xref: /openbmc/linux/security/selinux/ss/services.c (revision 81d67439)
1 /*
2  * Implementation of the security services.
3  *
4  * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5  *	     James Morris <jmorris@redhat.com>
6  *
7  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8  *
9  *	Support for enhanced MLS infrastructure.
10  *	Support for context based audit filters.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *	Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul.moore@hp.com>
17  *
18  *      Added support for NetLabel
19  *      Added support for the policy capability bitmap
20  *
21  * Updated: Chad Sellers <csellers@tresys.com>
22  *
23  *  Added validation of kernel classes and permissions
24  *
25  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
26  *
27  *  Added support for bounds domain and audit messaged on masked permissions
28  *
29  * Updated: Guido Trentalancia <guido@trentalancia.com>
30  *
31  *  Added support for runtime switching of the policy type
32  *
33  * Copyright (C) 2008, 2009 NEC Corporation
34  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38  *	This program is free software; you can redistribute it and/or modify
39  *	it under the terms of the GNU General Public License as published by
40  *	the Free Software Foundation, version 2.
41  */
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/errno.h>
48 #include <linux/in.h>
49 #include <linux/sched.h>
50 #include <linux/audit.h>
51 #include <linux/mutex.h>
52 #include <linux/selinux.h>
53 #include <linux/flex_array.h>
54 #include <linux/vmalloc.h>
55 #include <net/netlabel.h>
56 
57 #include "flask.h"
58 #include "avc.h"
59 #include "avc_ss.h"
60 #include "security.h"
61 #include "context.h"
62 #include "policydb.h"
63 #include "sidtab.h"
64 #include "services.h"
65 #include "conditional.h"
66 #include "mls.h"
67 #include "objsec.h"
68 #include "netlabel.h"
69 #include "xfrm.h"
70 #include "ebitmap.h"
71 #include "audit.h"
72 
73 extern void selnl_notify_policyload(u32 seqno);
74 
75 int selinux_policycap_netpeer;
76 int selinux_policycap_openperm;
77 
78 static DEFINE_RWLOCK(policy_rwlock);
79 
80 static struct sidtab sidtab;
81 struct policydb policydb;
82 int ss_initialized;
83 
84 /*
85  * The largest sequence number that has been used when
86  * providing an access decision to the access vector cache.
87  * The sequence number only changes when a policy change
88  * occurs.
89  */
90 static u32 latest_granting;
91 
92 /* Forward declaration. */
93 static int context_struct_to_string(struct context *context, char **scontext,
94 				    u32 *scontext_len);
95 
96 static void context_struct_compute_av(struct context *scontext,
97 				      struct context *tcontext,
98 				      u16 tclass,
99 				      struct av_decision *avd);
100 
101 struct selinux_mapping {
102 	u16 value; /* policy value */
103 	unsigned num_perms;
104 	u32 perms[sizeof(u32) * 8];
105 };
106 
107 static struct selinux_mapping *current_mapping;
108 static u16 current_mapping_size;
109 
110 static int selinux_set_mapping(struct policydb *pol,
111 			       struct security_class_mapping *map,
112 			       struct selinux_mapping **out_map_p,
113 			       u16 *out_map_size)
114 {
115 	struct selinux_mapping *out_map = NULL;
116 	size_t size = sizeof(struct selinux_mapping);
117 	u16 i, j;
118 	unsigned k;
119 	bool print_unknown_handle = false;
120 
121 	/* Find number of classes in the input mapping */
122 	if (!map)
123 		return -EINVAL;
124 	i = 0;
125 	while (map[i].name)
126 		i++;
127 
128 	/* Allocate space for the class records, plus one for class zero */
129 	out_map = kcalloc(++i, size, GFP_ATOMIC);
130 	if (!out_map)
131 		return -ENOMEM;
132 
133 	/* Store the raw class and permission values */
134 	j = 0;
135 	while (map[j].name) {
136 		struct security_class_mapping *p_in = map + (j++);
137 		struct selinux_mapping *p_out = out_map + j;
138 
139 		/* An empty class string skips ahead */
140 		if (!strcmp(p_in->name, "")) {
141 			p_out->num_perms = 0;
142 			continue;
143 		}
144 
145 		p_out->value = string_to_security_class(pol, p_in->name);
146 		if (!p_out->value) {
147 			printk(KERN_INFO
148 			       "SELinux:  Class %s not defined in policy.\n",
149 			       p_in->name);
150 			if (pol->reject_unknown)
151 				goto err;
152 			p_out->num_perms = 0;
153 			print_unknown_handle = true;
154 			continue;
155 		}
156 
157 		k = 0;
158 		while (p_in->perms && p_in->perms[k]) {
159 			/* An empty permission string skips ahead */
160 			if (!*p_in->perms[k]) {
161 				k++;
162 				continue;
163 			}
164 			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
165 							    p_in->perms[k]);
166 			if (!p_out->perms[k]) {
167 				printk(KERN_INFO
168 				       "SELinux:  Permission %s in class %s not defined in policy.\n",
169 				       p_in->perms[k], p_in->name);
170 				if (pol->reject_unknown)
171 					goto err;
172 				print_unknown_handle = true;
173 			}
174 
175 			k++;
176 		}
177 		p_out->num_perms = k;
178 	}
179 
180 	if (print_unknown_handle)
181 		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
182 		       pol->allow_unknown ? "allowed" : "denied");
183 
184 	*out_map_p = out_map;
185 	*out_map_size = i;
186 	return 0;
187 err:
188 	kfree(out_map);
189 	return -EINVAL;
190 }
191 
192 /*
193  * Get real, policy values from mapped values
194  */
195 
196 static u16 unmap_class(u16 tclass)
197 {
198 	if (tclass < current_mapping_size)
199 		return current_mapping[tclass].value;
200 
201 	return tclass;
202 }
203 
204 /*
205  * Get kernel value for class from its policy value
206  */
207 static u16 map_class(u16 pol_value)
208 {
209 	u16 i;
210 
211 	for (i = 1; i < current_mapping_size; i++) {
212 		if (current_mapping[i].value == pol_value)
213 			return i;
214 	}
215 
216 	return SECCLASS_NULL;
217 }
218 
219 static void map_decision(u16 tclass, struct av_decision *avd,
220 			 int allow_unknown)
221 {
222 	if (tclass < current_mapping_size) {
223 		unsigned i, n = current_mapping[tclass].num_perms;
224 		u32 result;
225 
226 		for (i = 0, result = 0; i < n; i++) {
227 			if (avd->allowed & current_mapping[tclass].perms[i])
228 				result |= 1<<i;
229 			if (allow_unknown && !current_mapping[tclass].perms[i])
230 				result |= 1<<i;
231 		}
232 		avd->allowed = result;
233 
234 		for (i = 0, result = 0; i < n; i++)
235 			if (avd->auditallow & current_mapping[tclass].perms[i])
236 				result |= 1<<i;
237 		avd->auditallow = result;
238 
239 		for (i = 0, result = 0; i < n; i++) {
240 			if (avd->auditdeny & current_mapping[tclass].perms[i])
241 				result |= 1<<i;
242 			if (!allow_unknown && !current_mapping[tclass].perms[i])
243 				result |= 1<<i;
244 		}
245 		/*
246 		 * In case the kernel has a bug and requests a permission
247 		 * between num_perms and the maximum permission number, we
248 		 * should audit that denial
249 		 */
250 		for (; i < (sizeof(u32)*8); i++)
251 			result |= 1<<i;
252 		avd->auditdeny = result;
253 	}
254 }
255 
256 int security_mls_enabled(void)
257 {
258 	return policydb.mls_enabled;
259 }
260 
261 /*
262  * Return the boolean value of a constraint expression
263  * when it is applied to the specified source and target
264  * security contexts.
265  *
266  * xcontext is a special beast...  It is used by the validatetrans rules
267  * only.  For these rules, scontext is the context before the transition,
268  * tcontext is the context after the transition, and xcontext is the context
269  * of the process performing the transition.  All other callers of
270  * constraint_expr_eval should pass in NULL for xcontext.
271  */
272 static int constraint_expr_eval(struct context *scontext,
273 				struct context *tcontext,
274 				struct context *xcontext,
275 				struct constraint_expr *cexpr)
276 {
277 	u32 val1, val2;
278 	struct context *c;
279 	struct role_datum *r1, *r2;
280 	struct mls_level *l1, *l2;
281 	struct constraint_expr *e;
282 	int s[CEXPR_MAXDEPTH];
283 	int sp = -1;
284 
285 	for (e = cexpr; e; e = e->next) {
286 		switch (e->expr_type) {
287 		case CEXPR_NOT:
288 			BUG_ON(sp < 0);
289 			s[sp] = !s[sp];
290 			break;
291 		case CEXPR_AND:
292 			BUG_ON(sp < 1);
293 			sp--;
294 			s[sp] &= s[sp + 1];
295 			break;
296 		case CEXPR_OR:
297 			BUG_ON(sp < 1);
298 			sp--;
299 			s[sp] |= s[sp + 1];
300 			break;
301 		case CEXPR_ATTR:
302 			if (sp == (CEXPR_MAXDEPTH - 1))
303 				return 0;
304 			switch (e->attr) {
305 			case CEXPR_USER:
306 				val1 = scontext->user;
307 				val2 = tcontext->user;
308 				break;
309 			case CEXPR_TYPE:
310 				val1 = scontext->type;
311 				val2 = tcontext->type;
312 				break;
313 			case CEXPR_ROLE:
314 				val1 = scontext->role;
315 				val2 = tcontext->role;
316 				r1 = policydb.role_val_to_struct[val1 - 1];
317 				r2 = policydb.role_val_to_struct[val2 - 1];
318 				switch (e->op) {
319 				case CEXPR_DOM:
320 					s[++sp] = ebitmap_get_bit(&r1->dominates,
321 								  val2 - 1);
322 					continue;
323 				case CEXPR_DOMBY:
324 					s[++sp] = ebitmap_get_bit(&r2->dominates,
325 								  val1 - 1);
326 					continue;
327 				case CEXPR_INCOMP:
328 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
329 								    val2 - 1) &&
330 						   !ebitmap_get_bit(&r2->dominates,
331 								    val1 - 1));
332 					continue;
333 				default:
334 					break;
335 				}
336 				break;
337 			case CEXPR_L1L2:
338 				l1 = &(scontext->range.level[0]);
339 				l2 = &(tcontext->range.level[0]);
340 				goto mls_ops;
341 			case CEXPR_L1H2:
342 				l1 = &(scontext->range.level[0]);
343 				l2 = &(tcontext->range.level[1]);
344 				goto mls_ops;
345 			case CEXPR_H1L2:
346 				l1 = &(scontext->range.level[1]);
347 				l2 = &(tcontext->range.level[0]);
348 				goto mls_ops;
349 			case CEXPR_H1H2:
350 				l1 = &(scontext->range.level[1]);
351 				l2 = &(tcontext->range.level[1]);
352 				goto mls_ops;
353 			case CEXPR_L1H1:
354 				l1 = &(scontext->range.level[0]);
355 				l2 = &(scontext->range.level[1]);
356 				goto mls_ops;
357 			case CEXPR_L2H2:
358 				l1 = &(tcontext->range.level[0]);
359 				l2 = &(tcontext->range.level[1]);
360 				goto mls_ops;
361 mls_ops:
362 			switch (e->op) {
363 			case CEXPR_EQ:
364 				s[++sp] = mls_level_eq(l1, l2);
365 				continue;
366 			case CEXPR_NEQ:
367 				s[++sp] = !mls_level_eq(l1, l2);
368 				continue;
369 			case CEXPR_DOM:
370 				s[++sp] = mls_level_dom(l1, l2);
371 				continue;
372 			case CEXPR_DOMBY:
373 				s[++sp] = mls_level_dom(l2, l1);
374 				continue;
375 			case CEXPR_INCOMP:
376 				s[++sp] = mls_level_incomp(l2, l1);
377 				continue;
378 			default:
379 				BUG();
380 				return 0;
381 			}
382 			break;
383 			default:
384 				BUG();
385 				return 0;
386 			}
387 
388 			switch (e->op) {
389 			case CEXPR_EQ:
390 				s[++sp] = (val1 == val2);
391 				break;
392 			case CEXPR_NEQ:
393 				s[++sp] = (val1 != val2);
394 				break;
395 			default:
396 				BUG();
397 				return 0;
398 			}
399 			break;
400 		case CEXPR_NAMES:
401 			if (sp == (CEXPR_MAXDEPTH-1))
402 				return 0;
403 			c = scontext;
404 			if (e->attr & CEXPR_TARGET)
405 				c = tcontext;
406 			else if (e->attr & CEXPR_XTARGET) {
407 				c = xcontext;
408 				if (!c) {
409 					BUG();
410 					return 0;
411 				}
412 			}
413 			if (e->attr & CEXPR_USER)
414 				val1 = c->user;
415 			else if (e->attr & CEXPR_ROLE)
416 				val1 = c->role;
417 			else if (e->attr & CEXPR_TYPE)
418 				val1 = c->type;
419 			else {
420 				BUG();
421 				return 0;
422 			}
423 
424 			switch (e->op) {
425 			case CEXPR_EQ:
426 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
427 				break;
428 			case CEXPR_NEQ:
429 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
430 				break;
431 			default:
432 				BUG();
433 				return 0;
434 			}
435 			break;
436 		default:
437 			BUG();
438 			return 0;
439 		}
440 	}
441 
442 	BUG_ON(sp != 0);
443 	return s[0];
444 }
445 
446 /*
447  * security_dump_masked_av - dumps masked permissions during
448  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
449  */
450 static int dump_masked_av_helper(void *k, void *d, void *args)
451 {
452 	struct perm_datum *pdatum = d;
453 	char **permission_names = args;
454 
455 	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
456 
457 	permission_names[pdatum->value - 1] = (char *)k;
458 
459 	return 0;
460 }
461 
462 static void security_dump_masked_av(struct context *scontext,
463 				    struct context *tcontext,
464 				    u16 tclass,
465 				    u32 permissions,
466 				    const char *reason)
467 {
468 	struct common_datum *common_dat;
469 	struct class_datum *tclass_dat;
470 	struct audit_buffer *ab;
471 	char *tclass_name;
472 	char *scontext_name = NULL;
473 	char *tcontext_name = NULL;
474 	char *permission_names[32];
475 	int index;
476 	u32 length;
477 	bool need_comma = false;
478 
479 	if (!permissions)
480 		return;
481 
482 	tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
483 	tclass_dat = policydb.class_val_to_struct[tclass - 1];
484 	common_dat = tclass_dat->comdatum;
485 
486 	/* init permission_names */
487 	if (common_dat &&
488 	    hashtab_map(common_dat->permissions.table,
489 			dump_masked_av_helper, permission_names) < 0)
490 		goto out;
491 
492 	if (hashtab_map(tclass_dat->permissions.table,
493 			dump_masked_av_helper, permission_names) < 0)
494 		goto out;
495 
496 	/* get scontext/tcontext in text form */
497 	if (context_struct_to_string(scontext,
498 				     &scontext_name, &length) < 0)
499 		goto out;
500 
501 	if (context_struct_to_string(tcontext,
502 				     &tcontext_name, &length) < 0)
503 		goto out;
504 
505 	/* audit a message */
506 	ab = audit_log_start(current->audit_context,
507 			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
508 	if (!ab)
509 		goto out;
510 
511 	audit_log_format(ab, "op=security_compute_av reason=%s "
512 			 "scontext=%s tcontext=%s tclass=%s perms=",
513 			 reason, scontext_name, tcontext_name, tclass_name);
514 
515 	for (index = 0; index < 32; index++) {
516 		u32 mask = (1 << index);
517 
518 		if ((mask & permissions) == 0)
519 			continue;
520 
521 		audit_log_format(ab, "%s%s",
522 				 need_comma ? "," : "",
523 				 permission_names[index]
524 				 ? permission_names[index] : "????");
525 		need_comma = true;
526 	}
527 	audit_log_end(ab);
528 out:
529 	/* release scontext/tcontext */
530 	kfree(tcontext_name);
531 	kfree(scontext_name);
532 
533 	return;
534 }
535 
536 /*
537  * security_boundary_permission - drops violated permissions
538  * on boundary constraint.
539  */
540 static void type_attribute_bounds_av(struct context *scontext,
541 				     struct context *tcontext,
542 				     u16 tclass,
543 				     struct av_decision *avd)
544 {
545 	struct context lo_scontext;
546 	struct context lo_tcontext;
547 	struct av_decision lo_avd;
548 	struct type_datum *source;
549 	struct type_datum *target;
550 	u32 masked = 0;
551 
552 	source = flex_array_get_ptr(policydb.type_val_to_struct_array,
553 				    scontext->type - 1);
554 	BUG_ON(!source);
555 
556 	target = flex_array_get_ptr(policydb.type_val_to_struct_array,
557 				    tcontext->type - 1);
558 	BUG_ON(!target);
559 
560 	if (source->bounds) {
561 		memset(&lo_avd, 0, sizeof(lo_avd));
562 
563 		memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
564 		lo_scontext.type = source->bounds;
565 
566 		context_struct_compute_av(&lo_scontext,
567 					  tcontext,
568 					  tclass,
569 					  &lo_avd);
570 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
571 			return;		/* no masked permission */
572 		masked = ~lo_avd.allowed & avd->allowed;
573 	}
574 
575 	if (target->bounds) {
576 		memset(&lo_avd, 0, sizeof(lo_avd));
577 
578 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
579 		lo_tcontext.type = target->bounds;
580 
581 		context_struct_compute_av(scontext,
582 					  &lo_tcontext,
583 					  tclass,
584 					  &lo_avd);
585 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
586 			return;		/* no masked permission */
587 		masked = ~lo_avd.allowed & avd->allowed;
588 	}
589 
590 	if (source->bounds && target->bounds) {
591 		memset(&lo_avd, 0, sizeof(lo_avd));
592 		/*
593 		 * lo_scontext and lo_tcontext are already
594 		 * set up.
595 		 */
596 
597 		context_struct_compute_av(&lo_scontext,
598 					  &lo_tcontext,
599 					  tclass,
600 					  &lo_avd);
601 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
602 			return;		/* no masked permission */
603 		masked = ~lo_avd.allowed & avd->allowed;
604 	}
605 
606 	if (masked) {
607 		/* mask violated permissions */
608 		avd->allowed &= ~masked;
609 
610 		/* audit masked permissions */
611 		security_dump_masked_av(scontext, tcontext,
612 					tclass, masked, "bounds");
613 	}
614 }
615 
616 /*
617  * Compute access vectors based on a context structure pair for
618  * the permissions in a particular class.
619  */
620 static void context_struct_compute_av(struct context *scontext,
621 				      struct context *tcontext,
622 				      u16 tclass,
623 				      struct av_decision *avd)
624 {
625 	struct constraint_node *constraint;
626 	struct role_allow *ra;
627 	struct avtab_key avkey;
628 	struct avtab_node *node;
629 	struct class_datum *tclass_datum;
630 	struct ebitmap *sattr, *tattr;
631 	struct ebitmap_node *snode, *tnode;
632 	unsigned int i, j;
633 
634 	avd->allowed = 0;
635 	avd->auditallow = 0;
636 	avd->auditdeny = 0xffffffff;
637 
638 	if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
639 		if (printk_ratelimit())
640 			printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
641 		return;
642 	}
643 
644 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
645 
646 	/*
647 	 * If a specific type enforcement rule was defined for
648 	 * this permission check, then use it.
649 	 */
650 	avkey.target_class = tclass;
651 	avkey.specified = AVTAB_AV;
652 	sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
653 	BUG_ON(!sattr);
654 	tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
655 	BUG_ON(!tattr);
656 	ebitmap_for_each_positive_bit(sattr, snode, i) {
657 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
658 			avkey.source_type = i + 1;
659 			avkey.target_type = j + 1;
660 			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
661 			     node;
662 			     node = avtab_search_node_next(node, avkey.specified)) {
663 				if (node->key.specified == AVTAB_ALLOWED)
664 					avd->allowed |= node->datum.data;
665 				else if (node->key.specified == AVTAB_AUDITALLOW)
666 					avd->auditallow |= node->datum.data;
667 				else if (node->key.specified == AVTAB_AUDITDENY)
668 					avd->auditdeny &= node->datum.data;
669 			}
670 
671 			/* Check conditional av table for additional permissions */
672 			cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
673 
674 		}
675 	}
676 
677 	/*
678 	 * Remove any permissions prohibited by a constraint (this includes
679 	 * the MLS policy).
680 	 */
681 	constraint = tclass_datum->constraints;
682 	while (constraint) {
683 		if ((constraint->permissions & (avd->allowed)) &&
684 		    !constraint_expr_eval(scontext, tcontext, NULL,
685 					  constraint->expr)) {
686 			avd->allowed &= ~(constraint->permissions);
687 		}
688 		constraint = constraint->next;
689 	}
690 
691 	/*
692 	 * If checking process transition permission and the
693 	 * role is changing, then check the (current_role, new_role)
694 	 * pair.
695 	 */
696 	if (tclass == policydb.process_class &&
697 	    (avd->allowed & policydb.process_trans_perms) &&
698 	    scontext->role != tcontext->role) {
699 		for (ra = policydb.role_allow; ra; ra = ra->next) {
700 			if (scontext->role == ra->role &&
701 			    tcontext->role == ra->new_role)
702 				break;
703 		}
704 		if (!ra)
705 			avd->allowed &= ~policydb.process_trans_perms;
706 	}
707 
708 	/*
709 	 * If the given source and target types have boundary
710 	 * constraint, lazy checks have to mask any violated
711 	 * permission and notice it to userspace via audit.
712 	 */
713 	type_attribute_bounds_av(scontext, tcontext,
714 				 tclass, avd);
715 }
716 
717 static int security_validtrans_handle_fail(struct context *ocontext,
718 					   struct context *ncontext,
719 					   struct context *tcontext,
720 					   u16 tclass)
721 {
722 	char *o = NULL, *n = NULL, *t = NULL;
723 	u32 olen, nlen, tlen;
724 
725 	if (context_struct_to_string(ocontext, &o, &olen))
726 		goto out;
727 	if (context_struct_to_string(ncontext, &n, &nlen))
728 		goto out;
729 	if (context_struct_to_string(tcontext, &t, &tlen))
730 		goto out;
731 	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
732 		  "security_validate_transition:  denied for"
733 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
734 		  o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
735 out:
736 	kfree(o);
737 	kfree(n);
738 	kfree(t);
739 
740 	if (!selinux_enforcing)
741 		return 0;
742 	return -EPERM;
743 }
744 
745 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
746 				 u16 orig_tclass)
747 {
748 	struct context *ocontext;
749 	struct context *ncontext;
750 	struct context *tcontext;
751 	struct class_datum *tclass_datum;
752 	struct constraint_node *constraint;
753 	u16 tclass;
754 	int rc = 0;
755 
756 	if (!ss_initialized)
757 		return 0;
758 
759 	read_lock(&policy_rwlock);
760 
761 	tclass = unmap_class(orig_tclass);
762 
763 	if (!tclass || tclass > policydb.p_classes.nprim) {
764 		printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
765 			__func__, tclass);
766 		rc = -EINVAL;
767 		goto out;
768 	}
769 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
770 
771 	ocontext = sidtab_search(&sidtab, oldsid);
772 	if (!ocontext) {
773 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
774 			__func__, oldsid);
775 		rc = -EINVAL;
776 		goto out;
777 	}
778 
779 	ncontext = sidtab_search(&sidtab, newsid);
780 	if (!ncontext) {
781 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
782 			__func__, newsid);
783 		rc = -EINVAL;
784 		goto out;
785 	}
786 
787 	tcontext = sidtab_search(&sidtab, tasksid);
788 	if (!tcontext) {
789 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
790 			__func__, tasksid);
791 		rc = -EINVAL;
792 		goto out;
793 	}
794 
795 	constraint = tclass_datum->validatetrans;
796 	while (constraint) {
797 		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
798 					  constraint->expr)) {
799 			rc = security_validtrans_handle_fail(ocontext, ncontext,
800 							     tcontext, tclass);
801 			goto out;
802 		}
803 		constraint = constraint->next;
804 	}
805 
806 out:
807 	read_unlock(&policy_rwlock);
808 	return rc;
809 }
810 
811 /*
812  * security_bounded_transition - check whether the given
813  * transition is directed to bounded, or not.
814  * It returns 0, if @newsid is bounded by @oldsid.
815  * Otherwise, it returns error code.
816  *
817  * @oldsid : current security identifier
818  * @newsid : destinated security identifier
819  */
820 int security_bounded_transition(u32 old_sid, u32 new_sid)
821 {
822 	struct context *old_context, *new_context;
823 	struct type_datum *type;
824 	int index;
825 	int rc;
826 
827 	read_lock(&policy_rwlock);
828 
829 	rc = -EINVAL;
830 	old_context = sidtab_search(&sidtab, old_sid);
831 	if (!old_context) {
832 		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
833 		       __func__, old_sid);
834 		goto out;
835 	}
836 
837 	rc = -EINVAL;
838 	new_context = sidtab_search(&sidtab, new_sid);
839 	if (!new_context) {
840 		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
841 		       __func__, new_sid);
842 		goto out;
843 	}
844 
845 	rc = 0;
846 	/* type/domain unchanged */
847 	if (old_context->type == new_context->type)
848 		goto out;
849 
850 	index = new_context->type;
851 	while (true) {
852 		type = flex_array_get_ptr(policydb.type_val_to_struct_array,
853 					  index - 1);
854 		BUG_ON(!type);
855 
856 		/* not bounded anymore */
857 		rc = -EPERM;
858 		if (!type->bounds)
859 			break;
860 
861 		/* @newsid is bounded by @oldsid */
862 		rc = 0;
863 		if (type->bounds == old_context->type)
864 			break;
865 
866 		index = type->bounds;
867 	}
868 
869 	if (rc) {
870 		char *old_name = NULL;
871 		char *new_name = NULL;
872 		u32 length;
873 
874 		if (!context_struct_to_string(old_context,
875 					      &old_name, &length) &&
876 		    !context_struct_to_string(new_context,
877 					      &new_name, &length)) {
878 			audit_log(current->audit_context,
879 				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
880 				  "op=security_bounded_transition "
881 				  "result=denied "
882 				  "oldcontext=%s newcontext=%s",
883 				  old_name, new_name);
884 		}
885 		kfree(new_name);
886 		kfree(old_name);
887 	}
888 out:
889 	read_unlock(&policy_rwlock);
890 
891 	return rc;
892 }
893 
894 static void avd_init(struct av_decision *avd)
895 {
896 	avd->allowed = 0;
897 	avd->auditallow = 0;
898 	avd->auditdeny = 0xffffffff;
899 	avd->seqno = latest_granting;
900 	avd->flags = 0;
901 }
902 
903 
904 /**
905  * security_compute_av - Compute access vector decisions.
906  * @ssid: source security identifier
907  * @tsid: target security identifier
908  * @tclass: target security class
909  * @avd: access vector decisions
910  *
911  * Compute a set of access vector decisions based on the
912  * SID pair (@ssid, @tsid) for the permissions in @tclass.
913  */
914 void security_compute_av(u32 ssid,
915 			 u32 tsid,
916 			 u16 orig_tclass,
917 			 struct av_decision *avd)
918 {
919 	u16 tclass;
920 	struct context *scontext = NULL, *tcontext = NULL;
921 
922 	read_lock(&policy_rwlock);
923 	avd_init(avd);
924 	if (!ss_initialized)
925 		goto allow;
926 
927 	scontext = sidtab_search(&sidtab, ssid);
928 	if (!scontext) {
929 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
930 		       __func__, ssid);
931 		goto out;
932 	}
933 
934 	/* permissive domain? */
935 	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
936 		avd->flags |= AVD_FLAGS_PERMISSIVE;
937 
938 	tcontext = sidtab_search(&sidtab, tsid);
939 	if (!tcontext) {
940 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
941 		       __func__, tsid);
942 		goto out;
943 	}
944 
945 	tclass = unmap_class(orig_tclass);
946 	if (unlikely(orig_tclass && !tclass)) {
947 		if (policydb.allow_unknown)
948 			goto allow;
949 		goto out;
950 	}
951 	context_struct_compute_av(scontext, tcontext, tclass, avd);
952 	map_decision(orig_tclass, avd, policydb.allow_unknown);
953 out:
954 	read_unlock(&policy_rwlock);
955 	return;
956 allow:
957 	avd->allowed = 0xffffffff;
958 	goto out;
959 }
960 
961 void security_compute_av_user(u32 ssid,
962 			      u32 tsid,
963 			      u16 tclass,
964 			      struct av_decision *avd)
965 {
966 	struct context *scontext = NULL, *tcontext = NULL;
967 
968 	read_lock(&policy_rwlock);
969 	avd_init(avd);
970 	if (!ss_initialized)
971 		goto allow;
972 
973 	scontext = sidtab_search(&sidtab, ssid);
974 	if (!scontext) {
975 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
976 		       __func__, ssid);
977 		goto out;
978 	}
979 
980 	/* permissive domain? */
981 	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
982 		avd->flags |= AVD_FLAGS_PERMISSIVE;
983 
984 	tcontext = sidtab_search(&sidtab, tsid);
985 	if (!tcontext) {
986 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
987 		       __func__, tsid);
988 		goto out;
989 	}
990 
991 	if (unlikely(!tclass)) {
992 		if (policydb.allow_unknown)
993 			goto allow;
994 		goto out;
995 	}
996 
997 	context_struct_compute_av(scontext, tcontext, tclass, avd);
998  out:
999 	read_unlock(&policy_rwlock);
1000 	return;
1001 allow:
1002 	avd->allowed = 0xffffffff;
1003 	goto out;
1004 }
1005 
1006 /*
1007  * Write the security context string representation of
1008  * the context structure `context' into a dynamically
1009  * allocated string of the correct size.  Set `*scontext'
1010  * to point to this string and set `*scontext_len' to
1011  * the length of the string.
1012  */
1013 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
1014 {
1015 	char *scontextp;
1016 
1017 	if (scontext)
1018 		*scontext = NULL;
1019 	*scontext_len = 0;
1020 
1021 	if (context->len) {
1022 		*scontext_len = context->len;
1023 		*scontext = kstrdup(context->str, GFP_ATOMIC);
1024 		if (!(*scontext))
1025 			return -ENOMEM;
1026 		return 0;
1027 	}
1028 
1029 	/* Compute the size of the context. */
1030 	*scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1031 	*scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1032 	*scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1033 	*scontext_len += mls_compute_context_len(context);
1034 
1035 	if (!scontext)
1036 		return 0;
1037 
1038 	/* Allocate space for the context; caller must free this space. */
1039 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1040 	if (!scontextp)
1041 		return -ENOMEM;
1042 	*scontext = scontextp;
1043 
1044 	/*
1045 	 * Copy the user name, role name and type name into the context.
1046 	 */
1047 	sprintf(scontextp, "%s:%s:%s",
1048 		sym_name(&policydb, SYM_USERS, context->user - 1),
1049 		sym_name(&policydb, SYM_ROLES, context->role - 1),
1050 		sym_name(&policydb, SYM_TYPES, context->type - 1));
1051 	scontextp += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) +
1052 		     1 + strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) +
1053 		     1 + strlen(sym_name(&policydb, SYM_TYPES, context->type - 1));
1054 
1055 	mls_sid_to_context(context, &scontextp);
1056 
1057 	*scontextp = 0;
1058 
1059 	return 0;
1060 }
1061 
1062 #include "initial_sid_to_string.h"
1063 
1064 const char *security_get_initial_sid_context(u32 sid)
1065 {
1066 	if (unlikely(sid > SECINITSID_NUM))
1067 		return NULL;
1068 	return initial_sid_to_string[sid];
1069 }
1070 
1071 static int security_sid_to_context_core(u32 sid, char **scontext,
1072 					u32 *scontext_len, int force)
1073 {
1074 	struct context *context;
1075 	int rc = 0;
1076 
1077 	if (scontext)
1078 		*scontext = NULL;
1079 	*scontext_len  = 0;
1080 
1081 	if (!ss_initialized) {
1082 		if (sid <= SECINITSID_NUM) {
1083 			char *scontextp;
1084 
1085 			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1086 			if (!scontext)
1087 				goto out;
1088 			scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1089 			if (!scontextp) {
1090 				rc = -ENOMEM;
1091 				goto out;
1092 			}
1093 			strcpy(scontextp, initial_sid_to_string[sid]);
1094 			*scontext = scontextp;
1095 			goto out;
1096 		}
1097 		printk(KERN_ERR "SELinux: %s:  called before initial "
1098 		       "load_policy on unknown SID %d\n", __func__, sid);
1099 		rc = -EINVAL;
1100 		goto out;
1101 	}
1102 	read_lock(&policy_rwlock);
1103 	if (force)
1104 		context = sidtab_search_force(&sidtab, sid);
1105 	else
1106 		context = sidtab_search(&sidtab, sid);
1107 	if (!context) {
1108 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1109 			__func__, sid);
1110 		rc = -EINVAL;
1111 		goto out_unlock;
1112 	}
1113 	rc = context_struct_to_string(context, scontext, scontext_len);
1114 out_unlock:
1115 	read_unlock(&policy_rwlock);
1116 out:
1117 	return rc;
1118 
1119 }
1120 
1121 /**
1122  * security_sid_to_context - Obtain a context for a given SID.
1123  * @sid: security identifier, SID
1124  * @scontext: security context
1125  * @scontext_len: length in bytes
1126  *
1127  * Write the string representation of the context associated with @sid
1128  * into a dynamically allocated string of the correct size.  Set @scontext
1129  * to point to this string and set @scontext_len to the length of the string.
1130  */
1131 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1132 {
1133 	return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1134 }
1135 
1136 int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1137 {
1138 	return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1139 }
1140 
1141 /*
1142  * Caveat:  Mutates scontext.
1143  */
1144 static int string_to_context_struct(struct policydb *pol,
1145 				    struct sidtab *sidtabp,
1146 				    char *scontext,
1147 				    u32 scontext_len,
1148 				    struct context *ctx,
1149 				    u32 def_sid)
1150 {
1151 	struct role_datum *role;
1152 	struct type_datum *typdatum;
1153 	struct user_datum *usrdatum;
1154 	char *scontextp, *p, oldc;
1155 	int rc = 0;
1156 
1157 	context_init(ctx);
1158 
1159 	/* Parse the security context. */
1160 
1161 	rc = -EINVAL;
1162 	scontextp = (char *) scontext;
1163 
1164 	/* Extract the user. */
1165 	p = scontextp;
1166 	while (*p && *p != ':')
1167 		p++;
1168 
1169 	if (*p == 0)
1170 		goto out;
1171 
1172 	*p++ = 0;
1173 
1174 	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1175 	if (!usrdatum)
1176 		goto out;
1177 
1178 	ctx->user = usrdatum->value;
1179 
1180 	/* Extract role. */
1181 	scontextp = p;
1182 	while (*p && *p != ':')
1183 		p++;
1184 
1185 	if (*p == 0)
1186 		goto out;
1187 
1188 	*p++ = 0;
1189 
1190 	role = hashtab_search(pol->p_roles.table, scontextp);
1191 	if (!role)
1192 		goto out;
1193 	ctx->role = role->value;
1194 
1195 	/* Extract type. */
1196 	scontextp = p;
1197 	while (*p && *p != ':')
1198 		p++;
1199 	oldc = *p;
1200 	*p++ = 0;
1201 
1202 	typdatum = hashtab_search(pol->p_types.table, scontextp);
1203 	if (!typdatum || typdatum->attribute)
1204 		goto out;
1205 
1206 	ctx->type = typdatum->value;
1207 
1208 	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1209 	if (rc)
1210 		goto out;
1211 
1212 	rc = -EINVAL;
1213 	if ((p - scontext) < scontext_len)
1214 		goto out;
1215 
1216 	/* Check the validity of the new context. */
1217 	if (!policydb_context_isvalid(pol, ctx))
1218 		goto out;
1219 	rc = 0;
1220 out:
1221 	if (rc)
1222 		context_destroy(ctx);
1223 	return rc;
1224 }
1225 
1226 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1227 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1228 					int force)
1229 {
1230 	char *scontext2, *str = NULL;
1231 	struct context context;
1232 	int rc = 0;
1233 
1234 	if (!ss_initialized) {
1235 		int i;
1236 
1237 		for (i = 1; i < SECINITSID_NUM; i++) {
1238 			if (!strcmp(initial_sid_to_string[i], scontext)) {
1239 				*sid = i;
1240 				return 0;
1241 			}
1242 		}
1243 		*sid = SECINITSID_KERNEL;
1244 		return 0;
1245 	}
1246 	*sid = SECSID_NULL;
1247 
1248 	/* Copy the string so that we can modify the copy as we parse it. */
1249 	scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1250 	if (!scontext2)
1251 		return -ENOMEM;
1252 	memcpy(scontext2, scontext, scontext_len);
1253 	scontext2[scontext_len] = 0;
1254 
1255 	if (force) {
1256 		/* Save another copy for storing in uninterpreted form */
1257 		rc = -ENOMEM;
1258 		str = kstrdup(scontext2, gfp_flags);
1259 		if (!str)
1260 			goto out;
1261 	}
1262 
1263 	read_lock(&policy_rwlock);
1264 	rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1265 				      scontext_len, &context, def_sid);
1266 	if (rc == -EINVAL && force) {
1267 		context.str = str;
1268 		context.len = scontext_len;
1269 		str = NULL;
1270 	} else if (rc)
1271 		goto out_unlock;
1272 	rc = sidtab_context_to_sid(&sidtab, &context, sid);
1273 	context_destroy(&context);
1274 out_unlock:
1275 	read_unlock(&policy_rwlock);
1276 out:
1277 	kfree(scontext2);
1278 	kfree(str);
1279 	return rc;
1280 }
1281 
1282 /**
1283  * security_context_to_sid - Obtain a SID for a given security context.
1284  * @scontext: security context
1285  * @scontext_len: length in bytes
1286  * @sid: security identifier, SID
1287  *
1288  * Obtains a SID associated with the security context that
1289  * has the string representation specified by @scontext.
1290  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1291  * memory is available, or 0 on success.
1292  */
1293 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
1294 {
1295 	return security_context_to_sid_core(scontext, scontext_len,
1296 					    sid, SECSID_NULL, GFP_KERNEL, 0);
1297 }
1298 
1299 /**
1300  * security_context_to_sid_default - Obtain a SID for a given security context,
1301  * falling back to specified default if needed.
1302  *
1303  * @scontext: security context
1304  * @scontext_len: length in bytes
1305  * @sid: security identifier, SID
1306  * @def_sid: default SID to assign on error
1307  *
1308  * Obtains a SID associated with the security context that
1309  * has the string representation specified by @scontext.
1310  * The default SID is passed to the MLS layer to be used to allow
1311  * kernel labeling of the MLS field if the MLS field is not present
1312  * (for upgrading to MLS without full relabel).
1313  * Implicitly forces adding of the context even if it cannot be mapped yet.
1314  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1315  * memory is available, or 0 on success.
1316  */
1317 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1318 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1319 {
1320 	return security_context_to_sid_core(scontext, scontext_len,
1321 					    sid, def_sid, gfp_flags, 1);
1322 }
1323 
1324 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1325 				  u32 *sid)
1326 {
1327 	return security_context_to_sid_core(scontext, scontext_len,
1328 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1329 }
1330 
1331 static int compute_sid_handle_invalid_context(
1332 	struct context *scontext,
1333 	struct context *tcontext,
1334 	u16 tclass,
1335 	struct context *newcontext)
1336 {
1337 	char *s = NULL, *t = NULL, *n = NULL;
1338 	u32 slen, tlen, nlen;
1339 
1340 	if (context_struct_to_string(scontext, &s, &slen))
1341 		goto out;
1342 	if (context_struct_to_string(tcontext, &t, &tlen))
1343 		goto out;
1344 	if (context_struct_to_string(newcontext, &n, &nlen))
1345 		goto out;
1346 	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1347 		  "security_compute_sid:  invalid context %s"
1348 		  " for scontext=%s"
1349 		  " tcontext=%s"
1350 		  " tclass=%s",
1351 		  n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
1352 out:
1353 	kfree(s);
1354 	kfree(t);
1355 	kfree(n);
1356 	if (!selinux_enforcing)
1357 		return 0;
1358 	return -EACCES;
1359 }
1360 
1361 static void filename_compute_type(struct policydb *p, struct context *newcontext,
1362 				  u32 stype, u32 ttype, u16 tclass,
1363 				  const char *objname)
1364 {
1365 	struct filename_trans ft;
1366 	struct filename_trans_datum *otype;
1367 
1368 	/*
1369 	 * Most filename trans rules are going to live in specific directories
1370 	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1371 	 * if the ttype does not contain any rules.
1372 	 */
1373 	if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1374 		return;
1375 
1376 	ft.stype = stype;
1377 	ft.ttype = ttype;
1378 	ft.tclass = tclass;
1379 	ft.name = objname;
1380 
1381 	otype = hashtab_search(p->filename_trans, &ft);
1382 	if (otype)
1383 		newcontext->type = otype->otype;
1384 }
1385 
1386 static int security_compute_sid(u32 ssid,
1387 				u32 tsid,
1388 				u16 orig_tclass,
1389 				u32 specified,
1390 				const char *objname,
1391 				u32 *out_sid,
1392 				bool kern)
1393 {
1394 	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1395 	struct role_trans *roletr = NULL;
1396 	struct avtab_key avkey;
1397 	struct avtab_datum *avdatum;
1398 	struct avtab_node *node;
1399 	u16 tclass;
1400 	int rc = 0;
1401 	bool sock;
1402 
1403 	if (!ss_initialized) {
1404 		switch (orig_tclass) {
1405 		case SECCLASS_PROCESS: /* kernel value */
1406 			*out_sid = ssid;
1407 			break;
1408 		default:
1409 			*out_sid = tsid;
1410 			break;
1411 		}
1412 		goto out;
1413 	}
1414 
1415 	context_init(&newcontext);
1416 
1417 	read_lock(&policy_rwlock);
1418 
1419 	if (kern) {
1420 		tclass = unmap_class(orig_tclass);
1421 		sock = security_is_socket_class(orig_tclass);
1422 	} else {
1423 		tclass = orig_tclass;
1424 		sock = security_is_socket_class(map_class(tclass));
1425 	}
1426 
1427 	scontext = sidtab_search(&sidtab, ssid);
1428 	if (!scontext) {
1429 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1430 		       __func__, ssid);
1431 		rc = -EINVAL;
1432 		goto out_unlock;
1433 	}
1434 	tcontext = sidtab_search(&sidtab, tsid);
1435 	if (!tcontext) {
1436 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1437 		       __func__, tsid);
1438 		rc = -EINVAL;
1439 		goto out_unlock;
1440 	}
1441 
1442 	/* Set the user identity. */
1443 	switch (specified) {
1444 	case AVTAB_TRANSITION:
1445 	case AVTAB_CHANGE:
1446 		/* Use the process user identity. */
1447 		newcontext.user = scontext->user;
1448 		break;
1449 	case AVTAB_MEMBER:
1450 		/* Use the related object owner. */
1451 		newcontext.user = tcontext->user;
1452 		break;
1453 	}
1454 
1455 	/* Set the role and type to default values. */
1456 	if ((tclass == policydb.process_class) || (sock == true)) {
1457 		/* Use the current role and type of process. */
1458 		newcontext.role = scontext->role;
1459 		newcontext.type = scontext->type;
1460 	} else {
1461 		/* Use the well-defined object role. */
1462 		newcontext.role = OBJECT_R_VAL;
1463 		/* Use the type of the related object. */
1464 		newcontext.type = tcontext->type;
1465 	}
1466 
1467 	/* Look for a type transition/member/change rule. */
1468 	avkey.source_type = scontext->type;
1469 	avkey.target_type = tcontext->type;
1470 	avkey.target_class = tclass;
1471 	avkey.specified = specified;
1472 	avdatum = avtab_search(&policydb.te_avtab, &avkey);
1473 
1474 	/* If no permanent rule, also check for enabled conditional rules */
1475 	if (!avdatum) {
1476 		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1477 		for (; node; node = avtab_search_node_next(node, specified)) {
1478 			if (node->key.specified & AVTAB_ENABLED) {
1479 				avdatum = &node->datum;
1480 				break;
1481 			}
1482 		}
1483 	}
1484 
1485 	if (avdatum) {
1486 		/* Use the type from the type transition/member/change rule. */
1487 		newcontext.type = avdatum->data;
1488 	}
1489 
1490 	/* if we have a objname this is a file trans check so check those rules */
1491 	if (objname)
1492 		filename_compute_type(&policydb, &newcontext, scontext->type,
1493 				      tcontext->type, tclass, objname);
1494 
1495 	/* Check for class-specific changes. */
1496 	if (specified & AVTAB_TRANSITION) {
1497 		/* Look for a role transition rule. */
1498 		for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
1499 			if ((roletr->role == scontext->role) &&
1500 			    (roletr->type == tcontext->type) &&
1501 			    (roletr->tclass == tclass)) {
1502 				/* Use the role transition rule. */
1503 				newcontext.role = roletr->new_role;
1504 				break;
1505 			}
1506 		}
1507 	}
1508 
1509 	/* Set the MLS attributes.
1510 	   This is done last because it may allocate memory. */
1511 	rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1512 			     &newcontext, sock);
1513 	if (rc)
1514 		goto out_unlock;
1515 
1516 	/* Check the validity of the context. */
1517 	if (!policydb_context_isvalid(&policydb, &newcontext)) {
1518 		rc = compute_sid_handle_invalid_context(scontext,
1519 							tcontext,
1520 							tclass,
1521 							&newcontext);
1522 		if (rc)
1523 			goto out_unlock;
1524 	}
1525 	/* Obtain the sid for the context. */
1526 	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1527 out_unlock:
1528 	read_unlock(&policy_rwlock);
1529 	context_destroy(&newcontext);
1530 out:
1531 	return rc;
1532 }
1533 
1534 /**
1535  * security_transition_sid - Compute the SID for a new subject/object.
1536  * @ssid: source security identifier
1537  * @tsid: target security identifier
1538  * @tclass: target security class
1539  * @out_sid: security identifier for new subject/object
1540  *
1541  * Compute a SID to use for labeling a new subject or object in the
1542  * class @tclass based on a SID pair (@ssid, @tsid).
1543  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1544  * if insufficient memory is available, or %0 if the new SID was
1545  * computed successfully.
1546  */
1547 int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1548 			    const struct qstr *qstr, u32 *out_sid)
1549 {
1550 	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1551 				    qstr ? qstr->name : NULL, out_sid, true);
1552 }
1553 
1554 int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1555 				 const char *objname, u32 *out_sid)
1556 {
1557 	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1558 				    objname, out_sid, false);
1559 }
1560 
1561 /**
1562  * security_member_sid - Compute the SID for member selection.
1563  * @ssid: source security identifier
1564  * @tsid: target security identifier
1565  * @tclass: target security class
1566  * @out_sid: security identifier for selected member
1567  *
1568  * Compute a SID to use when selecting a member of a polyinstantiated
1569  * object of class @tclass based on a SID pair (@ssid, @tsid).
1570  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1571  * if insufficient memory is available, or %0 if the SID was
1572  * computed successfully.
1573  */
1574 int security_member_sid(u32 ssid,
1575 			u32 tsid,
1576 			u16 tclass,
1577 			u32 *out_sid)
1578 {
1579 	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
1580 				    out_sid, false);
1581 }
1582 
1583 /**
1584  * security_change_sid - Compute the SID for object relabeling.
1585  * @ssid: source security identifier
1586  * @tsid: target security identifier
1587  * @tclass: target security class
1588  * @out_sid: security identifier for selected member
1589  *
1590  * Compute a SID to use for relabeling an object of class @tclass
1591  * based on a SID pair (@ssid, @tsid).
1592  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1593  * if insufficient memory is available, or %0 if the SID was
1594  * computed successfully.
1595  */
1596 int security_change_sid(u32 ssid,
1597 			u32 tsid,
1598 			u16 tclass,
1599 			u32 *out_sid)
1600 {
1601 	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1602 				    out_sid, false);
1603 }
1604 
1605 /* Clone the SID into the new SID table. */
1606 static int clone_sid(u32 sid,
1607 		     struct context *context,
1608 		     void *arg)
1609 {
1610 	struct sidtab *s = arg;
1611 
1612 	if (sid > SECINITSID_NUM)
1613 		return sidtab_insert(s, sid, context);
1614 	else
1615 		return 0;
1616 }
1617 
1618 static inline int convert_context_handle_invalid_context(struct context *context)
1619 {
1620 	char *s;
1621 	u32 len;
1622 
1623 	if (selinux_enforcing)
1624 		return -EINVAL;
1625 
1626 	if (!context_struct_to_string(context, &s, &len)) {
1627 		printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
1628 		kfree(s);
1629 	}
1630 	return 0;
1631 }
1632 
1633 struct convert_context_args {
1634 	struct policydb *oldp;
1635 	struct policydb *newp;
1636 };
1637 
1638 /*
1639  * Convert the values in the security context
1640  * structure `c' from the values specified
1641  * in the policy `p->oldp' to the values specified
1642  * in the policy `p->newp'.  Verify that the
1643  * context is valid under the new policy.
1644  */
1645 static int convert_context(u32 key,
1646 			   struct context *c,
1647 			   void *p)
1648 {
1649 	struct convert_context_args *args;
1650 	struct context oldc;
1651 	struct ocontext *oc;
1652 	struct mls_range *range;
1653 	struct role_datum *role;
1654 	struct type_datum *typdatum;
1655 	struct user_datum *usrdatum;
1656 	char *s;
1657 	u32 len;
1658 	int rc = 0;
1659 
1660 	if (key <= SECINITSID_NUM)
1661 		goto out;
1662 
1663 	args = p;
1664 
1665 	if (c->str) {
1666 		struct context ctx;
1667 
1668 		rc = -ENOMEM;
1669 		s = kstrdup(c->str, GFP_KERNEL);
1670 		if (!s)
1671 			goto out;
1672 
1673 		rc = string_to_context_struct(args->newp, NULL, s,
1674 					      c->len, &ctx, SECSID_NULL);
1675 		kfree(s);
1676 		if (!rc) {
1677 			printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1678 			       c->str);
1679 			/* Replace string with mapped representation. */
1680 			kfree(c->str);
1681 			memcpy(c, &ctx, sizeof(*c));
1682 			goto out;
1683 		} else if (rc == -EINVAL) {
1684 			/* Retain string representation for later mapping. */
1685 			rc = 0;
1686 			goto out;
1687 		} else {
1688 			/* Other error condition, e.g. ENOMEM. */
1689 			printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1690 			       c->str, -rc);
1691 			goto out;
1692 		}
1693 	}
1694 
1695 	rc = context_cpy(&oldc, c);
1696 	if (rc)
1697 		goto out;
1698 
1699 	/* Convert the user. */
1700 	rc = -EINVAL;
1701 	usrdatum = hashtab_search(args->newp->p_users.table,
1702 				  sym_name(args->oldp, SYM_USERS, c->user - 1));
1703 	if (!usrdatum)
1704 		goto bad;
1705 	c->user = usrdatum->value;
1706 
1707 	/* Convert the role. */
1708 	rc = -EINVAL;
1709 	role = hashtab_search(args->newp->p_roles.table,
1710 			      sym_name(args->oldp, SYM_ROLES, c->role - 1));
1711 	if (!role)
1712 		goto bad;
1713 	c->role = role->value;
1714 
1715 	/* Convert the type. */
1716 	rc = -EINVAL;
1717 	typdatum = hashtab_search(args->newp->p_types.table,
1718 				  sym_name(args->oldp, SYM_TYPES, c->type - 1));
1719 	if (!typdatum)
1720 		goto bad;
1721 	c->type = typdatum->value;
1722 
1723 	/* Convert the MLS fields if dealing with MLS policies */
1724 	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1725 		rc = mls_convert_context(args->oldp, args->newp, c);
1726 		if (rc)
1727 			goto bad;
1728 	} else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1729 		/*
1730 		 * Switching between MLS and non-MLS policy:
1731 		 * free any storage used by the MLS fields in the
1732 		 * context for all existing entries in the sidtab.
1733 		 */
1734 		mls_context_destroy(c);
1735 	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1736 		/*
1737 		 * Switching between non-MLS and MLS policy:
1738 		 * ensure that the MLS fields of the context for all
1739 		 * existing entries in the sidtab are filled in with a
1740 		 * suitable default value, likely taken from one of the
1741 		 * initial SIDs.
1742 		 */
1743 		oc = args->newp->ocontexts[OCON_ISID];
1744 		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1745 			oc = oc->next;
1746 		rc = -EINVAL;
1747 		if (!oc) {
1748 			printk(KERN_ERR "SELinux:  unable to look up"
1749 				" the initial SIDs list\n");
1750 			goto bad;
1751 		}
1752 		range = &oc->context[0].range;
1753 		rc = mls_range_set(c, range);
1754 		if (rc)
1755 			goto bad;
1756 	}
1757 
1758 	/* Check the validity of the new context. */
1759 	if (!policydb_context_isvalid(args->newp, c)) {
1760 		rc = convert_context_handle_invalid_context(&oldc);
1761 		if (rc)
1762 			goto bad;
1763 	}
1764 
1765 	context_destroy(&oldc);
1766 
1767 	rc = 0;
1768 out:
1769 	return rc;
1770 bad:
1771 	/* Map old representation to string and save it. */
1772 	rc = context_struct_to_string(&oldc, &s, &len);
1773 	if (rc)
1774 		return rc;
1775 	context_destroy(&oldc);
1776 	context_destroy(c);
1777 	c->str = s;
1778 	c->len = len;
1779 	printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
1780 	       c->str);
1781 	rc = 0;
1782 	goto out;
1783 }
1784 
1785 static void security_load_policycaps(void)
1786 {
1787 	selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1788 						  POLICYDB_CAPABILITY_NETPEER);
1789 	selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1790 						  POLICYDB_CAPABILITY_OPENPERM);
1791 }
1792 
1793 extern void selinux_complete_init(void);
1794 static int security_preserve_bools(struct policydb *p);
1795 
1796 /**
1797  * security_load_policy - Load a security policy configuration.
1798  * @data: binary policy data
1799  * @len: length of data in bytes
1800  *
1801  * Load a new set of security policy configuration data,
1802  * validate it and convert the SID table as necessary.
1803  * This function will flush the access vector cache after
1804  * loading the new policy.
1805  */
1806 int security_load_policy(void *data, size_t len)
1807 {
1808 	struct policydb oldpolicydb, newpolicydb;
1809 	struct sidtab oldsidtab, newsidtab;
1810 	struct selinux_mapping *oldmap, *map = NULL;
1811 	struct convert_context_args args;
1812 	u32 seqno;
1813 	u16 map_size;
1814 	int rc = 0;
1815 	struct policy_file file = { data, len }, *fp = &file;
1816 
1817 	if (!ss_initialized) {
1818 		avtab_cache_init();
1819 		rc = policydb_read(&policydb, fp);
1820 		if (rc) {
1821 			avtab_cache_destroy();
1822 			return rc;
1823 		}
1824 
1825 		policydb.len = len;
1826 		rc = selinux_set_mapping(&policydb, secclass_map,
1827 					 &current_mapping,
1828 					 &current_mapping_size);
1829 		if (rc) {
1830 			policydb_destroy(&policydb);
1831 			avtab_cache_destroy();
1832 			return rc;
1833 		}
1834 
1835 		rc = policydb_load_isids(&policydb, &sidtab);
1836 		if (rc) {
1837 			policydb_destroy(&policydb);
1838 			avtab_cache_destroy();
1839 			return rc;
1840 		}
1841 
1842 		security_load_policycaps();
1843 		ss_initialized = 1;
1844 		seqno = ++latest_granting;
1845 		selinux_complete_init();
1846 		avc_ss_reset(seqno);
1847 		selnl_notify_policyload(seqno);
1848 		selinux_status_update_policyload(seqno);
1849 		selinux_netlbl_cache_invalidate();
1850 		selinux_xfrm_notify_policyload();
1851 		return 0;
1852 	}
1853 
1854 #if 0
1855 	sidtab_hash_eval(&sidtab, "sids");
1856 #endif
1857 
1858 	rc = policydb_read(&newpolicydb, fp);
1859 	if (rc)
1860 		return rc;
1861 
1862 	newpolicydb.len = len;
1863 	/* If switching between different policy types, log MLS status */
1864 	if (policydb.mls_enabled && !newpolicydb.mls_enabled)
1865 		printk(KERN_INFO "SELinux: Disabling MLS support...\n");
1866 	else if (!policydb.mls_enabled && newpolicydb.mls_enabled)
1867 		printk(KERN_INFO "SELinux: Enabling MLS support...\n");
1868 
1869 	rc = policydb_load_isids(&newpolicydb, &newsidtab);
1870 	if (rc) {
1871 		printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
1872 		policydb_destroy(&newpolicydb);
1873 		return rc;
1874 	}
1875 
1876 	rc = selinux_set_mapping(&newpolicydb, secclass_map, &map, &map_size);
1877 	if (rc)
1878 		goto err;
1879 
1880 	rc = security_preserve_bools(&newpolicydb);
1881 	if (rc) {
1882 		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
1883 		goto err;
1884 	}
1885 
1886 	/* Clone the SID table. */
1887 	sidtab_shutdown(&sidtab);
1888 
1889 	rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
1890 	if (rc)
1891 		goto err;
1892 
1893 	/*
1894 	 * Convert the internal representations of contexts
1895 	 * in the new SID table.
1896 	 */
1897 	args.oldp = &policydb;
1898 	args.newp = &newpolicydb;
1899 	rc = sidtab_map(&newsidtab, convert_context, &args);
1900 	if (rc) {
1901 		printk(KERN_ERR "SELinux:  unable to convert the internal"
1902 			" representation of contexts in the new SID"
1903 			" table\n");
1904 		goto err;
1905 	}
1906 
1907 	/* Save the old policydb and SID table to free later. */
1908 	memcpy(&oldpolicydb, &policydb, sizeof policydb);
1909 	sidtab_set(&oldsidtab, &sidtab);
1910 
1911 	/* Install the new policydb and SID table. */
1912 	write_lock_irq(&policy_rwlock);
1913 	memcpy(&policydb, &newpolicydb, sizeof policydb);
1914 	sidtab_set(&sidtab, &newsidtab);
1915 	security_load_policycaps();
1916 	oldmap = current_mapping;
1917 	current_mapping = map;
1918 	current_mapping_size = map_size;
1919 	seqno = ++latest_granting;
1920 	write_unlock_irq(&policy_rwlock);
1921 
1922 	/* Free the old policydb and SID table. */
1923 	policydb_destroy(&oldpolicydb);
1924 	sidtab_destroy(&oldsidtab);
1925 	kfree(oldmap);
1926 
1927 	avc_ss_reset(seqno);
1928 	selnl_notify_policyload(seqno);
1929 	selinux_status_update_policyload(seqno);
1930 	selinux_netlbl_cache_invalidate();
1931 	selinux_xfrm_notify_policyload();
1932 
1933 	return 0;
1934 
1935 err:
1936 	kfree(map);
1937 	sidtab_destroy(&newsidtab);
1938 	policydb_destroy(&newpolicydb);
1939 	return rc;
1940 
1941 }
1942 
1943 size_t security_policydb_len(void)
1944 {
1945 	size_t len;
1946 
1947 	read_lock(&policy_rwlock);
1948 	len = policydb.len;
1949 	read_unlock(&policy_rwlock);
1950 
1951 	return len;
1952 }
1953 
1954 /**
1955  * security_port_sid - Obtain the SID for a port.
1956  * @protocol: protocol number
1957  * @port: port number
1958  * @out_sid: security identifier
1959  */
1960 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
1961 {
1962 	struct ocontext *c;
1963 	int rc = 0;
1964 
1965 	read_lock(&policy_rwlock);
1966 
1967 	c = policydb.ocontexts[OCON_PORT];
1968 	while (c) {
1969 		if (c->u.port.protocol == protocol &&
1970 		    c->u.port.low_port <= port &&
1971 		    c->u.port.high_port >= port)
1972 			break;
1973 		c = c->next;
1974 	}
1975 
1976 	if (c) {
1977 		if (!c->sid[0]) {
1978 			rc = sidtab_context_to_sid(&sidtab,
1979 						   &c->context[0],
1980 						   &c->sid[0]);
1981 			if (rc)
1982 				goto out;
1983 		}
1984 		*out_sid = c->sid[0];
1985 	} else {
1986 		*out_sid = SECINITSID_PORT;
1987 	}
1988 
1989 out:
1990 	read_unlock(&policy_rwlock);
1991 	return rc;
1992 }
1993 
1994 /**
1995  * security_netif_sid - Obtain the SID for a network interface.
1996  * @name: interface name
1997  * @if_sid: interface SID
1998  */
1999 int security_netif_sid(char *name, u32 *if_sid)
2000 {
2001 	int rc = 0;
2002 	struct ocontext *c;
2003 
2004 	read_lock(&policy_rwlock);
2005 
2006 	c = policydb.ocontexts[OCON_NETIF];
2007 	while (c) {
2008 		if (strcmp(name, c->u.name) == 0)
2009 			break;
2010 		c = c->next;
2011 	}
2012 
2013 	if (c) {
2014 		if (!c->sid[0] || !c->sid[1]) {
2015 			rc = sidtab_context_to_sid(&sidtab,
2016 						  &c->context[0],
2017 						  &c->sid[0]);
2018 			if (rc)
2019 				goto out;
2020 			rc = sidtab_context_to_sid(&sidtab,
2021 						   &c->context[1],
2022 						   &c->sid[1]);
2023 			if (rc)
2024 				goto out;
2025 		}
2026 		*if_sid = c->sid[0];
2027 	} else
2028 		*if_sid = SECINITSID_NETIF;
2029 
2030 out:
2031 	read_unlock(&policy_rwlock);
2032 	return rc;
2033 }
2034 
2035 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2036 {
2037 	int i, fail = 0;
2038 
2039 	for (i = 0; i < 4; i++)
2040 		if (addr[i] != (input[i] & mask[i])) {
2041 			fail = 1;
2042 			break;
2043 		}
2044 
2045 	return !fail;
2046 }
2047 
2048 /**
2049  * security_node_sid - Obtain the SID for a node (host).
2050  * @domain: communication domain aka address family
2051  * @addrp: address
2052  * @addrlen: address length in bytes
2053  * @out_sid: security identifier
2054  */
2055 int security_node_sid(u16 domain,
2056 		      void *addrp,
2057 		      u32 addrlen,
2058 		      u32 *out_sid)
2059 {
2060 	int rc;
2061 	struct ocontext *c;
2062 
2063 	read_lock(&policy_rwlock);
2064 
2065 	switch (domain) {
2066 	case AF_INET: {
2067 		u32 addr;
2068 
2069 		rc = -EINVAL;
2070 		if (addrlen != sizeof(u32))
2071 			goto out;
2072 
2073 		addr = *((u32 *)addrp);
2074 
2075 		c = policydb.ocontexts[OCON_NODE];
2076 		while (c) {
2077 			if (c->u.node.addr == (addr & c->u.node.mask))
2078 				break;
2079 			c = c->next;
2080 		}
2081 		break;
2082 	}
2083 
2084 	case AF_INET6:
2085 		rc = -EINVAL;
2086 		if (addrlen != sizeof(u64) * 2)
2087 			goto out;
2088 		c = policydb.ocontexts[OCON_NODE6];
2089 		while (c) {
2090 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2091 						c->u.node6.mask))
2092 				break;
2093 			c = c->next;
2094 		}
2095 		break;
2096 
2097 	default:
2098 		rc = 0;
2099 		*out_sid = SECINITSID_NODE;
2100 		goto out;
2101 	}
2102 
2103 	if (c) {
2104 		if (!c->sid[0]) {
2105 			rc = sidtab_context_to_sid(&sidtab,
2106 						   &c->context[0],
2107 						   &c->sid[0]);
2108 			if (rc)
2109 				goto out;
2110 		}
2111 		*out_sid = c->sid[0];
2112 	} else {
2113 		*out_sid = SECINITSID_NODE;
2114 	}
2115 
2116 	rc = 0;
2117 out:
2118 	read_unlock(&policy_rwlock);
2119 	return rc;
2120 }
2121 
2122 #define SIDS_NEL 25
2123 
2124 /**
2125  * security_get_user_sids - Obtain reachable SIDs for a user.
2126  * @fromsid: starting SID
2127  * @username: username
2128  * @sids: array of reachable SIDs for user
2129  * @nel: number of elements in @sids
2130  *
2131  * Generate the set of SIDs for legal security contexts
2132  * for a given user that can be reached by @fromsid.
2133  * Set *@sids to point to a dynamically allocated
2134  * array containing the set of SIDs.  Set *@nel to the
2135  * number of elements in the array.
2136  */
2137 
2138 int security_get_user_sids(u32 fromsid,
2139 			   char *username,
2140 			   u32 **sids,
2141 			   u32 *nel)
2142 {
2143 	struct context *fromcon, usercon;
2144 	u32 *mysids = NULL, *mysids2, sid;
2145 	u32 mynel = 0, maxnel = SIDS_NEL;
2146 	struct user_datum *user;
2147 	struct role_datum *role;
2148 	struct ebitmap_node *rnode, *tnode;
2149 	int rc = 0, i, j;
2150 
2151 	*sids = NULL;
2152 	*nel = 0;
2153 
2154 	if (!ss_initialized)
2155 		goto out;
2156 
2157 	read_lock(&policy_rwlock);
2158 
2159 	context_init(&usercon);
2160 
2161 	rc = -EINVAL;
2162 	fromcon = sidtab_search(&sidtab, fromsid);
2163 	if (!fromcon)
2164 		goto out_unlock;
2165 
2166 	rc = -EINVAL;
2167 	user = hashtab_search(policydb.p_users.table, username);
2168 	if (!user)
2169 		goto out_unlock;
2170 
2171 	usercon.user = user->value;
2172 
2173 	rc = -ENOMEM;
2174 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2175 	if (!mysids)
2176 		goto out_unlock;
2177 
2178 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2179 		role = policydb.role_val_to_struct[i];
2180 		usercon.role = i + 1;
2181 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2182 			usercon.type = j + 1;
2183 
2184 			if (mls_setup_user_range(fromcon, user, &usercon))
2185 				continue;
2186 
2187 			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2188 			if (rc)
2189 				goto out_unlock;
2190 			if (mynel < maxnel) {
2191 				mysids[mynel++] = sid;
2192 			} else {
2193 				rc = -ENOMEM;
2194 				maxnel += SIDS_NEL;
2195 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2196 				if (!mysids2)
2197 					goto out_unlock;
2198 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2199 				kfree(mysids);
2200 				mysids = mysids2;
2201 				mysids[mynel++] = sid;
2202 			}
2203 		}
2204 	}
2205 	rc = 0;
2206 out_unlock:
2207 	read_unlock(&policy_rwlock);
2208 	if (rc || !mynel) {
2209 		kfree(mysids);
2210 		goto out;
2211 	}
2212 
2213 	rc = -ENOMEM;
2214 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2215 	if (!mysids2) {
2216 		kfree(mysids);
2217 		goto out;
2218 	}
2219 	for (i = 0, j = 0; i < mynel; i++) {
2220 		struct av_decision dummy_avd;
2221 		rc = avc_has_perm_noaudit(fromsid, mysids[i],
2222 					  SECCLASS_PROCESS, /* kernel value */
2223 					  PROCESS__TRANSITION, AVC_STRICT,
2224 					  &dummy_avd);
2225 		if (!rc)
2226 			mysids2[j++] = mysids[i];
2227 		cond_resched();
2228 	}
2229 	rc = 0;
2230 	kfree(mysids);
2231 	*sids = mysids2;
2232 	*nel = j;
2233 out:
2234 	return rc;
2235 }
2236 
2237 /**
2238  * security_genfs_sid - Obtain a SID for a file in a filesystem
2239  * @fstype: filesystem type
2240  * @path: path from root of mount
2241  * @sclass: file security class
2242  * @sid: SID for path
2243  *
2244  * Obtain a SID to use for a file in a filesystem that
2245  * cannot support xattr or use a fixed labeling behavior like
2246  * transition SIDs or task SIDs.
2247  */
2248 int security_genfs_sid(const char *fstype,
2249 		       char *path,
2250 		       u16 orig_sclass,
2251 		       u32 *sid)
2252 {
2253 	int len;
2254 	u16 sclass;
2255 	struct genfs *genfs;
2256 	struct ocontext *c;
2257 	int rc, cmp = 0;
2258 
2259 	while (path[0] == '/' && path[1] == '/')
2260 		path++;
2261 
2262 	read_lock(&policy_rwlock);
2263 
2264 	sclass = unmap_class(orig_sclass);
2265 	*sid = SECINITSID_UNLABELED;
2266 
2267 	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2268 		cmp = strcmp(fstype, genfs->fstype);
2269 		if (cmp <= 0)
2270 			break;
2271 	}
2272 
2273 	rc = -ENOENT;
2274 	if (!genfs || cmp)
2275 		goto out;
2276 
2277 	for (c = genfs->head; c; c = c->next) {
2278 		len = strlen(c->u.name);
2279 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2280 		    (strncmp(c->u.name, path, len) == 0))
2281 			break;
2282 	}
2283 
2284 	rc = -ENOENT;
2285 	if (!c)
2286 		goto out;
2287 
2288 	if (!c->sid[0]) {
2289 		rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2290 		if (rc)
2291 			goto out;
2292 	}
2293 
2294 	*sid = c->sid[0];
2295 	rc = 0;
2296 out:
2297 	read_unlock(&policy_rwlock);
2298 	return rc;
2299 }
2300 
2301 /**
2302  * security_fs_use - Determine how to handle labeling for a filesystem.
2303  * @fstype: filesystem type
2304  * @behavior: labeling behavior
2305  * @sid: SID for filesystem (superblock)
2306  */
2307 int security_fs_use(
2308 	const char *fstype,
2309 	unsigned int *behavior,
2310 	u32 *sid)
2311 {
2312 	int rc = 0;
2313 	struct ocontext *c;
2314 
2315 	read_lock(&policy_rwlock);
2316 
2317 	c = policydb.ocontexts[OCON_FSUSE];
2318 	while (c) {
2319 		if (strcmp(fstype, c->u.name) == 0)
2320 			break;
2321 		c = c->next;
2322 	}
2323 
2324 	if (c) {
2325 		*behavior = c->v.behavior;
2326 		if (!c->sid[0]) {
2327 			rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2328 						   &c->sid[0]);
2329 			if (rc)
2330 				goto out;
2331 		}
2332 		*sid = c->sid[0];
2333 	} else {
2334 		rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
2335 		if (rc) {
2336 			*behavior = SECURITY_FS_USE_NONE;
2337 			rc = 0;
2338 		} else {
2339 			*behavior = SECURITY_FS_USE_GENFS;
2340 		}
2341 	}
2342 
2343 out:
2344 	read_unlock(&policy_rwlock);
2345 	return rc;
2346 }
2347 
2348 int security_get_bools(int *len, char ***names, int **values)
2349 {
2350 	int i, rc;
2351 
2352 	read_lock(&policy_rwlock);
2353 	*names = NULL;
2354 	*values = NULL;
2355 
2356 	rc = 0;
2357 	*len = policydb.p_bools.nprim;
2358 	if (!*len)
2359 		goto out;
2360 
2361 	rc = -ENOMEM;
2362 	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2363 	if (!*names)
2364 		goto err;
2365 
2366 	rc = -ENOMEM;
2367 	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2368 	if (!*values)
2369 		goto err;
2370 
2371 	for (i = 0; i < *len; i++) {
2372 		size_t name_len;
2373 
2374 		(*values)[i] = policydb.bool_val_to_struct[i]->state;
2375 		name_len = strlen(sym_name(&policydb, SYM_BOOLS, i)) + 1;
2376 
2377 		rc = -ENOMEM;
2378 		(*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
2379 		if (!(*names)[i])
2380 			goto err;
2381 
2382 		strncpy((*names)[i], sym_name(&policydb, SYM_BOOLS, i), name_len);
2383 		(*names)[i][name_len - 1] = 0;
2384 	}
2385 	rc = 0;
2386 out:
2387 	read_unlock(&policy_rwlock);
2388 	return rc;
2389 err:
2390 	if (*names) {
2391 		for (i = 0; i < *len; i++)
2392 			kfree((*names)[i]);
2393 	}
2394 	kfree(*values);
2395 	goto out;
2396 }
2397 
2398 
2399 int security_set_bools(int len, int *values)
2400 {
2401 	int i, rc;
2402 	int lenp, seqno = 0;
2403 	struct cond_node *cur;
2404 
2405 	write_lock_irq(&policy_rwlock);
2406 
2407 	rc = -EFAULT;
2408 	lenp = policydb.p_bools.nprim;
2409 	if (len != lenp)
2410 		goto out;
2411 
2412 	for (i = 0; i < len; i++) {
2413 		if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2414 			audit_log(current->audit_context, GFP_ATOMIC,
2415 				AUDIT_MAC_CONFIG_CHANGE,
2416 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2417 				sym_name(&policydb, SYM_BOOLS, i),
2418 				!!values[i],
2419 				policydb.bool_val_to_struct[i]->state,
2420 				audit_get_loginuid(current),
2421 				audit_get_sessionid(current));
2422 		}
2423 		if (values[i])
2424 			policydb.bool_val_to_struct[i]->state = 1;
2425 		else
2426 			policydb.bool_val_to_struct[i]->state = 0;
2427 	}
2428 
2429 	for (cur = policydb.cond_list; cur; cur = cur->next) {
2430 		rc = evaluate_cond_node(&policydb, cur);
2431 		if (rc)
2432 			goto out;
2433 	}
2434 
2435 	seqno = ++latest_granting;
2436 	rc = 0;
2437 out:
2438 	write_unlock_irq(&policy_rwlock);
2439 	if (!rc) {
2440 		avc_ss_reset(seqno);
2441 		selnl_notify_policyload(seqno);
2442 		selinux_status_update_policyload(seqno);
2443 		selinux_xfrm_notify_policyload();
2444 	}
2445 	return rc;
2446 }
2447 
2448 int security_get_bool_value(int bool)
2449 {
2450 	int rc;
2451 	int len;
2452 
2453 	read_lock(&policy_rwlock);
2454 
2455 	rc = -EFAULT;
2456 	len = policydb.p_bools.nprim;
2457 	if (bool >= len)
2458 		goto out;
2459 
2460 	rc = policydb.bool_val_to_struct[bool]->state;
2461 out:
2462 	read_unlock(&policy_rwlock);
2463 	return rc;
2464 }
2465 
2466 static int security_preserve_bools(struct policydb *p)
2467 {
2468 	int rc, nbools = 0, *bvalues = NULL, i;
2469 	char **bnames = NULL;
2470 	struct cond_bool_datum *booldatum;
2471 	struct cond_node *cur;
2472 
2473 	rc = security_get_bools(&nbools, &bnames, &bvalues);
2474 	if (rc)
2475 		goto out;
2476 	for (i = 0; i < nbools; i++) {
2477 		booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2478 		if (booldatum)
2479 			booldatum->state = bvalues[i];
2480 	}
2481 	for (cur = p->cond_list; cur; cur = cur->next) {
2482 		rc = evaluate_cond_node(p, cur);
2483 		if (rc)
2484 			goto out;
2485 	}
2486 
2487 out:
2488 	if (bnames) {
2489 		for (i = 0; i < nbools; i++)
2490 			kfree(bnames[i]);
2491 	}
2492 	kfree(bnames);
2493 	kfree(bvalues);
2494 	return rc;
2495 }
2496 
2497 /*
2498  * security_sid_mls_copy() - computes a new sid based on the given
2499  * sid and the mls portion of mls_sid.
2500  */
2501 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2502 {
2503 	struct context *context1;
2504 	struct context *context2;
2505 	struct context newcon;
2506 	char *s;
2507 	u32 len;
2508 	int rc;
2509 
2510 	rc = 0;
2511 	if (!ss_initialized || !policydb.mls_enabled) {
2512 		*new_sid = sid;
2513 		goto out;
2514 	}
2515 
2516 	context_init(&newcon);
2517 
2518 	read_lock(&policy_rwlock);
2519 
2520 	rc = -EINVAL;
2521 	context1 = sidtab_search(&sidtab, sid);
2522 	if (!context1) {
2523 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2524 			__func__, sid);
2525 		goto out_unlock;
2526 	}
2527 
2528 	rc = -EINVAL;
2529 	context2 = sidtab_search(&sidtab, mls_sid);
2530 	if (!context2) {
2531 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2532 			__func__, mls_sid);
2533 		goto out_unlock;
2534 	}
2535 
2536 	newcon.user = context1->user;
2537 	newcon.role = context1->role;
2538 	newcon.type = context1->type;
2539 	rc = mls_context_cpy(&newcon, context2);
2540 	if (rc)
2541 		goto out_unlock;
2542 
2543 	/* Check the validity of the new context. */
2544 	if (!policydb_context_isvalid(&policydb, &newcon)) {
2545 		rc = convert_context_handle_invalid_context(&newcon);
2546 		if (rc) {
2547 			if (!context_struct_to_string(&newcon, &s, &len)) {
2548 				audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2549 					  "security_sid_mls_copy: invalid context %s", s);
2550 				kfree(s);
2551 			}
2552 			goto out_unlock;
2553 		}
2554 	}
2555 
2556 	rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2557 out_unlock:
2558 	read_unlock(&policy_rwlock);
2559 	context_destroy(&newcon);
2560 out:
2561 	return rc;
2562 }
2563 
2564 /**
2565  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2566  * @nlbl_sid: NetLabel SID
2567  * @nlbl_type: NetLabel labeling protocol type
2568  * @xfrm_sid: XFRM SID
2569  *
2570  * Description:
2571  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2572  * resolved into a single SID it is returned via @peer_sid and the function
2573  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2574  * returns a negative value.  A table summarizing the behavior is below:
2575  *
2576  *                                 | function return |      @sid
2577  *   ------------------------------+-----------------+-----------------
2578  *   no peer labels                |        0        |    SECSID_NULL
2579  *   single peer label             |        0        |    <peer_label>
2580  *   multiple, consistent labels   |        0        |    <peer_label>
2581  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2582  *
2583  */
2584 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2585 				 u32 xfrm_sid,
2586 				 u32 *peer_sid)
2587 {
2588 	int rc;
2589 	struct context *nlbl_ctx;
2590 	struct context *xfrm_ctx;
2591 
2592 	*peer_sid = SECSID_NULL;
2593 
2594 	/* handle the common (which also happens to be the set of easy) cases
2595 	 * right away, these two if statements catch everything involving a
2596 	 * single or absent peer SID/label */
2597 	if (xfrm_sid == SECSID_NULL) {
2598 		*peer_sid = nlbl_sid;
2599 		return 0;
2600 	}
2601 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2602 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2603 	 * is present */
2604 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2605 		*peer_sid = xfrm_sid;
2606 		return 0;
2607 	}
2608 
2609 	/* we don't need to check ss_initialized here since the only way both
2610 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2611 	 * security server was initialized and ss_initialized was true */
2612 	if (!policydb.mls_enabled)
2613 		return 0;
2614 
2615 	read_lock(&policy_rwlock);
2616 
2617 	rc = -EINVAL;
2618 	nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2619 	if (!nlbl_ctx) {
2620 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2621 		       __func__, nlbl_sid);
2622 		goto out;
2623 	}
2624 	rc = -EINVAL;
2625 	xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2626 	if (!xfrm_ctx) {
2627 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2628 		       __func__, xfrm_sid);
2629 		goto out;
2630 	}
2631 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2632 	if (rc)
2633 		goto out;
2634 
2635 	/* at present NetLabel SIDs/labels really only carry MLS
2636 	 * information so if the MLS portion of the NetLabel SID
2637 	 * matches the MLS portion of the labeled XFRM SID/label
2638 	 * then pass along the XFRM SID as it is the most
2639 	 * expressive */
2640 	*peer_sid = xfrm_sid;
2641 out:
2642 	read_unlock(&policy_rwlock);
2643 	return rc;
2644 }
2645 
2646 static int get_classes_callback(void *k, void *d, void *args)
2647 {
2648 	struct class_datum *datum = d;
2649 	char *name = k, **classes = args;
2650 	int value = datum->value - 1;
2651 
2652 	classes[value] = kstrdup(name, GFP_ATOMIC);
2653 	if (!classes[value])
2654 		return -ENOMEM;
2655 
2656 	return 0;
2657 }
2658 
2659 int security_get_classes(char ***classes, int *nclasses)
2660 {
2661 	int rc;
2662 
2663 	read_lock(&policy_rwlock);
2664 
2665 	rc = -ENOMEM;
2666 	*nclasses = policydb.p_classes.nprim;
2667 	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2668 	if (!*classes)
2669 		goto out;
2670 
2671 	rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2672 			*classes);
2673 	if (rc) {
2674 		int i;
2675 		for (i = 0; i < *nclasses; i++)
2676 			kfree((*classes)[i]);
2677 		kfree(*classes);
2678 	}
2679 
2680 out:
2681 	read_unlock(&policy_rwlock);
2682 	return rc;
2683 }
2684 
2685 static int get_permissions_callback(void *k, void *d, void *args)
2686 {
2687 	struct perm_datum *datum = d;
2688 	char *name = k, **perms = args;
2689 	int value = datum->value - 1;
2690 
2691 	perms[value] = kstrdup(name, GFP_ATOMIC);
2692 	if (!perms[value])
2693 		return -ENOMEM;
2694 
2695 	return 0;
2696 }
2697 
2698 int security_get_permissions(char *class, char ***perms, int *nperms)
2699 {
2700 	int rc, i;
2701 	struct class_datum *match;
2702 
2703 	read_lock(&policy_rwlock);
2704 
2705 	rc = -EINVAL;
2706 	match = hashtab_search(policydb.p_classes.table, class);
2707 	if (!match) {
2708 		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2709 			__func__, class);
2710 		goto out;
2711 	}
2712 
2713 	rc = -ENOMEM;
2714 	*nperms = match->permissions.nprim;
2715 	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2716 	if (!*perms)
2717 		goto out;
2718 
2719 	if (match->comdatum) {
2720 		rc = hashtab_map(match->comdatum->permissions.table,
2721 				get_permissions_callback, *perms);
2722 		if (rc)
2723 			goto err;
2724 	}
2725 
2726 	rc = hashtab_map(match->permissions.table, get_permissions_callback,
2727 			*perms);
2728 	if (rc)
2729 		goto err;
2730 
2731 out:
2732 	read_unlock(&policy_rwlock);
2733 	return rc;
2734 
2735 err:
2736 	read_unlock(&policy_rwlock);
2737 	for (i = 0; i < *nperms; i++)
2738 		kfree((*perms)[i]);
2739 	kfree(*perms);
2740 	return rc;
2741 }
2742 
2743 int security_get_reject_unknown(void)
2744 {
2745 	return policydb.reject_unknown;
2746 }
2747 
2748 int security_get_allow_unknown(void)
2749 {
2750 	return policydb.allow_unknown;
2751 }
2752 
2753 /**
2754  * security_policycap_supported - Check for a specific policy capability
2755  * @req_cap: capability
2756  *
2757  * Description:
2758  * This function queries the currently loaded policy to see if it supports the
2759  * capability specified by @req_cap.  Returns true (1) if the capability is
2760  * supported, false (0) if it isn't supported.
2761  *
2762  */
2763 int security_policycap_supported(unsigned int req_cap)
2764 {
2765 	int rc;
2766 
2767 	read_lock(&policy_rwlock);
2768 	rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2769 	read_unlock(&policy_rwlock);
2770 
2771 	return rc;
2772 }
2773 
2774 struct selinux_audit_rule {
2775 	u32 au_seqno;
2776 	struct context au_ctxt;
2777 };
2778 
2779 void selinux_audit_rule_free(void *vrule)
2780 {
2781 	struct selinux_audit_rule *rule = vrule;
2782 
2783 	if (rule) {
2784 		context_destroy(&rule->au_ctxt);
2785 		kfree(rule);
2786 	}
2787 }
2788 
2789 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2790 {
2791 	struct selinux_audit_rule *tmprule;
2792 	struct role_datum *roledatum;
2793 	struct type_datum *typedatum;
2794 	struct user_datum *userdatum;
2795 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2796 	int rc = 0;
2797 
2798 	*rule = NULL;
2799 
2800 	if (!ss_initialized)
2801 		return -EOPNOTSUPP;
2802 
2803 	switch (field) {
2804 	case AUDIT_SUBJ_USER:
2805 	case AUDIT_SUBJ_ROLE:
2806 	case AUDIT_SUBJ_TYPE:
2807 	case AUDIT_OBJ_USER:
2808 	case AUDIT_OBJ_ROLE:
2809 	case AUDIT_OBJ_TYPE:
2810 		/* only 'equals' and 'not equals' fit user, role, and type */
2811 		if (op != Audit_equal && op != Audit_not_equal)
2812 			return -EINVAL;
2813 		break;
2814 	case AUDIT_SUBJ_SEN:
2815 	case AUDIT_SUBJ_CLR:
2816 	case AUDIT_OBJ_LEV_LOW:
2817 	case AUDIT_OBJ_LEV_HIGH:
2818 		/* we do not allow a range, indicated by the presence of '-' */
2819 		if (strchr(rulestr, '-'))
2820 			return -EINVAL;
2821 		break;
2822 	default:
2823 		/* only the above fields are valid */
2824 		return -EINVAL;
2825 	}
2826 
2827 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2828 	if (!tmprule)
2829 		return -ENOMEM;
2830 
2831 	context_init(&tmprule->au_ctxt);
2832 
2833 	read_lock(&policy_rwlock);
2834 
2835 	tmprule->au_seqno = latest_granting;
2836 
2837 	switch (field) {
2838 	case AUDIT_SUBJ_USER:
2839 	case AUDIT_OBJ_USER:
2840 		rc = -EINVAL;
2841 		userdatum = hashtab_search(policydb.p_users.table, rulestr);
2842 		if (!userdatum)
2843 			goto out;
2844 		tmprule->au_ctxt.user = userdatum->value;
2845 		break;
2846 	case AUDIT_SUBJ_ROLE:
2847 	case AUDIT_OBJ_ROLE:
2848 		rc = -EINVAL;
2849 		roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2850 		if (!roledatum)
2851 			goto out;
2852 		tmprule->au_ctxt.role = roledatum->value;
2853 		break;
2854 	case AUDIT_SUBJ_TYPE:
2855 	case AUDIT_OBJ_TYPE:
2856 		rc = -EINVAL;
2857 		typedatum = hashtab_search(policydb.p_types.table, rulestr);
2858 		if (!typedatum)
2859 			goto out;
2860 		tmprule->au_ctxt.type = typedatum->value;
2861 		break;
2862 	case AUDIT_SUBJ_SEN:
2863 	case AUDIT_SUBJ_CLR:
2864 	case AUDIT_OBJ_LEV_LOW:
2865 	case AUDIT_OBJ_LEV_HIGH:
2866 		rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2867 		if (rc)
2868 			goto out;
2869 		break;
2870 	}
2871 	rc = 0;
2872 out:
2873 	read_unlock(&policy_rwlock);
2874 
2875 	if (rc) {
2876 		selinux_audit_rule_free(tmprule);
2877 		tmprule = NULL;
2878 	}
2879 
2880 	*rule = tmprule;
2881 
2882 	return rc;
2883 }
2884 
2885 /* Check to see if the rule contains any selinux fields */
2886 int selinux_audit_rule_known(struct audit_krule *rule)
2887 {
2888 	int i;
2889 
2890 	for (i = 0; i < rule->field_count; i++) {
2891 		struct audit_field *f = &rule->fields[i];
2892 		switch (f->type) {
2893 		case AUDIT_SUBJ_USER:
2894 		case AUDIT_SUBJ_ROLE:
2895 		case AUDIT_SUBJ_TYPE:
2896 		case AUDIT_SUBJ_SEN:
2897 		case AUDIT_SUBJ_CLR:
2898 		case AUDIT_OBJ_USER:
2899 		case AUDIT_OBJ_ROLE:
2900 		case AUDIT_OBJ_TYPE:
2901 		case AUDIT_OBJ_LEV_LOW:
2902 		case AUDIT_OBJ_LEV_HIGH:
2903 			return 1;
2904 		}
2905 	}
2906 
2907 	return 0;
2908 }
2909 
2910 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2911 			     struct audit_context *actx)
2912 {
2913 	struct context *ctxt;
2914 	struct mls_level *level;
2915 	struct selinux_audit_rule *rule = vrule;
2916 	int match = 0;
2917 
2918 	if (!rule) {
2919 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2920 			  "selinux_audit_rule_match: missing rule\n");
2921 		return -ENOENT;
2922 	}
2923 
2924 	read_lock(&policy_rwlock);
2925 
2926 	if (rule->au_seqno < latest_granting) {
2927 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2928 			  "selinux_audit_rule_match: stale rule\n");
2929 		match = -ESTALE;
2930 		goto out;
2931 	}
2932 
2933 	ctxt = sidtab_search(&sidtab, sid);
2934 	if (!ctxt) {
2935 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2936 			  "selinux_audit_rule_match: unrecognized SID %d\n",
2937 			  sid);
2938 		match = -ENOENT;
2939 		goto out;
2940 	}
2941 
2942 	/* a field/op pair that is not caught here will simply fall through
2943 	   without a match */
2944 	switch (field) {
2945 	case AUDIT_SUBJ_USER:
2946 	case AUDIT_OBJ_USER:
2947 		switch (op) {
2948 		case Audit_equal:
2949 			match = (ctxt->user == rule->au_ctxt.user);
2950 			break;
2951 		case Audit_not_equal:
2952 			match = (ctxt->user != rule->au_ctxt.user);
2953 			break;
2954 		}
2955 		break;
2956 	case AUDIT_SUBJ_ROLE:
2957 	case AUDIT_OBJ_ROLE:
2958 		switch (op) {
2959 		case Audit_equal:
2960 			match = (ctxt->role == rule->au_ctxt.role);
2961 			break;
2962 		case Audit_not_equal:
2963 			match = (ctxt->role != rule->au_ctxt.role);
2964 			break;
2965 		}
2966 		break;
2967 	case AUDIT_SUBJ_TYPE:
2968 	case AUDIT_OBJ_TYPE:
2969 		switch (op) {
2970 		case Audit_equal:
2971 			match = (ctxt->type == rule->au_ctxt.type);
2972 			break;
2973 		case Audit_not_equal:
2974 			match = (ctxt->type != rule->au_ctxt.type);
2975 			break;
2976 		}
2977 		break;
2978 	case AUDIT_SUBJ_SEN:
2979 	case AUDIT_SUBJ_CLR:
2980 	case AUDIT_OBJ_LEV_LOW:
2981 	case AUDIT_OBJ_LEV_HIGH:
2982 		level = ((field == AUDIT_SUBJ_SEN ||
2983 			  field == AUDIT_OBJ_LEV_LOW) ?
2984 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
2985 		switch (op) {
2986 		case Audit_equal:
2987 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
2988 					     level);
2989 			break;
2990 		case Audit_not_equal:
2991 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
2992 					      level);
2993 			break;
2994 		case Audit_lt:
2995 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
2996 					       level) &&
2997 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
2998 					       level));
2999 			break;
3000 		case Audit_le:
3001 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3002 					      level);
3003 			break;
3004 		case Audit_gt:
3005 			match = (mls_level_dom(level,
3006 					      &rule->au_ctxt.range.level[0]) &&
3007 				 !mls_level_eq(level,
3008 					       &rule->au_ctxt.range.level[0]));
3009 			break;
3010 		case Audit_ge:
3011 			match = mls_level_dom(level,
3012 					      &rule->au_ctxt.range.level[0]);
3013 			break;
3014 		}
3015 	}
3016 
3017 out:
3018 	read_unlock(&policy_rwlock);
3019 	return match;
3020 }
3021 
3022 static int (*aurule_callback)(void) = audit_update_lsm_rules;
3023 
3024 static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
3025 			       u16 class, u32 perms, u32 *retained)
3026 {
3027 	int err = 0;
3028 
3029 	if (event == AVC_CALLBACK_RESET && aurule_callback)
3030 		err = aurule_callback();
3031 	return err;
3032 }
3033 
3034 static int __init aurule_init(void)
3035 {
3036 	int err;
3037 
3038 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
3039 			       SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
3040 	if (err)
3041 		panic("avc_add_callback() failed, error %d\n", err);
3042 
3043 	return err;
3044 }
3045 __initcall(aurule_init);
3046 
3047 #ifdef CONFIG_NETLABEL
3048 /**
3049  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3050  * @secattr: the NetLabel packet security attributes
3051  * @sid: the SELinux SID
3052  *
3053  * Description:
3054  * Attempt to cache the context in @ctx, which was derived from the packet in
3055  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3056  * already been initialized.
3057  *
3058  */
3059 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3060 				      u32 sid)
3061 {
3062 	u32 *sid_cache;
3063 
3064 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3065 	if (sid_cache == NULL)
3066 		return;
3067 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3068 	if (secattr->cache == NULL) {
3069 		kfree(sid_cache);
3070 		return;
3071 	}
3072 
3073 	*sid_cache = sid;
3074 	secattr->cache->free = kfree;
3075 	secattr->cache->data = sid_cache;
3076 	secattr->flags |= NETLBL_SECATTR_CACHE;
3077 }
3078 
3079 /**
3080  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3081  * @secattr: the NetLabel packet security attributes
3082  * @sid: the SELinux SID
3083  *
3084  * Description:
3085  * Convert the given NetLabel security attributes in @secattr into a
3086  * SELinux SID.  If the @secattr field does not contain a full SELinux
3087  * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3088  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3089  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3090  * conversion for future lookups.  Returns zero on success, negative values on
3091  * failure.
3092  *
3093  */
3094 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3095 				   u32 *sid)
3096 {
3097 	int rc;
3098 	struct context *ctx;
3099 	struct context ctx_new;
3100 
3101 	if (!ss_initialized) {
3102 		*sid = SECSID_NULL;
3103 		return 0;
3104 	}
3105 
3106 	read_lock(&policy_rwlock);
3107 
3108 	if (secattr->flags & NETLBL_SECATTR_CACHE)
3109 		*sid = *(u32 *)secattr->cache->data;
3110 	else if (secattr->flags & NETLBL_SECATTR_SECID)
3111 		*sid = secattr->attr.secid;
3112 	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3113 		rc = -EIDRM;
3114 		ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3115 		if (ctx == NULL)
3116 			goto out;
3117 
3118 		context_init(&ctx_new);
3119 		ctx_new.user = ctx->user;
3120 		ctx_new.role = ctx->role;
3121 		ctx_new.type = ctx->type;
3122 		mls_import_netlbl_lvl(&ctx_new, secattr);
3123 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3124 			rc = ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
3125 						   secattr->attr.mls.cat);
3126 			if (rc)
3127 				goto out;
3128 			memcpy(&ctx_new.range.level[1].cat,
3129 			       &ctx_new.range.level[0].cat,
3130 			       sizeof(ctx_new.range.level[0].cat));
3131 		}
3132 		rc = -EIDRM;
3133 		if (!mls_context_isvalid(&policydb, &ctx_new))
3134 			goto out_free;
3135 
3136 		rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3137 		if (rc)
3138 			goto out_free;
3139 
3140 		security_netlbl_cache_add(secattr, *sid);
3141 
3142 		ebitmap_destroy(&ctx_new.range.level[0].cat);
3143 	} else
3144 		*sid = SECSID_NULL;
3145 
3146 	read_unlock(&policy_rwlock);
3147 	return 0;
3148 out_free:
3149 	ebitmap_destroy(&ctx_new.range.level[0].cat);
3150 out:
3151 	read_unlock(&policy_rwlock);
3152 	return rc;
3153 }
3154 
3155 /**
3156  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3157  * @sid: the SELinux SID
3158  * @secattr: the NetLabel packet security attributes
3159  *
3160  * Description:
3161  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3162  * Returns zero on success, negative values on failure.
3163  *
3164  */
3165 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3166 {
3167 	int rc;
3168 	struct context *ctx;
3169 
3170 	if (!ss_initialized)
3171 		return 0;
3172 
3173 	read_lock(&policy_rwlock);
3174 
3175 	rc = -ENOENT;
3176 	ctx = sidtab_search(&sidtab, sid);
3177 	if (ctx == NULL)
3178 		goto out;
3179 
3180 	rc = -ENOMEM;
3181 	secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3182 				  GFP_ATOMIC);
3183 	if (secattr->domain == NULL)
3184 		goto out;
3185 
3186 	secattr->attr.secid = sid;
3187 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3188 	mls_export_netlbl_lvl(ctx, secattr);
3189 	rc = mls_export_netlbl_cat(ctx, secattr);
3190 out:
3191 	read_unlock(&policy_rwlock);
3192 	return rc;
3193 }
3194 #endif /* CONFIG_NETLABEL */
3195 
3196 /**
3197  * security_read_policy - read the policy.
3198  * @data: binary policy data
3199  * @len: length of data in bytes
3200  *
3201  */
3202 int security_read_policy(void **data, size_t *len)
3203 {
3204 	int rc;
3205 	struct policy_file fp;
3206 
3207 	if (!ss_initialized)
3208 		return -EINVAL;
3209 
3210 	*len = security_policydb_len();
3211 
3212 	*data = vmalloc_user(*len);
3213 	if (!*data)
3214 		return -ENOMEM;
3215 
3216 	fp.data = *data;
3217 	fp.len = *len;
3218 
3219 	read_lock(&policy_rwlock);
3220 	rc = policydb_write(&policydb, &fp);
3221 	read_unlock(&policy_rwlock);
3222 
3223 	if (rc)
3224 		return rc;
3225 
3226 	*len = (unsigned long)fp.data - (unsigned long)*data;
3227 	return 0;
3228 
3229 }
3230