xref: /openbmc/linux/security/selinux/ss/services.c (revision 643d1f7f)
1 /*
2  * Implementation of the security services.
3  *
4  * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5  *           James Morris <jmorris@redhat.com>
6  *
7  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8  *
9  *	Support for enhanced MLS infrastructure.
10  *	Support for context based audit filters.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  * 	Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul.moore@hp.com>
17  *
18  *      Added support for NetLabel
19  *      Added support for the policy capability bitmap
20  *
21  * Updated: Chad Sellers <csellers@tresys.com>
22  *
23  *  Added validation of kernel classes and permissions
24  *
25  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
26  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
27  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
28  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
29  *	This program is free software; you can redistribute it and/or modify
30  *  	it under the terms of the GNU General Public License as published by
31  *	the Free Software Foundation, version 2.
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/string.h>
36 #include <linux/spinlock.h>
37 #include <linux/rcupdate.h>
38 #include <linux/errno.h>
39 #include <linux/in.h>
40 #include <linux/sched.h>
41 #include <linux/audit.h>
42 #include <linux/mutex.h>
43 #include <net/netlabel.h>
44 
45 #include "flask.h"
46 #include "avc.h"
47 #include "avc_ss.h"
48 #include "security.h"
49 #include "context.h"
50 #include "policydb.h"
51 #include "sidtab.h"
52 #include "services.h"
53 #include "conditional.h"
54 #include "mls.h"
55 #include "objsec.h"
56 #include "netlabel.h"
57 #include "xfrm.h"
58 #include "ebitmap.h"
59 
60 extern void selnl_notify_policyload(u32 seqno);
61 unsigned int policydb_loaded_version;
62 
63 int selinux_policycap_netpeer;
64 
65 /*
66  * This is declared in avc.c
67  */
68 extern const struct selinux_class_perm selinux_class_perm;
69 
70 static DEFINE_RWLOCK(policy_rwlock);
71 #define POLICY_RDLOCK read_lock(&policy_rwlock)
72 #define POLICY_WRLOCK write_lock_irq(&policy_rwlock)
73 #define POLICY_RDUNLOCK read_unlock(&policy_rwlock)
74 #define POLICY_WRUNLOCK write_unlock_irq(&policy_rwlock)
75 
76 static DEFINE_MUTEX(load_mutex);
77 #define LOAD_LOCK mutex_lock(&load_mutex)
78 #define LOAD_UNLOCK mutex_unlock(&load_mutex)
79 
80 static struct sidtab sidtab;
81 struct policydb policydb;
82 int ss_initialized = 0;
83 
84 /*
85  * The largest sequence number that has been used when
86  * providing an access decision to the access vector cache.
87  * The sequence number only changes when a policy change
88  * occurs.
89  */
90 static u32 latest_granting = 0;
91 
92 /* Forward declaration. */
93 static int context_struct_to_string(struct context *context, char **scontext,
94 				    u32 *scontext_len);
95 
96 /*
97  * Return the boolean value of a constraint expression
98  * when it is applied to the specified source and target
99  * security contexts.
100  *
101  * xcontext is a special beast...  It is used by the validatetrans rules
102  * only.  For these rules, scontext is the context before the transition,
103  * tcontext is the context after the transition, and xcontext is the context
104  * of the process performing the transition.  All other callers of
105  * constraint_expr_eval should pass in NULL for xcontext.
106  */
107 static int constraint_expr_eval(struct context *scontext,
108 				struct context *tcontext,
109 				struct context *xcontext,
110 				struct constraint_expr *cexpr)
111 {
112 	u32 val1, val2;
113 	struct context *c;
114 	struct role_datum *r1, *r2;
115 	struct mls_level *l1, *l2;
116 	struct constraint_expr *e;
117 	int s[CEXPR_MAXDEPTH];
118 	int sp = -1;
119 
120 	for (e = cexpr; e; e = e->next) {
121 		switch (e->expr_type) {
122 		case CEXPR_NOT:
123 			BUG_ON(sp < 0);
124 			s[sp] = !s[sp];
125 			break;
126 		case CEXPR_AND:
127 			BUG_ON(sp < 1);
128 			sp--;
129 			s[sp] &= s[sp+1];
130 			break;
131 		case CEXPR_OR:
132 			BUG_ON(sp < 1);
133 			sp--;
134 			s[sp] |= s[sp+1];
135 			break;
136 		case CEXPR_ATTR:
137 			if (sp == (CEXPR_MAXDEPTH-1))
138 				return 0;
139 			switch (e->attr) {
140 			case CEXPR_USER:
141 				val1 = scontext->user;
142 				val2 = tcontext->user;
143 				break;
144 			case CEXPR_TYPE:
145 				val1 = scontext->type;
146 				val2 = tcontext->type;
147 				break;
148 			case CEXPR_ROLE:
149 				val1 = scontext->role;
150 				val2 = tcontext->role;
151 				r1 = policydb.role_val_to_struct[val1 - 1];
152 				r2 = policydb.role_val_to_struct[val2 - 1];
153 				switch (e->op) {
154 				case CEXPR_DOM:
155 					s[++sp] = ebitmap_get_bit(&r1->dominates,
156 								  val2 - 1);
157 					continue;
158 				case CEXPR_DOMBY:
159 					s[++sp] = ebitmap_get_bit(&r2->dominates,
160 								  val1 - 1);
161 					continue;
162 				case CEXPR_INCOMP:
163 					s[++sp] = ( !ebitmap_get_bit(&r1->dominates,
164 								     val2 - 1) &&
165 						    !ebitmap_get_bit(&r2->dominates,
166 								     val1 - 1) );
167 					continue;
168 				default:
169 					break;
170 				}
171 				break;
172 			case CEXPR_L1L2:
173 				l1 = &(scontext->range.level[0]);
174 				l2 = &(tcontext->range.level[0]);
175 				goto mls_ops;
176 			case CEXPR_L1H2:
177 				l1 = &(scontext->range.level[0]);
178 				l2 = &(tcontext->range.level[1]);
179 				goto mls_ops;
180 			case CEXPR_H1L2:
181 				l1 = &(scontext->range.level[1]);
182 				l2 = &(tcontext->range.level[0]);
183 				goto mls_ops;
184 			case CEXPR_H1H2:
185 				l1 = &(scontext->range.level[1]);
186 				l2 = &(tcontext->range.level[1]);
187 				goto mls_ops;
188 			case CEXPR_L1H1:
189 				l1 = &(scontext->range.level[0]);
190 				l2 = &(scontext->range.level[1]);
191 				goto mls_ops;
192 			case CEXPR_L2H2:
193 				l1 = &(tcontext->range.level[0]);
194 				l2 = &(tcontext->range.level[1]);
195 				goto mls_ops;
196 mls_ops:
197 			switch (e->op) {
198 			case CEXPR_EQ:
199 				s[++sp] = mls_level_eq(l1, l2);
200 				continue;
201 			case CEXPR_NEQ:
202 				s[++sp] = !mls_level_eq(l1, l2);
203 				continue;
204 			case CEXPR_DOM:
205 				s[++sp] = mls_level_dom(l1, l2);
206 				continue;
207 			case CEXPR_DOMBY:
208 				s[++sp] = mls_level_dom(l2, l1);
209 				continue;
210 			case CEXPR_INCOMP:
211 				s[++sp] = mls_level_incomp(l2, l1);
212 				continue;
213 			default:
214 				BUG();
215 				return 0;
216 			}
217 			break;
218 			default:
219 				BUG();
220 				return 0;
221 			}
222 
223 			switch (e->op) {
224 			case CEXPR_EQ:
225 				s[++sp] = (val1 == val2);
226 				break;
227 			case CEXPR_NEQ:
228 				s[++sp] = (val1 != val2);
229 				break;
230 			default:
231 				BUG();
232 				return 0;
233 			}
234 			break;
235 		case CEXPR_NAMES:
236 			if (sp == (CEXPR_MAXDEPTH-1))
237 				return 0;
238 			c = scontext;
239 			if (e->attr & CEXPR_TARGET)
240 				c = tcontext;
241 			else if (e->attr & CEXPR_XTARGET) {
242 				c = xcontext;
243 				if (!c) {
244 					BUG();
245 					return 0;
246 				}
247 			}
248 			if (e->attr & CEXPR_USER)
249 				val1 = c->user;
250 			else if (e->attr & CEXPR_ROLE)
251 				val1 = c->role;
252 			else if (e->attr & CEXPR_TYPE)
253 				val1 = c->type;
254 			else {
255 				BUG();
256 				return 0;
257 			}
258 
259 			switch (e->op) {
260 			case CEXPR_EQ:
261 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
262 				break;
263 			case CEXPR_NEQ:
264 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
265 				break;
266 			default:
267 				BUG();
268 				return 0;
269 			}
270 			break;
271 		default:
272 			BUG();
273 			return 0;
274 		}
275 	}
276 
277 	BUG_ON(sp != 0);
278 	return s[0];
279 }
280 
281 /*
282  * Compute access vectors based on a context structure pair for
283  * the permissions in a particular class.
284  */
285 static int context_struct_compute_av(struct context *scontext,
286 				     struct context *tcontext,
287 				     u16 tclass,
288 				     u32 requested,
289 				     struct av_decision *avd)
290 {
291 	struct constraint_node *constraint;
292 	struct role_allow *ra;
293 	struct avtab_key avkey;
294 	struct avtab_node *node;
295 	struct class_datum *tclass_datum;
296 	struct ebitmap *sattr, *tattr;
297 	struct ebitmap_node *snode, *tnode;
298 	const struct selinux_class_perm *kdefs = &selinux_class_perm;
299 	unsigned int i, j;
300 
301 	/*
302 	 * Remap extended Netlink classes for old policy versions.
303 	 * Do this here rather than socket_type_to_security_class()
304 	 * in case a newer policy version is loaded, allowing sockets
305 	 * to remain in the correct class.
306 	 */
307 	if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
308 		if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
309 		    tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
310 			tclass = SECCLASS_NETLINK_SOCKET;
311 
312 	/*
313 	 * Initialize the access vectors to the default values.
314 	 */
315 	avd->allowed = 0;
316 	avd->decided = 0xffffffff;
317 	avd->auditallow = 0;
318 	avd->auditdeny = 0xffffffff;
319 	avd->seqno = latest_granting;
320 
321 	/*
322 	 * Check for all the invalid cases.
323 	 * - tclass 0
324 	 * - tclass > policy and > kernel
325 	 * - tclass > policy but is a userspace class
326 	 * - tclass > policy but we do not allow unknowns
327 	 */
328 	if (unlikely(!tclass))
329 		goto inval_class;
330 	if (unlikely(tclass > policydb.p_classes.nprim))
331 		if (tclass > kdefs->cts_len ||
332 		    !kdefs->class_to_string[tclass - 1] ||
333 		    !policydb.allow_unknown)
334 			goto inval_class;
335 
336 	/*
337 	 * Kernel class and we allow unknown so pad the allow decision
338 	 * the pad will be all 1 for unknown classes.
339 	 */
340 	if (tclass <= kdefs->cts_len && policydb.allow_unknown)
341 		avd->allowed = policydb.undefined_perms[tclass - 1];
342 
343 	/*
344 	 * Not in policy. Since decision is completed (all 1 or all 0) return.
345 	 */
346 	if (unlikely(tclass > policydb.p_classes.nprim))
347 		return 0;
348 
349 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
350 
351 	/*
352 	 * If a specific type enforcement rule was defined for
353 	 * this permission check, then use it.
354 	 */
355 	avkey.target_class = tclass;
356 	avkey.specified = AVTAB_AV;
357 	sattr = &policydb.type_attr_map[scontext->type - 1];
358 	tattr = &policydb.type_attr_map[tcontext->type - 1];
359 	ebitmap_for_each_positive_bit(sattr, snode, i) {
360 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
361 			avkey.source_type = i + 1;
362 			avkey.target_type = j + 1;
363 			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
364 			     node != NULL;
365 			     node = avtab_search_node_next(node, avkey.specified)) {
366 				if (node->key.specified == AVTAB_ALLOWED)
367 					avd->allowed |= node->datum.data;
368 				else if (node->key.specified == AVTAB_AUDITALLOW)
369 					avd->auditallow |= node->datum.data;
370 				else if (node->key.specified == AVTAB_AUDITDENY)
371 					avd->auditdeny &= node->datum.data;
372 			}
373 
374 			/* Check conditional av table for additional permissions */
375 			cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
376 
377 		}
378 	}
379 
380 	/*
381 	 * Remove any permissions prohibited by a constraint (this includes
382 	 * the MLS policy).
383 	 */
384 	constraint = tclass_datum->constraints;
385 	while (constraint) {
386 		if ((constraint->permissions & (avd->allowed)) &&
387 		    !constraint_expr_eval(scontext, tcontext, NULL,
388 					  constraint->expr)) {
389 			avd->allowed = (avd->allowed) & ~(constraint->permissions);
390 		}
391 		constraint = constraint->next;
392 	}
393 
394 	/*
395 	 * If checking process transition permission and the
396 	 * role is changing, then check the (current_role, new_role)
397 	 * pair.
398 	 */
399 	if (tclass == SECCLASS_PROCESS &&
400 	    (avd->allowed & (PROCESS__TRANSITION | PROCESS__DYNTRANSITION)) &&
401 	    scontext->role != tcontext->role) {
402 		for (ra = policydb.role_allow; ra; ra = ra->next) {
403 			if (scontext->role == ra->role &&
404 			    tcontext->role == ra->new_role)
405 				break;
406 		}
407 		if (!ra)
408 			avd->allowed = (avd->allowed) & ~(PROCESS__TRANSITION |
409 			                                PROCESS__DYNTRANSITION);
410 	}
411 
412 	return 0;
413 
414 inval_class:
415 	printk(KERN_ERR "%s:  unrecognized class %d\n", __FUNCTION__, tclass);
416 	return -EINVAL;
417 }
418 
419 static int security_validtrans_handle_fail(struct context *ocontext,
420                                            struct context *ncontext,
421                                            struct context *tcontext,
422                                            u16 tclass)
423 {
424 	char *o = NULL, *n = NULL, *t = NULL;
425 	u32 olen, nlen, tlen;
426 
427 	if (context_struct_to_string(ocontext, &o, &olen) < 0)
428 		goto out;
429 	if (context_struct_to_string(ncontext, &n, &nlen) < 0)
430 		goto out;
431 	if (context_struct_to_string(tcontext, &t, &tlen) < 0)
432 		goto out;
433 	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
434 	          "security_validate_transition:  denied for"
435 	          " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
436 	          o, n, t, policydb.p_class_val_to_name[tclass-1]);
437 out:
438 	kfree(o);
439 	kfree(n);
440 	kfree(t);
441 
442 	if (!selinux_enforcing)
443 		return 0;
444 	return -EPERM;
445 }
446 
447 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
448                                  u16 tclass)
449 {
450 	struct context *ocontext;
451 	struct context *ncontext;
452 	struct context *tcontext;
453 	struct class_datum *tclass_datum;
454 	struct constraint_node *constraint;
455 	int rc = 0;
456 
457 	if (!ss_initialized)
458 		return 0;
459 
460 	POLICY_RDLOCK;
461 
462 	/*
463 	 * Remap extended Netlink classes for old policy versions.
464 	 * Do this here rather than socket_type_to_security_class()
465 	 * in case a newer policy version is loaded, allowing sockets
466 	 * to remain in the correct class.
467 	 */
468 	if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
469 		if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
470 		    tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
471 			tclass = SECCLASS_NETLINK_SOCKET;
472 
473 	if (!tclass || tclass > policydb.p_classes.nprim) {
474 		printk(KERN_ERR "security_validate_transition:  "
475 		       "unrecognized class %d\n", tclass);
476 		rc = -EINVAL;
477 		goto out;
478 	}
479 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
480 
481 	ocontext = sidtab_search(&sidtab, oldsid);
482 	if (!ocontext) {
483 		printk(KERN_ERR "security_validate_transition: "
484 		       " unrecognized SID %d\n", oldsid);
485 		rc = -EINVAL;
486 		goto out;
487 	}
488 
489 	ncontext = sidtab_search(&sidtab, newsid);
490 	if (!ncontext) {
491 		printk(KERN_ERR "security_validate_transition: "
492 		       " unrecognized SID %d\n", newsid);
493 		rc = -EINVAL;
494 		goto out;
495 	}
496 
497 	tcontext = sidtab_search(&sidtab, tasksid);
498 	if (!tcontext) {
499 		printk(KERN_ERR "security_validate_transition: "
500 		       " unrecognized SID %d\n", tasksid);
501 		rc = -EINVAL;
502 		goto out;
503 	}
504 
505 	constraint = tclass_datum->validatetrans;
506 	while (constraint) {
507 		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
508 		                          constraint->expr)) {
509 			rc = security_validtrans_handle_fail(ocontext, ncontext,
510 			                                     tcontext, tclass);
511 			goto out;
512 		}
513 		constraint = constraint->next;
514 	}
515 
516 out:
517 	POLICY_RDUNLOCK;
518 	return rc;
519 }
520 
521 /**
522  * security_compute_av - Compute access vector decisions.
523  * @ssid: source security identifier
524  * @tsid: target security identifier
525  * @tclass: target security class
526  * @requested: requested permissions
527  * @avd: access vector decisions
528  *
529  * Compute a set of access vector decisions based on the
530  * SID pair (@ssid, @tsid) for the permissions in @tclass.
531  * Return -%EINVAL if any of the parameters are invalid or %0
532  * if the access vector decisions were computed successfully.
533  */
534 int security_compute_av(u32 ssid,
535 			u32 tsid,
536 			u16 tclass,
537 			u32 requested,
538 			struct av_decision *avd)
539 {
540 	struct context *scontext = NULL, *tcontext = NULL;
541 	int rc = 0;
542 
543 	if (!ss_initialized) {
544 		avd->allowed = 0xffffffff;
545 		avd->decided = 0xffffffff;
546 		avd->auditallow = 0;
547 		avd->auditdeny = 0xffffffff;
548 		avd->seqno = latest_granting;
549 		return 0;
550 	}
551 
552 	POLICY_RDLOCK;
553 
554 	scontext = sidtab_search(&sidtab, ssid);
555 	if (!scontext) {
556 		printk(KERN_ERR "security_compute_av:  unrecognized SID %d\n",
557 		       ssid);
558 		rc = -EINVAL;
559 		goto out;
560 	}
561 	tcontext = sidtab_search(&sidtab, tsid);
562 	if (!tcontext) {
563 		printk(KERN_ERR "security_compute_av:  unrecognized SID %d\n",
564 		       tsid);
565 		rc = -EINVAL;
566 		goto out;
567 	}
568 
569 	rc = context_struct_compute_av(scontext, tcontext, tclass,
570 				       requested, avd);
571 out:
572 	POLICY_RDUNLOCK;
573 	return rc;
574 }
575 
576 /*
577  * Write the security context string representation of
578  * the context structure `context' into a dynamically
579  * allocated string of the correct size.  Set `*scontext'
580  * to point to this string and set `*scontext_len' to
581  * the length of the string.
582  */
583 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
584 {
585 	char *scontextp;
586 
587 	*scontext = NULL;
588 	*scontext_len = 0;
589 
590 	/* Compute the size of the context. */
591 	*scontext_len += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1;
592 	*scontext_len += strlen(policydb.p_role_val_to_name[context->role - 1]) + 1;
593 	*scontext_len += strlen(policydb.p_type_val_to_name[context->type - 1]) + 1;
594 	*scontext_len += mls_compute_context_len(context);
595 
596 	/* Allocate space for the context; caller must free this space. */
597 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
598 	if (!scontextp) {
599 		return -ENOMEM;
600 	}
601 	*scontext = scontextp;
602 
603 	/*
604 	 * Copy the user name, role name and type name into the context.
605 	 */
606 	sprintf(scontextp, "%s:%s:%s",
607 		policydb.p_user_val_to_name[context->user - 1],
608 		policydb.p_role_val_to_name[context->role - 1],
609 		policydb.p_type_val_to_name[context->type - 1]);
610 	scontextp += strlen(policydb.p_user_val_to_name[context->user - 1]) +
611 	             1 + strlen(policydb.p_role_val_to_name[context->role - 1]) +
612 	             1 + strlen(policydb.p_type_val_to_name[context->type - 1]);
613 
614 	mls_sid_to_context(context, &scontextp);
615 
616 	*scontextp = 0;
617 
618 	return 0;
619 }
620 
621 #include "initial_sid_to_string.h"
622 
623 const char *security_get_initial_sid_context(u32 sid)
624 {
625 	if (unlikely(sid > SECINITSID_NUM))
626 		return NULL;
627 	return initial_sid_to_string[sid];
628 }
629 
630 /**
631  * security_sid_to_context - Obtain a context for a given SID.
632  * @sid: security identifier, SID
633  * @scontext: security context
634  * @scontext_len: length in bytes
635  *
636  * Write the string representation of the context associated with @sid
637  * into a dynamically allocated string of the correct size.  Set @scontext
638  * to point to this string and set @scontext_len to the length of the string.
639  */
640 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
641 {
642 	struct context *context;
643 	int rc = 0;
644 
645 	*scontext = NULL;
646 	*scontext_len  = 0;
647 
648 	if (!ss_initialized) {
649 		if (sid <= SECINITSID_NUM) {
650 			char *scontextp;
651 
652 			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
653 			scontextp = kmalloc(*scontext_len,GFP_ATOMIC);
654 			if (!scontextp) {
655 				rc = -ENOMEM;
656 				goto out;
657 			}
658 			strcpy(scontextp, initial_sid_to_string[sid]);
659 			*scontext = scontextp;
660 			goto out;
661 		}
662 		printk(KERN_ERR "security_sid_to_context:  called before initial "
663 		       "load_policy on unknown SID %d\n", sid);
664 		rc = -EINVAL;
665 		goto out;
666 	}
667 	POLICY_RDLOCK;
668 	context = sidtab_search(&sidtab, sid);
669 	if (!context) {
670 		printk(KERN_ERR "security_sid_to_context:  unrecognized SID "
671 		       "%d\n", sid);
672 		rc = -EINVAL;
673 		goto out_unlock;
674 	}
675 	rc = context_struct_to_string(context, scontext, scontext_len);
676 out_unlock:
677 	POLICY_RDUNLOCK;
678 out:
679 	return rc;
680 
681 }
682 
683 static int security_context_to_sid_core(char *scontext, u32 scontext_len, u32 *sid, u32 def_sid)
684 {
685 	char *scontext2;
686 	struct context context;
687 	struct role_datum *role;
688 	struct type_datum *typdatum;
689 	struct user_datum *usrdatum;
690 	char *scontextp, *p, oldc;
691 	int rc = 0;
692 
693 	if (!ss_initialized) {
694 		int i;
695 
696 		for (i = 1; i < SECINITSID_NUM; i++) {
697 			if (!strcmp(initial_sid_to_string[i], scontext)) {
698 				*sid = i;
699 				goto out;
700 			}
701 		}
702 		*sid = SECINITSID_KERNEL;
703 		goto out;
704 	}
705 	*sid = SECSID_NULL;
706 
707 	/* Copy the string so that we can modify the copy as we parse it.
708 	   The string should already by null terminated, but we append a
709 	   null suffix to the copy to avoid problems with the existing
710 	   attr package, which doesn't view the null terminator as part
711 	   of the attribute value. */
712 	scontext2 = kmalloc(scontext_len+1,GFP_KERNEL);
713 	if (!scontext2) {
714 		rc = -ENOMEM;
715 		goto out;
716 	}
717 	memcpy(scontext2, scontext, scontext_len);
718 	scontext2[scontext_len] = 0;
719 
720 	context_init(&context);
721 	*sid = SECSID_NULL;
722 
723 	POLICY_RDLOCK;
724 
725 	/* Parse the security context. */
726 
727 	rc = -EINVAL;
728 	scontextp = (char *) scontext2;
729 
730 	/* Extract the user. */
731 	p = scontextp;
732 	while (*p && *p != ':')
733 		p++;
734 
735 	if (*p == 0)
736 		goto out_unlock;
737 
738 	*p++ = 0;
739 
740 	usrdatum = hashtab_search(policydb.p_users.table, scontextp);
741 	if (!usrdatum)
742 		goto out_unlock;
743 
744 	context.user = usrdatum->value;
745 
746 	/* Extract role. */
747 	scontextp = p;
748 	while (*p && *p != ':')
749 		p++;
750 
751 	if (*p == 0)
752 		goto out_unlock;
753 
754 	*p++ = 0;
755 
756 	role = hashtab_search(policydb.p_roles.table, scontextp);
757 	if (!role)
758 		goto out_unlock;
759 	context.role = role->value;
760 
761 	/* Extract type. */
762 	scontextp = p;
763 	while (*p && *p != ':')
764 		p++;
765 	oldc = *p;
766 	*p++ = 0;
767 
768 	typdatum = hashtab_search(policydb.p_types.table, scontextp);
769 	if (!typdatum)
770 		goto out_unlock;
771 
772 	context.type = typdatum->value;
773 
774 	rc = mls_context_to_sid(oldc, &p, &context, &sidtab, def_sid);
775 	if (rc)
776 		goto out_unlock;
777 
778 	if ((p - scontext2) < scontext_len) {
779 		rc = -EINVAL;
780 		goto out_unlock;
781 	}
782 
783 	/* Check the validity of the new context. */
784 	if (!policydb_context_isvalid(&policydb, &context)) {
785 		rc = -EINVAL;
786 		goto out_unlock;
787 	}
788 	/* Obtain the new sid. */
789 	rc = sidtab_context_to_sid(&sidtab, &context, sid);
790 out_unlock:
791 	POLICY_RDUNLOCK;
792 	context_destroy(&context);
793 	kfree(scontext2);
794 out:
795 	return rc;
796 }
797 
798 /**
799  * security_context_to_sid - Obtain a SID for a given security context.
800  * @scontext: security context
801  * @scontext_len: length in bytes
802  * @sid: security identifier, SID
803  *
804  * Obtains a SID associated with the security context that
805  * has the string representation specified by @scontext.
806  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
807  * memory is available, or 0 on success.
808  */
809 int security_context_to_sid(char *scontext, u32 scontext_len, u32 *sid)
810 {
811 	return security_context_to_sid_core(scontext, scontext_len,
812 	                                    sid, SECSID_NULL);
813 }
814 
815 /**
816  * security_context_to_sid_default - Obtain a SID for a given security context,
817  * falling back to specified default if needed.
818  *
819  * @scontext: security context
820  * @scontext_len: length in bytes
821  * @sid: security identifier, SID
822  * @def_sid: default SID to assign on error
823  *
824  * Obtains a SID associated with the security context that
825  * has the string representation specified by @scontext.
826  * The default SID is passed to the MLS layer to be used to allow
827  * kernel labeling of the MLS field if the MLS field is not present
828  * (for upgrading to MLS without full relabel).
829  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
830  * memory is available, or 0 on success.
831  */
832 int security_context_to_sid_default(char *scontext, u32 scontext_len, u32 *sid, u32 def_sid)
833 {
834 	return security_context_to_sid_core(scontext, scontext_len,
835 	                                    sid, def_sid);
836 }
837 
838 static int compute_sid_handle_invalid_context(
839 	struct context *scontext,
840 	struct context *tcontext,
841 	u16 tclass,
842 	struct context *newcontext)
843 {
844 	char *s = NULL, *t = NULL, *n = NULL;
845 	u32 slen, tlen, nlen;
846 
847 	if (context_struct_to_string(scontext, &s, &slen) < 0)
848 		goto out;
849 	if (context_struct_to_string(tcontext, &t, &tlen) < 0)
850 		goto out;
851 	if (context_struct_to_string(newcontext, &n, &nlen) < 0)
852 		goto out;
853 	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
854 		  "security_compute_sid:  invalid context %s"
855 		  " for scontext=%s"
856 		  " tcontext=%s"
857 		  " tclass=%s",
858 		  n, s, t, policydb.p_class_val_to_name[tclass-1]);
859 out:
860 	kfree(s);
861 	kfree(t);
862 	kfree(n);
863 	if (!selinux_enforcing)
864 		return 0;
865 	return -EACCES;
866 }
867 
868 static int security_compute_sid(u32 ssid,
869 				u32 tsid,
870 				u16 tclass,
871 				u32 specified,
872 				u32 *out_sid)
873 {
874 	struct context *scontext = NULL, *tcontext = NULL, newcontext;
875 	struct role_trans *roletr = NULL;
876 	struct avtab_key avkey;
877 	struct avtab_datum *avdatum;
878 	struct avtab_node *node;
879 	int rc = 0;
880 
881 	if (!ss_initialized) {
882 		switch (tclass) {
883 		case SECCLASS_PROCESS:
884 			*out_sid = ssid;
885 			break;
886 		default:
887 			*out_sid = tsid;
888 			break;
889 		}
890 		goto out;
891 	}
892 
893 	context_init(&newcontext);
894 
895 	POLICY_RDLOCK;
896 
897 	scontext = sidtab_search(&sidtab, ssid);
898 	if (!scontext) {
899 		printk(KERN_ERR "security_compute_sid:  unrecognized SID %d\n",
900 		       ssid);
901 		rc = -EINVAL;
902 		goto out_unlock;
903 	}
904 	tcontext = sidtab_search(&sidtab, tsid);
905 	if (!tcontext) {
906 		printk(KERN_ERR "security_compute_sid:  unrecognized SID %d\n",
907 		       tsid);
908 		rc = -EINVAL;
909 		goto out_unlock;
910 	}
911 
912 	/* Set the user identity. */
913 	switch (specified) {
914 	case AVTAB_TRANSITION:
915 	case AVTAB_CHANGE:
916 		/* Use the process user identity. */
917 		newcontext.user = scontext->user;
918 		break;
919 	case AVTAB_MEMBER:
920 		/* Use the related object owner. */
921 		newcontext.user = tcontext->user;
922 		break;
923 	}
924 
925 	/* Set the role and type to default values. */
926 	switch (tclass) {
927 	case SECCLASS_PROCESS:
928 		/* Use the current role and type of process. */
929 		newcontext.role = scontext->role;
930 		newcontext.type = scontext->type;
931 		break;
932 	default:
933 		/* Use the well-defined object role. */
934 		newcontext.role = OBJECT_R_VAL;
935 		/* Use the type of the related object. */
936 		newcontext.type = tcontext->type;
937 	}
938 
939 	/* Look for a type transition/member/change rule. */
940 	avkey.source_type = scontext->type;
941 	avkey.target_type = tcontext->type;
942 	avkey.target_class = tclass;
943 	avkey.specified = specified;
944 	avdatum = avtab_search(&policydb.te_avtab, &avkey);
945 
946 	/* If no permanent rule, also check for enabled conditional rules */
947 	if(!avdatum) {
948 		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
949 		for (; node != NULL; node = avtab_search_node_next(node, specified)) {
950 			if (node->key.specified & AVTAB_ENABLED) {
951 				avdatum = &node->datum;
952 				break;
953 			}
954 		}
955 	}
956 
957 	if (avdatum) {
958 		/* Use the type from the type transition/member/change rule. */
959 		newcontext.type = avdatum->data;
960 	}
961 
962 	/* Check for class-specific changes. */
963 	switch (tclass) {
964 	case SECCLASS_PROCESS:
965 		if (specified & AVTAB_TRANSITION) {
966 			/* Look for a role transition rule. */
967 			for (roletr = policydb.role_tr; roletr;
968 			     roletr = roletr->next) {
969 				if (roletr->role == scontext->role &&
970 				    roletr->type == tcontext->type) {
971 					/* Use the role transition rule. */
972 					newcontext.role = roletr->new_role;
973 					break;
974 				}
975 			}
976 		}
977 		break;
978 	default:
979 		break;
980 	}
981 
982 	/* Set the MLS attributes.
983 	   This is done last because it may allocate memory. */
984 	rc = mls_compute_sid(scontext, tcontext, tclass, specified, &newcontext);
985 	if (rc)
986 		goto out_unlock;
987 
988 	/* Check the validity of the context. */
989 	if (!policydb_context_isvalid(&policydb, &newcontext)) {
990 		rc = compute_sid_handle_invalid_context(scontext,
991 							tcontext,
992 							tclass,
993 							&newcontext);
994 		if (rc)
995 			goto out_unlock;
996 	}
997 	/* Obtain the sid for the context. */
998 	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
999 out_unlock:
1000 	POLICY_RDUNLOCK;
1001 	context_destroy(&newcontext);
1002 out:
1003 	return rc;
1004 }
1005 
1006 /**
1007  * security_transition_sid - Compute the SID for a new subject/object.
1008  * @ssid: source security identifier
1009  * @tsid: target security identifier
1010  * @tclass: target security class
1011  * @out_sid: security identifier for new subject/object
1012  *
1013  * Compute a SID to use for labeling a new subject or object in the
1014  * class @tclass based on a SID pair (@ssid, @tsid).
1015  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1016  * if insufficient memory is available, or %0 if the new SID was
1017  * computed successfully.
1018  */
1019 int security_transition_sid(u32 ssid,
1020 			    u32 tsid,
1021 			    u16 tclass,
1022 			    u32 *out_sid)
1023 {
1024 	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, out_sid);
1025 }
1026 
1027 /**
1028  * security_member_sid - Compute the SID for member selection.
1029  * @ssid: source security identifier
1030  * @tsid: target security identifier
1031  * @tclass: target security class
1032  * @out_sid: security identifier for selected member
1033  *
1034  * Compute a SID to use when selecting a member of a polyinstantiated
1035  * object of class @tclass based on a SID pair (@ssid, @tsid).
1036  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1037  * if insufficient memory is available, or %0 if the SID was
1038  * computed successfully.
1039  */
1040 int security_member_sid(u32 ssid,
1041 			u32 tsid,
1042 			u16 tclass,
1043 			u32 *out_sid)
1044 {
1045 	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid);
1046 }
1047 
1048 /**
1049  * security_change_sid - Compute the SID for object relabeling.
1050  * @ssid: source security identifier
1051  * @tsid: target security identifier
1052  * @tclass: target security class
1053  * @out_sid: security identifier for selected member
1054  *
1055  * Compute a SID to use for relabeling an object of class @tclass
1056  * based on a SID pair (@ssid, @tsid).
1057  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1058  * if insufficient memory is available, or %0 if the SID was
1059  * computed successfully.
1060  */
1061 int security_change_sid(u32 ssid,
1062 			u32 tsid,
1063 			u16 tclass,
1064 			u32 *out_sid)
1065 {
1066 	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid);
1067 }
1068 
1069 /*
1070  * Verify that each kernel class that is defined in the
1071  * policy is correct
1072  */
1073 static int validate_classes(struct policydb *p)
1074 {
1075 	int i, j;
1076 	struct class_datum *cladatum;
1077 	struct perm_datum *perdatum;
1078 	u32 nprim, tmp, common_pts_len, perm_val, pol_val;
1079 	u16 class_val;
1080 	const struct selinux_class_perm *kdefs = &selinux_class_perm;
1081 	const char *def_class, *def_perm, *pol_class;
1082 	struct symtab *perms;
1083 
1084 	if (p->allow_unknown) {
1085 		u32 num_classes = kdefs->cts_len;
1086 		p->undefined_perms = kcalloc(num_classes, sizeof(u32), GFP_KERNEL);
1087 		if (!p->undefined_perms)
1088 			return -ENOMEM;
1089 	}
1090 
1091 	for (i = 1; i < kdefs->cts_len; i++) {
1092 		def_class = kdefs->class_to_string[i];
1093 		if (!def_class)
1094 			continue;
1095 		if (i > p->p_classes.nprim) {
1096 			printk(KERN_INFO
1097 			       "security:  class %s not defined in policy\n",
1098 			       def_class);
1099 			if (p->reject_unknown)
1100 				return -EINVAL;
1101 			if (p->allow_unknown)
1102 				p->undefined_perms[i-1] = ~0U;
1103 			continue;
1104 		}
1105 		pol_class = p->p_class_val_to_name[i-1];
1106 		if (strcmp(pol_class, def_class)) {
1107 			printk(KERN_ERR
1108 			       "security:  class %d is incorrect, found %s but should be %s\n",
1109 			       i, pol_class, def_class);
1110 			return -EINVAL;
1111 		}
1112 	}
1113 	for (i = 0; i < kdefs->av_pts_len; i++) {
1114 		class_val = kdefs->av_perm_to_string[i].tclass;
1115 		perm_val = kdefs->av_perm_to_string[i].value;
1116 		def_perm = kdefs->av_perm_to_string[i].name;
1117 		if (class_val > p->p_classes.nprim)
1118 			continue;
1119 		pol_class = p->p_class_val_to_name[class_val-1];
1120 		cladatum = hashtab_search(p->p_classes.table, pol_class);
1121 		BUG_ON(!cladatum);
1122 		perms = &cladatum->permissions;
1123 		nprim = 1 << (perms->nprim - 1);
1124 		if (perm_val > nprim) {
1125 			printk(KERN_INFO
1126 			       "security:  permission %s in class %s not defined in policy\n",
1127 			       def_perm, pol_class);
1128 			if (p->reject_unknown)
1129 				return -EINVAL;
1130 			if (p->allow_unknown)
1131 				p->undefined_perms[class_val-1] |= perm_val;
1132 			continue;
1133 		}
1134 		perdatum = hashtab_search(perms->table, def_perm);
1135 		if (perdatum == NULL) {
1136 			printk(KERN_ERR
1137 			       "security:  permission %s in class %s not found in policy, bad policy\n",
1138 			       def_perm, pol_class);
1139 			return -EINVAL;
1140 		}
1141 		pol_val = 1 << (perdatum->value - 1);
1142 		if (pol_val != perm_val) {
1143 			printk(KERN_ERR
1144 			       "security:  permission %s in class %s has incorrect value\n",
1145 			       def_perm, pol_class);
1146 			return -EINVAL;
1147 		}
1148 	}
1149 	for (i = 0; i < kdefs->av_inherit_len; i++) {
1150 		class_val = kdefs->av_inherit[i].tclass;
1151 		if (class_val > p->p_classes.nprim)
1152 			continue;
1153 		pol_class = p->p_class_val_to_name[class_val-1];
1154 		cladatum = hashtab_search(p->p_classes.table, pol_class);
1155 		BUG_ON(!cladatum);
1156 		if (!cladatum->comdatum) {
1157 			printk(KERN_ERR
1158 			       "security:  class %s should have an inherits clause but does not\n",
1159 			       pol_class);
1160 			return -EINVAL;
1161 		}
1162 		tmp = kdefs->av_inherit[i].common_base;
1163 		common_pts_len = 0;
1164 		while (!(tmp & 0x01)) {
1165 			common_pts_len++;
1166 			tmp >>= 1;
1167 		}
1168 		perms = &cladatum->comdatum->permissions;
1169 		for (j = 0; j < common_pts_len; j++) {
1170 			def_perm = kdefs->av_inherit[i].common_pts[j];
1171 			if (j >= perms->nprim) {
1172 				printk(KERN_INFO
1173 				       "security:  permission %s in class %s not defined in policy\n",
1174 				       def_perm, pol_class);
1175 				if (p->reject_unknown)
1176 					return -EINVAL;
1177 				if (p->allow_unknown)
1178 					p->undefined_perms[class_val-1] |= (1 << j);
1179 				continue;
1180 			}
1181 			perdatum = hashtab_search(perms->table, def_perm);
1182 			if (perdatum == NULL) {
1183 				printk(KERN_ERR
1184 				       "security:  permission %s in class %s not found in policy, bad policy\n",
1185 				       def_perm, pol_class);
1186 				return -EINVAL;
1187 			}
1188 			if (perdatum->value != j + 1) {
1189 				printk(KERN_ERR
1190 				       "security:  permission %s in class %s has incorrect value\n",
1191 				       def_perm, pol_class);
1192 				return -EINVAL;
1193 			}
1194 		}
1195 	}
1196 	return 0;
1197 }
1198 
1199 /* Clone the SID into the new SID table. */
1200 static int clone_sid(u32 sid,
1201 		     struct context *context,
1202 		     void *arg)
1203 {
1204 	struct sidtab *s = arg;
1205 
1206 	return sidtab_insert(s, sid, context);
1207 }
1208 
1209 static inline int convert_context_handle_invalid_context(struct context *context)
1210 {
1211 	int rc = 0;
1212 
1213 	if (selinux_enforcing) {
1214 		rc = -EINVAL;
1215 	} else {
1216 		char *s;
1217 		u32 len;
1218 
1219 		context_struct_to_string(context, &s, &len);
1220 		printk(KERN_ERR "security:  context %s is invalid\n", s);
1221 		kfree(s);
1222 	}
1223 	return rc;
1224 }
1225 
1226 struct convert_context_args {
1227 	struct policydb *oldp;
1228 	struct policydb *newp;
1229 };
1230 
1231 /*
1232  * Convert the values in the security context
1233  * structure `c' from the values specified
1234  * in the policy `p->oldp' to the values specified
1235  * in the policy `p->newp'.  Verify that the
1236  * context is valid under the new policy.
1237  */
1238 static int convert_context(u32 key,
1239 			   struct context *c,
1240 			   void *p)
1241 {
1242 	struct convert_context_args *args;
1243 	struct context oldc;
1244 	struct role_datum *role;
1245 	struct type_datum *typdatum;
1246 	struct user_datum *usrdatum;
1247 	char *s;
1248 	u32 len;
1249 	int rc;
1250 
1251 	args = p;
1252 
1253 	rc = context_cpy(&oldc, c);
1254 	if (rc)
1255 		goto out;
1256 
1257 	rc = -EINVAL;
1258 
1259 	/* Convert the user. */
1260 	usrdatum = hashtab_search(args->newp->p_users.table,
1261 	                          args->oldp->p_user_val_to_name[c->user - 1]);
1262 	if (!usrdatum) {
1263 		goto bad;
1264 	}
1265 	c->user = usrdatum->value;
1266 
1267 	/* Convert the role. */
1268 	role = hashtab_search(args->newp->p_roles.table,
1269 	                      args->oldp->p_role_val_to_name[c->role - 1]);
1270 	if (!role) {
1271 		goto bad;
1272 	}
1273 	c->role = role->value;
1274 
1275 	/* Convert the type. */
1276 	typdatum = hashtab_search(args->newp->p_types.table,
1277 	                          args->oldp->p_type_val_to_name[c->type - 1]);
1278 	if (!typdatum) {
1279 		goto bad;
1280 	}
1281 	c->type = typdatum->value;
1282 
1283 	rc = mls_convert_context(args->oldp, args->newp, c);
1284 	if (rc)
1285 		goto bad;
1286 
1287 	/* Check the validity of the new context. */
1288 	if (!policydb_context_isvalid(args->newp, c)) {
1289 		rc = convert_context_handle_invalid_context(&oldc);
1290 		if (rc)
1291 			goto bad;
1292 	}
1293 
1294 	context_destroy(&oldc);
1295 out:
1296 	return rc;
1297 bad:
1298 	context_struct_to_string(&oldc, &s, &len);
1299 	context_destroy(&oldc);
1300 	printk(KERN_ERR "security:  invalidating context %s\n", s);
1301 	kfree(s);
1302 	goto out;
1303 }
1304 
1305 static void security_load_policycaps(void)
1306 {
1307 	selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1308 						  POLICYDB_CAPABILITY_NETPEER);
1309 }
1310 
1311 extern void selinux_complete_init(void);
1312 static int security_preserve_bools(struct policydb *p);
1313 
1314 /**
1315  * security_load_policy - Load a security policy configuration.
1316  * @data: binary policy data
1317  * @len: length of data in bytes
1318  *
1319  * Load a new set of security policy configuration data,
1320  * validate it and convert the SID table as necessary.
1321  * This function will flush the access vector cache after
1322  * loading the new policy.
1323  */
1324 int security_load_policy(void *data, size_t len)
1325 {
1326 	struct policydb oldpolicydb, newpolicydb;
1327 	struct sidtab oldsidtab, newsidtab;
1328 	struct convert_context_args args;
1329 	u32 seqno;
1330 	int rc = 0;
1331 	struct policy_file file = { data, len }, *fp = &file;
1332 
1333 	LOAD_LOCK;
1334 
1335 	if (!ss_initialized) {
1336 		avtab_cache_init();
1337 		if (policydb_read(&policydb, fp)) {
1338 			LOAD_UNLOCK;
1339 			avtab_cache_destroy();
1340 			return -EINVAL;
1341 		}
1342 		if (policydb_load_isids(&policydb, &sidtab)) {
1343 			LOAD_UNLOCK;
1344 			policydb_destroy(&policydb);
1345 			avtab_cache_destroy();
1346 			return -EINVAL;
1347 		}
1348 		/* Verify that the kernel defined classes are correct. */
1349 		if (validate_classes(&policydb)) {
1350 			printk(KERN_ERR
1351 			       "security:  the definition of a class is incorrect\n");
1352 			LOAD_UNLOCK;
1353 			sidtab_destroy(&sidtab);
1354 			policydb_destroy(&policydb);
1355 			avtab_cache_destroy();
1356 			return -EINVAL;
1357 		}
1358 		security_load_policycaps();
1359 		policydb_loaded_version = policydb.policyvers;
1360 		ss_initialized = 1;
1361 		seqno = ++latest_granting;
1362 		LOAD_UNLOCK;
1363 		selinux_complete_init();
1364 		avc_ss_reset(seqno);
1365 		selnl_notify_policyload(seqno);
1366 		selinux_netlbl_cache_invalidate();
1367 		selinux_xfrm_notify_policyload();
1368 		return 0;
1369 	}
1370 
1371 #if 0
1372 	sidtab_hash_eval(&sidtab, "sids");
1373 #endif
1374 
1375 	if (policydb_read(&newpolicydb, fp)) {
1376 		LOAD_UNLOCK;
1377 		return -EINVAL;
1378 	}
1379 
1380 	sidtab_init(&newsidtab);
1381 
1382 	/* Verify that the kernel defined classes are correct. */
1383 	if (validate_classes(&newpolicydb)) {
1384 		printk(KERN_ERR
1385 		       "security:  the definition of a class is incorrect\n");
1386 		rc = -EINVAL;
1387 		goto err;
1388 	}
1389 
1390 	rc = security_preserve_bools(&newpolicydb);
1391 	if (rc) {
1392 		printk(KERN_ERR "security:  unable to preserve booleans\n");
1393 		goto err;
1394 	}
1395 
1396 	/* Clone the SID table. */
1397 	sidtab_shutdown(&sidtab);
1398 	if (sidtab_map(&sidtab, clone_sid, &newsidtab)) {
1399 		rc = -ENOMEM;
1400 		goto err;
1401 	}
1402 
1403 	/* Convert the internal representations of contexts
1404 	   in the new SID table and remove invalid SIDs. */
1405 	args.oldp = &policydb;
1406 	args.newp = &newpolicydb;
1407 	sidtab_map_remove_on_error(&newsidtab, convert_context, &args);
1408 
1409 	/* Save the old policydb and SID table to free later. */
1410 	memcpy(&oldpolicydb, &policydb, sizeof policydb);
1411 	sidtab_set(&oldsidtab, &sidtab);
1412 
1413 	/* Install the new policydb and SID table. */
1414 	POLICY_WRLOCK;
1415 	memcpy(&policydb, &newpolicydb, sizeof policydb);
1416 	sidtab_set(&sidtab, &newsidtab);
1417 	security_load_policycaps();
1418 	seqno = ++latest_granting;
1419 	policydb_loaded_version = policydb.policyvers;
1420 	POLICY_WRUNLOCK;
1421 	LOAD_UNLOCK;
1422 
1423 	/* Free the old policydb and SID table. */
1424 	policydb_destroy(&oldpolicydb);
1425 	sidtab_destroy(&oldsidtab);
1426 
1427 	avc_ss_reset(seqno);
1428 	selnl_notify_policyload(seqno);
1429 	selinux_netlbl_cache_invalidate();
1430 	selinux_xfrm_notify_policyload();
1431 
1432 	return 0;
1433 
1434 err:
1435 	LOAD_UNLOCK;
1436 	sidtab_destroy(&newsidtab);
1437 	policydb_destroy(&newpolicydb);
1438 	return rc;
1439 
1440 }
1441 
1442 /**
1443  * security_port_sid - Obtain the SID for a port.
1444  * @domain: communication domain aka address family
1445  * @type: socket type
1446  * @protocol: protocol number
1447  * @port: port number
1448  * @out_sid: security identifier
1449  */
1450 int security_port_sid(u16 domain,
1451 		      u16 type,
1452 		      u8 protocol,
1453 		      u16 port,
1454 		      u32 *out_sid)
1455 {
1456 	struct ocontext *c;
1457 	int rc = 0;
1458 
1459 	POLICY_RDLOCK;
1460 
1461 	c = policydb.ocontexts[OCON_PORT];
1462 	while (c) {
1463 		if (c->u.port.protocol == protocol &&
1464 		    c->u.port.low_port <= port &&
1465 		    c->u.port.high_port >= port)
1466 			break;
1467 		c = c->next;
1468 	}
1469 
1470 	if (c) {
1471 		if (!c->sid[0]) {
1472 			rc = sidtab_context_to_sid(&sidtab,
1473 						   &c->context[0],
1474 						   &c->sid[0]);
1475 			if (rc)
1476 				goto out;
1477 		}
1478 		*out_sid = c->sid[0];
1479 	} else {
1480 		*out_sid = SECINITSID_PORT;
1481 	}
1482 
1483 out:
1484 	POLICY_RDUNLOCK;
1485 	return rc;
1486 }
1487 
1488 /**
1489  * security_netif_sid - Obtain the SID for a network interface.
1490  * @name: interface name
1491  * @if_sid: interface SID
1492  */
1493 int security_netif_sid(char *name, u32 *if_sid)
1494 {
1495 	int rc = 0;
1496 	struct ocontext *c;
1497 
1498 	POLICY_RDLOCK;
1499 
1500 	c = policydb.ocontexts[OCON_NETIF];
1501 	while (c) {
1502 		if (strcmp(name, c->u.name) == 0)
1503 			break;
1504 		c = c->next;
1505 	}
1506 
1507 	if (c) {
1508 		if (!c->sid[0] || !c->sid[1]) {
1509 			rc = sidtab_context_to_sid(&sidtab,
1510 						  &c->context[0],
1511 						  &c->sid[0]);
1512 			if (rc)
1513 				goto out;
1514 			rc = sidtab_context_to_sid(&sidtab,
1515 						   &c->context[1],
1516 						   &c->sid[1]);
1517 			if (rc)
1518 				goto out;
1519 		}
1520 		*if_sid = c->sid[0];
1521 	} else
1522 		*if_sid = SECINITSID_NETIF;
1523 
1524 out:
1525 	POLICY_RDUNLOCK;
1526 	return rc;
1527 }
1528 
1529 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
1530 {
1531 	int i, fail = 0;
1532 
1533 	for(i = 0; i < 4; i++)
1534 		if(addr[i] != (input[i] & mask[i])) {
1535 			fail = 1;
1536 			break;
1537 		}
1538 
1539 	return !fail;
1540 }
1541 
1542 /**
1543  * security_node_sid - Obtain the SID for a node (host).
1544  * @domain: communication domain aka address family
1545  * @addrp: address
1546  * @addrlen: address length in bytes
1547  * @out_sid: security identifier
1548  */
1549 int security_node_sid(u16 domain,
1550 		      void *addrp,
1551 		      u32 addrlen,
1552 		      u32 *out_sid)
1553 {
1554 	int rc = 0;
1555 	struct ocontext *c;
1556 
1557 	POLICY_RDLOCK;
1558 
1559 	switch (domain) {
1560 	case AF_INET: {
1561 		u32 addr;
1562 
1563 		if (addrlen != sizeof(u32)) {
1564 			rc = -EINVAL;
1565 			goto out;
1566 		}
1567 
1568 		addr = *((u32 *)addrp);
1569 
1570 		c = policydb.ocontexts[OCON_NODE];
1571 		while (c) {
1572 			if (c->u.node.addr == (addr & c->u.node.mask))
1573 				break;
1574 			c = c->next;
1575 		}
1576 		break;
1577 	}
1578 
1579 	case AF_INET6:
1580 		if (addrlen != sizeof(u64) * 2) {
1581 			rc = -EINVAL;
1582 			goto out;
1583 		}
1584 		c = policydb.ocontexts[OCON_NODE6];
1585 		while (c) {
1586 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
1587 						c->u.node6.mask))
1588 				break;
1589 			c = c->next;
1590 		}
1591 		break;
1592 
1593 	default:
1594 		*out_sid = SECINITSID_NODE;
1595 		goto out;
1596 	}
1597 
1598 	if (c) {
1599 		if (!c->sid[0]) {
1600 			rc = sidtab_context_to_sid(&sidtab,
1601 						   &c->context[0],
1602 						   &c->sid[0]);
1603 			if (rc)
1604 				goto out;
1605 		}
1606 		*out_sid = c->sid[0];
1607 	} else {
1608 		*out_sid = SECINITSID_NODE;
1609 	}
1610 
1611 out:
1612 	POLICY_RDUNLOCK;
1613 	return rc;
1614 }
1615 
1616 #define SIDS_NEL 25
1617 
1618 /**
1619  * security_get_user_sids - Obtain reachable SIDs for a user.
1620  * @fromsid: starting SID
1621  * @username: username
1622  * @sids: array of reachable SIDs for user
1623  * @nel: number of elements in @sids
1624  *
1625  * Generate the set of SIDs for legal security contexts
1626  * for a given user that can be reached by @fromsid.
1627  * Set *@sids to point to a dynamically allocated
1628  * array containing the set of SIDs.  Set *@nel to the
1629  * number of elements in the array.
1630  */
1631 
1632 int security_get_user_sids(u32 fromsid,
1633 	                   char *username,
1634 			   u32 **sids,
1635 			   u32 *nel)
1636 {
1637 	struct context *fromcon, usercon;
1638 	u32 *mysids = NULL, *mysids2, sid;
1639 	u32 mynel = 0, maxnel = SIDS_NEL;
1640 	struct user_datum *user;
1641 	struct role_datum *role;
1642 	struct ebitmap_node *rnode, *tnode;
1643 	int rc = 0, i, j;
1644 
1645 	*sids = NULL;
1646 	*nel = 0;
1647 
1648 	if (!ss_initialized)
1649 		goto out;
1650 
1651 	POLICY_RDLOCK;
1652 
1653 	fromcon = sidtab_search(&sidtab, fromsid);
1654 	if (!fromcon) {
1655 		rc = -EINVAL;
1656 		goto out_unlock;
1657 	}
1658 
1659 	user = hashtab_search(policydb.p_users.table, username);
1660 	if (!user) {
1661 		rc = -EINVAL;
1662 		goto out_unlock;
1663 	}
1664 	usercon.user = user->value;
1665 
1666 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
1667 	if (!mysids) {
1668 		rc = -ENOMEM;
1669 		goto out_unlock;
1670 	}
1671 
1672 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
1673 		role = policydb.role_val_to_struct[i];
1674 		usercon.role = i+1;
1675 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
1676 			usercon.type = j+1;
1677 
1678 			if (mls_setup_user_range(fromcon, user, &usercon))
1679 				continue;
1680 
1681 			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
1682 			if (rc)
1683 				goto out_unlock;
1684 			if (mynel < maxnel) {
1685 				mysids[mynel++] = sid;
1686 			} else {
1687 				maxnel += SIDS_NEL;
1688 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
1689 				if (!mysids2) {
1690 					rc = -ENOMEM;
1691 					goto out_unlock;
1692 				}
1693 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
1694 				kfree(mysids);
1695 				mysids = mysids2;
1696 				mysids[mynel++] = sid;
1697 			}
1698 		}
1699 	}
1700 
1701 out_unlock:
1702 	POLICY_RDUNLOCK;
1703 	if (rc || !mynel) {
1704 		kfree(mysids);
1705 		goto out;
1706 	}
1707 
1708 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
1709 	if (!mysids2) {
1710 		rc = -ENOMEM;
1711 		kfree(mysids);
1712 		goto out;
1713 	}
1714 	for (i = 0, j = 0; i < mynel; i++) {
1715 		rc = avc_has_perm_noaudit(fromsid, mysids[i],
1716 					  SECCLASS_PROCESS,
1717 					  PROCESS__TRANSITION, AVC_STRICT,
1718 					  NULL);
1719 		if (!rc)
1720 			mysids2[j++] = mysids[i];
1721 		cond_resched();
1722 	}
1723 	rc = 0;
1724 	kfree(mysids);
1725 	*sids = mysids2;
1726 	*nel = j;
1727 out:
1728 	return rc;
1729 }
1730 
1731 /**
1732  * security_genfs_sid - Obtain a SID for a file in a filesystem
1733  * @fstype: filesystem type
1734  * @path: path from root of mount
1735  * @sclass: file security class
1736  * @sid: SID for path
1737  *
1738  * Obtain a SID to use for a file in a filesystem that
1739  * cannot support xattr or use a fixed labeling behavior like
1740  * transition SIDs or task SIDs.
1741  */
1742 int security_genfs_sid(const char *fstype,
1743 	               char *path,
1744 		       u16 sclass,
1745 		       u32 *sid)
1746 {
1747 	int len;
1748 	struct genfs *genfs;
1749 	struct ocontext *c;
1750 	int rc = 0, cmp = 0;
1751 
1752 	while (path[0] == '/' && path[1] == '/')
1753 		path++;
1754 
1755 	POLICY_RDLOCK;
1756 
1757 	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
1758 		cmp = strcmp(fstype, genfs->fstype);
1759 		if (cmp <= 0)
1760 			break;
1761 	}
1762 
1763 	if (!genfs || cmp) {
1764 		*sid = SECINITSID_UNLABELED;
1765 		rc = -ENOENT;
1766 		goto out;
1767 	}
1768 
1769 	for (c = genfs->head; c; c = c->next) {
1770 		len = strlen(c->u.name);
1771 		if ((!c->v.sclass || sclass == c->v.sclass) &&
1772 		    (strncmp(c->u.name, path, len) == 0))
1773 			break;
1774 	}
1775 
1776 	if (!c) {
1777 		*sid = SECINITSID_UNLABELED;
1778 		rc = -ENOENT;
1779 		goto out;
1780 	}
1781 
1782 	if (!c->sid[0]) {
1783 		rc = sidtab_context_to_sid(&sidtab,
1784 					   &c->context[0],
1785 					   &c->sid[0]);
1786 		if (rc)
1787 			goto out;
1788 	}
1789 
1790 	*sid = c->sid[0];
1791 out:
1792 	POLICY_RDUNLOCK;
1793 	return rc;
1794 }
1795 
1796 /**
1797  * security_fs_use - Determine how to handle labeling for a filesystem.
1798  * @fstype: filesystem type
1799  * @behavior: labeling behavior
1800  * @sid: SID for filesystem (superblock)
1801  */
1802 int security_fs_use(
1803 	const char *fstype,
1804 	unsigned int *behavior,
1805 	u32 *sid)
1806 {
1807 	int rc = 0;
1808 	struct ocontext *c;
1809 
1810 	POLICY_RDLOCK;
1811 
1812 	c = policydb.ocontexts[OCON_FSUSE];
1813 	while (c) {
1814 		if (strcmp(fstype, c->u.name) == 0)
1815 			break;
1816 		c = c->next;
1817 	}
1818 
1819 	if (c) {
1820 		*behavior = c->v.behavior;
1821 		if (!c->sid[0]) {
1822 			rc = sidtab_context_to_sid(&sidtab,
1823 						   &c->context[0],
1824 						   &c->sid[0]);
1825 			if (rc)
1826 				goto out;
1827 		}
1828 		*sid = c->sid[0];
1829 	} else {
1830 		rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
1831 		if (rc) {
1832 			*behavior = SECURITY_FS_USE_NONE;
1833 			rc = 0;
1834 		} else {
1835 			*behavior = SECURITY_FS_USE_GENFS;
1836 		}
1837 	}
1838 
1839 out:
1840 	POLICY_RDUNLOCK;
1841 	return rc;
1842 }
1843 
1844 int security_get_bools(int *len, char ***names, int **values)
1845 {
1846 	int i, rc = -ENOMEM;
1847 
1848 	POLICY_RDLOCK;
1849 	*names = NULL;
1850 	*values = NULL;
1851 
1852 	*len = policydb.p_bools.nprim;
1853 	if (!*len) {
1854 		rc = 0;
1855 		goto out;
1856 	}
1857 
1858        *names = kcalloc(*len, sizeof(char*), GFP_ATOMIC);
1859 	if (!*names)
1860 		goto err;
1861 
1862        *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
1863 	if (!*values)
1864 		goto err;
1865 
1866 	for (i = 0; i < *len; i++) {
1867 		size_t name_len;
1868 		(*values)[i] = policydb.bool_val_to_struct[i]->state;
1869 		name_len = strlen(policydb.p_bool_val_to_name[i]) + 1;
1870                (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
1871 		if (!(*names)[i])
1872 			goto err;
1873 		strncpy((*names)[i], policydb.p_bool_val_to_name[i], name_len);
1874 		(*names)[i][name_len - 1] = 0;
1875 	}
1876 	rc = 0;
1877 out:
1878 	POLICY_RDUNLOCK;
1879 	return rc;
1880 err:
1881 	if (*names) {
1882 		for (i = 0; i < *len; i++)
1883 			kfree((*names)[i]);
1884 	}
1885 	kfree(*values);
1886 	goto out;
1887 }
1888 
1889 
1890 int security_set_bools(int len, int *values)
1891 {
1892 	int i, rc = 0;
1893 	int lenp, seqno = 0;
1894 	struct cond_node *cur;
1895 
1896 	POLICY_WRLOCK;
1897 
1898 	lenp = policydb.p_bools.nprim;
1899 	if (len != lenp) {
1900 		rc = -EFAULT;
1901 		goto out;
1902 	}
1903 
1904 	for (i = 0; i < len; i++) {
1905 		if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
1906 			audit_log(current->audit_context, GFP_ATOMIC,
1907 				AUDIT_MAC_CONFIG_CHANGE,
1908 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
1909 				policydb.p_bool_val_to_name[i],
1910 				!!values[i],
1911 				policydb.bool_val_to_struct[i]->state,
1912 				audit_get_loginuid(current),
1913 				audit_get_sessionid(current));
1914 		}
1915 		if (values[i]) {
1916 			policydb.bool_val_to_struct[i]->state = 1;
1917 		} else {
1918 			policydb.bool_val_to_struct[i]->state = 0;
1919 		}
1920 	}
1921 
1922 	for (cur = policydb.cond_list; cur != NULL; cur = cur->next) {
1923 		rc = evaluate_cond_node(&policydb, cur);
1924 		if (rc)
1925 			goto out;
1926 	}
1927 
1928 	seqno = ++latest_granting;
1929 
1930 out:
1931 	POLICY_WRUNLOCK;
1932 	if (!rc) {
1933 		avc_ss_reset(seqno);
1934 		selnl_notify_policyload(seqno);
1935 		selinux_xfrm_notify_policyload();
1936 	}
1937 	return rc;
1938 }
1939 
1940 int security_get_bool_value(int bool)
1941 {
1942 	int rc = 0;
1943 	int len;
1944 
1945 	POLICY_RDLOCK;
1946 
1947 	len = policydb.p_bools.nprim;
1948 	if (bool >= len) {
1949 		rc = -EFAULT;
1950 		goto out;
1951 	}
1952 
1953 	rc = policydb.bool_val_to_struct[bool]->state;
1954 out:
1955 	POLICY_RDUNLOCK;
1956 	return rc;
1957 }
1958 
1959 static int security_preserve_bools(struct policydb *p)
1960 {
1961 	int rc, nbools = 0, *bvalues = NULL, i;
1962 	char **bnames = NULL;
1963 	struct cond_bool_datum *booldatum;
1964 	struct cond_node *cur;
1965 
1966 	rc = security_get_bools(&nbools, &bnames, &bvalues);
1967 	if (rc)
1968 		goto out;
1969 	for (i = 0; i < nbools; i++) {
1970 		booldatum = hashtab_search(p->p_bools.table, bnames[i]);
1971 		if (booldatum)
1972 			booldatum->state = bvalues[i];
1973 	}
1974 	for (cur = p->cond_list; cur != NULL; cur = cur->next) {
1975 		rc = evaluate_cond_node(p, cur);
1976 		if (rc)
1977 			goto out;
1978 	}
1979 
1980 out:
1981 	if (bnames) {
1982 		for (i = 0; i < nbools; i++)
1983 			kfree(bnames[i]);
1984 	}
1985 	kfree(bnames);
1986 	kfree(bvalues);
1987 	return rc;
1988 }
1989 
1990 /*
1991  * security_sid_mls_copy() - computes a new sid based on the given
1992  * sid and the mls portion of mls_sid.
1993  */
1994 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
1995 {
1996 	struct context *context1;
1997 	struct context *context2;
1998 	struct context newcon;
1999 	char *s;
2000 	u32 len;
2001 	int rc = 0;
2002 
2003 	if (!ss_initialized || !selinux_mls_enabled) {
2004 		*new_sid = sid;
2005 		goto out;
2006 	}
2007 
2008 	context_init(&newcon);
2009 
2010 	POLICY_RDLOCK;
2011 	context1 = sidtab_search(&sidtab, sid);
2012 	if (!context1) {
2013 		printk(KERN_ERR "security_sid_mls_copy:  unrecognized SID "
2014 		       "%d\n", sid);
2015 		rc = -EINVAL;
2016 		goto out_unlock;
2017 	}
2018 
2019 	context2 = sidtab_search(&sidtab, mls_sid);
2020 	if (!context2) {
2021 		printk(KERN_ERR "security_sid_mls_copy:  unrecognized SID "
2022 		       "%d\n", mls_sid);
2023 		rc = -EINVAL;
2024 		goto out_unlock;
2025 	}
2026 
2027 	newcon.user = context1->user;
2028 	newcon.role = context1->role;
2029 	newcon.type = context1->type;
2030 	rc = mls_context_cpy(&newcon, context2);
2031 	if (rc)
2032 		goto out_unlock;
2033 
2034 	/* Check the validity of the new context. */
2035 	if (!policydb_context_isvalid(&policydb, &newcon)) {
2036 		rc = convert_context_handle_invalid_context(&newcon);
2037 		if (rc)
2038 			goto bad;
2039 	}
2040 
2041 	rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2042 	goto out_unlock;
2043 
2044 bad:
2045 	if (!context_struct_to_string(&newcon, &s, &len)) {
2046 		audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2047 			  "security_sid_mls_copy: invalid context %s", s);
2048 		kfree(s);
2049 	}
2050 
2051 out_unlock:
2052 	POLICY_RDUNLOCK;
2053 	context_destroy(&newcon);
2054 out:
2055 	return rc;
2056 }
2057 
2058 /**
2059  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2060  * @nlbl_sid: NetLabel SID
2061  * @nlbl_type: NetLabel labeling protocol type
2062  * @xfrm_sid: XFRM SID
2063  *
2064  * Description:
2065  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2066  * resolved into a single SID it is returned via @peer_sid and the function
2067  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2068  * returns a negative value.  A table summarizing the behavior is below:
2069  *
2070  *                                 | function return |      @sid
2071  *   ------------------------------+-----------------+-----------------
2072  *   no peer labels                |        0        |    SECSID_NULL
2073  *   single peer label             |        0        |    <peer_label>
2074  *   multiple, consistent labels   |        0        |    <peer_label>
2075  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2076  *
2077  */
2078 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2079 				 u32 xfrm_sid,
2080 				 u32 *peer_sid)
2081 {
2082 	int rc;
2083 	struct context *nlbl_ctx;
2084 	struct context *xfrm_ctx;
2085 
2086 	/* handle the common (which also happens to be the set of easy) cases
2087 	 * right away, these two if statements catch everything involving a
2088 	 * single or absent peer SID/label */
2089 	if (xfrm_sid == SECSID_NULL) {
2090 		*peer_sid = nlbl_sid;
2091 		return 0;
2092 	}
2093 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2094 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2095 	 * is present */
2096 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2097 		*peer_sid = xfrm_sid;
2098 		return 0;
2099 	}
2100 
2101 	/* we don't need to check ss_initialized here since the only way both
2102 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2103 	 * security server was initialized and ss_initialized was true */
2104 	if (!selinux_mls_enabled) {
2105 		*peer_sid = SECSID_NULL;
2106 		return 0;
2107 	}
2108 
2109 	POLICY_RDLOCK;
2110 
2111 	nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2112 	if (!nlbl_ctx) {
2113 		printk(KERN_ERR
2114 		       "security_sid_mls_cmp:  unrecognized SID %d\n",
2115 		       nlbl_sid);
2116 		rc = -EINVAL;
2117 		goto out_slowpath;
2118 	}
2119 	xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2120 	if (!xfrm_ctx) {
2121 		printk(KERN_ERR
2122 		       "security_sid_mls_cmp:  unrecognized SID %d\n",
2123 		       xfrm_sid);
2124 		rc = -EINVAL;
2125 		goto out_slowpath;
2126 	}
2127 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2128 
2129 out_slowpath:
2130 	POLICY_RDUNLOCK;
2131 	if (rc == 0)
2132 		/* at present NetLabel SIDs/labels really only carry MLS
2133 		 * information so if the MLS portion of the NetLabel SID
2134 		 * matches the MLS portion of the labeled XFRM SID/label
2135 		 * then pass along the XFRM SID as it is the most
2136 		 * expressive */
2137 		*peer_sid = xfrm_sid;
2138 	else
2139 		*peer_sid = SECSID_NULL;
2140 	return rc;
2141 }
2142 
2143 static int get_classes_callback(void *k, void *d, void *args)
2144 {
2145 	struct class_datum *datum = d;
2146 	char *name = k, **classes = args;
2147 	int value = datum->value - 1;
2148 
2149 	classes[value] = kstrdup(name, GFP_ATOMIC);
2150 	if (!classes[value])
2151 		return -ENOMEM;
2152 
2153 	return 0;
2154 }
2155 
2156 int security_get_classes(char ***classes, int *nclasses)
2157 {
2158 	int rc = -ENOMEM;
2159 
2160 	POLICY_RDLOCK;
2161 
2162 	*nclasses = policydb.p_classes.nprim;
2163 	*classes = kcalloc(*nclasses, sizeof(*classes), GFP_ATOMIC);
2164 	if (!*classes)
2165 		goto out;
2166 
2167 	rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2168 			*classes);
2169 	if (rc < 0) {
2170 		int i;
2171 		for (i = 0; i < *nclasses; i++)
2172 			kfree((*classes)[i]);
2173 		kfree(*classes);
2174 	}
2175 
2176 out:
2177 	POLICY_RDUNLOCK;
2178 	return rc;
2179 }
2180 
2181 static int get_permissions_callback(void *k, void *d, void *args)
2182 {
2183 	struct perm_datum *datum = d;
2184 	char *name = k, **perms = args;
2185 	int value = datum->value - 1;
2186 
2187 	perms[value] = kstrdup(name, GFP_ATOMIC);
2188 	if (!perms[value])
2189 		return -ENOMEM;
2190 
2191 	return 0;
2192 }
2193 
2194 int security_get_permissions(char *class, char ***perms, int *nperms)
2195 {
2196 	int rc = -ENOMEM, i;
2197 	struct class_datum *match;
2198 
2199 	POLICY_RDLOCK;
2200 
2201 	match = hashtab_search(policydb.p_classes.table, class);
2202 	if (!match) {
2203 		printk(KERN_ERR "%s:  unrecognized class %s\n",
2204 			__FUNCTION__, class);
2205 		rc = -EINVAL;
2206 		goto out;
2207 	}
2208 
2209 	*nperms = match->permissions.nprim;
2210 	*perms = kcalloc(*nperms, sizeof(*perms), GFP_ATOMIC);
2211 	if (!*perms)
2212 		goto out;
2213 
2214 	if (match->comdatum) {
2215 		rc = hashtab_map(match->comdatum->permissions.table,
2216 				get_permissions_callback, *perms);
2217 		if (rc < 0)
2218 			goto err;
2219 	}
2220 
2221 	rc = hashtab_map(match->permissions.table, get_permissions_callback,
2222 			*perms);
2223 	if (rc < 0)
2224 		goto err;
2225 
2226 out:
2227 	POLICY_RDUNLOCK;
2228 	return rc;
2229 
2230 err:
2231 	POLICY_RDUNLOCK;
2232 	for (i = 0; i < *nperms; i++)
2233 		kfree((*perms)[i]);
2234 	kfree(*perms);
2235 	return rc;
2236 }
2237 
2238 int security_get_reject_unknown(void)
2239 {
2240 	return policydb.reject_unknown;
2241 }
2242 
2243 int security_get_allow_unknown(void)
2244 {
2245 	return policydb.allow_unknown;
2246 }
2247 
2248 /**
2249  * security_get_policycaps - Query the loaded policy for its capabilities
2250  * @len: the number of capability bits
2251  * @values: the capability bit array
2252  *
2253  * Description:
2254  * Get an array of the policy capabilities in @values where each entry in
2255  * @values is either true (1) or false (0) depending the policy's support of
2256  * that feature.  The policy capabilities are defined by the
2257  * POLICYDB_CAPABILITY_* enums.  The size of the array is stored in @len and it
2258  * is up to the caller to free the array in @values.  Returns zero on success,
2259  * negative values on failure.
2260  *
2261  */
2262 int security_get_policycaps(int *len, int **values)
2263 {
2264 	int rc = -ENOMEM;
2265 	unsigned int iter;
2266 
2267 	POLICY_RDLOCK;
2268 
2269 	*values = kcalloc(POLICYDB_CAPABILITY_MAX, sizeof(int), GFP_ATOMIC);
2270 	if (*values == NULL)
2271 		goto out;
2272 	for (iter = 0; iter < POLICYDB_CAPABILITY_MAX; iter++)
2273 		(*values)[iter] = ebitmap_get_bit(&policydb.policycaps, iter);
2274 	*len = POLICYDB_CAPABILITY_MAX;
2275 
2276 out:
2277 	POLICY_RDUNLOCK;
2278 	return rc;
2279 }
2280 
2281 /**
2282  * security_policycap_supported - Check for a specific policy capability
2283  * @req_cap: capability
2284  *
2285  * Description:
2286  * This function queries the currently loaded policy to see if it supports the
2287  * capability specified by @req_cap.  Returns true (1) if the capability is
2288  * supported, false (0) if it isn't supported.
2289  *
2290  */
2291 int security_policycap_supported(unsigned int req_cap)
2292 {
2293 	int rc;
2294 
2295 	POLICY_RDLOCK;
2296 	rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2297 	POLICY_RDUNLOCK;
2298 
2299 	return rc;
2300 }
2301 
2302 struct selinux_audit_rule {
2303 	u32 au_seqno;
2304 	struct context au_ctxt;
2305 };
2306 
2307 void selinux_audit_rule_free(struct selinux_audit_rule *rule)
2308 {
2309 	if (rule) {
2310 		context_destroy(&rule->au_ctxt);
2311 		kfree(rule);
2312 	}
2313 }
2314 
2315 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr,
2316                             struct selinux_audit_rule **rule)
2317 {
2318 	struct selinux_audit_rule *tmprule;
2319 	struct role_datum *roledatum;
2320 	struct type_datum *typedatum;
2321 	struct user_datum *userdatum;
2322 	int rc = 0;
2323 
2324 	*rule = NULL;
2325 
2326 	if (!ss_initialized)
2327 		return -EOPNOTSUPP;
2328 
2329 	switch (field) {
2330 	case AUDIT_SUBJ_USER:
2331 	case AUDIT_SUBJ_ROLE:
2332 	case AUDIT_SUBJ_TYPE:
2333 	case AUDIT_OBJ_USER:
2334 	case AUDIT_OBJ_ROLE:
2335 	case AUDIT_OBJ_TYPE:
2336 		/* only 'equals' and 'not equals' fit user, role, and type */
2337 		if (op != AUDIT_EQUAL && op != AUDIT_NOT_EQUAL)
2338 			return -EINVAL;
2339 		break;
2340 	case AUDIT_SUBJ_SEN:
2341 	case AUDIT_SUBJ_CLR:
2342 	case AUDIT_OBJ_LEV_LOW:
2343 	case AUDIT_OBJ_LEV_HIGH:
2344 		/* we do not allow a range, indicated by the presense of '-' */
2345 		if (strchr(rulestr, '-'))
2346 			return -EINVAL;
2347 		break;
2348 	default:
2349 		/* only the above fields are valid */
2350 		return -EINVAL;
2351 	}
2352 
2353 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2354 	if (!tmprule)
2355 		return -ENOMEM;
2356 
2357 	context_init(&tmprule->au_ctxt);
2358 
2359 	POLICY_RDLOCK;
2360 
2361 	tmprule->au_seqno = latest_granting;
2362 
2363 	switch (field) {
2364 	case AUDIT_SUBJ_USER:
2365 	case AUDIT_OBJ_USER:
2366 		userdatum = hashtab_search(policydb.p_users.table, rulestr);
2367 		if (!userdatum)
2368 			rc = -EINVAL;
2369 		else
2370 			tmprule->au_ctxt.user = userdatum->value;
2371 		break;
2372 	case AUDIT_SUBJ_ROLE:
2373 	case AUDIT_OBJ_ROLE:
2374 		roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2375 		if (!roledatum)
2376 			rc = -EINVAL;
2377 		else
2378 			tmprule->au_ctxt.role = roledatum->value;
2379 		break;
2380 	case AUDIT_SUBJ_TYPE:
2381 	case AUDIT_OBJ_TYPE:
2382 		typedatum = hashtab_search(policydb.p_types.table, rulestr);
2383 		if (!typedatum)
2384 			rc = -EINVAL;
2385 		else
2386 			tmprule->au_ctxt.type = typedatum->value;
2387 		break;
2388 	case AUDIT_SUBJ_SEN:
2389 	case AUDIT_SUBJ_CLR:
2390 	case AUDIT_OBJ_LEV_LOW:
2391 	case AUDIT_OBJ_LEV_HIGH:
2392 		rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2393 		break;
2394 	}
2395 
2396 	POLICY_RDUNLOCK;
2397 
2398 	if (rc) {
2399 		selinux_audit_rule_free(tmprule);
2400 		tmprule = NULL;
2401 	}
2402 
2403 	*rule = tmprule;
2404 
2405 	return rc;
2406 }
2407 
2408 int selinux_audit_rule_match(u32 sid, u32 field, u32 op,
2409                              struct selinux_audit_rule *rule,
2410                              struct audit_context *actx)
2411 {
2412 	struct context *ctxt;
2413 	struct mls_level *level;
2414 	int match = 0;
2415 
2416 	if (!rule) {
2417 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2418 		          "selinux_audit_rule_match: missing rule\n");
2419 		return -ENOENT;
2420 	}
2421 
2422 	POLICY_RDLOCK;
2423 
2424 	if (rule->au_seqno < latest_granting) {
2425 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2426 		          "selinux_audit_rule_match: stale rule\n");
2427 		match = -ESTALE;
2428 		goto out;
2429 	}
2430 
2431 	ctxt = sidtab_search(&sidtab, sid);
2432 	if (!ctxt) {
2433 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2434 		          "selinux_audit_rule_match: unrecognized SID %d\n",
2435 		          sid);
2436 		match = -ENOENT;
2437 		goto out;
2438 	}
2439 
2440 	/* a field/op pair that is not caught here will simply fall through
2441 	   without a match */
2442 	switch (field) {
2443 	case AUDIT_SUBJ_USER:
2444 	case AUDIT_OBJ_USER:
2445 		switch (op) {
2446 		case AUDIT_EQUAL:
2447 			match = (ctxt->user == rule->au_ctxt.user);
2448 			break;
2449 		case AUDIT_NOT_EQUAL:
2450 			match = (ctxt->user != rule->au_ctxt.user);
2451 			break;
2452 		}
2453 		break;
2454 	case AUDIT_SUBJ_ROLE:
2455 	case AUDIT_OBJ_ROLE:
2456 		switch (op) {
2457 		case AUDIT_EQUAL:
2458 			match = (ctxt->role == rule->au_ctxt.role);
2459 			break;
2460 		case AUDIT_NOT_EQUAL:
2461 			match = (ctxt->role != rule->au_ctxt.role);
2462 			break;
2463 		}
2464 		break;
2465 	case AUDIT_SUBJ_TYPE:
2466 	case AUDIT_OBJ_TYPE:
2467 		switch (op) {
2468 		case AUDIT_EQUAL:
2469 			match = (ctxt->type == rule->au_ctxt.type);
2470 			break;
2471 		case AUDIT_NOT_EQUAL:
2472 			match = (ctxt->type != rule->au_ctxt.type);
2473 			break;
2474 		}
2475 		break;
2476 	case AUDIT_SUBJ_SEN:
2477 	case AUDIT_SUBJ_CLR:
2478 	case AUDIT_OBJ_LEV_LOW:
2479 	case AUDIT_OBJ_LEV_HIGH:
2480 		level = ((field == AUDIT_SUBJ_SEN ||
2481 		          field == AUDIT_OBJ_LEV_LOW) ?
2482 		         &ctxt->range.level[0] : &ctxt->range.level[1]);
2483 		switch (op) {
2484 		case AUDIT_EQUAL:
2485 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
2486 			                     level);
2487 			break;
2488 		case AUDIT_NOT_EQUAL:
2489 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
2490 			                      level);
2491 			break;
2492 		case AUDIT_LESS_THAN:
2493 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
2494 			                       level) &&
2495 			         !mls_level_eq(&rule->au_ctxt.range.level[0],
2496 			                       level));
2497 			break;
2498 		case AUDIT_LESS_THAN_OR_EQUAL:
2499 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
2500 			                      level);
2501 			break;
2502 		case AUDIT_GREATER_THAN:
2503 			match = (mls_level_dom(level,
2504 			                      &rule->au_ctxt.range.level[0]) &&
2505 			         !mls_level_eq(level,
2506 			                       &rule->au_ctxt.range.level[0]));
2507 			break;
2508 		case AUDIT_GREATER_THAN_OR_EQUAL:
2509 			match = mls_level_dom(level,
2510 			                      &rule->au_ctxt.range.level[0]);
2511 			break;
2512 		}
2513 	}
2514 
2515 out:
2516 	POLICY_RDUNLOCK;
2517 	return match;
2518 }
2519 
2520 static int (*aurule_callback)(void) = NULL;
2521 
2522 static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
2523                                u16 class, u32 perms, u32 *retained)
2524 {
2525 	int err = 0;
2526 
2527 	if (event == AVC_CALLBACK_RESET && aurule_callback)
2528 		err = aurule_callback();
2529 	return err;
2530 }
2531 
2532 static int __init aurule_init(void)
2533 {
2534 	int err;
2535 
2536 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
2537 	                       SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
2538 	if (err)
2539 		panic("avc_add_callback() failed, error %d\n", err);
2540 
2541 	return err;
2542 }
2543 __initcall(aurule_init);
2544 
2545 void selinux_audit_set_callback(int (*callback)(void))
2546 {
2547 	aurule_callback = callback;
2548 }
2549 
2550 #ifdef CONFIG_NETLABEL
2551 /**
2552  * security_netlbl_cache_add - Add an entry to the NetLabel cache
2553  * @secattr: the NetLabel packet security attributes
2554  * @sid: the SELinux SID
2555  *
2556  * Description:
2557  * Attempt to cache the context in @ctx, which was derived from the packet in
2558  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
2559  * already been initialized.
2560  *
2561  */
2562 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
2563 				      u32 sid)
2564 {
2565 	u32 *sid_cache;
2566 
2567 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
2568 	if (sid_cache == NULL)
2569 		return;
2570 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
2571 	if (secattr->cache == NULL) {
2572 		kfree(sid_cache);
2573 		return;
2574 	}
2575 
2576 	*sid_cache = sid;
2577 	secattr->cache->free = kfree;
2578 	secattr->cache->data = sid_cache;
2579 	secattr->flags |= NETLBL_SECATTR_CACHE;
2580 }
2581 
2582 /**
2583  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
2584  * @secattr: the NetLabel packet security attributes
2585  * @sid: the SELinux SID
2586  *
2587  * Description:
2588  * Convert the given NetLabel security attributes in @secattr into a
2589  * SELinux SID.  If the @secattr field does not contain a full SELinux
2590  * SID/context then use SECINITSID_NETMSG as the foundation.  If possibile the
2591  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
2592  * allow the @secattr to be used by NetLabel to cache the secattr to SID
2593  * conversion for future lookups.  Returns zero on success, negative values on
2594  * failure.
2595  *
2596  */
2597 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
2598 				   u32 *sid)
2599 {
2600 	int rc = -EIDRM;
2601 	struct context *ctx;
2602 	struct context ctx_new;
2603 
2604 	if (!ss_initialized) {
2605 		*sid = SECSID_NULL;
2606 		return 0;
2607 	}
2608 
2609 	POLICY_RDLOCK;
2610 
2611 	if (secattr->flags & NETLBL_SECATTR_CACHE) {
2612 		*sid = *(u32 *)secattr->cache->data;
2613 		rc = 0;
2614 	} else if (secattr->flags & NETLBL_SECATTR_SECID) {
2615 		*sid = secattr->attr.secid;
2616 		rc = 0;
2617 	} else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
2618 		ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
2619 		if (ctx == NULL)
2620 			goto netlbl_secattr_to_sid_return;
2621 
2622 		ctx_new.user = ctx->user;
2623 		ctx_new.role = ctx->role;
2624 		ctx_new.type = ctx->type;
2625 		mls_import_netlbl_lvl(&ctx_new, secattr);
2626 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
2627 			if (ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
2628 						  secattr->attr.mls.cat) != 0)
2629 				goto netlbl_secattr_to_sid_return;
2630 			ctx_new.range.level[1].cat.highbit =
2631 				ctx_new.range.level[0].cat.highbit;
2632 			ctx_new.range.level[1].cat.node =
2633 				ctx_new.range.level[0].cat.node;
2634 		} else {
2635 			ebitmap_init(&ctx_new.range.level[0].cat);
2636 			ebitmap_init(&ctx_new.range.level[1].cat);
2637 		}
2638 		if (mls_context_isvalid(&policydb, &ctx_new) != 1)
2639 			goto netlbl_secattr_to_sid_return_cleanup;
2640 
2641 		rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
2642 		if (rc != 0)
2643 			goto netlbl_secattr_to_sid_return_cleanup;
2644 
2645 		security_netlbl_cache_add(secattr, *sid);
2646 
2647 		ebitmap_destroy(&ctx_new.range.level[0].cat);
2648 	} else {
2649 		*sid = SECSID_NULL;
2650 		rc = 0;
2651 	}
2652 
2653 netlbl_secattr_to_sid_return:
2654 	POLICY_RDUNLOCK;
2655 	return rc;
2656 netlbl_secattr_to_sid_return_cleanup:
2657 	ebitmap_destroy(&ctx_new.range.level[0].cat);
2658 	goto netlbl_secattr_to_sid_return;
2659 }
2660 
2661 /**
2662  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
2663  * @sid: the SELinux SID
2664  * @secattr: the NetLabel packet security attributes
2665  *
2666  * Description:
2667  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
2668  * Returns zero on success, negative values on failure.
2669  *
2670  */
2671 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
2672 {
2673 	int rc = -ENOENT;
2674 	struct context *ctx;
2675 
2676 	if (!ss_initialized)
2677 		return 0;
2678 
2679 	POLICY_RDLOCK;
2680 	ctx = sidtab_search(&sidtab, sid);
2681 	if (ctx == NULL)
2682 		goto netlbl_sid_to_secattr_failure;
2683 	secattr->domain = kstrdup(policydb.p_type_val_to_name[ctx->type - 1],
2684 				  GFP_ATOMIC);
2685 	secattr->flags |= NETLBL_SECATTR_DOMAIN;
2686 	mls_export_netlbl_lvl(ctx, secattr);
2687 	rc = mls_export_netlbl_cat(ctx, secattr);
2688 	if (rc != 0)
2689 		goto netlbl_sid_to_secattr_failure;
2690 	POLICY_RDUNLOCK;
2691 
2692 	return 0;
2693 
2694 netlbl_sid_to_secattr_failure:
2695 	POLICY_RDUNLOCK;
2696 	return rc;
2697 }
2698 #endif /* CONFIG_NETLABEL */
2699