char ***perms, int *nperms)
3340 {
3341 	struct policydb *policydb;
3342 	int rc, i;
3343 	struct class_datum *match;
3344 
3345 	policydb = &policy->policydb;
3346 
3347 	rc = -EINVAL;
3348 	match = symtab_search(&policydb->p_classes, class);
3349 	if (!match) {
3350 		pr_err("SELinux: %s:  unrecognized class %s\n",
3351 			__func__, class);
3352 		goto out;
3353 	}
3354 
3355 	rc = -ENOMEM;
3356 	*nperms = match->permissions.nprim;
3357 	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3358 	if (!*perms)
3359 		goto out;
3360 
3361 	if (match->comdatum) {
3362 		rc = hashtab_map(&match->comdatum->permissions.table,
3363 				 get_permissions_callback, *perms);
3364 		if (rc)
3365 			goto err;
3366 	}
3367 
3368 	rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3369 			 *perms);
3370 	if (rc)
3371 		goto err;
3372 
3373 out:
3374 	return rc;
3375 
3376 err:
3377 	for (i = 0; i < *nperms; i++)
3378 		kfree((*perms)[i]);
3379 	kfree(*perms);
3380 	return rc;
3381 }
3382 
3383 int security_get_reject_unknown(struct selinux_state *state)
3384 {
3385 	struct selinux_policy *policy;
3386 	int value;
3387 
3388 	if (!selinux_initialized(state))
3389 		return 0;
3390 
3391 	rcu_read_lock();
3392 	policy = rcu_dereference(state->policy);
3393 	value = policy->policydb.reject_unknown;
3394 	rcu_read_unlock();
3395 	return value;
3396 }
3397 
3398 int security_get_allow_unknown(struct selinux_state *state)
3399 {
3400 	struct selinux_policy *policy;
3401 	int value;
3402 
3403 	if (!selinux_initialized(state))
3404 		return 0;
3405 
3406 	rcu_read_lock();
3407 	policy = rcu_dereference(state->policy);
3408 	value = policy->policydb.allow_unknown;
3409 	rcu_read_unlock();
3410 	return value;
3411 }
3412 
3413 /**
3414  * security_policycap_supported - Check for a specific policy capability
3415  * @req_cap: capability
3416  *
3417  * Description:
3418  * This function queries the currently loaded policy to see if it supports the
3419  * capability specified by @req_cap.  Returns true (1) if the capability is
3420  * supported, false (0) if it isn't supported.
3421  *
3422  */
3423 int security_policycap_supported(struct selinux_state *state,
3424 				 unsigned int req_cap)
3425 {
3426 	struct selinux_policy *policy;
3427 	int rc;
3428 
3429 	if (!selinux_initialized(state))
3430 		return 0;
3431 
3432 	rcu_read_lock();
3433 	policy = rcu_dereference(state->policy);
3434 	rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3435 	rcu_read_unlock();
3436 
3437 	return rc;
3438 }
3439 
3440 struct selinux_audit_rule {
3441 	u32 au_seqno;
3442 	struct context au_ctxt;
3443 };
3444 
3445 void selinux_audit_rule_free(void *vrule)
3446 {
3447 	struct selinux_audit_rule *rule = vrule;
3448 
3449 	if (rule) {
3450 		context_destroy(&rule->au_ctxt);
3451 		kfree(rule);
3452 	}
3453 }
3454 
3455 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3456 {
3457 	struct selinux_state *state = &selinux_state;
3458 	struct selinux_policy *policy;
3459 	struct policydb *policydb;
3460 	struct selinux_audit_rule *tmprule;
3461 	struct role_datum *roledatum;
3462 	struct type_datum *typedatum;
3463 	struct user_datum *userdatum;
3464 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3465 	int rc = 0;
3466 
3467 	*rule = NULL;
3468 
3469 	if (!selinux_initialized(state))
3470 		return -EOPNOTSUPP;
3471 
3472 	switch (field) {
3473 	case AUDIT_SUBJ_USER:
3474 	case AUDIT_SUBJ_ROLE:
3475 	case AUDIT_SUBJ_TYPE:
3476 	case AUDIT_OBJ_USER:
3477 	case AUDIT_OBJ_ROLE:
3478 	case AUDIT_OBJ_TYPE:
3479 		/* only 'equals' and 'not equals' fit user, role, and type */
3480 		if (op != Audit_equal && op != Audit_not_equal)
3481 			return -EINVAL;
3482 		break;
3483 	case AUDIT_SUBJ_SEN:
3484 	case AUDIT_SUBJ_CLR:
3485 	case AUDIT_OBJ_LEV_LOW:
3486 	case AUDIT_OBJ_LEV_HIGH:
3487 		/* we do not allow a range, indicated by the presence of '-' */
3488 		if (strchr(rulestr, '-'))
3489 			return -EINVAL;
3490 		break;
3491 	default:
3492 		/* only the above fields are valid */
3493 		return -EINVAL;
3494 	}
3495 
3496 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3497 	if (!tmprule)
3498 		return -ENOMEM;
3499 
3500 	context_init(&tmprule->au_ctxt);
3501 
3502 	rcu_read_lock();
3503 	policy = rcu_dereference(state->policy);
3504 	policydb = &policy->policydb;
3505 
3506 	tmprule->au_seqno = policy->latest_granting;
3507 
3508 	switch (field) {
3509 	case AUDIT_SUBJ_USER:
3510 	case AUDIT_OBJ_USER:
3511 		rc = -EINVAL;
3512 		userdatum = symtab_search(&policydb->p_users, rulestr);
3513 		if (!userdatum)
3514 			goto out;
3515 		tmprule->au_ctxt.user = userdatum->value;
3516 		break;
3517 	case AUDIT_SUBJ_ROLE:
3518 	case AUDIT_OBJ_ROLE:
3519 		rc = -EINVAL;
3520 		roledatum = symtab_search(&policydb->p_roles, rulestr);
3521 		if (!roledatum)
3522 			goto out;
3523 		tmprule->au_ctxt.role = roledatum->value;
3524 		break;
3525 	case AUDIT_SUBJ_TYPE:
3526 	case AUDIT_OBJ_TYPE:
3527 		rc = -EINVAL;
3528 		typedatum = symtab_search(&policydb->p_types, rulestr);
3529 		if (!typedatum)
3530 			goto out;
3531 		tmprule->au_ctxt.type = typedatum->value;
3532 		break;
3533 	case AUDIT_SUBJ_SEN:
3534 	case AUDIT_SUBJ_CLR:
3535 	case AUDIT_OBJ_LEV_LOW:
3536 	case AUDIT_OBJ_LEV_HIGH:
3537 		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3538 				     GFP_ATOMIC);
3539 		if (rc)
3540 			goto out;
3541 		break;
3542 	}
3543 	rc = 0;
3544 out:
3545 	rcu_read_unlock();
3546 
3547 	if (rc) {
3548 		selinux_audit_rule_free(tmprule);
3549 		tmprule = NULL;
3550 	}
3551 
3552 	*rule = tmprule;
3553 
3554 	return rc;
3555 }
3556 
3557 /* Check to see if the rule contains any selinux fields */
3558 int selinux_audit_rule_known(struct audit_krule *rule)
3559 {
3560 	int i;
3561 
3562 	for (i = 0; i < rule->field_count; i++) {
3563 		struct audit_field *f = &rule->fields[i];
3564 		switch (f->type) {
3565 		case AUDIT_SUBJ_USER:
3566 		case AUDIT_SUBJ_ROLE:
3567 		case AUDIT_SUBJ_TYPE:
3568 		case AUDIT_SUBJ_SEN:
3569 		case AUDIT_SUBJ_CLR:
3570 		case AUDIT_OBJ_USER:
3571 		case AUDIT_OBJ_ROLE:
3572 		case AUDIT_OBJ_TYPE:
3573 		case AUDIT_OBJ_LEV_LOW:
3574 		case AUDIT_OBJ_LEV_HIGH:
3575 			return 1;
3576 		}
3577 	}
3578 
3579 	return 0;
3580 }
3581 
3582 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3583 {
3584 	struct selinux_state *state = &selinux_state;
3585 	struct selinux_policy *policy;
3586 	struct context *ctxt;
3587 	struct mls_level *level;
3588 	struct selinux_audit_rule *rule = vrule;
3589 	int match = 0;
3590 
3591 	if (unlikely(!rule)) {
3592 		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3593 		return -ENOENT;
3594 	}
3595 
3596 	if (!selinux_initialized(state))
3597 		return 0;
3598 
3599 	rcu_read_lock();
3600 
3601 	policy = rcu_dereference(state->policy);
3602 
3603 	if (rule->au_seqno < policy->latest_granting) {
3604 		match = -ESTALE;
3605 		goto out;
3606 	}
3607 
3608 	ctxt = sidtab_search(policy->sidtab, sid);
3609 	if (unlikely(!ctxt)) {
3610 		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3611 			  sid);
3612 		match = -ENOENT;
3613 		goto out;
3614 	}
3615 
3616 	/* a field/op pair that is not caught here will simply fall through
3617 	   without a match */
3618 	switch (field) {
3619 	case AUDIT_SUBJ_USER:
3620 	case AUDIT_OBJ_USER:
3621 		switch (op) {
3622 		case Audit_equal:
3623 			match = (ctxt->user == rule->au_ctxt.user);
3624 			break;
3625 		case Audit_not_equal:
3626 			match = (ctxt->user != rule->au_ctxt.user);
3627 			break;
3628 		}
3629 		break;
3630 	case AUDIT_SUBJ_ROLE:
3631 	case AUDIT_OBJ_ROLE:
3632 		switch (op) {
3633 		case Audit_equal:
3634 			match = (ctxt->role == rule->au_ctxt.role);
3635 			break;
3636 		case Audit_not_equal:
3637 			match = (ctxt->role != rule->au_ctxt.role);
3638 			break;
3639 		}
3640 		break;
3641 	case AUDIT_SUBJ_TYPE:
3642 	case AUDIT_OBJ_TYPE:
3643 		switch (op) {
3644 		case Audit_equal:
3645 			match = (ctxt->type == rule->au_ctxt.type);
3646 			break;
3647 		case Audit_not_equal:
3648 			match = (ctxt->type != rule->au_ctxt.type);
3649 			break;
3650 		}
3651 		break;
3652 	case AUDIT_SUBJ_SEN:
3653 	case AUDIT_SUBJ_CLR:
3654 	case AUDIT_OBJ_LEV_LOW:
3655 	case AUDIT_OBJ_LEV_HIGH:
3656 		level = ((field == AUDIT_SUBJ_SEN ||
3657 			  field == AUDIT_OBJ_LEV_LOW) ?
3658 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3659 		switch (op) {
3660 		case Audit_equal:
3661 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3662 					     level);
3663 			break;
3664 		case Audit_not_equal:
3665 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3666 					      level);
3667 			break;
3668 		case Audit_lt:
3669 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3670 					       level) &&
3671 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3672 					       level));
3673 			break;
3674 		case Audit_le:
3675 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3676 					      level);
3677 			break;
3678 		case Audit_gt:
3679 			match = (mls_level_dom(level,
3680 					      &rule->au_ctxt.range.level[0]) &&
3681 				 !mls_level_eq(level,
3682 					       &rule->au_ctxt.range.level[0]));
3683 			break;
3684 		case Audit_ge:
3685 			match = mls_level_dom(level,
3686 					      &rule->au_ctxt.range.level[0]);
3687 			break;
3688 		}
3689 	}
3690 
3691 out:
3692 	rcu_read_unlock();
3693 	return match;
3694 }
3695 
3696 static int (*aurule_callback)(void) = audit_update_lsm_rules;
3697 
3698 static int aurule_avc_callback(u32 event)
3699 {
3700 	int err = 0;
3701 
3702 	if (event == AVC_CALLBACK_RESET && aurule_callback)
3703 		err = aurule_callback();
3704 	return err;
3705 }
3706 
3707 static int __init aurule_init(void)
3708 {
3709 	int err;
3710 
3711 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3712 	if (err)
3713 		panic("avc_add_callback() failed, error %d\n", err);
3714 
3715 	return err;
3716 }
3717 __initcall(aurule_init);
3718 
3719 #ifdef CONFIG_NETLABEL
3720 /**
3721  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3722  * @secattr: the NetLabel packet security attributes
3723  * @sid: the SELinux SID
3724  *
3725  * Description:
3726  * Attempt to cache the context in @ctx, which was derived from the packet in
3727  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3728  * already been initialized.
3729  *
3730  */
3731 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3732 				      u32 sid)
3733 {
3734 	u32 *sid_cache;
3735 
3736 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3737 	if (sid_cache == NULL)
3738 		return;
3739 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3740 	if (secattr->cache == NULL) {
3741 		kfree(sid_cache);
3742 		return;
3743 	}
3744 
3745 	*sid_cache = sid;
3746 	secattr->cache->free = kfree;
3747 	secattr->cache->data = sid_cache;
3748 	secattr->flags |= NETLBL_SECATTR_CACHE;
3749 }
3750 
3751 /**
3752  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3753  * @secattr: the NetLabel packet security attributes
3754  * @sid: the SELinux SID
3755  *
3756  * Description:
3757  * Convert the given NetLabel security attributes in @secattr into a
3758  * SELinux SID.  If the @secattr field does not contain a full SELinux
3759  * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3760  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3761  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3762  * conversion for future lookups.  Returns zero on success, negative values on
3763  * failure.
3764  *
3765  */
3766 int security_netlbl_secattr_to_sid(struct selinux_state *state,
3767 				   struct netlbl_lsm_secattr *secattr,
3768 				   u32 *sid)
3769 {
3770 	struct selinux_policy *policy;
3771 	struct policydb *policydb;
3772 	struct sidtab *sidtab;
3773 	int rc;
3774 	struct context *ctx;
3775 	struct context ctx_new;
3776 
3777 	if (!selinux_initialized(state)) {
3778 		*sid = SECSID_NULL;
3779 		return 0;
3780 	}
3781 
3782 	rcu_read_lock();
3783 	policy = rcu_dereference(state->policy);
3784 	policydb = &policy->policydb;
3785 	sidtab = policy->sidtab;
3786 
3787 	if (secattr->flags & NETLBL_SECATTR_CACHE)
3788 		*sid = *(u32 *)secattr->cache->data;
3789 	else if (secattr->flags & NETLBL_SECATTR_SECID)
3790 		*sid = secattr->attr.secid;
3791 	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3792 		rc = -EIDRM;
3793 		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3794 		if (ctx == NULL)
3795 			goto out;
3796 
3797 		context_init(&ctx_new);
3798 		ctx_new.user = ctx->user;
3799 		ctx_new.role = ctx->role;
3800 		ctx_new.type = ctx->type;
3801 		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3802 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3803 			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3804 			if (rc)
3805 				goto out;
3806 		}
3807 		rc = -EIDRM;
3808 		if (!mls_context_isvalid(policydb, &ctx_new))
3809 			goto out_free;
3810 
3811 		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3812 		if (rc)
3813 			goto out_free;
3814 
3815 		security_netlbl_cache_add(secattr, *sid);
3816 
3817 		ebitmap_destroy(&ctx_new.range.level[0].cat);
3818 	} else
3819 		*sid = SECSID_NULL;
3820 
3821 	rcu_read_unlock();
3822 	return 0;
3823 out_free:
3824 	ebitmap_destroy(&ctx_new.range.level[0].cat);
3825 out:
3826 	rcu_read_unlock();
3827 	return rc;
3828 }
3829 
3830 /**
3831  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3832  * @sid: the SELinux SID
3833  * @secattr: the NetLabel packet security attributes
3834  *
3835  * Description:
3836  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3837  * Returns zero on success, negative values on failure.
3838  *
3839  */
3840 int security_netlbl_sid_to_secattr(struct selinux_state *state,
3841 				   u32 sid, struct netlbl_lsm_secattr *secattr)
3842 {
3843 	struct selinux_policy *policy;
3844 	struct policydb *policydb;
3845 	int rc;
3846 	struct context *ctx;
3847 
3848 	if (!selinux_initialized(state))
3849 		return 0;
3850 
3851 	rcu_read_lock();
3852 	policy = rcu_dereference(state->policy);
3853 	policydb = &policy->policydb;
3854 
3855 	rc = -ENOENT;
3856 	ctx = sidtab_search(policy->sidtab, sid);
3857 	if (ctx == NULL)
3858 		goto out;
3859 
3860 	rc = -ENOMEM;
3861 	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3862 				  GFP_ATOMIC);
3863 	if (secattr->domain == NULL)
3864 		goto out;
3865 
3866 	secattr->attr.secid = sid;
3867 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3868 	mls_export_netlbl_lvl(policydb, ctx, secattr);
3869 	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3870 out:
3871 	rcu_read_unlock();
3872 	return rc;
3873 }
3874 #endif /* CONFIG_NETLABEL */
3875 
3876 /**
3877  * security_read_policy - read the policy.
3878  * @data: binary policy data
3879  * @len: length of data in bytes
3880  *
3881  */
3882 int security_read_policy(struct selinux_state *state,
3883 			 void **data, size_t *len)
3884 {
3885 	struct selinux_policy *policy;
3886 	int rc;
3887 	struct policy_file fp;
3888 
3889 	policy = rcu_dereference_protected(
3890 			state->policy, lockdep_is_held(&state->policy_mutex));
3891 	if (!policy)
3892 		return -EINVAL;
3893 
3894 	*len = policy->policydb.len;
3895 	*data = vmalloc_user(*len);
3896 	if (!*data)
3897 		return -ENOMEM;
3898 
3899 	fp.data = *data;
3900 	fp.len = *len;
3901 
3902 	rc = policydb_write(&policy->policydb, &fp);
3903 	if (rc)
3904 		return rc;
3905 
3906 	*len = (unsigned long)fp.data - (unsigned long)*data;
3907 	return 0;
3908 
3909 }
3910