xref: /openbmc/linux/security/selinux/ss/services.c (revision 32daa5d7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Implementation of the security services.
4  *
5  * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
6  *	     James Morris <jmorris@redhat.com>
7  *
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *	Support for enhanced MLS infrastructure.
11  *	Support for context based audit filters.
12  *
13  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14  *
15  *	Added conditional policy language extensions
16  *
17  * Updated: Hewlett-Packard <paul@paul-moore.com>
18  *
19  *      Added support for NetLabel
20  *      Added support for the policy capability bitmap
21  *
22  * Updated: Chad Sellers <csellers@tresys.com>
23  *
24  *  Added validation of kernel classes and permissions
25  *
26  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27  *
28  *  Added support for bounds domain and audit messaged on masked permissions
29  *
30  * Updated: Guido Trentalancia <guido@trentalancia.com>
31  *
32  *  Added support for runtime switching of the policy type
33  *
34  * Copyright (C) 2008, 2009 NEC Corporation
35  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39  */
40 #include <linux/kernel.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/errno.h>
46 #include <linux/in.h>
47 #include <linux/sched.h>
48 #include <linux/audit.h>
49 #include <linux/vmalloc.h>
50 #include <net/netlabel.h>
51 
52 #include "flask.h"
53 #include "avc.h"
54 #include "avc_ss.h"
55 #include "security.h"
56 #include "context.h"
57 #include "policydb.h"
58 #include "sidtab.h"
59 #include "services.h"
60 #include "conditional.h"
61 #include "mls.h"
62 #include "objsec.h"
63 #include "netlabel.h"
64 #include "xfrm.h"
65 #include "ebitmap.h"
66 #include "audit.h"
67 #include "policycap_names.h"
68 #include "ima.h"
69 
70 struct convert_context_args {
71 	struct selinux_state *state;
72 	struct policydb *oldp;
73 	struct policydb *newp;
74 };
75 
76 struct selinux_policy_convert_data {
77 	struct convert_context_args args;
78 	struct sidtab_convert_params sidtab_params;
79 };
80 
81 /* Forward declaration. */
82 static int context_struct_to_string(struct policydb *policydb,
83 				    struct context *context,
84 				    char **scontext,
85 				    u32 *scontext_len);
86 
87 static int sidtab_entry_to_string(struct policydb *policydb,
88 				  struct sidtab *sidtab,
89 				  struct sidtab_entry *entry,
90 				  char **scontext,
91 				  u32 *scontext_len);
92 
93 static void context_struct_compute_av(struct policydb *policydb,
94 				      struct context *scontext,
95 				      struct context *tcontext,
96 				      u16 tclass,
97 				      struct av_decision *avd,
98 				      struct extended_perms *xperms);
99 
100 static int selinux_set_mapping(struct policydb *pol,
101 			       struct security_class_mapping *map,
102 			       struct selinux_map *out_map)
103 {
104 	u16 i, j;
105 	unsigned k;
106 	bool print_unknown_handle = false;
107 
108 	/* Find number of classes in the input mapping */
109 	if (!map)
110 		return -EINVAL;
111 	i = 0;
112 	while (map[i].name)
113 		i++;
114 
115 	/* Allocate space for the class records, plus one for class zero */
116 	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
117 	if (!out_map->mapping)
118 		return -ENOMEM;
119 
120 	/* Store the raw class and permission values */
121 	j = 0;
122 	while (map[j].name) {
123 		struct security_class_mapping *p_in = map + (j++);
124 		struct selinux_mapping *p_out = out_map->mapping + j;
125 
126 		/* An empty class string skips ahead */
127 		if (!strcmp(p_in->name, "")) {
128 			p_out->num_perms = 0;
129 			continue;
130 		}
131 
132 		p_out->value = string_to_security_class(pol, p_in->name);
133 		if (!p_out->value) {
134 			pr_info("SELinux:  Class %s not defined in policy.\n",
135 			       p_in->name);
136 			if (pol->reject_unknown)
137 				goto err;
138 			p_out->num_perms = 0;
139 			print_unknown_handle = true;
140 			continue;
141 		}
142 
143 		k = 0;
144 		while (p_in->perms[k]) {
145 			/* An empty permission string skips ahead */
146 			if (!*p_in->perms[k]) {
147 				k++;
148 				continue;
149 			}
150 			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
151 							    p_in->perms[k]);
152 			if (!p_out->perms[k]) {
153 				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
154 				       p_in->perms[k], p_in->name);
155 				if (pol->reject_unknown)
156 					goto err;
157 				print_unknown_handle = true;
158 			}
159 
160 			k++;
161 		}
162 		p_out->num_perms = k;
163 	}
164 
165 	if (print_unknown_handle)
166 		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
167 		       pol->allow_unknown ? "allowed" : "denied");
168 
169 	out_map->size = i;
170 	return 0;
171 err:
172 	kfree(out_map->mapping);
173 	out_map->mapping = NULL;
174 	return -EINVAL;
175 }
176 
177 /*
178  * Get real, policy values from mapped values
179  */
180 
181 static u16 unmap_class(struct selinux_map *map, u16 tclass)
182 {
183 	if (tclass < map->size)
184 		return map->mapping[tclass].value;
185 
186 	return tclass;
187 }
188 
189 /*
190  * Get kernel value for class from its policy value
191  */
192 static u16 map_class(struct selinux_map *map, u16 pol_value)
193 {
194 	u16 i;
195 
196 	for (i = 1; i < map->size; i++) {
197 		if (map->mapping[i].value == pol_value)
198 			return i;
199 	}
200 
201 	return SECCLASS_NULL;
202 }
203 
204 static void map_decision(struct selinux_map *map,
205 			 u16 tclass, struct av_decision *avd,
206 			 int allow_unknown)
207 {
208 	if (tclass < map->size) {
209 		struct selinux_mapping *mapping = &map->mapping[tclass];
210 		unsigned int i, n = mapping->num_perms;
211 		u32 result;
212 
213 		for (i = 0, result = 0; i < n; i++) {
214 			if (avd->allowed & mapping->perms[i])
215 				result |= 1<<i;
216 			if (allow_unknown && !mapping->perms[i])
217 				result |= 1<<i;
218 		}
219 		avd->allowed = result;
220 
221 		for (i = 0, result = 0; i < n; i++)
222 			if (avd->auditallow & mapping->perms[i])
223 				result |= 1<<i;
224 		avd->auditallow = result;
225 
226 		for (i = 0, result = 0; i < n; i++) {
227 			if (avd->auditdeny & mapping->perms[i])
228 				result |= 1<<i;
229 			if (!allow_unknown && !mapping->perms[i])
230 				result |= 1<<i;
231 		}
232 		/*
233 		 * In case the kernel has a bug and requests a permission
234 		 * between num_perms and the maximum permission number, we
235 		 * should audit that denial
236 		 */
237 		for (; i < (sizeof(u32)*8); i++)
238 			result |= 1<<i;
239 		avd->auditdeny = result;
240 	}
241 }
242 
243 int security_mls_enabled(struct selinux_state *state)
244 {
245 	int mls_enabled;
246 	struct selinux_policy *policy;
247 
248 	if (!selinux_initialized(state))
249 		return 0;
250 
251 	rcu_read_lock();
252 	policy = rcu_dereference(state->policy);
253 	mls_enabled = policy->policydb.mls_enabled;
254 	rcu_read_unlock();
255 	return mls_enabled;
256 }
257 
258 /*
259  * Return the boolean value of a constraint expression
260  * when it is applied to the specified source and target
261  * security contexts.
262  *
263  * xcontext is a special beast...  It is used by the validatetrans rules
264  * only.  For these rules, scontext is the context before the transition,
265  * tcontext is the context after the transition, and xcontext is the context
266  * of the process performing the transition.  All other callers of
267  * constraint_expr_eval should pass in NULL for xcontext.
268  */
269 static int constraint_expr_eval(struct policydb *policydb,
270 				struct context *scontext,
271 				struct context *tcontext,
272 				struct context *xcontext,
273 				struct constraint_expr *cexpr)
274 {
275 	u32 val1, val2;
276 	struct context *c;
277 	struct role_datum *r1, *r2;
278 	struct mls_level *l1, *l2;
279 	struct constraint_expr *e;
280 	int s[CEXPR_MAXDEPTH];
281 	int sp = -1;
282 
283 	for (e = cexpr; e; e = e->next) {
284 		switch (e->expr_type) {
285 		case CEXPR_NOT:
286 			BUG_ON(sp < 0);
287 			s[sp] = !s[sp];
288 			break;
289 		case CEXPR_AND:
290 			BUG_ON(sp < 1);
291 			sp--;
292 			s[sp] &= s[sp + 1];
293 			break;
294 		case CEXPR_OR:
295 			BUG_ON(sp < 1);
296 			sp--;
297 			s[sp] |= s[sp + 1];
298 			break;
299 		case CEXPR_ATTR:
300 			if (sp == (CEXPR_MAXDEPTH - 1))
301 				return 0;
302 			switch (e->attr) {
303 			case CEXPR_USER:
304 				val1 = scontext->user;
305 				val2 = tcontext->user;
306 				break;
307 			case CEXPR_TYPE:
308 				val1 = scontext->type;
309 				val2 = tcontext->type;
310 				break;
311 			case CEXPR_ROLE:
312 				val1 = scontext->role;
313 				val2 = tcontext->role;
314 				r1 = policydb->role_val_to_struct[val1 - 1];
315 				r2 = policydb->role_val_to_struct[val2 - 1];
316 				switch (e->op) {
317 				case CEXPR_DOM:
318 					s[++sp] = ebitmap_get_bit(&r1->dominates,
319 								  val2 - 1);
320 					continue;
321 				case CEXPR_DOMBY:
322 					s[++sp] = ebitmap_get_bit(&r2->dominates,
323 								  val1 - 1);
324 					continue;
325 				case CEXPR_INCOMP:
326 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
327 								    val2 - 1) &&
328 						   !ebitmap_get_bit(&r2->dominates,
329 								    val1 - 1));
330 					continue;
331 				default:
332 					break;
333 				}
334 				break;
335 			case CEXPR_L1L2:
336 				l1 = &(scontext->range.level[0]);
337 				l2 = &(tcontext->range.level[0]);
338 				goto mls_ops;
339 			case CEXPR_L1H2:
340 				l1 = &(scontext->range.level[0]);
341 				l2 = &(tcontext->range.level[1]);
342 				goto mls_ops;
343 			case CEXPR_H1L2:
344 				l1 = &(scontext->range.level[1]);
345 				l2 = &(tcontext->range.level[0]);
346 				goto mls_ops;
347 			case CEXPR_H1H2:
348 				l1 = &(scontext->range.level[1]);
349 				l2 = &(tcontext->range.level[1]);
350 				goto mls_ops;
351 			case CEXPR_L1H1:
352 				l1 = &(scontext->range.level[0]);
353 				l2 = &(scontext->range.level[1]);
354 				goto mls_ops;
355 			case CEXPR_L2H2:
356 				l1 = &(tcontext->range.level[0]);
357 				l2 = &(tcontext->range.level[1]);
358 				goto mls_ops;
359 mls_ops:
360 			switch (e->op) {
361 			case CEXPR_EQ:
362 				s[++sp] = mls_level_eq(l1, l2);
363 				continue;
364 			case CEXPR_NEQ:
365 				s[++sp] = !mls_level_eq(l1, l2);
366 				continue;
367 			case CEXPR_DOM:
368 				s[++sp] = mls_level_dom(l1, l2);
369 				continue;
370 			case CEXPR_DOMBY:
371 				s[++sp] = mls_level_dom(l2, l1);
372 				continue;
373 			case CEXPR_INCOMP:
374 				s[++sp] = mls_level_incomp(l2, l1);
375 				continue;
376 			default:
377 				BUG();
378 				return 0;
379 			}
380 			break;
381 			default:
382 				BUG();
383 				return 0;
384 			}
385 
386 			switch (e->op) {
387 			case CEXPR_EQ:
388 				s[++sp] = (val1 == val2);
389 				break;
390 			case CEXPR_NEQ:
391 				s[++sp] = (val1 != val2);
392 				break;
393 			default:
394 				BUG();
395 				return 0;
396 			}
397 			break;
398 		case CEXPR_NAMES:
399 			if (sp == (CEXPR_MAXDEPTH-1))
400 				return 0;
401 			c = scontext;
402 			if (e->attr & CEXPR_TARGET)
403 				c = tcontext;
404 			else if (e->attr & CEXPR_XTARGET) {
405 				c = xcontext;
406 				if (!c) {
407 					BUG();
408 					return 0;
409 				}
410 			}
411 			if (e->attr & CEXPR_USER)
412 				val1 = c->user;
413 			else if (e->attr & CEXPR_ROLE)
414 				val1 = c->role;
415 			else if (e->attr & CEXPR_TYPE)
416 				val1 = c->type;
417 			else {
418 				BUG();
419 				return 0;
420 			}
421 
422 			switch (e->op) {
423 			case CEXPR_EQ:
424 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
425 				break;
426 			case CEXPR_NEQ:
427 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
428 				break;
429 			default:
430 				BUG();
431 				return 0;
432 			}
433 			break;
434 		default:
435 			BUG();
436 			return 0;
437 		}
438 	}
439 
440 	BUG_ON(sp != 0);
441 	return s[0];
442 }
443 
444 /*
445  * security_dump_masked_av - dumps masked permissions during
446  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
447  */
448 static int dump_masked_av_helper(void *k, void *d, void *args)
449 {
450 	struct perm_datum *pdatum = d;
451 	char **permission_names = args;
452 
453 	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
454 
455 	permission_names[pdatum->value - 1] = (char *)k;
456 
457 	return 0;
458 }
459 
460 static void security_dump_masked_av(struct policydb *policydb,
461 				    struct context *scontext,
462 				    struct context *tcontext,
463 				    u16 tclass,
464 				    u32 permissions,
465 				    const char *reason)
466 {
467 	struct common_datum *common_dat;
468 	struct class_datum *tclass_dat;
469 	struct audit_buffer *ab;
470 	char *tclass_name;
471 	char *scontext_name = NULL;
472 	char *tcontext_name = NULL;
473 	char *permission_names[32];
474 	int index;
475 	u32 length;
476 	bool need_comma = false;
477 
478 	if (!permissions)
479 		return;
480 
481 	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
482 	tclass_dat = policydb->class_val_to_struct[tclass - 1];
483 	common_dat = tclass_dat->comdatum;
484 
485 	/* init permission_names */
486 	if (common_dat &&
487 	    hashtab_map(&common_dat->permissions.table,
488 			dump_masked_av_helper, permission_names) < 0)
489 		goto out;
490 
491 	if (hashtab_map(&tclass_dat->permissions.table,
492 			dump_masked_av_helper, permission_names) < 0)
493 		goto out;
494 
495 	/* get scontext/tcontext in text form */
496 	if (context_struct_to_string(policydb, scontext,
497 				     &scontext_name, &length) < 0)
498 		goto out;
499 
500 	if (context_struct_to_string(policydb, tcontext,
501 				     &tcontext_name, &length) < 0)
502 		goto out;
503 
504 	/* audit a message */
505 	ab = audit_log_start(audit_context(),
506 			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
507 	if (!ab)
508 		goto out;
509 
510 	audit_log_format(ab, "op=security_compute_av reason=%s "
511 			 "scontext=%s tcontext=%s tclass=%s perms=",
512 			 reason, scontext_name, tcontext_name, tclass_name);
513 
514 	for (index = 0; index < 32; index++) {
515 		u32 mask = (1 << index);
516 
517 		if ((mask & permissions) == 0)
518 			continue;
519 
520 		audit_log_format(ab, "%s%s",
521 				 need_comma ? "," : "",
522 				 permission_names[index]
523 				 ? permission_names[index] : "????");
524 		need_comma = true;
525 	}
526 	audit_log_end(ab);
527 out:
528 	/* release scontext/tcontext */
529 	kfree(tcontext_name);
530 	kfree(scontext_name);
531 
532 	return;
533 }
534 
535 /*
536  * security_boundary_permission - drops violated permissions
537  * on boundary constraint.
538  */
539 static void type_attribute_bounds_av(struct policydb *policydb,
540 				     struct context *scontext,
541 				     struct context *tcontext,
542 				     u16 tclass,
543 				     struct av_decision *avd)
544 {
545 	struct context lo_scontext;
546 	struct context lo_tcontext, *tcontextp = tcontext;
547 	struct av_decision lo_avd;
548 	struct type_datum *source;
549 	struct type_datum *target;
550 	u32 masked = 0;
551 
552 	source = policydb->type_val_to_struct[scontext->type - 1];
553 	BUG_ON(!source);
554 
555 	if (!source->bounds)
556 		return;
557 
558 	target = policydb->type_val_to_struct[tcontext->type - 1];
559 	BUG_ON(!target);
560 
561 	memset(&lo_avd, 0, sizeof(lo_avd));
562 
563 	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
564 	lo_scontext.type = source->bounds;
565 
566 	if (target->bounds) {
567 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
568 		lo_tcontext.type = target->bounds;
569 		tcontextp = &lo_tcontext;
570 	}
571 
572 	context_struct_compute_av(policydb, &lo_scontext,
573 				  tcontextp,
574 				  tclass,
575 				  &lo_avd,
576 				  NULL);
577 
578 	masked = ~lo_avd.allowed & avd->allowed;
579 
580 	if (likely(!masked))
581 		return;		/* no masked permission */
582 
583 	/* mask violated permissions */
584 	avd->allowed &= ~masked;
585 
586 	/* audit masked permissions */
587 	security_dump_masked_av(policydb, scontext, tcontext,
588 				tclass, masked, "bounds");
589 }
590 
591 /*
592  * flag which drivers have permissions
593  * only looking for ioctl based extended permssions
594  */
595 void services_compute_xperms_drivers(
596 		struct extended_perms *xperms,
597 		struct avtab_node *node)
598 {
599 	unsigned int i;
600 
601 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
602 		/* if one or more driver has all permissions allowed */
603 		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
604 			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
605 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
606 		/* if allowing permissions within a driver */
607 		security_xperm_set(xperms->drivers.p,
608 					node->datum.u.xperms->driver);
609 	}
610 
611 	xperms->len = 1;
612 }
613 
614 /*
615  * Compute access vectors and extended permissions based on a context
616  * structure pair for the permissions in a particular class.
617  */
618 static void context_struct_compute_av(struct policydb *policydb,
619 				      struct context *scontext,
620 				      struct context *tcontext,
621 				      u16 tclass,
622 				      struct av_decision *avd,
623 				      struct extended_perms *xperms)
624 {
625 	struct constraint_node *constraint;
626 	struct role_allow *ra;
627 	struct avtab_key avkey;
628 	struct avtab_node *node;
629 	struct class_datum *tclass_datum;
630 	struct ebitmap *sattr, *tattr;
631 	struct ebitmap_node *snode, *tnode;
632 	unsigned int i, j;
633 
634 	avd->allowed = 0;
635 	avd->auditallow = 0;
636 	avd->auditdeny = 0xffffffff;
637 	if (xperms) {
638 		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
639 		xperms->len = 0;
640 	}
641 
642 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
643 		if (printk_ratelimit())
644 			pr_warn("SELinux:  Invalid class %hu\n", tclass);
645 		return;
646 	}
647 
648 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
649 
650 	/*
651 	 * If a specific type enforcement rule was defined for
652 	 * this permission check, then use it.
653 	 */
654 	avkey.target_class = tclass;
655 	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
656 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
657 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
658 	ebitmap_for_each_positive_bit(sattr, snode, i) {
659 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
660 			avkey.source_type = i + 1;
661 			avkey.target_type = j + 1;
662 			for (node = avtab_search_node(&policydb->te_avtab,
663 						      &avkey);
664 			     node;
665 			     node = avtab_search_node_next(node, avkey.specified)) {
666 				if (node->key.specified == AVTAB_ALLOWED)
667 					avd->allowed |= node->datum.u.data;
668 				else if (node->key.specified == AVTAB_AUDITALLOW)
669 					avd->auditallow |= node->datum.u.data;
670 				else if (node->key.specified == AVTAB_AUDITDENY)
671 					avd->auditdeny &= node->datum.u.data;
672 				else if (xperms && (node->key.specified & AVTAB_XPERMS))
673 					services_compute_xperms_drivers(xperms, node);
674 			}
675 
676 			/* Check conditional av table for additional permissions */
677 			cond_compute_av(&policydb->te_cond_avtab, &avkey,
678 					avd, xperms);
679 
680 		}
681 	}
682 
683 	/*
684 	 * Remove any permissions prohibited by a constraint (this includes
685 	 * the MLS policy).
686 	 */
687 	constraint = tclass_datum->constraints;
688 	while (constraint) {
689 		if ((constraint->permissions & (avd->allowed)) &&
690 		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
691 					  constraint->expr)) {
692 			avd->allowed &= ~(constraint->permissions);
693 		}
694 		constraint = constraint->next;
695 	}
696 
697 	/*
698 	 * If checking process transition permission and the
699 	 * role is changing, then check the (current_role, new_role)
700 	 * pair.
701 	 */
702 	if (tclass == policydb->process_class &&
703 	    (avd->allowed & policydb->process_trans_perms) &&
704 	    scontext->role != tcontext->role) {
705 		for (ra = policydb->role_allow; ra; ra = ra->next) {
706 			if (scontext->role == ra->role &&
707 			    tcontext->role == ra->new_role)
708 				break;
709 		}
710 		if (!ra)
711 			avd->allowed &= ~policydb->process_trans_perms;
712 	}
713 
714 	/*
715 	 * If the given source and target types have boundary
716 	 * constraint, lazy checks have to mask any violated
717 	 * permission and notice it to userspace via audit.
718 	 */
719 	type_attribute_bounds_av(policydb, scontext, tcontext,
720 				 tclass, avd);
721 }
722 
723 static int security_validtrans_handle_fail(struct selinux_state *state,
724 					struct selinux_policy *policy,
725 					struct sidtab_entry *oentry,
726 					struct sidtab_entry *nentry,
727 					struct sidtab_entry *tentry,
728 					u16 tclass)
729 {
730 	struct policydb *p = &policy->policydb;
731 	struct sidtab *sidtab = policy->sidtab;
732 	char *o = NULL, *n = NULL, *t = NULL;
733 	u32 olen, nlen, tlen;
734 
735 	if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
736 		goto out;
737 	if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
738 		goto out;
739 	if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
740 		goto out;
741 	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
742 		  "op=security_validate_transition seresult=denied"
743 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
744 		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
745 out:
746 	kfree(o);
747 	kfree(n);
748 	kfree(t);
749 
750 	if (!enforcing_enabled(state))
751 		return 0;
752 	return -EPERM;
753 }
754 
755 static int security_compute_validatetrans(struct selinux_state *state,
756 					  u32 oldsid, u32 newsid, u32 tasksid,
757 					  u16 orig_tclass, bool user)
758 {
759 	struct selinux_policy *policy;
760 	struct policydb *policydb;
761 	struct sidtab *sidtab;
762 	struct sidtab_entry *oentry;
763 	struct sidtab_entry *nentry;
764 	struct sidtab_entry *tentry;
765 	struct class_datum *tclass_datum;
766 	struct constraint_node *constraint;
767 	u16 tclass;
768 	int rc = 0;
769 
770 
771 	if (!selinux_initialized(state))
772 		return 0;
773 
774 	rcu_read_lock();
775 
776 	policy = rcu_dereference(state->policy);
777 	policydb = &policy->policydb;
778 	sidtab = policy->sidtab;
779 
780 	if (!user)
781 		tclass = unmap_class(&policy->map, orig_tclass);
782 	else
783 		tclass = orig_tclass;
784 
785 	if (!tclass || tclass > policydb->p_classes.nprim) {
786 		rc = -EINVAL;
787 		goto out;
788 	}
789 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
790 
791 	oentry = sidtab_search_entry(sidtab, oldsid);
792 	if (!oentry) {
793 		pr_err("SELinux: %s:  unrecognized SID %d\n",
794 			__func__, oldsid);
795 		rc = -EINVAL;
796 		goto out;
797 	}
798 
799 	nentry = sidtab_search_entry(sidtab, newsid);
800 	if (!nentry) {
801 		pr_err("SELinux: %s:  unrecognized SID %d\n",
802 			__func__, newsid);
803 		rc = -EINVAL;
804 		goto out;
805 	}
806 
807 	tentry = sidtab_search_entry(sidtab, tasksid);
808 	if (!tentry) {
809 		pr_err("SELinux: %s:  unrecognized SID %d\n",
810 			__func__, tasksid);
811 		rc = -EINVAL;
812 		goto out;
813 	}
814 
815 	constraint = tclass_datum->validatetrans;
816 	while (constraint) {
817 		if (!constraint_expr_eval(policydb, &oentry->context,
818 					  &nentry->context, &tentry->context,
819 					  constraint->expr)) {
820 			if (user)
821 				rc = -EPERM;
822 			else
823 				rc = security_validtrans_handle_fail(state,
824 								policy,
825 								oentry,
826 								nentry,
827 								tentry,
828 								tclass);
829 			goto out;
830 		}
831 		constraint = constraint->next;
832 	}
833 
834 out:
835 	rcu_read_unlock();
836 	return rc;
837 }
838 
839 int security_validate_transition_user(struct selinux_state *state,
840 				      u32 oldsid, u32 newsid, u32 tasksid,
841 				      u16 tclass)
842 {
843 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
844 					      tclass, true);
845 }
846 
847 int security_validate_transition(struct selinux_state *state,
848 				 u32 oldsid, u32 newsid, u32 tasksid,
849 				 u16 orig_tclass)
850 {
851 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
852 					      orig_tclass, false);
853 }
854 
855 /*
856  * security_bounded_transition - check whether the given
857  * transition is directed to bounded, or not.
858  * It returns 0, if @newsid is bounded by @oldsid.
859  * Otherwise, it returns error code.
860  *
861  * @oldsid : current security identifier
862  * @newsid : destinated security identifier
863  */
864 int security_bounded_transition(struct selinux_state *state,
865 				u32 old_sid, u32 new_sid)
866 {
867 	struct selinux_policy *policy;
868 	struct policydb *policydb;
869 	struct sidtab *sidtab;
870 	struct sidtab_entry *old_entry, *new_entry;
871 	struct type_datum *type;
872 	int index;
873 	int rc;
874 
875 	if (!selinux_initialized(state))
876 		return 0;
877 
878 	rcu_read_lock();
879 	policy = rcu_dereference(state->policy);
880 	policydb = &policy->policydb;
881 	sidtab = policy->sidtab;
882 
883 	rc = -EINVAL;
884 	old_entry = sidtab_search_entry(sidtab, old_sid);
885 	if (!old_entry) {
886 		pr_err("SELinux: %s: unrecognized SID %u\n",
887 		       __func__, old_sid);
888 		goto out;
889 	}
890 
891 	rc = -EINVAL;
892 	new_entry = sidtab_search_entry(sidtab, new_sid);
893 	if (!new_entry) {
894 		pr_err("SELinux: %s: unrecognized SID %u\n",
895 		       __func__, new_sid);
896 		goto out;
897 	}
898 
899 	rc = 0;
900 	/* type/domain unchanged */
901 	if (old_entry->context.type == new_entry->context.type)
902 		goto out;
903 
904 	index = new_entry->context.type;
905 	while (true) {
906 		type = policydb->type_val_to_struct[index - 1];
907 		BUG_ON(!type);
908 
909 		/* not bounded anymore */
910 		rc = -EPERM;
911 		if (!type->bounds)
912 			break;
913 
914 		/* @newsid is bounded by @oldsid */
915 		rc = 0;
916 		if (type->bounds == old_entry->context.type)
917 			break;
918 
919 		index = type->bounds;
920 	}
921 
922 	if (rc) {
923 		char *old_name = NULL;
924 		char *new_name = NULL;
925 		u32 length;
926 
927 		if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
928 					    &old_name, &length) &&
929 		    !sidtab_entry_to_string(policydb, sidtab, new_entry,
930 					    &new_name, &length)) {
931 			audit_log(audit_context(),
932 				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
933 				  "op=security_bounded_transition "
934 				  "seresult=denied "
935 				  "oldcontext=%s newcontext=%s",
936 				  old_name, new_name);
937 		}
938 		kfree(new_name);
939 		kfree(old_name);
940 	}
941 out:
942 	rcu_read_unlock();
943 
944 	return rc;
945 }
946 
947 static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
948 {
949 	avd->allowed = 0;
950 	avd->auditallow = 0;
951 	avd->auditdeny = 0xffffffff;
952 	if (policy)
953 		avd->seqno = policy->latest_granting;
954 	else
955 		avd->seqno = 0;
956 	avd->flags = 0;
957 }
958 
959 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
960 					struct avtab_node *node)
961 {
962 	unsigned int i;
963 
964 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
965 		if (xpermd->driver != node->datum.u.xperms->driver)
966 			return;
967 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
968 		if (!security_xperm_test(node->datum.u.xperms->perms.p,
969 					xpermd->driver))
970 			return;
971 	} else {
972 		BUG();
973 	}
974 
975 	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
976 		xpermd->used |= XPERMS_ALLOWED;
977 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
978 			memset(xpermd->allowed->p, 0xff,
979 					sizeof(xpermd->allowed->p));
980 		}
981 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
982 			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
983 				xpermd->allowed->p[i] |=
984 					node->datum.u.xperms->perms.p[i];
985 		}
986 	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
987 		xpermd->used |= XPERMS_AUDITALLOW;
988 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
989 			memset(xpermd->auditallow->p, 0xff,
990 					sizeof(xpermd->auditallow->p));
991 		}
992 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
993 			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
994 				xpermd->auditallow->p[i] |=
995 					node->datum.u.xperms->perms.p[i];
996 		}
997 	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
998 		xpermd->used |= XPERMS_DONTAUDIT;
999 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
1000 			memset(xpermd->dontaudit->p, 0xff,
1001 					sizeof(xpermd->dontaudit->p));
1002 		}
1003 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
1004 			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1005 				xpermd->dontaudit->p[i] |=
1006 					node->datum.u.xperms->perms.p[i];
1007 		}
1008 	} else {
1009 		BUG();
1010 	}
1011 }
1012 
1013 void security_compute_xperms_decision(struct selinux_state *state,
1014 				      u32 ssid,
1015 				      u32 tsid,
1016 				      u16 orig_tclass,
1017 				      u8 driver,
1018 				      struct extended_perms_decision *xpermd)
1019 {
1020 	struct selinux_policy *policy;
1021 	struct policydb *policydb;
1022 	struct sidtab *sidtab;
1023 	u16 tclass;
1024 	struct context *scontext, *tcontext;
1025 	struct avtab_key avkey;
1026 	struct avtab_node *node;
1027 	struct ebitmap *sattr, *tattr;
1028 	struct ebitmap_node *snode, *tnode;
1029 	unsigned int i, j;
1030 
1031 	xpermd->driver = driver;
1032 	xpermd->used = 0;
1033 	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1034 	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1035 	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1036 
1037 	rcu_read_lock();
1038 	if (!selinux_initialized(state))
1039 		goto allow;
1040 
1041 	policy = rcu_dereference(state->policy);
1042 	policydb = &policy->policydb;
1043 	sidtab = policy->sidtab;
1044 
1045 	scontext = sidtab_search(sidtab, ssid);
1046 	if (!scontext) {
1047 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1048 		       __func__, ssid);
1049 		goto out;
1050 	}
1051 
1052 	tcontext = sidtab_search(sidtab, tsid);
1053 	if (!tcontext) {
1054 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1055 		       __func__, tsid);
1056 		goto out;
1057 	}
1058 
1059 	tclass = unmap_class(&policy->map, orig_tclass);
1060 	if (unlikely(orig_tclass && !tclass)) {
1061 		if (policydb->allow_unknown)
1062 			goto allow;
1063 		goto out;
1064 	}
1065 
1066 
1067 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1068 		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1069 		goto out;
1070 	}
1071 
1072 	avkey.target_class = tclass;
1073 	avkey.specified = AVTAB_XPERMS;
1074 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1075 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1076 	ebitmap_for_each_positive_bit(sattr, snode, i) {
1077 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1078 			avkey.source_type = i + 1;
1079 			avkey.target_type = j + 1;
1080 			for (node = avtab_search_node(&policydb->te_avtab,
1081 						      &avkey);
1082 			     node;
1083 			     node = avtab_search_node_next(node, avkey.specified))
1084 				services_compute_xperms_decision(xpermd, node);
1085 
1086 			cond_compute_xperms(&policydb->te_cond_avtab,
1087 						&avkey, xpermd);
1088 		}
1089 	}
1090 out:
1091 	rcu_read_unlock();
1092 	return;
1093 allow:
1094 	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1095 	goto out;
1096 }
1097 
1098 /**
1099  * security_compute_av - Compute access vector decisions.
1100  * @ssid: source security identifier
1101  * @tsid: target security identifier
1102  * @tclass: target security class
1103  * @avd: access vector decisions
1104  * @xperms: extended permissions
1105  *
1106  * Compute a set of access vector decisions based on the
1107  * SID pair (@ssid, @tsid) for the permissions in @tclass.
1108  */
1109 void security_compute_av(struct selinux_state *state,
1110 			 u32 ssid,
1111 			 u32 tsid,
1112 			 u16 orig_tclass,
1113 			 struct av_decision *avd,
1114 			 struct extended_perms *xperms)
1115 {
1116 	struct selinux_policy *policy;
1117 	struct policydb *policydb;
1118 	struct sidtab *sidtab;
1119 	u16 tclass;
1120 	struct context *scontext = NULL, *tcontext = NULL;
1121 
1122 	rcu_read_lock();
1123 	policy = rcu_dereference(state->policy);
1124 	avd_init(policy, avd);
1125 	xperms->len = 0;
1126 	if (!selinux_initialized(state))
1127 		goto allow;
1128 
1129 	policydb = &policy->policydb;
1130 	sidtab = policy->sidtab;
1131 
1132 	scontext = sidtab_search(sidtab, ssid);
1133 	if (!scontext) {
1134 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1135 		       __func__, ssid);
1136 		goto out;
1137 	}
1138 
1139 	/* permissive domain? */
1140 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1141 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1142 
1143 	tcontext = sidtab_search(sidtab, tsid);
1144 	if (!tcontext) {
1145 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1146 		       __func__, tsid);
1147 		goto out;
1148 	}
1149 
1150 	tclass = unmap_class(&policy->map, orig_tclass);
1151 	if (unlikely(orig_tclass && !tclass)) {
1152 		if (policydb->allow_unknown)
1153 			goto allow;
1154 		goto out;
1155 	}
1156 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1157 				  xperms);
1158 	map_decision(&policy->map, orig_tclass, avd,
1159 		     policydb->allow_unknown);
1160 out:
1161 	rcu_read_unlock();
1162 	return;
1163 allow:
1164 	avd->allowed = 0xffffffff;
1165 	goto out;
1166 }
1167 
1168 void security_compute_av_user(struct selinux_state *state,
1169 			      u32 ssid,
1170 			      u32 tsid,
1171 			      u16 tclass,
1172 			      struct av_decision *avd)
1173 {
1174 	struct selinux_policy *policy;
1175 	struct policydb *policydb;
1176 	struct sidtab *sidtab;
1177 	struct context *scontext = NULL, *tcontext = NULL;
1178 
1179 	rcu_read_lock();
1180 	policy = rcu_dereference(state->policy);
1181 	avd_init(policy, avd);
1182 	if (!selinux_initialized(state))
1183 		goto allow;
1184 
1185 	policydb = &policy->policydb;
1186 	sidtab = policy->sidtab;
1187 
1188 	scontext = sidtab_search(sidtab, ssid);
1189 	if (!scontext) {
1190 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1191 		       __func__, ssid);
1192 		goto out;
1193 	}
1194 
1195 	/* permissive domain? */
1196 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1197 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1198 
1199 	tcontext = sidtab_search(sidtab, tsid);
1200 	if (!tcontext) {
1201 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1202 		       __func__, tsid);
1203 		goto out;
1204 	}
1205 
1206 	if (unlikely(!tclass)) {
1207 		if (policydb->allow_unknown)
1208 			goto allow;
1209 		goto out;
1210 	}
1211 
1212 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1213 				  NULL);
1214  out:
1215 	rcu_read_unlock();
1216 	return;
1217 allow:
1218 	avd->allowed = 0xffffffff;
1219 	goto out;
1220 }
1221 
1222 /*
1223  * Write the security context string representation of
1224  * the context structure `context' into a dynamically
1225  * allocated string of the correct size.  Set `*scontext'
1226  * to point to this string and set `*scontext_len' to
1227  * the length of the string.
1228  */
1229 static int context_struct_to_string(struct policydb *p,
1230 				    struct context *context,
1231 				    char **scontext, u32 *scontext_len)
1232 {
1233 	char *scontextp;
1234 
1235 	if (scontext)
1236 		*scontext = NULL;
1237 	*scontext_len = 0;
1238 
1239 	if (context->len) {
1240 		*scontext_len = context->len;
1241 		if (scontext) {
1242 			*scontext = kstrdup(context->str, GFP_ATOMIC);
1243 			if (!(*scontext))
1244 				return -ENOMEM;
1245 		}
1246 		return 0;
1247 	}
1248 
1249 	/* Compute the size of the context. */
1250 	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1251 	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1252 	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1253 	*scontext_len += mls_compute_context_len(p, context);
1254 
1255 	if (!scontext)
1256 		return 0;
1257 
1258 	/* Allocate space for the context; caller must free this space. */
1259 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1260 	if (!scontextp)
1261 		return -ENOMEM;
1262 	*scontext = scontextp;
1263 
1264 	/*
1265 	 * Copy the user name, role name and type name into the context.
1266 	 */
1267 	scontextp += sprintf(scontextp, "%s:%s:%s",
1268 		sym_name(p, SYM_USERS, context->user - 1),
1269 		sym_name(p, SYM_ROLES, context->role - 1),
1270 		sym_name(p, SYM_TYPES, context->type - 1));
1271 
1272 	mls_sid_to_context(p, context, &scontextp);
1273 
1274 	*scontextp = 0;
1275 
1276 	return 0;
1277 }
1278 
1279 static int sidtab_entry_to_string(struct policydb *p,
1280 				  struct sidtab *sidtab,
1281 				  struct sidtab_entry *entry,
1282 				  char **scontext, u32 *scontext_len)
1283 {
1284 	int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1285 
1286 	if (rc != -ENOENT)
1287 		return rc;
1288 
1289 	rc = context_struct_to_string(p, &entry->context, scontext,
1290 				      scontext_len);
1291 	if (!rc && scontext)
1292 		sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1293 	return rc;
1294 }
1295 
1296 #include "initial_sid_to_string.h"
1297 
1298 int security_sidtab_hash_stats(struct selinux_state *state, char *page)
1299 {
1300 	struct selinux_policy *policy;
1301 	int rc;
1302 
1303 	if (!selinux_initialized(state)) {
1304 		pr_err("SELinux: %s:  called before initial load_policy\n",
1305 		       __func__);
1306 		return -EINVAL;
1307 	}
1308 
1309 	rcu_read_lock();
1310 	policy = rcu_dereference(state->policy);
1311 	rc = sidtab_hash_stats(policy->sidtab, page);
1312 	rcu_read_unlock();
1313 
1314 	return rc;
1315 }
1316 
1317 const char *security_get_initial_sid_context(u32 sid)
1318 {
1319 	if (unlikely(sid > SECINITSID_NUM))
1320 		return NULL;
1321 	return initial_sid_to_string[sid];
1322 }
1323 
1324 static int security_sid_to_context_core(struct selinux_state *state,
1325 					u32 sid, char **scontext,
1326 					u32 *scontext_len, int force,
1327 					int only_invalid)
1328 {
1329 	struct selinux_policy *policy;
1330 	struct policydb *policydb;
1331 	struct sidtab *sidtab;
1332 	struct sidtab_entry *entry;
1333 	int rc = 0;
1334 
1335 	if (scontext)
1336 		*scontext = NULL;
1337 	*scontext_len  = 0;
1338 
1339 	if (!selinux_initialized(state)) {
1340 		if (sid <= SECINITSID_NUM) {
1341 			char *scontextp;
1342 			const char *s = initial_sid_to_string[sid];
1343 
1344 			if (!s)
1345 				return -EINVAL;
1346 			*scontext_len = strlen(s) + 1;
1347 			if (!scontext)
1348 				return 0;
1349 			scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1350 			if (!scontextp)
1351 				return -ENOMEM;
1352 			*scontext = scontextp;
1353 			return 0;
1354 		}
1355 		pr_err("SELinux: %s:  called before initial "
1356 		       "load_policy on unknown SID %d\n", __func__, sid);
1357 		return -EINVAL;
1358 	}
1359 	rcu_read_lock();
1360 	policy = rcu_dereference(state->policy);
1361 	policydb = &policy->policydb;
1362 	sidtab = policy->sidtab;
1363 
1364 	if (force)
1365 		entry = sidtab_search_entry_force(sidtab, sid);
1366 	else
1367 		entry = sidtab_search_entry(sidtab, sid);
1368 	if (!entry) {
1369 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1370 			__func__, sid);
1371 		rc = -EINVAL;
1372 		goto out_unlock;
1373 	}
1374 	if (only_invalid && !entry->context.len)
1375 		goto out_unlock;
1376 
1377 	rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1378 				    scontext_len);
1379 
1380 out_unlock:
1381 	rcu_read_unlock();
1382 	return rc;
1383 
1384 }
1385 
1386 /**
1387  * security_sid_to_context - Obtain a context for a given SID.
1388  * @sid: security identifier, SID
1389  * @scontext: security context
1390  * @scontext_len: length in bytes
1391  *
1392  * Write the string representation of the context associated with @sid
1393  * into a dynamically allocated string of the correct size.  Set @scontext
1394  * to point to this string and set @scontext_len to the length of the string.
1395  */
1396 int security_sid_to_context(struct selinux_state *state,
1397 			    u32 sid, char **scontext, u32 *scontext_len)
1398 {
1399 	return security_sid_to_context_core(state, sid, scontext,
1400 					    scontext_len, 0, 0);
1401 }
1402 
1403 int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1404 				  char **scontext, u32 *scontext_len)
1405 {
1406 	return security_sid_to_context_core(state, sid, scontext,
1407 					    scontext_len, 1, 0);
1408 }
1409 
1410 /**
1411  * security_sid_to_context_inval - Obtain a context for a given SID if it
1412  *                                 is invalid.
1413  * @sid: security identifier, SID
1414  * @scontext: security context
1415  * @scontext_len: length in bytes
1416  *
1417  * Write the string representation of the context associated with @sid
1418  * into a dynamically allocated string of the correct size, but only if the
1419  * context is invalid in the current policy.  Set @scontext to point to
1420  * this string (or NULL if the context is valid) and set @scontext_len to
1421  * the length of the string (or 0 if the context is valid).
1422  */
1423 int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1424 				  char **scontext, u32 *scontext_len)
1425 {
1426 	return security_sid_to_context_core(state, sid, scontext,
1427 					    scontext_len, 1, 1);
1428 }
1429 
1430 /*
1431  * Caveat:  Mutates scontext.
1432  */
1433 static int string_to_context_struct(struct policydb *pol,
1434 				    struct sidtab *sidtabp,
1435 				    char *scontext,
1436 				    struct context *ctx,
1437 				    u32 def_sid)
1438 {
1439 	struct role_datum *role;
1440 	struct type_datum *typdatum;
1441 	struct user_datum *usrdatum;
1442 	char *scontextp, *p, oldc;
1443 	int rc = 0;
1444 
1445 	context_init(ctx);
1446 
1447 	/* Parse the security context. */
1448 
1449 	rc = -EINVAL;
1450 	scontextp = (char *) scontext;
1451 
1452 	/* Extract the user. */
1453 	p = scontextp;
1454 	while (*p && *p != ':')
1455 		p++;
1456 
1457 	if (*p == 0)
1458 		goto out;
1459 
1460 	*p++ = 0;
1461 
1462 	usrdatum = symtab_search(&pol->p_users, scontextp);
1463 	if (!usrdatum)
1464 		goto out;
1465 
1466 	ctx->user = usrdatum->value;
1467 
1468 	/* Extract role. */
1469 	scontextp = p;
1470 	while (*p && *p != ':')
1471 		p++;
1472 
1473 	if (*p == 0)
1474 		goto out;
1475 
1476 	*p++ = 0;
1477 
1478 	role = symtab_search(&pol->p_roles, scontextp);
1479 	if (!role)
1480 		goto out;
1481 	ctx->role = role->value;
1482 
1483 	/* Extract type. */
1484 	scontextp = p;
1485 	while (*p && *p != ':')
1486 		p++;
1487 	oldc = *p;
1488 	*p++ = 0;
1489 
1490 	typdatum = symtab_search(&pol->p_types, scontextp);
1491 	if (!typdatum || typdatum->attribute)
1492 		goto out;
1493 
1494 	ctx->type = typdatum->value;
1495 
1496 	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1497 	if (rc)
1498 		goto out;
1499 
1500 	/* Check the validity of the new context. */
1501 	rc = -EINVAL;
1502 	if (!policydb_context_isvalid(pol, ctx))
1503 		goto out;
1504 	rc = 0;
1505 out:
1506 	if (rc)
1507 		context_destroy(ctx);
1508 	return rc;
1509 }
1510 
1511 static int security_context_to_sid_core(struct selinux_state *state,
1512 					const char *scontext, u32 scontext_len,
1513 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1514 					int force)
1515 {
1516 	struct selinux_policy *policy;
1517 	struct policydb *policydb;
1518 	struct sidtab *sidtab;
1519 	char *scontext2, *str = NULL;
1520 	struct context context;
1521 	int rc = 0;
1522 
1523 	/* An empty security context is never valid. */
1524 	if (!scontext_len)
1525 		return -EINVAL;
1526 
1527 	/* Copy the string to allow changes and ensure a NUL terminator */
1528 	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1529 	if (!scontext2)
1530 		return -ENOMEM;
1531 
1532 	if (!selinux_initialized(state)) {
1533 		int i;
1534 
1535 		for (i = 1; i < SECINITSID_NUM; i++) {
1536 			const char *s = initial_sid_to_string[i];
1537 
1538 			if (s && !strcmp(s, scontext2)) {
1539 				*sid = i;
1540 				goto out;
1541 			}
1542 		}
1543 		*sid = SECINITSID_KERNEL;
1544 		goto out;
1545 	}
1546 	*sid = SECSID_NULL;
1547 
1548 	if (force) {
1549 		/* Save another copy for storing in uninterpreted form */
1550 		rc = -ENOMEM;
1551 		str = kstrdup(scontext2, gfp_flags);
1552 		if (!str)
1553 			goto out;
1554 	}
1555 retry:
1556 	rcu_read_lock();
1557 	policy = rcu_dereference(state->policy);
1558 	policydb = &policy->policydb;
1559 	sidtab = policy->sidtab;
1560 	rc = string_to_context_struct(policydb, sidtab, scontext2,
1561 				      &context, def_sid);
1562 	if (rc == -EINVAL && force) {
1563 		context.str = str;
1564 		context.len = strlen(str) + 1;
1565 		str = NULL;
1566 	} else if (rc)
1567 		goto out_unlock;
1568 	rc = sidtab_context_to_sid(sidtab, &context, sid);
1569 	if (rc == -ESTALE) {
1570 		rcu_read_unlock();
1571 		if (context.str) {
1572 			str = context.str;
1573 			context.str = NULL;
1574 		}
1575 		context_destroy(&context);
1576 		goto retry;
1577 	}
1578 	context_destroy(&context);
1579 out_unlock:
1580 	rcu_read_unlock();
1581 out:
1582 	kfree(scontext2);
1583 	kfree(str);
1584 	return rc;
1585 }
1586 
1587 /**
1588  * security_context_to_sid - Obtain a SID for a given security context.
1589  * @scontext: security context
1590  * @scontext_len: length in bytes
1591  * @sid: security identifier, SID
1592  * @gfp: context for the allocation
1593  *
1594  * Obtains a SID associated with the security context that
1595  * has the string representation specified by @scontext.
1596  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1597  * memory is available, or 0 on success.
1598  */
1599 int security_context_to_sid(struct selinux_state *state,
1600 			    const char *scontext, u32 scontext_len, u32 *sid,
1601 			    gfp_t gfp)
1602 {
1603 	return security_context_to_sid_core(state, scontext, scontext_len,
1604 					    sid, SECSID_NULL, gfp, 0);
1605 }
1606 
1607 int security_context_str_to_sid(struct selinux_state *state,
1608 				const char *scontext, u32 *sid, gfp_t gfp)
1609 {
1610 	return security_context_to_sid(state, scontext, strlen(scontext),
1611 				       sid, gfp);
1612 }
1613 
1614 /**
1615  * security_context_to_sid_default - Obtain a SID for a given security context,
1616  * falling back to specified default if needed.
1617  *
1618  * @scontext: security context
1619  * @scontext_len: length in bytes
1620  * @sid: security identifier, SID
1621  * @def_sid: default SID to assign on error
1622  *
1623  * Obtains a SID associated with the security context that
1624  * has the string representation specified by @scontext.
1625  * The default SID is passed to the MLS layer to be used to allow
1626  * kernel labeling of the MLS field if the MLS field is not present
1627  * (for upgrading to MLS without full relabel).
1628  * Implicitly forces adding of the context even if it cannot be mapped yet.
1629  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1630  * memory is available, or 0 on success.
1631  */
1632 int security_context_to_sid_default(struct selinux_state *state,
1633 				    const char *scontext, u32 scontext_len,
1634 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1635 {
1636 	return security_context_to_sid_core(state, scontext, scontext_len,
1637 					    sid, def_sid, gfp_flags, 1);
1638 }
1639 
1640 int security_context_to_sid_force(struct selinux_state *state,
1641 				  const char *scontext, u32 scontext_len,
1642 				  u32 *sid)
1643 {
1644 	return security_context_to_sid_core(state, scontext, scontext_len,
1645 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1646 }
1647 
1648 static int compute_sid_handle_invalid_context(
1649 	struct selinux_state *state,
1650 	struct selinux_policy *policy,
1651 	struct sidtab_entry *sentry,
1652 	struct sidtab_entry *tentry,
1653 	u16 tclass,
1654 	struct context *newcontext)
1655 {
1656 	struct policydb *policydb = &policy->policydb;
1657 	struct sidtab *sidtab = policy->sidtab;
1658 	char *s = NULL, *t = NULL, *n = NULL;
1659 	u32 slen, tlen, nlen;
1660 	struct audit_buffer *ab;
1661 
1662 	if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1663 		goto out;
1664 	if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1665 		goto out;
1666 	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1667 		goto out;
1668 	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1669 	audit_log_format(ab,
1670 			 "op=security_compute_sid invalid_context=");
1671 	/* no need to record the NUL with untrusted strings */
1672 	audit_log_n_untrustedstring(ab, n, nlen - 1);
1673 	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1674 			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1675 	audit_log_end(ab);
1676 out:
1677 	kfree(s);
1678 	kfree(t);
1679 	kfree(n);
1680 	if (!enforcing_enabled(state))
1681 		return 0;
1682 	return -EACCES;
1683 }
1684 
1685 static void filename_compute_type(struct policydb *policydb,
1686 				  struct context *newcontext,
1687 				  u32 stype, u32 ttype, u16 tclass,
1688 				  const char *objname)
1689 {
1690 	struct filename_trans_key ft;
1691 	struct filename_trans_datum *datum;
1692 
1693 	/*
1694 	 * Most filename trans rules are going to live in specific directories
1695 	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1696 	 * if the ttype does not contain any rules.
1697 	 */
1698 	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1699 		return;
1700 
1701 	ft.ttype = ttype;
1702 	ft.tclass = tclass;
1703 	ft.name = objname;
1704 
1705 	datum = policydb_filenametr_search(policydb, &ft);
1706 	while (datum) {
1707 		if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1708 			newcontext->type = datum->otype;
1709 			return;
1710 		}
1711 		datum = datum->next;
1712 	}
1713 }
1714 
1715 static int security_compute_sid(struct selinux_state *state,
1716 				u32 ssid,
1717 				u32 tsid,
1718 				u16 orig_tclass,
1719 				u32 specified,
1720 				const char *objname,
1721 				u32 *out_sid,
1722 				bool kern)
1723 {
1724 	struct selinux_policy *policy;
1725 	struct policydb *policydb;
1726 	struct sidtab *sidtab;
1727 	struct class_datum *cladatum;
1728 	struct context *scontext, *tcontext, newcontext;
1729 	struct sidtab_entry *sentry, *tentry;
1730 	struct avtab_key avkey;
1731 	struct avtab_datum *avdatum;
1732 	struct avtab_node *node;
1733 	u16 tclass;
1734 	int rc = 0;
1735 	bool sock;
1736 
1737 	if (!selinux_initialized(state)) {
1738 		switch (orig_tclass) {
1739 		case SECCLASS_PROCESS: /* kernel value */
1740 			*out_sid = ssid;
1741 			break;
1742 		default:
1743 			*out_sid = tsid;
1744 			break;
1745 		}
1746 		goto out;
1747 	}
1748 
1749 retry:
1750 	cladatum = NULL;
1751 	context_init(&newcontext);
1752 
1753 	rcu_read_lock();
1754 
1755 	policy = rcu_dereference(state->policy);
1756 
1757 	if (kern) {
1758 		tclass = unmap_class(&policy->map, orig_tclass);
1759 		sock = security_is_socket_class(orig_tclass);
1760 	} else {
1761 		tclass = orig_tclass;
1762 		sock = security_is_socket_class(map_class(&policy->map,
1763 							  tclass));
1764 	}
1765 
1766 	policydb = &policy->policydb;
1767 	sidtab = policy->sidtab;
1768 
1769 	sentry = sidtab_search_entry(sidtab, ssid);
1770 	if (!sentry) {
1771 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1772 		       __func__, ssid);
1773 		rc = -EINVAL;
1774 		goto out_unlock;
1775 	}
1776 	tentry = sidtab_search_entry(sidtab, tsid);
1777 	if (!tentry) {
1778 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1779 		       __func__, tsid);
1780 		rc = -EINVAL;
1781 		goto out_unlock;
1782 	}
1783 
1784 	scontext = &sentry->context;
1785 	tcontext = &tentry->context;
1786 
1787 	if (tclass && tclass <= policydb->p_classes.nprim)
1788 		cladatum = policydb->class_val_to_struct[tclass - 1];
1789 
1790 	/* Set the user identity. */
1791 	switch (specified) {
1792 	case AVTAB_TRANSITION:
1793 	case AVTAB_CHANGE:
1794 		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1795 			newcontext.user = tcontext->user;
1796 		} else {
1797 			/* notice this gets both DEFAULT_SOURCE and unset */
1798 			/* Use the process user identity. */
1799 			newcontext.user = scontext->user;
1800 		}
1801 		break;
1802 	case AVTAB_MEMBER:
1803 		/* Use the related object owner. */
1804 		newcontext.user = tcontext->user;
1805 		break;
1806 	}
1807 
1808 	/* Set the role to default values. */
1809 	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1810 		newcontext.role = scontext->role;
1811 	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1812 		newcontext.role = tcontext->role;
1813 	} else {
1814 		if ((tclass == policydb->process_class) || sock)
1815 			newcontext.role = scontext->role;
1816 		else
1817 			newcontext.role = OBJECT_R_VAL;
1818 	}
1819 
1820 	/* Set the type to default values. */
1821 	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1822 		newcontext.type = scontext->type;
1823 	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1824 		newcontext.type = tcontext->type;
1825 	} else {
1826 		if ((tclass == policydb->process_class) || sock) {
1827 			/* Use the type of process. */
1828 			newcontext.type = scontext->type;
1829 		} else {
1830 			/* Use the type of the related object. */
1831 			newcontext.type = tcontext->type;
1832 		}
1833 	}
1834 
1835 	/* Look for a type transition/member/change rule. */
1836 	avkey.source_type = scontext->type;
1837 	avkey.target_type = tcontext->type;
1838 	avkey.target_class = tclass;
1839 	avkey.specified = specified;
1840 	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1841 
1842 	/* If no permanent rule, also check for enabled conditional rules */
1843 	if (!avdatum) {
1844 		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1845 		for (; node; node = avtab_search_node_next(node, specified)) {
1846 			if (node->key.specified & AVTAB_ENABLED) {
1847 				avdatum = &node->datum;
1848 				break;
1849 			}
1850 		}
1851 	}
1852 
1853 	if (avdatum) {
1854 		/* Use the type from the type transition/member/change rule. */
1855 		newcontext.type = avdatum->u.data;
1856 	}
1857 
1858 	/* if we have a objname this is a file trans check so check those rules */
1859 	if (objname)
1860 		filename_compute_type(policydb, &newcontext, scontext->type,
1861 				      tcontext->type, tclass, objname);
1862 
1863 	/* Check for class-specific changes. */
1864 	if (specified & AVTAB_TRANSITION) {
1865 		/* Look for a role transition rule. */
1866 		struct role_trans_datum *rtd;
1867 		struct role_trans_key rtk = {
1868 			.role = scontext->role,
1869 			.type = tcontext->type,
1870 			.tclass = tclass,
1871 		};
1872 
1873 		rtd = policydb_roletr_search(policydb, &rtk);
1874 		if (rtd)
1875 			newcontext.role = rtd->new_role;
1876 	}
1877 
1878 	/* Set the MLS attributes.
1879 	   This is done last because it may allocate memory. */
1880 	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1881 			     &newcontext, sock);
1882 	if (rc)
1883 		goto out_unlock;
1884 
1885 	/* Check the validity of the context. */
1886 	if (!policydb_context_isvalid(policydb, &newcontext)) {
1887 		rc = compute_sid_handle_invalid_context(state, policy, sentry,
1888 							tentry, tclass,
1889 							&newcontext);
1890 		if (rc)
1891 			goto out_unlock;
1892 	}
1893 	/* Obtain the sid for the context. */
1894 	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1895 	if (rc == -ESTALE) {
1896 		rcu_read_unlock();
1897 		context_destroy(&newcontext);
1898 		goto retry;
1899 	}
1900 out_unlock:
1901 	rcu_read_unlock();
1902 	context_destroy(&newcontext);
1903 out:
1904 	return rc;
1905 }
1906 
1907 /**
1908  * security_transition_sid - Compute the SID for a new subject/object.
1909  * @ssid: source security identifier
1910  * @tsid: target security identifier
1911  * @tclass: target security class
1912  * @out_sid: security identifier for new subject/object
1913  *
1914  * Compute a SID to use for labeling a new subject or object in the
1915  * class @tclass based on a SID pair (@ssid, @tsid).
1916  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1917  * if insufficient memory is available, or %0 if the new SID was
1918  * computed successfully.
1919  */
1920 int security_transition_sid(struct selinux_state *state,
1921 			    u32 ssid, u32 tsid, u16 tclass,
1922 			    const struct qstr *qstr, u32 *out_sid)
1923 {
1924 	return security_compute_sid(state, ssid, tsid, tclass,
1925 				    AVTAB_TRANSITION,
1926 				    qstr ? qstr->name : NULL, out_sid, true);
1927 }
1928 
1929 int security_transition_sid_user(struct selinux_state *state,
1930 				 u32 ssid, u32 tsid, u16 tclass,
1931 				 const char *objname, u32 *out_sid)
1932 {
1933 	return security_compute_sid(state, ssid, tsid, tclass,
1934 				    AVTAB_TRANSITION,
1935 				    objname, out_sid, false);
1936 }
1937 
1938 /**
1939  * security_member_sid - Compute the SID for member selection.
1940  * @ssid: source security identifier
1941  * @tsid: target security identifier
1942  * @tclass: target security class
1943  * @out_sid: security identifier for selected member
1944  *
1945  * Compute a SID to use when selecting a member of a polyinstantiated
1946  * object of class @tclass based on a SID pair (@ssid, @tsid).
1947  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1948  * if insufficient memory is available, or %0 if the SID was
1949  * computed successfully.
1950  */
1951 int security_member_sid(struct selinux_state *state,
1952 			u32 ssid,
1953 			u32 tsid,
1954 			u16 tclass,
1955 			u32 *out_sid)
1956 {
1957 	return security_compute_sid(state, ssid, tsid, tclass,
1958 				    AVTAB_MEMBER, NULL,
1959 				    out_sid, false);
1960 }
1961 
1962 /**
1963  * security_change_sid - Compute the SID for object relabeling.
1964  * @ssid: source security identifier
1965  * @tsid: target security identifier
1966  * @tclass: target security class
1967  * @out_sid: security identifier for selected member
1968  *
1969  * Compute a SID to use for relabeling an object of class @tclass
1970  * based on a SID pair (@ssid, @tsid).
1971  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1972  * if insufficient memory is available, or %0 if the SID was
1973  * computed successfully.
1974  */
1975 int security_change_sid(struct selinux_state *state,
1976 			u32 ssid,
1977 			u32 tsid,
1978 			u16 tclass,
1979 			u32 *out_sid)
1980 {
1981 	return security_compute_sid(state,
1982 				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1983 				    out_sid, false);
1984 }
1985 
1986 static inline int convert_context_handle_invalid_context(
1987 	struct selinux_state *state,
1988 	struct policydb *policydb,
1989 	struct context *context)
1990 {
1991 	char *s;
1992 	u32 len;
1993 
1994 	if (enforcing_enabled(state))
1995 		return -EINVAL;
1996 
1997 	if (!context_struct_to_string(policydb, context, &s, &len)) {
1998 		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
1999 			s);
2000 		kfree(s);
2001 	}
2002 	return 0;
2003 }
2004 
2005 /*
2006  * Convert the values in the security context
2007  * structure `oldc' from the values specified
2008  * in the policy `p->oldp' to the values specified
2009  * in the policy `p->newp', storing the new context
2010  * in `newc'.  Verify that the context is valid
2011  * under the new policy.
2012  */
2013 static int convert_context(struct context *oldc, struct context *newc, void *p)
2014 {
2015 	struct convert_context_args *args;
2016 	struct ocontext *oc;
2017 	struct role_datum *role;
2018 	struct type_datum *typdatum;
2019 	struct user_datum *usrdatum;
2020 	char *s;
2021 	u32 len;
2022 	int rc;
2023 
2024 	args = p;
2025 
2026 	if (oldc->str) {
2027 		s = kstrdup(oldc->str, GFP_KERNEL);
2028 		if (!s)
2029 			return -ENOMEM;
2030 
2031 		rc = string_to_context_struct(args->newp, NULL, s,
2032 					      newc, SECSID_NULL);
2033 		if (rc == -EINVAL) {
2034 			/*
2035 			 * Retain string representation for later mapping.
2036 			 *
2037 			 * IMPORTANT: We need to copy the contents of oldc->str
2038 			 * back into s again because string_to_context_struct()
2039 			 * may have garbled it.
2040 			 */
2041 			memcpy(s, oldc->str, oldc->len);
2042 			context_init(newc);
2043 			newc->str = s;
2044 			newc->len = oldc->len;
2045 			return 0;
2046 		}
2047 		kfree(s);
2048 		if (rc) {
2049 			/* Other error condition, e.g. ENOMEM. */
2050 			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2051 			       oldc->str, -rc);
2052 			return rc;
2053 		}
2054 		pr_info("SELinux:  Context %s became valid (mapped).\n",
2055 			oldc->str);
2056 		return 0;
2057 	}
2058 
2059 	context_init(newc);
2060 
2061 	/* Convert the user. */
2062 	rc = -EINVAL;
2063 	usrdatum = symtab_search(&args->newp->p_users,
2064 				 sym_name(args->oldp,
2065 					  SYM_USERS, oldc->user - 1));
2066 	if (!usrdatum)
2067 		goto bad;
2068 	newc->user = usrdatum->value;
2069 
2070 	/* Convert the role. */
2071 	rc = -EINVAL;
2072 	role = symtab_search(&args->newp->p_roles,
2073 			     sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2074 	if (!role)
2075 		goto bad;
2076 	newc->role = role->value;
2077 
2078 	/* Convert the type. */
2079 	rc = -EINVAL;
2080 	typdatum = symtab_search(&args->newp->p_types,
2081 				 sym_name(args->oldp,
2082 					  SYM_TYPES, oldc->type - 1));
2083 	if (!typdatum)
2084 		goto bad;
2085 	newc->type = typdatum->value;
2086 
2087 	/* Convert the MLS fields if dealing with MLS policies */
2088 	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2089 		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2090 		if (rc)
2091 			goto bad;
2092 	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2093 		/*
2094 		 * Switching between non-MLS and MLS policy:
2095 		 * ensure that the MLS fields of the context for all
2096 		 * existing entries in the sidtab are filled in with a
2097 		 * suitable default value, likely taken from one of the
2098 		 * initial SIDs.
2099 		 */
2100 		oc = args->newp->ocontexts[OCON_ISID];
2101 		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2102 			oc = oc->next;
2103 		rc = -EINVAL;
2104 		if (!oc) {
2105 			pr_err("SELinux:  unable to look up"
2106 				" the initial SIDs list\n");
2107 			goto bad;
2108 		}
2109 		rc = mls_range_set(newc, &oc->context[0].range);
2110 		if (rc)
2111 			goto bad;
2112 	}
2113 
2114 	/* Check the validity of the new context. */
2115 	if (!policydb_context_isvalid(args->newp, newc)) {
2116 		rc = convert_context_handle_invalid_context(args->state,
2117 							args->oldp,
2118 							oldc);
2119 		if (rc)
2120 			goto bad;
2121 	}
2122 
2123 	return 0;
2124 bad:
2125 	/* Map old representation to string and save it. */
2126 	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2127 	if (rc)
2128 		return rc;
2129 	context_destroy(newc);
2130 	newc->str = s;
2131 	newc->len = len;
2132 	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2133 		newc->str);
2134 	return 0;
2135 }
2136 
2137 static void security_load_policycaps(struct selinux_state *state,
2138 				struct selinux_policy *policy)
2139 {
2140 	struct policydb *p;
2141 	unsigned int i;
2142 	struct ebitmap_node *node;
2143 
2144 	p = &policy->policydb;
2145 
2146 	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2147 		WRITE_ONCE(state->policycap[i],
2148 			ebitmap_get_bit(&p->policycaps, i));
2149 
2150 	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2151 		pr_info("SELinux:  policy capability %s=%d\n",
2152 			selinux_policycap_names[i],
2153 			ebitmap_get_bit(&p->policycaps, i));
2154 
2155 	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2156 		if (i >= ARRAY_SIZE(selinux_policycap_names))
2157 			pr_info("SELinux:  unknown policy capability %u\n",
2158 				i);
2159 	}
2160 }
2161 
2162 static int security_preserve_bools(struct selinux_policy *oldpolicy,
2163 				struct selinux_policy *newpolicy);
2164 
2165 static void selinux_policy_free(struct selinux_policy *policy)
2166 {
2167 	if (!policy)
2168 		return;
2169 
2170 	sidtab_destroy(policy->sidtab);
2171 	kfree(policy->map.mapping);
2172 	policydb_destroy(&policy->policydb);
2173 	kfree(policy->sidtab);
2174 	kfree(policy);
2175 }
2176 
2177 static void selinux_policy_cond_free(struct selinux_policy *policy)
2178 {
2179 	cond_policydb_destroy_dup(&policy->policydb);
2180 	kfree(policy);
2181 }
2182 
2183 void selinux_policy_cancel(struct selinux_state *state,
2184 			   struct selinux_load_state *load_state)
2185 {
2186 	struct selinux_policy *oldpolicy;
2187 
2188 	oldpolicy = rcu_dereference_protected(state->policy,
2189 					lockdep_is_held(&state->policy_mutex));
2190 
2191 	sidtab_cancel_convert(oldpolicy->sidtab);
2192 	selinux_policy_free(load_state->policy);
2193 	kfree(load_state->convert_data);
2194 }
2195 
2196 static void selinux_notify_policy_change(struct selinux_state *state,
2197 					u32 seqno)
2198 {
2199 	/* Flush external caches and notify userspace of policy load */
2200 	avc_ss_reset(state->avc, seqno);
2201 	selnl_notify_policyload(seqno);
2202 	selinux_status_update_policyload(state, seqno);
2203 	selinux_netlbl_cache_invalidate();
2204 	selinux_xfrm_notify_policyload();
2205 	selinux_ima_measure_state(state);
2206 }
2207 
2208 void selinux_policy_commit(struct selinux_state *state,
2209 			   struct selinux_load_state *load_state)
2210 {
2211 	struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2212 	unsigned long flags;
2213 	u32 seqno;
2214 
2215 	oldpolicy = rcu_dereference_protected(state->policy,
2216 					lockdep_is_held(&state->policy_mutex));
2217 
2218 	/* If switching between different policy types, log MLS status */
2219 	if (oldpolicy) {
2220 		if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2221 			pr_info("SELinux: Disabling MLS support...\n");
2222 		else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2223 			pr_info("SELinux: Enabling MLS support...\n");
2224 	}
2225 
2226 	/* Set latest granting seqno for new policy. */
2227 	if (oldpolicy)
2228 		newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2229 	else
2230 		newpolicy->latest_granting = 1;
2231 	seqno = newpolicy->latest_granting;
2232 
2233 	/* Install the new policy. */
2234 	if (oldpolicy) {
2235 		sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2236 		rcu_assign_pointer(state->policy, newpolicy);
2237 		sidtab_freeze_end(oldpolicy->sidtab, &flags);
2238 	} else {
2239 		rcu_assign_pointer(state->policy, newpolicy);
2240 	}
2241 
2242 	/* Load the policycaps from the new policy */
2243 	security_load_policycaps(state, newpolicy);
2244 
2245 	if (!selinux_initialized(state)) {
2246 		/*
2247 		 * After first policy load, the security server is
2248 		 * marked as initialized and ready to handle requests and
2249 		 * any objects created prior to policy load are then labeled.
2250 		 */
2251 		selinux_mark_initialized(state);
2252 		selinux_complete_init();
2253 	}
2254 
2255 	/* Free the old policy */
2256 	synchronize_rcu();
2257 	selinux_policy_free(oldpolicy);
2258 	kfree(load_state->convert_data);
2259 
2260 	/* Notify others of the policy change */
2261 	selinux_notify_policy_change(state, seqno);
2262 }
2263 
2264 /**
2265  * security_load_policy - Load a security policy configuration.
2266  * @data: binary policy data
2267  * @len: length of data in bytes
2268  *
2269  * Load a new set of security policy configuration data,
2270  * validate it and convert the SID table as necessary.
2271  * This function will flush the access vector cache after
2272  * loading the new policy.
2273  */
2274 int security_load_policy(struct selinux_state *state, void *data, size_t len,
2275 			 struct selinux_load_state *load_state)
2276 {
2277 	struct selinux_policy *newpolicy, *oldpolicy;
2278 	struct selinux_policy_convert_data *convert_data;
2279 	int rc = 0;
2280 	struct policy_file file = { data, len }, *fp = &file;
2281 
2282 	newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2283 	if (!newpolicy)
2284 		return -ENOMEM;
2285 
2286 	newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2287 	if (!newpolicy->sidtab) {
2288 		rc = -ENOMEM;
2289 		goto err_policy;
2290 	}
2291 
2292 	rc = policydb_read(&newpolicy->policydb, fp);
2293 	if (rc)
2294 		goto err_sidtab;
2295 
2296 	newpolicy->policydb.len = len;
2297 	rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2298 				&newpolicy->map);
2299 	if (rc)
2300 		goto err_policydb;
2301 
2302 	rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2303 	if (rc) {
2304 		pr_err("SELinux:  unable to load the initial SIDs\n");
2305 		goto err_mapping;
2306 	}
2307 
2308 	if (!selinux_initialized(state)) {
2309 		/* First policy load, so no need to preserve state from old policy */
2310 		load_state->policy = newpolicy;
2311 		load_state->convert_data = NULL;
2312 		return 0;
2313 	}
2314 
2315 	oldpolicy = rcu_dereference_protected(state->policy,
2316 					lockdep_is_held(&state->policy_mutex));
2317 
2318 	/* Preserve active boolean values from the old policy */
2319 	rc = security_preserve_bools(oldpolicy, newpolicy);
2320 	if (rc) {
2321 		pr_err("SELinux:  unable to preserve booleans\n");
2322 		goto err_free_isids;
2323 	}
2324 
2325 	convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2326 	if (!convert_data) {
2327 		rc = -ENOMEM;
2328 		goto err_free_isids;
2329 	}
2330 
2331 	/*
2332 	 * Convert the internal representations of contexts
2333 	 * in the new SID table.
2334 	 */
2335 	convert_data->args.state = state;
2336 	convert_data->args.oldp = &oldpolicy->policydb;
2337 	convert_data->args.newp = &newpolicy->policydb;
2338 
2339 	convert_data->sidtab_params.func = convert_context;
2340 	convert_data->sidtab_params.args = &convert_data->args;
2341 	convert_data->sidtab_params.target = newpolicy->sidtab;
2342 
2343 	rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2344 	if (rc) {
2345 		pr_err("SELinux:  unable to convert the internal"
2346 			" representation of contexts in the new SID"
2347 			" table\n");
2348 		goto err_free_convert_data;
2349 	}
2350 
2351 	load_state->policy = newpolicy;
2352 	load_state->convert_data = convert_data;
2353 	return 0;
2354 
2355 err_free_convert_data:
2356 	kfree(convert_data);
2357 err_free_isids:
2358 	sidtab_destroy(newpolicy->sidtab);
2359 err_mapping:
2360 	kfree(newpolicy->map.mapping);
2361 err_policydb:
2362 	policydb_destroy(&newpolicy->policydb);
2363 err_sidtab:
2364 	kfree(newpolicy->sidtab);
2365 err_policy:
2366 	kfree(newpolicy);
2367 
2368 	return rc;
2369 }
2370 
2371 /**
2372  * security_port_sid - Obtain the SID for a port.
2373  * @protocol: protocol number
2374  * @port: port number
2375  * @out_sid: security identifier
2376  */
2377 int security_port_sid(struct selinux_state *state,
2378 		      u8 protocol, u16 port, u32 *out_sid)
2379 {
2380 	struct selinux_policy *policy;
2381 	struct policydb *policydb;
2382 	struct sidtab *sidtab;
2383 	struct ocontext *c;
2384 	int rc;
2385 
2386 	if (!selinux_initialized(state)) {
2387 		*out_sid = SECINITSID_PORT;
2388 		return 0;
2389 	}
2390 
2391 retry:
2392 	rc = 0;
2393 	rcu_read_lock();
2394 	policy = rcu_dereference(state->policy);
2395 	policydb = &policy->policydb;
2396 	sidtab = policy->sidtab;
2397 
2398 	c = policydb->ocontexts[OCON_PORT];
2399 	while (c) {
2400 		if (c->u.port.protocol == protocol &&
2401 		    c->u.port.low_port <= port &&
2402 		    c->u.port.high_port >= port)
2403 			break;
2404 		c = c->next;
2405 	}
2406 
2407 	if (c) {
2408 		if (!c->sid[0]) {
2409 			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2410 						   &c->sid[0]);
2411 			if (rc == -ESTALE) {
2412 				rcu_read_unlock();
2413 				goto retry;
2414 			}
2415 			if (rc)
2416 				goto out;
2417 		}
2418 		*out_sid = c->sid[0];
2419 	} else {
2420 		*out_sid = SECINITSID_PORT;
2421 	}
2422 
2423 out:
2424 	rcu_read_unlock();
2425 	return rc;
2426 }
2427 
2428 /**
2429  * security_pkey_sid - Obtain the SID for a pkey.
2430  * @subnet_prefix: Subnet Prefix
2431  * @pkey_num: pkey number
2432  * @out_sid: security identifier
2433  */
2434 int security_ib_pkey_sid(struct selinux_state *state,
2435 			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2436 {
2437 	struct selinux_policy *policy;
2438 	struct policydb *policydb;
2439 	struct sidtab *sidtab;
2440 	struct ocontext *c;
2441 	int rc;
2442 
2443 	if (!selinux_initialized(state)) {
2444 		*out_sid = SECINITSID_UNLABELED;
2445 		return 0;
2446 	}
2447 
2448 retry:
2449 	rc = 0;
2450 	rcu_read_lock();
2451 	policy = rcu_dereference(state->policy);
2452 	policydb = &policy->policydb;
2453 	sidtab = policy->sidtab;
2454 
2455 	c = policydb->ocontexts[OCON_IBPKEY];
2456 	while (c) {
2457 		if (c->u.ibpkey.low_pkey <= pkey_num &&
2458 		    c->u.ibpkey.high_pkey >= pkey_num &&
2459 		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2460 			break;
2461 
2462 		c = c->next;
2463 	}
2464 
2465 	if (c) {
2466 		if (!c->sid[0]) {
2467 			rc = sidtab_context_to_sid(sidtab,
2468 						   &c->context[0],
2469 						   &c->sid[0]);
2470 			if (rc == -ESTALE) {
2471 				rcu_read_unlock();
2472 				goto retry;
2473 			}
2474 			if (rc)
2475 				goto out;
2476 		}
2477 		*out_sid = c->sid[0];
2478 	} else
2479 		*out_sid = SECINITSID_UNLABELED;
2480 
2481 out:
2482 	rcu_read_unlock();
2483 	return rc;
2484 }
2485 
2486 /**
2487  * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2488  * @dev_name: device name
2489  * @port: port number
2490  * @out_sid: security identifier
2491  */
2492 int security_ib_endport_sid(struct selinux_state *state,
2493 			    const char *dev_name, u8 port_num, u32 *out_sid)
2494 {
2495 	struct selinux_policy *policy;
2496 	struct policydb *policydb;
2497 	struct sidtab *sidtab;
2498 	struct ocontext *c;
2499 	int rc;
2500 
2501 	if (!selinux_initialized(state)) {
2502 		*out_sid = SECINITSID_UNLABELED;
2503 		return 0;
2504 	}
2505 
2506 retry:
2507 	rc = 0;
2508 	rcu_read_lock();
2509 	policy = rcu_dereference(state->policy);
2510 	policydb = &policy->policydb;
2511 	sidtab = policy->sidtab;
2512 
2513 	c = policydb->ocontexts[OCON_IBENDPORT];
2514 	while (c) {
2515 		if (c->u.ibendport.port == port_num &&
2516 		    !strncmp(c->u.ibendport.dev_name,
2517 			     dev_name,
2518 			     IB_DEVICE_NAME_MAX))
2519 			break;
2520 
2521 		c = c->next;
2522 	}
2523 
2524 	if (c) {
2525 		if (!c->sid[0]) {
2526 			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2527 						   &c->sid[0]);
2528 			if (rc == -ESTALE) {
2529 				rcu_read_unlock();
2530 				goto retry;
2531 			}
2532 			if (rc)
2533 				goto out;
2534 		}
2535 		*out_sid = c->sid[0];
2536 	} else
2537 		*out_sid = SECINITSID_UNLABELED;
2538 
2539 out:
2540 	rcu_read_unlock();
2541 	return rc;
2542 }
2543 
2544 /**
2545  * security_netif_sid - Obtain the SID for a network interface.
2546  * @name: interface name
2547  * @if_sid: interface SID
2548  */
2549 int security_netif_sid(struct selinux_state *state,
2550 		       char *name, u32 *if_sid)
2551 {
2552 	struct selinux_policy *policy;
2553 	struct policydb *policydb;
2554 	struct sidtab *sidtab;
2555 	int rc;
2556 	struct ocontext *c;
2557 
2558 	if (!selinux_initialized(state)) {
2559 		*if_sid = SECINITSID_NETIF;
2560 		return 0;
2561 	}
2562 
2563 retry:
2564 	rc = 0;
2565 	rcu_read_lock();
2566 	policy = rcu_dereference(state->policy);
2567 	policydb = &policy->policydb;
2568 	sidtab = policy->sidtab;
2569 
2570 	c = policydb->ocontexts[OCON_NETIF];
2571 	while (c) {
2572 		if (strcmp(name, c->u.name) == 0)
2573 			break;
2574 		c = c->next;
2575 	}
2576 
2577 	if (c) {
2578 		if (!c->sid[0] || !c->sid[1]) {
2579 			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2580 						   &c->sid[0]);
2581 			if (rc == -ESTALE) {
2582 				rcu_read_unlock();
2583 				goto retry;
2584 			}
2585 			if (rc)
2586 				goto out;
2587 			rc = sidtab_context_to_sid(sidtab, &c->context[1],
2588 						   &c->sid[1]);
2589 			if (rc == -ESTALE) {
2590 				rcu_read_unlock();
2591 				goto retry;
2592 			}
2593 			if (rc)
2594 				goto out;
2595 		}
2596 		*if_sid = c->sid[0];
2597 	} else
2598 		*if_sid = SECINITSID_NETIF;
2599 
2600 out:
2601 	rcu_read_unlock();
2602 	return rc;
2603 }
2604 
2605 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2606 {
2607 	int i, fail = 0;
2608 
2609 	for (i = 0; i < 4; i++)
2610 		if (addr[i] != (input[i] & mask[i])) {
2611 			fail = 1;
2612 			break;
2613 		}
2614 
2615 	return !fail;
2616 }
2617 
2618 /**
2619  * security_node_sid - Obtain the SID for a node (host).
2620  * @domain: communication domain aka address family
2621  * @addrp: address
2622  * @addrlen: address length in bytes
2623  * @out_sid: security identifier
2624  */
2625 int security_node_sid(struct selinux_state *state,
2626 		      u16 domain,
2627 		      void *addrp,
2628 		      u32 addrlen,
2629 		      u32 *out_sid)
2630 {
2631 	struct selinux_policy *policy;
2632 	struct policydb *policydb;
2633 	struct sidtab *sidtab;
2634 	int rc;
2635 	struct ocontext *c;
2636 
2637 	if (!selinux_initialized(state)) {
2638 		*out_sid = SECINITSID_NODE;
2639 		return 0;
2640 	}
2641 
2642 retry:
2643 	rcu_read_lock();
2644 	policy = rcu_dereference(state->policy);
2645 	policydb = &policy->policydb;
2646 	sidtab = policy->sidtab;
2647 
2648 	switch (domain) {
2649 	case AF_INET: {
2650 		u32 addr;
2651 
2652 		rc = -EINVAL;
2653 		if (addrlen != sizeof(u32))
2654 			goto out;
2655 
2656 		addr = *((u32 *)addrp);
2657 
2658 		c = policydb->ocontexts[OCON_NODE];
2659 		while (c) {
2660 			if (c->u.node.addr == (addr & c->u.node.mask))
2661 				break;
2662 			c = c->next;
2663 		}
2664 		break;
2665 	}
2666 
2667 	case AF_INET6:
2668 		rc = -EINVAL;
2669 		if (addrlen != sizeof(u64) * 2)
2670 			goto out;
2671 		c = policydb->ocontexts[OCON_NODE6];
2672 		while (c) {
2673 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2674 						c->u.node6.mask))
2675 				break;
2676 			c = c->next;
2677 		}
2678 		break;
2679 
2680 	default:
2681 		rc = 0;
2682 		*out_sid = SECINITSID_NODE;
2683 		goto out;
2684 	}
2685 
2686 	if (c) {
2687 		if (!c->sid[0]) {
2688 			rc = sidtab_context_to_sid(sidtab,
2689 						   &c->context[0],
2690 						   &c->sid[0]);
2691 			if (rc == -ESTALE) {
2692 				rcu_read_unlock();
2693 				goto retry;
2694 			}
2695 			if (rc)
2696 				goto out;
2697 		}
2698 		*out_sid = c->sid[0];
2699 	} else {
2700 		*out_sid = SECINITSID_NODE;
2701 	}
2702 
2703 	rc = 0;
2704 out:
2705 	rcu_read_unlock();
2706 	return rc;
2707 }
2708 
2709 #define SIDS_NEL 25
2710 
2711 /**
2712  * security_get_user_sids - Obtain reachable SIDs for a user.
2713  * @fromsid: starting SID
2714  * @username: username
2715  * @sids: array of reachable SIDs for user
2716  * @nel: number of elements in @sids
2717  *
2718  * Generate the set of SIDs for legal security contexts
2719  * for a given user that can be reached by @fromsid.
2720  * Set *@sids to point to a dynamically allocated
2721  * array containing the set of SIDs.  Set *@nel to the
2722  * number of elements in the array.
2723  */
2724 
2725 int security_get_user_sids(struct selinux_state *state,
2726 			   u32 fromsid,
2727 			   char *username,
2728 			   u32 **sids,
2729 			   u32 *nel)
2730 {
2731 	struct selinux_policy *policy;
2732 	struct policydb *policydb;
2733 	struct sidtab *sidtab;
2734 	struct context *fromcon, usercon;
2735 	u32 *mysids = NULL, *mysids2, sid;
2736 	u32 i, j, mynel, maxnel = SIDS_NEL;
2737 	struct user_datum *user;
2738 	struct role_datum *role;
2739 	struct ebitmap_node *rnode, *tnode;
2740 	int rc;
2741 
2742 	*sids = NULL;
2743 	*nel = 0;
2744 
2745 	if (!selinux_initialized(state))
2746 		return 0;
2747 
2748 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2749 	if (!mysids)
2750 		return -ENOMEM;
2751 
2752 retry:
2753 	mynel = 0;
2754 	rcu_read_lock();
2755 	policy = rcu_dereference(state->policy);
2756 	policydb = &policy->policydb;
2757 	sidtab = policy->sidtab;
2758 
2759 	context_init(&usercon);
2760 
2761 	rc = -EINVAL;
2762 	fromcon = sidtab_search(sidtab, fromsid);
2763 	if (!fromcon)
2764 		goto out_unlock;
2765 
2766 	rc = -EINVAL;
2767 	user = symtab_search(&policydb->p_users, username);
2768 	if (!user)
2769 		goto out_unlock;
2770 
2771 	usercon.user = user->value;
2772 
2773 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2774 		role = policydb->role_val_to_struct[i];
2775 		usercon.role = i + 1;
2776 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2777 			usercon.type = j + 1;
2778 
2779 			if (mls_setup_user_range(policydb, fromcon, user,
2780 						 &usercon))
2781 				continue;
2782 
2783 			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2784 			if (rc == -ESTALE) {
2785 				rcu_read_unlock();
2786 				goto retry;
2787 			}
2788 			if (rc)
2789 				goto out_unlock;
2790 			if (mynel < maxnel) {
2791 				mysids[mynel++] = sid;
2792 			} else {
2793 				rc = -ENOMEM;
2794 				maxnel += SIDS_NEL;
2795 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2796 				if (!mysids2)
2797 					goto out_unlock;
2798 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2799 				kfree(mysids);
2800 				mysids = mysids2;
2801 				mysids[mynel++] = sid;
2802 			}
2803 		}
2804 	}
2805 	rc = 0;
2806 out_unlock:
2807 	rcu_read_unlock();
2808 	if (rc || !mynel) {
2809 		kfree(mysids);
2810 		return rc;
2811 	}
2812 
2813 	rc = -ENOMEM;
2814 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2815 	if (!mysids2) {
2816 		kfree(mysids);
2817 		return rc;
2818 	}
2819 	for (i = 0, j = 0; i < mynel; i++) {
2820 		struct av_decision dummy_avd;
2821 		rc = avc_has_perm_noaudit(state,
2822 					  fromsid, mysids[i],
2823 					  SECCLASS_PROCESS, /* kernel value */
2824 					  PROCESS__TRANSITION, AVC_STRICT,
2825 					  &dummy_avd);
2826 		if (!rc)
2827 			mysids2[j++] = mysids[i];
2828 		cond_resched();
2829 	}
2830 	kfree(mysids);
2831 	*sids = mysids2;
2832 	*nel = j;
2833 	return 0;
2834 }
2835 
2836 /**
2837  * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2838  * @fstype: filesystem type
2839  * @path: path from root of mount
2840  * @sclass: file security class
2841  * @sid: SID for path
2842  *
2843  * Obtain a SID to use for a file in a filesystem that
2844  * cannot support xattr or use a fixed labeling behavior like
2845  * transition SIDs or task SIDs.
2846  *
2847  * WARNING: This function may return -ESTALE, indicating that the caller
2848  * must retry the operation after re-acquiring the policy pointer!
2849  */
2850 static inline int __security_genfs_sid(struct selinux_policy *policy,
2851 				       const char *fstype,
2852 				       char *path,
2853 				       u16 orig_sclass,
2854 				       u32 *sid)
2855 {
2856 	struct policydb *policydb = &policy->policydb;
2857 	struct sidtab *sidtab = policy->sidtab;
2858 	int len;
2859 	u16 sclass;
2860 	struct genfs *genfs;
2861 	struct ocontext *c;
2862 	int rc, cmp = 0;
2863 
2864 	while (path[0] == '/' && path[1] == '/')
2865 		path++;
2866 
2867 	sclass = unmap_class(&policy->map, orig_sclass);
2868 	*sid = SECINITSID_UNLABELED;
2869 
2870 	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2871 		cmp = strcmp(fstype, genfs->fstype);
2872 		if (cmp <= 0)
2873 			break;
2874 	}
2875 
2876 	rc = -ENOENT;
2877 	if (!genfs || cmp)
2878 		goto out;
2879 
2880 	for (c = genfs->head; c; c = c->next) {
2881 		len = strlen(c->u.name);
2882 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2883 		    (strncmp(c->u.name, path, len) == 0))
2884 			break;
2885 	}
2886 
2887 	rc = -ENOENT;
2888 	if (!c)
2889 		goto out;
2890 
2891 	if (!c->sid[0]) {
2892 		rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2893 		if (rc)
2894 			goto out;
2895 	}
2896 
2897 	*sid = c->sid[0];
2898 	rc = 0;
2899 out:
2900 	return rc;
2901 }
2902 
2903 /**
2904  * security_genfs_sid - Obtain a SID for a file in a filesystem
2905  * @fstype: filesystem type
2906  * @path: path from root of mount
2907  * @sclass: file security class
2908  * @sid: SID for path
2909  *
2910  * Acquire policy_rwlock before calling __security_genfs_sid() and release
2911  * it afterward.
2912  */
2913 int security_genfs_sid(struct selinux_state *state,
2914 		       const char *fstype,
2915 		       char *path,
2916 		       u16 orig_sclass,
2917 		       u32 *sid)
2918 {
2919 	struct selinux_policy *policy;
2920 	int retval;
2921 
2922 	if (!selinux_initialized(state)) {
2923 		*sid = SECINITSID_UNLABELED;
2924 		return 0;
2925 	}
2926 
2927 	do {
2928 		rcu_read_lock();
2929 		policy = rcu_dereference(state->policy);
2930 		retval = __security_genfs_sid(policy, fstype, path,
2931 					      orig_sclass, sid);
2932 		rcu_read_unlock();
2933 	} while (retval == -ESTALE);
2934 	return retval;
2935 }
2936 
2937 int selinux_policy_genfs_sid(struct selinux_policy *policy,
2938 			const char *fstype,
2939 			char *path,
2940 			u16 orig_sclass,
2941 			u32 *sid)
2942 {
2943 	/* no lock required, policy is not yet accessible by other threads */
2944 	return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2945 }
2946 
2947 /**
2948  * security_fs_use - Determine how to handle labeling for a filesystem.
2949  * @sb: superblock in question
2950  */
2951 int security_fs_use(struct selinux_state *state, struct super_block *sb)
2952 {
2953 	struct selinux_policy *policy;
2954 	struct policydb *policydb;
2955 	struct sidtab *sidtab;
2956 	int rc;
2957 	struct ocontext *c;
2958 	struct superblock_security_struct *sbsec = sb->s_security;
2959 	const char *fstype = sb->s_type->name;
2960 
2961 	if (!selinux_initialized(state)) {
2962 		sbsec->behavior = SECURITY_FS_USE_NONE;
2963 		sbsec->sid = SECINITSID_UNLABELED;
2964 		return 0;
2965 	}
2966 
2967 retry:
2968 	rc = 0;
2969 	rcu_read_lock();
2970 	policy = rcu_dereference(state->policy);
2971 	policydb = &policy->policydb;
2972 	sidtab = policy->sidtab;
2973 
2974 	c = policydb->ocontexts[OCON_FSUSE];
2975 	while (c) {
2976 		if (strcmp(fstype, c->u.name) == 0)
2977 			break;
2978 		c = c->next;
2979 	}
2980 
2981 	if (c) {
2982 		sbsec->behavior = c->v.behavior;
2983 		if (!c->sid[0]) {
2984 			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2985 						   &c->sid[0]);
2986 			if (rc == -ESTALE) {
2987 				rcu_read_unlock();
2988 				goto retry;
2989 			}
2990 			if (rc)
2991 				goto out;
2992 		}
2993 		sbsec->sid = c->sid[0];
2994 	} else {
2995 		rc = __security_genfs_sid(policy, fstype, "/",
2996 					SECCLASS_DIR, &sbsec->sid);
2997 		if (rc == -ESTALE) {
2998 			rcu_read_unlock();
2999 			goto retry;
3000 		}
3001 		if (rc) {
3002 			sbsec->behavior = SECURITY_FS_USE_NONE;
3003 			rc = 0;
3004 		} else {
3005 			sbsec->behavior = SECURITY_FS_USE_GENFS;
3006 		}
3007 	}
3008 
3009 out:
3010 	rcu_read_unlock();
3011 	return rc;
3012 }
3013 
3014 int security_get_bools(struct selinux_policy *policy,
3015 		       u32 *len, char ***names, int **values)
3016 {
3017 	struct policydb *policydb;
3018 	u32 i;
3019 	int rc;
3020 
3021 	policydb = &policy->policydb;
3022 
3023 	*names = NULL;
3024 	*values = NULL;
3025 
3026 	rc = 0;
3027 	*len = policydb->p_bools.nprim;
3028 	if (!*len)
3029 		goto out;
3030 
3031 	rc = -ENOMEM;
3032 	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
3033 	if (!*names)
3034 		goto err;
3035 
3036 	rc = -ENOMEM;
3037 	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
3038 	if (!*values)
3039 		goto err;
3040 
3041 	for (i = 0; i < *len; i++) {
3042 		(*values)[i] = policydb->bool_val_to_struct[i]->state;
3043 
3044 		rc = -ENOMEM;
3045 		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3046 				      GFP_ATOMIC);
3047 		if (!(*names)[i])
3048 			goto err;
3049 	}
3050 	rc = 0;
3051 out:
3052 	return rc;
3053 err:
3054 	if (*names) {
3055 		for (i = 0; i < *len; i++)
3056 			kfree((*names)[i]);
3057 		kfree(*names);
3058 	}
3059 	kfree(*values);
3060 	*len = 0;
3061 	*names = NULL;
3062 	*values = NULL;
3063 	goto out;
3064 }
3065 
3066 
3067 int security_set_bools(struct selinux_state *state, u32 len, int *values)
3068 {
3069 	struct selinux_policy *newpolicy, *oldpolicy;
3070 	int rc;
3071 	u32 i, seqno = 0;
3072 
3073 	if (!selinux_initialized(state))
3074 		return -EINVAL;
3075 
3076 	oldpolicy = rcu_dereference_protected(state->policy,
3077 					lockdep_is_held(&state->policy_mutex));
3078 
3079 	/* Consistency check on number of booleans, should never fail */
3080 	if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3081 		return -EINVAL;
3082 
3083 	newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3084 	if (!newpolicy)
3085 		return -ENOMEM;
3086 
3087 	/*
3088 	 * Deep copy only the parts of the policydb that might be
3089 	 * modified as a result of changing booleans.
3090 	 */
3091 	rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3092 	if (rc) {
3093 		kfree(newpolicy);
3094 		return -ENOMEM;
3095 	}
3096 
3097 	/* Update the boolean states in the copy */
3098 	for (i = 0; i < len; i++) {
3099 		int new_state = !!values[i];
3100 		int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3101 
3102 		if (new_state != old_state) {
3103 			audit_log(audit_context(), GFP_ATOMIC,
3104 				AUDIT_MAC_CONFIG_CHANGE,
3105 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
3106 				sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3107 				new_state,
3108 				old_state,
3109 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
3110 				audit_get_sessionid(current));
3111 			newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3112 		}
3113 	}
3114 
3115 	/* Re-evaluate the conditional rules in the copy */
3116 	evaluate_cond_nodes(&newpolicy->policydb);
3117 
3118 	/* Set latest granting seqno for new policy */
3119 	newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3120 	seqno = newpolicy->latest_granting;
3121 
3122 	/* Install the new policy */
3123 	rcu_assign_pointer(state->policy, newpolicy);
3124 
3125 	/*
3126 	 * Free the conditional portions of the old policydb
3127 	 * that were copied for the new policy, and the oldpolicy
3128 	 * structure itself but not what it references.
3129 	 */
3130 	synchronize_rcu();
3131 	selinux_policy_cond_free(oldpolicy);
3132 
3133 	/* Notify others of the policy change */
3134 	selinux_notify_policy_change(state, seqno);
3135 	return 0;
3136 }
3137 
3138 int security_get_bool_value(struct selinux_state *state,
3139 			    u32 index)
3140 {
3141 	struct selinux_policy *policy;
3142 	struct policydb *policydb;
3143 	int rc;
3144 	u32 len;
3145 
3146 	if (!selinux_initialized(state))
3147 		return 0;
3148 
3149 	rcu_read_lock();
3150 	policy = rcu_dereference(state->policy);
3151 	policydb = &policy->policydb;
3152 
3153 	rc = -EFAULT;
3154 	len = policydb->p_bools.nprim;
3155 	if (index >= len)
3156 		goto out;
3157 
3158 	rc = policydb->bool_val_to_struct[index]->state;
3159 out:
3160 	rcu_read_unlock();
3161 	return rc;
3162 }
3163 
3164 static int security_preserve_bools(struct selinux_policy *oldpolicy,
3165 				struct selinux_policy *newpolicy)
3166 {
3167 	int rc, *bvalues = NULL;
3168 	char **bnames = NULL;
3169 	struct cond_bool_datum *booldatum;
3170 	u32 i, nbools = 0;
3171 
3172 	rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3173 	if (rc)
3174 		goto out;
3175 	for (i = 0; i < nbools; i++) {
3176 		booldatum = symtab_search(&newpolicy->policydb.p_bools,
3177 					bnames[i]);
3178 		if (booldatum)
3179 			booldatum->state = bvalues[i];
3180 	}
3181 	evaluate_cond_nodes(&newpolicy->policydb);
3182 
3183 out:
3184 	if (bnames) {
3185 		for (i = 0; i < nbools; i++)
3186 			kfree(bnames[i]);
3187 	}
3188 	kfree(bnames);
3189 	kfree(bvalues);
3190 	return rc;
3191 }
3192 
3193 /*
3194  * security_sid_mls_copy() - computes a new sid based on the given
3195  * sid and the mls portion of mls_sid.
3196  */
3197 int security_sid_mls_copy(struct selinux_state *state,
3198 			  u32 sid, u32 mls_sid, u32 *new_sid)
3199 {
3200 	struct selinux_policy *policy;
3201 	struct policydb *policydb;
3202 	struct sidtab *sidtab;
3203 	struct context *context1;
3204 	struct context *context2;
3205 	struct context newcon;
3206 	char *s;
3207 	u32 len;
3208 	int rc;
3209 
3210 	if (!selinux_initialized(state)) {
3211 		*new_sid = sid;
3212 		return 0;
3213 	}
3214 
3215 retry:
3216 	rc = 0;
3217 	context_init(&newcon);
3218 
3219 	rcu_read_lock();
3220 	policy = rcu_dereference(state->policy);
3221 	policydb = &policy->policydb;
3222 	sidtab = policy->sidtab;
3223 
3224 	if (!policydb->mls_enabled) {
3225 		*new_sid = sid;
3226 		goto out_unlock;
3227 	}
3228 
3229 	rc = -EINVAL;
3230 	context1 = sidtab_search(sidtab, sid);
3231 	if (!context1) {
3232 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3233 			__func__, sid);
3234 		goto out_unlock;
3235 	}
3236 
3237 	rc = -EINVAL;
3238 	context2 = sidtab_search(sidtab, mls_sid);
3239 	if (!context2) {
3240 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3241 			__func__, mls_sid);
3242 		goto out_unlock;
3243 	}
3244 
3245 	newcon.user = context1->user;
3246 	newcon.role = context1->role;
3247 	newcon.type = context1->type;
3248 	rc = mls_context_cpy(&newcon, context2);
3249 	if (rc)
3250 		goto out_unlock;
3251 
3252 	/* Check the validity of the new context. */
3253 	if (!policydb_context_isvalid(policydb, &newcon)) {
3254 		rc = convert_context_handle_invalid_context(state, policydb,
3255 							&newcon);
3256 		if (rc) {
3257 			if (!context_struct_to_string(policydb, &newcon, &s,
3258 						      &len)) {
3259 				struct audit_buffer *ab;
3260 
3261 				ab = audit_log_start(audit_context(),
3262 						     GFP_ATOMIC,
3263 						     AUDIT_SELINUX_ERR);
3264 				audit_log_format(ab,
3265 						 "op=security_sid_mls_copy invalid_context=");
3266 				/* don't record NUL with untrusted strings */
3267 				audit_log_n_untrustedstring(ab, s, len - 1);
3268 				audit_log_end(ab);
3269 				kfree(s);
3270 			}
3271 			goto out_unlock;
3272 		}
3273 	}
3274 	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3275 	if (rc == -ESTALE) {
3276 		rcu_read_unlock();
3277 		context_destroy(&newcon);
3278 		goto retry;
3279 	}
3280 out_unlock:
3281 	rcu_read_unlock();
3282 	context_destroy(&newcon);
3283 	return rc;
3284 }
3285 
3286 /**
3287  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3288  * @nlbl_sid: NetLabel SID
3289  * @nlbl_type: NetLabel labeling protocol type
3290  * @xfrm_sid: XFRM SID
3291  *
3292  * Description:
3293  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3294  * resolved into a single SID it is returned via @peer_sid and the function
3295  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3296  * returns a negative value.  A table summarizing the behavior is below:
3297  *
3298  *                                 | function return |      @sid
3299  *   ------------------------------+-----------------+-----------------
3300  *   no peer labels                |        0        |    SECSID_NULL
3301  *   single peer label             |        0        |    <peer_label>
3302  *   multiple, consistent labels   |        0        |    <peer_label>
3303  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3304  *
3305  */
3306 int security_net_peersid_resolve(struct selinux_state *state,
3307 				 u32 nlbl_sid, u32 nlbl_type,
3308 				 u32 xfrm_sid,
3309 				 u32 *peer_sid)
3310 {
3311 	struct selinux_policy *policy;
3312 	struct policydb *policydb;
3313 	struct sidtab *sidtab;
3314 	int rc;
3315 	struct context *nlbl_ctx;
3316 	struct context *xfrm_ctx;
3317 
3318 	*peer_sid = SECSID_NULL;
3319 
3320 	/* handle the common (which also happens to be the set of easy) cases
3321 	 * right away, these two if statements catch everything involving a
3322 	 * single or absent peer SID/label */
3323 	if (xfrm_sid == SECSID_NULL) {
3324 		*peer_sid = nlbl_sid;
3325 		return 0;
3326 	}
3327 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3328 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3329 	 * is present */
3330 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3331 		*peer_sid = xfrm_sid;
3332 		return 0;
3333 	}
3334 
3335 	if (!selinux_initialized(state))
3336 		return 0;
3337 
3338 	rcu_read_lock();
3339 	policy = rcu_dereference(state->policy);
3340 	policydb = &policy->policydb;
3341 	sidtab = policy->sidtab;
3342 
3343 	/*
3344 	 * We don't need to check initialized here since the only way both
3345 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3346 	 * security server was initialized and state->initialized was true.
3347 	 */
3348 	if (!policydb->mls_enabled) {
3349 		rc = 0;
3350 		goto out;
3351 	}
3352 
3353 	rc = -EINVAL;
3354 	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3355 	if (!nlbl_ctx) {
3356 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3357 		       __func__, nlbl_sid);
3358 		goto out;
3359 	}
3360 	rc = -EINVAL;
3361 	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3362 	if (!xfrm_ctx) {
3363 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3364 		       __func__, xfrm_sid);
3365 		goto out;
3366 	}
3367 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3368 	if (rc)
3369 		goto out;
3370 
3371 	/* at present NetLabel SIDs/labels really only carry MLS
3372 	 * information so if the MLS portion of the NetLabel SID
3373 	 * matches the MLS portion of the labeled XFRM SID/label
3374 	 * then pass along the XFRM SID as it is the most
3375 	 * expressive */
3376 	*peer_sid = xfrm_sid;
3377 out:
3378 	rcu_read_unlock();
3379 	return rc;
3380 }
3381 
3382 static int get_classes_callback(void *k, void *d, void *args)
3383 {
3384 	struct class_datum *datum = d;
3385 	char *name = k, **classes = args;
3386 	int value = datum->value - 1;
3387 
3388 	classes[value] = kstrdup(name, GFP_ATOMIC);
3389 	if (!classes[value])
3390 		return -ENOMEM;
3391 
3392 	return 0;
3393 }
3394 
3395 int security_get_classes(struct selinux_policy *policy,
3396 			 char ***classes, int *nclasses)
3397 {
3398 	struct policydb *policydb;
3399 	int rc;
3400 
3401 	policydb = &policy->policydb;
3402 
3403 	rc = -ENOMEM;
3404 	*nclasses = policydb->p_classes.nprim;
3405 	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3406 	if (!*classes)
3407 		goto out;
3408 
3409 	rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3410 			 *classes);
3411 	if (rc) {
3412 		int i;
3413 		for (i = 0; i < *nclasses; i++)
3414 			kfree((*classes)[i]);
3415 		kfree(*classes);
3416 	}
3417 
3418 out:
3419 	return rc;
3420 }
3421 
3422 static int get_permissions_callback(void *k, void *d, void *args)
3423 {
3424 	struct perm_datum *datum = d;
3425 	char *name = k, **perms = args;
3426 	int value = datum->value - 1;
3427 
3428 	perms[value] = kstrdup(name, GFP_ATOMIC);
3429 	if (!perms[value])
3430 		return -ENOMEM;
3431 
3432 	return 0;
3433 }
3434 
3435 int security_get_permissions(struct selinux_policy *policy,
3436 			     char *class, char ***perms, int *nperms)
3437 {
3438 	struct policydb *policydb;
3439 	int rc, i;
3440 	struct class_datum *match;
3441 
3442 	policydb = &policy->policydb;
3443 
3444 	rc = -EINVAL;
3445 	match = symtab_search(&policydb->p_classes, class);
3446 	if (!match) {
3447 		pr_err("SELinux: %s:  unrecognized class %s\n",
3448 			__func__, class);
3449 		goto out;
3450 	}
3451 
3452 	rc = -ENOMEM;
3453 	*nperms = match->permissions.nprim;
3454 	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3455 	if (!*perms)
3456 		goto out;
3457 
3458 	if (match->comdatum) {
3459 		rc = hashtab_map(&match->comdatum->permissions.table,
3460 				 get_permissions_callback, *perms);
3461 		if (rc)
3462 			goto err;
3463 	}
3464 
3465 	rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3466 			 *perms);
3467 	if (rc)
3468 		goto err;
3469 
3470 out:
3471 	return rc;
3472 
3473 err:
3474 	for (i = 0; i < *nperms; i++)
3475 		kfree((*perms)[i]);
3476 	kfree(*perms);
3477 	return rc;
3478 }
3479 
3480 int security_get_reject_unknown(struct selinux_state *state)
3481 {
3482 	struct selinux_policy *policy;
3483 	int value;
3484 
3485 	if (!selinux_initialized(state))
3486 		return 0;
3487 
3488 	rcu_read_lock();
3489 	policy = rcu_dereference(state->policy);
3490 	value = policy->policydb.reject_unknown;
3491 	rcu_read_unlock();
3492 	return value;
3493 }
3494 
3495 int security_get_allow_unknown(struct selinux_state *state)
3496 {
3497 	struct selinux_policy *policy;
3498 	int value;
3499 
3500 	if (!selinux_initialized(state))
3501 		return 0;
3502 
3503 	rcu_read_lock();
3504 	policy = rcu_dereference(state->policy);
3505 	value = policy->policydb.allow_unknown;
3506 	rcu_read_unlock();
3507 	return value;
3508 }
3509 
3510 /**
3511  * security_policycap_supported - Check for a specific policy capability
3512  * @req_cap: capability
3513  *
3514  * Description:
3515  * This function queries the currently loaded policy to see if it supports the
3516  * capability specified by @req_cap.  Returns true (1) if the capability is
3517  * supported, false (0) if it isn't supported.
3518  *
3519  */
3520 int security_policycap_supported(struct selinux_state *state,
3521 				 unsigned int req_cap)
3522 {
3523 	struct selinux_policy *policy;
3524 	int rc;
3525 
3526 	if (!selinux_initialized(state))
3527 		return 0;
3528 
3529 	rcu_read_lock();
3530 	policy = rcu_dereference(state->policy);
3531 	rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3532 	rcu_read_unlock();
3533 
3534 	return rc;
3535 }
3536 
3537 struct selinux_audit_rule {
3538 	u32 au_seqno;
3539 	struct context au_ctxt;
3540 };
3541 
3542 void selinux_audit_rule_free(void *vrule)
3543 {
3544 	struct selinux_audit_rule *rule = vrule;
3545 
3546 	if (rule) {
3547 		context_destroy(&rule->au_ctxt);
3548 		kfree(rule);
3549 	}
3550 }
3551 
3552 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3553 {
3554 	struct selinux_state *state = &selinux_state;
3555 	struct selinux_policy *policy;
3556 	struct policydb *policydb;
3557 	struct selinux_audit_rule *tmprule;
3558 	struct role_datum *roledatum;
3559 	struct type_datum *typedatum;
3560 	struct user_datum *userdatum;
3561 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3562 	int rc = 0;
3563 
3564 	*rule = NULL;
3565 
3566 	if (!selinux_initialized(state))
3567 		return -EOPNOTSUPP;
3568 
3569 	switch (field) {
3570 	case AUDIT_SUBJ_USER:
3571 	case AUDIT_SUBJ_ROLE:
3572 	case AUDIT_SUBJ_TYPE:
3573 	case AUDIT_OBJ_USER:
3574 	case AUDIT_OBJ_ROLE:
3575 	case AUDIT_OBJ_TYPE:
3576 		/* only 'equals' and 'not equals' fit user, role, and type */
3577 		if (op != Audit_equal && op != Audit_not_equal)
3578 			return -EINVAL;
3579 		break;
3580 	case AUDIT_SUBJ_SEN:
3581 	case AUDIT_SUBJ_CLR:
3582 	case AUDIT_OBJ_LEV_LOW:
3583 	case AUDIT_OBJ_LEV_HIGH:
3584 		/* we do not allow a range, indicated by the presence of '-' */
3585 		if (strchr(rulestr, '-'))
3586 			return -EINVAL;
3587 		break;
3588 	default:
3589 		/* only the above fields are valid */
3590 		return -EINVAL;
3591 	}
3592 
3593 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3594 	if (!tmprule)
3595 		return -ENOMEM;
3596 
3597 	context_init(&tmprule->au_ctxt);
3598 
3599 	rcu_read_lock();
3600 	policy = rcu_dereference(state->policy);
3601 	policydb = &policy->policydb;
3602 
3603 	tmprule->au_seqno = policy->latest_granting;
3604 
3605 	switch (field) {
3606 	case AUDIT_SUBJ_USER:
3607 	case AUDIT_OBJ_USER:
3608 		rc = -EINVAL;
3609 		userdatum = symtab_search(&policydb->p_users, rulestr);
3610 		if (!userdatum)
3611 			goto out;
3612 		tmprule->au_ctxt.user = userdatum->value;
3613 		break;
3614 	case AUDIT_SUBJ_ROLE:
3615 	case AUDIT_OBJ_ROLE:
3616 		rc = -EINVAL;
3617 		roledatum = symtab_search(&policydb->p_roles, rulestr);
3618 		if (!roledatum)
3619 			goto out;
3620 		tmprule->au_ctxt.role = roledatum->value;
3621 		break;
3622 	case AUDIT_SUBJ_TYPE:
3623 	case AUDIT_OBJ_TYPE:
3624 		rc = -EINVAL;
3625 		typedatum = symtab_search(&policydb->p_types, rulestr);
3626 		if (!typedatum)
3627 			goto out;
3628 		tmprule->au_ctxt.type = typedatum->value;
3629 		break;
3630 	case AUDIT_SUBJ_SEN:
3631 	case AUDIT_SUBJ_CLR:
3632 	case AUDIT_OBJ_LEV_LOW:
3633 	case AUDIT_OBJ_LEV_HIGH:
3634 		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3635 				     GFP_ATOMIC);
3636 		if (rc)
3637 			goto out;
3638 		break;
3639 	}
3640 	rc = 0;
3641 out:
3642 	rcu_read_unlock();
3643 
3644 	if (rc) {
3645 		selinux_audit_rule_free(tmprule);
3646 		tmprule = NULL;
3647 	}
3648 
3649 	*rule = tmprule;
3650 
3651 	return rc;
3652 }
3653 
3654 /* Check to see if the rule contains any selinux fields */
3655 int selinux_audit_rule_known(struct audit_krule *rule)
3656 {
3657 	int i;
3658 
3659 	for (i = 0; i < rule->field_count; i++) {
3660 		struct audit_field *f = &rule->fields[i];
3661 		switch (f->type) {
3662 		case AUDIT_SUBJ_USER:
3663 		case AUDIT_SUBJ_ROLE:
3664 		case AUDIT_SUBJ_TYPE:
3665 		case AUDIT_SUBJ_SEN:
3666 		case AUDIT_SUBJ_CLR:
3667 		case AUDIT_OBJ_USER:
3668 		case AUDIT_OBJ_ROLE:
3669 		case AUDIT_OBJ_TYPE:
3670 		case AUDIT_OBJ_LEV_LOW:
3671 		case AUDIT_OBJ_LEV_HIGH:
3672 			return 1;
3673 		}
3674 	}
3675 
3676 	return 0;
3677 }
3678 
3679 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3680 {
3681 	struct selinux_state *state = &selinux_state;
3682 	struct selinux_policy *policy;
3683 	struct context *ctxt;
3684 	struct mls_level *level;
3685 	struct selinux_audit_rule *rule = vrule;
3686 	int match = 0;
3687 
3688 	if (unlikely(!rule)) {
3689 		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3690 		return -ENOENT;
3691 	}
3692 
3693 	if (!selinux_initialized(state))
3694 		return 0;
3695 
3696 	rcu_read_lock();
3697 
3698 	policy = rcu_dereference(state->policy);
3699 
3700 	if (rule->au_seqno < policy->latest_granting) {
3701 		match = -ESTALE;
3702 		goto out;
3703 	}
3704 
3705 	ctxt = sidtab_search(policy->sidtab, sid);
3706 	if (unlikely(!ctxt)) {
3707 		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3708 			  sid);
3709 		match = -ENOENT;
3710 		goto out;
3711 	}
3712 
3713 	/* a field/op pair that is not caught here will simply fall through
3714 	   without a match */
3715 	switch (field) {
3716 	case AUDIT_SUBJ_USER:
3717 	case AUDIT_OBJ_USER:
3718 		switch (op) {
3719 		case Audit_equal:
3720 			match = (ctxt->user == rule->au_ctxt.user);
3721 			break;
3722 		case Audit_not_equal:
3723 			match = (ctxt->user != rule->au_ctxt.user);
3724 			break;
3725 		}
3726 		break;
3727 	case AUDIT_SUBJ_ROLE:
3728 	case AUDIT_OBJ_ROLE:
3729 		switch (op) {
3730 		case Audit_equal:
3731 			match = (ctxt->role == rule->au_ctxt.role);
3732 			break;
3733 		case Audit_not_equal:
3734 			match = (ctxt->role != rule->au_ctxt.role);
3735 			break;
3736 		}
3737 		break;
3738 	case AUDIT_SUBJ_TYPE:
3739 	case AUDIT_OBJ_TYPE:
3740 		switch (op) {
3741 		case Audit_equal:
3742 			match = (ctxt->type == rule->au_ctxt.type);
3743 			break;
3744 		case Audit_not_equal:
3745 			match = (ctxt->type != rule->au_ctxt.type);
3746 			break;
3747 		}
3748 		break;
3749 	case AUDIT_SUBJ_SEN:
3750 	case AUDIT_SUBJ_CLR:
3751 	case AUDIT_OBJ_LEV_LOW:
3752 	case AUDIT_OBJ_LEV_HIGH:
3753 		level = ((field == AUDIT_SUBJ_SEN ||
3754 			  field == AUDIT_OBJ_LEV_LOW) ?
3755 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3756 		switch (op) {
3757 		case Audit_equal:
3758 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3759 					     level);
3760 			break;
3761 		case Audit_not_equal:
3762 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3763 					      level);
3764 			break;
3765 		case Audit_lt:
3766 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3767 					       level) &&
3768 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3769 					       level));
3770 			break;
3771 		case Audit_le:
3772 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3773 					      level);
3774 			break;
3775 		case Audit_gt:
3776 			match = (mls_level_dom(level,
3777 					      &rule->au_ctxt.range.level[0]) &&
3778 				 !mls_level_eq(level,
3779 					       &rule->au_ctxt.range.level[0]));
3780 			break;
3781 		case Audit_ge:
3782 			match = mls_level_dom(level,
3783 					      &rule->au_ctxt.range.level[0]);
3784 			break;
3785 		}
3786 	}
3787 
3788 out:
3789 	rcu_read_unlock();
3790 	return match;
3791 }
3792 
3793 static int aurule_avc_callback(u32 event)
3794 {
3795 	if (event == AVC_CALLBACK_RESET)
3796 		return audit_update_lsm_rules();
3797 	return 0;
3798 }
3799 
3800 static int __init aurule_init(void)
3801 {
3802 	int err;
3803 
3804 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3805 	if (err)
3806 		panic("avc_add_callback() failed, error %d\n", err);
3807 
3808 	return err;
3809 }
3810 __initcall(aurule_init);
3811 
3812 #ifdef CONFIG_NETLABEL
3813 /**
3814  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3815  * @secattr: the NetLabel packet security attributes
3816  * @sid: the SELinux SID
3817  *
3818  * Description:
3819  * Attempt to cache the context in @ctx, which was derived from the packet in
3820  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3821  * already been initialized.
3822  *
3823  */
3824 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3825 				      u32 sid)
3826 {
3827 	u32 *sid_cache;
3828 
3829 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3830 	if (sid_cache == NULL)
3831 		return;
3832 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3833 	if (secattr->cache == NULL) {
3834 		kfree(sid_cache);
3835 		return;
3836 	}
3837 
3838 	*sid_cache = sid;
3839 	secattr->cache->free = kfree;
3840 	secattr->cache->data = sid_cache;
3841 	secattr->flags |= NETLBL_SECATTR_CACHE;
3842 }
3843 
3844 /**
3845  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3846  * @secattr: the NetLabel packet security attributes
3847  * @sid: the SELinux SID
3848  *
3849  * Description:
3850  * Convert the given NetLabel security attributes in @secattr into a
3851  * SELinux SID.  If the @secattr field does not contain a full SELinux
3852  * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3853  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3854  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3855  * conversion for future lookups.  Returns zero on success, negative values on
3856  * failure.
3857  *
3858  */
3859 int security_netlbl_secattr_to_sid(struct selinux_state *state,
3860 				   struct netlbl_lsm_secattr *secattr,
3861 				   u32 *sid)
3862 {
3863 	struct selinux_policy *policy;
3864 	struct policydb *policydb;
3865 	struct sidtab *sidtab;
3866 	int rc;
3867 	struct context *ctx;
3868 	struct context ctx_new;
3869 
3870 	if (!selinux_initialized(state)) {
3871 		*sid = SECSID_NULL;
3872 		return 0;
3873 	}
3874 
3875 retry:
3876 	rc = 0;
3877 	rcu_read_lock();
3878 	policy = rcu_dereference(state->policy);
3879 	policydb = &policy->policydb;
3880 	sidtab = policy->sidtab;
3881 
3882 	if (secattr->flags & NETLBL_SECATTR_CACHE)
3883 		*sid = *(u32 *)secattr->cache->data;
3884 	else if (secattr->flags & NETLBL_SECATTR_SECID)
3885 		*sid = secattr->attr.secid;
3886 	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3887 		rc = -EIDRM;
3888 		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3889 		if (ctx == NULL)
3890 			goto out;
3891 
3892 		context_init(&ctx_new);
3893 		ctx_new.user = ctx->user;
3894 		ctx_new.role = ctx->role;
3895 		ctx_new.type = ctx->type;
3896 		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3897 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3898 			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3899 			if (rc)
3900 				goto out;
3901 		}
3902 		rc = -EIDRM;
3903 		if (!mls_context_isvalid(policydb, &ctx_new)) {
3904 			ebitmap_destroy(&ctx_new.range.level[0].cat);
3905 			goto out;
3906 		}
3907 
3908 		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3909 		ebitmap_destroy(&ctx_new.range.level[0].cat);
3910 		if (rc == -ESTALE) {
3911 			rcu_read_unlock();
3912 			goto retry;
3913 		}
3914 		if (rc)
3915 			goto out;
3916 
3917 		security_netlbl_cache_add(secattr, *sid);
3918 	} else
3919 		*sid = SECSID_NULL;
3920 
3921 out:
3922 	rcu_read_unlock();
3923 	return rc;
3924 }
3925 
3926 /**
3927  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3928  * @sid: the SELinux SID
3929  * @secattr: the NetLabel packet security attributes
3930  *
3931  * Description:
3932  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3933  * Returns zero on success, negative values on failure.
3934  *
3935  */
3936 int security_netlbl_sid_to_secattr(struct selinux_state *state,
3937 				   u32 sid, struct netlbl_lsm_secattr *secattr)
3938 {
3939 	struct selinux_policy *policy;
3940 	struct policydb *policydb;
3941 	int rc;
3942 	struct context *ctx;
3943 
3944 	if (!selinux_initialized(state))
3945 		return 0;
3946 
3947 	rcu_read_lock();
3948 	policy = rcu_dereference(state->policy);
3949 	policydb = &policy->policydb;
3950 
3951 	rc = -ENOENT;
3952 	ctx = sidtab_search(policy->sidtab, sid);
3953 	if (ctx == NULL)
3954 		goto out;
3955 
3956 	rc = -ENOMEM;
3957 	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3958 				  GFP_ATOMIC);
3959 	if (secattr->domain == NULL)
3960 		goto out;
3961 
3962 	secattr->attr.secid = sid;
3963 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3964 	mls_export_netlbl_lvl(policydb, ctx, secattr);
3965 	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3966 out:
3967 	rcu_read_unlock();
3968 	return rc;
3969 }
3970 #endif /* CONFIG_NETLABEL */
3971 
3972 /**
3973  * __security_read_policy - read the policy.
3974  * @policy: SELinux policy
3975  * @data: binary policy data
3976  * @len: length of data in bytes
3977  *
3978  */
3979 static int __security_read_policy(struct selinux_policy *policy,
3980 				  void *data, size_t *len)
3981 {
3982 	int rc;
3983 	struct policy_file fp;
3984 
3985 	fp.data = data;
3986 	fp.len = *len;
3987 
3988 	rc = policydb_write(&policy->policydb, &fp);
3989 	if (rc)
3990 		return rc;
3991 
3992 	*len = (unsigned long)fp.data - (unsigned long)data;
3993 	return 0;
3994 }
3995 
3996 /**
3997  * security_read_policy - read the policy.
3998  * @state: selinux_state
3999  * @data: binary policy data
4000  * @len: length of data in bytes
4001  *
4002  */
4003 int security_read_policy(struct selinux_state *state,
4004 			 void **data, size_t *len)
4005 {
4006 	struct selinux_policy *policy;
4007 
4008 	policy = rcu_dereference_protected(
4009 			state->policy, lockdep_is_held(&state->policy_mutex));
4010 	if (!policy)
4011 		return -EINVAL;
4012 
4013 	*len = policy->policydb.len;
4014 	*data = vmalloc_user(*len);
4015 	if (!*data)
4016 		return -ENOMEM;
4017 
4018 	return __security_read_policy(policy, *data, len);
4019 }
4020 
4021 /**
4022  * security_read_state_kernel - read the policy.
4023  * @state: selinux_state
4024  * @data: binary policy data
4025  * @len: length of data in bytes
4026  *
4027  * Allocates kernel memory for reading SELinux policy.
4028  * This function is for internal use only and should not
4029  * be used for returning data to user space.
4030  *
4031  * This function must be called with policy_mutex held.
4032  */
4033 int security_read_state_kernel(struct selinux_state *state,
4034 			       void **data, size_t *len)
4035 {
4036 	struct selinux_policy *policy;
4037 
4038 	policy = rcu_dereference_protected(
4039 			state->policy, lockdep_is_held(&state->policy_mutex));
4040 	if (!policy)
4041 		return -EINVAL;
4042 
4043 	*len = policy->policydb.len;
4044 	*data = vmalloc(*len);
4045 	if (!*data)
4046 		return -ENOMEM;
4047 
4048 	return __security_read_policy(policy, *data, len);
4049 }
4050