xref: /openbmc/linux/security/selinux/ss/services.c (revision 78c99ba1)
1 /*
2  * Implementation of the security services.
3  *
4  * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5  *	     James Morris <jmorris@redhat.com>
6  *
7  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8  *
9  *	Support for enhanced MLS infrastructure.
10  *	Support for context based audit filters.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *	Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul.moore@hp.com>
17  *
18  *      Added support for NetLabel
19  *      Added support for the policy capability bitmap
20  *
21  * Updated: Chad Sellers <csellers@tresys.com>
22  *
23  *  Added validation of kernel classes and permissions
24  *
25  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
26  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
27  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
28  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
29  *	This program is free software; you can redistribute it and/or modify
30  *	it under the terms of the GNU General Public License as published by
31  *	the Free Software Foundation, version 2.
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/string.h>
36 #include <linux/spinlock.h>
37 #include <linux/rcupdate.h>
38 #include <linux/errno.h>
39 #include <linux/in.h>
40 #include <linux/sched.h>
41 #include <linux/audit.h>
42 #include <linux/mutex.h>
43 #include <linux/selinux.h>
44 #include <net/netlabel.h>
45 
46 #include "flask.h"
47 #include "avc.h"
48 #include "avc_ss.h"
49 #include "security.h"
50 #include "context.h"
51 #include "policydb.h"
52 #include "sidtab.h"
53 #include "services.h"
54 #include "conditional.h"
55 #include "mls.h"
56 #include "objsec.h"
57 #include "netlabel.h"
58 #include "xfrm.h"
59 #include "ebitmap.h"
60 #include "audit.h"
61 
62 extern void selnl_notify_policyload(u32 seqno);
63 unsigned int policydb_loaded_version;
64 
65 int selinux_policycap_netpeer;
66 int selinux_policycap_openperm;
67 
68 /*
69  * This is declared in avc.c
70  */
71 extern const struct selinux_class_perm selinux_class_perm;
72 
73 static DEFINE_RWLOCK(policy_rwlock);
74 
75 static struct sidtab sidtab;
76 struct policydb policydb;
77 int ss_initialized;
78 
79 /*
80  * The largest sequence number that has been used when
81  * providing an access decision to the access vector cache.
82  * The sequence number only changes when a policy change
83  * occurs.
84  */
85 static u32 latest_granting;
86 
87 /* Forward declaration. */
88 static int context_struct_to_string(struct context *context, char **scontext,
89 				    u32 *scontext_len);
90 
91 static int context_struct_compute_av(struct context *scontext,
92 				     struct context *tcontext,
93 				     u16 tclass,
94 				     u32 requested,
95 				     struct av_decision *avd);
96 /*
97  * Return the boolean value of a constraint expression
98  * when it is applied to the specified source and target
99  * security contexts.
100  *
101  * xcontext is a special beast...  It is used by the validatetrans rules
102  * only.  For these rules, scontext is the context before the transition,
103  * tcontext is the context after the transition, and xcontext is the context
104  * of the process performing the transition.  All other callers of
105  * constraint_expr_eval should pass in NULL for xcontext.
106  */
107 static int constraint_expr_eval(struct context *scontext,
108 				struct context *tcontext,
109 				struct context *xcontext,
110 				struct constraint_expr *cexpr)
111 {
112 	u32 val1, val2;
113 	struct context *c;
114 	struct role_datum *r1, *r2;
115 	struct mls_level *l1, *l2;
116 	struct constraint_expr *e;
117 	int s[CEXPR_MAXDEPTH];
118 	int sp = -1;
119 
120 	for (e = cexpr; e; e = e->next) {
121 		switch (e->expr_type) {
122 		case CEXPR_NOT:
123 			BUG_ON(sp < 0);
124 			s[sp] = !s[sp];
125 			break;
126 		case CEXPR_AND:
127 			BUG_ON(sp < 1);
128 			sp--;
129 			s[sp] &= s[sp+1];
130 			break;
131 		case CEXPR_OR:
132 			BUG_ON(sp < 1);
133 			sp--;
134 			s[sp] |= s[sp+1];
135 			break;
136 		case CEXPR_ATTR:
137 			if (sp == (CEXPR_MAXDEPTH-1))
138 				return 0;
139 			switch (e->attr) {
140 			case CEXPR_USER:
141 				val1 = scontext->user;
142 				val2 = tcontext->user;
143 				break;
144 			case CEXPR_TYPE:
145 				val1 = scontext->type;
146 				val2 = tcontext->type;
147 				break;
148 			case CEXPR_ROLE:
149 				val1 = scontext->role;
150 				val2 = tcontext->role;
151 				r1 = policydb.role_val_to_struct[val1 - 1];
152 				r2 = policydb.role_val_to_struct[val2 - 1];
153 				switch (e->op) {
154 				case CEXPR_DOM:
155 					s[++sp] = ebitmap_get_bit(&r1->dominates,
156 								  val2 - 1);
157 					continue;
158 				case CEXPR_DOMBY:
159 					s[++sp] = ebitmap_get_bit(&r2->dominates,
160 								  val1 - 1);
161 					continue;
162 				case CEXPR_INCOMP:
163 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
164 								    val2 - 1) &&
165 						   !ebitmap_get_bit(&r2->dominates,
166 								    val1 - 1));
167 					continue;
168 				default:
169 					break;
170 				}
171 				break;
172 			case CEXPR_L1L2:
173 				l1 = &(scontext->range.level[0]);
174 				l2 = &(tcontext->range.level[0]);
175 				goto mls_ops;
176 			case CEXPR_L1H2:
177 				l1 = &(scontext->range.level[0]);
178 				l2 = &(tcontext->range.level[1]);
179 				goto mls_ops;
180 			case CEXPR_H1L2:
181 				l1 = &(scontext->range.level[1]);
182 				l2 = &(tcontext->range.level[0]);
183 				goto mls_ops;
184 			case CEXPR_H1H2:
185 				l1 = &(scontext->range.level[1]);
186 				l2 = &(tcontext->range.level[1]);
187 				goto mls_ops;
188 			case CEXPR_L1H1:
189 				l1 = &(scontext->range.level[0]);
190 				l2 = &(scontext->range.level[1]);
191 				goto mls_ops;
192 			case CEXPR_L2H2:
193 				l1 = &(tcontext->range.level[0]);
194 				l2 = &(tcontext->range.level[1]);
195 				goto mls_ops;
196 mls_ops:
197 			switch (e->op) {
198 			case CEXPR_EQ:
199 				s[++sp] = mls_level_eq(l1, l2);
200 				continue;
201 			case CEXPR_NEQ:
202 				s[++sp] = !mls_level_eq(l1, l2);
203 				continue;
204 			case CEXPR_DOM:
205 				s[++sp] = mls_level_dom(l1, l2);
206 				continue;
207 			case CEXPR_DOMBY:
208 				s[++sp] = mls_level_dom(l2, l1);
209 				continue;
210 			case CEXPR_INCOMP:
211 				s[++sp] = mls_level_incomp(l2, l1);
212 				continue;
213 			default:
214 				BUG();
215 				return 0;
216 			}
217 			break;
218 			default:
219 				BUG();
220 				return 0;
221 			}
222 
223 			switch (e->op) {
224 			case CEXPR_EQ:
225 				s[++sp] = (val1 == val2);
226 				break;
227 			case CEXPR_NEQ:
228 				s[++sp] = (val1 != val2);
229 				break;
230 			default:
231 				BUG();
232 				return 0;
233 			}
234 			break;
235 		case CEXPR_NAMES:
236 			if (sp == (CEXPR_MAXDEPTH-1))
237 				return 0;
238 			c = scontext;
239 			if (e->attr & CEXPR_TARGET)
240 				c = tcontext;
241 			else if (e->attr & CEXPR_XTARGET) {
242 				c = xcontext;
243 				if (!c) {
244 					BUG();
245 					return 0;
246 				}
247 			}
248 			if (e->attr & CEXPR_USER)
249 				val1 = c->user;
250 			else if (e->attr & CEXPR_ROLE)
251 				val1 = c->role;
252 			else if (e->attr & CEXPR_TYPE)
253 				val1 = c->type;
254 			else {
255 				BUG();
256 				return 0;
257 			}
258 
259 			switch (e->op) {
260 			case CEXPR_EQ:
261 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
262 				break;
263 			case CEXPR_NEQ:
264 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
265 				break;
266 			default:
267 				BUG();
268 				return 0;
269 			}
270 			break;
271 		default:
272 			BUG();
273 			return 0;
274 		}
275 	}
276 
277 	BUG_ON(sp != 0);
278 	return s[0];
279 }
280 
281 /*
282  * security_boundary_permission - drops violated permissions
283  * on boundary constraint.
284  */
285 static void type_attribute_bounds_av(struct context *scontext,
286 				     struct context *tcontext,
287 				     u16 tclass,
288 				     u32 requested,
289 				     struct av_decision *avd)
290 {
291 	struct context lo_scontext;
292 	struct context lo_tcontext;
293 	struct av_decision lo_avd;
294 	struct type_datum *source
295 		= policydb.type_val_to_struct[scontext->type - 1];
296 	struct type_datum *target
297 		= policydb.type_val_to_struct[tcontext->type - 1];
298 	u32 masked = 0;
299 
300 	if (source->bounds) {
301 		memset(&lo_avd, 0, sizeof(lo_avd));
302 
303 		memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
304 		lo_scontext.type = source->bounds;
305 
306 		context_struct_compute_av(&lo_scontext,
307 					  tcontext,
308 					  tclass,
309 					  requested,
310 					  &lo_avd);
311 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
312 			return;		/* no masked permission */
313 		masked = ~lo_avd.allowed & avd->allowed;
314 	}
315 
316 	if (target->bounds) {
317 		memset(&lo_avd, 0, sizeof(lo_avd));
318 
319 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
320 		lo_tcontext.type = target->bounds;
321 
322 		context_struct_compute_av(scontext,
323 					  &lo_tcontext,
324 					  tclass,
325 					  requested,
326 					  &lo_avd);
327 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
328 			return;		/* no masked permission */
329 		masked = ~lo_avd.allowed & avd->allowed;
330 	}
331 
332 	if (source->bounds && target->bounds) {
333 		memset(&lo_avd, 0, sizeof(lo_avd));
334 		/*
335 		 * lo_scontext and lo_tcontext are already
336 		 * set up.
337 		 */
338 
339 		context_struct_compute_av(&lo_scontext,
340 					  &lo_tcontext,
341 					  tclass,
342 					  requested,
343 					  &lo_avd);
344 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
345 			return;		/* no masked permission */
346 		masked = ~lo_avd.allowed & avd->allowed;
347 	}
348 
349 	if (masked) {
350 		struct audit_buffer *ab;
351 		char *stype_name
352 			= policydb.p_type_val_to_name[source->value - 1];
353 		char *ttype_name
354 			= policydb.p_type_val_to_name[target->value - 1];
355 		char *tclass_name
356 			= policydb.p_class_val_to_name[tclass - 1];
357 
358 		/* mask violated permissions */
359 		avd->allowed &= ~masked;
360 
361 		/* notice to userspace via audit message */
362 		ab = audit_log_start(current->audit_context,
363 				     GFP_ATOMIC, AUDIT_SELINUX_ERR);
364 		if (!ab)
365 			return;
366 
367 		audit_log_format(ab, "av boundary violation: "
368 				 "source=%s target=%s tclass=%s",
369 				 stype_name, ttype_name, tclass_name);
370 		avc_dump_av(ab, tclass, masked);
371 		audit_log_end(ab);
372 	}
373 }
374 
375 /*
376  * Compute access vectors based on a context structure pair for
377  * the permissions in a particular class.
378  */
379 static int context_struct_compute_av(struct context *scontext,
380 				     struct context *tcontext,
381 				     u16 tclass,
382 				     u32 requested,
383 				     struct av_decision *avd)
384 {
385 	struct constraint_node *constraint;
386 	struct role_allow *ra;
387 	struct avtab_key avkey;
388 	struct avtab_node *node;
389 	struct class_datum *tclass_datum;
390 	struct ebitmap *sattr, *tattr;
391 	struct ebitmap_node *snode, *tnode;
392 	const struct selinux_class_perm *kdefs = &selinux_class_perm;
393 	unsigned int i, j;
394 
395 	/*
396 	 * Remap extended Netlink classes for old policy versions.
397 	 * Do this here rather than socket_type_to_security_class()
398 	 * in case a newer policy version is loaded, allowing sockets
399 	 * to remain in the correct class.
400 	 */
401 	if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
402 		if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
403 		    tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
404 			tclass = SECCLASS_NETLINK_SOCKET;
405 
406 	/*
407 	 * Initialize the access vectors to the default values.
408 	 */
409 	avd->allowed = 0;
410 	avd->auditallow = 0;
411 	avd->auditdeny = 0xffffffff;
412 	avd->seqno = latest_granting;
413 	avd->flags = 0;
414 
415 	/*
416 	 * Check for all the invalid cases.
417 	 * - tclass 0
418 	 * - tclass > policy and > kernel
419 	 * - tclass > policy but is a userspace class
420 	 * - tclass > policy but we do not allow unknowns
421 	 */
422 	if (unlikely(!tclass))
423 		goto inval_class;
424 	if (unlikely(tclass > policydb.p_classes.nprim))
425 		if (tclass > kdefs->cts_len ||
426 		    !kdefs->class_to_string[tclass] ||
427 		    !policydb.allow_unknown)
428 			goto inval_class;
429 
430 	/*
431 	 * Kernel class and we allow unknown so pad the allow decision
432 	 * the pad will be all 1 for unknown classes.
433 	 */
434 	if (tclass <= kdefs->cts_len && policydb.allow_unknown)
435 		avd->allowed = policydb.undefined_perms[tclass - 1];
436 
437 	/*
438 	 * Not in policy. Since decision is completed (all 1 or all 0) return.
439 	 */
440 	if (unlikely(tclass > policydb.p_classes.nprim))
441 		return 0;
442 
443 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
444 
445 	/*
446 	 * If a specific type enforcement rule was defined for
447 	 * this permission check, then use it.
448 	 */
449 	avkey.target_class = tclass;
450 	avkey.specified = AVTAB_AV;
451 	sattr = &policydb.type_attr_map[scontext->type - 1];
452 	tattr = &policydb.type_attr_map[tcontext->type - 1];
453 	ebitmap_for_each_positive_bit(sattr, snode, i) {
454 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
455 			avkey.source_type = i + 1;
456 			avkey.target_type = j + 1;
457 			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
458 			     node;
459 			     node = avtab_search_node_next(node, avkey.specified)) {
460 				if (node->key.specified == AVTAB_ALLOWED)
461 					avd->allowed |= node->datum.data;
462 				else if (node->key.specified == AVTAB_AUDITALLOW)
463 					avd->auditallow |= node->datum.data;
464 				else if (node->key.specified == AVTAB_AUDITDENY)
465 					avd->auditdeny &= node->datum.data;
466 			}
467 
468 			/* Check conditional av table for additional permissions */
469 			cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
470 
471 		}
472 	}
473 
474 	/*
475 	 * Remove any permissions prohibited by a constraint (this includes
476 	 * the MLS policy).
477 	 */
478 	constraint = tclass_datum->constraints;
479 	while (constraint) {
480 		if ((constraint->permissions & (avd->allowed)) &&
481 		    !constraint_expr_eval(scontext, tcontext, NULL,
482 					  constraint->expr)) {
483 			avd->allowed = (avd->allowed) & ~(constraint->permissions);
484 		}
485 		constraint = constraint->next;
486 	}
487 
488 	/*
489 	 * If checking process transition permission and the
490 	 * role is changing, then check the (current_role, new_role)
491 	 * pair.
492 	 */
493 	if (tclass == SECCLASS_PROCESS &&
494 	    (avd->allowed & (PROCESS__TRANSITION | PROCESS__DYNTRANSITION)) &&
495 	    scontext->role != tcontext->role) {
496 		for (ra = policydb.role_allow; ra; ra = ra->next) {
497 			if (scontext->role == ra->role &&
498 			    tcontext->role == ra->new_role)
499 				break;
500 		}
501 		if (!ra)
502 			avd->allowed = (avd->allowed) & ~(PROCESS__TRANSITION |
503 							PROCESS__DYNTRANSITION);
504 	}
505 
506 	/*
507 	 * If the given source and target types have boundary
508 	 * constraint, lazy checks have to mask any violated
509 	 * permission and notice it to userspace via audit.
510 	 */
511 	type_attribute_bounds_av(scontext, tcontext,
512 				 tclass, requested, avd);
513 
514 	return 0;
515 
516 inval_class:
517 	if (!tclass || tclass > kdefs->cts_len ||
518 	    !kdefs->class_to_string[tclass]) {
519 		if (printk_ratelimit())
520 			printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
521 			       __func__, tclass);
522 		return -EINVAL;
523 	}
524 
525 	/*
526 	 * Known to the kernel, but not to the policy.
527 	 * Handle as a denial (allowed is 0).
528 	 */
529 	return 0;
530 }
531 
532 static int security_validtrans_handle_fail(struct context *ocontext,
533 					   struct context *ncontext,
534 					   struct context *tcontext,
535 					   u16 tclass)
536 {
537 	char *o = NULL, *n = NULL, *t = NULL;
538 	u32 olen, nlen, tlen;
539 
540 	if (context_struct_to_string(ocontext, &o, &olen) < 0)
541 		goto out;
542 	if (context_struct_to_string(ncontext, &n, &nlen) < 0)
543 		goto out;
544 	if (context_struct_to_string(tcontext, &t, &tlen) < 0)
545 		goto out;
546 	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
547 		  "security_validate_transition:  denied for"
548 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
549 		  o, n, t, policydb.p_class_val_to_name[tclass-1]);
550 out:
551 	kfree(o);
552 	kfree(n);
553 	kfree(t);
554 
555 	if (!selinux_enforcing)
556 		return 0;
557 	return -EPERM;
558 }
559 
560 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
561 				 u16 tclass)
562 {
563 	struct context *ocontext;
564 	struct context *ncontext;
565 	struct context *tcontext;
566 	struct class_datum *tclass_datum;
567 	struct constraint_node *constraint;
568 	int rc = 0;
569 
570 	if (!ss_initialized)
571 		return 0;
572 
573 	read_lock(&policy_rwlock);
574 
575 	/*
576 	 * Remap extended Netlink classes for old policy versions.
577 	 * Do this here rather than socket_type_to_security_class()
578 	 * in case a newer policy version is loaded, allowing sockets
579 	 * to remain in the correct class.
580 	 */
581 	if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
582 		if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
583 		    tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
584 			tclass = SECCLASS_NETLINK_SOCKET;
585 
586 	if (!tclass || tclass > policydb.p_classes.nprim) {
587 		printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
588 			__func__, tclass);
589 		rc = -EINVAL;
590 		goto out;
591 	}
592 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
593 
594 	ocontext = sidtab_search(&sidtab, oldsid);
595 	if (!ocontext) {
596 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
597 			__func__, oldsid);
598 		rc = -EINVAL;
599 		goto out;
600 	}
601 
602 	ncontext = sidtab_search(&sidtab, newsid);
603 	if (!ncontext) {
604 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
605 			__func__, newsid);
606 		rc = -EINVAL;
607 		goto out;
608 	}
609 
610 	tcontext = sidtab_search(&sidtab, tasksid);
611 	if (!tcontext) {
612 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
613 			__func__, tasksid);
614 		rc = -EINVAL;
615 		goto out;
616 	}
617 
618 	constraint = tclass_datum->validatetrans;
619 	while (constraint) {
620 		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
621 					  constraint->expr)) {
622 			rc = security_validtrans_handle_fail(ocontext, ncontext,
623 							     tcontext, tclass);
624 			goto out;
625 		}
626 		constraint = constraint->next;
627 	}
628 
629 out:
630 	read_unlock(&policy_rwlock);
631 	return rc;
632 }
633 
634 /*
635  * security_bounded_transition - check whether the given
636  * transition is directed to bounded, or not.
637  * It returns 0, if @newsid is bounded by @oldsid.
638  * Otherwise, it returns error code.
639  *
640  * @oldsid : current security identifier
641  * @newsid : destinated security identifier
642  */
643 int security_bounded_transition(u32 old_sid, u32 new_sid)
644 {
645 	struct context *old_context, *new_context;
646 	struct type_datum *type;
647 	int index;
648 	int rc = -EINVAL;
649 
650 	read_lock(&policy_rwlock);
651 
652 	old_context = sidtab_search(&sidtab, old_sid);
653 	if (!old_context) {
654 		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
655 		       __func__, old_sid);
656 		goto out;
657 	}
658 
659 	new_context = sidtab_search(&sidtab, new_sid);
660 	if (!new_context) {
661 		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
662 		       __func__, new_sid);
663 		goto out;
664 	}
665 
666 	/* type/domain unchaned */
667 	if (old_context->type == new_context->type) {
668 		rc = 0;
669 		goto out;
670 	}
671 
672 	index = new_context->type;
673 	while (true) {
674 		type = policydb.type_val_to_struct[index - 1];
675 		BUG_ON(!type);
676 
677 		/* not bounded anymore */
678 		if (!type->bounds) {
679 			rc = -EPERM;
680 			break;
681 		}
682 
683 		/* @newsid is bounded by @oldsid */
684 		if (type->bounds == old_context->type) {
685 			rc = 0;
686 			break;
687 		}
688 		index = type->bounds;
689 	}
690 out:
691 	read_unlock(&policy_rwlock);
692 
693 	return rc;
694 }
695 
696 
697 /**
698  * security_compute_av - Compute access vector decisions.
699  * @ssid: source security identifier
700  * @tsid: target security identifier
701  * @tclass: target security class
702  * @requested: requested permissions
703  * @avd: access vector decisions
704  *
705  * Compute a set of access vector decisions based on the
706  * SID pair (@ssid, @tsid) for the permissions in @tclass.
707  * Return -%EINVAL if any of the parameters are invalid or %0
708  * if the access vector decisions were computed successfully.
709  */
710 int security_compute_av(u32 ssid,
711 			u32 tsid,
712 			u16 tclass,
713 			u32 requested,
714 			struct av_decision *avd)
715 {
716 	struct context *scontext = NULL, *tcontext = NULL;
717 	int rc = 0;
718 
719 	if (!ss_initialized) {
720 		avd->allowed = 0xffffffff;
721 		avd->auditallow = 0;
722 		avd->auditdeny = 0xffffffff;
723 		avd->seqno = latest_granting;
724 		return 0;
725 	}
726 
727 	read_lock(&policy_rwlock);
728 
729 	scontext = sidtab_search(&sidtab, ssid);
730 	if (!scontext) {
731 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
732 		       __func__, ssid);
733 		rc = -EINVAL;
734 		goto out;
735 	}
736 	tcontext = sidtab_search(&sidtab, tsid);
737 	if (!tcontext) {
738 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
739 		       __func__, tsid);
740 		rc = -EINVAL;
741 		goto out;
742 	}
743 
744 	rc = context_struct_compute_av(scontext, tcontext, tclass,
745 				       requested, avd);
746 
747 	/* permissive domain? */
748 	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
749 	    avd->flags |= AVD_FLAGS_PERMISSIVE;
750 out:
751 	read_unlock(&policy_rwlock);
752 	return rc;
753 }
754 
755 /*
756  * Write the security context string representation of
757  * the context structure `context' into a dynamically
758  * allocated string of the correct size.  Set `*scontext'
759  * to point to this string and set `*scontext_len' to
760  * the length of the string.
761  */
762 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
763 {
764 	char *scontextp;
765 
766 	*scontext = NULL;
767 	*scontext_len = 0;
768 
769 	if (context->len) {
770 		*scontext_len = context->len;
771 		*scontext = kstrdup(context->str, GFP_ATOMIC);
772 		if (!(*scontext))
773 			return -ENOMEM;
774 		return 0;
775 	}
776 
777 	/* Compute the size of the context. */
778 	*scontext_len += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1;
779 	*scontext_len += strlen(policydb.p_role_val_to_name[context->role - 1]) + 1;
780 	*scontext_len += strlen(policydb.p_type_val_to_name[context->type - 1]) + 1;
781 	*scontext_len += mls_compute_context_len(context);
782 
783 	/* Allocate space for the context; caller must free this space. */
784 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
785 	if (!scontextp)
786 		return -ENOMEM;
787 	*scontext = scontextp;
788 
789 	/*
790 	 * Copy the user name, role name and type name into the context.
791 	 */
792 	sprintf(scontextp, "%s:%s:%s",
793 		policydb.p_user_val_to_name[context->user - 1],
794 		policydb.p_role_val_to_name[context->role - 1],
795 		policydb.p_type_val_to_name[context->type - 1]);
796 	scontextp += strlen(policydb.p_user_val_to_name[context->user - 1]) +
797 		     1 + strlen(policydb.p_role_val_to_name[context->role - 1]) +
798 		     1 + strlen(policydb.p_type_val_to_name[context->type - 1]);
799 
800 	mls_sid_to_context(context, &scontextp);
801 
802 	*scontextp = 0;
803 
804 	return 0;
805 }
806 
807 #include "initial_sid_to_string.h"
808 
809 const char *security_get_initial_sid_context(u32 sid)
810 {
811 	if (unlikely(sid > SECINITSID_NUM))
812 		return NULL;
813 	return initial_sid_to_string[sid];
814 }
815 
816 static int security_sid_to_context_core(u32 sid, char **scontext,
817 					u32 *scontext_len, int force)
818 {
819 	struct context *context;
820 	int rc = 0;
821 
822 	*scontext = NULL;
823 	*scontext_len  = 0;
824 
825 	if (!ss_initialized) {
826 		if (sid <= SECINITSID_NUM) {
827 			char *scontextp;
828 
829 			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
830 			scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
831 			if (!scontextp) {
832 				rc = -ENOMEM;
833 				goto out;
834 			}
835 			strcpy(scontextp, initial_sid_to_string[sid]);
836 			*scontext = scontextp;
837 			goto out;
838 		}
839 		printk(KERN_ERR "SELinux: %s:  called before initial "
840 		       "load_policy on unknown SID %d\n", __func__, sid);
841 		rc = -EINVAL;
842 		goto out;
843 	}
844 	read_lock(&policy_rwlock);
845 	if (force)
846 		context = sidtab_search_force(&sidtab, sid);
847 	else
848 		context = sidtab_search(&sidtab, sid);
849 	if (!context) {
850 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
851 			__func__, sid);
852 		rc = -EINVAL;
853 		goto out_unlock;
854 	}
855 	rc = context_struct_to_string(context, scontext, scontext_len);
856 out_unlock:
857 	read_unlock(&policy_rwlock);
858 out:
859 	return rc;
860 
861 }
862 
863 /**
864  * security_sid_to_context - Obtain a context for a given SID.
865  * @sid: security identifier, SID
866  * @scontext: security context
867  * @scontext_len: length in bytes
868  *
869  * Write the string representation of the context associated with @sid
870  * into a dynamically allocated string of the correct size.  Set @scontext
871  * to point to this string and set @scontext_len to the length of the string.
872  */
873 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
874 {
875 	return security_sid_to_context_core(sid, scontext, scontext_len, 0);
876 }
877 
878 int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
879 {
880 	return security_sid_to_context_core(sid, scontext, scontext_len, 1);
881 }
882 
883 /*
884  * Caveat:  Mutates scontext.
885  */
886 static int string_to_context_struct(struct policydb *pol,
887 				    struct sidtab *sidtabp,
888 				    char *scontext,
889 				    u32 scontext_len,
890 				    struct context *ctx,
891 				    u32 def_sid)
892 {
893 	struct role_datum *role;
894 	struct type_datum *typdatum;
895 	struct user_datum *usrdatum;
896 	char *scontextp, *p, oldc;
897 	int rc = 0;
898 
899 	context_init(ctx);
900 
901 	/* Parse the security context. */
902 
903 	rc = -EINVAL;
904 	scontextp = (char *) scontext;
905 
906 	/* Extract the user. */
907 	p = scontextp;
908 	while (*p && *p != ':')
909 		p++;
910 
911 	if (*p == 0)
912 		goto out;
913 
914 	*p++ = 0;
915 
916 	usrdatum = hashtab_search(pol->p_users.table, scontextp);
917 	if (!usrdatum)
918 		goto out;
919 
920 	ctx->user = usrdatum->value;
921 
922 	/* Extract role. */
923 	scontextp = p;
924 	while (*p && *p != ':')
925 		p++;
926 
927 	if (*p == 0)
928 		goto out;
929 
930 	*p++ = 0;
931 
932 	role = hashtab_search(pol->p_roles.table, scontextp);
933 	if (!role)
934 		goto out;
935 	ctx->role = role->value;
936 
937 	/* Extract type. */
938 	scontextp = p;
939 	while (*p && *p != ':')
940 		p++;
941 	oldc = *p;
942 	*p++ = 0;
943 
944 	typdatum = hashtab_search(pol->p_types.table, scontextp);
945 	if (!typdatum || typdatum->attribute)
946 		goto out;
947 
948 	ctx->type = typdatum->value;
949 
950 	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
951 	if (rc)
952 		goto out;
953 
954 	if ((p - scontext) < scontext_len) {
955 		rc = -EINVAL;
956 		goto out;
957 	}
958 
959 	/* Check the validity of the new context. */
960 	if (!policydb_context_isvalid(pol, ctx)) {
961 		rc = -EINVAL;
962 		goto out;
963 	}
964 	rc = 0;
965 out:
966 	if (rc)
967 		context_destroy(ctx);
968 	return rc;
969 }
970 
971 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
972 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
973 					int force)
974 {
975 	char *scontext2, *str = NULL;
976 	struct context context;
977 	int rc = 0;
978 
979 	if (!ss_initialized) {
980 		int i;
981 
982 		for (i = 1; i < SECINITSID_NUM; i++) {
983 			if (!strcmp(initial_sid_to_string[i], scontext)) {
984 				*sid = i;
985 				return 0;
986 			}
987 		}
988 		*sid = SECINITSID_KERNEL;
989 		return 0;
990 	}
991 	*sid = SECSID_NULL;
992 
993 	/* Copy the string so that we can modify the copy as we parse it. */
994 	scontext2 = kmalloc(scontext_len+1, gfp_flags);
995 	if (!scontext2)
996 		return -ENOMEM;
997 	memcpy(scontext2, scontext, scontext_len);
998 	scontext2[scontext_len] = 0;
999 
1000 	if (force) {
1001 		/* Save another copy for storing in uninterpreted form */
1002 		str = kstrdup(scontext2, gfp_flags);
1003 		if (!str) {
1004 			kfree(scontext2);
1005 			return -ENOMEM;
1006 		}
1007 	}
1008 
1009 	read_lock(&policy_rwlock);
1010 	rc = string_to_context_struct(&policydb, &sidtab,
1011 				      scontext2, scontext_len,
1012 				      &context, def_sid);
1013 	if (rc == -EINVAL && force) {
1014 		context.str = str;
1015 		context.len = scontext_len;
1016 		str = NULL;
1017 	} else if (rc)
1018 		goto out;
1019 	rc = sidtab_context_to_sid(&sidtab, &context, sid);
1020 	context_destroy(&context);
1021 out:
1022 	read_unlock(&policy_rwlock);
1023 	kfree(scontext2);
1024 	kfree(str);
1025 	return rc;
1026 }
1027 
1028 /**
1029  * security_context_to_sid - Obtain a SID for a given security context.
1030  * @scontext: security context
1031  * @scontext_len: length in bytes
1032  * @sid: security identifier, SID
1033  *
1034  * Obtains a SID associated with the security context that
1035  * has the string representation specified by @scontext.
1036  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1037  * memory is available, or 0 on success.
1038  */
1039 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
1040 {
1041 	return security_context_to_sid_core(scontext, scontext_len,
1042 					    sid, SECSID_NULL, GFP_KERNEL, 0);
1043 }
1044 
1045 /**
1046  * security_context_to_sid_default - Obtain a SID for a given security context,
1047  * falling back to specified default if needed.
1048  *
1049  * @scontext: security context
1050  * @scontext_len: length in bytes
1051  * @sid: security identifier, SID
1052  * @def_sid: default SID to assign on error
1053  *
1054  * Obtains a SID associated with the security context that
1055  * has the string representation specified by @scontext.
1056  * The default SID is passed to the MLS layer to be used to allow
1057  * kernel labeling of the MLS field if the MLS field is not present
1058  * (for upgrading to MLS without full relabel).
1059  * Implicitly forces adding of the context even if it cannot be mapped yet.
1060  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1061  * memory is available, or 0 on success.
1062  */
1063 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1064 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1065 {
1066 	return security_context_to_sid_core(scontext, scontext_len,
1067 					    sid, def_sid, gfp_flags, 1);
1068 }
1069 
1070 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1071 				  u32 *sid)
1072 {
1073 	return security_context_to_sid_core(scontext, scontext_len,
1074 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1075 }
1076 
1077 static int compute_sid_handle_invalid_context(
1078 	struct context *scontext,
1079 	struct context *tcontext,
1080 	u16 tclass,
1081 	struct context *newcontext)
1082 {
1083 	char *s = NULL, *t = NULL, *n = NULL;
1084 	u32 slen, tlen, nlen;
1085 
1086 	if (context_struct_to_string(scontext, &s, &slen) < 0)
1087 		goto out;
1088 	if (context_struct_to_string(tcontext, &t, &tlen) < 0)
1089 		goto out;
1090 	if (context_struct_to_string(newcontext, &n, &nlen) < 0)
1091 		goto out;
1092 	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1093 		  "security_compute_sid:  invalid context %s"
1094 		  " for scontext=%s"
1095 		  " tcontext=%s"
1096 		  " tclass=%s",
1097 		  n, s, t, policydb.p_class_val_to_name[tclass-1]);
1098 out:
1099 	kfree(s);
1100 	kfree(t);
1101 	kfree(n);
1102 	if (!selinux_enforcing)
1103 		return 0;
1104 	return -EACCES;
1105 }
1106 
1107 static int security_compute_sid(u32 ssid,
1108 				u32 tsid,
1109 				u16 tclass,
1110 				u32 specified,
1111 				u32 *out_sid)
1112 {
1113 	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1114 	struct role_trans *roletr = NULL;
1115 	struct avtab_key avkey;
1116 	struct avtab_datum *avdatum;
1117 	struct avtab_node *node;
1118 	int rc = 0;
1119 
1120 	if (!ss_initialized) {
1121 		switch (tclass) {
1122 		case SECCLASS_PROCESS:
1123 			*out_sid = ssid;
1124 			break;
1125 		default:
1126 			*out_sid = tsid;
1127 			break;
1128 		}
1129 		goto out;
1130 	}
1131 
1132 	context_init(&newcontext);
1133 
1134 	read_lock(&policy_rwlock);
1135 
1136 	scontext = sidtab_search(&sidtab, ssid);
1137 	if (!scontext) {
1138 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1139 		       __func__, ssid);
1140 		rc = -EINVAL;
1141 		goto out_unlock;
1142 	}
1143 	tcontext = sidtab_search(&sidtab, tsid);
1144 	if (!tcontext) {
1145 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1146 		       __func__, tsid);
1147 		rc = -EINVAL;
1148 		goto out_unlock;
1149 	}
1150 
1151 	/* Set the user identity. */
1152 	switch (specified) {
1153 	case AVTAB_TRANSITION:
1154 	case AVTAB_CHANGE:
1155 		/* Use the process user identity. */
1156 		newcontext.user = scontext->user;
1157 		break;
1158 	case AVTAB_MEMBER:
1159 		/* Use the related object owner. */
1160 		newcontext.user = tcontext->user;
1161 		break;
1162 	}
1163 
1164 	/* Set the role and type to default values. */
1165 	switch (tclass) {
1166 	case SECCLASS_PROCESS:
1167 		/* Use the current role and type of process. */
1168 		newcontext.role = scontext->role;
1169 		newcontext.type = scontext->type;
1170 		break;
1171 	default:
1172 		/* Use the well-defined object role. */
1173 		newcontext.role = OBJECT_R_VAL;
1174 		/* Use the type of the related object. */
1175 		newcontext.type = tcontext->type;
1176 	}
1177 
1178 	/* Look for a type transition/member/change rule. */
1179 	avkey.source_type = scontext->type;
1180 	avkey.target_type = tcontext->type;
1181 	avkey.target_class = tclass;
1182 	avkey.specified = specified;
1183 	avdatum = avtab_search(&policydb.te_avtab, &avkey);
1184 
1185 	/* If no permanent rule, also check for enabled conditional rules */
1186 	if (!avdatum) {
1187 		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1188 		for (; node; node = avtab_search_node_next(node, specified)) {
1189 			if (node->key.specified & AVTAB_ENABLED) {
1190 				avdatum = &node->datum;
1191 				break;
1192 			}
1193 		}
1194 	}
1195 
1196 	if (avdatum) {
1197 		/* Use the type from the type transition/member/change rule. */
1198 		newcontext.type = avdatum->data;
1199 	}
1200 
1201 	/* Check for class-specific changes. */
1202 	switch (tclass) {
1203 	case SECCLASS_PROCESS:
1204 		if (specified & AVTAB_TRANSITION) {
1205 			/* Look for a role transition rule. */
1206 			for (roletr = policydb.role_tr; roletr;
1207 			     roletr = roletr->next) {
1208 				if (roletr->role == scontext->role &&
1209 				    roletr->type == tcontext->type) {
1210 					/* Use the role transition rule. */
1211 					newcontext.role = roletr->new_role;
1212 					break;
1213 				}
1214 			}
1215 		}
1216 		break;
1217 	default:
1218 		break;
1219 	}
1220 
1221 	/* Set the MLS attributes.
1222 	   This is done last because it may allocate memory. */
1223 	rc = mls_compute_sid(scontext, tcontext, tclass, specified, &newcontext);
1224 	if (rc)
1225 		goto out_unlock;
1226 
1227 	/* Check the validity of the context. */
1228 	if (!policydb_context_isvalid(&policydb, &newcontext)) {
1229 		rc = compute_sid_handle_invalid_context(scontext,
1230 							tcontext,
1231 							tclass,
1232 							&newcontext);
1233 		if (rc)
1234 			goto out_unlock;
1235 	}
1236 	/* Obtain the sid for the context. */
1237 	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1238 out_unlock:
1239 	read_unlock(&policy_rwlock);
1240 	context_destroy(&newcontext);
1241 out:
1242 	return rc;
1243 }
1244 
1245 /**
1246  * security_transition_sid - Compute the SID for a new subject/object.
1247  * @ssid: source security identifier
1248  * @tsid: target security identifier
1249  * @tclass: target security class
1250  * @out_sid: security identifier for new subject/object
1251  *
1252  * Compute a SID to use for labeling a new subject or object in the
1253  * class @tclass based on a SID pair (@ssid, @tsid).
1254  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1255  * if insufficient memory is available, or %0 if the new SID was
1256  * computed successfully.
1257  */
1258 int security_transition_sid(u32 ssid,
1259 			    u32 tsid,
1260 			    u16 tclass,
1261 			    u32 *out_sid)
1262 {
1263 	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, out_sid);
1264 }
1265 
1266 /**
1267  * security_member_sid - Compute the SID for member selection.
1268  * @ssid: source security identifier
1269  * @tsid: target security identifier
1270  * @tclass: target security class
1271  * @out_sid: security identifier for selected member
1272  *
1273  * Compute a SID to use when selecting a member of a polyinstantiated
1274  * object of class @tclass based on a SID pair (@ssid, @tsid).
1275  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1276  * if insufficient memory is available, or %0 if the SID was
1277  * computed successfully.
1278  */
1279 int security_member_sid(u32 ssid,
1280 			u32 tsid,
1281 			u16 tclass,
1282 			u32 *out_sid)
1283 {
1284 	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid);
1285 }
1286 
1287 /**
1288  * security_change_sid - Compute the SID for object relabeling.
1289  * @ssid: source security identifier
1290  * @tsid: target security identifier
1291  * @tclass: target security class
1292  * @out_sid: security identifier for selected member
1293  *
1294  * Compute a SID to use for relabeling an object of class @tclass
1295  * based on a SID pair (@ssid, @tsid).
1296  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1297  * if insufficient memory is available, or %0 if the SID was
1298  * computed successfully.
1299  */
1300 int security_change_sid(u32 ssid,
1301 			u32 tsid,
1302 			u16 tclass,
1303 			u32 *out_sid)
1304 {
1305 	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid);
1306 }
1307 
1308 /*
1309  * Verify that each kernel class that is defined in the
1310  * policy is correct
1311  */
1312 static int validate_classes(struct policydb *p)
1313 {
1314 	int i, j;
1315 	struct class_datum *cladatum;
1316 	struct perm_datum *perdatum;
1317 	u32 nprim, tmp, common_pts_len, perm_val, pol_val;
1318 	u16 class_val;
1319 	const struct selinux_class_perm *kdefs = &selinux_class_perm;
1320 	const char *def_class, *def_perm, *pol_class;
1321 	struct symtab *perms;
1322 	bool print_unknown_handle = 0;
1323 
1324 	if (p->allow_unknown) {
1325 		u32 num_classes = kdefs->cts_len;
1326 		p->undefined_perms = kcalloc(num_classes, sizeof(u32), GFP_KERNEL);
1327 		if (!p->undefined_perms)
1328 			return -ENOMEM;
1329 	}
1330 
1331 	for (i = 1; i < kdefs->cts_len; i++) {
1332 		def_class = kdefs->class_to_string[i];
1333 		if (!def_class)
1334 			continue;
1335 		if (i > p->p_classes.nprim) {
1336 			printk(KERN_INFO
1337 			       "SELinux:  class %s not defined in policy\n",
1338 			       def_class);
1339 			if (p->reject_unknown)
1340 				return -EINVAL;
1341 			if (p->allow_unknown)
1342 				p->undefined_perms[i-1] = ~0U;
1343 			print_unknown_handle = 1;
1344 			continue;
1345 		}
1346 		pol_class = p->p_class_val_to_name[i-1];
1347 		if (strcmp(pol_class, def_class)) {
1348 			printk(KERN_ERR
1349 			       "SELinux:  class %d is incorrect, found %s but should be %s\n",
1350 			       i, pol_class, def_class);
1351 			return -EINVAL;
1352 		}
1353 	}
1354 	for (i = 0; i < kdefs->av_pts_len; i++) {
1355 		class_val = kdefs->av_perm_to_string[i].tclass;
1356 		perm_val = kdefs->av_perm_to_string[i].value;
1357 		def_perm = kdefs->av_perm_to_string[i].name;
1358 		if (class_val > p->p_classes.nprim)
1359 			continue;
1360 		pol_class = p->p_class_val_to_name[class_val-1];
1361 		cladatum = hashtab_search(p->p_classes.table, pol_class);
1362 		BUG_ON(!cladatum);
1363 		perms = &cladatum->permissions;
1364 		nprim = 1 << (perms->nprim - 1);
1365 		if (perm_val > nprim) {
1366 			printk(KERN_INFO
1367 			       "SELinux:  permission %s in class %s not defined in policy\n",
1368 			       def_perm, pol_class);
1369 			if (p->reject_unknown)
1370 				return -EINVAL;
1371 			if (p->allow_unknown)
1372 				p->undefined_perms[class_val-1] |= perm_val;
1373 			print_unknown_handle = 1;
1374 			continue;
1375 		}
1376 		perdatum = hashtab_search(perms->table, def_perm);
1377 		if (perdatum == NULL) {
1378 			printk(KERN_ERR
1379 			       "SELinux:  permission %s in class %s not found in policy, bad policy\n",
1380 			       def_perm, pol_class);
1381 			return -EINVAL;
1382 		}
1383 		pol_val = 1 << (perdatum->value - 1);
1384 		if (pol_val != perm_val) {
1385 			printk(KERN_ERR
1386 			       "SELinux:  permission %s in class %s has incorrect value\n",
1387 			       def_perm, pol_class);
1388 			return -EINVAL;
1389 		}
1390 	}
1391 	for (i = 0; i < kdefs->av_inherit_len; i++) {
1392 		class_val = kdefs->av_inherit[i].tclass;
1393 		if (class_val > p->p_classes.nprim)
1394 			continue;
1395 		pol_class = p->p_class_val_to_name[class_val-1];
1396 		cladatum = hashtab_search(p->p_classes.table, pol_class);
1397 		BUG_ON(!cladatum);
1398 		if (!cladatum->comdatum) {
1399 			printk(KERN_ERR
1400 			       "SELinux:  class %s should have an inherits clause but does not\n",
1401 			       pol_class);
1402 			return -EINVAL;
1403 		}
1404 		tmp = kdefs->av_inherit[i].common_base;
1405 		common_pts_len = 0;
1406 		while (!(tmp & 0x01)) {
1407 			common_pts_len++;
1408 			tmp >>= 1;
1409 		}
1410 		perms = &cladatum->comdatum->permissions;
1411 		for (j = 0; j < common_pts_len; j++) {
1412 			def_perm = kdefs->av_inherit[i].common_pts[j];
1413 			if (j >= perms->nprim) {
1414 				printk(KERN_INFO
1415 				       "SELinux:  permission %s in class %s not defined in policy\n",
1416 				       def_perm, pol_class);
1417 				if (p->reject_unknown)
1418 					return -EINVAL;
1419 				if (p->allow_unknown)
1420 					p->undefined_perms[class_val-1] |= (1 << j);
1421 				print_unknown_handle = 1;
1422 				continue;
1423 			}
1424 			perdatum = hashtab_search(perms->table, def_perm);
1425 			if (perdatum == NULL) {
1426 				printk(KERN_ERR
1427 				       "SELinux:  permission %s in class %s not found in policy, bad policy\n",
1428 				       def_perm, pol_class);
1429 				return -EINVAL;
1430 			}
1431 			if (perdatum->value != j + 1) {
1432 				printk(KERN_ERR
1433 				       "SELinux:  permission %s in class %s has incorrect value\n",
1434 				       def_perm, pol_class);
1435 				return -EINVAL;
1436 			}
1437 		}
1438 	}
1439 	if (print_unknown_handle)
1440 		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
1441 			(security_get_allow_unknown() ? "allowed" : "denied"));
1442 	return 0;
1443 }
1444 
1445 /* Clone the SID into the new SID table. */
1446 static int clone_sid(u32 sid,
1447 		     struct context *context,
1448 		     void *arg)
1449 {
1450 	struct sidtab *s = arg;
1451 
1452 	return sidtab_insert(s, sid, context);
1453 }
1454 
1455 static inline int convert_context_handle_invalid_context(struct context *context)
1456 {
1457 	int rc = 0;
1458 
1459 	if (selinux_enforcing) {
1460 		rc = -EINVAL;
1461 	} else {
1462 		char *s;
1463 		u32 len;
1464 
1465 		if (!context_struct_to_string(context, &s, &len)) {
1466 			printk(KERN_WARNING
1467 		       "SELinux:  Context %s would be invalid if enforcing\n",
1468 			       s);
1469 			kfree(s);
1470 		}
1471 	}
1472 	return rc;
1473 }
1474 
1475 struct convert_context_args {
1476 	struct policydb *oldp;
1477 	struct policydb *newp;
1478 };
1479 
1480 /*
1481  * Convert the values in the security context
1482  * structure `c' from the values specified
1483  * in the policy `p->oldp' to the values specified
1484  * in the policy `p->newp'.  Verify that the
1485  * context is valid under the new policy.
1486  */
1487 static int convert_context(u32 key,
1488 			   struct context *c,
1489 			   void *p)
1490 {
1491 	struct convert_context_args *args;
1492 	struct context oldc;
1493 	struct role_datum *role;
1494 	struct type_datum *typdatum;
1495 	struct user_datum *usrdatum;
1496 	char *s;
1497 	u32 len;
1498 	int rc;
1499 
1500 	args = p;
1501 
1502 	if (c->str) {
1503 		struct context ctx;
1504 		s = kstrdup(c->str, GFP_KERNEL);
1505 		if (!s) {
1506 			rc = -ENOMEM;
1507 			goto out;
1508 		}
1509 		rc = string_to_context_struct(args->newp, NULL, s,
1510 					      c->len, &ctx, SECSID_NULL);
1511 		kfree(s);
1512 		if (!rc) {
1513 			printk(KERN_INFO
1514 		       "SELinux:  Context %s became valid (mapped).\n",
1515 			       c->str);
1516 			/* Replace string with mapped representation. */
1517 			kfree(c->str);
1518 			memcpy(c, &ctx, sizeof(*c));
1519 			goto out;
1520 		} else if (rc == -EINVAL) {
1521 			/* Retain string representation for later mapping. */
1522 			rc = 0;
1523 			goto out;
1524 		} else {
1525 			/* Other error condition, e.g. ENOMEM. */
1526 			printk(KERN_ERR
1527 		       "SELinux:   Unable to map context %s, rc = %d.\n",
1528 			       c->str, -rc);
1529 			goto out;
1530 		}
1531 	}
1532 
1533 	rc = context_cpy(&oldc, c);
1534 	if (rc)
1535 		goto out;
1536 
1537 	rc = -EINVAL;
1538 
1539 	/* Convert the user. */
1540 	usrdatum = hashtab_search(args->newp->p_users.table,
1541 				  args->oldp->p_user_val_to_name[c->user - 1]);
1542 	if (!usrdatum)
1543 		goto bad;
1544 	c->user = usrdatum->value;
1545 
1546 	/* Convert the role. */
1547 	role = hashtab_search(args->newp->p_roles.table,
1548 			      args->oldp->p_role_val_to_name[c->role - 1]);
1549 	if (!role)
1550 		goto bad;
1551 	c->role = role->value;
1552 
1553 	/* Convert the type. */
1554 	typdatum = hashtab_search(args->newp->p_types.table,
1555 				  args->oldp->p_type_val_to_name[c->type - 1]);
1556 	if (!typdatum)
1557 		goto bad;
1558 	c->type = typdatum->value;
1559 
1560 	rc = mls_convert_context(args->oldp, args->newp, c);
1561 	if (rc)
1562 		goto bad;
1563 
1564 	/* Check the validity of the new context. */
1565 	if (!policydb_context_isvalid(args->newp, c)) {
1566 		rc = convert_context_handle_invalid_context(&oldc);
1567 		if (rc)
1568 			goto bad;
1569 	}
1570 
1571 	context_destroy(&oldc);
1572 	rc = 0;
1573 out:
1574 	return rc;
1575 bad:
1576 	/* Map old representation to string and save it. */
1577 	if (context_struct_to_string(&oldc, &s, &len))
1578 		return -ENOMEM;
1579 	context_destroy(&oldc);
1580 	context_destroy(c);
1581 	c->str = s;
1582 	c->len = len;
1583 	printk(KERN_INFO
1584 	       "SELinux:  Context %s became invalid (unmapped).\n",
1585 	       c->str);
1586 	rc = 0;
1587 	goto out;
1588 }
1589 
1590 static void security_load_policycaps(void)
1591 {
1592 	selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1593 						  POLICYDB_CAPABILITY_NETPEER);
1594 	selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1595 						  POLICYDB_CAPABILITY_OPENPERM);
1596 }
1597 
1598 extern void selinux_complete_init(void);
1599 static int security_preserve_bools(struct policydb *p);
1600 
1601 /**
1602  * security_load_policy - Load a security policy configuration.
1603  * @data: binary policy data
1604  * @len: length of data in bytes
1605  *
1606  * Load a new set of security policy configuration data,
1607  * validate it and convert the SID table as necessary.
1608  * This function will flush the access vector cache after
1609  * loading the new policy.
1610  */
1611 int security_load_policy(void *data, size_t len)
1612 {
1613 	struct policydb oldpolicydb, newpolicydb;
1614 	struct sidtab oldsidtab, newsidtab;
1615 	struct convert_context_args args;
1616 	u32 seqno;
1617 	int rc = 0;
1618 	struct policy_file file = { data, len }, *fp = &file;
1619 
1620 	if (!ss_initialized) {
1621 		avtab_cache_init();
1622 		if (policydb_read(&policydb, fp)) {
1623 			avtab_cache_destroy();
1624 			return -EINVAL;
1625 		}
1626 		if (policydb_load_isids(&policydb, &sidtab)) {
1627 			policydb_destroy(&policydb);
1628 			avtab_cache_destroy();
1629 			return -EINVAL;
1630 		}
1631 		/* Verify that the kernel defined classes are correct. */
1632 		if (validate_classes(&policydb)) {
1633 			printk(KERN_ERR
1634 			       "SELinux:  the definition of a class is incorrect\n");
1635 			sidtab_destroy(&sidtab);
1636 			policydb_destroy(&policydb);
1637 			avtab_cache_destroy();
1638 			return -EINVAL;
1639 		}
1640 		security_load_policycaps();
1641 		policydb_loaded_version = policydb.policyvers;
1642 		ss_initialized = 1;
1643 		seqno = ++latest_granting;
1644 		selinux_complete_init();
1645 		avc_ss_reset(seqno);
1646 		selnl_notify_policyload(seqno);
1647 		selinux_netlbl_cache_invalidate();
1648 		selinux_xfrm_notify_policyload();
1649 		return 0;
1650 	}
1651 
1652 #if 0
1653 	sidtab_hash_eval(&sidtab, "sids");
1654 #endif
1655 
1656 	if (policydb_read(&newpolicydb, fp))
1657 		return -EINVAL;
1658 
1659 	if (sidtab_init(&newsidtab)) {
1660 		policydb_destroy(&newpolicydb);
1661 		return -ENOMEM;
1662 	}
1663 
1664 	/* Verify that the kernel defined classes are correct. */
1665 	if (validate_classes(&newpolicydb)) {
1666 		printk(KERN_ERR
1667 		       "SELinux:  the definition of a class is incorrect\n");
1668 		rc = -EINVAL;
1669 		goto err;
1670 	}
1671 
1672 	rc = security_preserve_bools(&newpolicydb);
1673 	if (rc) {
1674 		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
1675 		goto err;
1676 	}
1677 
1678 	/* Clone the SID table. */
1679 	sidtab_shutdown(&sidtab);
1680 	if (sidtab_map(&sidtab, clone_sid, &newsidtab)) {
1681 		rc = -ENOMEM;
1682 		goto err;
1683 	}
1684 
1685 	/*
1686 	 * Convert the internal representations of contexts
1687 	 * in the new SID table.
1688 	 */
1689 	args.oldp = &policydb;
1690 	args.newp = &newpolicydb;
1691 	rc = sidtab_map(&newsidtab, convert_context, &args);
1692 	if (rc)
1693 		goto err;
1694 
1695 	/* Save the old policydb and SID table to free later. */
1696 	memcpy(&oldpolicydb, &policydb, sizeof policydb);
1697 	sidtab_set(&oldsidtab, &sidtab);
1698 
1699 	/* Install the new policydb and SID table. */
1700 	write_lock_irq(&policy_rwlock);
1701 	memcpy(&policydb, &newpolicydb, sizeof policydb);
1702 	sidtab_set(&sidtab, &newsidtab);
1703 	security_load_policycaps();
1704 	seqno = ++latest_granting;
1705 	policydb_loaded_version = policydb.policyvers;
1706 	write_unlock_irq(&policy_rwlock);
1707 
1708 	/* Free the old policydb and SID table. */
1709 	policydb_destroy(&oldpolicydb);
1710 	sidtab_destroy(&oldsidtab);
1711 
1712 	avc_ss_reset(seqno);
1713 	selnl_notify_policyload(seqno);
1714 	selinux_netlbl_cache_invalidate();
1715 	selinux_xfrm_notify_policyload();
1716 
1717 	return 0;
1718 
1719 err:
1720 	sidtab_destroy(&newsidtab);
1721 	policydb_destroy(&newpolicydb);
1722 	return rc;
1723 
1724 }
1725 
1726 /**
1727  * security_port_sid - Obtain the SID for a port.
1728  * @protocol: protocol number
1729  * @port: port number
1730  * @out_sid: security identifier
1731  */
1732 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
1733 {
1734 	struct ocontext *c;
1735 	int rc = 0;
1736 
1737 	read_lock(&policy_rwlock);
1738 
1739 	c = policydb.ocontexts[OCON_PORT];
1740 	while (c) {
1741 		if (c->u.port.protocol == protocol &&
1742 		    c->u.port.low_port <= port &&
1743 		    c->u.port.high_port >= port)
1744 			break;
1745 		c = c->next;
1746 	}
1747 
1748 	if (c) {
1749 		if (!c->sid[0]) {
1750 			rc = sidtab_context_to_sid(&sidtab,
1751 						   &c->context[0],
1752 						   &c->sid[0]);
1753 			if (rc)
1754 				goto out;
1755 		}
1756 		*out_sid = c->sid[0];
1757 	} else {
1758 		*out_sid = SECINITSID_PORT;
1759 	}
1760 
1761 out:
1762 	read_unlock(&policy_rwlock);
1763 	return rc;
1764 }
1765 
1766 /**
1767  * security_netif_sid - Obtain the SID for a network interface.
1768  * @name: interface name
1769  * @if_sid: interface SID
1770  */
1771 int security_netif_sid(char *name, u32 *if_sid)
1772 {
1773 	int rc = 0;
1774 	struct ocontext *c;
1775 
1776 	read_lock(&policy_rwlock);
1777 
1778 	c = policydb.ocontexts[OCON_NETIF];
1779 	while (c) {
1780 		if (strcmp(name, c->u.name) == 0)
1781 			break;
1782 		c = c->next;
1783 	}
1784 
1785 	if (c) {
1786 		if (!c->sid[0] || !c->sid[1]) {
1787 			rc = sidtab_context_to_sid(&sidtab,
1788 						  &c->context[0],
1789 						  &c->sid[0]);
1790 			if (rc)
1791 				goto out;
1792 			rc = sidtab_context_to_sid(&sidtab,
1793 						   &c->context[1],
1794 						   &c->sid[1]);
1795 			if (rc)
1796 				goto out;
1797 		}
1798 		*if_sid = c->sid[0];
1799 	} else
1800 		*if_sid = SECINITSID_NETIF;
1801 
1802 out:
1803 	read_unlock(&policy_rwlock);
1804 	return rc;
1805 }
1806 
1807 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
1808 {
1809 	int i, fail = 0;
1810 
1811 	for (i = 0; i < 4; i++)
1812 		if (addr[i] != (input[i] & mask[i])) {
1813 			fail = 1;
1814 			break;
1815 		}
1816 
1817 	return !fail;
1818 }
1819 
1820 /**
1821  * security_node_sid - Obtain the SID for a node (host).
1822  * @domain: communication domain aka address family
1823  * @addrp: address
1824  * @addrlen: address length in bytes
1825  * @out_sid: security identifier
1826  */
1827 int security_node_sid(u16 domain,
1828 		      void *addrp,
1829 		      u32 addrlen,
1830 		      u32 *out_sid)
1831 {
1832 	int rc = 0;
1833 	struct ocontext *c;
1834 
1835 	read_lock(&policy_rwlock);
1836 
1837 	switch (domain) {
1838 	case AF_INET: {
1839 		u32 addr;
1840 
1841 		if (addrlen != sizeof(u32)) {
1842 			rc = -EINVAL;
1843 			goto out;
1844 		}
1845 
1846 		addr = *((u32 *)addrp);
1847 
1848 		c = policydb.ocontexts[OCON_NODE];
1849 		while (c) {
1850 			if (c->u.node.addr == (addr & c->u.node.mask))
1851 				break;
1852 			c = c->next;
1853 		}
1854 		break;
1855 	}
1856 
1857 	case AF_INET6:
1858 		if (addrlen != sizeof(u64) * 2) {
1859 			rc = -EINVAL;
1860 			goto out;
1861 		}
1862 		c = policydb.ocontexts[OCON_NODE6];
1863 		while (c) {
1864 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
1865 						c->u.node6.mask))
1866 				break;
1867 			c = c->next;
1868 		}
1869 		break;
1870 
1871 	default:
1872 		*out_sid = SECINITSID_NODE;
1873 		goto out;
1874 	}
1875 
1876 	if (c) {
1877 		if (!c->sid[0]) {
1878 			rc = sidtab_context_to_sid(&sidtab,
1879 						   &c->context[0],
1880 						   &c->sid[0]);
1881 			if (rc)
1882 				goto out;
1883 		}
1884 		*out_sid = c->sid[0];
1885 	} else {
1886 		*out_sid = SECINITSID_NODE;
1887 	}
1888 
1889 out:
1890 	read_unlock(&policy_rwlock);
1891 	return rc;
1892 }
1893 
1894 #define SIDS_NEL 25
1895 
1896 /**
1897  * security_get_user_sids - Obtain reachable SIDs for a user.
1898  * @fromsid: starting SID
1899  * @username: username
1900  * @sids: array of reachable SIDs for user
1901  * @nel: number of elements in @sids
1902  *
1903  * Generate the set of SIDs for legal security contexts
1904  * for a given user that can be reached by @fromsid.
1905  * Set *@sids to point to a dynamically allocated
1906  * array containing the set of SIDs.  Set *@nel to the
1907  * number of elements in the array.
1908  */
1909 
1910 int security_get_user_sids(u32 fromsid,
1911 			   char *username,
1912 			   u32 **sids,
1913 			   u32 *nel)
1914 {
1915 	struct context *fromcon, usercon;
1916 	u32 *mysids = NULL, *mysids2, sid;
1917 	u32 mynel = 0, maxnel = SIDS_NEL;
1918 	struct user_datum *user;
1919 	struct role_datum *role;
1920 	struct ebitmap_node *rnode, *tnode;
1921 	int rc = 0, i, j;
1922 
1923 	*sids = NULL;
1924 	*nel = 0;
1925 
1926 	if (!ss_initialized)
1927 		goto out;
1928 
1929 	read_lock(&policy_rwlock);
1930 
1931 	context_init(&usercon);
1932 
1933 	fromcon = sidtab_search(&sidtab, fromsid);
1934 	if (!fromcon) {
1935 		rc = -EINVAL;
1936 		goto out_unlock;
1937 	}
1938 
1939 	user = hashtab_search(policydb.p_users.table, username);
1940 	if (!user) {
1941 		rc = -EINVAL;
1942 		goto out_unlock;
1943 	}
1944 	usercon.user = user->value;
1945 
1946 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
1947 	if (!mysids) {
1948 		rc = -ENOMEM;
1949 		goto out_unlock;
1950 	}
1951 
1952 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
1953 		role = policydb.role_val_to_struct[i];
1954 		usercon.role = i+1;
1955 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
1956 			usercon.type = j+1;
1957 
1958 			if (mls_setup_user_range(fromcon, user, &usercon))
1959 				continue;
1960 
1961 			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
1962 			if (rc)
1963 				goto out_unlock;
1964 			if (mynel < maxnel) {
1965 				mysids[mynel++] = sid;
1966 			} else {
1967 				maxnel += SIDS_NEL;
1968 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
1969 				if (!mysids2) {
1970 					rc = -ENOMEM;
1971 					goto out_unlock;
1972 				}
1973 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
1974 				kfree(mysids);
1975 				mysids = mysids2;
1976 				mysids[mynel++] = sid;
1977 			}
1978 		}
1979 	}
1980 
1981 out_unlock:
1982 	read_unlock(&policy_rwlock);
1983 	if (rc || !mynel) {
1984 		kfree(mysids);
1985 		goto out;
1986 	}
1987 
1988 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
1989 	if (!mysids2) {
1990 		rc = -ENOMEM;
1991 		kfree(mysids);
1992 		goto out;
1993 	}
1994 	for (i = 0, j = 0; i < mynel; i++) {
1995 		rc = avc_has_perm_noaudit(fromsid, mysids[i],
1996 					  SECCLASS_PROCESS,
1997 					  PROCESS__TRANSITION, AVC_STRICT,
1998 					  NULL);
1999 		if (!rc)
2000 			mysids2[j++] = mysids[i];
2001 		cond_resched();
2002 	}
2003 	rc = 0;
2004 	kfree(mysids);
2005 	*sids = mysids2;
2006 	*nel = j;
2007 out:
2008 	return rc;
2009 }
2010 
2011 /**
2012  * security_genfs_sid - Obtain a SID for a file in a filesystem
2013  * @fstype: filesystem type
2014  * @path: path from root of mount
2015  * @sclass: file security class
2016  * @sid: SID for path
2017  *
2018  * Obtain a SID to use for a file in a filesystem that
2019  * cannot support xattr or use a fixed labeling behavior like
2020  * transition SIDs or task SIDs.
2021  */
2022 int security_genfs_sid(const char *fstype,
2023 		       char *path,
2024 		       u16 sclass,
2025 		       u32 *sid)
2026 {
2027 	int len;
2028 	struct genfs *genfs;
2029 	struct ocontext *c;
2030 	int rc = 0, cmp = 0;
2031 
2032 	while (path[0] == '/' && path[1] == '/')
2033 		path++;
2034 
2035 	read_lock(&policy_rwlock);
2036 
2037 	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2038 		cmp = strcmp(fstype, genfs->fstype);
2039 		if (cmp <= 0)
2040 			break;
2041 	}
2042 
2043 	if (!genfs || cmp) {
2044 		*sid = SECINITSID_UNLABELED;
2045 		rc = -ENOENT;
2046 		goto out;
2047 	}
2048 
2049 	for (c = genfs->head; c; c = c->next) {
2050 		len = strlen(c->u.name);
2051 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2052 		    (strncmp(c->u.name, path, len) == 0))
2053 			break;
2054 	}
2055 
2056 	if (!c) {
2057 		*sid = SECINITSID_UNLABELED;
2058 		rc = -ENOENT;
2059 		goto out;
2060 	}
2061 
2062 	if (!c->sid[0]) {
2063 		rc = sidtab_context_to_sid(&sidtab,
2064 					   &c->context[0],
2065 					   &c->sid[0]);
2066 		if (rc)
2067 			goto out;
2068 	}
2069 
2070 	*sid = c->sid[0];
2071 out:
2072 	read_unlock(&policy_rwlock);
2073 	return rc;
2074 }
2075 
2076 /**
2077  * security_fs_use - Determine how to handle labeling for a filesystem.
2078  * @fstype: filesystem type
2079  * @behavior: labeling behavior
2080  * @sid: SID for filesystem (superblock)
2081  */
2082 int security_fs_use(
2083 	const char *fstype,
2084 	unsigned int *behavior,
2085 	u32 *sid)
2086 {
2087 	int rc = 0;
2088 	struct ocontext *c;
2089 
2090 	read_lock(&policy_rwlock);
2091 
2092 	c = policydb.ocontexts[OCON_FSUSE];
2093 	while (c) {
2094 		if (strcmp(fstype, c->u.name) == 0)
2095 			break;
2096 		c = c->next;
2097 	}
2098 
2099 	if (c) {
2100 		*behavior = c->v.behavior;
2101 		if (!c->sid[0]) {
2102 			rc = sidtab_context_to_sid(&sidtab,
2103 						   &c->context[0],
2104 						   &c->sid[0]);
2105 			if (rc)
2106 				goto out;
2107 		}
2108 		*sid = c->sid[0];
2109 	} else {
2110 		rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
2111 		if (rc) {
2112 			*behavior = SECURITY_FS_USE_NONE;
2113 			rc = 0;
2114 		} else {
2115 			*behavior = SECURITY_FS_USE_GENFS;
2116 		}
2117 	}
2118 
2119 out:
2120 	read_unlock(&policy_rwlock);
2121 	return rc;
2122 }
2123 
2124 int security_get_bools(int *len, char ***names, int **values)
2125 {
2126 	int i, rc = -ENOMEM;
2127 
2128 	read_lock(&policy_rwlock);
2129 	*names = NULL;
2130 	*values = NULL;
2131 
2132 	*len = policydb.p_bools.nprim;
2133 	if (!*len) {
2134 		rc = 0;
2135 		goto out;
2136 	}
2137 
2138        *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2139 	if (!*names)
2140 		goto err;
2141 
2142        *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2143 	if (!*values)
2144 		goto err;
2145 
2146 	for (i = 0; i < *len; i++) {
2147 		size_t name_len;
2148 		(*values)[i] = policydb.bool_val_to_struct[i]->state;
2149 		name_len = strlen(policydb.p_bool_val_to_name[i]) + 1;
2150 	       (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
2151 		if (!(*names)[i])
2152 			goto err;
2153 		strncpy((*names)[i], policydb.p_bool_val_to_name[i], name_len);
2154 		(*names)[i][name_len - 1] = 0;
2155 	}
2156 	rc = 0;
2157 out:
2158 	read_unlock(&policy_rwlock);
2159 	return rc;
2160 err:
2161 	if (*names) {
2162 		for (i = 0; i < *len; i++)
2163 			kfree((*names)[i]);
2164 	}
2165 	kfree(*values);
2166 	goto out;
2167 }
2168 
2169 
2170 int security_set_bools(int len, int *values)
2171 {
2172 	int i, rc = 0;
2173 	int lenp, seqno = 0;
2174 	struct cond_node *cur;
2175 
2176 	write_lock_irq(&policy_rwlock);
2177 
2178 	lenp = policydb.p_bools.nprim;
2179 	if (len != lenp) {
2180 		rc = -EFAULT;
2181 		goto out;
2182 	}
2183 
2184 	for (i = 0; i < len; i++) {
2185 		if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2186 			audit_log(current->audit_context, GFP_ATOMIC,
2187 				AUDIT_MAC_CONFIG_CHANGE,
2188 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2189 				policydb.p_bool_val_to_name[i],
2190 				!!values[i],
2191 				policydb.bool_val_to_struct[i]->state,
2192 				audit_get_loginuid(current),
2193 				audit_get_sessionid(current));
2194 		}
2195 		if (values[i])
2196 			policydb.bool_val_to_struct[i]->state = 1;
2197 		else
2198 			policydb.bool_val_to_struct[i]->state = 0;
2199 	}
2200 
2201 	for (cur = policydb.cond_list; cur; cur = cur->next) {
2202 		rc = evaluate_cond_node(&policydb, cur);
2203 		if (rc)
2204 			goto out;
2205 	}
2206 
2207 	seqno = ++latest_granting;
2208 
2209 out:
2210 	write_unlock_irq(&policy_rwlock);
2211 	if (!rc) {
2212 		avc_ss_reset(seqno);
2213 		selnl_notify_policyload(seqno);
2214 		selinux_xfrm_notify_policyload();
2215 	}
2216 	return rc;
2217 }
2218 
2219 int security_get_bool_value(int bool)
2220 {
2221 	int rc = 0;
2222 	int len;
2223 
2224 	read_lock(&policy_rwlock);
2225 
2226 	len = policydb.p_bools.nprim;
2227 	if (bool >= len) {
2228 		rc = -EFAULT;
2229 		goto out;
2230 	}
2231 
2232 	rc = policydb.bool_val_to_struct[bool]->state;
2233 out:
2234 	read_unlock(&policy_rwlock);
2235 	return rc;
2236 }
2237 
2238 static int security_preserve_bools(struct policydb *p)
2239 {
2240 	int rc, nbools = 0, *bvalues = NULL, i;
2241 	char **bnames = NULL;
2242 	struct cond_bool_datum *booldatum;
2243 	struct cond_node *cur;
2244 
2245 	rc = security_get_bools(&nbools, &bnames, &bvalues);
2246 	if (rc)
2247 		goto out;
2248 	for (i = 0; i < nbools; i++) {
2249 		booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2250 		if (booldatum)
2251 			booldatum->state = bvalues[i];
2252 	}
2253 	for (cur = p->cond_list; cur; cur = cur->next) {
2254 		rc = evaluate_cond_node(p, cur);
2255 		if (rc)
2256 			goto out;
2257 	}
2258 
2259 out:
2260 	if (bnames) {
2261 		for (i = 0; i < nbools; i++)
2262 			kfree(bnames[i]);
2263 	}
2264 	kfree(bnames);
2265 	kfree(bvalues);
2266 	return rc;
2267 }
2268 
2269 /*
2270  * security_sid_mls_copy() - computes a new sid based on the given
2271  * sid and the mls portion of mls_sid.
2272  */
2273 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2274 {
2275 	struct context *context1;
2276 	struct context *context2;
2277 	struct context newcon;
2278 	char *s;
2279 	u32 len;
2280 	int rc = 0;
2281 
2282 	if (!ss_initialized || !selinux_mls_enabled) {
2283 		*new_sid = sid;
2284 		goto out;
2285 	}
2286 
2287 	context_init(&newcon);
2288 
2289 	read_lock(&policy_rwlock);
2290 	context1 = sidtab_search(&sidtab, sid);
2291 	if (!context1) {
2292 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2293 			__func__, sid);
2294 		rc = -EINVAL;
2295 		goto out_unlock;
2296 	}
2297 
2298 	context2 = sidtab_search(&sidtab, mls_sid);
2299 	if (!context2) {
2300 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2301 			__func__, mls_sid);
2302 		rc = -EINVAL;
2303 		goto out_unlock;
2304 	}
2305 
2306 	newcon.user = context1->user;
2307 	newcon.role = context1->role;
2308 	newcon.type = context1->type;
2309 	rc = mls_context_cpy(&newcon, context2);
2310 	if (rc)
2311 		goto out_unlock;
2312 
2313 	/* Check the validity of the new context. */
2314 	if (!policydb_context_isvalid(&policydb, &newcon)) {
2315 		rc = convert_context_handle_invalid_context(&newcon);
2316 		if (rc)
2317 			goto bad;
2318 	}
2319 
2320 	rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2321 	goto out_unlock;
2322 
2323 bad:
2324 	if (!context_struct_to_string(&newcon, &s, &len)) {
2325 		audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2326 			  "security_sid_mls_copy: invalid context %s", s);
2327 		kfree(s);
2328 	}
2329 
2330 out_unlock:
2331 	read_unlock(&policy_rwlock);
2332 	context_destroy(&newcon);
2333 out:
2334 	return rc;
2335 }
2336 
2337 /**
2338  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2339  * @nlbl_sid: NetLabel SID
2340  * @nlbl_type: NetLabel labeling protocol type
2341  * @xfrm_sid: XFRM SID
2342  *
2343  * Description:
2344  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2345  * resolved into a single SID it is returned via @peer_sid and the function
2346  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2347  * returns a negative value.  A table summarizing the behavior is below:
2348  *
2349  *                                 | function return |      @sid
2350  *   ------------------------------+-----------------+-----------------
2351  *   no peer labels                |        0        |    SECSID_NULL
2352  *   single peer label             |        0        |    <peer_label>
2353  *   multiple, consistent labels   |        0        |    <peer_label>
2354  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2355  *
2356  */
2357 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2358 				 u32 xfrm_sid,
2359 				 u32 *peer_sid)
2360 {
2361 	int rc;
2362 	struct context *nlbl_ctx;
2363 	struct context *xfrm_ctx;
2364 
2365 	/* handle the common (which also happens to be the set of easy) cases
2366 	 * right away, these two if statements catch everything involving a
2367 	 * single or absent peer SID/label */
2368 	if (xfrm_sid == SECSID_NULL) {
2369 		*peer_sid = nlbl_sid;
2370 		return 0;
2371 	}
2372 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2373 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2374 	 * is present */
2375 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2376 		*peer_sid = xfrm_sid;
2377 		return 0;
2378 	}
2379 
2380 	/* we don't need to check ss_initialized here since the only way both
2381 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2382 	 * security server was initialized and ss_initialized was true */
2383 	if (!selinux_mls_enabled) {
2384 		*peer_sid = SECSID_NULL;
2385 		return 0;
2386 	}
2387 
2388 	read_lock(&policy_rwlock);
2389 
2390 	nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2391 	if (!nlbl_ctx) {
2392 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2393 		       __func__, nlbl_sid);
2394 		rc = -EINVAL;
2395 		goto out_slowpath;
2396 	}
2397 	xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2398 	if (!xfrm_ctx) {
2399 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2400 		       __func__, xfrm_sid);
2401 		rc = -EINVAL;
2402 		goto out_slowpath;
2403 	}
2404 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2405 
2406 out_slowpath:
2407 	read_unlock(&policy_rwlock);
2408 	if (rc == 0)
2409 		/* at present NetLabel SIDs/labels really only carry MLS
2410 		 * information so if the MLS portion of the NetLabel SID
2411 		 * matches the MLS portion of the labeled XFRM SID/label
2412 		 * then pass along the XFRM SID as it is the most
2413 		 * expressive */
2414 		*peer_sid = xfrm_sid;
2415 	else
2416 		*peer_sid = SECSID_NULL;
2417 	return rc;
2418 }
2419 
2420 static int get_classes_callback(void *k, void *d, void *args)
2421 {
2422 	struct class_datum *datum = d;
2423 	char *name = k, **classes = args;
2424 	int value = datum->value - 1;
2425 
2426 	classes[value] = kstrdup(name, GFP_ATOMIC);
2427 	if (!classes[value])
2428 		return -ENOMEM;
2429 
2430 	return 0;
2431 }
2432 
2433 int security_get_classes(char ***classes, int *nclasses)
2434 {
2435 	int rc = -ENOMEM;
2436 
2437 	read_lock(&policy_rwlock);
2438 
2439 	*nclasses = policydb.p_classes.nprim;
2440 	*classes = kcalloc(*nclasses, sizeof(*classes), GFP_ATOMIC);
2441 	if (!*classes)
2442 		goto out;
2443 
2444 	rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2445 			*classes);
2446 	if (rc < 0) {
2447 		int i;
2448 		for (i = 0; i < *nclasses; i++)
2449 			kfree((*classes)[i]);
2450 		kfree(*classes);
2451 	}
2452 
2453 out:
2454 	read_unlock(&policy_rwlock);
2455 	return rc;
2456 }
2457 
2458 static int get_permissions_callback(void *k, void *d, void *args)
2459 {
2460 	struct perm_datum *datum = d;
2461 	char *name = k, **perms = args;
2462 	int value = datum->value - 1;
2463 
2464 	perms[value] = kstrdup(name, GFP_ATOMIC);
2465 	if (!perms[value])
2466 		return -ENOMEM;
2467 
2468 	return 0;
2469 }
2470 
2471 int security_get_permissions(char *class, char ***perms, int *nperms)
2472 {
2473 	int rc = -ENOMEM, i;
2474 	struct class_datum *match;
2475 
2476 	read_lock(&policy_rwlock);
2477 
2478 	match = hashtab_search(policydb.p_classes.table, class);
2479 	if (!match) {
2480 		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2481 			__func__, class);
2482 		rc = -EINVAL;
2483 		goto out;
2484 	}
2485 
2486 	*nperms = match->permissions.nprim;
2487 	*perms = kcalloc(*nperms, sizeof(*perms), GFP_ATOMIC);
2488 	if (!*perms)
2489 		goto out;
2490 
2491 	if (match->comdatum) {
2492 		rc = hashtab_map(match->comdatum->permissions.table,
2493 				get_permissions_callback, *perms);
2494 		if (rc < 0)
2495 			goto err;
2496 	}
2497 
2498 	rc = hashtab_map(match->permissions.table, get_permissions_callback,
2499 			*perms);
2500 	if (rc < 0)
2501 		goto err;
2502 
2503 out:
2504 	read_unlock(&policy_rwlock);
2505 	return rc;
2506 
2507 err:
2508 	read_unlock(&policy_rwlock);
2509 	for (i = 0; i < *nperms; i++)
2510 		kfree((*perms)[i]);
2511 	kfree(*perms);
2512 	return rc;
2513 }
2514 
2515 int security_get_reject_unknown(void)
2516 {
2517 	return policydb.reject_unknown;
2518 }
2519 
2520 int security_get_allow_unknown(void)
2521 {
2522 	return policydb.allow_unknown;
2523 }
2524 
2525 /**
2526  * security_policycap_supported - Check for a specific policy capability
2527  * @req_cap: capability
2528  *
2529  * Description:
2530  * This function queries the currently loaded policy to see if it supports the
2531  * capability specified by @req_cap.  Returns true (1) if the capability is
2532  * supported, false (0) if it isn't supported.
2533  *
2534  */
2535 int security_policycap_supported(unsigned int req_cap)
2536 {
2537 	int rc;
2538 
2539 	read_lock(&policy_rwlock);
2540 	rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2541 	read_unlock(&policy_rwlock);
2542 
2543 	return rc;
2544 }
2545 
2546 struct selinux_audit_rule {
2547 	u32 au_seqno;
2548 	struct context au_ctxt;
2549 };
2550 
2551 void selinux_audit_rule_free(void *vrule)
2552 {
2553 	struct selinux_audit_rule *rule = vrule;
2554 
2555 	if (rule) {
2556 		context_destroy(&rule->au_ctxt);
2557 		kfree(rule);
2558 	}
2559 }
2560 
2561 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2562 {
2563 	struct selinux_audit_rule *tmprule;
2564 	struct role_datum *roledatum;
2565 	struct type_datum *typedatum;
2566 	struct user_datum *userdatum;
2567 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2568 	int rc = 0;
2569 
2570 	*rule = NULL;
2571 
2572 	if (!ss_initialized)
2573 		return -EOPNOTSUPP;
2574 
2575 	switch (field) {
2576 	case AUDIT_SUBJ_USER:
2577 	case AUDIT_SUBJ_ROLE:
2578 	case AUDIT_SUBJ_TYPE:
2579 	case AUDIT_OBJ_USER:
2580 	case AUDIT_OBJ_ROLE:
2581 	case AUDIT_OBJ_TYPE:
2582 		/* only 'equals' and 'not equals' fit user, role, and type */
2583 		if (op != Audit_equal && op != Audit_not_equal)
2584 			return -EINVAL;
2585 		break;
2586 	case AUDIT_SUBJ_SEN:
2587 	case AUDIT_SUBJ_CLR:
2588 	case AUDIT_OBJ_LEV_LOW:
2589 	case AUDIT_OBJ_LEV_HIGH:
2590 		/* we do not allow a range, indicated by the presense of '-' */
2591 		if (strchr(rulestr, '-'))
2592 			return -EINVAL;
2593 		break;
2594 	default:
2595 		/* only the above fields are valid */
2596 		return -EINVAL;
2597 	}
2598 
2599 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2600 	if (!tmprule)
2601 		return -ENOMEM;
2602 
2603 	context_init(&tmprule->au_ctxt);
2604 
2605 	read_lock(&policy_rwlock);
2606 
2607 	tmprule->au_seqno = latest_granting;
2608 
2609 	switch (field) {
2610 	case AUDIT_SUBJ_USER:
2611 	case AUDIT_OBJ_USER:
2612 		userdatum = hashtab_search(policydb.p_users.table, rulestr);
2613 		if (!userdatum)
2614 			rc = -EINVAL;
2615 		else
2616 			tmprule->au_ctxt.user = userdatum->value;
2617 		break;
2618 	case AUDIT_SUBJ_ROLE:
2619 	case AUDIT_OBJ_ROLE:
2620 		roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2621 		if (!roledatum)
2622 			rc = -EINVAL;
2623 		else
2624 			tmprule->au_ctxt.role = roledatum->value;
2625 		break;
2626 	case AUDIT_SUBJ_TYPE:
2627 	case AUDIT_OBJ_TYPE:
2628 		typedatum = hashtab_search(policydb.p_types.table, rulestr);
2629 		if (!typedatum)
2630 			rc = -EINVAL;
2631 		else
2632 			tmprule->au_ctxt.type = typedatum->value;
2633 		break;
2634 	case AUDIT_SUBJ_SEN:
2635 	case AUDIT_SUBJ_CLR:
2636 	case AUDIT_OBJ_LEV_LOW:
2637 	case AUDIT_OBJ_LEV_HIGH:
2638 		rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2639 		break;
2640 	}
2641 
2642 	read_unlock(&policy_rwlock);
2643 
2644 	if (rc) {
2645 		selinux_audit_rule_free(tmprule);
2646 		tmprule = NULL;
2647 	}
2648 
2649 	*rule = tmprule;
2650 
2651 	return rc;
2652 }
2653 
2654 /* Check to see if the rule contains any selinux fields */
2655 int selinux_audit_rule_known(struct audit_krule *rule)
2656 {
2657 	int i;
2658 
2659 	for (i = 0; i < rule->field_count; i++) {
2660 		struct audit_field *f = &rule->fields[i];
2661 		switch (f->type) {
2662 		case AUDIT_SUBJ_USER:
2663 		case AUDIT_SUBJ_ROLE:
2664 		case AUDIT_SUBJ_TYPE:
2665 		case AUDIT_SUBJ_SEN:
2666 		case AUDIT_SUBJ_CLR:
2667 		case AUDIT_OBJ_USER:
2668 		case AUDIT_OBJ_ROLE:
2669 		case AUDIT_OBJ_TYPE:
2670 		case AUDIT_OBJ_LEV_LOW:
2671 		case AUDIT_OBJ_LEV_HIGH:
2672 			return 1;
2673 		}
2674 	}
2675 
2676 	return 0;
2677 }
2678 
2679 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2680 			     struct audit_context *actx)
2681 {
2682 	struct context *ctxt;
2683 	struct mls_level *level;
2684 	struct selinux_audit_rule *rule = vrule;
2685 	int match = 0;
2686 
2687 	if (!rule) {
2688 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2689 			  "selinux_audit_rule_match: missing rule\n");
2690 		return -ENOENT;
2691 	}
2692 
2693 	read_lock(&policy_rwlock);
2694 
2695 	if (rule->au_seqno < latest_granting) {
2696 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2697 			  "selinux_audit_rule_match: stale rule\n");
2698 		match = -ESTALE;
2699 		goto out;
2700 	}
2701 
2702 	ctxt = sidtab_search(&sidtab, sid);
2703 	if (!ctxt) {
2704 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2705 			  "selinux_audit_rule_match: unrecognized SID %d\n",
2706 			  sid);
2707 		match = -ENOENT;
2708 		goto out;
2709 	}
2710 
2711 	/* a field/op pair that is not caught here will simply fall through
2712 	   without a match */
2713 	switch (field) {
2714 	case AUDIT_SUBJ_USER:
2715 	case AUDIT_OBJ_USER:
2716 		switch (op) {
2717 		case Audit_equal:
2718 			match = (ctxt->user == rule->au_ctxt.user);
2719 			break;
2720 		case Audit_not_equal:
2721 			match = (ctxt->user != rule->au_ctxt.user);
2722 			break;
2723 		}
2724 		break;
2725 	case AUDIT_SUBJ_ROLE:
2726 	case AUDIT_OBJ_ROLE:
2727 		switch (op) {
2728 		case Audit_equal:
2729 			match = (ctxt->role == rule->au_ctxt.role);
2730 			break;
2731 		case Audit_not_equal:
2732 			match = (ctxt->role != rule->au_ctxt.role);
2733 			break;
2734 		}
2735 		break;
2736 	case AUDIT_SUBJ_TYPE:
2737 	case AUDIT_OBJ_TYPE:
2738 		switch (op) {
2739 		case Audit_equal:
2740 			match = (ctxt->type == rule->au_ctxt.type);
2741 			break;
2742 		case Audit_not_equal:
2743 			match = (ctxt->type != rule->au_ctxt.type);
2744 			break;
2745 		}
2746 		break;
2747 	case AUDIT_SUBJ_SEN:
2748 	case AUDIT_SUBJ_CLR:
2749 	case AUDIT_OBJ_LEV_LOW:
2750 	case AUDIT_OBJ_LEV_HIGH:
2751 		level = ((field == AUDIT_SUBJ_SEN ||
2752 			  field == AUDIT_OBJ_LEV_LOW) ?
2753 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
2754 		switch (op) {
2755 		case Audit_equal:
2756 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
2757 					     level);
2758 			break;
2759 		case Audit_not_equal:
2760 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
2761 					      level);
2762 			break;
2763 		case Audit_lt:
2764 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
2765 					       level) &&
2766 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
2767 					       level));
2768 			break;
2769 		case Audit_le:
2770 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
2771 					      level);
2772 			break;
2773 		case Audit_gt:
2774 			match = (mls_level_dom(level,
2775 					      &rule->au_ctxt.range.level[0]) &&
2776 				 !mls_level_eq(level,
2777 					       &rule->au_ctxt.range.level[0]));
2778 			break;
2779 		case Audit_ge:
2780 			match = mls_level_dom(level,
2781 					      &rule->au_ctxt.range.level[0]);
2782 			break;
2783 		}
2784 	}
2785 
2786 out:
2787 	read_unlock(&policy_rwlock);
2788 	return match;
2789 }
2790 
2791 static int (*aurule_callback)(void) = audit_update_lsm_rules;
2792 
2793 static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
2794 			       u16 class, u32 perms, u32 *retained)
2795 {
2796 	int err = 0;
2797 
2798 	if (event == AVC_CALLBACK_RESET && aurule_callback)
2799 		err = aurule_callback();
2800 	return err;
2801 }
2802 
2803 static int __init aurule_init(void)
2804 {
2805 	int err;
2806 
2807 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
2808 			       SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
2809 	if (err)
2810 		panic("avc_add_callback() failed, error %d\n", err);
2811 
2812 	return err;
2813 }
2814 __initcall(aurule_init);
2815 
2816 #ifdef CONFIG_NETLABEL
2817 /**
2818  * security_netlbl_cache_add - Add an entry to the NetLabel cache
2819  * @secattr: the NetLabel packet security attributes
2820  * @sid: the SELinux SID
2821  *
2822  * Description:
2823  * Attempt to cache the context in @ctx, which was derived from the packet in
2824  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
2825  * already been initialized.
2826  *
2827  */
2828 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
2829 				      u32 sid)
2830 {
2831 	u32 *sid_cache;
2832 
2833 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
2834 	if (sid_cache == NULL)
2835 		return;
2836 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
2837 	if (secattr->cache == NULL) {
2838 		kfree(sid_cache);
2839 		return;
2840 	}
2841 
2842 	*sid_cache = sid;
2843 	secattr->cache->free = kfree;
2844 	secattr->cache->data = sid_cache;
2845 	secattr->flags |= NETLBL_SECATTR_CACHE;
2846 }
2847 
2848 /**
2849  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
2850  * @secattr: the NetLabel packet security attributes
2851  * @sid: the SELinux SID
2852  *
2853  * Description:
2854  * Convert the given NetLabel security attributes in @secattr into a
2855  * SELinux SID.  If the @secattr field does not contain a full SELinux
2856  * SID/context then use SECINITSID_NETMSG as the foundation.  If possibile the
2857  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
2858  * allow the @secattr to be used by NetLabel to cache the secattr to SID
2859  * conversion for future lookups.  Returns zero on success, negative values on
2860  * failure.
2861  *
2862  */
2863 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
2864 				   u32 *sid)
2865 {
2866 	int rc = -EIDRM;
2867 	struct context *ctx;
2868 	struct context ctx_new;
2869 
2870 	if (!ss_initialized) {
2871 		*sid = SECSID_NULL;
2872 		return 0;
2873 	}
2874 
2875 	read_lock(&policy_rwlock);
2876 
2877 	if (secattr->flags & NETLBL_SECATTR_CACHE) {
2878 		*sid = *(u32 *)secattr->cache->data;
2879 		rc = 0;
2880 	} else if (secattr->flags & NETLBL_SECATTR_SECID) {
2881 		*sid = secattr->attr.secid;
2882 		rc = 0;
2883 	} else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
2884 		ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
2885 		if (ctx == NULL)
2886 			goto netlbl_secattr_to_sid_return;
2887 
2888 		context_init(&ctx_new);
2889 		ctx_new.user = ctx->user;
2890 		ctx_new.role = ctx->role;
2891 		ctx_new.type = ctx->type;
2892 		mls_import_netlbl_lvl(&ctx_new, secattr);
2893 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
2894 			if (ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
2895 						  secattr->attr.mls.cat) != 0)
2896 				goto netlbl_secattr_to_sid_return;
2897 			memcpy(&ctx_new.range.level[1].cat,
2898 			       &ctx_new.range.level[0].cat,
2899 			       sizeof(ctx_new.range.level[0].cat));
2900 		}
2901 		if (mls_context_isvalid(&policydb, &ctx_new) != 1)
2902 			goto netlbl_secattr_to_sid_return_cleanup;
2903 
2904 		rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
2905 		if (rc != 0)
2906 			goto netlbl_secattr_to_sid_return_cleanup;
2907 
2908 		security_netlbl_cache_add(secattr, *sid);
2909 
2910 		ebitmap_destroy(&ctx_new.range.level[0].cat);
2911 	} else {
2912 		*sid = SECSID_NULL;
2913 		rc = 0;
2914 	}
2915 
2916 netlbl_secattr_to_sid_return:
2917 	read_unlock(&policy_rwlock);
2918 	return rc;
2919 netlbl_secattr_to_sid_return_cleanup:
2920 	ebitmap_destroy(&ctx_new.range.level[0].cat);
2921 	goto netlbl_secattr_to_sid_return;
2922 }
2923 
2924 /**
2925  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
2926  * @sid: the SELinux SID
2927  * @secattr: the NetLabel packet security attributes
2928  *
2929  * Description:
2930  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
2931  * Returns zero on success, negative values on failure.
2932  *
2933  */
2934 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
2935 {
2936 	int rc;
2937 	struct context *ctx;
2938 
2939 	if (!ss_initialized)
2940 		return 0;
2941 
2942 	read_lock(&policy_rwlock);
2943 	ctx = sidtab_search(&sidtab, sid);
2944 	if (ctx == NULL) {
2945 		rc = -ENOENT;
2946 		goto netlbl_sid_to_secattr_failure;
2947 	}
2948 	secattr->domain = kstrdup(policydb.p_type_val_to_name[ctx->type - 1],
2949 				  GFP_ATOMIC);
2950 	if (secattr->domain == NULL) {
2951 		rc = -ENOMEM;
2952 		goto netlbl_sid_to_secattr_failure;
2953 	}
2954 	secattr->attr.secid = sid;
2955 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
2956 	mls_export_netlbl_lvl(ctx, secattr);
2957 	rc = mls_export_netlbl_cat(ctx, secattr);
2958 	if (rc != 0)
2959 		goto netlbl_sid_to_secattr_failure;
2960 	read_unlock(&policy_rwlock);
2961 
2962 	return 0;
2963 
2964 netlbl_sid_to_secattr_failure:
2965 	read_unlock(&policy_rwlock);
2966 	return rc;
2967 }
2968 #endif /* CONFIG_NETLABEL */
2969