xref: /openbmc/linux/security/selinux/ss/services.c (revision 4800cd83)
1 /*
2  * Implementation of the security services.
3  *
4  * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5  *	     James Morris <jmorris@redhat.com>
6  *
7  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8  *
9  *	Support for enhanced MLS infrastructure.
10  *	Support for context based audit filters.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *	Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul.moore@hp.com>
17  *
18  *      Added support for NetLabel
19  *      Added support for the policy capability bitmap
20  *
21  * Updated: Chad Sellers <csellers@tresys.com>
22  *
23  *  Added validation of kernel classes and permissions
24  *
25  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
26  *
27  *  Added support for bounds domain and audit messaged on masked permissions
28  *
29  * Updated: Guido Trentalancia <guido@trentalancia.com>
30  *
31  *  Added support for runtime switching of the policy type
32  *
33  * Copyright (C) 2008, 2009 NEC Corporation
34  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38  *	This program is free software; you can redistribute it and/or modify
39  *	it under the terms of the GNU General Public License as published by
40  *	the Free Software Foundation, version 2.
41  */
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/errno.h>
48 #include <linux/in.h>
49 #include <linux/sched.h>
50 #include <linux/audit.h>
51 #include <linux/mutex.h>
52 #include <linux/selinux.h>
53 #include <linux/flex_array.h>
54 #include <linux/vmalloc.h>
55 #include <net/netlabel.h>
56 
57 #include "flask.h"
58 #include "avc.h"
59 #include "avc_ss.h"
60 #include "security.h"
61 #include "context.h"
62 #include "policydb.h"
63 #include "sidtab.h"
64 #include "services.h"
65 #include "conditional.h"
66 #include "mls.h"
67 #include "objsec.h"
68 #include "netlabel.h"
69 #include "xfrm.h"
70 #include "ebitmap.h"
71 #include "audit.h"
72 
73 extern void selnl_notify_policyload(u32 seqno);
74 
75 int selinux_policycap_netpeer;
76 int selinux_policycap_openperm;
77 
78 static DEFINE_RWLOCK(policy_rwlock);
79 
80 static struct sidtab sidtab;
81 struct policydb policydb;
82 int ss_initialized;
83 
84 /*
85  * The largest sequence number that has been used when
86  * providing an access decision to the access vector cache.
87  * The sequence number only changes when a policy change
88  * occurs.
89  */
90 static u32 latest_granting;
91 
92 /* Forward declaration. */
93 static int context_struct_to_string(struct context *context, char **scontext,
94 				    u32 *scontext_len);
95 
96 static void context_struct_compute_av(struct context *scontext,
97 				      struct context *tcontext,
98 				      u16 tclass,
99 				      struct av_decision *avd);
100 
101 struct selinux_mapping {
102 	u16 value; /* policy value */
103 	unsigned num_perms;
104 	u32 perms[sizeof(u32) * 8];
105 };
106 
107 static struct selinux_mapping *current_mapping;
108 static u16 current_mapping_size;
109 
110 static int selinux_set_mapping(struct policydb *pol,
111 			       struct security_class_mapping *map,
112 			       struct selinux_mapping **out_map_p,
113 			       u16 *out_map_size)
114 {
115 	struct selinux_mapping *out_map = NULL;
116 	size_t size = sizeof(struct selinux_mapping);
117 	u16 i, j;
118 	unsigned k;
119 	bool print_unknown_handle = false;
120 
121 	/* Find number of classes in the input mapping */
122 	if (!map)
123 		return -EINVAL;
124 	i = 0;
125 	while (map[i].name)
126 		i++;
127 
128 	/* Allocate space for the class records, plus one for class zero */
129 	out_map = kcalloc(++i, size, GFP_ATOMIC);
130 	if (!out_map)
131 		return -ENOMEM;
132 
133 	/* Store the raw class and permission values */
134 	j = 0;
135 	while (map[j].name) {
136 		struct security_class_mapping *p_in = map + (j++);
137 		struct selinux_mapping *p_out = out_map + j;
138 
139 		/* An empty class string skips ahead */
140 		if (!strcmp(p_in->name, "")) {
141 			p_out->num_perms = 0;
142 			continue;
143 		}
144 
145 		p_out->value = string_to_security_class(pol, p_in->name);
146 		if (!p_out->value) {
147 			printk(KERN_INFO
148 			       "SELinux:  Class %s not defined in policy.\n",
149 			       p_in->name);
150 			if (pol->reject_unknown)
151 				goto err;
152 			p_out->num_perms = 0;
153 			print_unknown_handle = true;
154 			continue;
155 		}
156 
157 		k = 0;
158 		while (p_in->perms && p_in->perms[k]) {
159 			/* An empty permission string skips ahead */
160 			if (!*p_in->perms[k]) {
161 				k++;
162 				continue;
163 			}
164 			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
165 							    p_in->perms[k]);
166 			if (!p_out->perms[k]) {
167 				printk(KERN_INFO
168 				       "SELinux:  Permission %s in class %s not defined in policy.\n",
169 				       p_in->perms[k], p_in->name);
170 				if (pol->reject_unknown)
171 					goto err;
172 				print_unknown_handle = true;
173 			}
174 
175 			k++;
176 		}
177 		p_out->num_perms = k;
178 	}
179 
180 	if (print_unknown_handle)
181 		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
182 		       pol->allow_unknown ? "allowed" : "denied");
183 
184 	*out_map_p = out_map;
185 	*out_map_size = i;
186 	return 0;
187 err:
188 	kfree(out_map);
189 	return -EINVAL;
190 }
191 
192 /*
193  * Get real, policy values from mapped values
194  */
195 
196 static u16 unmap_class(u16 tclass)
197 {
198 	if (tclass < current_mapping_size)
199 		return current_mapping[tclass].value;
200 
201 	return tclass;
202 }
203 
204 static void map_decision(u16 tclass, struct av_decision *avd,
205 			 int allow_unknown)
206 {
207 	if (tclass < current_mapping_size) {
208 		unsigned i, n = current_mapping[tclass].num_perms;
209 		u32 result;
210 
211 		for (i = 0, result = 0; i < n; i++) {
212 			if (avd->allowed & current_mapping[tclass].perms[i])
213 				result |= 1<<i;
214 			if (allow_unknown && !current_mapping[tclass].perms[i])
215 				result |= 1<<i;
216 		}
217 		avd->allowed = result;
218 
219 		for (i = 0, result = 0; i < n; i++)
220 			if (avd->auditallow & current_mapping[tclass].perms[i])
221 				result |= 1<<i;
222 		avd->auditallow = result;
223 
224 		for (i = 0, result = 0; i < n; i++) {
225 			if (avd->auditdeny & current_mapping[tclass].perms[i])
226 				result |= 1<<i;
227 			if (!allow_unknown && !current_mapping[tclass].perms[i])
228 				result |= 1<<i;
229 		}
230 		/*
231 		 * In case the kernel has a bug and requests a permission
232 		 * between num_perms and the maximum permission number, we
233 		 * should audit that denial
234 		 */
235 		for (; i < (sizeof(u32)*8); i++)
236 			result |= 1<<i;
237 		avd->auditdeny = result;
238 	}
239 }
240 
241 int security_mls_enabled(void)
242 {
243 	return policydb.mls_enabled;
244 }
245 
246 /*
247  * Return the boolean value of a constraint expression
248  * when it is applied to the specified source and target
249  * security contexts.
250  *
251  * xcontext is a special beast...  It is used by the validatetrans rules
252  * only.  For these rules, scontext is the context before the transition,
253  * tcontext is the context after the transition, and xcontext is the context
254  * of the process performing the transition.  All other callers of
255  * constraint_expr_eval should pass in NULL for xcontext.
256  */
257 static int constraint_expr_eval(struct context *scontext,
258 				struct context *tcontext,
259 				struct context *xcontext,
260 				struct constraint_expr *cexpr)
261 {
262 	u32 val1, val2;
263 	struct context *c;
264 	struct role_datum *r1, *r2;
265 	struct mls_level *l1, *l2;
266 	struct constraint_expr *e;
267 	int s[CEXPR_MAXDEPTH];
268 	int sp = -1;
269 
270 	for (e = cexpr; e; e = e->next) {
271 		switch (e->expr_type) {
272 		case CEXPR_NOT:
273 			BUG_ON(sp < 0);
274 			s[sp] = !s[sp];
275 			break;
276 		case CEXPR_AND:
277 			BUG_ON(sp < 1);
278 			sp--;
279 			s[sp] &= s[sp + 1];
280 			break;
281 		case CEXPR_OR:
282 			BUG_ON(sp < 1);
283 			sp--;
284 			s[sp] |= s[sp + 1];
285 			break;
286 		case CEXPR_ATTR:
287 			if (sp == (CEXPR_MAXDEPTH - 1))
288 				return 0;
289 			switch (e->attr) {
290 			case CEXPR_USER:
291 				val1 = scontext->user;
292 				val2 = tcontext->user;
293 				break;
294 			case CEXPR_TYPE:
295 				val1 = scontext->type;
296 				val2 = tcontext->type;
297 				break;
298 			case CEXPR_ROLE:
299 				val1 = scontext->role;
300 				val2 = tcontext->role;
301 				r1 = policydb.role_val_to_struct[val1 - 1];
302 				r2 = policydb.role_val_to_struct[val2 - 1];
303 				switch (e->op) {
304 				case CEXPR_DOM:
305 					s[++sp] = ebitmap_get_bit(&r1->dominates,
306 								  val2 - 1);
307 					continue;
308 				case CEXPR_DOMBY:
309 					s[++sp] = ebitmap_get_bit(&r2->dominates,
310 								  val1 - 1);
311 					continue;
312 				case CEXPR_INCOMP:
313 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
314 								    val2 - 1) &&
315 						   !ebitmap_get_bit(&r2->dominates,
316 								    val1 - 1));
317 					continue;
318 				default:
319 					break;
320 				}
321 				break;
322 			case CEXPR_L1L2:
323 				l1 = &(scontext->range.level[0]);
324 				l2 = &(tcontext->range.level[0]);
325 				goto mls_ops;
326 			case CEXPR_L1H2:
327 				l1 = &(scontext->range.level[0]);
328 				l2 = &(tcontext->range.level[1]);
329 				goto mls_ops;
330 			case CEXPR_H1L2:
331 				l1 = &(scontext->range.level[1]);
332 				l2 = &(tcontext->range.level[0]);
333 				goto mls_ops;
334 			case CEXPR_H1H2:
335 				l1 = &(scontext->range.level[1]);
336 				l2 = &(tcontext->range.level[1]);
337 				goto mls_ops;
338 			case CEXPR_L1H1:
339 				l1 = &(scontext->range.level[0]);
340 				l2 = &(scontext->range.level[1]);
341 				goto mls_ops;
342 			case CEXPR_L2H2:
343 				l1 = &(tcontext->range.level[0]);
344 				l2 = &(tcontext->range.level[1]);
345 				goto mls_ops;
346 mls_ops:
347 			switch (e->op) {
348 			case CEXPR_EQ:
349 				s[++sp] = mls_level_eq(l1, l2);
350 				continue;
351 			case CEXPR_NEQ:
352 				s[++sp] = !mls_level_eq(l1, l2);
353 				continue;
354 			case CEXPR_DOM:
355 				s[++sp] = mls_level_dom(l1, l2);
356 				continue;
357 			case CEXPR_DOMBY:
358 				s[++sp] = mls_level_dom(l2, l1);
359 				continue;
360 			case CEXPR_INCOMP:
361 				s[++sp] = mls_level_incomp(l2, l1);
362 				continue;
363 			default:
364 				BUG();
365 				return 0;
366 			}
367 			break;
368 			default:
369 				BUG();
370 				return 0;
371 			}
372 
373 			switch (e->op) {
374 			case CEXPR_EQ:
375 				s[++sp] = (val1 == val2);
376 				break;
377 			case CEXPR_NEQ:
378 				s[++sp] = (val1 != val2);
379 				break;
380 			default:
381 				BUG();
382 				return 0;
383 			}
384 			break;
385 		case CEXPR_NAMES:
386 			if (sp == (CEXPR_MAXDEPTH-1))
387 				return 0;
388 			c = scontext;
389 			if (e->attr & CEXPR_TARGET)
390 				c = tcontext;
391 			else if (e->attr & CEXPR_XTARGET) {
392 				c = xcontext;
393 				if (!c) {
394 					BUG();
395 					return 0;
396 				}
397 			}
398 			if (e->attr & CEXPR_USER)
399 				val1 = c->user;
400 			else if (e->attr & CEXPR_ROLE)
401 				val1 = c->role;
402 			else if (e->attr & CEXPR_TYPE)
403 				val1 = c->type;
404 			else {
405 				BUG();
406 				return 0;
407 			}
408 
409 			switch (e->op) {
410 			case CEXPR_EQ:
411 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
412 				break;
413 			case CEXPR_NEQ:
414 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
415 				break;
416 			default:
417 				BUG();
418 				return 0;
419 			}
420 			break;
421 		default:
422 			BUG();
423 			return 0;
424 		}
425 	}
426 
427 	BUG_ON(sp != 0);
428 	return s[0];
429 }
430 
431 /*
432  * security_dump_masked_av - dumps masked permissions during
433  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
434  */
435 static int dump_masked_av_helper(void *k, void *d, void *args)
436 {
437 	struct perm_datum *pdatum = d;
438 	char **permission_names = args;
439 
440 	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
441 
442 	permission_names[pdatum->value - 1] = (char *)k;
443 
444 	return 0;
445 }
446 
447 static void security_dump_masked_av(struct context *scontext,
448 				    struct context *tcontext,
449 				    u16 tclass,
450 				    u32 permissions,
451 				    const char *reason)
452 {
453 	struct common_datum *common_dat;
454 	struct class_datum *tclass_dat;
455 	struct audit_buffer *ab;
456 	char *tclass_name;
457 	char *scontext_name = NULL;
458 	char *tcontext_name = NULL;
459 	char *permission_names[32];
460 	int index;
461 	u32 length;
462 	bool need_comma = false;
463 
464 	if (!permissions)
465 		return;
466 
467 	tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
468 	tclass_dat = policydb.class_val_to_struct[tclass - 1];
469 	common_dat = tclass_dat->comdatum;
470 
471 	/* init permission_names */
472 	if (common_dat &&
473 	    hashtab_map(common_dat->permissions.table,
474 			dump_masked_av_helper, permission_names) < 0)
475 		goto out;
476 
477 	if (hashtab_map(tclass_dat->permissions.table,
478 			dump_masked_av_helper, permission_names) < 0)
479 		goto out;
480 
481 	/* get scontext/tcontext in text form */
482 	if (context_struct_to_string(scontext,
483 				     &scontext_name, &length) < 0)
484 		goto out;
485 
486 	if (context_struct_to_string(tcontext,
487 				     &tcontext_name, &length) < 0)
488 		goto out;
489 
490 	/* audit a message */
491 	ab = audit_log_start(current->audit_context,
492 			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
493 	if (!ab)
494 		goto out;
495 
496 	audit_log_format(ab, "op=security_compute_av reason=%s "
497 			 "scontext=%s tcontext=%s tclass=%s perms=",
498 			 reason, scontext_name, tcontext_name, tclass_name);
499 
500 	for (index = 0; index < 32; index++) {
501 		u32 mask = (1 << index);
502 
503 		if ((mask & permissions) == 0)
504 			continue;
505 
506 		audit_log_format(ab, "%s%s",
507 				 need_comma ? "," : "",
508 				 permission_names[index]
509 				 ? permission_names[index] : "????");
510 		need_comma = true;
511 	}
512 	audit_log_end(ab);
513 out:
514 	/* release scontext/tcontext */
515 	kfree(tcontext_name);
516 	kfree(scontext_name);
517 
518 	return;
519 }
520 
521 /*
522  * security_boundary_permission - drops violated permissions
523  * on boundary constraint.
524  */
525 static void type_attribute_bounds_av(struct context *scontext,
526 				     struct context *tcontext,
527 				     u16 tclass,
528 				     struct av_decision *avd)
529 {
530 	struct context lo_scontext;
531 	struct context lo_tcontext;
532 	struct av_decision lo_avd;
533 	struct type_datum *source;
534 	struct type_datum *target;
535 	u32 masked = 0;
536 
537 	source = flex_array_get_ptr(policydb.type_val_to_struct_array,
538 				    scontext->type - 1);
539 	BUG_ON(!source);
540 
541 	target = flex_array_get_ptr(policydb.type_val_to_struct_array,
542 				    tcontext->type - 1);
543 	BUG_ON(!target);
544 
545 	if (source->bounds) {
546 		memset(&lo_avd, 0, sizeof(lo_avd));
547 
548 		memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
549 		lo_scontext.type = source->bounds;
550 
551 		context_struct_compute_av(&lo_scontext,
552 					  tcontext,
553 					  tclass,
554 					  &lo_avd);
555 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
556 			return;		/* no masked permission */
557 		masked = ~lo_avd.allowed & avd->allowed;
558 	}
559 
560 	if (target->bounds) {
561 		memset(&lo_avd, 0, sizeof(lo_avd));
562 
563 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
564 		lo_tcontext.type = target->bounds;
565 
566 		context_struct_compute_av(scontext,
567 					  &lo_tcontext,
568 					  tclass,
569 					  &lo_avd);
570 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
571 			return;		/* no masked permission */
572 		masked = ~lo_avd.allowed & avd->allowed;
573 	}
574 
575 	if (source->bounds && target->bounds) {
576 		memset(&lo_avd, 0, sizeof(lo_avd));
577 		/*
578 		 * lo_scontext and lo_tcontext are already
579 		 * set up.
580 		 */
581 
582 		context_struct_compute_av(&lo_scontext,
583 					  &lo_tcontext,
584 					  tclass,
585 					  &lo_avd);
586 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
587 			return;		/* no masked permission */
588 		masked = ~lo_avd.allowed & avd->allowed;
589 	}
590 
591 	if (masked) {
592 		/* mask violated permissions */
593 		avd->allowed &= ~masked;
594 
595 		/* audit masked permissions */
596 		security_dump_masked_av(scontext, tcontext,
597 					tclass, masked, "bounds");
598 	}
599 }
600 
601 /*
602  * Compute access vectors based on a context structure pair for
603  * the permissions in a particular class.
604  */
605 static void context_struct_compute_av(struct context *scontext,
606 				      struct context *tcontext,
607 				      u16 tclass,
608 				      struct av_decision *avd)
609 {
610 	struct constraint_node *constraint;
611 	struct role_allow *ra;
612 	struct avtab_key avkey;
613 	struct avtab_node *node;
614 	struct class_datum *tclass_datum;
615 	struct ebitmap *sattr, *tattr;
616 	struct ebitmap_node *snode, *tnode;
617 	unsigned int i, j;
618 
619 	avd->allowed = 0;
620 	avd->auditallow = 0;
621 	avd->auditdeny = 0xffffffff;
622 
623 	if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
624 		if (printk_ratelimit())
625 			printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
626 		return;
627 	}
628 
629 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
630 
631 	/*
632 	 * If a specific type enforcement rule was defined for
633 	 * this permission check, then use it.
634 	 */
635 	avkey.target_class = tclass;
636 	avkey.specified = AVTAB_AV;
637 	sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
638 	BUG_ON(!sattr);
639 	tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
640 	BUG_ON(!tattr);
641 	ebitmap_for_each_positive_bit(sattr, snode, i) {
642 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
643 			avkey.source_type = i + 1;
644 			avkey.target_type = j + 1;
645 			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
646 			     node;
647 			     node = avtab_search_node_next(node, avkey.specified)) {
648 				if (node->key.specified == AVTAB_ALLOWED)
649 					avd->allowed |= node->datum.data;
650 				else if (node->key.specified == AVTAB_AUDITALLOW)
651 					avd->auditallow |= node->datum.data;
652 				else if (node->key.specified == AVTAB_AUDITDENY)
653 					avd->auditdeny &= node->datum.data;
654 			}
655 
656 			/* Check conditional av table for additional permissions */
657 			cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
658 
659 		}
660 	}
661 
662 	/*
663 	 * Remove any permissions prohibited by a constraint (this includes
664 	 * the MLS policy).
665 	 */
666 	constraint = tclass_datum->constraints;
667 	while (constraint) {
668 		if ((constraint->permissions & (avd->allowed)) &&
669 		    !constraint_expr_eval(scontext, tcontext, NULL,
670 					  constraint->expr)) {
671 			avd->allowed &= ~(constraint->permissions);
672 		}
673 		constraint = constraint->next;
674 	}
675 
676 	/*
677 	 * If checking process transition permission and the
678 	 * role is changing, then check the (current_role, new_role)
679 	 * pair.
680 	 */
681 	if (tclass == policydb.process_class &&
682 	    (avd->allowed & policydb.process_trans_perms) &&
683 	    scontext->role != tcontext->role) {
684 		for (ra = policydb.role_allow; ra; ra = ra->next) {
685 			if (scontext->role == ra->role &&
686 			    tcontext->role == ra->new_role)
687 				break;
688 		}
689 		if (!ra)
690 			avd->allowed &= ~policydb.process_trans_perms;
691 	}
692 
693 	/*
694 	 * If the given source and target types have boundary
695 	 * constraint, lazy checks have to mask any violated
696 	 * permission and notice it to userspace via audit.
697 	 */
698 	type_attribute_bounds_av(scontext, tcontext,
699 				 tclass, avd);
700 }
701 
702 static int security_validtrans_handle_fail(struct context *ocontext,
703 					   struct context *ncontext,
704 					   struct context *tcontext,
705 					   u16 tclass)
706 {
707 	char *o = NULL, *n = NULL, *t = NULL;
708 	u32 olen, nlen, tlen;
709 
710 	if (context_struct_to_string(ocontext, &o, &olen))
711 		goto out;
712 	if (context_struct_to_string(ncontext, &n, &nlen))
713 		goto out;
714 	if (context_struct_to_string(tcontext, &t, &tlen))
715 		goto out;
716 	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
717 		  "security_validate_transition:  denied for"
718 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
719 		  o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
720 out:
721 	kfree(o);
722 	kfree(n);
723 	kfree(t);
724 
725 	if (!selinux_enforcing)
726 		return 0;
727 	return -EPERM;
728 }
729 
730 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
731 				 u16 orig_tclass)
732 {
733 	struct context *ocontext;
734 	struct context *ncontext;
735 	struct context *tcontext;
736 	struct class_datum *tclass_datum;
737 	struct constraint_node *constraint;
738 	u16 tclass;
739 	int rc = 0;
740 
741 	if (!ss_initialized)
742 		return 0;
743 
744 	read_lock(&policy_rwlock);
745 
746 	tclass = unmap_class(orig_tclass);
747 
748 	if (!tclass || tclass > policydb.p_classes.nprim) {
749 		printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
750 			__func__, tclass);
751 		rc = -EINVAL;
752 		goto out;
753 	}
754 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
755 
756 	ocontext = sidtab_search(&sidtab, oldsid);
757 	if (!ocontext) {
758 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
759 			__func__, oldsid);
760 		rc = -EINVAL;
761 		goto out;
762 	}
763 
764 	ncontext = sidtab_search(&sidtab, newsid);
765 	if (!ncontext) {
766 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
767 			__func__, newsid);
768 		rc = -EINVAL;
769 		goto out;
770 	}
771 
772 	tcontext = sidtab_search(&sidtab, tasksid);
773 	if (!tcontext) {
774 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
775 			__func__, tasksid);
776 		rc = -EINVAL;
777 		goto out;
778 	}
779 
780 	constraint = tclass_datum->validatetrans;
781 	while (constraint) {
782 		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
783 					  constraint->expr)) {
784 			rc = security_validtrans_handle_fail(ocontext, ncontext,
785 							     tcontext, tclass);
786 			goto out;
787 		}
788 		constraint = constraint->next;
789 	}
790 
791 out:
792 	read_unlock(&policy_rwlock);
793 	return rc;
794 }
795 
796 /*
797  * security_bounded_transition - check whether the given
798  * transition is directed to bounded, or not.
799  * It returns 0, if @newsid is bounded by @oldsid.
800  * Otherwise, it returns error code.
801  *
802  * @oldsid : current security identifier
803  * @newsid : destinated security identifier
804  */
805 int security_bounded_transition(u32 old_sid, u32 new_sid)
806 {
807 	struct context *old_context, *new_context;
808 	struct type_datum *type;
809 	int index;
810 	int rc;
811 
812 	read_lock(&policy_rwlock);
813 
814 	rc = -EINVAL;
815 	old_context = sidtab_search(&sidtab, old_sid);
816 	if (!old_context) {
817 		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
818 		       __func__, old_sid);
819 		goto out;
820 	}
821 
822 	rc = -EINVAL;
823 	new_context = sidtab_search(&sidtab, new_sid);
824 	if (!new_context) {
825 		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
826 		       __func__, new_sid);
827 		goto out;
828 	}
829 
830 	rc = 0;
831 	/* type/domain unchanged */
832 	if (old_context->type == new_context->type)
833 		goto out;
834 
835 	index = new_context->type;
836 	while (true) {
837 		type = flex_array_get_ptr(policydb.type_val_to_struct_array,
838 					  index - 1);
839 		BUG_ON(!type);
840 
841 		/* not bounded anymore */
842 		rc = -EPERM;
843 		if (!type->bounds)
844 			break;
845 
846 		/* @newsid is bounded by @oldsid */
847 		rc = 0;
848 		if (type->bounds == old_context->type)
849 			break;
850 
851 		index = type->bounds;
852 	}
853 
854 	if (rc) {
855 		char *old_name = NULL;
856 		char *new_name = NULL;
857 		u32 length;
858 
859 		if (!context_struct_to_string(old_context,
860 					      &old_name, &length) &&
861 		    !context_struct_to_string(new_context,
862 					      &new_name, &length)) {
863 			audit_log(current->audit_context,
864 				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
865 				  "op=security_bounded_transition "
866 				  "result=denied "
867 				  "oldcontext=%s newcontext=%s",
868 				  old_name, new_name);
869 		}
870 		kfree(new_name);
871 		kfree(old_name);
872 	}
873 out:
874 	read_unlock(&policy_rwlock);
875 
876 	return rc;
877 }
878 
879 static void avd_init(struct av_decision *avd)
880 {
881 	avd->allowed = 0;
882 	avd->auditallow = 0;
883 	avd->auditdeny = 0xffffffff;
884 	avd->seqno = latest_granting;
885 	avd->flags = 0;
886 }
887 
888 
889 /**
890  * security_compute_av - Compute access vector decisions.
891  * @ssid: source security identifier
892  * @tsid: target security identifier
893  * @tclass: target security class
894  * @avd: access vector decisions
895  *
896  * Compute a set of access vector decisions based on the
897  * SID pair (@ssid, @tsid) for the permissions in @tclass.
898  */
899 void security_compute_av(u32 ssid,
900 			 u32 tsid,
901 			 u16 orig_tclass,
902 			 struct av_decision *avd)
903 {
904 	u16 tclass;
905 	struct context *scontext = NULL, *tcontext = NULL;
906 
907 	read_lock(&policy_rwlock);
908 	avd_init(avd);
909 	if (!ss_initialized)
910 		goto allow;
911 
912 	scontext = sidtab_search(&sidtab, ssid);
913 	if (!scontext) {
914 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
915 		       __func__, ssid);
916 		goto out;
917 	}
918 
919 	/* permissive domain? */
920 	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
921 		avd->flags |= AVD_FLAGS_PERMISSIVE;
922 
923 	tcontext = sidtab_search(&sidtab, tsid);
924 	if (!tcontext) {
925 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
926 		       __func__, tsid);
927 		goto out;
928 	}
929 
930 	tclass = unmap_class(orig_tclass);
931 	if (unlikely(orig_tclass && !tclass)) {
932 		if (policydb.allow_unknown)
933 			goto allow;
934 		goto out;
935 	}
936 	context_struct_compute_av(scontext, tcontext, tclass, avd);
937 	map_decision(orig_tclass, avd, policydb.allow_unknown);
938 out:
939 	read_unlock(&policy_rwlock);
940 	return;
941 allow:
942 	avd->allowed = 0xffffffff;
943 	goto out;
944 }
945 
946 void security_compute_av_user(u32 ssid,
947 			      u32 tsid,
948 			      u16 tclass,
949 			      struct av_decision *avd)
950 {
951 	struct context *scontext = NULL, *tcontext = NULL;
952 
953 	read_lock(&policy_rwlock);
954 	avd_init(avd);
955 	if (!ss_initialized)
956 		goto allow;
957 
958 	scontext = sidtab_search(&sidtab, ssid);
959 	if (!scontext) {
960 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
961 		       __func__, ssid);
962 		goto out;
963 	}
964 
965 	/* permissive domain? */
966 	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
967 		avd->flags |= AVD_FLAGS_PERMISSIVE;
968 
969 	tcontext = sidtab_search(&sidtab, tsid);
970 	if (!tcontext) {
971 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
972 		       __func__, tsid);
973 		goto out;
974 	}
975 
976 	if (unlikely(!tclass)) {
977 		if (policydb.allow_unknown)
978 			goto allow;
979 		goto out;
980 	}
981 
982 	context_struct_compute_av(scontext, tcontext, tclass, avd);
983  out:
984 	read_unlock(&policy_rwlock);
985 	return;
986 allow:
987 	avd->allowed = 0xffffffff;
988 	goto out;
989 }
990 
991 /*
992  * Write the security context string representation of
993  * the context structure `context' into a dynamically
994  * allocated string of the correct size.  Set `*scontext'
995  * to point to this string and set `*scontext_len' to
996  * the length of the string.
997  */
998 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
999 {
1000 	char *scontextp;
1001 
1002 	if (scontext)
1003 		*scontext = NULL;
1004 	*scontext_len = 0;
1005 
1006 	if (context->len) {
1007 		*scontext_len = context->len;
1008 		*scontext = kstrdup(context->str, GFP_ATOMIC);
1009 		if (!(*scontext))
1010 			return -ENOMEM;
1011 		return 0;
1012 	}
1013 
1014 	/* Compute the size of the context. */
1015 	*scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1016 	*scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1017 	*scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1018 	*scontext_len += mls_compute_context_len(context);
1019 
1020 	if (!scontext)
1021 		return 0;
1022 
1023 	/* Allocate space for the context; caller must free this space. */
1024 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1025 	if (!scontextp)
1026 		return -ENOMEM;
1027 	*scontext = scontextp;
1028 
1029 	/*
1030 	 * Copy the user name, role name and type name into the context.
1031 	 */
1032 	sprintf(scontextp, "%s:%s:%s",
1033 		sym_name(&policydb, SYM_USERS, context->user - 1),
1034 		sym_name(&policydb, SYM_ROLES, context->role - 1),
1035 		sym_name(&policydb, SYM_TYPES, context->type - 1));
1036 	scontextp += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) +
1037 		     1 + strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) +
1038 		     1 + strlen(sym_name(&policydb, SYM_TYPES, context->type - 1));
1039 
1040 	mls_sid_to_context(context, &scontextp);
1041 
1042 	*scontextp = 0;
1043 
1044 	return 0;
1045 }
1046 
1047 #include "initial_sid_to_string.h"
1048 
1049 const char *security_get_initial_sid_context(u32 sid)
1050 {
1051 	if (unlikely(sid > SECINITSID_NUM))
1052 		return NULL;
1053 	return initial_sid_to_string[sid];
1054 }
1055 
1056 static int security_sid_to_context_core(u32 sid, char **scontext,
1057 					u32 *scontext_len, int force)
1058 {
1059 	struct context *context;
1060 	int rc = 0;
1061 
1062 	if (scontext)
1063 		*scontext = NULL;
1064 	*scontext_len  = 0;
1065 
1066 	if (!ss_initialized) {
1067 		if (sid <= SECINITSID_NUM) {
1068 			char *scontextp;
1069 
1070 			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1071 			if (!scontext)
1072 				goto out;
1073 			scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1074 			if (!scontextp) {
1075 				rc = -ENOMEM;
1076 				goto out;
1077 			}
1078 			strcpy(scontextp, initial_sid_to_string[sid]);
1079 			*scontext = scontextp;
1080 			goto out;
1081 		}
1082 		printk(KERN_ERR "SELinux: %s:  called before initial "
1083 		       "load_policy on unknown SID %d\n", __func__, sid);
1084 		rc = -EINVAL;
1085 		goto out;
1086 	}
1087 	read_lock(&policy_rwlock);
1088 	if (force)
1089 		context = sidtab_search_force(&sidtab, sid);
1090 	else
1091 		context = sidtab_search(&sidtab, sid);
1092 	if (!context) {
1093 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1094 			__func__, sid);
1095 		rc = -EINVAL;
1096 		goto out_unlock;
1097 	}
1098 	rc = context_struct_to_string(context, scontext, scontext_len);
1099 out_unlock:
1100 	read_unlock(&policy_rwlock);
1101 out:
1102 	return rc;
1103 
1104 }
1105 
1106 /**
1107  * security_sid_to_context - Obtain a context for a given SID.
1108  * @sid: security identifier, SID
1109  * @scontext: security context
1110  * @scontext_len: length in bytes
1111  *
1112  * Write the string representation of the context associated with @sid
1113  * into a dynamically allocated string of the correct size.  Set @scontext
1114  * to point to this string and set @scontext_len to the length of the string.
1115  */
1116 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1117 {
1118 	return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1119 }
1120 
1121 int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1122 {
1123 	return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1124 }
1125 
1126 /*
1127  * Caveat:  Mutates scontext.
1128  */
1129 static int string_to_context_struct(struct policydb *pol,
1130 				    struct sidtab *sidtabp,
1131 				    char *scontext,
1132 				    u32 scontext_len,
1133 				    struct context *ctx,
1134 				    u32 def_sid)
1135 {
1136 	struct role_datum *role;
1137 	struct type_datum *typdatum;
1138 	struct user_datum *usrdatum;
1139 	char *scontextp, *p, oldc;
1140 	int rc = 0;
1141 
1142 	context_init(ctx);
1143 
1144 	/* Parse the security context. */
1145 
1146 	rc = -EINVAL;
1147 	scontextp = (char *) scontext;
1148 
1149 	/* Extract the user. */
1150 	p = scontextp;
1151 	while (*p && *p != ':')
1152 		p++;
1153 
1154 	if (*p == 0)
1155 		goto out;
1156 
1157 	*p++ = 0;
1158 
1159 	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1160 	if (!usrdatum)
1161 		goto out;
1162 
1163 	ctx->user = usrdatum->value;
1164 
1165 	/* Extract role. */
1166 	scontextp = p;
1167 	while (*p && *p != ':')
1168 		p++;
1169 
1170 	if (*p == 0)
1171 		goto out;
1172 
1173 	*p++ = 0;
1174 
1175 	role = hashtab_search(pol->p_roles.table, scontextp);
1176 	if (!role)
1177 		goto out;
1178 	ctx->role = role->value;
1179 
1180 	/* Extract type. */
1181 	scontextp = p;
1182 	while (*p && *p != ':')
1183 		p++;
1184 	oldc = *p;
1185 	*p++ = 0;
1186 
1187 	typdatum = hashtab_search(pol->p_types.table, scontextp);
1188 	if (!typdatum || typdatum->attribute)
1189 		goto out;
1190 
1191 	ctx->type = typdatum->value;
1192 
1193 	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1194 	if (rc)
1195 		goto out;
1196 
1197 	rc = -EINVAL;
1198 	if ((p - scontext) < scontext_len)
1199 		goto out;
1200 
1201 	/* Check the validity of the new context. */
1202 	if (!policydb_context_isvalid(pol, ctx))
1203 		goto out;
1204 	rc = 0;
1205 out:
1206 	if (rc)
1207 		context_destroy(ctx);
1208 	return rc;
1209 }
1210 
1211 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1212 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1213 					int force)
1214 {
1215 	char *scontext2, *str = NULL;
1216 	struct context context;
1217 	int rc = 0;
1218 
1219 	if (!ss_initialized) {
1220 		int i;
1221 
1222 		for (i = 1; i < SECINITSID_NUM; i++) {
1223 			if (!strcmp(initial_sid_to_string[i], scontext)) {
1224 				*sid = i;
1225 				return 0;
1226 			}
1227 		}
1228 		*sid = SECINITSID_KERNEL;
1229 		return 0;
1230 	}
1231 	*sid = SECSID_NULL;
1232 
1233 	/* Copy the string so that we can modify the copy as we parse it. */
1234 	scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1235 	if (!scontext2)
1236 		return -ENOMEM;
1237 	memcpy(scontext2, scontext, scontext_len);
1238 	scontext2[scontext_len] = 0;
1239 
1240 	if (force) {
1241 		/* Save another copy for storing in uninterpreted form */
1242 		rc = -ENOMEM;
1243 		str = kstrdup(scontext2, gfp_flags);
1244 		if (!str)
1245 			goto out;
1246 	}
1247 
1248 	read_lock(&policy_rwlock);
1249 	rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1250 				      scontext_len, &context, def_sid);
1251 	if (rc == -EINVAL && force) {
1252 		context.str = str;
1253 		context.len = scontext_len;
1254 		str = NULL;
1255 	} else if (rc)
1256 		goto out_unlock;
1257 	rc = sidtab_context_to_sid(&sidtab, &context, sid);
1258 	context_destroy(&context);
1259 out_unlock:
1260 	read_unlock(&policy_rwlock);
1261 out:
1262 	kfree(scontext2);
1263 	kfree(str);
1264 	return rc;
1265 }
1266 
1267 /**
1268  * security_context_to_sid - Obtain a SID for a given security context.
1269  * @scontext: security context
1270  * @scontext_len: length in bytes
1271  * @sid: security identifier, SID
1272  *
1273  * Obtains a SID associated with the security context that
1274  * has the string representation specified by @scontext.
1275  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1276  * memory is available, or 0 on success.
1277  */
1278 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
1279 {
1280 	return security_context_to_sid_core(scontext, scontext_len,
1281 					    sid, SECSID_NULL, GFP_KERNEL, 0);
1282 }
1283 
1284 /**
1285  * security_context_to_sid_default - Obtain a SID for a given security context,
1286  * falling back to specified default if needed.
1287  *
1288  * @scontext: security context
1289  * @scontext_len: length in bytes
1290  * @sid: security identifier, SID
1291  * @def_sid: default SID to assign on error
1292  *
1293  * Obtains a SID associated with the security context that
1294  * has the string representation specified by @scontext.
1295  * The default SID is passed to the MLS layer to be used to allow
1296  * kernel labeling of the MLS field if the MLS field is not present
1297  * (for upgrading to MLS without full relabel).
1298  * Implicitly forces adding of the context even if it cannot be mapped yet.
1299  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1300  * memory is available, or 0 on success.
1301  */
1302 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1303 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1304 {
1305 	return security_context_to_sid_core(scontext, scontext_len,
1306 					    sid, def_sid, gfp_flags, 1);
1307 }
1308 
1309 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1310 				  u32 *sid)
1311 {
1312 	return security_context_to_sid_core(scontext, scontext_len,
1313 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1314 }
1315 
1316 static int compute_sid_handle_invalid_context(
1317 	struct context *scontext,
1318 	struct context *tcontext,
1319 	u16 tclass,
1320 	struct context *newcontext)
1321 {
1322 	char *s = NULL, *t = NULL, *n = NULL;
1323 	u32 slen, tlen, nlen;
1324 
1325 	if (context_struct_to_string(scontext, &s, &slen))
1326 		goto out;
1327 	if (context_struct_to_string(tcontext, &t, &tlen))
1328 		goto out;
1329 	if (context_struct_to_string(newcontext, &n, &nlen))
1330 		goto out;
1331 	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1332 		  "security_compute_sid:  invalid context %s"
1333 		  " for scontext=%s"
1334 		  " tcontext=%s"
1335 		  " tclass=%s",
1336 		  n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
1337 out:
1338 	kfree(s);
1339 	kfree(t);
1340 	kfree(n);
1341 	if (!selinux_enforcing)
1342 		return 0;
1343 	return -EACCES;
1344 }
1345 
1346 static int security_compute_sid(u32 ssid,
1347 				u32 tsid,
1348 				u16 orig_tclass,
1349 				u32 specified,
1350 				u32 *out_sid,
1351 				bool kern)
1352 {
1353 	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1354 	struct role_trans *roletr = NULL;
1355 	struct avtab_key avkey;
1356 	struct avtab_datum *avdatum;
1357 	struct avtab_node *node;
1358 	u16 tclass;
1359 	int rc = 0;
1360 
1361 	if (!ss_initialized) {
1362 		switch (orig_tclass) {
1363 		case SECCLASS_PROCESS: /* kernel value */
1364 			*out_sid = ssid;
1365 			break;
1366 		default:
1367 			*out_sid = tsid;
1368 			break;
1369 		}
1370 		goto out;
1371 	}
1372 
1373 	context_init(&newcontext);
1374 
1375 	read_lock(&policy_rwlock);
1376 
1377 	if (kern)
1378 		tclass = unmap_class(orig_tclass);
1379 	else
1380 		tclass = orig_tclass;
1381 
1382 	scontext = sidtab_search(&sidtab, ssid);
1383 	if (!scontext) {
1384 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1385 		       __func__, ssid);
1386 		rc = -EINVAL;
1387 		goto out_unlock;
1388 	}
1389 	tcontext = sidtab_search(&sidtab, tsid);
1390 	if (!tcontext) {
1391 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1392 		       __func__, tsid);
1393 		rc = -EINVAL;
1394 		goto out_unlock;
1395 	}
1396 
1397 	/* Set the user identity. */
1398 	switch (specified) {
1399 	case AVTAB_TRANSITION:
1400 	case AVTAB_CHANGE:
1401 		/* Use the process user identity. */
1402 		newcontext.user = scontext->user;
1403 		break;
1404 	case AVTAB_MEMBER:
1405 		/* Use the related object owner. */
1406 		newcontext.user = tcontext->user;
1407 		break;
1408 	}
1409 
1410 	/* Set the role and type to default values. */
1411 	if (tclass == policydb.process_class) {
1412 		/* Use the current role and type of process. */
1413 		newcontext.role = scontext->role;
1414 		newcontext.type = scontext->type;
1415 	} else {
1416 		/* Use the well-defined object role. */
1417 		newcontext.role = OBJECT_R_VAL;
1418 		/* Use the type of the related object. */
1419 		newcontext.type = tcontext->type;
1420 	}
1421 
1422 	/* Look for a type transition/member/change rule. */
1423 	avkey.source_type = scontext->type;
1424 	avkey.target_type = tcontext->type;
1425 	avkey.target_class = tclass;
1426 	avkey.specified = specified;
1427 	avdatum = avtab_search(&policydb.te_avtab, &avkey);
1428 
1429 	/* If no permanent rule, also check for enabled conditional rules */
1430 	if (!avdatum) {
1431 		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1432 		for (; node; node = avtab_search_node_next(node, specified)) {
1433 			if (node->key.specified & AVTAB_ENABLED) {
1434 				avdatum = &node->datum;
1435 				break;
1436 			}
1437 		}
1438 	}
1439 
1440 	if (avdatum) {
1441 		/* Use the type from the type transition/member/change rule. */
1442 		newcontext.type = avdatum->data;
1443 	}
1444 
1445 	/* Check for class-specific changes. */
1446 	if  (tclass == policydb.process_class) {
1447 		if (specified & AVTAB_TRANSITION) {
1448 			/* Look for a role transition rule. */
1449 			for (roletr = policydb.role_tr; roletr;
1450 			     roletr = roletr->next) {
1451 				if (roletr->role == scontext->role &&
1452 				    roletr->type == tcontext->type) {
1453 					/* Use the role transition rule. */
1454 					newcontext.role = roletr->new_role;
1455 					break;
1456 				}
1457 			}
1458 		}
1459 	}
1460 
1461 	/* Set the MLS attributes.
1462 	   This is done last because it may allocate memory. */
1463 	rc = mls_compute_sid(scontext, tcontext, tclass, specified, &newcontext);
1464 	if (rc)
1465 		goto out_unlock;
1466 
1467 	/* Check the validity of the context. */
1468 	if (!policydb_context_isvalid(&policydb, &newcontext)) {
1469 		rc = compute_sid_handle_invalid_context(scontext,
1470 							tcontext,
1471 							tclass,
1472 							&newcontext);
1473 		if (rc)
1474 			goto out_unlock;
1475 	}
1476 	/* Obtain the sid for the context. */
1477 	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1478 out_unlock:
1479 	read_unlock(&policy_rwlock);
1480 	context_destroy(&newcontext);
1481 out:
1482 	return rc;
1483 }
1484 
1485 /**
1486  * security_transition_sid - Compute the SID for a new subject/object.
1487  * @ssid: source security identifier
1488  * @tsid: target security identifier
1489  * @tclass: target security class
1490  * @out_sid: security identifier for new subject/object
1491  *
1492  * Compute a SID to use for labeling a new subject or object in the
1493  * class @tclass based on a SID pair (@ssid, @tsid).
1494  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1495  * if insufficient memory is available, or %0 if the new SID was
1496  * computed successfully.
1497  */
1498 int security_transition_sid(u32 ssid,
1499 			    u32 tsid,
1500 			    u16 tclass,
1501 			    u32 *out_sid)
1502 {
1503 	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1504 				    out_sid, true);
1505 }
1506 
1507 int security_transition_sid_user(u32 ssid,
1508 				 u32 tsid,
1509 				 u16 tclass,
1510 				 u32 *out_sid)
1511 {
1512 	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1513 				    out_sid, false);
1514 }
1515 
1516 /**
1517  * security_member_sid - Compute the SID for member selection.
1518  * @ssid: source security identifier
1519  * @tsid: target security identifier
1520  * @tclass: target security class
1521  * @out_sid: security identifier for selected member
1522  *
1523  * Compute a SID to use when selecting a member of a polyinstantiated
1524  * object of class @tclass based on a SID pair (@ssid, @tsid).
1525  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1526  * if insufficient memory is available, or %0 if the SID was
1527  * computed successfully.
1528  */
1529 int security_member_sid(u32 ssid,
1530 			u32 tsid,
1531 			u16 tclass,
1532 			u32 *out_sid)
1533 {
1534 	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid,
1535 				    false);
1536 }
1537 
1538 /**
1539  * security_change_sid - Compute the SID for object relabeling.
1540  * @ssid: source security identifier
1541  * @tsid: target security identifier
1542  * @tclass: target security class
1543  * @out_sid: security identifier for selected member
1544  *
1545  * Compute a SID to use for relabeling an object of class @tclass
1546  * based on a SID pair (@ssid, @tsid).
1547  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1548  * if insufficient memory is available, or %0 if the SID was
1549  * computed successfully.
1550  */
1551 int security_change_sid(u32 ssid,
1552 			u32 tsid,
1553 			u16 tclass,
1554 			u32 *out_sid)
1555 {
1556 	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid,
1557 				    false);
1558 }
1559 
1560 /* Clone the SID into the new SID table. */
1561 static int clone_sid(u32 sid,
1562 		     struct context *context,
1563 		     void *arg)
1564 {
1565 	struct sidtab *s = arg;
1566 
1567 	if (sid > SECINITSID_NUM)
1568 		return sidtab_insert(s, sid, context);
1569 	else
1570 		return 0;
1571 }
1572 
1573 static inline int convert_context_handle_invalid_context(struct context *context)
1574 {
1575 	char *s;
1576 	u32 len;
1577 
1578 	if (selinux_enforcing)
1579 		return -EINVAL;
1580 
1581 	if (!context_struct_to_string(context, &s, &len)) {
1582 		printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
1583 		kfree(s);
1584 	}
1585 	return 0;
1586 }
1587 
1588 struct convert_context_args {
1589 	struct policydb *oldp;
1590 	struct policydb *newp;
1591 };
1592 
1593 /*
1594  * Convert the values in the security context
1595  * structure `c' from the values specified
1596  * in the policy `p->oldp' to the values specified
1597  * in the policy `p->newp'.  Verify that the
1598  * context is valid under the new policy.
1599  */
1600 static int convert_context(u32 key,
1601 			   struct context *c,
1602 			   void *p)
1603 {
1604 	struct convert_context_args *args;
1605 	struct context oldc;
1606 	struct ocontext *oc;
1607 	struct mls_range *range;
1608 	struct role_datum *role;
1609 	struct type_datum *typdatum;
1610 	struct user_datum *usrdatum;
1611 	char *s;
1612 	u32 len;
1613 	int rc = 0;
1614 
1615 	if (key <= SECINITSID_NUM)
1616 		goto out;
1617 
1618 	args = p;
1619 
1620 	if (c->str) {
1621 		struct context ctx;
1622 
1623 		rc = -ENOMEM;
1624 		s = kstrdup(c->str, GFP_KERNEL);
1625 		if (!s)
1626 			goto out;
1627 
1628 		rc = string_to_context_struct(args->newp, NULL, s,
1629 					      c->len, &ctx, SECSID_NULL);
1630 		kfree(s);
1631 		if (!rc) {
1632 			printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1633 			       c->str);
1634 			/* Replace string with mapped representation. */
1635 			kfree(c->str);
1636 			memcpy(c, &ctx, sizeof(*c));
1637 			goto out;
1638 		} else if (rc == -EINVAL) {
1639 			/* Retain string representation for later mapping. */
1640 			rc = 0;
1641 			goto out;
1642 		} else {
1643 			/* Other error condition, e.g. ENOMEM. */
1644 			printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1645 			       c->str, -rc);
1646 			goto out;
1647 		}
1648 	}
1649 
1650 	rc = context_cpy(&oldc, c);
1651 	if (rc)
1652 		goto out;
1653 
1654 	/* Convert the user. */
1655 	rc = -EINVAL;
1656 	usrdatum = hashtab_search(args->newp->p_users.table,
1657 				  sym_name(args->oldp, SYM_USERS, c->user - 1));
1658 	if (!usrdatum)
1659 		goto bad;
1660 	c->user = usrdatum->value;
1661 
1662 	/* Convert the role. */
1663 	rc = -EINVAL;
1664 	role = hashtab_search(args->newp->p_roles.table,
1665 			      sym_name(args->oldp, SYM_ROLES, c->role - 1));
1666 	if (!role)
1667 		goto bad;
1668 	c->role = role->value;
1669 
1670 	/* Convert the type. */
1671 	rc = -EINVAL;
1672 	typdatum = hashtab_search(args->newp->p_types.table,
1673 				  sym_name(args->oldp, SYM_TYPES, c->type - 1));
1674 	if (!typdatum)
1675 		goto bad;
1676 	c->type = typdatum->value;
1677 
1678 	/* Convert the MLS fields if dealing with MLS policies */
1679 	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1680 		rc = mls_convert_context(args->oldp, args->newp, c);
1681 		if (rc)
1682 			goto bad;
1683 	} else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1684 		/*
1685 		 * Switching between MLS and non-MLS policy:
1686 		 * free any storage used by the MLS fields in the
1687 		 * context for all existing entries in the sidtab.
1688 		 */
1689 		mls_context_destroy(c);
1690 	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1691 		/*
1692 		 * Switching between non-MLS and MLS policy:
1693 		 * ensure that the MLS fields of the context for all
1694 		 * existing entries in the sidtab are filled in with a
1695 		 * suitable default value, likely taken from one of the
1696 		 * initial SIDs.
1697 		 */
1698 		oc = args->newp->ocontexts[OCON_ISID];
1699 		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1700 			oc = oc->next;
1701 		rc = -EINVAL;
1702 		if (!oc) {
1703 			printk(KERN_ERR "SELinux:  unable to look up"
1704 				" the initial SIDs list\n");
1705 			goto bad;
1706 		}
1707 		range = &oc->context[0].range;
1708 		rc = mls_range_set(c, range);
1709 		if (rc)
1710 			goto bad;
1711 	}
1712 
1713 	/* Check the validity of the new context. */
1714 	if (!policydb_context_isvalid(args->newp, c)) {
1715 		rc = convert_context_handle_invalid_context(&oldc);
1716 		if (rc)
1717 			goto bad;
1718 	}
1719 
1720 	context_destroy(&oldc);
1721 
1722 	rc = 0;
1723 out:
1724 	return rc;
1725 bad:
1726 	/* Map old representation to string and save it. */
1727 	rc = context_struct_to_string(&oldc, &s, &len);
1728 	if (rc)
1729 		return rc;
1730 	context_destroy(&oldc);
1731 	context_destroy(c);
1732 	c->str = s;
1733 	c->len = len;
1734 	printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
1735 	       c->str);
1736 	rc = 0;
1737 	goto out;
1738 }
1739 
1740 static void security_load_policycaps(void)
1741 {
1742 	selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1743 						  POLICYDB_CAPABILITY_NETPEER);
1744 	selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1745 						  POLICYDB_CAPABILITY_OPENPERM);
1746 }
1747 
1748 extern void selinux_complete_init(void);
1749 static int security_preserve_bools(struct policydb *p);
1750 
1751 /**
1752  * security_load_policy - Load a security policy configuration.
1753  * @data: binary policy data
1754  * @len: length of data in bytes
1755  *
1756  * Load a new set of security policy configuration data,
1757  * validate it and convert the SID table as necessary.
1758  * This function will flush the access vector cache after
1759  * loading the new policy.
1760  */
1761 int security_load_policy(void *data, size_t len)
1762 {
1763 	struct policydb oldpolicydb, newpolicydb;
1764 	struct sidtab oldsidtab, newsidtab;
1765 	struct selinux_mapping *oldmap, *map = NULL;
1766 	struct convert_context_args args;
1767 	u32 seqno;
1768 	u16 map_size;
1769 	int rc = 0;
1770 	struct policy_file file = { data, len }, *fp = &file;
1771 
1772 	if (!ss_initialized) {
1773 		avtab_cache_init();
1774 		rc = policydb_read(&policydb, fp);
1775 		if (rc) {
1776 			avtab_cache_destroy();
1777 			return rc;
1778 		}
1779 
1780 		policydb.len = len;
1781 		rc = selinux_set_mapping(&policydb, secclass_map,
1782 					 &current_mapping,
1783 					 &current_mapping_size);
1784 		if (rc) {
1785 			policydb_destroy(&policydb);
1786 			avtab_cache_destroy();
1787 			return rc;
1788 		}
1789 
1790 		rc = policydb_load_isids(&policydb, &sidtab);
1791 		if (rc) {
1792 			policydb_destroy(&policydb);
1793 			avtab_cache_destroy();
1794 			return rc;
1795 		}
1796 
1797 		security_load_policycaps();
1798 		ss_initialized = 1;
1799 		seqno = ++latest_granting;
1800 		selinux_complete_init();
1801 		avc_ss_reset(seqno);
1802 		selnl_notify_policyload(seqno);
1803 		selinux_status_update_policyload(seqno);
1804 		selinux_netlbl_cache_invalidate();
1805 		selinux_xfrm_notify_policyload();
1806 		return 0;
1807 	}
1808 
1809 #if 0
1810 	sidtab_hash_eval(&sidtab, "sids");
1811 #endif
1812 
1813 	rc = policydb_read(&newpolicydb, fp);
1814 	if (rc)
1815 		return rc;
1816 
1817 	newpolicydb.len = len;
1818 	/* If switching between different policy types, log MLS status */
1819 	if (policydb.mls_enabled && !newpolicydb.mls_enabled)
1820 		printk(KERN_INFO "SELinux: Disabling MLS support...\n");
1821 	else if (!policydb.mls_enabled && newpolicydb.mls_enabled)
1822 		printk(KERN_INFO "SELinux: Enabling MLS support...\n");
1823 
1824 	rc = policydb_load_isids(&newpolicydb, &newsidtab);
1825 	if (rc) {
1826 		printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
1827 		policydb_destroy(&newpolicydb);
1828 		return rc;
1829 	}
1830 
1831 	rc = selinux_set_mapping(&newpolicydb, secclass_map, &map, &map_size);
1832 	if (rc)
1833 		goto err;
1834 
1835 	rc = security_preserve_bools(&newpolicydb);
1836 	if (rc) {
1837 		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
1838 		goto err;
1839 	}
1840 
1841 	/* Clone the SID table. */
1842 	sidtab_shutdown(&sidtab);
1843 
1844 	rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
1845 	if (rc)
1846 		goto err;
1847 
1848 	/*
1849 	 * Convert the internal representations of contexts
1850 	 * in the new SID table.
1851 	 */
1852 	args.oldp = &policydb;
1853 	args.newp = &newpolicydb;
1854 	rc = sidtab_map(&newsidtab, convert_context, &args);
1855 	if (rc) {
1856 		printk(KERN_ERR "SELinux:  unable to convert the internal"
1857 			" representation of contexts in the new SID"
1858 			" table\n");
1859 		goto err;
1860 	}
1861 
1862 	/* Save the old policydb and SID table to free later. */
1863 	memcpy(&oldpolicydb, &policydb, sizeof policydb);
1864 	sidtab_set(&oldsidtab, &sidtab);
1865 
1866 	/* Install the new policydb and SID table. */
1867 	write_lock_irq(&policy_rwlock);
1868 	memcpy(&policydb, &newpolicydb, sizeof policydb);
1869 	sidtab_set(&sidtab, &newsidtab);
1870 	security_load_policycaps();
1871 	oldmap = current_mapping;
1872 	current_mapping = map;
1873 	current_mapping_size = map_size;
1874 	seqno = ++latest_granting;
1875 	write_unlock_irq(&policy_rwlock);
1876 
1877 	/* Free the old policydb and SID table. */
1878 	policydb_destroy(&oldpolicydb);
1879 	sidtab_destroy(&oldsidtab);
1880 	kfree(oldmap);
1881 
1882 	avc_ss_reset(seqno);
1883 	selnl_notify_policyload(seqno);
1884 	selinux_status_update_policyload(seqno);
1885 	selinux_netlbl_cache_invalidate();
1886 	selinux_xfrm_notify_policyload();
1887 
1888 	return 0;
1889 
1890 err:
1891 	kfree(map);
1892 	sidtab_destroy(&newsidtab);
1893 	policydb_destroy(&newpolicydb);
1894 	return rc;
1895 
1896 }
1897 
1898 size_t security_policydb_len(void)
1899 {
1900 	size_t len;
1901 
1902 	read_lock(&policy_rwlock);
1903 	len = policydb.len;
1904 	read_unlock(&policy_rwlock);
1905 
1906 	return len;
1907 }
1908 
1909 /**
1910  * security_port_sid - Obtain the SID for a port.
1911  * @protocol: protocol number
1912  * @port: port number
1913  * @out_sid: security identifier
1914  */
1915 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
1916 {
1917 	struct ocontext *c;
1918 	int rc = 0;
1919 
1920 	read_lock(&policy_rwlock);
1921 
1922 	c = policydb.ocontexts[OCON_PORT];
1923 	while (c) {
1924 		if (c->u.port.protocol == protocol &&
1925 		    c->u.port.low_port <= port &&
1926 		    c->u.port.high_port >= port)
1927 			break;
1928 		c = c->next;
1929 	}
1930 
1931 	if (c) {
1932 		if (!c->sid[0]) {
1933 			rc = sidtab_context_to_sid(&sidtab,
1934 						   &c->context[0],
1935 						   &c->sid[0]);
1936 			if (rc)
1937 				goto out;
1938 		}
1939 		*out_sid = c->sid[0];
1940 	} else {
1941 		*out_sid = SECINITSID_PORT;
1942 	}
1943 
1944 out:
1945 	read_unlock(&policy_rwlock);
1946 	return rc;
1947 }
1948 
1949 /**
1950  * security_netif_sid - Obtain the SID for a network interface.
1951  * @name: interface name
1952  * @if_sid: interface SID
1953  */
1954 int security_netif_sid(char *name, u32 *if_sid)
1955 {
1956 	int rc = 0;
1957 	struct ocontext *c;
1958 
1959 	read_lock(&policy_rwlock);
1960 
1961 	c = policydb.ocontexts[OCON_NETIF];
1962 	while (c) {
1963 		if (strcmp(name, c->u.name) == 0)
1964 			break;
1965 		c = c->next;
1966 	}
1967 
1968 	if (c) {
1969 		if (!c->sid[0] || !c->sid[1]) {
1970 			rc = sidtab_context_to_sid(&sidtab,
1971 						  &c->context[0],
1972 						  &c->sid[0]);
1973 			if (rc)
1974 				goto out;
1975 			rc = sidtab_context_to_sid(&sidtab,
1976 						   &c->context[1],
1977 						   &c->sid[1]);
1978 			if (rc)
1979 				goto out;
1980 		}
1981 		*if_sid = c->sid[0];
1982 	} else
1983 		*if_sid = SECINITSID_NETIF;
1984 
1985 out:
1986 	read_unlock(&policy_rwlock);
1987 	return rc;
1988 }
1989 
1990 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
1991 {
1992 	int i, fail = 0;
1993 
1994 	for (i = 0; i < 4; i++)
1995 		if (addr[i] != (input[i] & mask[i])) {
1996 			fail = 1;
1997 			break;
1998 		}
1999 
2000 	return !fail;
2001 }
2002 
2003 /**
2004  * security_node_sid - Obtain the SID for a node (host).
2005  * @domain: communication domain aka address family
2006  * @addrp: address
2007  * @addrlen: address length in bytes
2008  * @out_sid: security identifier
2009  */
2010 int security_node_sid(u16 domain,
2011 		      void *addrp,
2012 		      u32 addrlen,
2013 		      u32 *out_sid)
2014 {
2015 	int rc;
2016 	struct ocontext *c;
2017 
2018 	read_lock(&policy_rwlock);
2019 
2020 	switch (domain) {
2021 	case AF_INET: {
2022 		u32 addr;
2023 
2024 		rc = -EINVAL;
2025 		if (addrlen != sizeof(u32))
2026 			goto out;
2027 
2028 		addr = *((u32 *)addrp);
2029 
2030 		c = policydb.ocontexts[OCON_NODE];
2031 		while (c) {
2032 			if (c->u.node.addr == (addr & c->u.node.mask))
2033 				break;
2034 			c = c->next;
2035 		}
2036 		break;
2037 	}
2038 
2039 	case AF_INET6:
2040 		rc = -EINVAL;
2041 		if (addrlen != sizeof(u64) * 2)
2042 			goto out;
2043 		c = policydb.ocontexts[OCON_NODE6];
2044 		while (c) {
2045 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2046 						c->u.node6.mask))
2047 				break;
2048 			c = c->next;
2049 		}
2050 		break;
2051 
2052 	default:
2053 		rc = 0;
2054 		*out_sid = SECINITSID_NODE;
2055 		goto out;
2056 	}
2057 
2058 	if (c) {
2059 		if (!c->sid[0]) {
2060 			rc = sidtab_context_to_sid(&sidtab,
2061 						   &c->context[0],
2062 						   &c->sid[0]);
2063 			if (rc)
2064 				goto out;
2065 		}
2066 		*out_sid = c->sid[0];
2067 	} else {
2068 		*out_sid = SECINITSID_NODE;
2069 	}
2070 
2071 	rc = 0;
2072 out:
2073 	read_unlock(&policy_rwlock);
2074 	return rc;
2075 }
2076 
2077 #define SIDS_NEL 25
2078 
2079 /**
2080  * security_get_user_sids - Obtain reachable SIDs for a user.
2081  * @fromsid: starting SID
2082  * @username: username
2083  * @sids: array of reachable SIDs for user
2084  * @nel: number of elements in @sids
2085  *
2086  * Generate the set of SIDs for legal security contexts
2087  * for a given user that can be reached by @fromsid.
2088  * Set *@sids to point to a dynamically allocated
2089  * array containing the set of SIDs.  Set *@nel to the
2090  * number of elements in the array.
2091  */
2092 
2093 int security_get_user_sids(u32 fromsid,
2094 			   char *username,
2095 			   u32 **sids,
2096 			   u32 *nel)
2097 {
2098 	struct context *fromcon, usercon;
2099 	u32 *mysids = NULL, *mysids2, sid;
2100 	u32 mynel = 0, maxnel = SIDS_NEL;
2101 	struct user_datum *user;
2102 	struct role_datum *role;
2103 	struct ebitmap_node *rnode, *tnode;
2104 	int rc = 0, i, j;
2105 
2106 	*sids = NULL;
2107 	*nel = 0;
2108 
2109 	if (!ss_initialized)
2110 		goto out;
2111 
2112 	read_lock(&policy_rwlock);
2113 
2114 	context_init(&usercon);
2115 
2116 	rc = -EINVAL;
2117 	fromcon = sidtab_search(&sidtab, fromsid);
2118 	if (!fromcon)
2119 		goto out_unlock;
2120 
2121 	rc = -EINVAL;
2122 	user = hashtab_search(policydb.p_users.table, username);
2123 	if (!user)
2124 		goto out_unlock;
2125 
2126 	usercon.user = user->value;
2127 
2128 	rc = -ENOMEM;
2129 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2130 	if (!mysids)
2131 		goto out_unlock;
2132 
2133 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2134 		role = policydb.role_val_to_struct[i];
2135 		usercon.role = i + 1;
2136 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2137 			usercon.type = j + 1;
2138 
2139 			if (mls_setup_user_range(fromcon, user, &usercon))
2140 				continue;
2141 
2142 			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2143 			if (rc)
2144 				goto out_unlock;
2145 			if (mynel < maxnel) {
2146 				mysids[mynel++] = sid;
2147 			} else {
2148 				rc = -ENOMEM;
2149 				maxnel += SIDS_NEL;
2150 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2151 				if (!mysids2)
2152 					goto out_unlock;
2153 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2154 				kfree(mysids);
2155 				mysids = mysids2;
2156 				mysids[mynel++] = sid;
2157 			}
2158 		}
2159 	}
2160 	rc = 0;
2161 out_unlock:
2162 	read_unlock(&policy_rwlock);
2163 	if (rc || !mynel) {
2164 		kfree(mysids);
2165 		goto out;
2166 	}
2167 
2168 	rc = -ENOMEM;
2169 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2170 	if (!mysids2) {
2171 		kfree(mysids);
2172 		goto out;
2173 	}
2174 	for (i = 0, j = 0; i < mynel; i++) {
2175 		rc = avc_has_perm_noaudit(fromsid, mysids[i],
2176 					  SECCLASS_PROCESS, /* kernel value */
2177 					  PROCESS__TRANSITION, AVC_STRICT,
2178 					  NULL);
2179 		if (!rc)
2180 			mysids2[j++] = mysids[i];
2181 		cond_resched();
2182 	}
2183 	rc = 0;
2184 	kfree(mysids);
2185 	*sids = mysids2;
2186 	*nel = j;
2187 out:
2188 	return rc;
2189 }
2190 
2191 /**
2192  * security_genfs_sid - Obtain a SID for a file in a filesystem
2193  * @fstype: filesystem type
2194  * @path: path from root of mount
2195  * @sclass: file security class
2196  * @sid: SID for path
2197  *
2198  * Obtain a SID to use for a file in a filesystem that
2199  * cannot support xattr or use a fixed labeling behavior like
2200  * transition SIDs or task SIDs.
2201  */
2202 int security_genfs_sid(const char *fstype,
2203 		       char *path,
2204 		       u16 orig_sclass,
2205 		       u32 *sid)
2206 {
2207 	int len;
2208 	u16 sclass;
2209 	struct genfs *genfs;
2210 	struct ocontext *c;
2211 	int rc, cmp = 0;
2212 
2213 	while (path[0] == '/' && path[1] == '/')
2214 		path++;
2215 
2216 	read_lock(&policy_rwlock);
2217 
2218 	sclass = unmap_class(orig_sclass);
2219 	*sid = SECINITSID_UNLABELED;
2220 
2221 	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2222 		cmp = strcmp(fstype, genfs->fstype);
2223 		if (cmp <= 0)
2224 			break;
2225 	}
2226 
2227 	rc = -ENOENT;
2228 	if (!genfs || cmp)
2229 		goto out;
2230 
2231 	for (c = genfs->head; c; c = c->next) {
2232 		len = strlen(c->u.name);
2233 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2234 		    (strncmp(c->u.name, path, len) == 0))
2235 			break;
2236 	}
2237 
2238 	rc = -ENOENT;
2239 	if (!c)
2240 		goto out;
2241 
2242 	if (!c->sid[0]) {
2243 		rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2244 		if (rc)
2245 			goto out;
2246 	}
2247 
2248 	*sid = c->sid[0];
2249 	rc = 0;
2250 out:
2251 	read_unlock(&policy_rwlock);
2252 	return rc;
2253 }
2254 
2255 /**
2256  * security_fs_use - Determine how to handle labeling for a filesystem.
2257  * @fstype: filesystem type
2258  * @behavior: labeling behavior
2259  * @sid: SID for filesystem (superblock)
2260  */
2261 int security_fs_use(
2262 	const char *fstype,
2263 	unsigned int *behavior,
2264 	u32 *sid)
2265 {
2266 	int rc = 0;
2267 	struct ocontext *c;
2268 
2269 	read_lock(&policy_rwlock);
2270 
2271 	c = policydb.ocontexts[OCON_FSUSE];
2272 	while (c) {
2273 		if (strcmp(fstype, c->u.name) == 0)
2274 			break;
2275 		c = c->next;
2276 	}
2277 
2278 	if (c) {
2279 		*behavior = c->v.behavior;
2280 		if (!c->sid[0]) {
2281 			rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2282 						   &c->sid[0]);
2283 			if (rc)
2284 				goto out;
2285 		}
2286 		*sid = c->sid[0];
2287 	} else {
2288 		rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
2289 		if (rc) {
2290 			*behavior = SECURITY_FS_USE_NONE;
2291 			rc = 0;
2292 		} else {
2293 			*behavior = SECURITY_FS_USE_GENFS;
2294 		}
2295 	}
2296 
2297 out:
2298 	read_unlock(&policy_rwlock);
2299 	return rc;
2300 }
2301 
2302 int security_get_bools(int *len, char ***names, int **values)
2303 {
2304 	int i, rc;
2305 
2306 	read_lock(&policy_rwlock);
2307 	*names = NULL;
2308 	*values = NULL;
2309 
2310 	rc = 0;
2311 	*len = policydb.p_bools.nprim;
2312 	if (!*len)
2313 		goto out;
2314 
2315 	rc = -ENOMEM;
2316 	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2317 	if (!*names)
2318 		goto err;
2319 
2320 	rc = -ENOMEM;
2321 	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2322 	if (!*values)
2323 		goto err;
2324 
2325 	for (i = 0; i < *len; i++) {
2326 		size_t name_len;
2327 
2328 		(*values)[i] = policydb.bool_val_to_struct[i]->state;
2329 		name_len = strlen(sym_name(&policydb, SYM_BOOLS, i)) + 1;
2330 
2331 		rc = -ENOMEM;
2332 		(*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
2333 		if (!(*names)[i])
2334 			goto err;
2335 
2336 		strncpy((*names)[i], sym_name(&policydb, SYM_BOOLS, i), name_len);
2337 		(*names)[i][name_len - 1] = 0;
2338 	}
2339 	rc = 0;
2340 out:
2341 	read_unlock(&policy_rwlock);
2342 	return rc;
2343 err:
2344 	if (*names) {
2345 		for (i = 0; i < *len; i++)
2346 			kfree((*names)[i]);
2347 	}
2348 	kfree(*values);
2349 	goto out;
2350 }
2351 
2352 
2353 int security_set_bools(int len, int *values)
2354 {
2355 	int i, rc;
2356 	int lenp, seqno = 0;
2357 	struct cond_node *cur;
2358 
2359 	write_lock_irq(&policy_rwlock);
2360 
2361 	rc = -EFAULT;
2362 	lenp = policydb.p_bools.nprim;
2363 	if (len != lenp)
2364 		goto out;
2365 
2366 	for (i = 0; i < len; i++) {
2367 		if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2368 			audit_log(current->audit_context, GFP_ATOMIC,
2369 				AUDIT_MAC_CONFIG_CHANGE,
2370 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2371 				sym_name(&policydb, SYM_BOOLS, i),
2372 				!!values[i],
2373 				policydb.bool_val_to_struct[i]->state,
2374 				audit_get_loginuid(current),
2375 				audit_get_sessionid(current));
2376 		}
2377 		if (values[i])
2378 			policydb.bool_val_to_struct[i]->state = 1;
2379 		else
2380 			policydb.bool_val_to_struct[i]->state = 0;
2381 	}
2382 
2383 	for (cur = policydb.cond_list; cur; cur = cur->next) {
2384 		rc = evaluate_cond_node(&policydb, cur);
2385 		if (rc)
2386 			goto out;
2387 	}
2388 
2389 	seqno = ++latest_granting;
2390 	rc = 0;
2391 out:
2392 	write_unlock_irq(&policy_rwlock);
2393 	if (!rc) {
2394 		avc_ss_reset(seqno);
2395 		selnl_notify_policyload(seqno);
2396 		selinux_status_update_policyload(seqno);
2397 		selinux_xfrm_notify_policyload();
2398 	}
2399 	return rc;
2400 }
2401 
2402 int security_get_bool_value(int bool)
2403 {
2404 	int rc;
2405 	int len;
2406 
2407 	read_lock(&policy_rwlock);
2408 
2409 	rc = -EFAULT;
2410 	len = policydb.p_bools.nprim;
2411 	if (bool >= len)
2412 		goto out;
2413 
2414 	rc = policydb.bool_val_to_struct[bool]->state;
2415 out:
2416 	read_unlock(&policy_rwlock);
2417 	return rc;
2418 }
2419 
2420 static int security_preserve_bools(struct policydb *p)
2421 {
2422 	int rc, nbools = 0, *bvalues = NULL, i;
2423 	char **bnames = NULL;
2424 	struct cond_bool_datum *booldatum;
2425 	struct cond_node *cur;
2426 
2427 	rc = security_get_bools(&nbools, &bnames, &bvalues);
2428 	if (rc)
2429 		goto out;
2430 	for (i = 0; i < nbools; i++) {
2431 		booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2432 		if (booldatum)
2433 			booldatum->state = bvalues[i];
2434 	}
2435 	for (cur = p->cond_list; cur; cur = cur->next) {
2436 		rc = evaluate_cond_node(p, cur);
2437 		if (rc)
2438 			goto out;
2439 	}
2440 
2441 out:
2442 	if (bnames) {
2443 		for (i = 0; i < nbools; i++)
2444 			kfree(bnames[i]);
2445 	}
2446 	kfree(bnames);
2447 	kfree(bvalues);
2448 	return rc;
2449 }
2450 
2451 /*
2452  * security_sid_mls_copy() - computes a new sid based on the given
2453  * sid and the mls portion of mls_sid.
2454  */
2455 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2456 {
2457 	struct context *context1;
2458 	struct context *context2;
2459 	struct context newcon;
2460 	char *s;
2461 	u32 len;
2462 	int rc;
2463 
2464 	rc = 0;
2465 	if (!ss_initialized || !policydb.mls_enabled) {
2466 		*new_sid = sid;
2467 		goto out;
2468 	}
2469 
2470 	context_init(&newcon);
2471 
2472 	read_lock(&policy_rwlock);
2473 
2474 	rc = -EINVAL;
2475 	context1 = sidtab_search(&sidtab, sid);
2476 	if (!context1) {
2477 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2478 			__func__, sid);
2479 		goto out_unlock;
2480 	}
2481 
2482 	rc = -EINVAL;
2483 	context2 = sidtab_search(&sidtab, mls_sid);
2484 	if (!context2) {
2485 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2486 			__func__, mls_sid);
2487 		goto out_unlock;
2488 	}
2489 
2490 	newcon.user = context1->user;
2491 	newcon.role = context1->role;
2492 	newcon.type = context1->type;
2493 	rc = mls_context_cpy(&newcon, context2);
2494 	if (rc)
2495 		goto out_unlock;
2496 
2497 	/* Check the validity of the new context. */
2498 	if (!policydb_context_isvalid(&policydb, &newcon)) {
2499 		rc = convert_context_handle_invalid_context(&newcon);
2500 		if (rc) {
2501 			if (!context_struct_to_string(&newcon, &s, &len)) {
2502 				audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2503 					  "security_sid_mls_copy: invalid context %s", s);
2504 				kfree(s);
2505 			}
2506 			goto out_unlock;
2507 		}
2508 	}
2509 
2510 	rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2511 out_unlock:
2512 	read_unlock(&policy_rwlock);
2513 	context_destroy(&newcon);
2514 out:
2515 	return rc;
2516 }
2517 
2518 /**
2519  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2520  * @nlbl_sid: NetLabel SID
2521  * @nlbl_type: NetLabel labeling protocol type
2522  * @xfrm_sid: XFRM SID
2523  *
2524  * Description:
2525  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2526  * resolved into a single SID it is returned via @peer_sid and the function
2527  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2528  * returns a negative value.  A table summarizing the behavior is below:
2529  *
2530  *                                 | function return |      @sid
2531  *   ------------------------------+-----------------+-----------------
2532  *   no peer labels                |        0        |    SECSID_NULL
2533  *   single peer label             |        0        |    <peer_label>
2534  *   multiple, consistent labels   |        0        |    <peer_label>
2535  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2536  *
2537  */
2538 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2539 				 u32 xfrm_sid,
2540 				 u32 *peer_sid)
2541 {
2542 	int rc;
2543 	struct context *nlbl_ctx;
2544 	struct context *xfrm_ctx;
2545 
2546 	*peer_sid = SECSID_NULL;
2547 
2548 	/* handle the common (which also happens to be the set of easy) cases
2549 	 * right away, these two if statements catch everything involving a
2550 	 * single or absent peer SID/label */
2551 	if (xfrm_sid == SECSID_NULL) {
2552 		*peer_sid = nlbl_sid;
2553 		return 0;
2554 	}
2555 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2556 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2557 	 * is present */
2558 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2559 		*peer_sid = xfrm_sid;
2560 		return 0;
2561 	}
2562 
2563 	/* we don't need to check ss_initialized here since the only way both
2564 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2565 	 * security server was initialized and ss_initialized was true */
2566 	if (!policydb.mls_enabled)
2567 		return 0;
2568 
2569 	read_lock(&policy_rwlock);
2570 
2571 	rc = -EINVAL;
2572 	nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2573 	if (!nlbl_ctx) {
2574 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2575 		       __func__, nlbl_sid);
2576 		goto out;
2577 	}
2578 	rc = -EINVAL;
2579 	xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2580 	if (!xfrm_ctx) {
2581 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2582 		       __func__, xfrm_sid);
2583 		goto out;
2584 	}
2585 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2586 	if (rc)
2587 		goto out;
2588 
2589 	/* at present NetLabel SIDs/labels really only carry MLS
2590 	 * information so if the MLS portion of the NetLabel SID
2591 	 * matches the MLS portion of the labeled XFRM SID/label
2592 	 * then pass along the XFRM SID as it is the most
2593 	 * expressive */
2594 	*peer_sid = xfrm_sid;
2595 out:
2596 	read_unlock(&policy_rwlock);
2597 	return rc;
2598 }
2599 
2600 static int get_classes_callback(void *k, void *d, void *args)
2601 {
2602 	struct class_datum *datum = d;
2603 	char *name = k, **classes = args;
2604 	int value = datum->value - 1;
2605 
2606 	classes[value] = kstrdup(name, GFP_ATOMIC);
2607 	if (!classes[value])
2608 		return -ENOMEM;
2609 
2610 	return 0;
2611 }
2612 
2613 int security_get_classes(char ***classes, int *nclasses)
2614 {
2615 	int rc;
2616 
2617 	read_lock(&policy_rwlock);
2618 
2619 	rc = -ENOMEM;
2620 	*nclasses = policydb.p_classes.nprim;
2621 	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2622 	if (!*classes)
2623 		goto out;
2624 
2625 	rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2626 			*classes);
2627 	if (rc) {
2628 		int i;
2629 		for (i = 0; i < *nclasses; i++)
2630 			kfree((*classes)[i]);
2631 		kfree(*classes);
2632 	}
2633 
2634 out:
2635 	read_unlock(&policy_rwlock);
2636 	return rc;
2637 }
2638 
2639 static int get_permissions_callback(void *k, void *d, void *args)
2640 {
2641 	struct perm_datum *datum = d;
2642 	char *name = k, **perms = args;
2643 	int value = datum->value - 1;
2644 
2645 	perms[value] = kstrdup(name, GFP_ATOMIC);
2646 	if (!perms[value])
2647 		return -ENOMEM;
2648 
2649 	return 0;
2650 }
2651 
2652 int security_get_permissions(char *class, char ***perms, int *nperms)
2653 {
2654 	int rc, i;
2655 	struct class_datum *match;
2656 
2657 	read_lock(&policy_rwlock);
2658 
2659 	rc = -EINVAL;
2660 	match = hashtab_search(policydb.p_classes.table, class);
2661 	if (!match) {
2662 		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2663 			__func__, class);
2664 		goto out;
2665 	}
2666 
2667 	rc = -ENOMEM;
2668 	*nperms = match->permissions.nprim;
2669 	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2670 	if (!*perms)
2671 		goto out;
2672 
2673 	if (match->comdatum) {
2674 		rc = hashtab_map(match->comdatum->permissions.table,
2675 				get_permissions_callback, *perms);
2676 		if (rc)
2677 			goto err;
2678 	}
2679 
2680 	rc = hashtab_map(match->permissions.table, get_permissions_callback,
2681 			*perms);
2682 	if (rc)
2683 		goto err;
2684 
2685 out:
2686 	read_unlock(&policy_rwlock);
2687 	return rc;
2688 
2689 err:
2690 	read_unlock(&policy_rwlock);
2691 	for (i = 0; i < *nperms; i++)
2692 		kfree((*perms)[i]);
2693 	kfree(*perms);
2694 	return rc;
2695 }
2696 
2697 int security_get_reject_unknown(void)
2698 {
2699 	return policydb.reject_unknown;
2700 }
2701 
2702 int security_get_allow_unknown(void)
2703 {
2704 	return policydb.allow_unknown;
2705 }
2706 
2707 /**
2708  * security_policycap_supported - Check for a specific policy capability
2709  * @req_cap: capability
2710  *
2711  * Description:
2712  * This function queries the currently loaded policy to see if it supports the
2713  * capability specified by @req_cap.  Returns true (1) if the capability is
2714  * supported, false (0) if it isn't supported.
2715  *
2716  */
2717 int security_policycap_supported(unsigned int req_cap)
2718 {
2719 	int rc;
2720 
2721 	read_lock(&policy_rwlock);
2722 	rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2723 	read_unlock(&policy_rwlock);
2724 
2725 	return rc;
2726 }
2727 
2728 struct selinux_audit_rule {
2729 	u32 au_seqno;
2730 	struct context au_ctxt;
2731 };
2732 
2733 void selinux_audit_rule_free(void *vrule)
2734 {
2735 	struct selinux_audit_rule *rule = vrule;
2736 
2737 	if (rule) {
2738 		context_destroy(&rule->au_ctxt);
2739 		kfree(rule);
2740 	}
2741 }
2742 
2743 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2744 {
2745 	struct selinux_audit_rule *tmprule;
2746 	struct role_datum *roledatum;
2747 	struct type_datum *typedatum;
2748 	struct user_datum *userdatum;
2749 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2750 	int rc = 0;
2751 
2752 	*rule = NULL;
2753 
2754 	if (!ss_initialized)
2755 		return -EOPNOTSUPP;
2756 
2757 	switch (field) {
2758 	case AUDIT_SUBJ_USER:
2759 	case AUDIT_SUBJ_ROLE:
2760 	case AUDIT_SUBJ_TYPE:
2761 	case AUDIT_OBJ_USER:
2762 	case AUDIT_OBJ_ROLE:
2763 	case AUDIT_OBJ_TYPE:
2764 		/* only 'equals' and 'not equals' fit user, role, and type */
2765 		if (op != Audit_equal && op != Audit_not_equal)
2766 			return -EINVAL;
2767 		break;
2768 	case AUDIT_SUBJ_SEN:
2769 	case AUDIT_SUBJ_CLR:
2770 	case AUDIT_OBJ_LEV_LOW:
2771 	case AUDIT_OBJ_LEV_HIGH:
2772 		/* we do not allow a range, indicated by the presense of '-' */
2773 		if (strchr(rulestr, '-'))
2774 			return -EINVAL;
2775 		break;
2776 	default:
2777 		/* only the above fields are valid */
2778 		return -EINVAL;
2779 	}
2780 
2781 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2782 	if (!tmprule)
2783 		return -ENOMEM;
2784 
2785 	context_init(&tmprule->au_ctxt);
2786 
2787 	read_lock(&policy_rwlock);
2788 
2789 	tmprule->au_seqno = latest_granting;
2790 
2791 	switch (field) {
2792 	case AUDIT_SUBJ_USER:
2793 	case AUDIT_OBJ_USER:
2794 		rc = -EINVAL;
2795 		userdatum = hashtab_search(policydb.p_users.table, rulestr);
2796 		if (!userdatum)
2797 			goto out;
2798 		tmprule->au_ctxt.user = userdatum->value;
2799 		break;
2800 	case AUDIT_SUBJ_ROLE:
2801 	case AUDIT_OBJ_ROLE:
2802 		rc = -EINVAL;
2803 		roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2804 		if (!roledatum)
2805 			goto out;
2806 		tmprule->au_ctxt.role = roledatum->value;
2807 		break;
2808 	case AUDIT_SUBJ_TYPE:
2809 	case AUDIT_OBJ_TYPE:
2810 		rc = -EINVAL;
2811 		typedatum = hashtab_search(policydb.p_types.table, rulestr);
2812 		if (!typedatum)
2813 			goto out;
2814 		tmprule->au_ctxt.type = typedatum->value;
2815 		break;
2816 	case AUDIT_SUBJ_SEN:
2817 	case AUDIT_SUBJ_CLR:
2818 	case AUDIT_OBJ_LEV_LOW:
2819 	case AUDIT_OBJ_LEV_HIGH:
2820 		rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2821 		if (rc)
2822 			goto out;
2823 		break;
2824 	}
2825 	rc = 0;
2826 out:
2827 	read_unlock(&policy_rwlock);
2828 
2829 	if (rc) {
2830 		selinux_audit_rule_free(tmprule);
2831 		tmprule = NULL;
2832 	}
2833 
2834 	*rule = tmprule;
2835 
2836 	return rc;
2837 }
2838 
2839 /* Check to see if the rule contains any selinux fields */
2840 int selinux_audit_rule_known(struct audit_krule *rule)
2841 {
2842 	int i;
2843 
2844 	for (i = 0; i < rule->field_count; i++) {
2845 		struct audit_field *f = &rule->fields[i];
2846 		switch (f->type) {
2847 		case AUDIT_SUBJ_USER:
2848 		case AUDIT_SUBJ_ROLE:
2849 		case AUDIT_SUBJ_TYPE:
2850 		case AUDIT_SUBJ_SEN:
2851 		case AUDIT_SUBJ_CLR:
2852 		case AUDIT_OBJ_USER:
2853 		case AUDIT_OBJ_ROLE:
2854 		case AUDIT_OBJ_TYPE:
2855 		case AUDIT_OBJ_LEV_LOW:
2856 		case AUDIT_OBJ_LEV_HIGH:
2857 			return 1;
2858 		}
2859 	}
2860 
2861 	return 0;
2862 }
2863 
2864 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2865 			     struct audit_context *actx)
2866 {
2867 	struct context *ctxt;
2868 	struct mls_level *level;
2869 	struct selinux_audit_rule *rule = vrule;
2870 	int match = 0;
2871 
2872 	if (!rule) {
2873 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2874 			  "selinux_audit_rule_match: missing rule\n");
2875 		return -ENOENT;
2876 	}
2877 
2878 	read_lock(&policy_rwlock);
2879 
2880 	if (rule->au_seqno < latest_granting) {
2881 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2882 			  "selinux_audit_rule_match: stale rule\n");
2883 		match = -ESTALE;
2884 		goto out;
2885 	}
2886 
2887 	ctxt = sidtab_search(&sidtab, sid);
2888 	if (!ctxt) {
2889 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2890 			  "selinux_audit_rule_match: unrecognized SID %d\n",
2891 			  sid);
2892 		match = -ENOENT;
2893 		goto out;
2894 	}
2895 
2896 	/* a field/op pair that is not caught here will simply fall through
2897 	   without a match */
2898 	switch (field) {
2899 	case AUDIT_SUBJ_USER:
2900 	case AUDIT_OBJ_USER:
2901 		switch (op) {
2902 		case Audit_equal:
2903 			match = (ctxt->user == rule->au_ctxt.user);
2904 			break;
2905 		case Audit_not_equal:
2906 			match = (ctxt->user != rule->au_ctxt.user);
2907 			break;
2908 		}
2909 		break;
2910 	case AUDIT_SUBJ_ROLE:
2911 	case AUDIT_OBJ_ROLE:
2912 		switch (op) {
2913 		case Audit_equal:
2914 			match = (ctxt->role == rule->au_ctxt.role);
2915 			break;
2916 		case Audit_not_equal:
2917 			match = (ctxt->role != rule->au_ctxt.role);
2918 			break;
2919 		}
2920 		break;
2921 	case AUDIT_SUBJ_TYPE:
2922 	case AUDIT_OBJ_TYPE:
2923 		switch (op) {
2924 		case Audit_equal:
2925 			match = (ctxt->type == rule->au_ctxt.type);
2926 			break;
2927 		case Audit_not_equal:
2928 			match = (ctxt->type != rule->au_ctxt.type);
2929 			break;
2930 		}
2931 		break;
2932 	case AUDIT_SUBJ_SEN:
2933 	case AUDIT_SUBJ_CLR:
2934 	case AUDIT_OBJ_LEV_LOW:
2935 	case AUDIT_OBJ_LEV_HIGH:
2936 		level = ((field == AUDIT_SUBJ_SEN ||
2937 			  field == AUDIT_OBJ_LEV_LOW) ?
2938 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
2939 		switch (op) {
2940 		case Audit_equal:
2941 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
2942 					     level);
2943 			break;
2944 		case Audit_not_equal:
2945 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
2946 					      level);
2947 			break;
2948 		case Audit_lt:
2949 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
2950 					       level) &&
2951 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
2952 					       level));
2953 			break;
2954 		case Audit_le:
2955 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
2956 					      level);
2957 			break;
2958 		case Audit_gt:
2959 			match = (mls_level_dom(level,
2960 					      &rule->au_ctxt.range.level[0]) &&
2961 				 !mls_level_eq(level,
2962 					       &rule->au_ctxt.range.level[0]));
2963 			break;
2964 		case Audit_ge:
2965 			match = mls_level_dom(level,
2966 					      &rule->au_ctxt.range.level[0]);
2967 			break;
2968 		}
2969 	}
2970 
2971 out:
2972 	read_unlock(&policy_rwlock);
2973 	return match;
2974 }
2975 
2976 static int (*aurule_callback)(void) = audit_update_lsm_rules;
2977 
2978 static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
2979 			       u16 class, u32 perms, u32 *retained)
2980 {
2981 	int err = 0;
2982 
2983 	if (event == AVC_CALLBACK_RESET && aurule_callback)
2984 		err = aurule_callback();
2985 	return err;
2986 }
2987 
2988 static int __init aurule_init(void)
2989 {
2990 	int err;
2991 
2992 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
2993 			       SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
2994 	if (err)
2995 		panic("avc_add_callback() failed, error %d\n", err);
2996 
2997 	return err;
2998 }
2999 __initcall(aurule_init);
3000 
3001 #ifdef CONFIG_NETLABEL
3002 /**
3003  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3004  * @secattr: the NetLabel packet security attributes
3005  * @sid: the SELinux SID
3006  *
3007  * Description:
3008  * Attempt to cache the context in @ctx, which was derived from the packet in
3009  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3010  * already been initialized.
3011  *
3012  */
3013 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3014 				      u32 sid)
3015 {
3016 	u32 *sid_cache;
3017 
3018 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3019 	if (sid_cache == NULL)
3020 		return;
3021 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3022 	if (secattr->cache == NULL) {
3023 		kfree(sid_cache);
3024 		return;
3025 	}
3026 
3027 	*sid_cache = sid;
3028 	secattr->cache->free = kfree;
3029 	secattr->cache->data = sid_cache;
3030 	secattr->flags |= NETLBL_SECATTR_CACHE;
3031 }
3032 
3033 /**
3034  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3035  * @secattr: the NetLabel packet security attributes
3036  * @sid: the SELinux SID
3037  *
3038  * Description:
3039  * Convert the given NetLabel security attributes in @secattr into a
3040  * SELinux SID.  If the @secattr field does not contain a full SELinux
3041  * SID/context then use SECINITSID_NETMSG as the foundation.  If possibile the
3042  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3043  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3044  * conversion for future lookups.  Returns zero on success, negative values on
3045  * failure.
3046  *
3047  */
3048 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3049 				   u32 *sid)
3050 {
3051 	int rc;
3052 	struct context *ctx;
3053 	struct context ctx_new;
3054 
3055 	if (!ss_initialized) {
3056 		*sid = SECSID_NULL;
3057 		return 0;
3058 	}
3059 
3060 	read_lock(&policy_rwlock);
3061 
3062 	if (secattr->flags & NETLBL_SECATTR_CACHE)
3063 		*sid = *(u32 *)secattr->cache->data;
3064 	else if (secattr->flags & NETLBL_SECATTR_SECID)
3065 		*sid = secattr->attr.secid;
3066 	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3067 		rc = -EIDRM;
3068 		ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3069 		if (ctx == NULL)
3070 			goto out;
3071 
3072 		context_init(&ctx_new);
3073 		ctx_new.user = ctx->user;
3074 		ctx_new.role = ctx->role;
3075 		ctx_new.type = ctx->type;
3076 		mls_import_netlbl_lvl(&ctx_new, secattr);
3077 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3078 			rc = ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
3079 						   secattr->attr.mls.cat);
3080 			if (rc)
3081 				goto out;
3082 			memcpy(&ctx_new.range.level[1].cat,
3083 			       &ctx_new.range.level[0].cat,
3084 			       sizeof(ctx_new.range.level[0].cat));
3085 		}
3086 		rc = -EIDRM;
3087 		if (!mls_context_isvalid(&policydb, &ctx_new))
3088 			goto out_free;
3089 
3090 		rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3091 		if (rc)
3092 			goto out_free;
3093 
3094 		security_netlbl_cache_add(secattr, *sid);
3095 
3096 		ebitmap_destroy(&ctx_new.range.level[0].cat);
3097 	} else
3098 		*sid = SECSID_NULL;
3099 
3100 	read_unlock(&policy_rwlock);
3101 	return 0;
3102 out_free:
3103 	ebitmap_destroy(&ctx_new.range.level[0].cat);
3104 out:
3105 	read_unlock(&policy_rwlock);
3106 	return rc;
3107 }
3108 
3109 /**
3110  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3111  * @sid: the SELinux SID
3112  * @secattr: the NetLabel packet security attributes
3113  *
3114  * Description:
3115  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3116  * Returns zero on success, negative values on failure.
3117  *
3118  */
3119 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3120 {
3121 	int rc;
3122 	struct context *ctx;
3123 
3124 	if (!ss_initialized)
3125 		return 0;
3126 
3127 	read_lock(&policy_rwlock);
3128 
3129 	rc = -ENOENT;
3130 	ctx = sidtab_search(&sidtab, sid);
3131 	if (ctx == NULL)
3132 		goto out;
3133 
3134 	rc = -ENOMEM;
3135 	secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3136 				  GFP_ATOMIC);
3137 	if (secattr->domain == NULL)
3138 		goto out;
3139 
3140 	secattr->attr.secid = sid;
3141 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3142 	mls_export_netlbl_lvl(ctx, secattr);
3143 	rc = mls_export_netlbl_cat(ctx, secattr);
3144 out:
3145 	read_unlock(&policy_rwlock);
3146 	return rc;
3147 }
3148 #endif /* CONFIG_NETLABEL */
3149 
3150 /**
3151  * security_read_policy - read the policy.
3152  * @data: binary policy data
3153  * @len: length of data in bytes
3154  *
3155  */
3156 int security_read_policy(void **data, ssize_t *len)
3157 {
3158 	int rc;
3159 	struct policy_file fp;
3160 
3161 	if (!ss_initialized)
3162 		return -EINVAL;
3163 
3164 	*len = security_policydb_len();
3165 
3166 	*data = vmalloc_user(*len);
3167 	if (!*data)
3168 		return -ENOMEM;
3169 
3170 	fp.data = *data;
3171 	fp.len = *len;
3172 
3173 	read_lock(&policy_rwlock);
3174 	rc = policydb_write(&policydb, &fp);
3175 	read_unlock(&policy_rwlock);
3176 
3177 	if (rc)
3178 		return rc;
3179 
3180 	*len = (unsigned long)fp.data - (unsigned long)*data;
3181 	return 0;
3182 
3183 }
3184