1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Implementation of the security services. 4 * 5 * Authors : Stephen Smalley, <sds@tycho.nsa.gov> 6 * James Morris <jmorris@redhat.com> 7 * 8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com> 9 * 10 * Support for enhanced MLS infrastructure. 11 * Support for context based audit filters. 12 * 13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com> 14 * 15 * Added conditional policy language extensions 16 * 17 * Updated: Hewlett-Packard <paul@paul-moore.com> 18 * 19 * Added support for NetLabel 20 * Added support for the policy capability bitmap 21 * 22 * Updated: Chad Sellers <csellers@tresys.com> 23 * 24 * Added validation of kernel classes and permissions 25 * 26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com> 27 * 28 * Added support for bounds domain and audit messaged on masked permissions 29 * 30 * Updated: Guido Trentalancia <guido@trentalancia.com> 31 * 32 * Added support for runtime switching of the policy type 33 * 34 * Copyright (C) 2008, 2009 NEC Corporation 35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P. 36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc. 37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC 38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> 39 */ 40 #include <linux/kernel.h> 41 #include <linux/slab.h> 42 #include <linux/string.h> 43 #include <linux/spinlock.h> 44 #include <linux/rcupdate.h> 45 #include <linux/errno.h> 46 #include <linux/in.h> 47 #include <linux/sched.h> 48 #include <linux/audit.h> 49 #include <linux/vmalloc.h> 50 #include <linux/lsm_hooks.h> 51 #include <net/netlabel.h> 52 53 #include "flask.h" 54 #include "avc.h" 55 #include "avc_ss.h" 56 #include "security.h" 57 #include "context.h" 58 #include "policydb.h" 59 #include "sidtab.h" 60 #include "services.h" 61 #include "conditional.h" 62 #include "mls.h" 63 #include "objsec.h" 64 #include "netlabel.h" 65 #include "xfrm.h" 66 #include "ebitmap.h" 67 #include "audit.h" 68 #include "policycap_names.h" 69 #include "ima.h" 70 71 struct convert_context_args { 72 struct selinux_state *state; 73 struct policydb *oldp; 74 struct policydb *newp; 75 }; 76 77 struct selinux_policy_convert_data { 78 struct convert_context_args args; 79 struct sidtab_convert_params sidtab_params; 80 }; 81 82 /* Forward declaration. */ 83 static int context_struct_to_string(struct policydb *policydb, 84 struct context *context, 85 char **scontext, 86 u32 *scontext_len); 87 88 static int sidtab_entry_to_string(struct policydb *policydb, 89 struct sidtab *sidtab, 90 struct sidtab_entry *entry, 91 char **scontext, 92 u32 *scontext_len); 93 94 static void context_struct_compute_av(struct policydb *policydb, 95 struct context *scontext, 96 struct context *tcontext, 97 u16 tclass, 98 struct av_decision *avd, 99 struct extended_perms *xperms); 100 101 static int selinux_set_mapping(struct policydb *pol, 102 struct security_class_mapping *map, 103 struct selinux_map *out_map) 104 { 105 u16 i, j; 106 unsigned k; 107 bool print_unknown_handle = false; 108 109 /* Find number of classes in the input mapping */ 110 if (!map) 111 return -EINVAL; 112 i = 0; 113 while (map[i].name) 114 i++; 115 116 /* Allocate space for the class records, plus one for class zero */ 117 out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC); 118 if (!out_map->mapping) 119 return -ENOMEM; 120 121 /* Store the raw class and permission values */ 122 j = 0; 123 while (map[j].name) { 124 struct security_class_mapping *p_in = map + (j++); 125 struct selinux_mapping *p_out = out_map->mapping + j; 126 127 /* An empty class string skips ahead */ 128 if (!strcmp(p_in->name, "")) { 129 p_out->num_perms = 0; 130 continue; 131 } 132 133 p_out->value = string_to_security_class(pol, p_in->name); 134 if (!p_out->value) { 135 pr_info("SELinux: Class %s not defined in policy.\n", 136 p_in->name); 137 if (pol->reject_unknown) 138 goto err; 139 p_out->num_perms = 0; 140 print_unknown_handle = true; 141 continue; 142 } 143 144 k = 0; 145 while (p_in->perms[k]) { 146 /* An empty permission string skips ahead */ 147 if (!*p_in->perms[k]) { 148 k++; 149 continue; 150 } 151 p_out->perms[k] = string_to_av_perm(pol, p_out->value, 152 p_in->perms[k]); 153 if (!p_out->perms[k]) { 154 pr_info("SELinux: Permission %s in class %s not defined in policy.\n", 155 p_in->perms[k], p_in->name); 156 if (pol->reject_unknown) 157 goto err; 158 print_unknown_handle = true; 159 } 160 161 k++; 162 } 163 p_out->num_perms = k; 164 } 165 166 if (print_unknown_handle) 167 pr_info("SELinux: the above unknown classes and permissions will be %s\n", 168 pol->allow_unknown ? "allowed" : "denied"); 169 170 out_map->size = i; 171 return 0; 172 err: 173 kfree(out_map->mapping); 174 out_map->mapping = NULL; 175 return -EINVAL; 176 } 177 178 /* 179 * Get real, policy values from mapped values 180 */ 181 182 static u16 unmap_class(struct selinux_map *map, u16 tclass) 183 { 184 if (tclass < map->size) 185 return map->mapping[tclass].value; 186 187 return tclass; 188 } 189 190 /* 191 * Get kernel value for class from its policy value 192 */ 193 static u16 map_class(struct selinux_map *map, u16 pol_value) 194 { 195 u16 i; 196 197 for (i = 1; i < map->size; i++) { 198 if (map->mapping[i].value == pol_value) 199 return i; 200 } 201 202 return SECCLASS_NULL; 203 } 204 205 static void map_decision(struct selinux_map *map, 206 u16 tclass, struct av_decision *avd, 207 int allow_unknown) 208 { 209 if (tclass < map->size) { 210 struct selinux_mapping *mapping = &map->mapping[tclass]; 211 unsigned int i, n = mapping->num_perms; 212 u32 result; 213 214 for (i = 0, result = 0; i < n; i++) { 215 if (avd->allowed & mapping->perms[i]) 216 result |= 1<<i; 217 if (allow_unknown && !mapping->perms[i]) 218 result |= 1<<i; 219 } 220 avd->allowed = result; 221 222 for (i = 0, result = 0; i < n; i++) 223 if (avd->auditallow & mapping->perms[i]) 224 result |= 1<<i; 225 avd->auditallow = result; 226 227 for (i = 0, result = 0; i < n; i++) { 228 if (avd->auditdeny & mapping->perms[i]) 229 result |= 1<<i; 230 if (!allow_unknown && !mapping->perms[i]) 231 result |= 1<<i; 232 } 233 /* 234 * In case the kernel has a bug and requests a permission 235 * between num_perms and the maximum permission number, we 236 * should audit that denial 237 */ 238 for (; i < (sizeof(u32)*8); i++) 239 result |= 1<<i; 240 avd->auditdeny = result; 241 } 242 } 243 244 int security_mls_enabled(struct selinux_state *state) 245 { 246 int mls_enabled; 247 struct selinux_policy *policy; 248 249 if (!selinux_initialized(state)) 250 return 0; 251 252 rcu_read_lock(); 253 policy = rcu_dereference(state->policy); 254 mls_enabled = policy->policydb.mls_enabled; 255 rcu_read_unlock(); 256 return mls_enabled; 257 } 258 259 /* 260 * Return the boolean value of a constraint expression 261 * when it is applied to the specified source and target 262 * security contexts. 263 * 264 * xcontext is a special beast... It is used by the validatetrans rules 265 * only. For these rules, scontext is the context before the transition, 266 * tcontext is the context after the transition, and xcontext is the context 267 * of the process performing the transition. All other callers of 268 * constraint_expr_eval should pass in NULL for xcontext. 269 */ 270 static int constraint_expr_eval(struct policydb *policydb, 271 struct context *scontext, 272 struct context *tcontext, 273 struct context *xcontext, 274 struct constraint_expr *cexpr) 275 { 276 u32 val1, val2; 277 struct context *c; 278 struct role_datum *r1, *r2; 279 struct mls_level *l1, *l2; 280 struct constraint_expr *e; 281 int s[CEXPR_MAXDEPTH]; 282 int sp = -1; 283 284 for (e = cexpr; e; e = e->next) { 285 switch (e->expr_type) { 286 case CEXPR_NOT: 287 BUG_ON(sp < 0); 288 s[sp] = !s[sp]; 289 break; 290 case CEXPR_AND: 291 BUG_ON(sp < 1); 292 sp--; 293 s[sp] &= s[sp + 1]; 294 break; 295 case CEXPR_OR: 296 BUG_ON(sp < 1); 297 sp--; 298 s[sp] |= s[sp + 1]; 299 break; 300 case CEXPR_ATTR: 301 if (sp == (CEXPR_MAXDEPTH - 1)) 302 return 0; 303 switch (e->attr) { 304 case CEXPR_USER: 305 val1 = scontext->user; 306 val2 = tcontext->user; 307 break; 308 case CEXPR_TYPE: 309 val1 = scontext->type; 310 val2 = tcontext->type; 311 break; 312 case CEXPR_ROLE: 313 val1 = scontext->role; 314 val2 = tcontext->role; 315 r1 = policydb->role_val_to_struct[val1 - 1]; 316 r2 = policydb->role_val_to_struct[val2 - 1]; 317 switch (e->op) { 318 case CEXPR_DOM: 319 s[++sp] = ebitmap_get_bit(&r1->dominates, 320 val2 - 1); 321 continue; 322 case CEXPR_DOMBY: 323 s[++sp] = ebitmap_get_bit(&r2->dominates, 324 val1 - 1); 325 continue; 326 case CEXPR_INCOMP: 327 s[++sp] = (!ebitmap_get_bit(&r1->dominates, 328 val2 - 1) && 329 !ebitmap_get_bit(&r2->dominates, 330 val1 - 1)); 331 continue; 332 default: 333 break; 334 } 335 break; 336 case CEXPR_L1L2: 337 l1 = &(scontext->range.level[0]); 338 l2 = &(tcontext->range.level[0]); 339 goto mls_ops; 340 case CEXPR_L1H2: 341 l1 = &(scontext->range.level[0]); 342 l2 = &(tcontext->range.level[1]); 343 goto mls_ops; 344 case CEXPR_H1L2: 345 l1 = &(scontext->range.level[1]); 346 l2 = &(tcontext->range.level[0]); 347 goto mls_ops; 348 case CEXPR_H1H2: 349 l1 = &(scontext->range.level[1]); 350 l2 = &(tcontext->range.level[1]); 351 goto mls_ops; 352 case CEXPR_L1H1: 353 l1 = &(scontext->range.level[0]); 354 l2 = &(scontext->range.level[1]); 355 goto mls_ops; 356 case CEXPR_L2H2: 357 l1 = &(tcontext->range.level[0]); 358 l2 = &(tcontext->range.level[1]); 359 goto mls_ops; 360 mls_ops: 361 switch (e->op) { 362 case CEXPR_EQ: 363 s[++sp] = mls_level_eq(l1, l2); 364 continue; 365 case CEXPR_NEQ: 366 s[++sp] = !mls_level_eq(l1, l2); 367 continue; 368 case CEXPR_DOM: 369 s[++sp] = mls_level_dom(l1, l2); 370 continue; 371 case CEXPR_DOMBY: 372 s[++sp] = mls_level_dom(l2, l1); 373 continue; 374 case CEXPR_INCOMP: 375 s[++sp] = mls_level_incomp(l2, l1); 376 continue; 377 default: 378 BUG(); 379 return 0; 380 } 381 break; 382 default: 383 BUG(); 384 return 0; 385 } 386 387 switch (e->op) { 388 case CEXPR_EQ: 389 s[++sp] = (val1 == val2); 390 break; 391 case CEXPR_NEQ: 392 s[++sp] = (val1 != val2); 393 break; 394 default: 395 BUG(); 396 return 0; 397 } 398 break; 399 case CEXPR_NAMES: 400 if (sp == (CEXPR_MAXDEPTH-1)) 401 return 0; 402 c = scontext; 403 if (e->attr & CEXPR_TARGET) 404 c = tcontext; 405 else if (e->attr & CEXPR_XTARGET) { 406 c = xcontext; 407 if (!c) { 408 BUG(); 409 return 0; 410 } 411 } 412 if (e->attr & CEXPR_USER) 413 val1 = c->user; 414 else if (e->attr & CEXPR_ROLE) 415 val1 = c->role; 416 else if (e->attr & CEXPR_TYPE) 417 val1 = c->type; 418 else { 419 BUG(); 420 return 0; 421 } 422 423 switch (e->op) { 424 case CEXPR_EQ: 425 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1); 426 break; 427 case CEXPR_NEQ: 428 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1); 429 break; 430 default: 431 BUG(); 432 return 0; 433 } 434 break; 435 default: 436 BUG(); 437 return 0; 438 } 439 } 440 441 BUG_ON(sp != 0); 442 return s[0]; 443 } 444 445 /* 446 * security_dump_masked_av - dumps masked permissions during 447 * security_compute_av due to RBAC, MLS/Constraint and Type bounds. 448 */ 449 static int dump_masked_av_helper(void *k, void *d, void *args) 450 { 451 struct perm_datum *pdatum = d; 452 char **permission_names = args; 453 454 BUG_ON(pdatum->value < 1 || pdatum->value > 32); 455 456 permission_names[pdatum->value - 1] = (char *)k; 457 458 return 0; 459 } 460 461 static void security_dump_masked_av(struct policydb *policydb, 462 struct context *scontext, 463 struct context *tcontext, 464 u16 tclass, 465 u32 permissions, 466 const char *reason) 467 { 468 struct common_datum *common_dat; 469 struct class_datum *tclass_dat; 470 struct audit_buffer *ab; 471 char *tclass_name; 472 char *scontext_name = NULL; 473 char *tcontext_name = NULL; 474 char *permission_names[32]; 475 int index; 476 u32 length; 477 bool need_comma = false; 478 479 if (!permissions) 480 return; 481 482 tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1); 483 tclass_dat = policydb->class_val_to_struct[tclass - 1]; 484 common_dat = tclass_dat->comdatum; 485 486 /* init permission_names */ 487 if (common_dat && 488 hashtab_map(&common_dat->permissions.table, 489 dump_masked_av_helper, permission_names) < 0) 490 goto out; 491 492 if (hashtab_map(&tclass_dat->permissions.table, 493 dump_masked_av_helper, permission_names) < 0) 494 goto out; 495 496 /* get scontext/tcontext in text form */ 497 if (context_struct_to_string(policydb, scontext, 498 &scontext_name, &length) < 0) 499 goto out; 500 501 if (context_struct_to_string(policydb, tcontext, 502 &tcontext_name, &length) < 0) 503 goto out; 504 505 /* audit a message */ 506 ab = audit_log_start(audit_context(), 507 GFP_ATOMIC, AUDIT_SELINUX_ERR); 508 if (!ab) 509 goto out; 510 511 audit_log_format(ab, "op=security_compute_av reason=%s " 512 "scontext=%s tcontext=%s tclass=%s perms=", 513 reason, scontext_name, tcontext_name, tclass_name); 514 515 for (index = 0; index < 32; index++) { 516 u32 mask = (1 << index); 517 518 if ((mask & permissions) == 0) 519 continue; 520 521 audit_log_format(ab, "%s%s", 522 need_comma ? "," : "", 523 permission_names[index] 524 ? permission_names[index] : "????"); 525 need_comma = true; 526 } 527 audit_log_end(ab); 528 out: 529 /* release scontext/tcontext */ 530 kfree(tcontext_name); 531 kfree(scontext_name); 532 533 return; 534 } 535 536 /* 537 * security_boundary_permission - drops violated permissions 538 * on boundary constraint. 539 */ 540 static void type_attribute_bounds_av(struct policydb *policydb, 541 struct context *scontext, 542 struct context *tcontext, 543 u16 tclass, 544 struct av_decision *avd) 545 { 546 struct context lo_scontext; 547 struct context lo_tcontext, *tcontextp = tcontext; 548 struct av_decision lo_avd; 549 struct type_datum *source; 550 struct type_datum *target; 551 u32 masked = 0; 552 553 source = policydb->type_val_to_struct[scontext->type - 1]; 554 BUG_ON(!source); 555 556 if (!source->bounds) 557 return; 558 559 target = policydb->type_val_to_struct[tcontext->type - 1]; 560 BUG_ON(!target); 561 562 memset(&lo_avd, 0, sizeof(lo_avd)); 563 564 memcpy(&lo_scontext, scontext, sizeof(lo_scontext)); 565 lo_scontext.type = source->bounds; 566 567 if (target->bounds) { 568 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext)); 569 lo_tcontext.type = target->bounds; 570 tcontextp = &lo_tcontext; 571 } 572 573 context_struct_compute_av(policydb, &lo_scontext, 574 tcontextp, 575 tclass, 576 &lo_avd, 577 NULL); 578 579 masked = ~lo_avd.allowed & avd->allowed; 580 581 if (likely(!masked)) 582 return; /* no masked permission */ 583 584 /* mask violated permissions */ 585 avd->allowed &= ~masked; 586 587 /* audit masked permissions */ 588 security_dump_masked_av(policydb, scontext, tcontext, 589 tclass, masked, "bounds"); 590 } 591 592 /* 593 * flag which drivers have permissions 594 * only looking for ioctl based extended permssions 595 */ 596 void services_compute_xperms_drivers( 597 struct extended_perms *xperms, 598 struct avtab_node *node) 599 { 600 unsigned int i; 601 602 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) { 603 /* if one or more driver has all permissions allowed */ 604 for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++) 605 xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i]; 606 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) { 607 /* if allowing permissions within a driver */ 608 security_xperm_set(xperms->drivers.p, 609 node->datum.u.xperms->driver); 610 } 611 612 xperms->len = 1; 613 } 614 615 /* 616 * Compute access vectors and extended permissions based on a context 617 * structure pair for the permissions in a particular class. 618 */ 619 static void context_struct_compute_av(struct policydb *policydb, 620 struct context *scontext, 621 struct context *tcontext, 622 u16 tclass, 623 struct av_decision *avd, 624 struct extended_perms *xperms) 625 { 626 struct constraint_node *constraint; 627 struct role_allow *ra; 628 struct avtab_key avkey; 629 struct avtab_node *node; 630 struct class_datum *tclass_datum; 631 struct ebitmap *sattr, *tattr; 632 struct ebitmap_node *snode, *tnode; 633 unsigned int i, j; 634 635 avd->allowed = 0; 636 avd->auditallow = 0; 637 avd->auditdeny = 0xffffffff; 638 if (xperms) { 639 memset(&xperms->drivers, 0, sizeof(xperms->drivers)); 640 xperms->len = 0; 641 } 642 643 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) { 644 if (printk_ratelimit()) 645 pr_warn("SELinux: Invalid class %hu\n", tclass); 646 return; 647 } 648 649 tclass_datum = policydb->class_val_to_struct[tclass - 1]; 650 651 /* 652 * If a specific type enforcement rule was defined for 653 * this permission check, then use it. 654 */ 655 avkey.target_class = tclass; 656 avkey.specified = AVTAB_AV | AVTAB_XPERMS; 657 sattr = &policydb->type_attr_map_array[scontext->type - 1]; 658 tattr = &policydb->type_attr_map_array[tcontext->type - 1]; 659 ebitmap_for_each_positive_bit(sattr, snode, i) { 660 ebitmap_for_each_positive_bit(tattr, tnode, j) { 661 avkey.source_type = i + 1; 662 avkey.target_type = j + 1; 663 for (node = avtab_search_node(&policydb->te_avtab, 664 &avkey); 665 node; 666 node = avtab_search_node_next(node, avkey.specified)) { 667 if (node->key.specified == AVTAB_ALLOWED) 668 avd->allowed |= node->datum.u.data; 669 else if (node->key.specified == AVTAB_AUDITALLOW) 670 avd->auditallow |= node->datum.u.data; 671 else if (node->key.specified == AVTAB_AUDITDENY) 672 avd->auditdeny &= node->datum.u.data; 673 else if (xperms && (node->key.specified & AVTAB_XPERMS)) 674 services_compute_xperms_drivers(xperms, node); 675 } 676 677 /* Check conditional av table for additional permissions */ 678 cond_compute_av(&policydb->te_cond_avtab, &avkey, 679 avd, xperms); 680 681 } 682 } 683 684 /* 685 * Remove any permissions prohibited by a constraint (this includes 686 * the MLS policy). 687 */ 688 constraint = tclass_datum->constraints; 689 while (constraint) { 690 if ((constraint->permissions & (avd->allowed)) && 691 !constraint_expr_eval(policydb, scontext, tcontext, NULL, 692 constraint->expr)) { 693 avd->allowed &= ~(constraint->permissions); 694 } 695 constraint = constraint->next; 696 } 697 698 /* 699 * If checking process transition permission and the 700 * role is changing, then check the (current_role, new_role) 701 * pair. 702 */ 703 if (tclass == policydb->process_class && 704 (avd->allowed & policydb->process_trans_perms) && 705 scontext->role != tcontext->role) { 706 for (ra = policydb->role_allow; ra; ra = ra->next) { 707 if (scontext->role == ra->role && 708 tcontext->role == ra->new_role) 709 break; 710 } 711 if (!ra) 712 avd->allowed &= ~policydb->process_trans_perms; 713 } 714 715 /* 716 * If the given source and target types have boundary 717 * constraint, lazy checks have to mask any violated 718 * permission and notice it to userspace via audit. 719 */ 720 type_attribute_bounds_av(policydb, scontext, tcontext, 721 tclass, avd); 722 } 723 724 static int security_validtrans_handle_fail(struct selinux_state *state, 725 struct selinux_policy *policy, 726 struct sidtab_entry *oentry, 727 struct sidtab_entry *nentry, 728 struct sidtab_entry *tentry, 729 u16 tclass) 730 { 731 struct policydb *p = &policy->policydb; 732 struct sidtab *sidtab = policy->sidtab; 733 char *o = NULL, *n = NULL, *t = NULL; 734 u32 olen, nlen, tlen; 735 736 if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen)) 737 goto out; 738 if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen)) 739 goto out; 740 if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen)) 741 goto out; 742 audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR, 743 "op=security_validate_transition seresult=denied" 744 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s", 745 o, n, t, sym_name(p, SYM_CLASSES, tclass-1)); 746 out: 747 kfree(o); 748 kfree(n); 749 kfree(t); 750 751 if (!enforcing_enabled(state)) 752 return 0; 753 return -EPERM; 754 } 755 756 static int security_compute_validatetrans(struct selinux_state *state, 757 u32 oldsid, u32 newsid, u32 tasksid, 758 u16 orig_tclass, bool user) 759 { 760 struct selinux_policy *policy; 761 struct policydb *policydb; 762 struct sidtab *sidtab; 763 struct sidtab_entry *oentry; 764 struct sidtab_entry *nentry; 765 struct sidtab_entry *tentry; 766 struct class_datum *tclass_datum; 767 struct constraint_node *constraint; 768 u16 tclass; 769 int rc = 0; 770 771 772 if (!selinux_initialized(state)) 773 return 0; 774 775 rcu_read_lock(); 776 777 policy = rcu_dereference(state->policy); 778 policydb = &policy->policydb; 779 sidtab = policy->sidtab; 780 781 if (!user) 782 tclass = unmap_class(&policy->map, orig_tclass); 783 else 784 tclass = orig_tclass; 785 786 if (!tclass || tclass > policydb->p_classes.nprim) { 787 rc = -EINVAL; 788 goto out; 789 } 790 tclass_datum = policydb->class_val_to_struct[tclass - 1]; 791 792 oentry = sidtab_search_entry(sidtab, oldsid); 793 if (!oentry) { 794 pr_err("SELinux: %s: unrecognized SID %d\n", 795 __func__, oldsid); 796 rc = -EINVAL; 797 goto out; 798 } 799 800 nentry = sidtab_search_entry(sidtab, newsid); 801 if (!nentry) { 802 pr_err("SELinux: %s: unrecognized SID %d\n", 803 __func__, newsid); 804 rc = -EINVAL; 805 goto out; 806 } 807 808 tentry = sidtab_search_entry(sidtab, tasksid); 809 if (!tentry) { 810 pr_err("SELinux: %s: unrecognized SID %d\n", 811 __func__, tasksid); 812 rc = -EINVAL; 813 goto out; 814 } 815 816 constraint = tclass_datum->validatetrans; 817 while (constraint) { 818 if (!constraint_expr_eval(policydb, &oentry->context, 819 &nentry->context, &tentry->context, 820 constraint->expr)) { 821 if (user) 822 rc = -EPERM; 823 else 824 rc = security_validtrans_handle_fail(state, 825 policy, 826 oentry, 827 nentry, 828 tentry, 829 tclass); 830 goto out; 831 } 832 constraint = constraint->next; 833 } 834 835 out: 836 rcu_read_unlock(); 837 return rc; 838 } 839 840 int security_validate_transition_user(struct selinux_state *state, 841 u32 oldsid, u32 newsid, u32 tasksid, 842 u16 tclass) 843 { 844 return security_compute_validatetrans(state, oldsid, newsid, tasksid, 845 tclass, true); 846 } 847 848 int security_validate_transition(struct selinux_state *state, 849 u32 oldsid, u32 newsid, u32 tasksid, 850 u16 orig_tclass) 851 { 852 return security_compute_validatetrans(state, oldsid, newsid, tasksid, 853 orig_tclass, false); 854 } 855 856 /* 857 * security_bounded_transition - check whether the given 858 * transition is directed to bounded, or not. 859 * It returns 0, if @newsid is bounded by @oldsid. 860 * Otherwise, it returns error code. 861 * 862 * @state: SELinux state 863 * @oldsid : current security identifier 864 * @newsid : destinated security identifier 865 */ 866 int security_bounded_transition(struct selinux_state *state, 867 u32 old_sid, u32 new_sid) 868 { 869 struct selinux_policy *policy; 870 struct policydb *policydb; 871 struct sidtab *sidtab; 872 struct sidtab_entry *old_entry, *new_entry; 873 struct type_datum *type; 874 int index; 875 int rc; 876 877 if (!selinux_initialized(state)) 878 return 0; 879 880 rcu_read_lock(); 881 policy = rcu_dereference(state->policy); 882 policydb = &policy->policydb; 883 sidtab = policy->sidtab; 884 885 rc = -EINVAL; 886 old_entry = sidtab_search_entry(sidtab, old_sid); 887 if (!old_entry) { 888 pr_err("SELinux: %s: unrecognized SID %u\n", 889 __func__, old_sid); 890 goto out; 891 } 892 893 rc = -EINVAL; 894 new_entry = sidtab_search_entry(sidtab, new_sid); 895 if (!new_entry) { 896 pr_err("SELinux: %s: unrecognized SID %u\n", 897 __func__, new_sid); 898 goto out; 899 } 900 901 rc = 0; 902 /* type/domain unchanged */ 903 if (old_entry->context.type == new_entry->context.type) 904 goto out; 905 906 index = new_entry->context.type; 907 while (true) { 908 type = policydb->type_val_to_struct[index - 1]; 909 BUG_ON(!type); 910 911 /* not bounded anymore */ 912 rc = -EPERM; 913 if (!type->bounds) 914 break; 915 916 /* @newsid is bounded by @oldsid */ 917 rc = 0; 918 if (type->bounds == old_entry->context.type) 919 break; 920 921 index = type->bounds; 922 } 923 924 if (rc) { 925 char *old_name = NULL; 926 char *new_name = NULL; 927 u32 length; 928 929 if (!sidtab_entry_to_string(policydb, sidtab, old_entry, 930 &old_name, &length) && 931 !sidtab_entry_to_string(policydb, sidtab, new_entry, 932 &new_name, &length)) { 933 audit_log(audit_context(), 934 GFP_ATOMIC, AUDIT_SELINUX_ERR, 935 "op=security_bounded_transition " 936 "seresult=denied " 937 "oldcontext=%s newcontext=%s", 938 old_name, new_name); 939 } 940 kfree(new_name); 941 kfree(old_name); 942 } 943 out: 944 rcu_read_unlock(); 945 946 return rc; 947 } 948 949 static void avd_init(struct selinux_policy *policy, struct av_decision *avd) 950 { 951 avd->allowed = 0; 952 avd->auditallow = 0; 953 avd->auditdeny = 0xffffffff; 954 if (policy) 955 avd->seqno = policy->latest_granting; 956 else 957 avd->seqno = 0; 958 avd->flags = 0; 959 } 960 961 void services_compute_xperms_decision(struct extended_perms_decision *xpermd, 962 struct avtab_node *node) 963 { 964 unsigned int i; 965 966 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) { 967 if (xpermd->driver != node->datum.u.xperms->driver) 968 return; 969 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) { 970 if (!security_xperm_test(node->datum.u.xperms->perms.p, 971 xpermd->driver)) 972 return; 973 } else { 974 BUG(); 975 } 976 977 if (node->key.specified == AVTAB_XPERMS_ALLOWED) { 978 xpermd->used |= XPERMS_ALLOWED; 979 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) { 980 memset(xpermd->allowed->p, 0xff, 981 sizeof(xpermd->allowed->p)); 982 } 983 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) { 984 for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++) 985 xpermd->allowed->p[i] |= 986 node->datum.u.xperms->perms.p[i]; 987 } 988 } else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) { 989 xpermd->used |= XPERMS_AUDITALLOW; 990 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) { 991 memset(xpermd->auditallow->p, 0xff, 992 sizeof(xpermd->auditallow->p)); 993 } 994 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) { 995 for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++) 996 xpermd->auditallow->p[i] |= 997 node->datum.u.xperms->perms.p[i]; 998 } 999 } else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) { 1000 xpermd->used |= XPERMS_DONTAUDIT; 1001 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) { 1002 memset(xpermd->dontaudit->p, 0xff, 1003 sizeof(xpermd->dontaudit->p)); 1004 } 1005 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) { 1006 for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++) 1007 xpermd->dontaudit->p[i] |= 1008 node->datum.u.xperms->perms.p[i]; 1009 } 1010 } else { 1011 BUG(); 1012 } 1013 } 1014 1015 void security_compute_xperms_decision(struct selinux_state *state, 1016 u32 ssid, 1017 u32 tsid, 1018 u16 orig_tclass, 1019 u8 driver, 1020 struct extended_perms_decision *xpermd) 1021 { 1022 struct selinux_policy *policy; 1023 struct policydb *policydb; 1024 struct sidtab *sidtab; 1025 u16 tclass; 1026 struct context *scontext, *tcontext; 1027 struct avtab_key avkey; 1028 struct avtab_node *node; 1029 struct ebitmap *sattr, *tattr; 1030 struct ebitmap_node *snode, *tnode; 1031 unsigned int i, j; 1032 1033 xpermd->driver = driver; 1034 xpermd->used = 0; 1035 memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p)); 1036 memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p)); 1037 memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p)); 1038 1039 rcu_read_lock(); 1040 if (!selinux_initialized(state)) 1041 goto allow; 1042 1043 policy = rcu_dereference(state->policy); 1044 policydb = &policy->policydb; 1045 sidtab = policy->sidtab; 1046 1047 scontext = sidtab_search(sidtab, ssid); 1048 if (!scontext) { 1049 pr_err("SELinux: %s: unrecognized SID %d\n", 1050 __func__, ssid); 1051 goto out; 1052 } 1053 1054 tcontext = sidtab_search(sidtab, tsid); 1055 if (!tcontext) { 1056 pr_err("SELinux: %s: unrecognized SID %d\n", 1057 __func__, tsid); 1058 goto out; 1059 } 1060 1061 tclass = unmap_class(&policy->map, orig_tclass); 1062 if (unlikely(orig_tclass && !tclass)) { 1063 if (policydb->allow_unknown) 1064 goto allow; 1065 goto out; 1066 } 1067 1068 1069 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) { 1070 pr_warn_ratelimited("SELinux: Invalid class %hu\n", tclass); 1071 goto out; 1072 } 1073 1074 avkey.target_class = tclass; 1075 avkey.specified = AVTAB_XPERMS; 1076 sattr = &policydb->type_attr_map_array[scontext->type - 1]; 1077 tattr = &policydb->type_attr_map_array[tcontext->type - 1]; 1078 ebitmap_for_each_positive_bit(sattr, snode, i) { 1079 ebitmap_for_each_positive_bit(tattr, tnode, j) { 1080 avkey.source_type = i + 1; 1081 avkey.target_type = j + 1; 1082 for (node = avtab_search_node(&policydb->te_avtab, 1083 &avkey); 1084 node; 1085 node = avtab_search_node_next(node, avkey.specified)) 1086 services_compute_xperms_decision(xpermd, node); 1087 1088 cond_compute_xperms(&policydb->te_cond_avtab, 1089 &avkey, xpermd); 1090 } 1091 } 1092 out: 1093 rcu_read_unlock(); 1094 return; 1095 allow: 1096 memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p)); 1097 goto out; 1098 } 1099 1100 /** 1101 * security_compute_av - Compute access vector decisions. 1102 * @state: SELinux state 1103 * @ssid: source security identifier 1104 * @tsid: target security identifier 1105 * @tclass: target security class 1106 * @avd: access vector decisions 1107 * @xperms: extended permissions 1108 * 1109 * Compute a set of access vector decisions based on the 1110 * SID pair (@ssid, @tsid) for the permissions in @tclass. 1111 */ 1112 void security_compute_av(struct selinux_state *state, 1113 u32 ssid, 1114 u32 tsid, 1115 u16 orig_tclass, 1116 struct av_decision *avd, 1117 struct extended_perms *xperms) 1118 { 1119 struct selinux_policy *policy; 1120 struct policydb *policydb; 1121 struct sidtab *sidtab; 1122 u16 tclass; 1123 struct context *scontext = NULL, *tcontext = NULL; 1124 1125 rcu_read_lock(); 1126 policy = rcu_dereference(state->policy); 1127 avd_init(policy, avd); 1128 xperms->len = 0; 1129 if (!selinux_initialized(state)) 1130 goto allow; 1131 1132 policydb = &policy->policydb; 1133 sidtab = policy->sidtab; 1134 1135 scontext = sidtab_search(sidtab, ssid); 1136 if (!scontext) { 1137 pr_err("SELinux: %s: unrecognized SID %d\n", 1138 __func__, ssid); 1139 goto out; 1140 } 1141 1142 /* permissive domain? */ 1143 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type)) 1144 avd->flags |= AVD_FLAGS_PERMISSIVE; 1145 1146 tcontext = sidtab_search(sidtab, tsid); 1147 if (!tcontext) { 1148 pr_err("SELinux: %s: unrecognized SID %d\n", 1149 __func__, tsid); 1150 goto out; 1151 } 1152 1153 tclass = unmap_class(&policy->map, orig_tclass); 1154 if (unlikely(orig_tclass && !tclass)) { 1155 if (policydb->allow_unknown) 1156 goto allow; 1157 goto out; 1158 } 1159 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd, 1160 xperms); 1161 map_decision(&policy->map, orig_tclass, avd, 1162 policydb->allow_unknown); 1163 out: 1164 rcu_read_unlock(); 1165 return; 1166 allow: 1167 avd->allowed = 0xffffffff; 1168 goto out; 1169 } 1170 1171 void security_compute_av_user(struct selinux_state *state, 1172 u32 ssid, 1173 u32 tsid, 1174 u16 tclass, 1175 struct av_decision *avd) 1176 { 1177 struct selinux_policy *policy; 1178 struct policydb *policydb; 1179 struct sidtab *sidtab; 1180 struct context *scontext = NULL, *tcontext = NULL; 1181 1182 rcu_read_lock(); 1183 policy = rcu_dereference(state->policy); 1184 avd_init(policy, avd); 1185 if (!selinux_initialized(state)) 1186 goto allow; 1187 1188 policydb = &policy->policydb; 1189 sidtab = policy->sidtab; 1190 1191 scontext = sidtab_search(sidtab, ssid); 1192 if (!scontext) { 1193 pr_err("SELinux: %s: unrecognized SID %d\n", 1194 __func__, ssid); 1195 goto out; 1196 } 1197 1198 /* permissive domain? */ 1199 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type)) 1200 avd->flags |= AVD_FLAGS_PERMISSIVE; 1201 1202 tcontext = sidtab_search(sidtab, tsid); 1203 if (!tcontext) { 1204 pr_err("SELinux: %s: unrecognized SID %d\n", 1205 __func__, tsid); 1206 goto out; 1207 } 1208 1209 if (unlikely(!tclass)) { 1210 if (policydb->allow_unknown) 1211 goto allow; 1212 goto out; 1213 } 1214 1215 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd, 1216 NULL); 1217 out: 1218 rcu_read_unlock(); 1219 return; 1220 allow: 1221 avd->allowed = 0xffffffff; 1222 goto out; 1223 } 1224 1225 /* 1226 * Write the security context string representation of 1227 * the context structure `context' into a dynamically 1228 * allocated string of the correct size. Set `*scontext' 1229 * to point to this string and set `*scontext_len' to 1230 * the length of the string. 1231 */ 1232 static int context_struct_to_string(struct policydb *p, 1233 struct context *context, 1234 char **scontext, u32 *scontext_len) 1235 { 1236 char *scontextp; 1237 1238 if (scontext) 1239 *scontext = NULL; 1240 *scontext_len = 0; 1241 1242 if (context->len) { 1243 *scontext_len = context->len; 1244 if (scontext) { 1245 *scontext = kstrdup(context->str, GFP_ATOMIC); 1246 if (!(*scontext)) 1247 return -ENOMEM; 1248 } 1249 return 0; 1250 } 1251 1252 /* Compute the size of the context. */ 1253 *scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1; 1254 *scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1; 1255 *scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1; 1256 *scontext_len += mls_compute_context_len(p, context); 1257 1258 if (!scontext) 1259 return 0; 1260 1261 /* Allocate space for the context; caller must free this space. */ 1262 scontextp = kmalloc(*scontext_len, GFP_ATOMIC); 1263 if (!scontextp) 1264 return -ENOMEM; 1265 *scontext = scontextp; 1266 1267 /* 1268 * Copy the user name, role name and type name into the context. 1269 */ 1270 scontextp += sprintf(scontextp, "%s:%s:%s", 1271 sym_name(p, SYM_USERS, context->user - 1), 1272 sym_name(p, SYM_ROLES, context->role - 1), 1273 sym_name(p, SYM_TYPES, context->type - 1)); 1274 1275 mls_sid_to_context(p, context, &scontextp); 1276 1277 *scontextp = 0; 1278 1279 return 0; 1280 } 1281 1282 static int sidtab_entry_to_string(struct policydb *p, 1283 struct sidtab *sidtab, 1284 struct sidtab_entry *entry, 1285 char **scontext, u32 *scontext_len) 1286 { 1287 int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len); 1288 1289 if (rc != -ENOENT) 1290 return rc; 1291 1292 rc = context_struct_to_string(p, &entry->context, scontext, 1293 scontext_len); 1294 if (!rc && scontext) 1295 sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len); 1296 return rc; 1297 } 1298 1299 #include "initial_sid_to_string.h" 1300 1301 int security_sidtab_hash_stats(struct selinux_state *state, char *page) 1302 { 1303 struct selinux_policy *policy; 1304 int rc; 1305 1306 if (!selinux_initialized(state)) { 1307 pr_err("SELinux: %s: called before initial load_policy\n", 1308 __func__); 1309 return -EINVAL; 1310 } 1311 1312 rcu_read_lock(); 1313 policy = rcu_dereference(state->policy); 1314 rc = sidtab_hash_stats(policy->sidtab, page); 1315 rcu_read_unlock(); 1316 1317 return rc; 1318 } 1319 1320 const char *security_get_initial_sid_context(u32 sid) 1321 { 1322 if (unlikely(sid > SECINITSID_NUM)) 1323 return NULL; 1324 return initial_sid_to_string[sid]; 1325 } 1326 1327 static int security_sid_to_context_core(struct selinux_state *state, 1328 u32 sid, char **scontext, 1329 u32 *scontext_len, int force, 1330 int only_invalid) 1331 { 1332 struct selinux_policy *policy; 1333 struct policydb *policydb; 1334 struct sidtab *sidtab; 1335 struct sidtab_entry *entry; 1336 int rc = 0; 1337 1338 if (scontext) 1339 *scontext = NULL; 1340 *scontext_len = 0; 1341 1342 if (!selinux_initialized(state)) { 1343 if (sid <= SECINITSID_NUM) { 1344 char *scontextp; 1345 const char *s = initial_sid_to_string[sid]; 1346 1347 if (!s) 1348 return -EINVAL; 1349 *scontext_len = strlen(s) + 1; 1350 if (!scontext) 1351 return 0; 1352 scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC); 1353 if (!scontextp) 1354 return -ENOMEM; 1355 *scontext = scontextp; 1356 return 0; 1357 } 1358 pr_err("SELinux: %s: called before initial " 1359 "load_policy on unknown SID %d\n", __func__, sid); 1360 return -EINVAL; 1361 } 1362 rcu_read_lock(); 1363 policy = rcu_dereference(state->policy); 1364 policydb = &policy->policydb; 1365 sidtab = policy->sidtab; 1366 1367 if (force) 1368 entry = sidtab_search_entry_force(sidtab, sid); 1369 else 1370 entry = sidtab_search_entry(sidtab, sid); 1371 if (!entry) { 1372 pr_err("SELinux: %s: unrecognized SID %d\n", 1373 __func__, sid); 1374 rc = -EINVAL; 1375 goto out_unlock; 1376 } 1377 if (only_invalid && !entry->context.len) 1378 goto out_unlock; 1379 1380 rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext, 1381 scontext_len); 1382 1383 out_unlock: 1384 rcu_read_unlock(); 1385 return rc; 1386 1387 } 1388 1389 /** 1390 * security_sid_to_context - Obtain a context for a given SID. 1391 * @state: SELinux state 1392 * @sid: security identifier, SID 1393 * @scontext: security context 1394 * @scontext_len: length in bytes 1395 * 1396 * Write the string representation of the context associated with @sid 1397 * into a dynamically allocated string of the correct size. Set @scontext 1398 * to point to this string and set @scontext_len to the length of the string. 1399 */ 1400 int security_sid_to_context(struct selinux_state *state, 1401 u32 sid, char **scontext, u32 *scontext_len) 1402 { 1403 return security_sid_to_context_core(state, sid, scontext, 1404 scontext_len, 0, 0); 1405 } 1406 1407 int security_sid_to_context_force(struct selinux_state *state, u32 sid, 1408 char **scontext, u32 *scontext_len) 1409 { 1410 return security_sid_to_context_core(state, sid, scontext, 1411 scontext_len, 1, 0); 1412 } 1413 1414 /** 1415 * security_sid_to_context_inval - Obtain a context for a given SID if it 1416 * is invalid. 1417 * @state: SELinux state 1418 * @sid: security identifier, SID 1419 * @scontext: security context 1420 * @scontext_len: length in bytes 1421 * 1422 * Write the string representation of the context associated with @sid 1423 * into a dynamically allocated string of the correct size, but only if the 1424 * context is invalid in the current policy. Set @scontext to point to 1425 * this string (or NULL if the context is valid) and set @scontext_len to 1426 * the length of the string (or 0 if the context is valid). 1427 */ 1428 int security_sid_to_context_inval(struct selinux_state *state, u32 sid, 1429 char **scontext, u32 *scontext_len) 1430 { 1431 return security_sid_to_context_core(state, sid, scontext, 1432 scontext_len, 1, 1); 1433 } 1434 1435 /* 1436 * Caveat: Mutates scontext. 1437 */ 1438 static int string_to_context_struct(struct policydb *pol, 1439 struct sidtab *sidtabp, 1440 char *scontext, 1441 struct context *ctx, 1442 u32 def_sid) 1443 { 1444 struct role_datum *role; 1445 struct type_datum *typdatum; 1446 struct user_datum *usrdatum; 1447 char *scontextp, *p, oldc; 1448 int rc = 0; 1449 1450 context_init(ctx); 1451 1452 /* Parse the security context. */ 1453 1454 rc = -EINVAL; 1455 scontextp = (char *) scontext; 1456 1457 /* Extract the user. */ 1458 p = scontextp; 1459 while (*p && *p != ':') 1460 p++; 1461 1462 if (*p == 0) 1463 goto out; 1464 1465 *p++ = 0; 1466 1467 usrdatum = symtab_search(&pol->p_users, scontextp); 1468 if (!usrdatum) 1469 goto out; 1470 1471 ctx->user = usrdatum->value; 1472 1473 /* Extract role. */ 1474 scontextp = p; 1475 while (*p && *p != ':') 1476 p++; 1477 1478 if (*p == 0) 1479 goto out; 1480 1481 *p++ = 0; 1482 1483 role = symtab_search(&pol->p_roles, scontextp); 1484 if (!role) 1485 goto out; 1486 ctx->role = role->value; 1487 1488 /* Extract type. */ 1489 scontextp = p; 1490 while (*p && *p != ':') 1491 p++; 1492 oldc = *p; 1493 *p++ = 0; 1494 1495 typdatum = symtab_search(&pol->p_types, scontextp); 1496 if (!typdatum || typdatum->attribute) 1497 goto out; 1498 1499 ctx->type = typdatum->value; 1500 1501 rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid); 1502 if (rc) 1503 goto out; 1504 1505 /* Check the validity of the new context. */ 1506 rc = -EINVAL; 1507 if (!policydb_context_isvalid(pol, ctx)) 1508 goto out; 1509 rc = 0; 1510 out: 1511 if (rc) 1512 context_destroy(ctx); 1513 return rc; 1514 } 1515 1516 static int security_context_to_sid_core(struct selinux_state *state, 1517 const char *scontext, u32 scontext_len, 1518 u32 *sid, u32 def_sid, gfp_t gfp_flags, 1519 int force) 1520 { 1521 struct selinux_policy *policy; 1522 struct policydb *policydb; 1523 struct sidtab *sidtab; 1524 char *scontext2, *str = NULL; 1525 struct context context; 1526 int rc = 0; 1527 1528 /* An empty security context is never valid. */ 1529 if (!scontext_len) 1530 return -EINVAL; 1531 1532 /* Copy the string to allow changes and ensure a NUL terminator */ 1533 scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags); 1534 if (!scontext2) 1535 return -ENOMEM; 1536 1537 if (!selinux_initialized(state)) { 1538 int i; 1539 1540 for (i = 1; i < SECINITSID_NUM; i++) { 1541 const char *s = initial_sid_to_string[i]; 1542 1543 if (s && !strcmp(s, scontext2)) { 1544 *sid = i; 1545 goto out; 1546 } 1547 } 1548 *sid = SECINITSID_KERNEL; 1549 goto out; 1550 } 1551 *sid = SECSID_NULL; 1552 1553 if (force) { 1554 /* Save another copy for storing in uninterpreted form */ 1555 rc = -ENOMEM; 1556 str = kstrdup(scontext2, gfp_flags); 1557 if (!str) 1558 goto out; 1559 } 1560 retry: 1561 rcu_read_lock(); 1562 policy = rcu_dereference(state->policy); 1563 policydb = &policy->policydb; 1564 sidtab = policy->sidtab; 1565 rc = string_to_context_struct(policydb, sidtab, scontext2, 1566 &context, def_sid); 1567 if (rc == -EINVAL && force) { 1568 context.str = str; 1569 context.len = strlen(str) + 1; 1570 str = NULL; 1571 } else if (rc) 1572 goto out_unlock; 1573 rc = sidtab_context_to_sid(sidtab, &context, sid); 1574 if (rc == -ESTALE) { 1575 rcu_read_unlock(); 1576 if (context.str) { 1577 str = context.str; 1578 context.str = NULL; 1579 } 1580 context_destroy(&context); 1581 goto retry; 1582 } 1583 context_destroy(&context); 1584 out_unlock: 1585 rcu_read_unlock(); 1586 out: 1587 kfree(scontext2); 1588 kfree(str); 1589 return rc; 1590 } 1591 1592 /** 1593 * security_context_to_sid - Obtain a SID for a given security context. 1594 * @state: SELinux state 1595 * @scontext: security context 1596 * @scontext_len: length in bytes 1597 * @sid: security identifier, SID 1598 * @gfp: context for the allocation 1599 * 1600 * Obtains a SID associated with the security context that 1601 * has the string representation specified by @scontext. 1602 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient 1603 * memory is available, or 0 on success. 1604 */ 1605 int security_context_to_sid(struct selinux_state *state, 1606 const char *scontext, u32 scontext_len, u32 *sid, 1607 gfp_t gfp) 1608 { 1609 return security_context_to_sid_core(state, scontext, scontext_len, 1610 sid, SECSID_NULL, gfp, 0); 1611 } 1612 1613 int security_context_str_to_sid(struct selinux_state *state, 1614 const char *scontext, u32 *sid, gfp_t gfp) 1615 { 1616 return security_context_to_sid(state, scontext, strlen(scontext), 1617 sid, gfp); 1618 } 1619 1620 /** 1621 * security_context_to_sid_default - Obtain a SID for a given security context, 1622 * falling back to specified default if needed. 1623 * 1624 * @state: SELinux state 1625 * @scontext: security context 1626 * @scontext_len: length in bytes 1627 * @sid: security identifier, SID 1628 * @def_sid: default SID to assign on error 1629 * 1630 * Obtains a SID associated with the security context that 1631 * has the string representation specified by @scontext. 1632 * The default SID is passed to the MLS layer to be used to allow 1633 * kernel labeling of the MLS field if the MLS field is not present 1634 * (for upgrading to MLS without full relabel). 1635 * Implicitly forces adding of the context even if it cannot be mapped yet. 1636 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient 1637 * memory is available, or 0 on success. 1638 */ 1639 int security_context_to_sid_default(struct selinux_state *state, 1640 const char *scontext, u32 scontext_len, 1641 u32 *sid, u32 def_sid, gfp_t gfp_flags) 1642 { 1643 return security_context_to_sid_core(state, scontext, scontext_len, 1644 sid, def_sid, gfp_flags, 1); 1645 } 1646 1647 int security_context_to_sid_force(struct selinux_state *state, 1648 const char *scontext, u32 scontext_len, 1649 u32 *sid) 1650 { 1651 return security_context_to_sid_core(state, scontext, scontext_len, 1652 sid, SECSID_NULL, GFP_KERNEL, 1); 1653 } 1654 1655 static int compute_sid_handle_invalid_context( 1656 struct selinux_state *state, 1657 struct selinux_policy *policy, 1658 struct sidtab_entry *sentry, 1659 struct sidtab_entry *tentry, 1660 u16 tclass, 1661 struct context *newcontext) 1662 { 1663 struct policydb *policydb = &policy->policydb; 1664 struct sidtab *sidtab = policy->sidtab; 1665 char *s = NULL, *t = NULL, *n = NULL; 1666 u32 slen, tlen, nlen; 1667 struct audit_buffer *ab; 1668 1669 if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen)) 1670 goto out; 1671 if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen)) 1672 goto out; 1673 if (context_struct_to_string(policydb, newcontext, &n, &nlen)) 1674 goto out; 1675 ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR); 1676 if (!ab) 1677 goto out; 1678 audit_log_format(ab, 1679 "op=security_compute_sid invalid_context="); 1680 /* no need to record the NUL with untrusted strings */ 1681 audit_log_n_untrustedstring(ab, n, nlen - 1); 1682 audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s", 1683 s, t, sym_name(policydb, SYM_CLASSES, tclass-1)); 1684 audit_log_end(ab); 1685 out: 1686 kfree(s); 1687 kfree(t); 1688 kfree(n); 1689 if (!enforcing_enabled(state)) 1690 return 0; 1691 return -EACCES; 1692 } 1693 1694 static void filename_compute_type(struct policydb *policydb, 1695 struct context *newcontext, 1696 u32 stype, u32 ttype, u16 tclass, 1697 const char *objname) 1698 { 1699 struct filename_trans_key ft; 1700 struct filename_trans_datum *datum; 1701 1702 /* 1703 * Most filename trans rules are going to live in specific directories 1704 * like /dev or /var/run. This bitmap will quickly skip rule searches 1705 * if the ttype does not contain any rules. 1706 */ 1707 if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype)) 1708 return; 1709 1710 ft.ttype = ttype; 1711 ft.tclass = tclass; 1712 ft.name = objname; 1713 1714 datum = policydb_filenametr_search(policydb, &ft); 1715 while (datum) { 1716 if (ebitmap_get_bit(&datum->stypes, stype - 1)) { 1717 newcontext->type = datum->otype; 1718 return; 1719 } 1720 datum = datum->next; 1721 } 1722 } 1723 1724 static int security_compute_sid(struct selinux_state *state, 1725 u32 ssid, 1726 u32 tsid, 1727 u16 orig_tclass, 1728 u32 specified, 1729 const char *objname, 1730 u32 *out_sid, 1731 bool kern) 1732 { 1733 struct selinux_policy *policy; 1734 struct policydb *policydb; 1735 struct sidtab *sidtab; 1736 struct class_datum *cladatum; 1737 struct context *scontext, *tcontext, newcontext; 1738 struct sidtab_entry *sentry, *tentry; 1739 struct avtab_key avkey; 1740 struct avtab_datum *avdatum; 1741 struct avtab_node *node; 1742 u16 tclass; 1743 int rc = 0; 1744 bool sock; 1745 1746 if (!selinux_initialized(state)) { 1747 switch (orig_tclass) { 1748 case SECCLASS_PROCESS: /* kernel value */ 1749 *out_sid = ssid; 1750 break; 1751 default: 1752 *out_sid = tsid; 1753 break; 1754 } 1755 goto out; 1756 } 1757 1758 retry: 1759 cladatum = NULL; 1760 context_init(&newcontext); 1761 1762 rcu_read_lock(); 1763 1764 policy = rcu_dereference(state->policy); 1765 1766 if (kern) { 1767 tclass = unmap_class(&policy->map, orig_tclass); 1768 sock = security_is_socket_class(orig_tclass); 1769 } else { 1770 tclass = orig_tclass; 1771 sock = security_is_socket_class(map_class(&policy->map, 1772 tclass)); 1773 } 1774 1775 policydb = &policy->policydb; 1776 sidtab = policy->sidtab; 1777 1778 sentry = sidtab_search_entry(sidtab, ssid); 1779 if (!sentry) { 1780 pr_err("SELinux: %s: unrecognized SID %d\n", 1781 __func__, ssid); 1782 rc = -EINVAL; 1783 goto out_unlock; 1784 } 1785 tentry = sidtab_search_entry(sidtab, tsid); 1786 if (!tentry) { 1787 pr_err("SELinux: %s: unrecognized SID %d\n", 1788 __func__, tsid); 1789 rc = -EINVAL; 1790 goto out_unlock; 1791 } 1792 1793 scontext = &sentry->context; 1794 tcontext = &tentry->context; 1795 1796 if (tclass && tclass <= policydb->p_classes.nprim) 1797 cladatum = policydb->class_val_to_struct[tclass - 1]; 1798 1799 /* Set the user identity. */ 1800 switch (specified) { 1801 case AVTAB_TRANSITION: 1802 case AVTAB_CHANGE: 1803 if (cladatum && cladatum->default_user == DEFAULT_TARGET) { 1804 newcontext.user = tcontext->user; 1805 } else { 1806 /* notice this gets both DEFAULT_SOURCE and unset */ 1807 /* Use the process user identity. */ 1808 newcontext.user = scontext->user; 1809 } 1810 break; 1811 case AVTAB_MEMBER: 1812 /* Use the related object owner. */ 1813 newcontext.user = tcontext->user; 1814 break; 1815 } 1816 1817 /* Set the role to default values. */ 1818 if (cladatum && cladatum->default_role == DEFAULT_SOURCE) { 1819 newcontext.role = scontext->role; 1820 } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) { 1821 newcontext.role = tcontext->role; 1822 } else { 1823 if ((tclass == policydb->process_class) || sock) 1824 newcontext.role = scontext->role; 1825 else 1826 newcontext.role = OBJECT_R_VAL; 1827 } 1828 1829 /* Set the type to default values. */ 1830 if (cladatum && cladatum->default_type == DEFAULT_SOURCE) { 1831 newcontext.type = scontext->type; 1832 } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) { 1833 newcontext.type = tcontext->type; 1834 } else { 1835 if ((tclass == policydb->process_class) || sock) { 1836 /* Use the type of process. */ 1837 newcontext.type = scontext->type; 1838 } else { 1839 /* Use the type of the related object. */ 1840 newcontext.type = tcontext->type; 1841 } 1842 } 1843 1844 /* Look for a type transition/member/change rule. */ 1845 avkey.source_type = scontext->type; 1846 avkey.target_type = tcontext->type; 1847 avkey.target_class = tclass; 1848 avkey.specified = specified; 1849 avdatum = avtab_search(&policydb->te_avtab, &avkey); 1850 1851 /* If no permanent rule, also check for enabled conditional rules */ 1852 if (!avdatum) { 1853 node = avtab_search_node(&policydb->te_cond_avtab, &avkey); 1854 for (; node; node = avtab_search_node_next(node, specified)) { 1855 if (node->key.specified & AVTAB_ENABLED) { 1856 avdatum = &node->datum; 1857 break; 1858 } 1859 } 1860 } 1861 1862 if (avdatum) { 1863 /* Use the type from the type transition/member/change rule. */ 1864 newcontext.type = avdatum->u.data; 1865 } 1866 1867 /* if we have a objname this is a file trans check so check those rules */ 1868 if (objname) 1869 filename_compute_type(policydb, &newcontext, scontext->type, 1870 tcontext->type, tclass, objname); 1871 1872 /* Check for class-specific changes. */ 1873 if (specified & AVTAB_TRANSITION) { 1874 /* Look for a role transition rule. */ 1875 struct role_trans_datum *rtd; 1876 struct role_trans_key rtk = { 1877 .role = scontext->role, 1878 .type = tcontext->type, 1879 .tclass = tclass, 1880 }; 1881 1882 rtd = policydb_roletr_search(policydb, &rtk); 1883 if (rtd) 1884 newcontext.role = rtd->new_role; 1885 } 1886 1887 /* Set the MLS attributes. 1888 This is done last because it may allocate memory. */ 1889 rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified, 1890 &newcontext, sock); 1891 if (rc) 1892 goto out_unlock; 1893 1894 /* Check the validity of the context. */ 1895 if (!policydb_context_isvalid(policydb, &newcontext)) { 1896 rc = compute_sid_handle_invalid_context(state, policy, sentry, 1897 tentry, tclass, 1898 &newcontext); 1899 if (rc) 1900 goto out_unlock; 1901 } 1902 /* Obtain the sid for the context. */ 1903 rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid); 1904 if (rc == -ESTALE) { 1905 rcu_read_unlock(); 1906 context_destroy(&newcontext); 1907 goto retry; 1908 } 1909 out_unlock: 1910 rcu_read_unlock(); 1911 context_destroy(&newcontext); 1912 out: 1913 return rc; 1914 } 1915 1916 /** 1917 * security_transition_sid - Compute the SID for a new subject/object. 1918 * @state: SELinux state 1919 * @ssid: source security identifier 1920 * @tsid: target security identifier 1921 * @tclass: target security class 1922 * @out_sid: security identifier for new subject/object 1923 * 1924 * Compute a SID to use for labeling a new subject or object in the 1925 * class @tclass based on a SID pair (@ssid, @tsid). 1926 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM 1927 * if insufficient memory is available, or %0 if the new SID was 1928 * computed successfully. 1929 */ 1930 int security_transition_sid(struct selinux_state *state, 1931 u32 ssid, u32 tsid, u16 tclass, 1932 const struct qstr *qstr, u32 *out_sid) 1933 { 1934 return security_compute_sid(state, ssid, tsid, tclass, 1935 AVTAB_TRANSITION, 1936 qstr ? qstr->name : NULL, out_sid, true); 1937 } 1938 1939 int security_transition_sid_user(struct selinux_state *state, 1940 u32 ssid, u32 tsid, u16 tclass, 1941 const char *objname, u32 *out_sid) 1942 { 1943 return security_compute_sid(state, ssid, tsid, tclass, 1944 AVTAB_TRANSITION, 1945 objname, out_sid, false); 1946 } 1947 1948 /** 1949 * security_member_sid - Compute the SID for member selection. 1950 * @ssid: source security identifier 1951 * @tsid: target security identifier 1952 * @tclass: target security class 1953 * @out_sid: security identifier for selected member 1954 * 1955 * Compute a SID to use when selecting a member of a polyinstantiated 1956 * object of class @tclass based on a SID pair (@ssid, @tsid). 1957 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM 1958 * if insufficient memory is available, or %0 if the SID was 1959 * computed successfully. 1960 */ 1961 int security_member_sid(struct selinux_state *state, 1962 u32 ssid, 1963 u32 tsid, 1964 u16 tclass, 1965 u32 *out_sid) 1966 { 1967 return security_compute_sid(state, ssid, tsid, tclass, 1968 AVTAB_MEMBER, NULL, 1969 out_sid, false); 1970 } 1971 1972 /** 1973 * security_change_sid - Compute the SID for object relabeling. 1974 * @state: SELinux state 1975 * @ssid: source security identifier 1976 * @tsid: target security identifier 1977 * @tclass: target security class 1978 * @out_sid: security identifier for selected member 1979 * 1980 * Compute a SID to use for relabeling an object of class @tclass 1981 * based on a SID pair (@ssid, @tsid). 1982 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM 1983 * if insufficient memory is available, or %0 if the SID was 1984 * computed successfully. 1985 */ 1986 int security_change_sid(struct selinux_state *state, 1987 u32 ssid, 1988 u32 tsid, 1989 u16 tclass, 1990 u32 *out_sid) 1991 { 1992 return security_compute_sid(state, 1993 ssid, tsid, tclass, AVTAB_CHANGE, NULL, 1994 out_sid, false); 1995 } 1996 1997 static inline int convert_context_handle_invalid_context( 1998 struct selinux_state *state, 1999 struct policydb *policydb, 2000 struct context *context) 2001 { 2002 char *s; 2003 u32 len; 2004 2005 if (enforcing_enabled(state)) 2006 return -EINVAL; 2007 2008 if (!context_struct_to_string(policydb, context, &s, &len)) { 2009 pr_warn("SELinux: Context %s would be invalid if enforcing\n", 2010 s); 2011 kfree(s); 2012 } 2013 return 0; 2014 } 2015 2016 /* 2017 * Convert the values in the security context 2018 * structure `oldc' from the values specified 2019 * in the policy `p->oldp' to the values specified 2020 * in the policy `p->newp', storing the new context 2021 * in `newc'. Verify that the context is valid 2022 * under the new policy. 2023 */ 2024 static int convert_context(struct context *oldc, struct context *newc, void *p) 2025 { 2026 struct convert_context_args *args; 2027 struct ocontext *oc; 2028 struct role_datum *role; 2029 struct type_datum *typdatum; 2030 struct user_datum *usrdatum; 2031 char *s; 2032 u32 len; 2033 int rc; 2034 2035 args = p; 2036 2037 if (oldc->str) { 2038 s = kstrdup(oldc->str, GFP_KERNEL); 2039 if (!s) 2040 return -ENOMEM; 2041 2042 rc = string_to_context_struct(args->newp, NULL, s, 2043 newc, SECSID_NULL); 2044 if (rc == -EINVAL) { 2045 /* 2046 * Retain string representation for later mapping. 2047 * 2048 * IMPORTANT: We need to copy the contents of oldc->str 2049 * back into s again because string_to_context_struct() 2050 * may have garbled it. 2051 */ 2052 memcpy(s, oldc->str, oldc->len); 2053 context_init(newc); 2054 newc->str = s; 2055 newc->len = oldc->len; 2056 return 0; 2057 } 2058 kfree(s); 2059 if (rc) { 2060 /* Other error condition, e.g. ENOMEM. */ 2061 pr_err("SELinux: Unable to map context %s, rc = %d.\n", 2062 oldc->str, -rc); 2063 return rc; 2064 } 2065 pr_info("SELinux: Context %s became valid (mapped).\n", 2066 oldc->str); 2067 return 0; 2068 } 2069 2070 context_init(newc); 2071 2072 /* Convert the user. */ 2073 usrdatum = symtab_search(&args->newp->p_users, 2074 sym_name(args->oldp, 2075 SYM_USERS, oldc->user - 1)); 2076 if (!usrdatum) 2077 goto bad; 2078 newc->user = usrdatum->value; 2079 2080 /* Convert the role. */ 2081 role = symtab_search(&args->newp->p_roles, 2082 sym_name(args->oldp, SYM_ROLES, oldc->role - 1)); 2083 if (!role) 2084 goto bad; 2085 newc->role = role->value; 2086 2087 /* Convert the type. */ 2088 typdatum = symtab_search(&args->newp->p_types, 2089 sym_name(args->oldp, 2090 SYM_TYPES, oldc->type - 1)); 2091 if (!typdatum) 2092 goto bad; 2093 newc->type = typdatum->value; 2094 2095 /* Convert the MLS fields if dealing with MLS policies */ 2096 if (args->oldp->mls_enabled && args->newp->mls_enabled) { 2097 rc = mls_convert_context(args->oldp, args->newp, oldc, newc); 2098 if (rc) 2099 goto bad; 2100 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) { 2101 /* 2102 * Switching between non-MLS and MLS policy: 2103 * ensure that the MLS fields of the context for all 2104 * existing entries in the sidtab are filled in with a 2105 * suitable default value, likely taken from one of the 2106 * initial SIDs. 2107 */ 2108 oc = args->newp->ocontexts[OCON_ISID]; 2109 while (oc && oc->sid[0] != SECINITSID_UNLABELED) 2110 oc = oc->next; 2111 if (!oc) { 2112 pr_err("SELinux: unable to look up" 2113 " the initial SIDs list\n"); 2114 goto bad; 2115 } 2116 rc = mls_range_set(newc, &oc->context[0].range); 2117 if (rc) 2118 goto bad; 2119 } 2120 2121 /* Check the validity of the new context. */ 2122 if (!policydb_context_isvalid(args->newp, newc)) { 2123 rc = convert_context_handle_invalid_context(args->state, 2124 args->oldp, 2125 oldc); 2126 if (rc) 2127 goto bad; 2128 } 2129 2130 return 0; 2131 bad: 2132 /* Map old representation to string and save it. */ 2133 rc = context_struct_to_string(args->oldp, oldc, &s, &len); 2134 if (rc) 2135 return rc; 2136 context_destroy(newc); 2137 newc->str = s; 2138 newc->len = len; 2139 pr_info("SELinux: Context %s became invalid (unmapped).\n", 2140 newc->str); 2141 return 0; 2142 } 2143 2144 static void security_load_policycaps(struct selinux_state *state, 2145 struct selinux_policy *policy) 2146 { 2147 struct policydb *p; 2148 unsigned int i; 2149 struct ebitmap_node *node; 2150 2151 p = &policy->policydb; 2152 2153 for (i = 0; i < ARRAY_SIZE(state->policycap); i++) 2154 WRITE_ONCE(state->policycap[i], 2155 ebitmap_get_bit(&p->policycaps, i)); 2156 2157 for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++) 2158 pr_info("SELinux: policy capability %s=%d\n", 2159 selinux_policycap_names[i], 2160 ebitmap_get_bit(&p->policycaps, i)); 2161 2162 ebitmap_for_each_positive_bit(&p->policycaps, node, i) { 2163 if (i >= ARRAY_SIZE(selinux_policycap_names)) 2164 pr_info("SELinux: unknown policy capability %u\n", 2165 i); 2166 } 2167 } 2168 2169 static int security_preserve_bools(struct selinux_policy *oldpolicy, 2170 struct selinux_policy *newpolicy); 2171 2172 static void selinux_policy_free(struct selinux_policy *policy) 2173 { 2174 if (!policy) 2175 return; 2176 2177 sidtab_destroy(policy->sidtab); 2178 kfree(policy->map.mapping); 2179 policydb_destroy(&policy->policydb); 2180 kfree(policy->sidtab); 2181 kfree(policy); 2182 } 2183 2184 static void selinux_policy_cond_free(struct selinux_policy *policy) 2185 { 2186 cond_policydb_destroy_dup(&policy->policydb); 2187 kfree(policy); 2188 } 2189 2190 void selinux_policy_cancel(struct selinux_state *state, 2191 struct selinux_load_state *load_state) 2192 { 2193 struct selinux_policy *oldpolicy; 2194 2195 oldpolicy = rcu_dereference_protected(state->policy, 2196 lockdep_is_held(&state->policy_mutex)); 2197 2198 sidtab_cancel_convert(oldpolicy->sidtab); 2199 selinux_policy_free(load_state->policy); 2200 kfree(load_state->convert_data); 2201 } 2202 2203 static void selinux_notify_policy_change(struct selinux_state *state, 2204 u32 seqno) 2205 { 2206 /* Flush external caches and notify userspace of policy load */ 2207 avc_ss_reset(state->avc, seqno); 2208 selnl_notify_policyload(seqno); 2209 selinux_status_update_policyload(state, seqno); 2210 selinux_netlbl_cache_invalidate(); 2211 selinux_xfrm_notify_policyload(); 2212 selinux_ima_measure_state_locked(state); 2213 } 2214 2215 void selinux_policy_commit(struct selinux_state *state, 2216 struct selinux_load_state *load_state) 2217 { 2218 struct selinux_policy *oldpolicy, *newpolicy = load_state->policy; 2219 unsigned long flags; 2220 u32 seqno; 2221 2222 oldpolicy = rcu_dereference_protected(state->policy, 2223 lockdep_is_held(&state->policy_mutex)); 2224 2225 /* If switching between different policy types, log MLS status */ 2226 if (oldpolicy) { 2227 if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled) 2228 pr_info("SELinux: Disabling MLS support...\n"); 2229 else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled) 2230 pr_info("SELinux: Enabling MLS support...\n"); 2231 } 2232 2233 /* Set latest granting seqno for new policy. */ 2234 if (oldpolicy) 2235 newpolicy->latest_granting = oldpolicy->latest_granting + 1; 2236 else 2237 newpolicy->latest_granting = 1; 2238 seqno = newpolicy->latest_granting; 2239 2240 /* Install the new policy. */ 2241 if (oldpolicy) { 2242 sidtab_freeze_begin(oldpolicy->sidtab, &flags); 2243 rcu_assign_pointer(state->policy, newpolicy); 2244 sidtab_freeze_end(oldpolicy->sidtab, &flags); 2245 } else { 2246 rcu_assign_pointer(state->policy, newpolicy); 2247 } 2248 2249 /* Load the policycaps from the new policy */ 2250 security_load_policycaps(state, newpolicy); 2251 2252 if (!selinux_initialized(state)) { 2253 /* 2254 * After first policy load, the security server is 2255 * marked as initialized and ready to handle requests and 2256 * any objects created prior to policy load are then labeled. 2257 */ 2258 selinux_mark_initialized(state); 2259 selinux_complete_init(); 2260 } 2261 2262 /* Free the old policy */ 2263 synchronize_rcu(); 2264 selinux_policy_free(oldpolicy); 2265 kfree(load_state->convert_data); 2266 2267 /* Notify others of the policy change */ 2268 selinux_notify_policy_change(state, seqno); 2269 } 2270 2271 /** 2272 * security_load_policy - Load a security policy configuration. 2273 * @state: SELinux state 2274 * @data: binary policy data 2275 * @len: length of data in bytes 2276 * 2277 * Load a new set of security policy configuration data, 2278 * validate it and convert the SID table as necessary. 2279 * This function will flush the access vector cache after 2280 * loading the new policy. 2281 */ 2282 int security_load_policy(struct selinux_state *state, void *data, size_t len, 2283 struct selinux_load_state *load_state) 2284 { 2285 struct selinux_policy *newpolicy, *oldpolicy; 2286 struct selinux_policy_convert_data *convert_data; 2287 int rc = 0; 2288 struct policy_file file = { data, len }, *fp = &file; 2289 2290 newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL); 2291 if (!newpolicy) 2292 return -ENOMEM; 2293 2294 newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL); 2295 if (!newpolicy->sidtab) { 2296 rc = -ENOMEM; 2297 goto err_policy; 2298 } 2299 2300 rc = policydb_read(&newpolicy->policydb, fp); 2301 if (rc) 2302 goto err_sidtab; 2303 2304 newpolicy->policydb.len = len; 2305 rc = selinux_set_mapping(&newpolicy->policydb, secclass_map, 2306 &newpolicy->map); 2307 if (rc) 2308 goto err_policydb; 2309 2310 rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab); 2311 if (rc) { 2312 pr_err("SELinux: unable to load the initial SIDs\n"); 2313 goto err_mapping; 2314 } 2315 2316 if (!selinux_initialized(state)) { 2317 /* First policy load, so no need to preserve state from old policy */ 2318 load_state->policy = newpolicy; 2319 load_state->convert_data = NULL; 2320 return 0; 2321 } 2322 2323 oldpolicy = rcu_dereference_protected(state->policy, 2324 lockdep_is_held(&state->policy_mutex)); 2325 2326 /* Preserve active boolean values from the old policy */ 2327 rc = security_preserve_bools(oldpolicy, newpolicy); 2328 if (rc) { 2329 pr_err("SELinux: unable to preserve booleans\n"); 2330 goto err_free_isids; 2331 } 2332 2333 convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL); 2334 if (!convert_data) { 2335 rc = -ENOMEM; 2336 goto err_free_isids; 2337 } 2338 2339 /* 2340 * Convert the internal representations of contexts 2341 * in the new SID table. 2342 */ 2343 convert_data->args.state = state; 2344 convert_data->args.oldp = &oldpolicy->policydb; 2345 convert_data->args.newp = &newpolicy->policydb; 2346 2347 convert_data->sidtab_params.func = convert_context; 2348 convert_data->sidtab_params.args = &convert_data->args; 2349 convert_data->sidtab_params.target = newpolicy->sidtab; 2350 2351 rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params); 2352 if (rc) { 2353 pr_err("SELinux: unable to convert the internal" 2354 " representation of contexts in the new SID" 2355 " table\n"); 2356 goto err_free_convert_data; 2357 } 2358 2359 load_state->policy = newpolicy; 2360 load_state->convert_data = convert_data; 2361 return 0; 2362 2363 err_free_convert_data: 2364 kfree(convert_data); 2365 err_free_isids: 2366 sidtab_destroy(newpolicy->sidtab); 2367 err_mapping: 2368 kfree(newpolicy->map.mapping); 2369 err_policydb: 2370 policydb_destroy(&newpolicy->policydb); 2371 err_sidtab: 2372 kfree(newpolicy->sidtab); 2373 err_policy: 2374 kfree(newpolicy); 2375 2376 return rc; 2377 } 2378 2379 /** 2380 * security_port_sid - Obtain the SID for a port. 2381 * @state: SELinux state 2382 * @protocol: protocol number 2383 * @port: port number 2384 * @out_sid: security identifier 2385 */ 2386 int security_port_sid(struct selinux_state *state, 2387 u8 protocol, u16 port, u32 *out_sid) 2388 { 2389 struct selinux_policy *policy; 2390 struct policydb *policydb; 2391 struct sidtab *sidtab; 2392 struct ocontext *c; 2393 int rc; 2394 2395 if (!selinux_initialized(state)) { 2396 *out_sid = SECINITSID_PORT; 2397 return 0; 2398 } 2399 2400 retry: 2401 rc = 0; 2402 rcu_read_lock(); 2403 policy = rcu_dereference(state->policy); 2404 policydb = &policy->policydb; 2405 sidtab = policy->sidtab; 2406 2407 c = policydb->ocontexts[OCON_PORT]; 2408 while (c) { 2409 if (c->u.port.protocol == protocol && 2410 c->u.port.low_port <= port && 2411 c->u.port.high_port >= port) 2412 break; 2413 c = c->next; 2414 } 2415 2416 if (c) { 2417 if (!c->sid[0]) { 2418 rc = sidtab_context_to_sid(sidtab, &c->context[0], 2419 &c->sid[0]); 2420 if (rc == -ESTALE) { 2421 rcu_read_unlock(); 2422 goto retry; 2423 } 2424 if (rc) 2425 goto out; 2426 } 2427 *out_sid = c->sid[0]; 2428 } else { 2429 *out_sid = SECINITSID_PORT; 2430 } 2431 2432 out: 2433 rcu_read_unlock(); 2434 return rc; 2435 } 2436 2437 /** 2438 * security_ib_pkey_sid - Obtain the SID for a pkey. 2439 * @state: SELinux state 2440 * @subnet_prefix: Subnet Prefix 2441 * @pkey_num: pkey number 2442 * @out_sid: security identifier 2443 */ 2444 int security_ib_pkey_sid(struct selinux_state *state, 2445 u64 subnet_prefix, u16 pkey_num, u32 *out_sid) 2446 { 2447 struct selinux_policy *policy; 2448 struct policydb *policydb; 2449 struct sidtab *sidtab; 2450 struct ocontext *c; 2451 int rc; 2452 2453 if (!selinux_initialized(state)) { 2454 *out_sid = SECINITSID_UNLABELED; 2455 return 0; 2456 } 2457 2458 retry: 2459 rc = 0; 2460 rcu_read_lock(); 2461 policy = rcu_dereference(state->policy); 2462 policydb = &policy->policydb; 2463 sidtab = policy->sidtab; 2464 2465 c = policydb->ocontexts[OCON_IBPKEY]; 2466 while (c) { 2467 if (c->u.ibpkey.low_pkey <= pkey_num && 2468 c->u.ibpkey.high_pkey >= pkey_num && 2469 c->u.ibpkey.subnet_prefix == subnet_prefix) 2470 break; 2471 2472 c = c->next; 2473 } 2474 2475 if (c) { 2476 if (!c->sid[0]) { 2477 rc = sidtab_context_to_sid(sidtab, 2478 &c->context[0], 2479 &c->sid[0]); 2480 if (rc == -ESTALE) { 2481 rcu_read_unlock(); 2482 goto retry; 2483 } 2484 if (rc) 2485 goto out; 2486 } 2487 *out_sid = c->sid[0]; 2488 } else 2489 *out_sid = SECINITSID_UNLABELED; 2490 2491 out: 2492 rcu_read_unlock(); 2493 return rc; 2494 } 2495 2496 /** 2497 * security_ib_endport_sid - Obtain the SID for a subnet management interface. 2498 * @state: SELinux state 2499 * @dev_name: device name 2500 * @port: port number 2501 * @out_sid: security identifier 2502 */ 2503 int security_ib_endport_sid(struct selinux_state *state, 2504 const char *dev_name, u8 port_num, u32 *out_sid) 2505 { 2506 struct selinux_policy *policy; 2507 struct policydb *policydb; 2508 struct sidtab *sidtab; 2509 struct ocontext *c; 2510 int rc; 2511 2512 if (!selinux_initialized(state)) { 2513 *out_sid = SECINITSID_UNLABELED; 2514 return 0; 2515 } 2516 2517 retry: 2518 rc = 0; 2519 rcu_read_lock(); 2520 policy = rcu_dereference(state->policy); 2521 policydb = &policy->policydb; 2522 sidtab = policy->sidtab; 2523 2524 c = policydb->ocontexts[OCON_IBENDPORT]; 2525 while (c) { 2526 if (c->u.ibendport.port == port_num && 2527 !strncmp(c->u.ibendport.dev_name, 2528 dev_name, 2529 IB_DEVICE_NAME_MAX)) 2530 break; 2531 2532 c = c->next; 2533 } 2534 2535 if (c) { 2536 if (!c->sid[0]) { 2537 rc = sidtab_context_to_sid(sidtab, &c->context[0], 2538 &c->sid[0]); 2539 if (rc == -ESTALE) { 2540 rcu_read_unlock(); 2541 goto retry; 2542 } 2543 if (rc) 2544 goto out; 2545 } 2546 *out_sid = c->sid[0]; 2547 } else 2548 *out_sid = SECINITSID_UNLABELED; 2549 2550 out: 2551 rcu_read_unlock(); 2552 return rc; 2553 } 2554 2555 /** 2556 * security_netif_sid - Obtain the SID for a network interface. 2557 * @state: SELinux state 2558 * @name: interface name 2559 * @if_sid: interface SID 2560 */ 2561 int security_netif_sid(struct selinux_state *state, 2562 char *name, u32 *if_sid) 2563 { 2564 struct selinux_policy *policy; 2565 struct policydb *policydb; 2566 struct sidtab *sidtab; 2567 int rc; 2568 struct ocontext *c; 2569 2570 if (!selinux_initialized(state)) { 2571 *if_sid = SECINITSID_NETIF; 2572 return 0; 2573 } 2574 2575 retry: 2576 rc = 0; 2577 rcu_read_lock(); 2578 policy = rcu_dereference(state->policy); 2579 policydb = &policy->policydb; 2580 sidtab = policy->sidtab; 2581 2582 c = policydb->ocontexts[OCON_NETIF]; 2583 while (c) { 2584 if (strcmp(name, c->u.name) == 0) 2585 break; 2586 c = c->next; 2587 } 2588 2589 if (c) { 2590 if (!c->sid[0] || !c->sid[1]) { 2591 rc = sidtab_context_to_sid(sidtab, &c->context[0], 2592 &c->sid[0]); 2593 if (rc == -ESTALE) { 2594 rcu_read_unlock(); 2595 goto retry; 2596 } 2597 if (rc) 2598 goto out; 2599 rc = sidtab_context_to_sid(sidtab, &c->context[1], 2600 &c->sid[1]); 2601 if (rc == -ESTALE) { 2602 rcu_read_unlock(); 2603 goto retry; 2604 } 2605 if (rc) 2606 goto out; 2607 } 2608 *if_sid = c->sid[0]; 2609 } else 2610 *if_sid = SECINITSID_NETIF; 2611 2612 out: 2613 rcu_read_unlock(); 2614 return rc; 2615 } 2616 2617 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask) 2618 { 2619 int i, fail = 0; 2620 2621 for (i = 0; i < 4; i++) 2622 if (addr[i] != (input[i] & mask[i])) { 2623 fail = 1; 2624 break; 2625 } 2626 2627 return !fail; 2628 } 2629 2630 /** 2631 * security_node_sid - Obtain the SID for a node (host). 2632 * @state: SELinux state 2633 * @domain: communication domain aka address family 2634 * @addrp: address 2635 * @addrlen: address length in bytes 2636 * @out_sid: security identifier 2637 */ 2638 int security_node_sid(struct selinux_state *state, 2639 u16 domain, 2640 void *addrp, 2641 u32 addrlen, 2642 u32 *out_sid) 2643 { 2644 struct selinux_policy *policy; 2645 struct policydb *policydb; 2646 struct sidtab *sidtab; 2647 int rc; 2648 struct ocontext *c; 2649 2650 if (!selinux_initialized(state)) { 2651 *out_sid = SECINITSID_NODE; 2652 return 0; 2653 } 2654 2655 retry: 2656 rcu_read_lock(); 2657 policy = rcu_dereference(state->policy); 2658 policydb = &policy->policydb; 2659 sidtab = policy->sidtab; 2660 2661 switch (domain) { 2662 case AF_INET: { 2663 u32 addr; 2664 2665 rc = -EINVAL; 2666 if (addrlen != sizeof(u32)) 2667 goto out; 2668 2669 addr = *((u32 *)addrp); 2670 2671 c = policydb->ocontexts[OCON_NODE]; 2672 while (c) { 2673 if (c->u.node.addr == (addr & c->u.node.mask)) 2674 break; 2675 c = c->next; 2676 } 2677 break; 2678 } 2679 2680 case AF_INET6: 2681 rc = -EINVAL; 2682 if (addrlen != sizeof(u64) * 2) 2683 goto out; 2684 c = policydb->ocontexts[OCON_NODE6]; 2685 while (c) { 2686 if (match_ipv6_addrmask(addrp, c->u.node6.addr, 2687 c->u.node6.mask)) 2688 break; 2689 c = c->next; 2690 } 2691 break; 2692 2693 default: 2694 rc = 0; 2695 *out_sid = SECINITSID_NODE; 2696 goto out; 2697 } 2698 2699 if (c) { 2700 if (!c->sid[0]) { 2701 rc = sidtab_context_to_sid(sidtab, 2702 &c->context[0], 2703 &c->sid[0]); 2704 if (rc == -ESTALE) { 2705 rcu_read_unlock(); 2706 goto retry; 2707 } 2708 if (rc) 2709 goto out; 2710 } 2711 *out_sid = c->sid[0]; 2712 } else { 2713 *out_sid = SECINITSID_NODE; 2714 } 2715 2716 rc = 0; 2717 out: 2718 rcu_read_unlock(); 2719 return rc; 2720 } 2721 2722 #define SIDS_NEL 25 2723 2724 /** 2725 * security_get_user_sids - Obtain reachable SIDs for a user. 2726 * @state: SELinux state 2727 * @fromsid: starting SID 2728 * @username: username 2729 * @sids: array of reachable SIDs for user 2730 * @nel: number of elements in @sids 2731 * 2732 * Generate the set of SIDs for legal security contexts 2733 * for a given user that can be reached by @fromsid. 2734 * Set *@sids to point to a dynamically allocated 2735 * array containing the set of SIDs. Set *@nel to the 2736 * number of elements in the array. 2737 */ 2738 2739 int security_get_user_sids(struct selinux_state *state, 2740 u32 fromsid, 2741 char *username, 2742 u32 **sids, 2743 u32 *nel) 2744 { 2745 struct selinux_policy *policy; 2746 struct policydb *policydb; 2747 struct sidtab *sidtab; 2748 struct context *fromcon, usercon; 2749 u32 *mysids = NULL, *mysids2, sid; 2750 u32 i, j, mynel, maxnel = SIDS_NEL; 2751 struct user_datum *user; 2752 struct role_datum *role; 2753 struct ebitmap_node *rnode, *tnode; 2754 int rc; 2755 2756 *sids = NULL; 2757 *nel = 0; 2758 2759 if (!selinux_initialized(state)) 2760 return 0; 2761 2762 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL); 2763 if (!mysids) 2764 return -ENOMEM; 2765 2766 retry: 2767 mynel = 0; 2768 rcu_read_lock(); 2769 policy = rcu_dereference(state->policy); 2770 policydb = &policy->policydb; 2771 sidtab = policy->sidtab; 2772 2773 context_init(&usercon); 2774 2775 rc = -EINVAL; 2776 fromcon = sidtab_search(sidtab, fromsid); 2777 if (!fromcon) 2778 goto out_unlock; 2779 2780 rc = -EINVAL; 2781 user = symtab_search(&policydb->p_users, username); 2782 if (!user) 2783 goto out_unlock; 2784 2785 usercon.user = user->value; 2786 2787 ebitmap_for_each_positive_bit(&user->roles, rnode, i) { 2788 role = policydb->role_val_to_struct[i]; 2789 usercon.role = i + 1; 2790 ebitmap_for_each_positive_bit(&role->types, tnode, j) { 2791 usercon.type = j + 1; 2792 2793 if (mls_setup_user_range(policydb, fromcon, user, 2794 &usercon)) 2795 continue; 2796 2797 rc = sidtab_context_to_sid(sidtab, &usercon, &sid); 2798 if (rc == -ESTALE) { 2799 rcu_read_unlock(); 2800 goto retry; 2801 } 2802 if (rc) 2803 goto out_unlock; 2804 if (mynel < maxnel) { 2805 mysids[mynel++] = sid; 2806 } else { 2807 rc = -ENOMEM; 2808 maxnel += SIDS_NEL; 2809 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC); 2810 if (!mysids2) 2811 goto out_unlock; 2812 memcpy(mysids2, mysids, mynel * sizeof(*mysids2)); 2813 kfree(mysids); 2814 mysids = mysids2; 2815 mysids[mynel++] = sid; 2816 } 2817 } 2818 } 2819 rc = 0; 2820 out_unlock: 2821 rcu_read_unlock(); 2822 if (rc || !mynel) { 2823 kfree(mysids); 2824 return rc; 2825 } 2826 2827 rc = -ENOMEM; 2828 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL); 2829 if (!mysids2) { 2830 kfree(mysids); 2831 return rc; 2832 } 2833 for (i = 0, j = 0; i < mynel; i++) { 2834 struct av_decision dummy_avd; 2835 rc = avc_has_perm_noaudit(state, 2836 fromsid, mysids[i], 2837 SECCLASS_PROCESS, /* kernel value */ 2838 PROCESS__TRANSITION, AVC_STRICT, 2839 &dummy_avd); 2840 if (!rc) 2841 mysids2[j++] = mysids[i]; 2842 cond_resched(); 2843 } 2844 kfree(mysids); 2845 *sids = mysids2; 2846 *nel = j; 2847 return 0; 2848 } 2849 2850 /** 2851 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem 2852 * @fstype: filesystem type 2853 * @path: path from root of mount 2854 * @sclass: file security class 2855 * @sid: SID for path 2856 * 2857 * Obtain a SID to use for a file in a filesystem that 2858 * cannot support xattr or use a fixed labeling behavior like 2859 * transition SIDs or task SIDs. 2860 * 2861 * WARNING: This function may return -ESTALE, indicating that the caller 2862 * must retry the operation after re-acquiring the policy pointer! 2863 */ 2864 static inline int __security_genfs_sid(struct selinux_policy *policy, 2865 const char *fstype, 2866 char *path, 2867 u16 orig_sclass, 2868 u32 *sid) 2869 { 2870 struct policydb *policydb = &policy->policydb; 2871 struct sidtab *sidtab = policy->sidtab; 2872 int len; 2873 u16 sclass; 2874 struct genfs *genfs; 2875 struct ocontext *c; 2876 int rc, cmp = 0; 2877 2878 while (path[0] == '/' && path[1] == '/') 2879 path++; 2880 2881 sclass = unmap_class(&policy->map, orig_sclass); 2882 *sid = SECINITSID_UNLABELED; 2883 2884 for (genfs = policydb->genfs; genfs; genfs = genfs->next) { 2885 cmp = strcmp(fstype, genfs->fstype); 2886 if (cmp <= 0) 2887 break; 2888 } 2889 2890 rc = -ENOENT; 2891 if (!genfs || cmp) 2892 goto out; 2893 2894 for (c = genfs->head; c; c = c->next) { 2895 len = strlen(c->u.name); 2896 if ((!c->v.sclass || sclass == c->v.sclass) && 2897 (strncmp(c->u.name, path, len) == 0)) 2898 break; 2899 } 2900 2901 rc = -ENOENT; 2902 if (!c) 2903 goto out; 2904 2905 if (!c->sid[0]) { 2906 rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]); 2907 if (rc) 2908 goto out; 2909 } 2910 2911 *sid = c->sid[0]; 2912 rc = 0; 2913 out: 2914 return rc; 2915 } 2916 2917 /** 2918 * security_genfs_sid - Obtain a SID for a file in a filesystem 2919 * @state: SELinux state 2920 * @fstype: filesystem type 2921 * @path: path from root of mount 2922 * @sclass: file security class 2923 * @sid: SID for path 2924 * 2925 * Acquire policy_rwlock before calling __security_genfs_sid() and release 2926 * it afterward. 2927 */ 2928 int security_genfs_sid(struct selinux_state *state, 2929 const char *fstype, 2930 char *path, 2931 u16 orig_sclass, 2932 u32 *sid) 2933 { 2934 struct selinux_policy *policy; 2935 int retval; 2936 2937 if (!selinux_initialized(state)) { 2938 *sid = SECINITSID_UNLABELED; 2939 return 0; 2940 } 2941 2942 do { 2943 rcu_read_lock(); 2944 policy = rcu_dereference(state->policy); 2945 retval = __security_genfs_sid(policy, fstype, path, 2946 orig_sclass, sid); 2947 rcu_read_unlock(); 2948 } while (retval == -ESTALE); 2949 return retval; 2950 } 2951 2952 int selinux_policy_genfs_sid(struct selinux_policy *policy, 2953 const char *fstype, 2954 char *path, 2955 u16 orig_sclass, 2956 u32 *sid) 2957 { 2958 /* no lock required, policy is not yet accessible by other threads */ 2959 return __security_genfs_sid(policy, fstype, path, orig_sclass, sid); 2960 } 2961 2962 /** 2963 * security_fs_use - Determine how to handle labeling for a filesystem. 2964 * @state: SELinux state 2965 * @sb: superblock in question 2966 */ 2967 int security_fs_use(struct selinux_state *state, struct super_block *sb) 2968 { 2969 struct selinux_policy *policy; 2970 struct policydb *policydb; 2971 struct sidtab *sidtab; 2972 int rc; 2973 struct ocontext *c; 2974 struct superblock_security_struct *sbsec = selinux_superblock(sb); 2975 const char *fstype = sb->s_type->name; 2976 2977 if (!selinux_initialized(state)) { 2978 sbsec->behavior = SECURITY_FS_USE_NONE; 2979 sbsec->sid = SECINITSID_UNLABELED; 2980 return 0; 2981 } 2982 2983 retry: 2984 rc = 0; 2985 rcu_read_lock(); 2986 policy = rcu_dereference(state->policy); 2987 policydb = &policy->policydb; 2988 sidtab = policy->sidtab; 2989 2990 c = policydb->ocontexts[OCON_FSUSE]; 2991 while (c) { 2992 if (strcmp(fstype, c->u.name) == 0) 2993 break; 2994 c = c->next; 2995 } 2996 2997 if (c) { 2998 sbsec->behavior = c->v.behavior; 2999 if (!c->sid[0]) { 3000 rc = sidtab_context_to_sid(sidtab, &c->context[0], 3001 &c->sid[0]); 3002 if (rc == -ESTALE) { 3003 rcu_read_unlock(); 3004 goto retry; 3005 } 3006 if (rc) 3007 goto out; 3008 } 3009 sbsec->sid = c->sid[0]; 3010 } else { 3011 rc = __security_genfs_sid(policy, fstype, "/", 3012 SECCLASS_DIR, &sbsec->sid); 3013 if (rc == -ESTALE) { 3014 rcu_read_unlock(); 3015 goto retry; 3016 } 3017 if (rc) { 3018 sbsec->behavior = SECURITY_FS_USE_NONE; 3019 rc = 0; 3020 } else { 3021 sbsec->behavior = SECURITY_FS_USE_GENFS; 3022 } 3023 } 3024 3025 out: 3026 rcu_read_unlock(); 3027 return rc; 3028 } 3029 3030 int security_get_bools(struct selinux_policy *policy, 3031 u32 *len, char ***names, int **values) 3032 { 3033 struct policydb *policydb; 3034 u32 i; 3035 int rc; 3036 3037 policydb = &policy->policydb; 3038 3039 *names = NULL; 3040 *values = NULL; 3041 3042 rc = 0; 3043 *len = policydb->p_bools.nprim; 3044 if (!*len) 3045 goto out; 3046 3047 rc = -ENOMEM; 3048 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC); 3049 if (!*names) 3050 goto err; 3051 3052 rc = -ENOMEM; 3053 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC); 3054 if (!*values) 3055 goto err; 3056 3057 for (i = 0; i < *len; i++) { 3058 (*values)[i] = policydb->bool_val_to_struct[i]->state; 3059 3060 rc = -ENOMEM; 3061 (*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i), 3062 GFP_ATOMIC); 3063 if (!(*names)[i]) 3064 goto err; 3065 } 3066 rc = 0; 3067 out: 3068 return rc; 3069 err: 3070 if (*names) { 3071 for (i = 0; i < *len; i++) 3072 kfree((*names)[i]); 3073 kfree(*names); 3074 } 3075 kfree(*values); 3076 *len = 0; 3077 *names = NULL; 3078 *values = NULL; 3079 goto out; 3080 } 3081 3082 3083 int security_set_bools(struct selinux_state *state, u32 len, int *values) 3084 { 3085 struct selinux_policy *newpolicy, *oldpolicy; 3086 int rc; 3087 u32 i, seqno = 0; 3088 3089 if (!selinux_initialized(state)) 3090 return -EINVAL; 3091 3092 oldpolicy = rcu_dereference_protected(state->policy, 3093 lockdep_is_held(&state->policy_mutex)); 3094 3095 /* Consistency check on number of booleans, should never fail */ 3096 if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim)) 3097 return -EINVAL; 3098 3099 newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL); 3100 if (!newpolicy) 3101 return -ENOMEM; 3102 3103 /* 3104 * Deep copy only the parts of the policydb that might be 3105 * modified as a result of changing booleans. 3106 */ 3107 rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb); 3108 if (rc) { 3109 kfree(newpolicy); 3110 return -ENOMEM; 3111 } 3112 3113 /* Update the boolean states in the copy */ 3114 for (i = 0; i < len; i++) { 3115 int new_state = !!values[i]; 3116 int old_state = newpolicy->policydb.bool_val_to_struct[i]->state; 3117 3118 if (new_state != old_state) { 3119 audit_log(audit_context(), GFP_ATOMIC, 3120 AUDIT_MAC_CONFIG_CHANGE, 3121 "bool=%s val=%d old_val=%d auid=%u ses=%u", 3122 sym_name(&newpolicy->policydb, SYM_BOOLS, i), 3123 new_state, 3124 old_state, 3125 from_kuid(&init_user_ns, audit_get_loginuid(current)), 3126 audit_get_sessionid(current)); 3127 newpolicy->policydb.bool_val_to_struct[i]->state = new_state; 3128 } 3129 } 3130 3131 /* Re-evaluate the conditional rules in the copy */ 3132 evaluate_cond_nodes(&newpolicy->policydb); 3133 3134 /* Set latest granting seqno for new policy */ 3135 newpolicy->latest_granting = oldpolicy->latest_granting + 1; 3136 seqno = newpolicy->latest_granting; 3137 3138 /* Install the new policy */ 3139 rcu_assign_pointer(state->policy, newpolicy); 3140 3141 /* 3142 * Free the conditional portions of the old policydb 3143 * that were copied for the new policy, and the oldpolicy 3144 * structure itself but not what it references. 3145 */ 3146 synchronize_rcu(); 3147 selinux_policy_cond_free(oldpolicy); 3148 3149 /* Notify others of the policy change */ 3150 selinux_notify_policy_change(state, seqno); 3151 return 0; 3152 } 3153 3154 int security_get_bool_value(struct selinux_state *state, 3155 u32 index) 3156 { 3157 struct selinux_policy *policy; 3158 struct policydb *policydb; 3159 int rc; 3160 u32 len; 3161 3162 if (!selinux_initialized(state)) 3163 return 0; 3164 3165 rcu_read_lock(); 3166 policy = rcu_dereference(state->policy); 3167 policydb = &policy->policydb; 3168 3169 rc = -EFAULT; 3170 len = policydb->p_bools.nprim; 3171 if (index >= len) 3172 goto out; 3173 3174 rc = policydb->bool_val_to_struct[index]->state; 3175 out: 3176 rcu_read_unlock(); 3177 return rc; 3178 } 3179 3180 static int security_preserve_bools(struct selinux_policy *oldpolicy, 3181 struct selinux_policy *newpolicy) 3182 { 3183 int rc, *bvalues = NULL; 3184 char **bnames = NULL; 3185 struct cond_bool_datum *booldatum; 3186 u32 i, nbools = 0; 3187 3188 rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues); 3189 if (rc) 3190 goto out; 3191 for (i = 0; i < nbools; i++) { 3192 booldatum = symtab_search(&newpolicy->policydb.p_bools, 3193 bnames[i]); 3194 if (booldatum) 3195 booldatum->state = bvalues[i]; 3196 } 3197 evaluate_cond_nodes(&newpolicy->policydb); 3198 3199 out: 3200 if (bnames) { 3201 for (i = 0; i < nbools; i++) 3202 kfree(bnames[i]); 3203 } 3204 kfree(bnames); 3205 kfree(bvalues); 3206 return rc; 3207 } 3208 3209 /* 3210 * security_sid_mls_copy() - computes a new sid based on the given 3211 * sid and the mls portion of mls_sid. 3212 */ 3213 int security_sid_mls_copy(struct selinux_state *state, 3214 u32 sid, u32 mls_sid, u32 *new_sid) 3215 { 3216 struct selinux_policy *policy; 3217 struct policydb *policydb; 3218 struct sidtab *sidtab; 3219 struct context *context1; 3220 struct context *context2; 3221 struct context newcon; 3222 char *s; 3223 u32 len; 3224 int rc; 3225 3226 if (!selinux_initialized(state)) { 3227 *new_sid = sid; 3228 return 0; 3229 } 3230 3231 retry: 3232 rc = 0; 3233 context_init(&newcon); 3234 3235 rcu_read_lock(); 3236 policy = rcu_dereference(state->policy); 3237 policydb = &policy->policydb; 3238 sidtab = policy->sidtab; 3239 3240 if (!policydb->mls_enabled) { 3241 *new_sid = sid; 3242 goto out_unlock; 3243 } 3244 3245 rc = -EINVAL; 3246 context1 = sidtab_search(sidtab, sid); 3247 if (!context1) { 3248 pr_err("SELinux: %s: unrecognized SID %d\n", 3249 __func__, sid); 3250 goto out_unlock; 3251 } 3252 3253 rc = -EINVAL; 3254 context2 = sidtab_search(sidtab, mls_sid); 3255 if (!context2) { 3256 pr_err("SELinux: %s: unrecognized SID %d\n", 3257 __func__, mls_sid); 3258 goto out_unlock; 3259 } 3260 3261 newcon.user = context1->user; 3262 newcon.role = context1->role; 3263 newcon.type = context1->type; 3264 rc = mls_context_cpy(&newcon, context2); 3265 if (rc) 3266 goto out_unlock; 3267 3268 /* Check the validity of the new context. */ 3269 if (!policydb_context_isvalid(policydb, &newcon)) { 3270 rc = convert_context_handle_invalid_context(state, policydb, 3271 &newcon); 3272 if (rc) { 3273 if (!context_struct_to_string(policydb, &newcon, &s, 3274 &len)) { 3275 struct audit_buffer *ab; 3276 3277 ab = audit_log_start(audit_context(), 3278 GFP_ATOMIC, 3279 AUDIT_SELINUX_ERR); 3280 audit_log_format(ab, 3281 "op=security_sid_mls_copy invalid_context="); 3282 /* don't record NUL with untrusted strings */ 3283 audit_log_n_untrustedstring(ab, s, len - 1); 3284 audit_log_end(ab); 3285 kfree(s); 3286 } 3287 goto out_unlock; 3288 } 3289 } 3290 rc = sidtab_context_to_sid(sidtab, &newcon, new_sid); 3291 if (rc == -ESTALE) { 3292 rcu_read_unlock(); 3293 context_destroy(&newcon); 3294 goto retry; 3295 } 3296 out_unlock: 3297 rcu_read_unlock(); 3298 context_destroy(&newcon); 3299 return rc; 3300 } 3301 3302 /** 3303 * security_net_peersid_resolve - Compare and resolve two network peer SIDs 3304 * @state: SELinux state 3305 * @nlbl_sid: NetLabel SID 3306 * @nlbl_type: NetLabel labeling protocol type 3307 * @xfrm_sid: XFRM SID 3308 * 3309 * Description: 3310 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be 3311 * resolved into a single SID it is returned via @peer_sid and the function 3312 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function 3313 * returns a negative value. A table summarizing the behavior is below: 3314 * 3315 * | function return | @sid 3316 * ------------------------------+-----------------+----------------- 3317 * no peer labels | 0 | SECSID_NULL 3318 * single peer label | 0 | <peer_label> 3319 * multiple, consistent labels | 0 | <peer_label> 3320 * multiple, inconsistent labels | -<errno> | SECSID_NULL 3321 * 3322 */ 3323 int security_net_peersid_resolve(struct selinux_state *state, 3324 u32 nlbl_sid, u32 nlbl_type, 3325 u32 xfrm_sid, 3326 u32 *peer_sid) 3327 { 3328 struct selinux_policy *policy; 3329 struct policydb *policydb; 3330 struct sidtab *sidtab; 3331 int rc; 3332 struct context *nlbl_ctx; 3333 struct context *xfrm_ctx; 3334 3335 *peer_sid = SECSID_NULL; 3336 3337 /* handle the common (which also happens to be the set of easy) cases 3338 * right away, these two if statements catch everything involving a 3339 * single or absent peer SID/label */ 3340 if (xfrm_sid == SECSID_NULL) { 3341 *peer_sid = nlbl_sid; 3342 return 0; 3343 } 3344 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label 3345 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label 3346 * is present */ 3347 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) { 3348 *peer_sid = xfrm_sid; 3349 return 0; 3350 } 3351 3352 if (!selinux_initialized(state)) 3353 return 0; 3354 3355 rcu_read_lock(); 3356 policy = rcu_dereference(state->policy); 3357 policydb = &policy->policydb; 3358 sidtab = policy->sidtab; 3359 3360 /* 3361 * We don't need to check initialized here since the only way both 3362 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the 3363 * security server was initialized and state->initialized was true. 3364 */ 3365 if (!policydb->mls_enabled) { 3366 rc = 0; 3367 goto out; 3368 } 3369 3370 rc = -EINVAL; 3371 nlbl_ctx = sidtab_search(sidtab, nlbl_sid); 3372 if (!nlbl_ctx) { 3373 pr_err("SELinux: %s: unrecognized SID %d\n", 3374 __func__, nlbl_sid); 3375 goto out; 3376 } 3377 rc = -EINVAL; 3378 xfrm_ctx = sidtab_search(sidtab, xfrm_sid); 3379 if (!xfrm_ctx) { 3380 pr_err("SELinux: %s: unrecognized SID %d\n", 3381 __func__, xfrm_sid); 3382 goto out; 3383 } 3384 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES); 3385 if (rc) 3386 goto out; 3387 3388 /* at present NetLabel SIDs/labels really only carry MLS 3389 * information so if the MLS portion of the NetLabel SID 3390 * matches the MLS portion of the labeled XFRM SID/label 3391 * then pass along the XFRM SID as it is the most 3392 * expressive */ 3393 *peer_sid = xfrm_sid; 3394 out: 3395 rcu_read_unlock(); 3396 return rc; 3397 } 3398 3399 static int get_classes_callback(void *k, void *d, void *args) 3400 { 3401 struct class_datum *datum = d; 3402 char *name = k, **classes = args; 3403 int value = datum->value - 1; 3404 3405 classes[value] = kstrdup(name, GFP_ATOMIC); 3406 if (!classes[value]) 3407 return -ENOMEM; 3408 3409 return 0; 3410 } 3411 3412 int security_get_classes(struct selinux_policy *policy, 3413 char ***classes, int *nclasses) 3414 { 3415 struct policydb *policydb; 3416 int rc; 3417 3418 policydb = &policy->policydb; 3419 3420 rc = -ENOMEM; 3421 *nclasses = policydb->p_classes.nprim; 3422 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC); 3423 if (!*classes) 3424 goto out; 3425 3426 rc = hashtab_map(&policydb->p_classes.table, get_classes_callback, 3427 *classes); 3428 if (rc) { 3429 int i; 3430 for (i = 0; i < *nclasses; i++) 3431 kfree((*classes)[i]); 3432 kfree(*classes); 3433 } 3434 3435 out: 3436 return rc; 3437 } 3438 3439 static int get_permissions_callback(void *k, void *d, void *args) 3440 { 3441 struct perm_datum *datum = d; 3442 char *name = k, **perms = args; 3443 int value = datum->value - 1; 3444 3445 perms[value] = kstrdup(name, GFP_ATOMIC); 3446 if (!perms[value]) 3447 return -ENOMEM; 3448 3449 return 0; 3450 } 3451 3452 int security_get_permissions(struct selinux_policy *policy, 3453 char *class, char ***perms, int *nperms) 3454 { 3455 struct policydb *policydb; 3456 int rc, i; 3457 struct class_datum *match; 3458 3459 policydb = &policy->policydb; 3460 3461 rc = -EINVAL; 3462 match = symtab_search(&policydb->p_classes, class); 3463 if (!match) { 3464 pr_err("SELinux: %s: unrecognized class %s\n", 3465 __func__, class); 3466 goto out; 3467 } 3468 3469 rc = -ENOMEM; 3470 *nperms = match->permissions.nprim; 3471 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC); 3472 if (!*perms) 3473 goto out; 3474 3475 if (match->comdatum) { 3476 rc = hashtab_map(&match->comdatum->permissions.table, 3477 get_permissions_callback, *perms); 3478 if (rc) 3479 goto err; 3480 } 3481 3482 rc = hashtab_map(&match->permissions.table, get_permissions_callback, 3483 *perms); 3484 if (rc) 3485 goto err; 3486 3487 out: 3488 return rc; 3489 3490 err: 3491 for (i = 0; i < *nperms; i++) 3492 kfree((*perms)[i]); 3493 kfree(*perms); 3494 return rc; 3495 } 3496 3497 int security_get_reject_unknown(struct selinux_state *state) 3498 { 3499 struct selinux_policy *policy; 3500 int value; 3501 3502 if (!selinux_initialized(state)) 3503 return 0; 3504 3505 rcu_read_lock(); 3506 policy = rcu_dereference(state->policy); 3507 value = policy->policydb.reject_unknown; 3508 rcu_read_unlock(); 3509 return value; 3510 } 3511 3512 int security_get_allow_unknown(struct selinux_state *state) 3513 { 3514 struct selinux_policy *policy; 3515 int value; 3516 3517 if (!selinux_initialized(state)) 3518 return 0; 3519 3520 rcu_read_lock(); 3521 policy = rcu_dereference(state->policy); 3522 value = policy->policydb.allow_unknown; 3523 rcu_read_unlock(); 3524 return value; 3525 } 3526 3527 /** 3528 * security_policycap_supported - Check for a specific policy capability 3529 * @state: SELinux state 3530 * @req_cap: capability 3531 * 3532 * Description: 3533 * This function queries the currently loaded policy to see if it supports the 3534 * capability specified by @req_cap. Returns true (1) if the capability is 3535 * supported, false (0) if it isn't supported. 3536 * 3537 */ 3538 int security_policycap_supported(struct selinux_state *state, 3539 unsigned int req_cap) 3540 { 3541 struct selinux_policy *policy; 3542 int rc; 3543 3544 if (!selinux_initialized(state)) 3545 return 0; 3546 3547 rcu_read_lock(); 3548 policy = rcu_dereference(state->policy); 3549 rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap); 3550 rcu_read_unlock(); 3551 3552 return rc; 3553 } 3554 3555 struct selinux_audit_rule { 3556 u32 au_seqno; 3557 struct context au_ctxt; 3558 }; 3559 3560 void selinux_audit_rule_free(void *vrule) 3561 { 3562 struct selinux_audit_rule *rule = vrule; 3563 3564 if (rule) { 3565 context_destroy(&rule->au_ctxt); 3566 kfree(rule); 3567 } 3568 } 3569 3570 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule) 3571 { 3572 struct selinux_state *state = &selinux_state; 3573 struct selinux_policy *policy; 3574 struct policydb *policydb; 3575 struct selinux_audit_rule *tmprule; 3576 struct role_datum *roledatum; 3577 struct type_datum *typedatum; 3578 struct user_datum *userdatum; 3579 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule; 3580 int rc = 0; 3581 3582 *rule = NULL; 3583 3584 if (!selinux_initialized(state)) 3585 return -EOPNOTSUPP; 3586 3587 switch (field) { 3588 case AUDIT_SUBJ_USER: 3589 case AUDIT_SUBJ_ROLE: 3590 case AUDIT_SUBJ_TYPE: 3591 case AUDIT_OBJ_USER: 3592 case AUDIT_OBJ_ROLE: 3593 case AUDIT_OBJ_TYPE: 3594 /* only 'equals' and 'not equals' fit user, role, and type */ 3595 if (op != Audit_equal && op != Audit_not_equal) 3596 return -EINVAL; 3597 break; 3598 case AUDIT_SUBJ_SEN: 3599 case AUDIT_SUBJ_CLR: 3600 case AUDIT_OBJ_LEV_LOW: 3601 case AUDIT_OBJ_LEV_HIGH: 3602 /* we do not allow a range, indicated by the presence of '-' */ 3603 if (strchr(rulestr, '-')) 3604 return -EINVAL; 3605 break; 3606 default: 3607 /* only the above fields are valid */ 3608 return -EINVAL; 3609 } 3610 3611 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL); 3612 if (!tmprule) 3613 return -ENOMEM; 3614 3615 context_init(&tmprule->au_ctxt); 3616 3617 rcu_read_lock(); 3618 policy = rcu_dereference(state->policy); 3619 policydb = &policy->policydb; 3620 3621 tmprule->au_seqno = policy->latest_granting; 3622 3623 switch (field) { 3624 case AUDIT_SUBJ_USER: 3625 case AUDIT_OBJ_USER: 3626 rc = -EINVAL; 3627 userdatum = symtab_search(&policydb->p_users, rulestr); 3628 if (!userdatum) 3629 goto out; 3630 tmprule->au_ctxt.user = userdatum->value; 3631 break; 3632 case AUDIT_SUBJ_ROLE: 3633 case AUDIT_OBJ_ROLE: 3634 rc = -EINVAL; 3635 roledatum = symtab_search(&policydb->p_roles, rulestr); 3636 if (!roledatum) 3637 goto out; 3638 tmprule->au_ctxt.role = roledatum->value; 3639 break; 3640 case AUDIT_SUBJ_TYPE: 3641 case AUDIT_OBJ_TYPE: 3642 rc = -EINVAL; 3643 typedatum = symtab_search(&policydb->p_types, rulestr); 3644 if (!typedatum) 3645 goto out; 3646 tmprule->au_ctxt.type = typedatum->value; 3647 break; 3648 case AUDIT_SUBJ_SEN: 3649 case AUDIT_SUBJ_CLR: 3650 case AUDIT_OBJ_LEV_LOW: 3651 case AUDIT_OBJ_LEV_HIGH: 3652 rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt, 3653 GFP_ATOMIC); 3654 if (rc) 3655 goto out; 3656 break; 3657 } 3658 rc = 0; 3659 out: 3660 rcu_read_unlock(); 3661 3662 if (rc) { 3663 selinux_audit_rule_free(tmprule); 3664 tmprule = NULL; 3665 } 3666 3667 *rule = tmprule; 3668 3669 return rc; 3670 } 3671 3672 /* Check to see if the rule contains any selinux fields */ 3673 int selinux_audit_rule_known(struct audit_krule *rule) 3674 { 3675 int i; 3676 3677 for (i = 0; i < rule->field_count; i++) { 3678 struct audit_field *f = &rule->fields[i]; 3679 switch (f->type) { 3680 case AUDIT_SUBJ_USER: 3681 case AUDIT_SUBJ_ROLE: 3682 case AUDIT_SUBJ_TYPE: 3683 case AUDIT_SUBJ_SEN: 3684 case AUDIT_SUBJ_CLR: 3685 case AUDIT_OBJ_USER: 3686 case AUDIT_OBJ_ROLE: 3687 case AUDIT_OBJ_TYPE: 3688 case AUDIT_OBJ_LEV_LOW: 3689 case AUDIT_OBJ_LEV_HIGH: 3690 return 1; 3691 } 3692 } 3693 3694 return 0; 3695 } 3696 3697 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule) 3698 { 3699 struct selinux_state *state = &selinux_state; 3700 struct selinux_policy *policy; 3701 struct context *ctxt; 3702 struct mls_level *level; 3703 struct selinux_audit_rule *rule = vrule; 3704 int match = 0; 3705 3706 if (unlikely(!rule)) { 3707 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n"); 3708 return -ENOENT; 3709 } 3710 3711 if (!selinux_initialized(state)) 3712 return 0; 3713 3714 rcu_read_lock(); 3715 3716 policy = rcu_dereference(state->policy); 3717 3718 if (rule->au_seqno < policy->latest_granting) { 3719 match = -ESTALE; 3720 goto out; 3721 } 3722 3723 ctxt = sidtab_search(policy->sidtab, sid); 3724 if (unlikely(!ctxt)) { 3725 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n", 3726 sid); 3727 match = -ENOENT; 3728 goto out; 3729 } 3730 3731 /* a field/op pair that is not caught here will simply fall through 3732 without a match */ 3733 switch (field) { 3734 case AUDIT_SUBJ_USER: 3735 case AUDIT_OBJ_USER: 3736 switch (op) { 3737 case Audit_equal: 3738 match = (ctxt->user == rule->au_ctxt.user); 3739 break; 3740 case Audit_not_equal: 3741 match = (ctxt->user != rule->au_ctxt.user); 3742 break; 3743 } 3744 break; 3745 case AUDIT_SUBJ_ROLE: 3746 case AUDIT_OBJ_ROLE: 3747 switch (op) { 3748 case Audit_equal: 3749 match = (ctxt->role == rule->au_ctxt.role); 3750 break; 3751 case Audit_not_equal: 3752 match = (ctxt->role != rule->au_ctxt.role); 3753 break; 3754 } 3755 break; 3756 case AUDIT_SUBJ_TYPE: 3757 case AUDIT_OBJ_TYPE: 3758 switch (op) { 3759 case Audit_equal: 3760 match = (ctxt->type == rule->au_ctxt.type); 3761 break; 3762 case Audit_not_equal: 3763 match = (ctxt->type != rule->au_ctxt.type); 3764 break; 3765 } 3766 break; 3767 case AUDIT_SUBJ_SEN: 3768 case AUDIT_SUBJ_CLR: 3769 case AUDIT_OBJ_LEV_LOW: 3770 case AUDIT_OBJ_LEV_HIGH: 3771 level = ((field == AUDIT_SUBJ_SEN || 3772 field == AUDIT_OBJ_LEV_LOW) ? 3773 &ctxt->range.level[0] : &ctxt->range.level[1]); 3774 switch (op) { 3775 case Audit_equal: 3776 match = mls_level_eq(&rule->au_ctxt.range.level[0], 3777 level); 3778 break; 3779 case Audit_not_equal: 3780 match = !mls_level_eq(&rule->au_ctxt.range.level[0], 3781 level); 3782 break; 3783 case Audit_lt: 3784 match = (mls_level_dom(&rule->au_ctxt.range.level[0], 3785 level) && 3786 !mls_level_eq(&rule->au_ctxt.range.level[0], 3787 level)); 3788 break; 3789 case Audit_le: 3790 match = mls_level_dom(&rule->au_ctxt.range.level[0], 3791 level); 3792 break; 3793 case Audit_gt: 3794 match = (mls_level_dom(level, 3795 &rule->au_ctxt.range.level[0]) && 3796 !mls_level_eq(level, 3797 &rule->au_ctxt.range.level[0])); 3798 break; 3799 case Audit_ge: 3800 match = mls_level_dom(level, 3801 &rule->au_ctxt.range.level[0]); 3802 break; 3803 } 3804 } 3805 3806 out: 3807 rcu_read_unlock(); 3808 return match; 3809 } 3810 3811 static int aurule_avc_callback(u32 event) 3812 { 3813 if (event == AVC_CALLBACK_RESET) 3814 return audit_update_lsm_rules(); 3815 return 0; 3816 } 3817 3818 static int __init aurule_init(void) 3819 { 3820 int err; 3821 3822 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET); 3823 if (err) 3824 panic("avc_add_callback() failed, error %d\n", err); 3825 3826 return err; 3827 } 3828 __initcall(aurule_init); 3829 3830 #ifdef CONFIG_NETLABEL 3831 /** 3832 * security_netlbl_cache_add - Add an entry to the NetLabel cache 3833 * @secattr: the NetLabel packet security attributes 3834 * @sid: the SELinux SID 3835 * 3836 * Description: 3837 * Attempt to cache the context in @ctx, which was derived from the packet in 3838 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has 3839 * already been initialized. 3840 * 3841 */ 3842 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr, 3843 u32 sid) 3844 { 3845 u32 *sid_cache; 3846 3847 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC); 3848 if (sid_cache == NULL) 3849 return; 3850 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC); 3851 if (secattr->cache == NULL) { 3852 kfree(sid_cache); 3853 return; 3854 } 3855 3856 *sid_cache = sid; 3857 secattr->cache->free = kfree; 3858 secattr->cache->data = sid_cache; 3859 secattr->flags |= NETLBL_SECATTR_CACHE; 3860 } 3861 3862 /** 3863 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID 3864 * @state: SELinux state 3865 * @secattr: the NetLabel packet security attributes 3866 * @sid: the SELinux SID 3867 * 3868 * Description: 3869 * Convert the given NetLabel security attributes in @secattr into a 3870 * SELinux SID. If the @secattr field does not contain a full SELinux 3871 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the 3872 * 'cache' field of @secattr is set and the CACHE flag is set; this is to 3873 * allow the @secattr to be used by NetLabel to cache the secattr to SID 3874 * conversion for future lookups. Returns zero on success, negative values on 3875 * failure. 3876 * 3877 */ 3878 int security_netlbl_secattr_to_sid(struct selinux_state *state, 3879 struct netlbl_lsm_secattr *secattr, 3880 u32 *sid) 3881 { 3882 struct selinux_policy *policy; 3883 struct policydb *policydb; 3884 struct sidtab *sidtab; 3885 int rc; 3886 struct context *ctx; 3887 struct context ctx_new; 3888 3889 if (!selinux_initialized(state)) { 3890 *sid = SECSID_NULL; 3891 return 0; 3892 } 3893 3894 retry: 3895 rc = 0; 3896 rcu_read_lock(); 3897 policy = rcu_dereference(state->policy); 3898 policydb = &policy->policydb; 3899 sidtab = policy->sidtab; 3900 3901 if (secattr->flags & NETLBL_SECATTR_CACHE) 3902 *sid = *(u32 *)secattr->cache->data; 3903 else if (secattr->flags & NETLBL_SECATTR_SECID) 3904 *sid = secattr->attr.secid; 3905 else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) { 3906 rc = -EIDRM; 3907 ctx = sidtab_search(sidtab, SECINITSID_NETMSG); 3908 if (ctx == NULL) 3909 goto out; 3910 3911 context_init(&ctx_new); 3912 ctx_new.user = ctx->user; 3913 ctx_new.role = ctx->role; 3914 ctx_new.type = ctx->type; 3915 mls_import_netlbl_lvl(policydb, &ctx_new, secattr); 3916 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) { 3917 rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr); 3918 if (rc) 3919 goto out; 3920 } 3921 rc = -EIDRM; 3922 if (!mls_context_isvalid(policydb, &ctx_new)) { 3923 ebitmap_destroy(&ctx_new.range.level[0].cat); 3924 goto out; 3925 } 3926 3927 rc = sidtab_context_to_sid(sidtab, &ctx_new, sid); 3928 ebitmap_destroy(&ctx_new.range.level[0].cat); 3929 if (rc == -ESTALE) { 3930 rcu_read_unlock(); 3931 goto retry; 3932 } 3933 if (rc) 3934 goto out; 3935 3936 security_netlbl_cache_add(secattr, *sid); 3937 } else 3938 *sid = SECSID_NULL; 3939 3940 out: 3941 rcu_read_unlock(); 3942 return rc; 3943 } 3944 3945 /** 3946 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr 3947 * @state: SELinux state 3948 * @sid: the SELinux SID 3949 * @secattr: the NetLabel packet security attributes 3950 * 3951 * Description: 3952 * Convert the given SELinux SID in @sid into a NetLabel security attribute. 3953 * Returns zero on success, negative values on failure. 3954 * 3955 */ 3956 int security_netlbl_sid_to_secattr(struct selinux_state *state, 3957 u32 sid, struct netlbl_lsm_secattr *secattr) 3958 { 3959 struct selinux_policy *policy; 3960 struct policydb *policydb; 3961 int rc; 3962 struct context *ctx; 3963 3964 if (!selinux_initialized(state)) 3965 return 0; 3966 3967 rcu_read_lock(); 3968 policy = rcu_dereference(state->policy); 3969 policydb = &policy->policydb; 3970 3971 rc = -ENOENT; 3972 ctx = sidtab_search(policy->sidtab, sid); 3973 if (ctx == NULL) 3974 goto out; 3975 3976 rc = -ENOMEM; 3977 secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1), 3978 GFP_ATOMIC); 3979 if (secattr->domain == NULL) 3980 goto out; 3981 3982 secattr->attr.secid = sid; 3983 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID; 3984 mls_export_netlbl_lvl(policydb, ctx, secattr); 3985 rc = mls_export_netlbl_cat(policydb, ctx, secattr); 3986 out: 3987 rcu_read_unlock(); 3988 return rc; 3989 } 3990 #endif /* CONFIG_NETLABEL */ 3991 3992 /** 3993 * __security_read_policy - read the policy. 3994 * @policy: SELinux policy 3995 * @data: binary policy data 3996 * @len: length of data in bytes 3997 * 3998 */ 3999 static int __security_read_policy(struct selinux_policy *policy, 4000 void *data, size_t *len) 4001 { 4002 int rc; 4003 struct policy_file fp; 4004 4005 fp.data = data; 4006 fp.len = *len; 4007 4008 rc = policydb_write(&policy->policydb, &fp); 4009 if (rc) 4010 return rc; 4011 4012 *len = (unsigned long)fp.data - (unsigned long)data; 4013 return 0; 4014 } 4015 4016 /** 4017 * security_read_policy - read the policy. 4018 * @state: selinux_state 4019 * @data: binary policy data 4020 * @len: length of data in bytes 4021 * 4022 */ 4023 int security_read_policy(struct selinux_state *state, 4024 void **data, size_t *len) 4025 { 4026 struct selinux_policy *policy; 4027 4028 policy = rcu_dereference_protected( 4029 state->policy, lockdep_is_held(&state->policy_mutex)); 4030 if (!policy) 4031 return -EINVAL; 4032 4033 *len = policy->policydb.len; 4034 *data = vmalloc_user(*len); 4035 if (!*data) 4036 return -ENOMEM; 4037 4038 return __security_read_policy(policy, *data, len); 4039 } 4040 4041 /** 4042 * security_read_state_kernel - read the policy. 4043 * @state: selinux_state 4044 * @data: binary policy data 4045 * @len: length of data in bytes 4046 * 4047 * Allocates kernel memory for reading SELinux policy. 4048 * This function is for internal use only and should not 4049 * be used for returning data to user space. 4050 * 4051 * This function must be called with policy_mutex held. 4052 */ 4053 int security_read_state_kernel(struct selinux_state *state, 4054 void **data, size_t *len) 4055 { 4056 struct selinux_policy *policy; 4057 4058 policy = rcu_dereference_protected( 4059 state->policy, lockdep_is_held(&state->policy_mutex)); 4060 if (!policy) 4061 return -EINVAL; 4062 4063 *len = policy->policydb.len; 4064 *data = vmalloc(*len); 4065 if (!*data) 4066 return -ENOMEM; 4067 4068 return __security_read_policy(policy, *data, len); 4069 } 4070