1 /* 2 * Implementation of the security services. 3 * 4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil> 5 * James Morris <jmorris@redhat.com> 6 * 7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com> 8 * 9 * Support for enhanced MLS infrastructure. 10 * Support for context based audit filters. 11 * 12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com> 13 * 14 * Added conditional policy language extensions 15 * 16 * Updated: Hewlett-Packard <paul@paul-moore.com> 17 * 18 * Added support for NetLabel 19 * Added support for the policy capability bitmap 20 * 21 * Updated: Chad Sellers <csellers@tresys.com> 22 * 23 * Added validation of kernel classes and permissions 24 * 25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com> 26 * 27 * Added support for bounds domain and audit messaged on masked permissions 28 * 29 * Updated: Guido Trentalancia <guido@trentalancia.com> 30 * 31 * Added support for runtime switching of the policy type 32 * 33 * Copyright (C) 2008, 2009 NEC Corporation 34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P. 35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc. 36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC 37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> 38 * This program is free software; you can redistribute it and/or modify 39 * it under the terms of the GNU General Public License as published by 40 * the Free Software Foundation, version 2. 41 */ 42 #include <linux/kernel.h> 43 #include <linux/slab.h> 44 #include <linux/string.h> 45 #include <linux/spinlock.h> 46 #include <linux/rcupdate.h> 47 #include <linux/errno.h> 48 #include <linux/in.h> 49 #include <linux/sched.h> 50 #include <linux/audit.h> 51 #include <linux/mutex.h> 52 #include <linux/selinux.h> 53 #include <linux/flex_array.h> 54 #include <linux/vmalloc.h> 55 #include <net/netlabel.h> 56 57 #include "flask.h" 58 #include "avc.h" 59 #include "avc_ss.h" 60 #include "security.h" 61 #include "context.h" 62 #include "policydb.h" 63 #include "sidtab.h" 64 #include "services.h" 65 #include "conditional.h" 66 #include "mls.h" 67 #include "objsec.h" 68 #include "netlabel.h" 69 #include "xfrm.h" 70 #include "ebitmap.h" 71 #include "audit.h" 72 73 /* Policy capability names */ 74 char *selinux_policycap_names[__POLICYDB_CAPABILITY_MAX] = { 75 "network_peer_controls", 76 "open_perms", 77 "extended_socket_class", 78 "always_check_network", 79 "cgroup_seclabel" 80 }; 81 82 int selinux_policycap_netpeer; 83 int selinux_policycap_openperm; 84 int selinux_policycap_extsockclass; 85 int selinux_policycap_alwaysnetwork; 86 int selinux_policycap_cgroupseclabel; 87 88 static DEFINE_RWLOCK(policy_rwlock); 89 90 static struct sidtab sidtab; 91 struct policydb policydb; 92 int ss_initialized; 93 94 /* 95 * The largest sequence number that has been used when 96 * providing an access decision to the access vector cache. 97 * The sequence number only changes when a policy change 98 * occurs. 99 */ 100 static u32 latest_granting; 101 102 /* Forward declaration. */ 103 static int context_struct_to_string(struct context *context, char **scontext, 104 u32 *scontext_len); 105 106 static void context_struct_compute_av(struct context *scontext, 107 struct context *tcontext, 108 u16 tclass, 109 struct av_decision *avd, 110 struct extended_perms *xperms); 111 112 struct selinux_mapping { 113 u16 value; /* policy value */ 114 unsigned num_perms; 115 u32 perms[sizeof(u32) * 8]; 116 }; 117 118 static struct selinux_mapping *current_mapping; 119 static u16 current_mapping_size; 120 121 static int selinux_set_mapping(struct policydb *pol, 122 struct security_class_mapping *map, 123 struct selinux_mapping **out_map_p, 124 u16 *out_map_size) 125 { 126 struct selinux_mapping *out_map = NULL; 127 size_t size = sizeof(struct selinux_mapping); 128 u16 i, j; 129 unsigned k; 130 bool print_unknown_handle = false; 131 132 /* Find number of classes in the input mapping */ 133 if (!map) 134 return -EINVAL; 135 i = 0; 136 while (map[i].name) 137 i++; 138 139 /* Allocate space for the class records, plus one for class zero */ 140 out_map = kcalloc(++i, size, GFP_ATOMIC); 141 if (!out_map) 142 return -ENOMEM; 143 144 /* Store the raw class and permission values */ 145 j = 0; 146 while (map[j].name) { 147 struct security_class_mapping *p_in = map + (j++); 148 struct selinux_mapping *p_out = out_map + j; 149 150 /* An empty class string skips ahead */ 151 if (!strcmp(p_in->name, "")) { 152 p_out->num_perms = 0; 153 continue; 154 } 155 156 p_out->value = string_to_security_class(pol, p_in->name); 157 if (!p_out->value) { 158 printk(KERN_INFO 159 "SELinux: Class %s not defined in policy.\n", 160 p_in->name); 161 if (pol->reject_unknown) 162 goto err; 163 p_out->num_perms = 0; 164 print_unknown_handle = true; 165 continue; 166 } 167 168 k = 0; 169 while (p_in->perms[k]) { 170 /* An empty permission string skips ahead */ 171 if (!*p_in->perms[k]) { 172 k++; 173 continue; 174 } 175 p_out->perms[k] = string_to_av_perm(pol, p_out->value, 176 p_in->perms[k]); 177 if (!p_out->perms[k]) { 178 printk(KERN_INFO 179 "SELinux: Permission %s in class %s not defined in policy.\n", 180 p_in->perms[k], p_in->name); 181 if (pol->reject_unknown) 182 goto err; 183 print_unknown_handle = true; 184 } 185 186 k++; 187 } 188 p_out->num_perms = k; 189 } 190 191 if (print_unknown_handle) 192 printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n", 193 pol->allow_unknown ? "allowed" : "denied"); 194 195 *out_map_p = out_map; 196 *out_map_size = i; 197 return 0; 198 err: 199 kfree(out_map); 200 return -EINVAL; 201 } 202 203 /* 204 * Get real, policy values from mapped values 205 */ 206 207 static u16 unmap_class(u16 tclass) 208 { 209 if (tclass < current_mapping_size) 210 return current_mapping[tclass].value; 211 212 return tclass; 213 } 214 215 /* 216 * Get kernel value for class from its policy value 217 */ 218 static u16 map_class(u16 pol_value) 219 { 220 u16 i; 221 222 for (i = 1; i < current_mapping_size; i++) { 223 if (current_mapping[i].value == pol_value) 224 return i; 225 } 226 227 return SECCLASS_NULL; 228 } 229 230 static void map_decision(u16 tclass, struct av_decision *avd, 231 int allow_unknown) 232 { 233 if (tclass < current_mapping_size) { 234 unsigned i, n = current_mapping[tclass].num_perms; 235 u32 result; 236 237 for (i = 0, result = 0; i < n; i++) { 238 if (avd->allowed & current_mapping[tclass].perms[i]) 239 result |= 1<<i; 240 if (allow_unknown && !current_mapping[tclass].perms[i]) 241 result |= 1<<i; 242 } 243 avd->allowed = result; 244 245 for (i = 0, result = 0; i < n; i++) 246 if (avd->auditallow & current_mapping[tclass].perms[i]) 247 result |= 1<<i; 248 avd->auditallow = result; 249 250 for (i = 0, result = 0; i < n; i++) { 251 if (avd->auditdeny & current_mapping[tclass].perms[i]) 252 result |= 1<<i; 253 if (!allow_unknown && !current_mapping[tclass].perms[i]) 254 result |= 1<<i; 255 } 256 /* 257 * In case the kernel has a bug and requests a permission 258 * between num_perms and the maximum permission number, we 259 * should audit that denial 260 */ 261 for (; i < (sizeof(u32)*8); i++) 262 result |= 1<<i; 263 avd->auditdeny = result; 264 } 265 } 266 267 int security_mls_enabled(void) 268 { 269 return policydb.mls_enabled; 270 } 271 272 /* 273 * Return the boolean value of a constraint expression 274 * when it is applied to the specified source and target 275 * security contexts. 276 * 277 * xcontext is a special beast... It is used by the validatetrans rules 278 * only. For these rules, scontext is the context before the transition, 279 * tcontext is the context after the transition, and xcontext is the context 280 * of the process performing the transition. All other callers of 281 * constraint_expr_eval should pass in NULL for xcontext. 282 */ 283 static int constraint_expr_eval(struct context *scontext, 284 struct context *tcontext, 285 struct context *xcontext, 286 struct constraint_expr *cexpr) 287 { 288 u32 val1, val2; 289 struct context *c; 290 struct role_datum *r1, *r2; 291 struct mls_level *l1, *l2; 292 struct constraint_expr *e; 293 int s[CEXPR_MAXDEPTH]; 294 int sp = -1; 295 296 for (e = cexpr; e; e = e->next) { 297 switch (e->expr_type) { 298 case CEXPR_NOT: 299 BUG_ON(sp < 0); 300 s[sp] = !s[sp]; 301 break; 302 case CEXPR_AND: 303 BUG_ON(sp < 1); 304 sp--; 305 s[sp] &= s[sp + 1]; 306 break; 307 case CEXPR_OR: 308 BUG_ON(sp < 1); 309 sp--; 310 s[sp] |= s[sp + 1]; 311 break; 312 case CEXPR_ATTR: 313 if (sp == (CEXPR_MAXDEPTH - 1)) 314 return 0; 315 switch (e->attr) { 316 case CEXPR_USER: 317 val1 = scontext->user; 318 val2 = tcontext->user; 319 break; 320 case CEXPR_TYPE: 321 val1 = scontext->type; 322 val2 = tcontext->type; 323 break; 324 case CEXPR_ROLE: 325 val1 = scontext->role; 326 val2 = tcontext->role; 327 r1 = policydb.role_val_to_struct[val1 - 1]; 328 r2 = policydb.role_val_to_struct[val2 - 1]; 329 switch (e->op) { 330 case CEXPR_DOM: 331 s[++sp] = ebitmap_get_bit(&r1->dominates, 332 val2 - 1); 333 continue; 334 case CEXPR_DOMBY: 335 s[++sp] = ebitmap_get_bit(&r2->dominates, 336 val1 - 1); 337 continue; 338 case CEXPR_INCOMP: 339 s[++sp] = (!ebitmap_get_bit(&r1->dominates, 340 val2 - 1) && 341 !ebitmap_get_bit(&r2->dominates, 342 val1 - 1)); 343 continue; 344 default: 345 break; 346 } 347 break; 348 case CEXPR_L1L2: 349 l1 = &(scontext->range.level[0]); 350 l2 = &(tcontext->range.level[0]); 351 goto mls_ops; 352 case CEXPR_L1H2: 353 l1 = &(scontext->range.level[0]); 354 l2 = &(tcontext->range.level[1]); 355 goto mls_ops; 356 case CEXPR_H1L2: 357 l1 = &(scontext->range.level[1]); 358 l2 = &(tcontext->range.level[0]); 359 goto mls_ops; 360 case CEXPR_H1H2: 361 l1 = &(scontext->range.level[1]); 362 l2 = &(tcontext->range.level[1]); 363 goto mls_ops; 364 case CEXPR_L1H1: 365 l1 = &(scontext->range.level[0]); 366 l2 = &(scontext->range.level[1]); 367 goto mls_ops; 368 case CEXPR_L2H2: 369 l1 = &(tcontext->range.level[0]); 370 l2 = &(tcontext->range.level[1]); 371 goto mls_ops; 372 mls_ops: 373 switch (e->op) { 374 case CEXPR_EQ: 375 s[++sp] = mls_level_eq(l1, l2); 376 continue; 377 case CEXPR_NEQ: 378 s[++sp] = !mls_level_eq(l1, l2); 379 continue; 380 case CEXPR_DOM: 381 s[++sp] = mls_level_dom(l1, l2); 382 continue; 383 case CEXPR_DOMBY: 384 s[++sp] = mls_level_dom(l2, l1); 385 continue; 386 case CEXPR_INCOMP: 387 s[++sp] = mls_level_incomp(l2, l1); 388 continue; 389 default: 390 BUG(); 391 return 0; 392 } 393 break; 394 default: 395 BUG(); 396 return 0; 397 } 398 399 switch (e->op) { 400 case CEXPR_EQ: 401 s[++sp] = (val1 == val2); 402 break; 403 case CEXPR_NEQ: 404 s[++sp] = (val1 != val2); 405 break; 406 default: 407 BUG(); 408 return 0; 409 } 410 break; 411 case CEXPR_NAMES: 412 if (sp == (CEXPR_MAXDEPTH-1)) 413 return 0; 414 c = scontext; 415 if (e->attr & CEXPR_TARGET) 416 c = tcontext; 417 else if (e->attr & CEXPR_XTARGET) { 418 c = xcontext; 419 if (!c) { 420 BUG(); 421 return 0; 422 } 423 } 424 if (e->attr & CEXPR_USER) 425 val1 = c->user; 426 else if (e->attr & CEXPR_ROLE) 427 val1 = c->role; 428 else if (e->attr & CEXPR_TYPE) 429 val1 = c->type; 430 else { 431 BUG(); 432 return 0; 433 } 434 435 switch (e->op) { 436 case CEXPR_EQ: 437 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1); 438 break; 439 case CEXPR_NEQ: 440 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1); 441 break; 442 default: 443 BUG(); 444 return 0; 445 } 446 break; 447 default: 448 BUG(); 449 return 0; 450 } 451 } 452 453 BUG_ON(sp != 0); 454 return s[0]; 455 } 456 457 /* 458 * security_dump_masked_av - dumps masked permissions during 459 * security_compute_av due to RBAC, MLS/Constraint and Type bounds. 460 */ 461 static int dump_masked_av_helper(void *k, void *d, void *args) 462 { 463 struct perm_datum *pdatum = d; 464 char **permission_names = args; 465 466 BUG_ON(pdatum->value < 1 || pdatum->value > 32); 467 468 permission_names[pdatum->value - 1] = (char *)k; 469 470 return 0; 471 } 472 473 static void security_dump_masked_av(struct context *scontext, 474 struct context *tcontext, 475 u16 tclass, 476 u32 permissions, 477 const char *reason) 478 { 479 struct common_datum *common_dat; 480 struct class_datum *tclass_dat; 481 struct audit_buffer *ab; 482 char *tclass_name; 483 char *scontext_name = NULL; 484 char *tcontext_name = NULL; 485 char *permission_names[32]; 486 int index; 487 u32 length; 488 bool need_comma = false; 489 490 if (!permissions) 491 return; 492 493 tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1); 494 tclass_dat = policydb.class_val_to_struct[tclass - 1]; 495 common_dat = tclass_dat->comdatum; 496 497 /* init permission_names */ 498 if (common_dat && 499 hashtab_map(common_dat->permissions.table, 500 dump_masked_av_helper, permission_names) < 0) 501 goto out; 502 503 if (hashtab_map(tclass_dat->permissions.table, 504 dump_masked_av_helper, permission_names) < 0) 505 goto out; 506 507 /* get scontext/tcontext in text form */ 508 if (context_struct_to_string(scontext, 509 &scontext_name, &length) < 0) 510 goto out; 511 512 if (context_struct_to_string(tcontext, 513 &tcontext_name, &length) < 0) 514 goto out; 515 516 /* audit a message */ 517 ab = audit_log_start(current->audit_context, 518 GFP_ATOMIC, AUDIT_SELINUX_ERR); 519 if (!ab) 520 goto out; 521 522 audit_log_format(ab, "op=security_compute_av reason=%s " 523 "scontext=%s tcontext=%s tclass=%s perms=", 524 reason, scontext_name, tcontext_name, tclass_name); 525 526 for (index = 0; index < 32; index++) { 527 u32 mask = (1 << index); 528 529 if ((mask & permissions) == 0) 530 continue; 531 532 audit_log_format(ab, "%s%s", 533 need_comma ? "," : "", 534 permission_names[index] 535 ? permission_names[index] : "????"); 536 need_comma = true; 537 } 538 audit_log_end(ab); 539 out: 540 /* release scontext/tcontext */ 541 kfree(tcontext_name); 542 kfree(scontext_name); 543 544 return; 545 } 546 547 /* 548 * security_boundary_permission - drops violated permissions 549 * on boundary constraint. 550 */ 551 static void type_attribute_bounds_av(struct context *scontext, 552 struct context *tcontext, 553 u16 tclass, 554 struct av_decision *avd) 555 { 556 struct context lo_scontext; 557 struct context lo_tcontext, *tcontextp = tcontext; 558 struct av_decision lo_avd; 559 struct type_datum *source; 560 struct type_datum *target; 561 u32 masked = 0; 562 563 source = flex_array_get_ptr(policydb.type_val_to_struct_array, 564 scontext->type - 1); 565 BUG_ON(!source); 566 567 if (!source->bounds) 568 return; 569 570 target = flex_array_get_ptr(policydb.type_val_to_struct_array, 571 tcontext->type - 1); 572 BUG_ON(!target); 573 574 memset(&lo_avd, 0, sizeof(lo_avd)); 575 576 memcpy(&lo_scontext, scontext, sizeof(lo_scontext)); 577 lo_scontext.type = source->bounds; 578 579 if (target->bounds) { 580 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext)); 581 lo_tcontext.type = target->bounds; 582 tcontextp = &lo_tcontext; 583 } 584 585 context_struct_compute_av(&lo_scontext, 586 tcontextp, 587 tclass, 588 &lo_avd, 589 NULL); 590 591 masked = ~lo_avd.allowed & avd->allowed; 592 593 if (likely(!masked)) 594 return; /* no masked permission */ 595 596 /* mask violated permissions */ 597 avd->allowed &= ~masked; 598 599 /* audit masked permissions */ 600 security_dump_masked_av(scontext, tcontext, 601 tclass, masked, "bounds"); 602 } 603 604 /* 605 * flag which drivers have permissions 606 * only looking for ioctl based extended permssions 607 */ 608 void services_compute_xperms_drivers( 609 struct extended_perms *xperms, 610 struct avtab_node *node) 611 { 612 unsigned int i; 613 614 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) { 615 /* if one or more driver has all permissions allowed */ 616 for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++) 617 xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i]; 618 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) { 619 /* if allowing permissions within a driver */ 620 security_xperm_set(xperms->drivers.p, 621 node->datum.u.xperms->driver); 622 } 623 624 /* If no ioctl commands are allowed, ignore auditallow and auditdeny */ 625 if (node->key.specified & AVTAB_XPERMS_ALLOWED) 626 xperms->len = 1; 627 } 628 629 /* 630 * Compute access vectors and extended permissions based on a context 631 * structure pair for the permissions in a particular class. 632 */ 633 static void context_struct_compute_av(struct context *scontext, 634 struct context *tcontext, 635 u16 tclass, 636 struct av_decision *avd, 637 struct extended_perms *xperms) 638 { 639 struct constraint_node *constraint; 640 struct role_allow *ra; 641 struct avtab_key avkey; 642 struct avtab_node *node; 643 struct class_datum *tclass_datum; 644 struct ebitmap *sattr, *tattr; 645 struct ebitmap_node *snode, *tnode; 646 unsigned int i, j; 647 648 avd->allowed = 0; 649 avd->auditallow = 0; 650 avd->auditdeny = 0xffffffff; 651 if (xperms) { 652 memset(&xperms->drivers, 0, sizeof(xperms->drivers)); 653 xperms->len = 0; 654 } 655 656 if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) { 657 if (printk_ratelimit()) 658 printk(KERN_WARNING "SELinux: Invalid class %hu\n", tclass); 659 return; 660 } 661 662 tclass_datum = policydb.class_val_to_struct[tclass - 1]; 663 664 /* 665 * If a specific type enforcement rule was defined for 666 * this permission check, then use it. 667 */ 668 avkey.target_class = tclass; 669 avkey.specified = AVTAB_AV | AVTAB_XPERMS; 670 sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1); 671 BUG_ON(!sattr); 672 tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1); 673 BUG_ON(!tattr); 674 ebitmap_for_each_positive_bit(sattr, snode, i) { 675 ebitmap_for_each_positive_bit(tattr, tnode, j) { 676 avkey.source_type = i + 1; 677 avkey.target_type = j + 1; 678 for (node = avtab_search_node(&policydb.te_avtab, &avkey); 679 node; 680 node = avtab_search_node_next(node, avkey.specified)) { 681 if (node->key.specified == AVTAB_ALLOWED) 682 avd->allowed |= node->datum.u.data; 683 else if (node->key.specified == AVTAB_AUDITALLOW) 684 avd->auditallow |= node->datum.u.data; 685 else if (node->key.specified == AVTAB_AUDITDENY) 686 avd->auditdeny &= node->datum.u.data; 687 else if (xperms && (node->key.specified & AVTAB_XPERMS)) 688 services_compute_xperms_drivers(xperms, node); 689 } 690 691 /* Check conditional av table for additional permissions */ 692 cond_compute_av(&policydb.te_cond_avtab, &avkey, 693 avd, xperms); 694 695 } 696 } 697 698 /* 699 * Remove any permissions prohibited by a constraint (this includes 700 * the MLS policy). 701 */ 702 constraint = tclass_datum->constraints; 703 while (constraint) { 704 if ((constraint->permissions & (avd->allowed)) && 705 !constraint_expr_eval(scontext, tcontext, NULL, 706 constraint->expr)) { 707 avd->allowed &= ~(constraint->permissions); 708 } 709 constraint = constraint->next; 710 } 711 712 /* 713 * If checking process transition permission and the 714 * role is changing, then check the (current_role, new_role) 715 * pair. 716 */ 717 if (tclass == policydb.process_class && 718 (avd->allowed & policydb.process_trans_perms) && 719 scontext->role != tcontext->role) { 720 for (ra = policydb.role_allow; ra; ra = ra->next) { 721 if (scontext->role == ra->role && 722 tcontext->role == ra->new_role) 723 break; 724 } 725 if (!ra) 726 avd->allowed &= ~policydb.process_trans_perms; 727 } 728 729 /* 730 * If the given source and target types have boundary 731 * constraint, lazy checks have to mask any violated 732 * permission and notice it to userspace via audit. 733 */ 734 type_attribute_bounds_av(scontext, tcontext, 735 tclass, avd); 736 } 737 738 static int security_validtrans_handle_fail(struct context *ocontext, 739 struct context *ncontext, 740 struct context *tcontext, 741 u16 tclass) 742 { 743 char *o = NULL, *n = NULL, *t = NULL; 744 u32 olen, nlen, tlen; 745 746 if (context_struct_to_string(ocontext, &o, &olen)) 747 goto out; 748 if (context_struct_to_string(ncontext, &n, &nlen)) 749 goto out; 750 if (context_struct_to_string(tcontext, &t, &tlen)) 751 goto out; 752 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR, 753 "op=security_validate_transition seresult=denied" 754 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s", 755 o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1)); 756 out: 757 kfree(o); 758 kfree(n); 759 kfree(t); 760 761 if (!selinux_enforcing) 762 return 0; 763 return -EPERM; 764 } 765 766 static int security_compute_validatetrans(u32 oldsid, u32 newsid, u32 tasksid, 767 u16 orig_tclass, bool user) 768 { 769 struct context *ocontext; 770 struct context *ncontext; 771 struct context *tcontext; 772 struct class_datum *tclass_datum; 773 struct constraint_node *constraint; 774 u16 tclass; 775 int rc = 0; 776 777 if (!ss_initialized) 778 return 0; 779 780 read_lock(&policy_rwlock); 781 782 if (!user) 783 tclass = unmap_class(orig_tclass); 784 else 785 tclass = orig_tclass; 786 787 if (!tclass || tclass > policydb.p_classes.nprim) { 788 rc = -EINVAL; 789 goto out; 790 } 791 tclass_datum = policydb.class_val_to_struct[tclass - 1]; 792 793 ocontext = sidtab_search(&sidtab, oldsid); 794 if (!ocontext) { 795 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 796 __func__, oldsid); 797 rc = -EINVAL; 798 goto out; 799 } 800 801 ncontext = sidtab_search(&sidtab, newsid); 802 if (!ncontext) { 803 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 804 __func__, newsid); 805 rc = -EINVAL; 806 goto out; 807 } 808 809 tcontext = sidtab_search(&sidtab, tasksid); 810 if (!tcontext) { 811 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 812 __func__, tasksid); 813 rc = -EINVAL; 814 goto out; 815 } 816 817 constraint = tclass_datum->validatetrans; 818 while (constraint) { 819 if (!constraint_expr_eval(ocontext, ncontext, tcontext, 820 constraint->expr)) { 821 if (user) 822 rc = -EPERM; 823 else 824 rc = security_validtrans_handle_fail(ocontext, 825 ncontext, 826 tcontext, 827 tclass); 828 goto out; 829 } 830 constraint = constraint->next; 831 } 832 833 out: 834 read_unlock(&policy_rwlock); 835 return rc; 836 } 837 838 int security_validate_transition_user(u32 oldsid, u32 newsid, u32 tasksid, 839 u16 tclass) 840 { 841 return security_compute_validatetrans(oldsid, newsid, tasksid, 842 tclass, true); 843 } 844 845 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid, 846 u16 orig_tclass) 847 { 848 return security_compute_validatetrans(oldsid, newsid, tasksid, 849 orig_tclass, false); 850 } 851 852 /* 853 * security_bounded_transition - check whether the given 854 * transition is directed to bounded, or not. 855 * It returns 0, if @newsid is bounded by @oldsid. 856 * Otherwise, it returns error code. 857 * 858 * @oldsid : current security identifier 859 * @newsid : destinated security identifier 860 */ 861 int security_bounded_transition(u32 old_sid, u32 new_sid) 862 { 863 struct context *old_context, *new_context; 864 struct type_datum *type; 865 int index; 866 int rc; 867 868 read_lock(&policy_rwlock); 869 870 rc = -EINVAL; 871 old_context = sidtab_search(&sidtab, old_sid); 872 if (!old_context) { 873 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n", 874 __func__, old_sid); 875 goto out; 876 } 877 878 rc = -EINVAL; 879 new_context = sidtab_search(&sidtab, new_sid); 880 if (!new_context) { 881 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n", 882 __func__, new_sid); 883 goto out; 884 } 885 886 rc = 0; 887 /* type/domain unchanged */ 888 if (old_context->type == new_context->type) 889 goto out; 890 891 index = new_context->type; 892 while (true) { 893 type = flex_array_get_ptr(policydb.type_val_to_struct_array, 894 index - 1); 895 BUG_ON(!type); 896 897 /* not bounded anymore */ 898 rc = -EPERM; 899 if (!type->bounds) 900 break; 901 902 /* @newsid is bounded by @oldsid */ 903 rc = 0; 904 if (type->bounds == old_context->type) 905 break; 906 907 index = type->bounds; 908 } 909 910 if (rc) { 911 char *old_name = NULL; 912 char *new_name = NULL; 913 u32 length; 914 915 if (!context_struct_to_string(old_context, 916 &old_name, &length) && 917 !context_struct_to_string(new_context, 918 &new_name, &length)) { 919 audit_log(current->audit_context, 920 GFP_ATOMIC, AUDIT_SELINUX_ERR, 921 "op=security_bounded_transition " 922 "seresult=denied " 923 "oldcontext=%s newcontext=%s", 924 old_name, new_name); 925 } 926 kfree(new_name); 927 kfree(old_name); 928 } 929 out: 930 read_unlock(&policy_rwlock); 931 932 return rc; 933 } 934 935 static void avd_init(struct av_decision *avd) 936 { 937 avd->allowed = 0; 938 avd->auditallow = 0; 939 avd->auditdeny = 0xffffffff; 940 avd->seqno = latest_granting; 941 avd->flags = 0; 942 } 943 944 void services_compute_xperms_decision(struct extended_perms_decision *xpermd, 945 struct avtab_node *node) 946 { 947 unsigned int i; 948 949 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) { 950 if (xpermd->driver != node->datum.u.xperms->driver) 951 return; 952 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) { 953 if (!security_xperm_test(node->datum.u.xperms->perms.p, 954 xpermd->driver)) 955 return; 956 } else { 957 BUG(); 958 } 959 960 if (node->key.specified == AVTAB_XPERMS_ALLOWED) { 961 xpermd->used |= XPERMS_ALLOWED; 962 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) { 963 memset(xpermd->allowed->p, 0xff, 964 sizeof(xpermd->allowed->p)); 965 } 966 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) { 967 for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++) 968 xpermd->allowed->p[i] |= 969 node->datum.u.xperms->perms.p[i]; 970 } 971 } else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) { 972 xpermd->used |= XPERMS_AUDITALLOW; 973 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) { 974 memset(xpermd->auditallow->p, 0xff, 975 sizeof(xpermd->auditallow->p)); 976 } 977 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) { 978 for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++) 979 xpermd->auditallow->p[i] |= 980 node->datum.u.xperms->perms.p[i]; 981 } 982 } else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) { 983 xpermd->used |= XPERMS_DONTAUDIT; 984 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) { 985 memset(xpermd->dontaudit->p, 0xff, 986 sizeof(xpermd->dontaudit->p)); 987 } 988 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) { 989 for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++) 990 xpermd->dontaudit->p[i] |= 991 node->datum.u.xperms->perms.p[i]; 992 } 993 } else { 994 BUG(); 995 } 996 } 997 998 void security_compute_xperms_decision(u32 ssid, 999 u32 tsid, 1000 u16 orig_tclass, 1001 u8 driver, 1002 struct extended_perms_decision *xpermd) 1003 { 1004 u16 tclass; 1005 struct context *scontext, *tcontext; 1006 struct avtab_key avkey; 1007 struct avtab_node *node; 1008 struct ebitmap *sattr, *tattr; 1009 struct ebitmap_node *snode, *tnode; 1010 unsigned int i, j; 1011 1012 xpermd->driver = driver; 1013 xpermd->used = 0; 1014 memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p)); 1015 memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p)); 1016 memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p)); 1017 1018 read_lock(&policy_rwlock); 1019 if (!ss_initialized) 1020 goto allow; 1021 1022 scontext = sidtab_search(&sidtab, ssid); 1023 if (!scontext) { 1024 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 1025 __func__, ssid); 1026 goto out; 1027 } 1028 1029 tcontext = sidtab_search(&sidtab, tsid); 1030 if (!tcontext) { 1031 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 1032 __func__, tsid); 1033 goto out; 1034 } 1035 1036 tclass = unmap_class(orig_tclass); 1037 if (unlikely(orig_tclass && !tclass)) { 1038 if (policydb.allow_unknown) 1039 goto allow; 1040 goto out; 1041 } 1042 1043 1044 if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) { 1045 pr_warn_ratelimited("SELinux: Invalid class %hu\n", tclass); 1046 goto out; 1047 } 1048 1049 avkey.target_class = tclass; 1050 avkey.specified = AVTAB_XPERMS; 1051 sattr = flex_array_get(policydb.type_attr_map_array, 1052 scontext->type - 1); 1053 BUG_ON(!sattr); 1054 tattr = flex_array_get(policydb.type_attr_map_array, 1055 tcontext->type - 1); 1056 BUG_ON(!tattr); 1057 ebitmap_for_each_positive_bit(sattr, snode, i) { 1058 ebitmap_for_each_positive_bit(tattr, tnode, j) { 1059 avkey.source_type = i + 1; 1060 avkey.target_type = j + 1; 1061 for (node = avtab_search_node(&policydb.te_avtab, &avkey); 1062 node; 1063 node = avtab_search_node_next(node, avkey.specified)) 1064 services_compute_xperms_decision(xpermd, node); 1065 1066 cond_compute_xperms(&policydb.te_cond_avtab, 1067 &avkey, xpermd); 1068 } 1069 } 1070 out: 1071 read_unlock(&policy_rwlock); 1072 return; 1073 allow: 1074 memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p)); 1075 goto out; 1076 } 1077 1078 /** 1079 * security_compute_av - Compute access vector decisions. 1080 * @ssid: source security identifier 1081 * @tsid: target security identifier 1082 * @tclass: target security class 1083 * @avd: access vector decisions 1084 * @xperms: extended permissions 1085 * 1086 * Compute a set of access vector decisions based on the 1087 * SID pair (@ssid, @tsid) for the permissions in @tclass. 1088 */ 1089 void security_compute_av(u32 ssid, 1090 u32 tsid, 1091 u16 orig_tclass, 1092 struct av_decision *avd, 1093 struct extended_perms *xperms) 1094 { 1095 u16 tclass; 1096 struct context *scontext = NULL, *tcontext = NULL; 1097 1098 read_lock(&policy_rwlock); 1099 avd_init(avd); 1100 xperms->len = 0; 1101 if (!ss_initialized) 1102 goto allow; 1103 1104 scontext = sidtab_search(&sidtab, ssid); 1105 if (!scontext) { 1106 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 1107 __func__, ssid); 1108 goto out; 1109 } 1110 1111 /* permissive domain? */ 1112 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type)) 1113 avd->flags |= AVD_FLAGS_PERMISSIVE; 1114 1115 tcontext = sidtab_search(&sidtab, tsid); 1116 if (!tcontext) { 1117 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 1118 __func__, tsid); 1119 goto out; 1120 } 1121 1122 tclass = unmap_class(orig_tclass); 1123 if (unlikely(orig_tclass && !tclass)) { 1124 if (policydb.allow_unknown) 1125 goto allow; 1126 goto out; 1127 } 1128 context_struct_compute_av(scontext, tcontext, tclass, avd, xperms); 1129 map_decision(orig_tclass, avd, policydb.allow_unknown); 1130 out: 1131 read_unlock(&policy_rwlock); 1132 return; 1133 allow: 1134 avd->allowed = 0xffffffff; 1135 goto out; 1136 } 1137 1138 void security_compute_av_user(u32 ssid, 1139 u32 tsid, 1140 u16 tclass, 1141 struct av_decision *avd) 1142 { 1143 struct context *scontext = NULL, *tcontext = NULL; 1144 1145 read_lock(&policy_rwlock); 1146 avd_init(avd); 1147 if (!ss_initialized) 1148 goto allow; 1149 1150 scontext = sidtab_search(&sidtab, ssid); 1151 if (!scontext) { 1152 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 1153 __func__, ssid); 1154 goto out; 1155 } 1156 1157 /* permissive domain? */ 1158 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type)) 1159 avd->flags |= AVD_FLAGS_PERMISSIVE; 1160 1161 tcontext = sidtab_search(&sidtab, tsid); 1162 if (!tcontext) { 1163 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 1164 __func__, tsid); 1165 goto out; 1166 } 1167 1168 if (unlikely(!tclass)) { 1169 if (policydb.allow_unknown) 1170 goto allow; 1171 goto out; 1172 } 1173 1174 context_struct_compute_av(scontext, tcontext, tclass, avd, NULL); 1175 out: 1176 read_unlock(&policy_rwlock); 1177 return; 1178 allow: 1179 avd->allowed = 0xffffffff; 1180 goto out; 1181 } 1182 1183 /* 1184 * Write the security context string representation of 1185 * the context structure `context' into a dynamically 1186 * allocated string of the correct size. Set `*scontext' 1187 * to point to this string and set `*scontext_len' to 1188 * the length of the string. 1189 */ 1190 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len) 1191 { 1192 char *scontextp; 1193 1194 if (scontext) 1195 *scontext = NULL; 1196 *scontext_len = 0; 1197 1198 if (context->len) { 1199 *scontext_len = context->len; 1200 if (scontext) { 1201 *scontext = kstrdup(context->str, GFP_ATOMIC); 1202 if (!(*scontext)) 1203 return -ENOMEM; 1204 } 1205 return 0; 1206 } 1207 1208 /* Compute the size of the context. */ 1209 *scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1; 1210 *scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1; 1211 *scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1; 1212 *scontext_len += mls_compute_context_len(context); 1213 1214 if (!scontext) 1215 return 0; 1216 1217 /* Allocate space for the context; caller must free this space. */ 1218 scontextp = kmalloc(*scontext_len, GFP_ATOMIC); 1219 if (!scontextp) 1220 return -ENOMEM; 1221 *scontext = scontextp; 1222 1223 /* 1224 * Copy the user name, role name and type name into the context. 1225 */ 1226 scontextp += sprintf(scontextp, "%s:%s:%s", 1227 sym_name(&policydb, SYM_USERS, context->user - 1), 1228 sym_name(&policydb, SYM_ROLES, context->role - 1), 1229 sym_name(&policydb, SYM_TYPES, context->type - 1)); 1230 1231 mls_sid_to_context(context, &scontextp); 1232 1233 *scontextp = 0; 1234 1235 return 0; 1236 } 1237 1238 #include "initial_sid_to_string.h" 1239 1240 const char *security_get_initial_sid_context(u32 sid) 1241 { 1242 if (unlikely(sid > SECINITSID_NUM)) 1243 return NULL; 1244 return initial_sid_to_string[sid]; 1245 } 1246 1247 static int security_sid_to_context_core(u32 sid, char **scontext, 1248 u32 *scontext_len, int force) 1249 { 1250 struct context *context; 1251 int rc = 0; 1252 1253 if (scontext) 1254 *scontext = NULL; 1255 *scontext_len = 0; 1256 1257 if (!ss_initialized) { 1258 if (sid <= SECINITSID_NUM) { 1259 char *scontextp; 1260 1261 *scontext_len = strlen(initial_sid_to_string[sid]) + 1; 1262 if (!scontext) 1263 goto out; 1264 scontextp = kmemdup(initial_sid_to_string[sid], 1265 *scontext_len, GFP_ATOMIC); 1266 if (!scontextp) { 1267 rc = -ENOMEM; 1268 goto out; 1269 } 1270 *scontext = scontextp; 1271 goto out; 1272 } 1273 printk(KERN_ERR "SELinux: %s: called before initial " 1274 "load_policy on unknown SID %d\n", __func__, sid); 1275 rc = -EINVAL; 1276 goto out; 1277 } 1278 read_lock(&policy_rwlock); 1279 if (force) 1280 context = sidtab_search_force(&sidtab, sid); 1281 else 1282 context = sidtab_search(&sidtab, sid); 1283 if (!context) { 1284 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 1285 __func__, sid); 1286 rc = -EINVAL; 1287 goto out_unlock; 1288 } 1289 rc = context_struct_to_string(context, scontext, scontext_len); 1290 out_unlock: 1291 read_unlock(&policy_rwlock); 1292 out: 1293 return rc; 1294 1295 } 1296 1297 /** 1298 * security_sid_to_context - Obtain a context for a given SID. 1299 * @sid: security identifier, SID 1300 * @scontext: security context 1301 * @scontext_len: length in bytes 1302 * 1303 * Write the string representation of the context associated with @sid 1304 * into a dynamically allocated string of the correct size. Set @scontext 1305 * to point to this string and set @scontext_len to the length of the string. 1306 */ 1307 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len) 1308 { 1309 return security_sid_to_context_core(sid, scontext, scontext_len, 0); 1310 } 1311 1312 int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len) 1313 { 1314 return security_sid_to_context_core(sid, scontext, scontext_len, 1); 1315 } 1316 1317 /* 1318 * Caveat: Mutates scontext. 1319 */ 1320 static int string_to_context_struct(struct policydb *pol, 1321 struct sidtab *sidtabp, 1322 char *scontext, 1323 u32 scontext_len, 1324 struct context *ctx, 1325 u32 def_sid) 1326 { 1327 struct role_datum *role; 1328 struct type_datum *typdatum; 1329 struct user_datum *usrdatum; 1330 char *scontextp, *p, oldc; 1331 int rc = 0; 1332 1333 context_init(ctx); 1334 1335 /* Parse the security context. */ 1336 1337 rc = -EINVAL; 1338 scontextp = (char *) scontext; 1339 1340 /* Extract the user. */ 1341 p = scontextp; 1342 while (*p && *p != ':') 1343 p++; 1344 1345 if (*p == 0) 1346 goto out; 1347 1348 *p++ = 0; 1349 1350 usrdatum = hashtab_search(pol->p_users.table, scontextp); 1351 if (!usrdatum) 1352 goto out; 1353 1354 ctx->user = usrdatum->value; 1355 1356 /* Extract role. */ 1357 scontextp = p; 1358 while (*p && *p != ':') 1359 p++; 1360 1361 if (*p == 0) 1362 goto out; 1363 1364 *p++ = 0; 1365 1366 role = hashtab_search(pol->p_roles.table, scontextp); 1367 if (!role) 1368 goto out; 1369 ctx->role = role->value; 1370 1371 /* Extract type. */ 1372 scontextp = p; 1373 while (*p && *p != ':') 1374 p++; 1375 oldc = *p; 1376 *p++ = 0; 1377 1378 typdatum = hashtab_search(pol->p_types.table, scontextp); 1379 if (!typdatum || typdatum->attribute) 1380 goto out; 1381 1382 ctx->type = typdatum->value; 1383 1384 rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid); 1385 if (rc) 1386 goto out; 1387 1388 rc = -EINVAL; 1389 if ((p - scontext) < scontext_len) 1390 goto out; 1391 1392 /* Check the validity of the new context. */ 1393 if (!policydb_context_isvalid(pol, ctx)) 1394 goto out; 1395 rc = 0; 1396 out: 1397 if (rc) 1398 context_destroy(ctx); 1399 return rc; 1400 } 1401 1402 static int security_context_to_sid_core(const char *scontext, u32 scontext_len, 1403 u32 *sid, u32 def_sid, gfp_t gfp_flags, 1404 int force) 1405 { 1406 char *scontext2, *str = NULL; 1407 struct context context; 1408 int rc = 0; 1409 1410 /* An empty security context is never valid. */ 1411 if (!scontext_len) 1412 return -EINVAL; 1413 1414 if (!ss_initialized) { 1415 int i; 1416 1417 for (i = 1; i < SECINITSID_NUM; i++) { 1418 if (!strcmp(initial_sid_to_string[i], scontext)) { 1419 *sid = i; 1420 return 0; 1421 } 1422 } 1423 *sid = SECINITSID_KERNEL; 1424 return 0; 1425 } 1426 *sid = SECSID_NULL; 1427 1428 /* Copy the string so that we can modify the copy as we parse it. */ 1429 scontext2 = kmalloc(scontext_len + 1, gfp_flags); 1430 if (!scontext2) 1431 return -ENOMEM; 1432 memcpy(scontext2, scontext, scontext_len); 1433 scontext2[scontext_len] = 0; 1434 1435 if (force) { 1436 /* Save another copy for storing in uninterpreted form */ 1437 rc = -ENOMEM; 1438 str = kstrdup(scontext2, gfp_flags); 1439 if (!str) 1440 goto out; 1441 } 1442 1443 read_lock(&policy_rwlock); 1444 rc = string_to_context_struct(&policydb, &sidtab, scontext2, 1445 scontext_len, &context, def_sid); 1446 if (rc == -EINVAL && force) { 1447 context.str = str; 1448 context.len = scontext_len; 1449 str = NULL; 1450 } else if (rc) 1451 goto out_unlock; 1452 rc = sidtab_context_to_sid(&sidtab, &context, sid); 1453 context_destroy(&context); 1454 out_unlock: 1455 read_unlock(&policy_rwlock); 1456 out: 1457 kfree(scontext2); 1458 kfree(str); 1459 return rc; 1460 } 1461 1462 /** 1463 * security_context_to_sid - Obtain a SID for a given security context. 1464 * @scontext: security context 1465 * @scontext_len: length in bytes 1466 * @sid: security identifier, SID 1467 * @gfp: context for the allocation 1468 * 1469 * Obtains a SID associated with the security context that 1470 * has the string representation specified by @scontext. 1471 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient 1472 * memory is available, or 0 on success. 1473 */ 1474 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid, 1475 gfp_t gfp) 1476 { 1477 return security_context_to_sid_core(scontext, scontext_len, 1478 sid, SECSID_NULL, gfp, 0); 1479 } 1480 1481 int security_context_str_to_sid(const char *scontext, u32 *sid, gfp_t gfp) 1482 { 1483 return security_context_to_sid(scontext, strlen(scontext), sid, gfp); 1484 } 1485 1486 /** 1487 * security_context_to_sid_default - Obtain a SID for a given security context, 1488 * falling back to specified default if needed. 1489 * 1490 * @scontext: security context 1491 * @scontext_len: length in bytes 1492 * @sid: security identifier, SID 1493 * @def_sid: default SID to assign on error 1494 * 1495 * Obtains a SID associated with the security context that 1496 * has the string representation specified by @scontext. 1497 * The default SID is passed to the MLS layer to be used to allow 1498 * kernel labeling of the MLS field if the MLS field is not present 1499 * (for upgrading to MLS without full relabel). 1500 * Implicitly forces adding of the context even if it cannot be mapped yet. 1501 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient 1502 * memory is available, or 0 on success. 1503 */ 1504 int security_context_to_sid_default(const char *scontext, u32 scontext_len, 1505 u32 *sid, u32 def_sid, gfp_t gfp_flags) 1506 { 1507 return security_context_to_sid_core(scontext, scontext_len, 1508 sid, def_sid, gfp_flags, 1); 1509 } 1510 1511 int security_context_to_sid_force(const char *scontext, u32 scontext_len, 1512 u32 *sid) 1513 { 1514 return security_context_to_sid_core(scontext, scontext_len, 1515 sid, SECSID_NULL, GFP_KERNEL, 1); 1516 } 1517 1518 static int compute_sid_handle_invalid_context( 1519 struct context *scontext, 1520 struct context *tcontext, 1521 u16 tclass, 1522 struct context *newcontext) 1523 { 1524 char *s = NULL, *t = NULL, *n = NULL; 1525 u32 slen, tlen, nlen; 1526 1527 if (context_struct_to_string(scontext, &s, &slen)) 1528 goto out; 1529 if (context_struct_to_string(tcontext, &t, &tlen)) 1530 goto out; 1531 if (context_struct_to_string(newcontext, &n, &nlen)) 1532 goto out; 1533 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR, 1534 "op=security_compute_sid invalid_context=%s" 1535 " scontext=%s" 1536 " tcontext=%s" 1537 " tclass=%s", 1538 n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1)); 1539 out: 1540 kfree(s); 1541 kfree(t); 1542 kfree(n); 1543 if (!selinux_enforcing) 1544 return 0; 1545 return -EACCES; 1546 } 1547 1548 static void filename_compute_type(struct policydb *p, struct context *newcontext, 1549 u32 stype, u32 ttype, u16 tclass, 1550 const char *objname) 1551 { 1552 struct filename_trans ft; 1553 struct filename_trans_datum *otype; 1554 1555 /* 1556 * Most filename trans rules are going to live in specific directories 1557 * like /dev or /var/run. This bitmap will quickly skip rule searches 1558 * if the ttype does not contain any rules. 1559 */ 1560 if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype)) 1561 return; 1562 1563 ft.stype = stype; 1564 ft.ttype = ttype; 1565 ft.tclass = tclass; 1566 ft.name = objname; 1567 1568 otype = hashtab_search(p->filename_trans, &ft); 1569 if (otype) 1570 newcontext->type = otype->otype; 1571 } 1572 1573 static int security_compute_sid(u32 ssid, 1574 u32 tsid, 1575 u16 orig_tclass, 1576 u32 specified, 1577 const char *objname, 1578 u32 *out_sid, 1579 bool kern) 1580 { 1581 struct class_datum *cladatum = NULL; 1582 struct context *scontext = NULL, *tcontext = NULL, newcontext; 1583 struct role_trans *roletr = NULL; 1584 struct avtab_key avkey; 1585 struct avtab_datum *avdatum; 1586 struct avtab_node *node; 1587 u16 tclass; 1588 int rc = 0; 1589 bool sock; 1590 1591 if (!ss_initialized) { 1592 switch (orig_tclass) { 1593 case SECCLASS_PROCESS: /* kernel value */ 1594 *out_sid = ssid; 1595 break; 1596 default: 1597 *out_sid = tsid; 1598 break; 1599 } 1600 goto out; 1601 } 1602 1603 context_init(&newcontext); 1604 1605 read_lock(&policy_rwlock); 1606 1607 if (kern) { 1608 tclass = unmap_class(orig_tclass); 1609 sock = security_is_socket_class(orig_tclass); 1610 } else { 1611 tclass = orig_tclass; 1612 sock = security_is_socket_class(map_class(tclass)); 1613 } 1614 1615 scontext = sidtab_search(&sidtab, ssid); 1616 if (!scontext) { 1617 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 1618 __func__, ssid); 1619 rc = -EINVAL; 1620 goto out_unlock; 1621 } 1622 tcontext = sidtab_search(&sidtab, tsid); 1623 if (!tcontext) { 1624 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 1625 __func__, tsid); 1626 rc = -EINVAL; 1627 goto out_unlock; 1628 } 1629 1630 if (tclass && tclass <= policydb.p_classes.nprim) 1631 cladatum = policydb.class_val_to_struct[tclass - 1]; 1632 1633 /* Set the user identity. */ 1634 switch (specified) { 1635 case AVTAB_TRANSITION: 1636 case AVTAB_CHANGE: 1637 if (cladatum && cladatum->default_user == DEFAULT_TARGET) { 1638 newcontext.user = tcontext->user; 1639 } else { 1640 /* notice this gets both DEFAULT_SOURCE and unset */ 1641 /* Use the process user identity. */ 1642 newcontext.user = scontext->user; 1643 } 1644 break; 1645 case AVTAB_MEMBER: 1646 /* Use the related object owner. */ 1647 newcontext.user = tcontext->user; 1648 break; 1649 } 1650 1651 /* Set the role to default values. */ 1652 if (cladatum && cladatum->default_role == DEFAULT_SOURCE) { 1653 newcontext.role = scontext->role; 1654 } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) { 1655 newcontext.role = tcontext->role; 1656 } else { 1657 if ((tclass == policydb.process_class) || (sock == true)) 1658 newcontext.role = scontext->role; 1659 else 1660 newcontext.role = OBJECT_R_VAL; 1661 } 1662 1663 /* Set the type to default values. */ 1664 if (cladatum && cladatum->default_type == DEFAULT_SOURCE) { 1665 newcontext.type = scontext->type; 1666 } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) { 1667 newcontext.type = tcontext->type; 1668 } else { 1669 if ((tclass == policydb.process_class) || (sock == true)) { 1670 /* Use the type of process. */ 1671 newcontext.type = scontext->type; 1672 } else { 1673 /* Use the type of the related object. */ 1674 newcontext.type = tcontext->type; 1675 } 1676 } 1677 1678 /* Look for a type transition/member/change rule. */ 1679 avkey.source_type = scontext->type; 1680 avkey.target_type = tcontext->type; 1681 avkey.target_class = tclass; 1682 avkey.specified = specified; 1683 avdatum = avtab_search(&policydb.te_avtab, &avkey); 1684 1685 /* If no permanent rule, also check for enabled conditional rules */ 1686 if (!avdatum) { 1687 node = avtab_search_node(&policydb.te_cond_avtab, &avkey); 1688 for (; node; node = avtab_search_node_next(node, specified)) { 1689 if (node->key.specified & AVTAB_ENABLED) { 1690 avdatum = &node->datum; 1691 break; 1692 } 1693 } 1694 } 1695 1696 if (avdatum) { 1697 /* Use the type from the type transition/member/change rule. */ 1698 newcontext.type = avdatum->u.data; 1699 } 1700 1701 /* if we have a objname this is a file trans check so check those rules */ 1702 if (objname) 1703 filename_compute_type(&policydb, &newcontext, scontext->type, 1704 tcontext->type, tclass, objname); 1705 1706 /* Check for class-specific changes. */ 1707 if (specified & AVTAB_TRANSITION) { 1708 /* Look for a role transition rule. */ 1709 for (roletr = policydb.role_tr; roletr; roletr = roletr->next) { 1710 if ((roletr->role == scontext->role) && 1711 (roletr->type == tcontext->type) && 1712 (roletr->tclass == tclass)) { 1713 /* Use the role transition rule. */ 1714 newcontext.role = roletr->new_role; 1715 break; 1716 } 1717 } 1718 } 1719 1720 /* Set the MLS attributes. 1721 This is done last because it may allocate memory. */ 1722 rc = mls_compute_sid(scontext, tcontext, tclass, specified, 1723 &newcontext, sock); 1724 if (rc) 1725 goto out_unlock; 1726 1727 /* Check the validity of the context. */ 1728 if (!policydb_context_isvalid(&policydb, &newcontext)) { 1729 rc = compute_sid_handle_invalid_context(scontext, 1730 tcontext, 1731 tclass, 1732 &newcontext); 1733 if (rc) 1734 goto out_unlock; 1735 } 1736 /* Obtain the sid for the context. */ 1737 rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid); 1738 out_unlock: 1739 read_unlock(&policy_rwlock); 1740 context_destroy(&newcontext); 1741 out: 1742 return rc; 1743 } 1744 1745 /** 1746 * security_transition_sid - Compute the SID for a new subject/object. 1747 * @ssid: source security identifier 1748 * @tsid: target security identifier 1749 * @tclass: target security class 1750 * @out_sid: security identifier for new subject/object 1751 * 1752 * Compute a SID to use for labeling a new subject or object in the 1753 * class @tclass based on a SID pair (@ssid, @tsid). 1754 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM 1755 * if insufficient memory is available, or %0 if the new SID was 1756 * computed successfully. 1757 */ 1758 int security_transition_sid(u32 ssid, u32 tsid, u16 tclass, 1759 const struct qstr *qstr, u32 *out_sid) 1760 { 1761 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, 1762 qstr ? qstr->name : NULL, out_sid, true); 1763 } 1764 1765 int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass, 1766 const char *objname, u32 *out_sid) 1767 { 1768 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, 1769 objname, out_sid, false); 1770 } 1771 1772 /** 1773 * security_member_sid - Compute the SID for member selection. 1774 * @ssid: source security identifier 1775 * @tsid: target security identifier 1776 * @tclass: target security class 1777 * @out_sid: security identifier for selected member 1778 * 1779 * Compute a SID to use when selecting a member of a polyinstantiated 1780 * object of class @tclass based on a SID pair (@ssid, @tsid). 1781 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM 1782 * if insufficient memory is available, or %0 if the SID was 1783 * computed successfully. 1784 */ 1785 int security_member_sid(u32 ssid, 1786 u32 tsid, 1787 u16 tclass, 1788 u32 *out_sid) 1789 { 1790 return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL, 1791 out_sid, false); 1792 } 1793 1794 /** 1795 * security_change_sid - Compute the SID for object relabeling. 1796 * @ssid: source security identifier 1797 * @tsid: target security identifier 1798 * @tclass: target security class 1799 * @out_sid: security identifier for selected member 1800 * 1801 * Compute a SID to use for relabeling an object of class @tclass 1802 * based on a SID pair (@ssid, @tsid). 1803 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM 1804 * if insufficient memory is available, or %0 if the SID was 1805 * computed successfully. 1806 */ 1807 int security_change_sid(u32 ssid, 1808 u32 tsid, 1809 u16 tclass, 1810 u32 *out_sid) 1811 { 1812 return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL, 1813 out_sid, false); 1814 } 1815 1816 /* Clone the SID into the new SID table. */ 1817 static int clone_sid(u32 sid, 1818 struct context *context, 1819 void *arg) 1820 { 1821 struct sidtab *s = arg; 1822 1823 if (sid > SECINITSID_NUM) 1824 return sidtab_insert(s, sid, context); 1825 else 1826 return 0; 1827 } 1828 1829 static inline int convert_context_handle_invalid_context(struct context *context) 1830 { 1831 char *s; 1832 u32 len; 1833 1834 if (selinux_enforcing) 1835 return -EINVAL; 1836 1837 if (!context_struct_to_string(context, &s, &len)) { 1838 printk(KERN_WARNING "SELinux: Context %s would be invalid if enforcing\n", s); 1839 kfree(s); 1840 } 1841 return 0; 1842 } 1843 1844 struct convert_context_args { 1845 struct policydb *oldp; 1846 struct policydb *newp; 1847 }; 1848 1849 /* 1850 * Convert the values in the security context 1851 * structure `c' from the values specified 1852 * in the policy `p->oldp' to the values specified 1853 * in the policy `p->newp'. Verify that the 1854 * context is valid under the new policy. 1855 */ 1856 static int convert_context(u32 key, 1857 struct context *c, 1858 void *p) 1859 { 1860 struct convert_context_args *args; 1861 struct context oldc; 1862 struct ocontext *oc; 1863 struct mls_range *range; 1864 struct role_datum *role; 1865 struct type_datum *typdatum; 1866 struct user_datum *usrdatum; 1867 char *s; 1868 u32 len; 1869 int rc = 0; 1870 1871 if (key <= SECINITSID_NUM) 1872 goto out; 1873 1874 args = p; 1875 1876 if (c->str) { 1877 struct context ctx; 1878 1879 rc = -ENOMEM; 1880 s = kstrdup(c->str, GFP_KERNEL); 1881 if (!s) 1882 goto out; 1883 1884 rc = string_to_context_struct(args->newp, NULL, s, 1885 c->len, &ctx, SECSID_NULL); 1886 kfree(s); 1887 if (!rc) { 1888 printk(KERN_INFO "SELinux: Context %s became valid (mapped).\n", 1889 c->str); 1890 /* Replace string with mapped representation. */ 1891 kfree(c->str); 1892 memcpy(c, &ctx, sizeof(*c)); 1893 goto out; 1894 } else if (rc == -EINVAL) { 1895 /* Retain string representation for later mapping. */ 1896 rc = 0; 1897 goto out; 1898 } else { 1899 /* Other error condition, e.g. ENOMEM. */ 1900 printk(KERN_ERR "SELinux: Unable to map context %s, rc = %d.\n", 1901 c->str, -rc); 1902 goto out; 1903 } 1904 } 1905 1906 rc = context_cpy(&oldc, c); 1907 if (rc) 1908 goto out; 1909 1910 /* Convert the user. */ 1911 rc = -EINVAL; 1912 usrdatum = hashtab_search(args->newp->p_users.table, 1913 sym_name(args->oldp, SYM_USERS, c->user - 1)); 1914 if (!usrdatum) 1915 goto bad; 1916 c->user = usrdatum->value; 1917 1918 /* Convert the role. */ 1919 rc = -EINVAL; 1920 role = hashtab_search(args->newp->p_roles.table, 1921 sym_name(args->oldp, SYM_ROLES, c->role - 1)); 1922 if (!role) 1923 goto bad; 1924 c->role = role->value; 1925 1926 /* Convert the type. */ 1927 rc = -EINVAL; 1928 typdatum = hashtab_search(args->newp->p_types.table, 1929 sym_name(args->oldp, SYM_TYPES, c->type - 1)); 1930 if (!typdatum) 1931 goto bad; 1932 c->type = typdatum->value; 1933 1934 /* Convert the MLS fields if dealing with MLS policies */ 1935 if (args->oldp->mls_enabled && args->newp->mls_enabled) { 1936 rc = mls_convert_context(args->oldp, args->newp, c); 1937 if (rc) 1938 goto bad; 1939 } else if (args->oldp->mls_enabled && !args->newp->mls_enabled) { 1940 /* 1941 * Switching between MLS and non-MLS policy: 1942 * free any storage used by the MLS fields in the 1943 * context for all existing entries in the sidtab. 1944 */ 1945 mls_context_destroy(c); 1946 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) { 1947 /* 1948 * Switching between non-MLS and MLS policy: 1949 * ensure that the MLS fields of the context for all 1950 * existing entries in the sidtab are filled in with a 1951 * suitable default value, likely taken from one of the 1952 * initial SIDs. 1953 */ 1954 oc = args->newp->ocontexts[OCON_ISID]; 1955 while (oc && oc->sid[0] != SECINITSID_UNLABELED) 1956 oc = oc->next; 1957 rc = -EINVAL; 1958 if (!oc) { 1959 printk(KERN_ERR "SELinux: unable to look up" 1960 " the initial SIDs list\n"); 1961 goto bad; 1962 } 1963 range = &oc->context[0].range; 1964 rc = mls_range_set(c, range); 1965 if (rc) 1966 goto bad; 1967 } 1968 1969 /* Check the validity of the new context. */ 1970 if (!policydb_context_isvalid(args->newp, c)) { 1971 rc = convert_context_handle_invalid_context(&oldc); 1972 if (rc) 1973 goto bad; 1974 } 1975 1976 context_destroy(&oldc); 1977 1978 rc = 0; 1979 out: 1980 return rc; 1981 bad: 1982 /* Map old representation to string and save it. */ 1983 rc = context_struct_to_string(&oldc, &s, &len); 1984 if (rc) 1985 return rc; 1986 context_destroy(&oldc); 1987 context_destroy(c); 1988 c->str = s; 1989 c->len = len; 1990 printk(KERN_INFO "SELinux: Context %s became invalid (unmapped).\n", 1991 c->str); 1992 rc = 0; 1993 goto out; 1994 } 1995 1996 static void security_load_policycaps(void) 1997 { 1998 unsigned int i; 1999 struct ebitmap_node *node; 2000 2001 selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps, 2002 POLICYDB_CAPABILITY_NETPEER); 2003 selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps, 2004 POLICYDB_CAPABILITY_OPENPERM); 2005 selinux_policycap_extsockclass = ebitmap_get_bit(&policydb.policycaps, 2006 POLICYDB_CAPABILITY_EXTSOCKCLASS); 2007 selinux_policycap_alwaysnetwork = ebitmap_get_bit(&policydb.policycaps, 2008 POLICYDB_CAPABILITY_ALWAYSNETWORK); 2009 selinux_policycap_cgroupseclabel = 2010 ebitmap_get_bit(&policydb.policycaps, 2011 POLICYDB_CAPABILITY_CGROUPSECLABEL); 2012 2013 for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++) 2014 pr_info("SELinux: policy capability %s=%d\n", 2015 selinux_policycap_names[i], 2016 ebitmap_get_bit(&policydb.policycaps, i)); 2017 2018 ebitmap_for_each_positive_bit(&policydb.policycaps, node, i) { 2019 if (i >= ARRAY_SIZE(selinux_policycap_names)) 2020 pr_info("SELinux: unknown policy capability %u\n", 2021 i); 2022 } 2023 } 2024 2025 static int security_preserve_bools(struct policydb *p); 2026 2027 /** 2028 * security_load_policy - Load a security policy configuration. 2029 * @data: binary policy data 2030 * @len: length of data in bytes 2031 * 2032 * Load a new set of security policy configuration data, 2033 * validate it and convert the SID table as necessary. 2034 * This function will flush the access vector cache after 2035 * loading the new policy. 2036 */ 2037 int security_load_policy(void *data, size_t len) 2038 { 2039 struct policydb *oldpolicydb, *newpolicydb; 2040 struct sidtab oldsidtab, newsidtab; 2041 struct selinux_mapping *oldmap, *map = NULL; 2042 struct convert_context_args args; 2043 u32 seqno; 2044 u16 map_size; 2045 int rc = 0; 2046 struct policy_file file = { data, len }, *fp = &file; 2047 2048 oldpolicydb = kzalloc(2 * sizeof(*oldpolicydb), GFP_KERNEL); 2049 if (!oldpolicydb) { 2050 rc = -ENOMEM; 2051 goto out; 2052 } 2053 newpolicydb = oldpolicydb + 1; 2054 2055 if (!ss_initialized) { 2056 avtab_cache_init(); 2057 ebitmap_cache_init(); 2058 rc = policydb_read(&policydb, fp); 2059 if (rc) { 2060 avtab_cache_destroy(); 2061 ebitmap_cache_destroy(); 2062 goto out; 2063 } 2064 2065 policydb.len = len; 2066 rc = selinux_set_mapping(&policydb, secclass_map, 2067 ¤t_mapping, 2068 ¤t_mapping_size); 2069 if (rc) { 2070 policydb_destroy(&policydb); 2071 avtab_cache_destroy(); 2072 ebitmap_cache_destroy(); 2073 goto out; 2074 } 2075 2076 rc = policydb_load_isids(&policydb, &sidtab); 2077 if (rc) { 2078 policydb_destroy(&policydb); 2079 avtab_cache_destroy(); 2080 ebitmap_cache_destroy(); 2081 goto out; 2082 } 2083 2084 security_load_policycaps(); 2085 ss_initialized = 1; 2086 seqno = ++latest_granting; 2087 selinux_complete_init(); 2088 avc_ss_reset(seqno); 2089 selnl_notify_policyload(seqno); 2090 selinux_status_update_policyload(seqno); 2091 selinux_netlbl_cache_invalidate(); 2092 selinux_xfrm_notify_policyload(); 2093 goto out; 2094 } 2095 2096 #if 0 2097 sidtab_hash_eval(&sidtab, "sids"); 2098 #endif 2099 2100 rc = policydb_read(newpolicydb, fp); 2101 if (rc) 2102 goto out; 2103 2104 newpolicydb->len = len; 2105 /* If switching between different policy types, log MLS status */ 2106 if (policydb.mls_enabled && !newpolicydb->mls_enabled) 2107 printk(KERN_INFO "SELinux: Disabling MLS support...\n"); 2108 else if (!policydb.mls_enabled && newpolicydb->mls_enabled) 2109 printk(KERN_INFO "SELinux: Enabling MLS support...\n"); 2110 2111 rc = policydb_load_isids(newpolicydb, &newsidtab); 2112 if (rc) { 2113 printk(KERN_ERR "SELinux: unable to load the initial SIDs\n"); 2114 policydb_destroy(newpolicydb); 2115 goto out; 2116 } 2117 2118 rc = selinux_set_mapping(newpolicydb, secclass_map, &map, &map_size); 2119 if (rc) 2120 goto err; 2121 2122 rc = security_preserve_bools(newpolicydb); 2123 if (rc) { 2124 printk(KERN_ERR "SELinux: unable to preserve booleans\n"); 2125 goto err; 2126 } 2127 2128 /* Clone the SID table. */ 2129 sidtab_shutdown(&sidtab); 2130 2131 rc = sidtab_map(&sidtab, clone_sid, &newsidtab); 2132 if (rc) 2133 goto err; 2134 2135 /* 2136 * Convert the internal representations of contexts 2137 * in the new SID table. 2138 */ 2139 args.oldp = &policydb; 2140 args.newp = newpolicydb; 2141 rc = sidtab_map(&newsidtab, convert_context, &args); 2142 if (rc) { 2143 printk(KERN_ERR "SELinux: unable to convert the internal" 2144 " representation of contexts in the new SID" 2145 " table\n"); 2146 goto err; 2147 } 2148 2149 /* Save the old policydb and SID table to free later. */ 2150 memcpy(oldpolicydb, &policydb, sizeof(policydb)); 2151 sidtab_set(&oldsidtab, &sidtab); 2152 2153 /* Install the new policydb and SID table. */ 2154 write_lock_irq(&policy_rwlock); 2155 memcpy(&policydb, newpolicydb, sizeof(policydb)); 2156 sidtab_set(&sidtab, &newsidtab); 2157 security_load_policycaps(); 2158 oldmap = current_mapping; 2159 current_mapping = map; 2160 current_mapping_size = map_size; 2161 seqno = ++latest_granting; 2162 write_unlock_irq(&policy_rwlock); 2163 2164 /* Free the old policydb and SID table. */ 2165 policydb_destroy(oldpolicydb); 2166 sidtab_destroy(&oldsidtab); 2167 kfree(oldmap); 2168 2169 avc_ss_reset(seqno); 2170 selnl_notify_policyload(seqno); 2171 selinux_status_update_policyload(seqno); 2172 selinux_netlbl_cache_invalidate(); 2173 selinux_xfrm_notify_policyload(); 2174 2175 rc = 0; 2176 goto out; 2177 2178 err: 2179 kfree(map); 2180 sidtab_destroy(&newsidtab); 2181 policydb_destroy(newpolicydb); 2182 2183 out: 2184 kfree(oldpolicydb); 2185 return rc; 2186 } 2187 2188 size_t security_policydb_len(void) 2189 { 2190 size_t len; 2191 2192 read_lock(&policy_rwlock); 2193 len = policydb.len; 2194 read_unlock(&policy_rwlock); 2195 2196 return len; 2197 } 2198 2199 /** 2200 * security_port_sid - Obtain the SID for a port. 2201 * @protocol: protocol number 2202 * @port: port number 2203 * @out_sid: security identifier 2204 */ 2205 int security_port_sid(u8 protocol, u16 port, u32 *out_sid) 2206 { 2207 struct ocontext *c; 2208 int rc = 0; 2209 2210 read_lock(&policy_rwlock); 2211 2212 c = policydb.ocontexts[OCON_PORT]; 2213 while (c) { 2214 if (c->u.port.protocol == protocol && 2215 c->u.port.low_port <= port && 2216 c->u.port.high_port >= port) 2217 break; 2218 c = c->next; 2219 } 2220 2221 if (c) { 2222 if (!c->sid[0]) { 2223 rc = sidtab_context_to_sid(&sidtab, 2224 &c->context[0], 2225 &c->sid[0]); 2226 if (rc) 2227 goto out; 2228 } 2229 *out_sid = c->sid[0]; 2230 } else { 2231 *out_sid = SECINITSID_PORT; 2232 } 2233 2234 out: 2235 read_unlock(&policy_rwlock); 2236 return rc; 2237 } 2238 2239 /** 2240 * security_pkey_sid - Obtain the SID for a pkey. 2241 * @subnet_prefix: Subnet Prefix 2242 * @pkey_num: pkey number 2243 * @out_sid: security identifier 2244 */ 2245 int security_ib_pkey_sid(u64 subnet_prefix, u16 pkey_num, u32 *out_sid) 2246 { 2247 struct ocontext *c; 2248 int rc = 0; 2249 2250 read_lock(&policy_rwlock); 2251 2252 c = policydb.ocontexts[OCON_IBPKEY]; 2253 while (c) { 2254 if (c->u.ibpkey.low_pkey <= pkey_num && 2255 c->u.ibpkey.high_pkey >= pkey_num && 2256 c->u.ibpkey.subnet_prefix == subnet_prefix) 2257 break; 2258 2259 c = c->next; 2260 } 2261 2262 if (c) { 2263 if (!c->sid[0]) { 2264 rc = sidtab_context_to_sid(&sidtab, 2265 &c->context[0], 2266 &c->sid[0]); 2267 if (rc) 2268 goto out; 2269 } 2270 *out_sid = c->sid[0]; 2271 } else 2272 *out_sid = SECINITSID_UNLABELED; 2273 2274 out: 2275 read_unlock(&policy_rwlock); 2276 return rc; 2277 } 2278 2279 /** 2280 * security_ib_endport_sid - Obtain the SID for a subnet management interface. 2281 * @dev_name: device name 2282 * @port: port number 2283 * @out_sid: security identifier 2284 */ 2285 int security_ib_endport_sid(const char *dev_name, u8 port_num, u32 *out_sid) 2286 { 2287 struct ocontext *c; 2288 int rc = 0; 2289 2290 read_lock(&policy_rwlock); 2291 2292 c = policydb.ocontexts[OCON_IBENDPORT]; 2293 while (c) { 2294 if (c->u.ibendport.port == port_num && 2295 !strncmp(c->u.ibendport.dev_name, 2296 dev_name, 2297 IB_DEVICE_NAME_MAX)) 2298 break; 2299 2300 c = c->next; 2301 } 2302 2303 if (c) { 2304 if (!c->sid[0]) { 2305 rc = sidtab_context_to_sid(&sidtab, 2306 &c->context[0], 2307 &c->sid[0]); 2308 if (rc) 2309 goto out; 2310 } 2311 *out_sid = c->sid[0]; 2312 } else 2313 *out_sid = SECINITSID_UNLABELED; 2314 2315 out: 2316 read_unlock(&policy_rwlock); 2317 return rc; 2318 } 2319 2320 /** 2321 * security_netif_sid - Obtain the SID for a network interface. 2322 * @name: interface name 2323 * @if_sid: interface SID 2324 */ 2325 int security_netif_sid(char *name, u32 *if_sid) 2326 { 2327 int rc = 0; 2328 struct ocontext *c; 2329 2330 read_lock(&policy_rwlock); 2331 2332 c = policydb.ocontexts[OCON_NETIF]; 2333 while (c) { 2334 if (strcmp(name, c->u.name) == 0) 2335 break; 2336 c = c->next; 2337 } 2338 2339 if (c) { 2340 if (!c->sid[0] || !c->sid[1]) { 2341 rc = sidtab_context_to_sid(&sidtab, 2342 &c->context[0], 2343 &c->sid[0]); 2344 if (rc) 2345 goto out; 2346 rc = sidtab_context_to_sid(&sidtab, 2347 &c->context[1], 2348 &c->sid[1]); 2349 if (rc) 2350 goto out; 2351 } 2352 *if_sid = c->sid[0]; 2353 } else 2354 *if_sid = SECINITSID_NETIF; 2355 2356 out: 2357 read_unlock(&policy_rwlock); 2358 return rc; 2359 } 2360 2361 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask) 2362 { 2363 int i, fail = 0; 2364 2365 for (i = 0; i < 4; i++) 2366 if (addr[i] != (input[i] & mask[i])) { 2367 fail = 1; 2368 break; 2369 } 2370 2371 return !fail; 2372 } 2373 2374 /** 2375 * security_node_sid - Obtain the SID for a node (host). 2376 * @domain: communication domain aka address family 2377 * @addrp: address 2378 * @addrlen: address length in bytes 2379 * @out_sid: security identifier 2380 */ 2381 int security_node_sid(u16 domain, 2382 void *addrp, 2383 u32 addrlen, 2384 u32 *out_sid) 2385 { 2386 int rc; 2387 struct ocontext *c; 2388 2389 read_lock(&policy_rwlock); 2390 2391 switch (domain) { 2392 case AF_INET: { 2393 u32 addr; 2394 2395 rc = -EINVAL; 2396 if (addrlen != sizeof(u32)) 2397 goto out; 2398 2399 addr = *((u32 *)addrp); 2400 2401 c = policydb.ocontexts[OCON_NODE]; 2402 while (c) { 2403 if (c->u.node.addr == (addr & c->u.node.mask)) 2404 break; 2405 c = c->next; 2406 } 2407 break; 2408 } 2409 2410 case AF_INET6: 2411 rc = -EINVAL; 2412 if (addrlen != sizeof(u64) * 2) 2413 goto out; 2414 c = policydb.ocontexts[OCON_NODE6]; 2415 while (c) { 2416 if (match_ipv6_addrmask(addrp, c->u.node6.addr, 2417 c->u.node6.mask)) 2418 break; 2419 c = c->next; 2420 } 2421 break; 2422 2423 default: 2424 rc = 0; 2425 *out_sid = SECINITSID_NODE; 2426 goto out; 2427 } 2428 2429 if (c) { 2430 if (!c->sid[0]) { 2431 rc = sidtab_context_to_sid(&sidtab, 2432 &c->context[0], 2433 &c->sid[0]); 2434 if (rc) 2435 goto out; 2436 } 2437 *out_sid = c->sid[0]; 2438 } else { 2439 *out_sid = SECINITSID_NODE; 2440 } 2441 2442 rc = 0; 2443 out: 2444 read_unlock(&policy_rwlock); 2445 return rc; 2446 } 2447 2448 #define SIDS_NEL 25 2449 2450 /** 2451 * security_get_user_sids - Obtain reachable SIDs for a user. 2452 * @fromsid: starting SID 2453 * @username: username 2454 * @sids: array of reachable SIDs for user 2455 * @nel: number of elements in @sids 2456 * 2457 * Generate the set of SIDs for legal security contexts 2458 * for a given user that can be reached by @fromsid. 2459 * Set *@sids to point to a dynamically allocated 2460 * array containing the set of SIDs. Set *@nel to the 2461 * number of elements in the array. 2462 */ 2463 2464 int security_get_user_sids(u32 fromsid, 2465 char *username, 2466 u32 **sids, 2467 u32 *nel) 2468 { 2469 struct context *fromcon, usercon; 2470 u32 *mysids = NULL, *mysids2, sid; 2471 u32 mynel = 0, maxnel = SIDS_NEL; 2472 struct user_datum *user; 2473 struct role_datum *role; 2474 struct ebitmap_node *rnode, *tnode; 2475 int rc = 0, i, j; 2476 2477 *sids = NULL; 2478 *nel = 0; 2479 2480 if (!ss_initialized) 2481 goto out; 2482 2483 read_lock(&policy_rwlock); 2484 2485 context_init(&usercon); 2486 2487 rc = -EINVAL; 2488 fromcon = sidtab_search(&sidtab, fromsid); 2489 if (!fromcon) 2490 goto out_unlock; 2491 2492 rc = -EINVAL; 2493 user = hashtab_search(policydb.p_users.table, username); 2494 if (!user) 2495 goto out_unlock; 2496 2497 usercon.user = user->value; 2498 2499 rc = -ENOMEM; 2500 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC); 2501 if (!mysids) 2502 goto out_unlock; 2503 2504 ebitmap_for_each_positive_bit(&user->roles, rnode, i) { 2505 role = policydb.role_val_to_struct[i]; 2506 usercon.role = i + 1; 2507 ebitmap_for_each_positive_bit(&role->types, tnode, j) { 2508 usercon.type = j + 1; 2509 2510 if (mls_setup_user_range(fromcon, user, &usercon)) 2511 continue; 2512 2513 rc = sidtab_context_to_sid(&sidtab, &usercon, &sid); 2514 if (rc) 2515 goto out_unlock; 2516 if (mynel < maxnel) { 2517 mysids[mynel++] = sid; 2518 } else { 2519 rc = -ENOMEM; 2520 maxnel += SIDS_NEL; 2521 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC); 2522 if (!mysids2) 2523 goto out_unlock; 2524 memcpy(mysids2, mysids, mynel * sizeof(*mysids2)); 2525 kfree(mysids); 2526 mysids = mysids2; 2527 mysids[mynel++] = sid; 2528 } 2529 } 2530 } 2531 rc = 0; 2532 out_unlock: 2533 read_unlock(&policy_rwlock); 2534 if (rc || !mynel) { 2535 kfree(mysids); 2536 goto out; 2537 } 2538 2539 rc = -ENOMEM; 2540 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL); 2541 if (!mysids2) { 2542 kfree(mysids); 2543 goto out; 2544 } 2545 for (i = 0, j = 0; i < mynel; i++) { 2546 struct av_decision dummy_avd; 2547 rc = avc_has_perm_noaudit(fromsid, mysids[i], 2548 SECCLASS_PROCESS, /* kernel value */ 2549 PROCESS__TRANSITION, AVC_STRICT, 2550 &dummy_avd); 2551 if (!rc) 2552 mysids2[j++] = mysids[i]; 2553 cond_resched(); 2554 } 2555 rc = 0; 2556 kfree(mysids); 2557 *sids = mysids2; 2558 *nel = j; 2559 out: 2560 return rc; 2561 } 2562 2563 /** 2564 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem 2565 * @fstype: filesystem type 2566 * @path: path from root of mount 2567 * @sclass: file security class 2568 * @sid: SID for path 2569 * 2570 * Obtain a SID to use for a file in a filesystem that 2571 * cannot support xattr or use a fixed labeling behavior like 2572 * transition SIDs or task SIDs. 2573 * 2574 * The caller must acquire the policy_rwlock before calling this function. 2575 */ 2576 static inline int __security_genfs_sid(const char *fstype, 2577 char *path, 2578 u16 orig_sclass, 2579 u32 *sid) 2580 { 2581 int len; 2582 u16 sclass; 2583 struct genfs *genfs; 2584 struct ocontext *c; 2585 int rc, cmp = 0; 2586 2587 while (path[0] == '/' && path[1] == '/') 2588 path++; 2589 2590 sclass = unmap_class(orig_sclass); 2591 *sid = SECINITSID_UNLABELED; 2592 2593 for (genfs = policydb.genfs; genfs; genfs = genfs->next) { 2594 cmp = strcmp(fstype, genfs->fstype); 2595 if (cmp <= 0) 2596 break; 2597 } 2598 2599 rc = -ENOENT; 2600 if (!genfs || cmp) 2601 goto out; 2602 2603 for (c = genfs->head; c; c = c->next) { 2604 len = strlen(c->u.name); 2605 if ((!c->v.sclass || sclass == c->v.sclass) && 2606 (strncmp(c->u.name, path, len) == 0)) 2607 break; 2608 } 2609 2610 rc = -ENOENT; 2611 if (!c) 2612 goto out; 2613 2614 if (!c->sid[0]) { 2615 rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]); 2616 if (rc) 2617 goto out; 2618 } 2619 2620 *sid = c->sid[0]; 2621 rc = 0; 2622 out: 2623 return rc; 2624 } 2625 2626 /** 2627 * security_genfs_sid - Obtain a SID for a file in a filesystem 2628 * @fstype: filesystem type 2629 * @path: path from root of mount 2630 * @sclass: file security class 2631 * @sid: SID for path 2632 * 2633 * Acquire policy_rwlock before calling __security_genfs_sid() and release 2634 * it afterward. 2635 */ 2636 int security_genfs_sid(const char *fstype, 2637 char *path, 2638 u16 orig_sclass, 2639 u32 *sid) 2640 { 2641 int retval; 2642 2643 read_lock(&policy_rwlock); 2644 retval = __security_genfs_sid(fstype, path, orig_sclass, sid); 2645 read_unlock(&policy_rwlock); 2646 return retval; 2647 } 2648 2649 /** 2650 * security_fs_use - Determine how to handle labeling for a filesystem. 2651 * @sb: superblock in question 2652 */ 2653 int security_fs_use(struct super_block *sb) 2654 { 2655 int rc = 0; 2656 struct ocontext *c; 2657 struct superblock_security_struct *sbsec = sb->s_security; 2658 const char *fstype = sb->s_type->name; 2659 2660 read_lock(&policy_rwlock); 2661 2662 c = policydb.ocontexts[OCON_FSUSE]; 2663 while (c) { 2664 if (strcmp(fstype, c->u.name) == 0) 2665 break; 2666 c = c->next; 2667 } 2668 2669 if (c) { 2670 sbsec->behavior = c->v.behavior; 2671 if (!c->sid[0]) { 2672 rc = sidtab_context_to_sid(&sidtab, &c->context[0], 2673 &c->sid[0]); 2674 if (rc) 2675 goto out; 2676 } 2677 sbsec->sid = c->sid[0]; 2678 } else { 2679 rc = __security_genfs_sid(fstype, "/", SECCLASS_DIR, 2680 &sbsec->sid); 2681 if (rc) { 2682 sbsec->behavior = SECURITY_FS_USE_NONE; 2683 rc = 0; 2684 } else { 2685 sbsec->behavior = SECURITY_FS_USE_GENFS; 2686 } 2687 } 2688 2689 out: 2690 read_unlock(&policy_rwlock); 2691 return rc; 2692 } 2693 2694 int security_get_bools(int *len, char ***names, int **values) 2695 { 2696 int i, rc; 2697 2698 read_lock(&policy_rwlock); 2699 *names = NULL; 2700 *values = NULL; 2701 2702 rc = 0; 2703 *len = policydb.p_bools.nprim; 2704 if (!*len) 2705 goto out; 2706 2707 rc = -ENOMEM; 2708 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC); 2709 if (!*names) 2710 goto err; 2711 2712 rc = -ENOMEM; 2713 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC); 2714 if (!*values) 2715 goto err; 2716 2717 for (i = 0; i < *len; i++) { 2718 (*values)[i] = policydb.bool_val_to_struct[i]->state; 2719 2720 rc = -ENOMEM; 2721 (*names)[i] = kstrdup(sym_name(&policydb, SYM_BOOLS, i), GFP_ATOMIC); 2722 if (!(*names)[i]) 2723 goto err; 2724 } 2725 rc = 0; 2726 out: 2727 read_unlock(&policy_rwlock); 2728 return rc; 2729 err: 2730 if (*names) { 2731 for (i = 0; i < *len; i++) 2732 kfree((*names)[i]); 2733 } 2734 kfree(*values); 2735 goto out; 2736 } 2737 2738 2739 int security_set_bools(int len, int *values) 2740 { 2741 int i, rc; 2742 int lenp, seqno = 0; 2743 struct cond_node *cur; 2744 2745 write_lock_irq(&policy_rwlock); 2746 2747 rc = -EFAULT; 2748 lenp = policydb.p_bools.nprim; 2749 if (len != lenp) 2750 goto out; 2751 2752 for (i = 0; i < len; i++) { 2753 if (!!values[i] != policydb.bool_val_to_struct[i]->state) { 2754 audit_log(current->audit_context, GFP_ATOMIC, 2755 AUDIT_MAC_CONFIG_CHANGE, 2756 "bool=%s val=%d old_val=%d auid=%u ses=%u", 2757 sym_name(&policydb, SYM_BOOLS, i), 2758 !!values[i], 2759 policydb.bool_val_to_struct[i]->state, 2760 from_kuid(&init_user_ns, audit_get_loginuid(current)), 2761 audit_get_sessionid(current)); 2762 } 2763 if (values[i]) 2764 policydb.bool_val_to_struct[i]->state = 1; 2765 else 2766 policydb.bool_val_to_struct[i]->state = 0; 2767 } 2768 2769 for (cur = policydb.cond_list; cur; cur = cur->next) { 2770 rc = evaluate_cond_node(&policydb, cur); 2771 if (rc) 2772 goto out; 2773 } 2774 2775 seqno = ++latest_granting; 2776 rc = 0; 2777 out: 2778 write_unlock_irq(&policy_rwlock); 2779 if (!rc) { 2780 avc_ss_reset(seqno); 2781 selnl_notify_policyload(seqno); 2782 selinux_status_update_policyload(seqno); 2783 selinux_xfrm_notify_policyload(); 2784 } 2785 return rc; 2786 } 2787 2788 int security_get_bool_value(int index) 2789 { 2790 int rc; 2791 int len; 2792 2793 read_lock(&policy_rwlock); 2794 2795 rc = -EFAULT; 2796 len = policydb.p_bools.nprim; 2797 if (index >= len) 2798 goto out; 2799 2800 rc = policydb.bool_val_to_struct[index]->state; 2801 out: 2802 read_unlock(&policy_rwlock); 2803 return rc; 2804 } 2805 2806 static int security_preserve_bools(struct policydb *p) 2807 { 2808 int rc, nbools = 0, *bvalues = NULL, i; 2809 char **bnames = NULL; 2810 struct cond_bool_datum *booldatum; 2811 struct cond_node *cur; 2812 2813 rc = security_get_bools(&nbools, &bnames, &bvalues); 2814 if (rc) 2815 goto out; 2816 for (i = 0; i < nbools; i++) { 2817 booldatum = hashtab_search(p->p_bools.table, bnames[i]); 2818 if (booldatum) 2819 booldatum->state = bvalues[i]; 2820 } 2821 for (cur = p->cond_list; cur; cur = cur->next) { 2822 rc = evaluate_cond_node(p, cur); 2823 if (rc) 2824 goto out; 2825 } 2826 2827 out: 2828 if (bnames) { 2829 for (i = 0; i < nbools; i++) 2830 kfree(bnames[i]); 2831 } 2832 kfree(bnames); 2833 kfree(bvalues); 2834 return rc; 2835 } 2836 2837 /* 2838 * security_sid_mls_copy() - computes a new sid based on the given 2839 * sid and the mls portion of mls_sid. 2840 */ 2841 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid) 2842 { 2843 struct context *context1; 2844 struct context *context2; 2845 struct context newcon; 2846 char *s; 2847 u32 len; 2848 int rc; 2849 2850 rc = 0; 2851 if (!ss_initialized || !policydb.mls_enabled) { 2852 *new_sid = sid; 2853 goto out; 2854 } 2855 2856 context_init(&newcon); 2857 2858 read_lock(&policy_rwlock); 2859 2860 rc = -EINVAL; 2861 context1 = sidtab_search(&sidtab, sid); 2862 if (!context1) { 2863 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 2864 __func__, sid); 2865 goto out_unlock; 2866 } 2867 2868 rc = -EINVAL; 2869 context2 = sidtab_search(&sidtab, mls_sid); 2870 if (!context2) { 2871 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 2872 __func__, mls_sid); 2873 goto out_unlock; 2874 } 2875 2876 newcon.user = context1->user; 2877 newcon.role = context1->role; 2878 newcon.type = context1->type; 2879 rc = mls_context_cpy(&newcon, context2); 2880 if (rc) 2881 goto out_unlock; 2882 2883 /* Check the validity of the new context. */ 2884 if (!policydb_context_isvalid(&policydb, &newcon)) { 2885 rc = convert_context_handle_invalid_context(&newcon); 2886 if (rc) { 2887 if (!context_struct_to_string(&newcon, &s, &len)) { 2888 audit_log(current->audit_context, 2889 GFP_ATOMIC, AUDIT_SELINUX_ERR, 2890 "op=security_sid_mls_copy " 2891 "invalid_context=%s", s); 2892 kfree(s); 2893 } 2894 goto out_unlock; 2895 } 2896 } 2897 2898 rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid); 2899 out_unlock: 2900 read_unlock(&policy_rwlock); 2901 context_destroy(&newcon); 2902 out: 2903 return rc; 2904 } 2905 2906 /** 2907 * security_net_peersid_resolve - Compare and resolve two network peer SIDs 2908 * @nlbl_sid: NetLabel SID 2909 * @nlbl_type: NetLabel labeling protocol type 2910 * @xfrm_sid: XFRM SID 2911 * 2912 * Description: 2913 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be 2914 * resolved into a single SID it is returned via @peer_sid and the function 2915 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function 2916 * returns a negative value. A table summarizing the behavior is below: 2917 * 2918 * | function return | @sid 2919 * ------------------------------+-----------------+----------------- 2920 * no peer labels | 0 | SECSID_NULL 2921 * single peer label | 0 | <peer_label> 2922 * multiple, consistent labels | 0 | <peer_label> 2923 * multiple, inconsistent labels | -<errno> | SECSID_NULL 2924 * 2925 */ 2926 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type, 2927 u32 xfrm_sid, 2928 u32 *peer_sid) 2929 { 2930 int rc; 2931 struct context *nlbl_ctx; 2932 struct context *xfrm_ctx; 2933 2934 *peer_sid = SECSID_NULL; 2935 2936 /* handle the common (which also happens to be the set of easy) cases 2937 * right away, these two if statements catch everything involving a 2938 * single or absent peer SID/label */ 2939 if (xfrm_sid == SECSID_NULL) { 2940 *peer_sid = nlbl_sid; 2941 return 0; 2942 } 2943 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label 2944 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label 2945 * is present */ 2946 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) { 2947 *peer_sid = xfrm_sid; 2948 return 0; 2949 } 2950 2951 /* we don't need to check ss_initialized here since the only way both 2952 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the 2953 * security server was initialized and ss_initialized was true */ 2954 if (!policydb.mls_enabled) 2955 return 0; 2956 2957 read_lock(&policy_rwlock); 2958 2959 rc = -EINVAL; 2960 nlbl_ctx = sidtab_search(&sidtab, nlbl_sid); 2961 if (!nlbl_ctx) { 2962 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 2963 __func__, nlbl_sid); 2964 goto out; 2965 } 2966 rc = -EINVAL; 2967 xfrm_ctx = sidtab_search(&sidtab, xfrm_sid); 2968 if (!xfrm_ctx) { 2969 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 2970 __func__, xfrm_sid); 2971 goto out; 2972 } 2973 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES); 2974 if (rc) 2975 goto out; 2976 2977 /* at present NetLabel SIDs/labels really only carry MLS 2978 * information so if the MLS portion of the NetLabel SID 2979 * matches the MLS portion of the labeled XFRM SID/label 2980 * then pass along the XFRM SID as it is the most 2981 * expressive */ 2982 *peer_sid = xfrm_sid; 2983 out: 2984 read_unlock(&policy_rwlock); 2985 return rc; 2986 } 2987 2988 static int get_classes_callback(void *k, void *d, void *args) 2989 { 2990 struct class_datum *datum = d; 2991 char *name = k, **classes = args; 2992 int value = datum->value - 1; 2993 2994 classes[value] = kstrdup(name, GFP_ATOMIC); 2995 if (!classes[value]) 2996 return -ENOMEM; 2997 2998 return 0; 2999 } 3000 3001 int security_get_classes(char ***classes, int *nclasses) 3002 { 3003 int rc; 3004 3005 read_lock(&policy_rwlock); 3006 3007 rc = -ENOMEM; 3008 *nclasses = policydb.p_classes.nprim; 3009 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC); 3010 if (!*classes) 3011 goto out; 3012 3013 rc = hashtab_map(policydb.p_classes.table, get_classes_callback, 3014 *classes); 3015 if (rc) { 3016 int i; 3017 for (i = 0; i < *nclasses; i++) 3018 kfree((*classes)[i]); 3019 kfree(*classes); 3020 } 3021 3022 out: 3023 read_unlock(&policy_rwlock); 3024 return rc; 3025 } 3026 3027 static int get_permissions_callback(void *k, void *d, void *args) 3028 { 3029 struct perm_datum *datum = d; 3030 char *name = k, **perms = args; 3031 int value = datum->value - 1; 3032 3033 perms[value] = kstrdup(name, GFP_ATOMIC); 3034 if (!perms[value]) 3035 return -ENOMEM; 3036 3037 return 0; 3038 } 3039 3040 int security_get_permissions(char *class, char ***perms, int *nperms) 3041 { 3042 int rc, i; 3043 struct class_datum *match; 3044 3045 read_lock(&policy_rwlock); 3046 3047 rc = -EINVAL; 3048 match = hashtab_search(policydb.p_classes.table, class); 3049 if (!match) { 3050 printk(KERN_ERR "SELinux: %s: unrecognized class %s\n", 3051 __func__, class); 3052 goto out; 3053 } 3054 3055 rc = -ENOMEM; 3056 *nperms = match->permissions.nprim; 3057 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC); 3058 if (!*perms) 3059 goto out; 3060 3061 if (match->comdatum) { 3062 rc = hashtab_map(match->comdatum->permissions.table, 3063 get_permissions_callback, *perms); 3064 if (rc) 3065 goto err; 3066 } 3067 3068 rc = hashtab_map(match->permissions.table, get_permissions_callback, 3069 *perms); 3070 if (rc) 3071 goto err; 3072 3073 out: 3074 read_unlock(&policy_rwlock); 3075 return rc; 3076 3077 err: 3078 read_unlock(&policy_rwlock); 3079 for (i = 0; i < *nperms; i++) 3080 kfree((*perms)[i]); 3081 kfree(*perms); 3082 return rc; 3083 } 3084 3085 int security_get_reject_unknown(void) 3086 { 3087 return policydb.reject_unknown; 3088 } 3089 3090 int security_get_allow_unknown(void) 3091 { 3092 return policydb.allow_unknown; 3093 } 3094 3095 /** 3096 * security_policycap_supported - Check for a specific policy capability 3097 * @req_cap: capability 3098 * 3099 * Description: 3100 * This function queries the currently loaded policy to see if it supports the 3101 * capability specified by @req_cap. Returns true (1) if the capability is 3102 * supported, false (0) if it isn't supported. 3103 * 3104 */ 3105 int security_policycap_supported(unsigned int req_cap) 3106 { 3107 int rc; 3108 3109 read_lock(&policy_rwlock); 3110 rc = ebitmap_get_bit(&policydb.policycaps, req_cap); 3111 read_unlock(&policy_rwlock); 3112 3113 return rc; 3114 } 3115 3116 struct selinux_audit_rule { 3117 u32 au_seqno; 3118 struct context au_ctxt; 3119 }; 3120 3121 void selinux_audit_rule_free(void *vrule) 3122 { 3123 struct selinux_audit_rule *rule = vrule; 3124 3125 if (rule) { 3126 context_destroy(&rule->au_ctxt); 3127 kfree(rule); 3128 } 3129 } 3130 3131 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule) 3132 { 3133 struct selinux_audit_rule *tmprule; 3134 struct role_datum *roledatum; 3135 struct type_datum *typedatum; 3136 struct user_datum *userdatum; 3137 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule; 3138 int rc = 0; 3139 3140 *rule = NULL; 3141 3142 if (!ss_initialized) 3143 return -EOPNOTSUPP; 3144 3145 switch (field) { 3146 case AUDIT_SUBJ_USER: 3147 case AUDIT_SUBJ_ROLE: 3148 case AUDIT_SUBJ_TYPE: 3149 case AUDIT_OBJ_USER: 3150 case AUDIT_OBJ_ROLE: 3151 case AUDIT_OBJ_TYPE: 3152 /* only 'equals' and 'not equals' fit user, role, and type */ 3153 if (op != Audit_equal && op != Audit_not_equal) 3154 return -EINVAL; 3155 break; 3156 case AUDIT_SUBJ_SEN: 3157 case AUDIT_SUBJ_CLR: 3158 case AUDIT_OBJ_LEV_LOW: 3159 case AUDIT_OBJ_LEV_HIGH: 3160 /* we do not allow a range, indicated by the presence of '-' */ 3161 if (strchr(rulestr, '-')) 3162 return -EINVAL; 3163 break; 3164 default: 3165 /* only the above fields are valid */ 3166 return -EINVAL; 3167 } 3168 3169 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL); 3170 if (!tmprule) 3171 return -ENOMEM; 3172 3173 context_init(&tmprule->au_ctxt); 3174 3175 read_lock(&policy_rwlock); 3176 3177 tmprule->au_seqno = latest_granting; 3178 3179 switch (field) { 3180 case AUDIT_SUBJ_USER: 3181 case AUDIT_OBJ_USER: 3182 rc = -EINVAL; 3183 userdatum = hashtab_search(policydb.p_users.table, rulestr); 3184 if (!userdatum) 3185 goto out; 3186 tmprule->au_ctxt.user = userdatum->value; 3187 break; 3188 case AUDIT_SUBJ_ROLE: 3189 case AUDIT_OBJ_ROLE: 3190 rc = -EINVAL; 3191 roledatum = hashtab_search(policydb.p_roles.table, rulestr); 3192 if (!roledatum) 3193 goto out; 3194 tmprule->au_ctxt.role = roledatum->value; 3195 break; 3196 case AUDIT_SUBJ_TYPE: 3197 case AUDIT_OBJ_TYPE: 3198 rc = -EINVAL; 3199 typedatum = hashtab_search(policydb.p_types.table, rulestr); 3200 if (!typedatum) 3201 goto out; 3202 tmprule->au_ctxt.type = typedatum->value; 3203 break; 3204 case AUDIT_SUBJ_SEN: 3205 case AUDIT_SUBJ_CLR: 3206 case AUDIT_OBJ_LEV_LOW: 3207 case AUDIT_OBJ_LEV_HIGH: 3208 rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC); 3209 if (rc) 3210 goto out; 3211 break; 3212 } 3213 rc = 0; 3214 out: 3215 read_unlock(&policy_rwlock); 3216 3217 if (rc) { 3218 selinux_audit_rule_free(tmprule); 3219 tmprule = NULL; 3220 } 3221 3222 *rule = tmprule; 3223 3224 return rc; 3225 } 3226 3227 /* Check to see if the rule contains any selinux fields */ 3228 int selinux_audit_rule_known(struct audit_krule *rule) 3229 { 3230 int i; 3231 3232 for (i = 0; i < rule->field_count; i++) { 3233 struct audit_field *f = &rule->fields[i]; 3234 switch (f->type) { 3235 case AUDIT_SUBJ_USER: 3236 case AUDIT_SUBJ_ROLE: 3237 case AUDIT_SUBJ_TYPE: 3238 case AUDIT_SUBJ_SEN: 3239 case AUDIT_SUBJ_CLR: 3240 case AUDIT_OBJ_USER: 3241 case AUDIT_OBJ_ROLE: 3242 case AUDIT_OBJ_TYPE: 3243 case AUDIT_OBJ_LEV_LOW: 3244 case AUDIT_OBJ_LEV_HIGH: 3245 return 1; 3246 } 3247 } 3248 3249 return 0; 3250 } 3251 3252 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule, 3253 struct audit_context *actx) 3254 { 3255 struct context *ctxt; 3256 struct mls_level *level; 3257 struct selinux_audit_rule *rule = vrule; 3258 int match = 0; 3259 3260 if (unlikely(!rule)) { 3261 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n"); 3262 return -ENOENT; 3263 } 3264 3265 read_lock(&policy_rwlock); 3266 3267 if (rule->au_seqno < latest_granting) { 3268 match = -ESTALE; 3269 goto out; 3270 } 3271 3272 ctxt = sidtab_search(&sidtab, sid); 3273 if (unlikely(!ctxt)) { 3274 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n", 3275 sid); 3276 match = -ENOENT; 3277 goto out; 3278 } 3279 3280 /* a field/op pair that is not caught here will simply fall through 3281 without a match */ 3282 switch (field) { 3283 case AUDIT_SUBJ_USER: 3284 case AUDIT_OBJ_USER: 3285 switch (op) { 3286 case Audit_equal: 3287 match = (ctxt->user == rule->au_ctxt.user); 3288 break; 3289 case Audit_not_equal: 3290 match = (ctxt->user != rule->au_ctxt.user); 3291 break; 3292 } 3293 break; 3294 case AUDIT_SUBJ_ROLE: 3295 case AUDIT_OBJ_ROLE: 3296 switch (op) { 3297 case Audit_equal: 3298 match = (ctxt->role == rule->au_ctxt.role); 3299 break; 3300 case Audit_not_equal: 3301 match = (ctxt->role != rule->au_ctxt.role); 3302 break; 3303 } 3304 break; 3305 case AUDIT_SUBJ_TYPE: 3306 case AUDIT_OBJ_TYPE: 3307 switch (op) { 3308 case Audit_equal: 3309 match = (ctxt->type == rule->au_ctxt.type); 3310 break; 3311 case Audit_not_equal: 3312 match = (ctxt->type != rule->au_ctxt.type); 3313 break; 3314 } 3315 break; 3316 case AUDIT_SUBJ_SEN: 3317 case AUDIT_SUBJ_CLR: 3318 case AUDIT_OBJ_LEV_LOW: 3319 case AUDIT_OBJ_LEV_HIGH: 3320 level = ((field == AUDIT_SUBJ_SEN || 3321 field == AUDIT_OBJ_LEV_LOW) ? 3322 &ctxt->range.level[0] : &ctxt->range.level[1]); 3323 switch (op) { 3324 case Audit_equal: 3325 match = mls_level_eq(&rule->au_ctxt.range.level[0], 3326 level); 3327 break; 3328 case Audit_not_equal: 3329 match = !mls_level_eq(&rule->au_ctxt.range.level[0], 3330 level); 3331 break; 3332 case Audit_lt: 3333 match = (mls_level_dom(&rule->au_ctxt.range.level[0], 3334 level) && 3335 !mls_level_eq(&rule->au_ctxt.range.level[0], 3336 level)); 3337 break; 3338 case Audit_le: 3339 match = mls_level_dom(&rule->au_ctxt.range.level[0], 3340 level); 3341 break; 3342 case Audit_gt: 3343 match = (mls_level_dom(level, 3344 &rule->au_ctxt.range.level[0]) && 3345 !mls_level_eq(level, 3346 &rule->au_ctxt.range.level[0])); 3347 break; 3348 case Audit_ge: 3349 match = mls_level_dom(level, 3350 &rule->au_ctxt.range.level[0]); 3351 break; 3352 } 3353 } 3354 3355 out: 3356 read_unlock(&policy_rwlock); 3357 return match; 3358 } 3359 3360 static int (*aurule_callback)(void) = audit_update_lsm_rules; 3361 3362 static int aurule_avc_callback(u32 event) 3363 { 3364 int err = 0; 3365 3366 if (event == AVC_CALLBACK_RESET && aurule_callback) 3367 err = aurule_callback(); 3368 return err; 3369 } 3370 3371 static int __init aurule_init(void) 3372 { 3373 int err; 3374 3375 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET); 3376 if (err) 3377 panic("avc_add_callback() failed, error %d\n", err); 3378 3379 return err; 3380 } 3381 __initcall(aurule_init); 3382 3383 #ifdef CONFIG_NETLABEL 3384 /** 3385 * security_netlbl_cache_add - Add an entry to the NetLabel cache 3386 * @secattr: the NetLabel packet security attributes 3387 * @sid: the SELinux SID 3388 * 3389 * Description: 3390 * Attempt to cache the context in @ctx, which was derived from the packet in 3391 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has 3392 * already been initialized. 3393 * 3394 */ 3395 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr, 3396 u32 sid) 3397 { 3398 u32 *sid_cache; 3399 3400 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC); 3401 if (sid_cache == NULL) 3402 return; 3403 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC); 3404 if (secattr->cache == NULL) { 3405 kfree(sid_cache); 3406 return; 3407 } 3408 3409 *sid_cache = sid; 3410 secattr->cache->free = kfree; 3411 secattr->cache->data = sid_cache; 3412 secattr->flags |= NETLBL_SECATTR_CACHE; 3413 } 3414 3415 /** 3416 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID 3417 * @secattr: the NetLabel packet security attributes 3418 * @sid: the SELinux SID 3419 * 3420 * Description: 3421 * Convert the given NetLabel security attributes in @secattr into a 3422 * SELinux SID. If the @secattr field does not contain a full SELinux 3423 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the 3424 * 'cache' field of @secattr is set and the CACHE flag is set; this is to 3425 * allow the @secattr to be used by NetLabel to cache the secattr to SID 3426 * conversion for future lookups. Returns zero on success, negative values on 3427 * failure. 3428 * 3429 */ 3430 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr, 3431 u32 *sid) 3432 { 3433 int rc; 3434 struct context *ctx; 3435 struct context ctx_new; 3436 3437 if (!ss_initialized) { 3438 *sid = SECSID_NULL; 3439 return 0; 3440 } 3441 3442 read_lock(&policy_rwlock); 3443 3444 if (secattr->flags & NETLBL_SECATTR_CACHE) 3445 *sid = *(u32 *)secattr->cache->data; 3446 else if (secattr->flags & NETLBL_SECATTR_SECID) 3447 *sid = secattr->attr.secid; 3448 else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) { 3449 rc = -EIDRM; 3450 ctx = sidtab_search(&sidtab, SECINITSID_NETMSG); 3451 if (ctx == NULL) 3452 goto out; 3453 3454 context_init(&ctx_new); 3455 ctx_new.user = ctx->user; 3456 ctx_new.role = ctx->role; 3457 ctx_new.type = ctx->type; 3458 mls_import_netlbl_lvl(&ctx_new, secattr); 3459 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) { 3460 rc = mls_import_netlbl_cat(&ctx_new, secattr); 3461 if (rc) 3462 goto out; 3463 } 3464 rc = -EIDRM; 3465 if (!mls_context_isvalid(&policydb, &ctx_new)) 3466 goto out_free; 3467 3468 rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid); 3469 if (rc) 3470 goto out_free; 3471 3472 security_netlbl_cache_add(secattr, *sid); 3473 3474 ebitmap_destroy(&ctx_new.range.level[0].cat); 3475 } else 3476 *sid = SECSID_NULL; 3477 3478 read_unlock(&policy_rwlock); 3479 return 0; 3480 out_free: 3481 ebitmap_destroy(&ctx_new.range.level[0].cat); 3482 out: 3483 read_unlock(&policy_rwlock); 3484 return rc; 3485 } 3486 3487 /** 3488 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr 3489 * @sid: the SELinux SID 3490 * @secattr: the NetLabel packet security attributes 3491 * 3492 * Description: 3493 * Convert the given SELinux SID in @sid into a NetLabel security attribute. 3494 * Returns zero on success, negative values on failure. 3495 * 3496 */ 3497 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr) 3498 { 3499 int rc; 3500 struct context *ctx; 3501 3502 if (!ss_initialized) 3503 return 0; 3504 3505 read_lock(&policy_rwlock); 3506 3507 rc = -ENOENT; 3508 ctx = sidtab_search(&sidtab, sid); 3509 if (ctx == NULL) 3510 goto out; 3511 3512 rc = -ENOMEM; 3513 secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1), 3514 GFP_ATOMIC); 3515 if (secattr->domain == NULL) 3516 goto out; 3517 3518 secattr->attr.secid = sid; 3519 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID; 3520 mls_export_netlbl_lvl(ctx, secattr); 3521 rc = mls_export_netlbl_cat(ctx, secattr); 3522 out: 3523 read_unlock(&policy_rwlock); 3524 return rc; 3525 } 3526 #endif /* CONFIG_NETLABEL */ 3527 3528 /** 3529 * security_read_policy - read the policy. 3530 * @data: binary policy data 3531 * @len: length of data in bytes 3532 * 3533 */ 3534 int security_read_policy(void **data, size_t *len) 3535 { 3536 int rc; 3537 struct policy_file fp; 3538 3539 if (!ss_initialized) 3540 return -EINVAL; 3541 3542 *len = security_policydb_len(); 3543 3544 *data = vmalloc_user(*len); 3545 if (!*data) 3546 return -ENOMEM; 3547 3548 fp.data = *data; 3549 fp.len = *len; 3550 3551 read_lock(&policy_rwlock); 3552 rc = policydb_write(&policydb, &fp); 3553 read_unlock(&policy_rwlock); 3554 3555 if (rc) 3556 return rc; 3557 3558 *len = (unsigned long)fp.data - (unsigned long)*data; 3559 return 0; 3560 3561 } 3562