xref: /openbmc/linux/security/selinux/ss/services.c (revision 2b1b1267080fe822789d0845a58ebb452724736b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Implementation of the security services.
4  *
5  * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
6  *	     James Morris <jmorris@redhat.com>
7  *
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *	Support for enhanced MLS infrastructure.
11  *	Support for context based audit filters.
12  *
13  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14  *
15  *	Added conditional policy language extensions
16  *
17  * Updated: Hewlett-Packard <paul@paul-moore.com>
18  *
19  *      Added support for NetLabel
20  *      Added support for the policy capability bitmap
21  *
22  * Updated: Chad Sellers <csellers@tresys.com>
23  *
24  *  Added validation of kernel classes and permissions
25  *
26  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27  *
28  *  Added support for bounds domain and audit messaged on masked permissions
29  *
30  * Updated: Guido Trentalancia <guido@trentalancia.com>
31  *
32  *  Added support for runtime switching of the policy type
33  *
34  * Copyright (C) 2008, 2009 NEC Corporation
35  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39  */
40 #include <linux/kernel.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/errno.h>
46 #include <linux/in.h>
47 #include <linux/sched.h>
48 #include <linux/audit.h>
49 #include <linux/vmalloc.h>
50 #include <net/netlabel.h>
51 
52 #include "flask.h"
53 #include "avc.h"
54 #include "avc_ss.h"
55 #include "security.h"
56 #include "context.h"
57 #include "policydb.h"
58 #include "sidtab.h"
59 #include "services.h"
60 #include "conditional.h"
61 #include "mls.h"
62 #include "objsec.h"
63 #include "netlabel.h"
64 #include "xfrm.h"
65 #include "ebitmap.h"
66 #include "audit.h"
67 
68 /* Policy capability names */
69 const char *selinux_policycap_names[__POLICYDB_CAPABILITY_MAX] = {
70 	"network_peer_controls",
71 	"open_perms",
72 	"extended_socket_class",
73 	"always_check_network",
74 	"cgroup_seclabel",
75 	"nnp_nosuid_transition",
76 	"genfs_seclabel_symlinks"
77 };
78 
79 static struct selinux_ss selinux_ss;
80 
81 void selinux_ss_init(struct selinux_ss **ss)
82 {
83 	rwlock_init(&selinux_ss.policy_rwlock);
84 	*ss = &selinux_ss;
85 }
86 
87 /* Forward declaration. */
88 static int context_struct_to_string(struct policydb *policydb,
89 				    struct context *context,
90 				    char **scontext,
91 				    u32 *scontext_len);
92 
93 static int sidtab_entry_to_string(struct policydb *policydb,
94 				  struct sidtab *sidtab,
95 				  struct sidtab_entry *entry,
96 				  char **scontext,
97 				  u32 *scontext_len);
98 
99 static void context_struct_compute_av(struct policydb *policydb,
100 				      struct context *scontext,
101 				      struct context *tcontext,
102 				      u16 tclass,
103 				      struct av_decision *avd,
104 				      struct extended_perms *xperms);
105 
106 static int selinux_set_mapping(struct policydb *pol,
107 			       struct security_class_mapping *map,
108 			       struct selinux_map *out_map)
109 {
110 	u16 i, j;
111 	unsigned k;
112 	bool print_unknown_handle = false;
113 
114 	/* Find number of classes in the input mapping */
115 	if (!map)
116 		return -EINVAL;
117 	i = 0;
118 	while (map[i].name)
119 		i++;
120 
121 	/* Allocate space for the class records, plus one for class zero */
122 	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
123 	if (!out_map->mapping)
124 		return -ENOMEM;
125 
126 	/* Store the raw class and permission values */
127 	j = 0;
128 	while (map[j].name) {
129 		struct security_class_mapping *p_in = map + (j++);
130 		struct selinux_mapping *p_out = out_map->mapping + j;
131 
132 		/* An empty class string skips ahead */
133 		if (!strcmp(p_in->name, "")) {
134 			p_out->num_perms = 0;
135 			continue;
136 		}
137 
138 		p_out->value = string_to_security_class(pol, p_in->name);
139 		if (!p_out->value) {
140 			pr_info("SELinux:  Class %s not defined in policy.\n",
141 			       p_in->name);
142 			if (pol->reject_unknown)
143 				goto err;
144 			p_out->num_perms = 0;
145 			print_unknown_handle = true;
146 			continue;
147 		}
148 
149 		k = 0;
150 		while (p_in->perms[k]) {
151 			/* An empty permission string skips ahead */
152 			if (!*p_in->perms[k]) {
153 				k++;
154 				continue;
155 			}
156 			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
157 							    p_in->perms[k]);
158 			if (!p_out->perms[k]) {
159 				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
160 				       p_in->perms[k], p_in->name);
161 				if (pol->reject_unknown)
162 					goto err;
163 				print_unknown_handle = true;
164 			}
165 
166 			k++;
167 		}
168 		p_out->num_perms = k;
169 	}
170 
171 	if (print_unknown_handle)
172 		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
173 		       pol->allow_unknown ? "allowed" : "denied");
174 
175 	out_map->size = i;
176 	return 0;
177 err:
178 	kfree(out_map->mapping);
179 	out_map->mapping = NULL;
180 	return -EINVAL;
181 }
182 
183 /*
184  * Get real, policy values from mapped values
185  */
186 
187 static u16 unmap_class(struct selinux_map *map, u16 tclass)
188 {
189 	if (tclass < map->size)
190 		return map->mapping[tclass].value;
191 
192 	return tclass;
193 }
194 
195 /*
196  * Get kernel value for class from its policy value
197  */
198 static u16 map_class(struct selinux_map *map, u16 pol_value)
199 {
200 	u16 i;
201 
202 	for (i = 1; i < map->size; i++) {
203 		if (map->mapping[i].value == pol_value)
204 			return i;
205 	}
206 
207 	return SECCLASS_NULL;
208 }
209 
210 static void map_decision(struct selinux_map *map,
211 			 u16 tclass, struct av_decision *avd,
212 			 int allow_unknown)
213 {
214 	if (tclass < map->size) {
215 		struct selinux_mapping *mapping = &map->mapping[tclass];
216 		unsigned int i, n = mapping->num_perms;
217 		u32 result;
218 
219 		for (i = 0, result = 0; i < n; i++) {
220 			if (avd->allowed & mapping->perms[i])
221 				result |= 1<<i;
222 			if (allow_unknown && !mapping->perms[i])
223 				result |= 1<<i;
224 		}
225 		avd->allowed = result;
226 
227 		for (i = 0, result = 0; i < n; i++)
228 			if (avd->auditallow & mapping->perms[i])
229 				result |= 1<<i;
230 		avd->auditallow = result;
231 
232 		for (i = 0, result = 0; i < n; i++) {
233 			if (avd->auditdeny & mapping->perms[i])
234 				result |= 1<<i;
235 			if (!allow_unknown && !mapping->perms[i])
236 				result |= 1<<i;
237 		}
238 		/*
239 		 * In case the kernel has a bug and requests a permission
240 		 * between num_perms and the maximum permission number, we
241 		 * should audit that denial
242 		 */
243 		for (; i < (sizeof(u32)*8); i++)
244 			result |= 1<<i;
245 		avd->auditdeny = result;
246 	}
247 }
248 
249 int security_mls_enabled(struct selinux_state *state)
250 {
251 	struct policydb *p = &state->ss->policydb;
252 
253 	return p->mls_enabled;
254 }
255 
256 /*
257  * Return the boolean value of a constraint expression
258  * when it is applied to the specified source and target
259  * security contexts.
260  *
261  * xcontext is a special beast...  It is used by the validatetrans rules
262  * only.  For these rules, scontext is the context before the transition,
263  * tcontext is the context after the transition, and xcontext is the context
264  * of the process performing the transition.  All other callers of
265  * constraint_expr_eval should pass in NULL for xcontext.
266  */
267 static int constraint_expr_eval(struct policydb *policydb,
268 				struct context *scontext,
269 				struct context *tcontext,
270 				struct context *xcontext,
271 				struct constraint_expr *cexpr)
272 {
273 	u32 val1, val2;
274 	struct context *c;
275 	struct role_datum *r1, *r2;
276 	struct mls_level *l1, *l2;
277 	struct constraint_expr *e;
278 	int s[CEXPR_MAXDEPTH];
279 	int sp = -1;
280 
281 	for (e = cexpr; e; e = e->next) {
282 		switch (e->expr_type) {
283 		case CEXPR_NOT:
284 			BUG_ON(sp < 0);
285 			s[sp] = !s[sp];
286 			break;
287 		case CEXPR_AND:
288 			BUG_ON(sp < 1);
289 			sp--;
290 			s[sp] &= s[sp + 1];
291 			break;
292 		case CEXPR_OR:
293 			BUG_ON(sp < 1);
294 			sp--;
295 			s[sp] |= s[sp + 1];
296 			break;
297 		case CEXPR_ATTR:
298 			if (sp == (CEXPR_MAXDEPTH - 1))
299 				return 0;
300 			switch (e->attr) {
301 			case CEXPR_USER:
302 				val1 = scontext->user;
303 				val2 = tcontext->user;
304 				break;
305 			case CEXPR_TYPE:
306 				val1 = scontext->type;
307 				val2 = tcontext->type;
308 				break;
309 			case CEXPR_ROLE:
310 				val1 = scontext->role;
311 				val2 = tcontext->role;
312 				r1 = policydb->role_val_to_struct[val1 - 1];
313 				r2 = policydb->role_val_to_struct[val2 - 1];
314 				switch (e->op) {
315 				case CEXPR_DOM:
316 					s[++sp] = ebitmap_get_bit(&r1->dominates,
317 								  val2 - 1);
318 					continue;
319 				case CEXPR_DOMBY:
320 					s[++sp] = ebitmap_get_bit(&r2->dominates,
321 								  val1 - 1);
322 					continue;
323 				case CEXPR_INCOMP:
324 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
325 								    val2 - 1) &&
326 						   !ebitmap_get_bit(&r2->dominates,
327 								    val1 - 1));
328 					continue;
329 				default:
330 					break;
331 				}
332 				break;
333 			case CEXPR_L1L2:
334 				l1 = &(scontext->range.level[0]);
335 				l2 = &(tcontext->range.level[0]);
336 				goto mls_ops;
337 			case CEXPR_L1H2:
338 				l1 = &(scontext->range.level[0]);
339 				l2 = &(tcontext->range.level[1]);
340 				goto mls_ops;
341 			case CEXPR_H1L2:
342 				l1 = &(scontext->range.level[1]);
343 				l2 = &(tcontext->range.level[0]);
344 				goto mls_ops;
345 			case CEXPR_H1H2:
346 				l1 = &(scontext->range.level[1]);
347 				l2 = &(tcontext->range.level[1]);
348 				goto mls_ops;
349 			case CEXPR_L1H1:
350 				l1 = &(scontext->range.level[0]);
351 				l2 = &(scontext->range.level[1]);
352 				goto mls_ops;
353 			case CEXPR_L2H2:
354 				l1 = &(tcontext->range.level[0]);
355 				l2 = &(tcontext->range.level[1]);
356 				goto mls_ops;
357 mls_ops:
358 			switch (e->op) {
359 			case CEXPR_EQ:
360 				s[++sp] = mls_level_eq(l1, l2);
361 				continue;
362 			case CEXPR_NEQ:
363 				s[++sp] = !mls_level_eq(l1, l2);
364 				continue;
365 			case CEXPR_DOM:
366 				s[++sp] = mls_level_dom(l1, l2);
367 				continue;
368 			case CEXPR_DOMBY:
369 				s[++sp] = mls_level_dom(l2, l1);
370 				continue;
371 			case CEXPR_INCOMP:
372 				s[++sp] = mls_level_incomp(l2, l1);
373 				continue;
374 			default:
375 				BUG();
376 				return 0;
377 			}
378 			break;
379 			default:
380 				BUG();
381 				return 0;
382 			}
383 
384 			switch (e->op) {
385 			case CEXPR_EQ:
386 				s[++sp] = (val1 == val2);
387 				break;
388 			case CEXPR_NEQ:
389 				s[++sp] = (val1 != val2);
390 				break;
391 			default:
392 				BUG();
393 				return 0;
394 			}
395 			break;
396 		case CEXPR_NAMES:
397 			if (sp == (CEXPR_MAXDEPTH-1))
398 				return 0;
399 			c = scontext;
400 			if (e->attr & CEXPR_TARGET)
401 				c = tcontext;
402 			else if (e->attr & CEXPR_XTARGET) {
403 				c = xcontext;
404 				if (!c) {
405 					BUG();
406 					return 0;
407 				}
408 			}
409 			if (e->attr & CEXPR_USER)
410 				val1 = c->user;
411 			else if (e->attr & CEXPR_ROLE)
412 				val1 = c->role;
413 			else if (e->attr & CEXPR_TYPE)
414 				val1 = c->type;
415 			else {
416 				BUG();
417 				return 0;
418 			}
419 
420 			switch (e->op) {
421 			case CEXPR_EQ:
422 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
423 				break;
424 			case CEXPR_NEQ:
425 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
426 				break;
427 			default:
428 				BUG();
429 				return 0;
430 			}
431 			break;
432 		default:
433 			BUG();
434 			return 0;
435 		}
436 	}
437 
438 	BUG_ON(sp != 0);
439 	return s[0];
440 }
441 
442 /*
443  * security_dump_masked_av - dumps masked permissions during
444  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
445  */
446 static int dump_masked_av_helper(void *k, void *d, void *args)
447 {
448 	struct perm_datum *pdatum = d;
449 	char **permission_names = args;
450 
451 	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
452 
453 	permission_names[pdatum->value - 1] = (char *)k;
454 
455 	return 0;
456 }
457 
458 static void security_dump_masked_av(struct policydb *policydb,
459 				    struct context *scontext,
460 				    struct context *tcontext,
461 				    u16 tclass,
462 				    u32 permissions,
463 				    const char *reason)
464 {
465 	struct common_datum *common_dat;
466 	struct class_datum *tclass_dat;
467 	struct audit_buffer *ab;
468 	char *tclass_name;
469 	char *scontext_name = NULL;
470 	char *tcontext_name = NULL;
471 	char *permission_names[32];
472 	int index;
473 	u32 length;
474 	bool need_comma = false;
475 
476 	if (!permissions)
477 		return;
478 
479 	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
480 	tclass_dat = policydb->class_val_to_struct[tclass - 1];
481 	common_dat = tclass_dat->comdatum;
482 
483 	/* init permission_names */
484 	if (common_dat &&
485 	    hashtab_map(&common_dat->permissions.table,
486 			dump_masked_av_helper, permission_names) < 0)
487 		goto out;
488 
489 	if (hashtab_map(&tclass_dat->permissions.table,
490 			dump_masked_av_helper, permission_names) < 0)
491 		goto out;
492 
493 	/* get scontext/tcontext in text form */
494 	if (context_struct_to_string(policydb, scontext,
495 				     &scontext_name, &length) < 0)
496 		goto out;
497 
498 	if (context_struct_to_string(policydb, tcontext,
499 				     &tcontext_name, &length) < 0)
500 		goto out;
501 
502 	/* audit a message */
503 	ab = audit_log_start(audit_context(),
504 			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
505 	if (!ab)
506 		goto out;
507 
508 	audit_log_format(ab, "op=security_compute_av reason=%s "
509 			 "scontext=%s tcontext=%s tclass=%s perms=",
510 			 reason, scontext_name, tcontext_name, tclass_name);
511 
512 	for (index = 0; index < 32; index++) {
513 		u32 mask = (1 << index);
514 
515 		if ((mask & permissions) == 0)
516 			continue;
517 
518 		audit_log_format(ab, "%s%s",
519 				 need_comma ? "," : "",
520 				 permission_names[index]
521 				 ? permission_names[index] : "????");
522 		need_comma = true;
523 	}
524 	audit_log_end(ab);
525 out:
526 	/* release scontext/tcontext */
527 	kfree(tcontext_name);
528 	kfree(scontext_name);
529 
530 	return;
531 }
532 
533 /*
534  * security_boundary_permission - drops violated permissions
535  * on boundary constraint.
536  */
537 static void type_attribute_bounds_av(struct policydb *policydb,
538 				     struct context *scontext,
539 				     struct context *tcontext,
540 				     u16 tclass,
541 				     struct av_decision *avd)
542 {
543 	struct context lo_scontext;
544 	struct context lo_tcontext, *tcontextp = tcontext;
545 	struct av_decision lo_avd;
546 	struct type_datum *source;
547 	struct type_datum *target;
548 	u32 masked = 0;
549 
550 	source = policydb->type_val_to_struct[scontext->type - 1];
551 	BUG_ON(!source);
552 
553 	if (!source->bounds)
554 		return;
555 
556 	target = policydb->type_val_to_struct[tcontext->type - 1];
557 	BUG_ON(!target);
558 
559 	memset(&lo_avd, 0, sizeof(lo_avd));
560 
561 	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
562 	lo_scontext.type = source->bounds;
563 
564 	if (target->bounds) {
565 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
566 		lo_tcontext.type = target->bounds;
567 		tcontextp = &lo_tcontext;
568 	}
569 
570 	context_struct_compute_av(policydb, &lo_scontext,
571 				  tcontextp,
572 				  tclass,
573 				  &lo_avd,
574 				  NULL);
575 
576 	masked = ~lo_avd.allowed & avd->allowed;
577 
578 	if (likely(!masked))
579 		return;		/* no masked permission */
580 
581 	/* mask violated permissions */
582 	avd->allowed &= ~masked;
583 
584 	/* audit masked permissions */
585 	security_dump_masked_av(policydb, scontext, tcontext,
586 				tclass, masked, "bounds");
587 }
588 
589 /*
590  * flag which drivers have permissions
591  * only looking for ioctl based extended permssions
592  */
593 void services_compute_xperms_drivers(
594 		struct extended_perms *xperms,
595 		struct avtab_node *node)
596 {
597 	unsigned int i;
598 
599 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
600 		/* if one or more driver has all permissions allowed */
601 		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
602 			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
603 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
604 		/* if allowing permissions within a driver */
605 		security_xperm_set(xperms->drivers.p,
606 					node->datum.u.xperms->driver);
607 	}
608 
609 	/* If no ioctl commands are allowed, ignore auditallow and auditdeny */
610 	if (node->key.specified & AVTAB_XPERMS_ALLOWED)
611 		xperms->len = 1;
612 }
613 
614 /*
615  * Compute access vectors and extended permissions based on a context
616  * structure pair for the permissions in a particular class.
617  */
618 static void context_struct_compute_av(struct policydb *policydb,
619 				      struct context *scontext,
620 				      struct context *tcontext,
621 				      u16 tclass,
622 				      struct av_decision *avd,
623 				      struct extended_perms *xperms)
624 {
625 	struct constraint_node *constraint;
626 	struct role_allow *ra;
627 	struct avtab_key avkey;
628 	struct avtab_node *node;
629 	struct class_datum *tclass_datum;
630 	struct ebitmap *sattr, *tattr;
631 	struct ebitmap_node *snode, *tnode;
632 	unsigned int i, j;
633 
634 	avd->allowed = 0;
635 	avd->auditallow = 0;
636 	avd->auditdeny = 0xffffffff;
637 	if (xperms) {
638 		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
639 		xperms->len = 0;
640 	}
641 
642 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
643 		if (printk_ratelimit())
644 			pr_warn("SELinux:  Invalid class %hu\n", tclass);
645 		return;
646 	}
647 
648 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
649 
650 	/*
651 	 * If a specific type enforcement rule was defined for
652 	 * this permission check, then use it.
653 	 */
654 	avkey.target_class = tclass;
655 	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
656 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
657 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
658 	ebitmap_for_each_positive_bit(sattr, snode, i) {
659 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
660 			avkey.source_type = i + 1;
661 			avkey.target_type = j + 1;
662 			for (node = avtab_search_node(&policydb->te_avtab,
663 						      &avkey);
664 			     node;
665 			     node = avtab_search_node_next(node, avkey.specified)) {
666 				if (node->key.specified == AVTAB_ALLOWED)
667 					avd->allowed |= node->datum.u.data;
668 				else if (node->key.specified == AVTAB_AUDITALLOW)
669 					avd->auditallow |= node->datum.u.data;
670 				else if (node->key.specified == AVTAB_AUDITDENY)
671 					avd->auditdeny &= node->datum.u.data;
672 				else if (xperms && (node->key.specified & AVTAB_XPERMS))
673 					services_compute_xperms_drivers(xperms, node);
674 			}
675 
676 			/* Check conditional av table for additional permissions */
677 			cond_compute_av(&policydb->te_cond_avtab, &avkey,
678 					avd, xperms);
679 
680 		}
681 	}
682 
683 	/*
684 	 * Remove any permissions prohibited by a constraint (this includes
685 	 * the MLS policy).
686 	 */
687 	constraint = tclass_datum->constraints;
688 	while (constraint) {
689 		if ((constraint->permissions & (avd->allowed)) &&
690 		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
691 					  constraint->expr)) {
692 			avd->allowed &= ~(constraint->permissions);
693 		}
694 		constraint = constraint->next;
695 	}
696 
697 	/*
698 	 * If checking process transition permission and the
699 	 * role is changing, then check the (current_role, new_role)
700 	 * pair.
701 	 */
702 	if (tclass == policydb->process_class &&
703 	    (avd->allowed & policydb->process_trans_perms) &&
704 	    scontext->role != tcontext->role) {
705 		for (ra = policydb->role_allow; ra; ra = ra->next) {
706 			if (scontext->role == ra->role &&
707 			    tcontext->role == ra->new_role)
708 				break;
709 		}
710 		if (!ra)
711 			avd->allowed &= ~policydb->process_trans_perms;
712 	}
713 
714 	/*
715 	 * If the given source and target types have boundary
716 	 * constraint, lazy checks have to mask any violated
717 	 * permission and notice it to userspace via audit.
718 	 */
719 	type_attribute_bounds_av(policydb, scontext, tcontext,
720 				 tclass, avd);
721 }
722 
723 static int security_validtrans_handle_fail(struct selinux_state *state,
724 					   struct sidtab_entry *oentry,
725 					   struct sidtab_entry *nentry,
726 					   struct sidtab_entry *tentry,
727 					   u16 tclass)
728 {
729 	struct policydb *p = &state->ss->policydb;
730 	struct sidtab *sidtab = state->ss->sidtab;
731 	char *o = NULL, *n = NULL, *t = NULL;
732 	u32 olen, nlen, tlen;
733 
734 	if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
735 		goto out;
736 	if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
737 		goto out;
738 	if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
739 		goto out;
740 	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
741 		  "op=security_validate_transition seresult=denied"
742 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
743 		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
744 out:
745 	kfree(o);
746 	kfree(n);
747 	kfree(t);
748 
749 	if (!enforcing_enabled(state))
750 		return 0;
751 	return -EPERM;
752 }
753 
754 static int security_compute_validatetrans(struct selinux_state *state,
755 					  u32 oldsid, u32 newsid, u32 tasksid,
756 					  u16 orig_tclass, bool user)
757 {
758 	struct policydb *policydb;
759 	struct sidtab *sidtab;
760 	struct sidtab_entry *oentry;
761 	struct sidtab_entry *nentry;
762 	struct sidtab_entry *tentry;
763 	struct class_datum *tclass_datum;
764 	struct constraint_node *constraint;
765 	u16 tclass;
766 	int rc = 0;
767 
768 
769 	if (!selinux_initialized(state))
770 		return 0;
771 
772 	read_lock(&state->ss->policy_rwlock);
773 
774 	policydb = &state->ss->policydb;
775 	sidtab = state->ss->sidtab;
776 
777 	if (!user)
778 		tclass = unmap_class(&state->ss->map, orig_tclass);
779 	else
780 		tclass = orig_tclass;
781 
782 	if (!tclass || tclass > policydb->p_classes.nprim) {
783 		rc = -EINVAL;
784 		goto out;
785 	}
786 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
787 
788 	oentry = sidtab_search_entry(sidtab, oldsid);
789 	if (!oentry) {
790 		pr_err("SELinux: %s:  unrecognized SID %d\n",
791 			__func__, oldsid);
792 		rc = -EINVAL;
793 		goto out;
794 	}
795 
796 	nentry = sidtab_search_entry(sidtab, newsid);
797 	if (!nentry) {
798 		pr_err("SELinux: %s:  unrecognized SID %d\n",
799 			__func__, newsid);
800 		rc = -EINVAL;
801 		goto out;
802 	}
803 
804 	tentry = sidtab_search_entry(sidtab, tasksid);
805 	if (!tentry) {
806 		pr_err("SELinux: %s:  unrecognized SID %d\n",
807 			__func__, tasksid);
808 		rc = -EINVAL;
809 		goto out;
810 	}
811 
812 	constraint = tclass_datum->validatetrans;
813 	while (constraint) {
814 		if (!constraint_expr_eval(policydb, &oentry->context,
815 					  &nentry->context, &tentry->context,
816 					  constraint->expr)) {
817 			if (user)
818 				rc = -EPERM;
819 			else
820 				rc = security_validtrans_handle_fail(state,
821 								     oentry,
822 								     nentry,
823 								     tentry,
824 								     tclass);
825 			goto out;
826 		}
827 		constraint = constraint->next;
828 	}
829 
830 out:
831 	read_unlock(&state->ss->policy_rwlock);
832 	return rc;
833 }
834 
835 int security_validate_transition_user(struct selinux_state *state,
836 				      u32 oldsid, u32 newsid, u32 tasksid,
837 				      u16 tclass)
838 {
839 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
840 					      tclass, true);
841 }
842 
843 int security_validate_transition(struct selinux_state *state,
844 				 u32 oldsid, u32 newsid, u32 tasksid,
845 				 u16 orig_tclass)
846 {
847 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
848 					      orig_tclass, false);
849 }
850 
851 /*
852  * security_bounded_transition - check whether the given
853  * transition is directed to bounded, or not.
854  * It returns 0, if @newsid is bounded by @oldsid.
855  * Otherwise, it returns error code.
856  *
857  * @oldsid : current security identifier
858  * @newsid : destinated security identifier
859  */
860 int security_bounded_transition(struct selinux_state *state,
861 				u32 old_sid, u32 new_sid)
862 {
863 	struct policydb *policydb;
864 	struct sidtab *sidtab;
865 	struct sidtab_entry *old_entry, *new_entry;
866 	struct type_datum *type;
867 	int index;
868 	int rc;
869 
870 	if (!selinux_initialized(state))
871 		return 0;
872 
873 	read_lock(&state->ss->policy_rwlock);
874 
875 	policydb = &state->ss->policydb;
876 	sidtab = state->ss->sidtab;
877 
878 	rc = -EINVAL;
879 	old_entry = sidtab_search_entry(sidtab, old_sid);
880 	if (!old_entry) {
881 		pr_err("SELinux: %s: unrecognized SID %u\n",
882 		       __func__, old_sid);
883 		goto out;
884 	}
885 
886 	rc = -EINVAL;
887 	new_entry = sidtab_search_entry(sidtab, new_sid);
888 	if (!new_entry) {
889 		pr_err("SELinux: %s: unrecognized SID %u\n",
890 		       __func__, new_sid);
891 		goto out;
892 	}
893 
894 	rc = 0;
895 	/* type/domain unchanged */
896 	if (old_entry->context.type == new_entry->context.type)
897 		goto out;
898 
899 	index = new_entry->context.type;
900 	while (true) {
901 		type = policydb->type_val_to_struct[index - 1];
902 		BUG_ON(!type);
903 
904 		/* not bounded anymore */
905 		rc = -EPERM;
906 		if (!type->bounds)
907 			break;
908 
909 		/* @newsid is bounded by @oldsid */
910 		rc = 0;
911 		if (type->bounds == old_entry->context.type)
912 			break;
913 
914 		index = type->bounds;
915 	}
916 
917 	if (rc) {
918 		char *old_name = NULL;
919 		char *new_name = NULL;
920 		u32 length;
921 
922 		if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
923 					    &old_name, &length) &&
924 		    !sidtab_entry_to_string(policydb, sidtab, new_entry,
925 					    &new_name, &length)) {
926 			audit_log(audit_context(),
927 				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
928 				  "op=security_bounded_transition "
929 				  "seresult=denied "
930 				  "oldcontext=%s newcontext=%s",
931 				  old_name, new_name);
932 		}
933 		kfree(new_name);
934 		kfree(old_name);
935 	}
936 out:
937 	read_unlock(&state->ss->policy_rwlock);
938 
939 	return rc;
940 }
941 
942 static void avd_init(struct selinux_state *state, struct av_decision *avd)
943 {
944 	avd->allowed = 0;
945 	avd->auditallow = 0;
946 	avd->auditdeny = 0xffffffff;
947 	avd->seqno = state->ss->latest_granting;
948 	avd->flags = 0;
949 }
950 
951 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
952 					struct avtab_node *node)
953 {
954 	unsigned int i;
955 
956 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
957 		if (xpermd->driver != node->datum.u.xperms->driver)
958 			return;
959 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
960 		if (!security_xperm_test(node->datum.u.xperms->perms.p,
961 					xpermd->driver))
962 			return;
963 	} else {
964 		BUG();
965 	}
966 
967 	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
968 		xpermd->used |= XPERMS_ALLOWED;
969 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
970 			memset(xpermd->allowed->p, 0xff,
971 					sizeof(xpermd->allowed->p));
972 		}
973 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
974 			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
975 				xpermd->allowed->p[i] |=
976 					node->datum.u.xperms->perms.p[i];
977 		}
978 	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
979 		xpermd->used |= XPERMS_AUDITALLOW;
980 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
981 			memset(xpermd->auditallow->p, 0xff,
982 					sizeof(xpermd->auditallow->p));
983 		}
984 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
985 			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
986 				xpermd->auditallow->p[i] |=
987 					node->datum.u.xperms->perms.p[i];
988 		}
989 	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
990 		xpermd->used |= XPERMS_DONTAUDIT;
991 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
992 			memset(xpermd->dontaudit->p, 0xff,
993 					sizeof(xpermd->dontaudit->p));
994 		}
995 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
996 			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
997 				xpermd->dontaudit->p[i] |=
998 					node->datum.u.xperms->perms.p[i];
999 		}
1000 	} else {
1001 		BUG();
1002 	}
1003 }
1004 
1005 void security_compute_xperms_decision(struct selinux_state *state,
1006 				      u32 ssid,
1007 				      u32 tsid,
1008 				      u16 orig_tclass,
1009 				      u8 driver,
1010 				      struct extended_perms_decision *xpermd)
1011 {
1012 	struct policydb *policydb;
1013 	struct sidtab *sidtab;
1014 	u16 tclass;
1015 	struct context *scontext, *tcontext;
1016 	struct avtab_key avkey;
1017 	struct avtab_node *node;
1018 	struct ebitmap *sattr, *tattr;
1019 	struct ebitmap_node *snode, *tnode;
1020 	unsigned int i, j;
1021 
1022 	xpermd->driver = driver;
1023 	xpermd->used = 0;
1024 	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1025 	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1026 	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1027 
1028 	read_lock(&state->ss->policy_rwlock);
1029 	if (!selinux_initialized(state))
1030 		goto allow;
1031 
1032 	policydb = &state->ss->policydb;
1033 	sidtab = state->ss->sidtab;
1034 
1035 	scontext = sidtab_search(sidtab, ssid);
1036 	if (!scontext) {
1037 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1038 		       __func__, ssid);
1039 		goto out;
1040 	}
1041 
1042 	tcontext = sidtab_search(sidtab, tsid);
1043 	if (!tcontext) {
1044 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1045 		       __func__, tsid);
1046 		goto out;
1047 	}
1048 
1049 	tclass = unmap_class(&state->ss->map, orig_tclass);
1050 	if (unlikely(orig_tclass && !tclass)) {
1051 		if (policydb->allow_unknown)
1052 			goto allow;
1053 		goto out;
1054 	}
1055 
1056 
1057 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1058 		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1059 		goto out;
1060 	}
1061 
1062 	avkey.target_class = tclass;
1063 	avkey.specified = AVTAB_XPERMS;
1064 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1065 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1066 	ebitmap_for_each_positive_bit(sattr, snode, i) {
1067 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1068 			avkey.source_type = i + 1;
1069 			avkey.target_type = j + 1;
1070 			for (node = avtab_search_node(&policydb->te_avtab,
1071 						      &avkey);
1072 			     node;
1073 			     node = avtab_search_node_next(node, avkey.specified))
1074 				services_compute_xperms_decision(xpermd, node);
1075 
1076 			cond_compute_xperms(&policydb->te_cond_avtab,
1077 						&avkey, xpermd);
1078 		}
1079 	}
1080 out:
1081 	read_unlock(&state->ss->policy_rwlock);
1082 	return;
1083 allow:
1084 	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1085 	goto out;
1086 }
1087 
1088 /**
1089  * security_compute_av - Compute access vector decisions.
1090  * @ssid: source security identifier
1091  * @tsid: target security identifier
1092  * @tclass: target security class
1093  * @avd: access vector decisions
1094  * @xperms: extended permissions
1095  *
1096  * Compute a set of access vector decisions based on the
1097  * SID pair (@ssid, @tsid) for the permissions in @tclass.
1098  */
1099 void security_compute_av(struct selinux_state *state,
1100 			 u32 ssid,
1101 			 u32 tsid,
1102 			 u16 orig_tclass,
1103 			 struct av_decision *avd,
1104 			 struct extended_perms *xperms)
1105 {
1106 	struct policydb *policydb;
1107 	struct sidtab *sidtab;
1108 	u16 tclass;
1109 	struct context *scontext = NULL, *tcontext = NULL;
1110 
1111 	read_lock(&state->ss->policy_rwlock);
1112 	avd_init(state, avd);
1113 	xperms->len = 0;
1114 	if (!selinux_initialized(state))
1115 		goto allow;
1116 
1117 	policydb = &state->ss->policydb;
1118 	sidtab = state->ss->sidtab;
1119 
1120 	scontext = sidtab_search(sidtab, ssid);
1121 	if (!scontext) {
1122 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1123 		       __func__, ssid);
1124 		goto out;
1125 	}
1126 
1127 	/* permissive domain? */
1128 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1129 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1130 
1131 	tcontext = sidtab_search(sidtab, tsid);
1132 	if (!tcontext) {
1133 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1134 		       __func__, tsid);
1135 		goto out;
1136 	}
1137 
1138 	tclass = unmap_class(&state->ss->map, orig_tclass);
1139 	if (unlikely(orig_tclass && !tclass)) {
1140 		if (policydb->allow_unknown)
1141 			goto allow;
1142 		goto out;
1143 	}
1144 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1145 				  xperms);
1146 	map_decision(&state->ss->map, orig_tclass, avd,
1147 		     policydb->allow_unknown);
1148 out:
1149 	read_unlock(&state->ss->policy_rwlock);
1150 	return;
1151 allow:
1152 	avd->allowed = 0xffffffff;
1153 	goto out;
1154 }
1155 
1156 void security_compute_av_user(struct selinux_state *state,
1157 			      u32 ssid,
1158 			      u32 tsid,
1159 			      u16 tclass,
1160 			      struct av_decision *avd)
1161 {
1162 	struct policydb *policydb;
1163 	struct sidtab *sidtab;
1164 	struct context *scontext = NULL, *tcontext = NULL;
1165 
1166 	read_lock(&state->ss->policy_rwlock);
1167 	avd_init(state, avd);
1168 	if (!selinux_initialized(state))
1169 		goto allow;
1170 
1171 	policydb = &state->ss->policydb;
1172 	sidtab = state->ss->sidtab;
1173 
1174 	scontext = sidtab_search(sidtab, ssid);
1175 	if (!scontext) {
1176 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1177 		       __func__, ssid);
1178 		goto out;
1179 	}
1180 
1181 	/* permissive domain? */
1182 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1183 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1184 
1185 	tcontext = sidtab_search(sidtab, tsid);
1186 	if (!tcontext) {
1187 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1188 		       __func__, tsid);
1189 		goto out;
1190 	}
1191 
1192 	if (unlikely(!tclass)) {
1193 		if (policydb->allow_unknown)
1194 			goto allow;
1195 		goto out;
1196 	}
1197 
1198 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1199 				  NULL);
1200  out:
1201 	read_unlock(&state->ss->policy_rwlock);
1202 	return;
1203 allow:
1204 	avd->allowed = 0xffffffff;
1205 	goto out;
1206 }
1207 
1208 /*
1209  * Write the security context string representation of
1210  * the context structure `context' into a dynamically
1211  * allocated string of the correct size.  Set `*scontext'
1212  * to point to this string and set `*scontext_len' to
1213  * the length of the string.
1214  */
1215 static int context_struct_to_string(struct policydb *p,
1216 				    struct context *context,
1217 				    char **scontext, u32 *scontext_len)
1218 {
1219 	char *scontextp;
1220 
1221 	if (scontext)
1222 		*scontext = NULL;
1223 	*scontext_len = 0;
1224 
1225 	if (context->len) {
1226 		*scontext_len = context->len;
1227 		if (scontext) {
1228 			*scontext = kstrdup(context->str, GFP_ATOMIC);
1229 			if (!(*scontext))
1230 				return -ENOMEM;
1231 		}
1232 		return 0;
1233 	}
1234 
1235 	/* Compute the size of the context. */
1236 	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1237 	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1238 	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1239 	*scontext_len += mls_compute_context_len(p, context);
1240 
1241 	if (!scontext)
1242 		return 0;
1243 
1244 	/* Allocate space for the context; caller must free this space. */
1245 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1246 	if (!scontextp)
1247 		return -ENOMEM;
1248 	*scontext = scontextp;
1249 
1250 	/*
1251 	 * Copy the user name, role name and type name into the context.
1252 	 */
1253 	scontextp += sprintf(scontextp, "%s:%s:%s",
1254 		sym_name(p, SYM_USERS, context->user - 1),
1255 		sym_name(p, SYM_ROLES, context->role - 1),
1256 		sym_name(p, SYM_TYPES, context->type - 1));
1257 
1258 	mls_sid_to_context(p, context, &scontextp);
1259 
1260 	*scontextp = 0;
1261 
1262 	return 0;
1263 }
1264 
1265 static int sidtab_entry_to_string(struct policydb *p,
1266 				  struct sidtab *sidtab,
1267 				  struct sidtab_entry *entry,
1268 				  char **scontext, u32 *scontext_len)
1269 {
1270 	int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1271 
1272 	if (rc != -ENOENT)
1273 		return rc;
1274 
1275 	rc = context_struct_to_string(p, &entry->context, scontext,
1276 				      scontext_len);
1277 	if (!rc && scontext)
1278 		sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1279 	return rc;
1280 }
1281 
1282 #include "initial_sid_to_string.h"
1283 
1284 int security_sidtab_hash_stats(struct selinux_state *state, char *page)
1285 {
1286 	int rc;
1287 
1288 	if (!selinux_initialized(state)) {
1289 		pr_err("SELinux: %s:  called before initial load_policy\n",
1290 		       __func__);
1291 		return -EINVAL;
1292 	}
1293 
1294 	read_lock(&state->ss->policy_rwlock);
1295 	rc = sidtab_hash_stats(state->ss->sidtab, page);
1296 	read_unlock(&state->ss->policy_rwlock);
1297 
1298 	return rc;
1299 }
1300 
1301 const char *security_get_initial_sid_context(u32 sid)
1302 {
1303 	if (unlikely(sid > SECINITSID_NUM))
1304 		return NULL;
1305 	return initial_sid_to_string[sid];
1306 }
1307 
1308 static int security_sid_to_context_core(struct selinux_state *state,
1309 					u32 sid, char **scontext,
1310 					u32 *scontext_len, int force,
1311 					int only_invalid)
1312 {
1313 	struct policydb *policydb;
1314 	struct sidtab *sidtab;
1315 	struct sidtab_entry *entry;
1316 	int rc = 0;
1317 
1318 	if (scontext)
1319 		*scontext = NULL;
1320 	*scontext_len  = 0;
1321 
1322 	if (!selinux_initialized(state)) {
1323 		if (sid <= SECINITSID_NUM) {
1324 			char *scontextp;
1325 			const char *s = initial_sid_to_string[sid];
1326 
1327 			if (!s)
1328 				return -EINVAL;
1329 			*scontext_len = strlen(s) + 1;
1330 			if (!scontext)
1331 				return 0;
1332 			scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1333 			if (!scontextp)
1334 				return -ENOMEM;
1335 			*scontext = scontextp;
1336 			return 0;
1337 		}
1338 		pr_err("SELinux: %s:  called before initial "
1339 		       "load_policy on unknown SID %d\n", __func__, sid);
1340 		return -EINVAL;
1341 	}
1342 	read_lock(&state->ss->policy_rwlock);
1343 	policydb = &state->ss->policydb;
1344 	sidtab = state->ss->sidtab;
1345 
1346 	if (force)
1347 		entry = sidtab_search_entry_force(sidtab, sid);
1348 	else
1349 		entry = sidtab_search_entry(sidtab, sid);
1350 	if (!entry) {
1351 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1352 			__func__, sid);
1353 		rc = -EINVAL;
1354 		goto out_unlock;
1355 	}
1356 	if (only_invalid && !entry->context.len)
1357 		goto out_unlock;
1358 
1359 	rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1360 				    scontext_len);
1361 
1362 out_unlock:
1363 	read_unlock(&state->ss->policy_rwlock);
1364 	return rc;
1365 
1366 }
1367 
1368 /**
1369  * security_sid_to_context - Obtain a context for a given SID.
1370  * @sid: security identifier, SID
1371  * @scontext: security context
1372  * @scontext_len: length in bytes
1373  *
1374  * Write the string representation of the context associated with @sid
1375  * into a dynamically allocated string of the correct size.  Set @scontext
1376  * to point to this string and set @scontext_len to the length of the string.
1377  */
1378 int security_sid_to_context(struct selinux_state *state,
1379 			    u32 sid, char **scontext, u32 *scontext_len)
1380 {
1381 	return security_sid_to_context_core(state, sid, scontext,
1382 					    scontext_len, 0, 0);
1383 }
1384 
1385 int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1386 				  char **scontext, u32 *scontext_len)
1387 {
1388 	return security_sid_to_context_core(state, sid, scontext,
1389 					    scontext_len, 1, 0);
1390 }
1391 
1392 /**
1393  * security_sid_to_context_inval - Obtain a context for a given SID if it
1394  *                                 is invalid.
1395  * @sid: security identifier, SID
1396  * @scontext: security context
1397  * @scontext_len: length in bytes
1398  *
1399  * Write the string representation of the context associated with @sid
1400  * into a dynamically allocated string of the correct size, but only if the
1401  * context is invalid in the current policy.  Set @scontext to point to
1402  * this string (or NULL if the context is valid) and set @scontext_len to
1403  * the length of the string (or 0 if the context is valid).
1404  */
1405 int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1406 				  char **scontext, u32 *scontext_len)
1407 {
1408 	return security_sid_to_context_core(state, sid, scontext,
1409 					    scontext_len, 1, 1);
1410 }
1411 
1412 /*
1413  * Caveat:  Mutates scontext.
1414  */
1415 static int string_to_context_struct(struct policydb *pol,
1416 				    struct sidtab *sidtabp,
1417 				    char *scontext,
1418 				    struct context *ctx,
1419 				    u32 def_sid)
1420 {
1421 	struct role_datum *role;
1422 	struct type_datum *typdatum;
1423 	struct user_datum *usrdatum;
1424 	char *scontextp, *p, oldc;
1425 	int rc = 0;
1426 
1427 	context_init(ctx);
1428 
1429 	/* Parse the security context. */
1430 
1431 	rc = -EINVAL;
1432 	scontextp = (char *) scontext;
1433 
1434 	/* Extract the user. */
1435 	p = scontextp;
1436 	while (*p && *p != ':')
1437 		p++;
1438 
1439 	if (*p == 0)
1440 		goto out;
1441 
1442 	*p++ = 0;
1443 
1444 	usrdatum = hashtab_search(&pol->p_users.table, scontextp);
1445 	if (!usrdatum)
1446 		goto out;
1447 
1448 	ctx->user = usrdatum->value;
1449 
1450 	/* Extract role. */
1451 	scontextp = p;
1452 	while (*p && *p != ':')
1453 		p++;
1454 
1455 	if (*p == 0)
1456 		goto out;
1457 
1458 	*p++ = 0;
1459 
1460 	role = hashtab_search(&pol->p_roles.table, scontextp);
1461 	if (!role)
1462 		goto out;
1463 	ctx->role = role->value;
1464 
1465 	/* Extract type. */
1466 	scontextp = p;
1467 	while (*p && *p != ':')
1468 		p++;
1469 	oldc = *p;
1470 	*p++ = 0;
1471 
1472 	typdatum = hashtab_search(&pol->p_types.table, scontextp);
1473 	if (!typdatum || typdatum->attribute)
1474 		goto out;
1475 
1476 	ctx->type = typdatum->value;
1477 
1478 	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1479 	if (rc)
1480 		goto out;
1481 
1482 	/* Check the validity of the new context. */
1483 	rc = -EINVAL;
1484 	if (!policydb_context_isvalid(pol, ctx))
1485 		goto out;
1486 	rc = 0;
1487 out:
1488 	if (rc)
1489 		context_destroy(ctx);
1490 	return rc;
1491 }
1492 
1493 static int security_context_to_sid_core(struct selinux_state *state,
1494 					const char *scontext, u32 scontext_len,
1495 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1496 					int force)
1497 {
1498 	struct policydb *policydb;
1499 	struct sidtab *sidtab;
1500 	char *scontext2, *str = NULL;
1501 	struct context context;
1502 	int rc = 0;
1503 
1504 	/* An empty security context is never valid. */
1505 	if (!scontext_len)
1506 		return -EINVAL;
1507 
1508 	/* Copy the string to allow changes and ensure a NUL terminator */
1509 	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1510 	if (!scontext2)
1511 		return -ENOMEM;
1512 
1513 	if (!selinux_initialized(state)) {
1514 		int i;
1515 
1516 		for (i = 1; i < SECINITSID_NUM; i++) {
1517 			const char *s = initial_sid_to_string[i];
1518 
1519 			if (s && !strcmp(s, scontext2)) {
1520 				*sid = i;
1521 				goto out;
1522 			}
1523 		}
1524 		*sid = SECINITSID_KERNEL;
1525 		goto out;
1526 	}
1527 	*sid = SECSID_NULL;
1528 
1529 	if (force) {
1530 		/* Save another copy for storing in uninterpreted form */
1531 		rc = -ENOMEM;
1532 		str = kstrdup(scontext2, gfp_flags);
1533 		if (!str)
1534 			goto out;
1535 	}
1536 	read_lock(&state->ss->policy_rwlock);
1537 	policydb = &state->ss->policydb;
1538 	sidtab = state->ss->sidtab;
1539 	rc = string_to_context_struct(policydb, sidtab, scontext2,
1540 				      &context, def_sid);
1541 	if (rc == -EINVAL && force) {
1542 		context.str = str;
1543 		context.len = strlen(str) + 1;
1544 		str = NULL;
1545 	} else if (rc)
1546 		goto out_unlock;
1547 	rc = sidtab_context_to_sid(sidtab, &context, sid);
1548 	context_destroy(&context);
1549 out_unlock:
1550 	read_unlock(&state->ss->policy_rwlock);
1551 out:
1552 	kfree(scontext2);
1553 	kfree(str);
1554 	return rc;
1555 }
1556 
1557 /**
1558  * security_context_to_sid - Obtain a SID for a given security context.
1559  * @scontext: security context
1560  * @scontext_len: length in bytes
1561  * @sid: security identifier, SID
1562  * @gfp: context for the allocation
1563  *
1564  * Obtains a SID associated with the security context that
1565  * has the string representation specified by @scontext.
1566  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1567  * memory is available, or 0 on success.
1568  */
1569 int security_context_to_sid(struct selinux_state *state,
1570 			    const char *scontext, u32 scontext_len, u32 *sid,
1571 			    gfp_t gfp)
1572 {
1573 	return security_context_to_sid_core(state, scontext, scontext_len,
1574 					    sid, SECSID_NULL, gfp, 0);
1575 }
1576 
1577 int security_context_str_to_sid(struct selinux_state *state,
1578 				const char *scontext, u32 *sid, gfp_t gfp)
1579 {
1580 	return security_context_to_sid(state, scontext, strlen(scontext),
1581 				       sid, gfp);
1582 }
1583 
1584 /**
1585  * security_context_to_sid_default - Obtain a SID for a given security context,
1586  * falling back to specified default if needed.
1587  *
1588  * @scontext: security context
1589  * @scontext_len: length in bytes
1590  * @sid: security identifier, SID
1591  * @def_sid: default SID to assign on error
1592  *
1593  * Obtains a SID associated with the security context that
1594  * has the string representation specified by @scontext.
1595  * The default SID is passed to the MLS layer to be used to allow
1596  * kernel labeling of the MLS field if the MLS field is not present
1597  * (for upgrading to MLS without full relabel).
1598  * Implicitly forces adding of the context even if it cannot be mapped yet.
1599  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1600  * memory is available, or 0 on success.
1601  */
1602 int security_context_to_sid_default(struct selinux_state *state,
1603 				    const char *scontext, u32 scontext_len,
1604 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1605 {
1606 	return security_context_to_sid_core(state, scontext, scontext_len,
1607 					    sid, def_sid, gfp_flags, 1);
1608 }
1609 
1610 int security_context_to_sid_force(struct selinux_state *state,
1611 				  const char *scontext, u32 scontext_len,
1612 				  u32 *sid)
1613 {
1614 	return security_context_to_sid_core(state, scontext, scontext_len,
1615 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1616 }
1617 
1618 static int compute_sid_handle_invalid_context(
1619 	struct selinux_state *state,
1620 	struct sidtab_entry *sentry,
1621 	struct sidtab_entry *tentry,
1622 	u16 tclass,
1623 	struct context *newcontext)
1624 {
1625 	struct policydb *policydb = &state->ss->policydb;
1626 	struct sidtab *sidtab = state->ss->sidtab;
1627 	char *s = NULL, *t = NULL, *n = NULL;
1628 	u32 slen, tlen, nlen;
1629 	struct audit_buffer *ab;
1630 
1631 	if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1632 		goto out;
1633 	if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1634 		goto out;
1635 	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1636 		goto out;
1637 	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1638 	audit_log_format(ab,
1639 			 "op=security_compute_sid invalid_context=");
1640 	/* no need to record the NUL with untrusted strings */
1641 	audit_log_n_untrustedstring(ab, n, nlen - 1);
1642 	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1643 			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1644 	audit_log_end(ab);
1645 out:
1646 	kfree(s);
1647 	kfree(t);
1648 	kfree(n);
1649 	if (!enforcing_enabled(state))
1650 		return 0;
1651 	return -EACCES;
1652 }
1653 
1654 static void filename_compute_type(struct policydb *policydb,
1655 				  struct context *newcontext,
1656 				  u32 stype, u32 ttype, u16 tclass,
1657 				  const char *objname)
1658 {
1659 	struct filename_trans_key ft;
1660 	struct filename_trans_datum *datum;
1661 
1662 	/*
1663 	 * Most filename trans rules are going to live in specific directories
1664 	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1665 	 * if the ttype does not contain any rules.
1666 	 */
1667 	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1668 		return;
1669 
1670 	ft.ttype = ttype;
1671 	ft.tclass = tclass;
1672 	ft.name = objname;
1673 
1674 	datum = hashtab_search(&policydb->filename_trans, &ft);
1675 	while (datum) {
1676 		if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1677 			newcontext->type = datum->otype;
1678 			return;
1679 		}
1680 		datum = datum->next;
1681 	}
1682 }
1683 
1684 static int security_compute_sid(struct selinux_state *state,
1685 				u32 ssid,
1686 				u32 tsid,
1687 				u16 orig_tclass,
1688 				u32 specified,
1689 				const char *objname,
1690 				u32 *out_sid,
1691 				bool kern)
1692 {
1693 	struct policydb *policydb;
1694 	struct sidtab *sidtab;
1695 	struct class_datum *cladatum = NULL;
1696 	struct context *scontext, *tcontext, newcontext;
1697 	struct sidtab_entry *sentry, *tentry;
1698 	struct avtab_key avkey;
1699 	struct avtab_datum *avdatum;
1700 	struct avtab_node *node;
1701 	u16 tclass;
1702 	int rc = 0;
1703 	bool sock;
1704 
1705 	if (!selinux_initialized(state)) {
1706 		switch (orig_tclass) {
1707 		case SECCLASS_PROCESS: /* kernel value */
1708 			*out_sid = ssid;
1709 			break;
1710 		default:
1711 			*out_sid = tsid;
1712 			break;
1713 		}
1714 		goto out;
1715 	}
1716 
1717 	context_init(&newcontext);
1718 
1719 	read_lock(&state->ss->policy_rwlock);
1720 
1721 	if (kern) {
1722 		tclass = unmap_class(&state->ss->map, orig_tclass);
1723 		sock = security_is_socket_class(orig_tclass);
1724 	} else {
1725 		tclass = orig_tclass;
1726 		sock = security_is_socket_class(map_class(&state->ss->map,
1727 							  tclass));
1728 	}
1729 
1730 	policydb = &state->ss->policydb;
1731 	sidtab = state->ss->sidtab;
1732 
1733 	sentry = sidtab_search_entry(sidtab, ssid);
1734 	if (!sentry) {
1735 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1736 		       __func__, ssid);
1737 		rc = -EINVAL;
1738 		goto out_unlock;
1739 	}
1740 	tentry = sidtab_search_entry(sidtab, tsid);
1741 	if (!tentry) {
1742 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1743 		       __func__, tsid);
1744 		rc = -EINVAL;
1745 		goto out_unlock;
1746 	}
1747 
1748 	scontext = &sentry->context;
1749 	tcontext = &tentry->context;
1750 
1751 	if (tclass && tclass <= policydb->p_classes.nprim)
1752 		cladatum = policydb->class_val_to_struct[tclass - 1];
1753 
1754 	/* Set the user identity. */
1755 	switch (specified) {
1756 	case AVTAB_TRANSITION:
1757 	case AVTAB_CHANGE:
1758 		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1759 			newcontext.user = tcontext->user;
1760 		} else {
1761 			/* notice this gets both DEFAULT_SOURCE and unset */
1762 			/* Use the process user identity. */
1763 			newcontext.user = scontext->user;
1764 		}
1765 		break;
1766 	case AVTAB_MEMBER:
1767 		/* Use the related object owner. */
1768 		newcontext.user = tcontext->user;
1769 		break;
1770 	}
1771 
1772 	/* Set the role to default values. */
1773 	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1774 		newcontext.role = scontext->role;
1775 	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1776 		newcontext.role = tcontext->role;
1777 	} else {
1778 		if ((tclass == policydb->process_class) || sock)
1779 			newcontext.role = scontext->role;
1780 		else
1781 			newcontext.role = OBJECT_R_VAL;
1782 	}
1783 
1784 	/* Set the type to default values. */
1785 	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1786 		newcontext.type = scontext->type;
1787 	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1788 		newcontext.type = tcontext->type;
1789 	} else {
1790 		if ((tclass == policydb->process_class) || sock) {
1791 			/* Use the type of process. */
1792 			newcontext.type = scontext->type;
1793 		} else {
1794 			/* Use the type of the related object. */
1795 			newcontext.type = tcontext->type;
1796 		}
1797 	}
1798 
1799 	/* Look for a type transition/member/change rule. */
1800 	avkey.source_type = scontext->type;
1801 	avkey.target_type = tcontext->type;
1802 	avkey.target_class = tclass;
1803 	avkey.specified = specified;
1804 	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1805 
1806 	/* If no permanent rule, also check for enabled conditional rules */
1807 	if (!avdatum) {
1808 		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1809 		for (; node; node = avtab_search_node_next(node, specified)) {
1810 			if (node->key.specified & AVTAB_ENABLED) {
1811 				avdatum = &node->datum;
1812 				break;
1813 			}
1814 		}
1815 	}
1816 
1817 	if (avdatum) {
1818 		/* Use the type from the type transition/member/change rule. */
1819 		newcontext.type = avdatum->u.data;
1820 	}
1821 
1822 	/* if we have a objname this is a file trans check so check those rules */
1823 	if (objname)
1824 		filename_compute_type(policydb, &newcontext, scontext->type,
1825 				      tcontext->type, tclass, objname);
1826 
1827 	/* Check for class-specific changes. */
1828 	if (specified & AVTAB_TRANSITION) {
1829 		/* Look for a role transition rule. */
1830 		struct role_trans_datum *rtd;
1831 		struct role_trans_key rtk = {
1832 			.role = scontext->role,
1833 			.type = tcontext->type,
1834 			.tclass = tclass,
1835 		};
1836 
1837 		rtd = hashtab_search(&policydb->role_tr, &rtk);
1838 		if (rtd)
1839 			newcontext.role = rtd->new_role;
1840 	}
1841 
1842 	/* Set the MLS attributes.
1843 	   This is done last because it may allocate memory. */
1844 	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1845 			     &newcontext, sock);
1846 	if (rc)
1847 		goto out_unlock;
1848 
1849 	/* Check the validity of the context. */
1850 	if (!policydb_context_isvalid(policydb, &newcontext)) {
1851 		rc = compute_sid_handle_invalid_context(state, sentry, tentry,
1852 							tclass, &newcontext);
1853 		if (rc)
1854 			goto out_unlock;
1855 	}
1856 	/* Obtain the sid for the context. */
1857 	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1858 out_unlock:
1859 	read_unlock(&state->ss->policy_rwlock);
1860 	context_destroy(&newcontext);
1861 out:
1862 	return rc;
1863 }
1864 
1865 /**
1866  * security_transition_sid - Compute the SID for a new subject/object.
1867  * @ssid: source security identifier
1868  * @tsid: target security identifier
1869  * @tclass: target security class
1870  * @out_sid: security identifier for new subject/object
1871  *
1872  * Compute a SID to use for labeling a new subject or object in the
1873  * class @tclass based on a SID pair (@ssid, @tsid).
1874  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1875  * if insufficient memory is available, or %0 if the new SID was
1876  * computed successfully.
1877  */
1878 int security_transition_sid(struct selinux_state *state,
1879 			    u32 ssid, u32 tsid, u16 tclass,
1880 			    const struct qstr *qstr, u32 *out_sid)
1881 {
1882 	return security_compute_sid(state, ssid, tsid, tclass,
1883 				    AVTAB_TRANSITION,
1884 				    qstr ? qstr->name : NULL, out_sid, true);
1885 }
1886 
1887 int security_transition_sid_user(struct selinux_state *state,
1888 				 u32 ssid, u32 tsid, u16 tclass,
1889 				 const char *objname, u32 *out_sid)
1890 {
1891 	return security_compute_sid(state, ssid, tsid, tclass,
1892 				    AVTAB_TRANSITION,
1893 				    objname, out_sid, false);
1894 }
1895 
1896 /**
1897  * security_member_sid - Compute the SID for member selection.
1898  * @ssid: source security identifier
1899  * @tsid: target security identifier
1900  * @tclass: target security class
1901  * @out_sid: security identifier for selected member
1902  *
1903  * Compute a SID to use when selecting a member of a polyinstantiated
1904  * object of class @tclass based on a SID pair (@ssid, @tsid).
1905  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1906  * if insufficient memory is available, or %0 if the SID was
1907  * computed successfully.
1908  */
1909 int security_member_sid(struct selinux_state *state,
1910 			u32 ssid,
1911 			u32 tsid,
1912 			u16 tclass,
1913 			u32 *out_sid)
1914 {
1915 	return security_compute_sid(state, ssid, tsid, tclass,
1916 				    AVTAB_MEMBER, NULL,
1917 				    out_sid, false);
1918 }
1919 
1920 /**
1921  * security_change_sid - Compute the SID for object relabeling.
1922  * @ssid: source security identifier
1923  * @tsid: target security identifier
1924  * @tclass: target security class
1925  * @out_sid: security identifier for selected member
1926  *
1927  * Compute a SID to use for relabeling an object of class @tclass
1928  * based on a SID pair (@ssid, @tsid).
1929  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1930  * if insufficient memory is available, or %0 if the SID was
1931  * computed successfully.
1932  */
1933 int security_change_sid(struct selinux_state *state,
1934 			u32 ssid,
1935 			u32 tsid,
1936 			u16 tclass,
1937 			u32 *out_sid)
1938 {
1939 	return security_compute_sid(state,
1940 				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1941 				    out_sid, false);
1942 }
1943 
1944 static inline int convert_context_handle_invalid_context(
1945 	struct selinux_state *state,
1946 	struct context *context)
1947 {
1948 	struct policydb *policydb = &state->ss->policydb;
1949 	char *s;
1950 	u32 len;
1951 
1952 	if (enforcing_enabled(state))
1953 		return -EINVAL;
1954 
1955 	if (!context_struct_to_string(policydb, context, &s, &len)) {
1956 		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
1957 			s);
1958 		kfree(s);
1959 	}
1960 	return 0;
1961 }
1962 
1963 struct convert_context_args {
1964 	struct selinux_state *state;
1965 	struct policydb *oldp;
1966 	struct policydb *newp;
1967 };
1968 
1969 /*
1970  * Convert the values in the security context
1971  * structure `oldc' from the values specified
1972  * in the policy `p->oldp' to the values specified
1973  * in the policy `p->newp', storing the new context
1974  * in `newc'.  Verify that the context is valid
1975  * under the new policy.
1976  */
1977 static int convert_context(struct context *oldc, struct context *newc, void *p)
1978 {
1979 	struct convert_context_args *args;
1980 	struct ocontext *oc;
1981 	struct role_datum *role;
1982 	struct type_datum *typdatum;
1983 	struct user_datum *usrdatum;
1984 	char *s;
1985 	u32 len;
1986 	int rc;
1987 
1988 	args = p;
1989 
1990 	if (oldc->str) {
1991 		s = kstrdup(oldc->str, GFP_KERNEL);
1992 		if (!s)
1993 			return -ENOMEM;
1994 
1995 		rc = string_to_context_struct(args->newp, NULL, s,
1996 					      newc, SECSID_NULL);
1997 		if (rc == -EINVAL) {
1998 			/*
1999 			 * Retain string representation for later mapping.
2000 			 *
2001 			 * IMPORTANT: We need to copy the contents of oldc->str
2002 			 * back into s again because string_to_context_struct()
2003 			 * may have garbled it.
2004 			 */
2005 			memcpy(s, oldc->str, oldc->len);
2006 			context_init(newc);
2007 			newc->str = s;
2008 			newc->len = oldc->len;
2009 			return 0;
2010 		}
2011 		kfree(s);
2012 		if (rc) {
2013 			/* Other error condition, e.g. ENOMEM. */
2014 			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2015 			       oldc->str, -rc);
2016 			return rc;
2017 		}
2018 		pr_info("SELinux:  Context %s became valid (mapped).\n",
2019 			oldc->str);
2020 		return 0;
2021 	}
2022 
2023 	context_init(newc);
2024 
2025 	/* Convert the user. */
2026 	rc = -EINVAL;
2027 	usrdatum = hashtab_search(&args->newp->p_users.table,
2028 				  sym_name(args->oldp,
2029 					   SYM_USERS, oldc->user - 1));
2030 	if (!usrdatum)
2031 		goto bad;
2032 	newc->user = usrdatum->value;
2033 
2034 	/* Convert the role. */
2035 	rc = -EINVAL;
2036 	role = hashtab_search(&args->newp->p_roles.table,
2037 			      sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2038 	if (!role)
2039 		goto bad;
2040 	newc->role = role->value;
2041 
2042 	/* Convert the type. */
2043 	rc = -EINVAL;
2044 	typdatum = hashtab_search(&args->newp->p_types.table,
2045 				  sym_name(args->oldp,
2046 					   SYM_TYPES, oldc->type - 1));
2047 	if (!typdatum)
2048 		goto bad;
2049 	newc->type = typdatum->value;
2050 
2051 	/* Convert the MLS fields if dealing with MLS policies */
2052 	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2053 		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2054 		if (rc)
2055 			goto bad;
2056 	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2057 		/*
2058 		 * Switching between non-MLS and MLS policy:
2059 		 * ensure that the MLS fields of the context for all
2060 		 * existing entries in the sidtab are filled in with a
2061 		 * suitable default value, likely taken from one of the
2062 		 * initial SIDs.
2063 		 */
2064 		oc = args->newp->ocontexts[OCON_ISID];
2065 		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2066 			oc = oc->next;
2067 		rc = -EINVAL;
2068 		if (!oc) {
2069 			pr_err("SELinux:  unable to look up"
2070 				" the initial SIDs list\n");
2071 			goto bad;
2072 		}
2073 		rc = mls_range_set(newc, &oc->context[0].range);
2074 		if (rc)
2075 			goto bad;
2076 	}
2077 
2078 	/* Check the validity of the new context. */
2079 	if (!policydb_context_isvalid(args->newp, newc)) {
2080 		rc = convert_context_handle_invalid_context(args->state, oldc);
2081 		if (rc)
2082 			goto bad;
2083 	}
2084 
2085 	return 0;
2086 bad:
2087 	/* Map old representation to string and save it. */
2088 	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2089 	if (rc)
2090 		return rc;
2091 	context_destroy(newc);
2092 	newc->str = s;
2093 	newc->len = len;
2094 	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2095 		newc->str);
2096 	return 0;
2097 }
2098 
2099 static void security_load_policycaps(struct selinux_state *state)
2100 {
2101 	struct policydb *p = &state->ss->policydb;
2102 	unsigned int i;
2103 	struct ebitmap_node *node;
2104 
2105 	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2106 		state->policycap[i] = ebitmap_get_bit(&p->policycaps, i);
2107 
2108 	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2109 		pr_info("SELinux:  policy capability %s=%d\n",
2110 			selinux_policycap_names[i],
2111 			ebitmap_get_bit(&p->policycaps, i));
2112 
2113 	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2114 		if (i >= ARRAY_SIZE(selinux_policycap_names))
2115 			pr_info("SELinux:  unknown policy capability %u\n",
2116 				i);
2117 	}
2118 }
2119 
2120 static int security_preserve_bools(struct selinux_state *state,
2121 				   struct policydb *newpolicydb);
2122 
2123 /**
2124  * security_load_policy - Load a security policy configuration.
2125  * @data: binary policy data
2126  * @len: length of data in bytes
2127  *
2128  * Load a new set of security policy configuration data,
2129  * validate it and convert the SID table as necessary.
2130  * This function will flush the access vector cache after
2131  * loading the new policy.
2132  */
2133 int security_load_policy(struct selinux_state *state, void *data, size_t len)
2134 {
2135 	struct policydb *policydb;
2136 	struct sidtab *oldsidtab, *newsidtab;
2137 	struct policydb *oldpolicydb, *newpolicydb;
2138 	struct selinux_mapping *oldmapping;
2139 	struct selinux_map newmap;
2140 	struct sidtab_convert_params convert_params;
2141 	struct convert_context_args args;
2142 	u32 seqno;
2143 	int rc = 0;
2144 	struct policy_file file = { data, len }, *fp = &file;
2145 
2146 	policydb = &state->ss->policydb;
2147 
2148 	newsidtab = kmalloc(sizeof(*newsidtab), GFP_KERNEL);
2149 	if (!newsidtab)
2150 		return -ENOMEM;
2151 
2152 	if (!selinux_initialized(state)) {
2153 		rc = policydb_read(policydb, fp);
2154 		if (rc) {
2155 			kfree(newsidtab);
2156 			return rc;
2157 		}
2158 
2159 		policydb->len = len;
2160 		rc = selinux_set_mapping(policydb, secclass_map,
2161 					 &state->ss->map);
2162 		if (rc) {
2163 			kfree(newsidtab);
2164 			policydb_destroy(policydb);
2165 			return rc;
2166 		}
2167 
2168 		rc = policydb_load_isids(policydb, newsidtab);
2169 		if (rc) {
2170 			kfree(newsidtab);
2171 			policydb_destroy(policydb);
2172 			return rc;
2173 		}
2174 
2175 		state->ss->sidtab = newsidtab;
2176 		security_load_policycaps(state);
2177 		selinux_mark_initialized(state);
2178 		seqno = ++state->ss->latest_granting;
2179 		selinux_complete_init();
2180 		avc_ss_reset(state->avc, seqno);
2181 		selnl_notify_policyload(seqno);
2182 		selinux_status_update_policyload(state, seqno);
2183 		selinux_netlbl_cache_invalidate();
2184 		selinux_xfrm_notify_policyload();
2185 		return 0;
2186 	}
2187 
2188 	oldpolicydb = kcalloc(2, sizeof(*oldpolicydb), GFP_KERNEL);
2189 	if (!oldpolicydb) {
2190 		kfree(newsidtab);
2191 		return -ENOMEM;
2192 	}
2193 	newpolicydb = oldpolicydb + 1;
2194 
2195 	rc = policydb_read(newpolicydb, fp);
2196 	if (rc) {
2197 		kfree(newsidtab);
2198 		goto out;
2199 	}
2200 
2201 	newpolicydb->len = len;
2202 	/* If switching between different policy types, log MLS status */
2203 	if (policydb->mls_enabled && !newpolicydb->mls_enabled)
2204 		pr_info("SELinux: Disabling MLS support...\n");
2205 	else if (!policydb->mls_enabled && newpolicydb->mls_enabled)
2206 		pr_info("SELinux: Enabling MLS support...\n");
2207 
2208 	rc = policydb_load_isids(newpolicydb, newsidtab);
2209 	if (rc) {
2210 		pr_err("SELinux:  unable to load the initial SIDs\n");
2211 		policydb_destroy(newpolicydb);
2212 		kfree(newsidtab);
2213 		goto out;
2214 	}
2215 
2216 	rc = selinux_set_mapping(newpolicydb, secclass_map, &newmap);
2217 	if (rc)
2218 		goto err;
2219 
2220 	rc = security_preserve_bools(state, newpolicydb);
2221 	if (rc) {
2222 		pr_err("SELinux:  unable to preserve booleans\n");
2223 		goto err;
2224 	}
2225 
2226 	oldsidtab = state->ss->sidtab;
2227 
2228 	/*
2229 	 * Convert the internal representations of contexts
2230 	 * in the new SID table.
2231 	 */
2232 	args.state = state;
2233 	args.oldp = policydb;
2234 	args.newp = newpolicydb;
2235 
2236 	convert_params.func = convert_context;
2237 	convert_params.args = &args;
2238 	convert_params.target = newsidtab;
2239 
2240 	rc = sidtab_convert(oldsidtab, &convert_params);
2241 	if (rc) {
2242 		pr_err("SELinux:  unable to convert the internal"
2243 			" representation of contexts in the new SID"
2244 			" table\n");
2245 		goto err;
2246 	}
2247 
2248 	/* Save the old policydb and SID table to free later. */
2249 	memcpy(oldpolicydb, policydb, sizeof(*policydb));
2250 
2251 	/* Install the new policydb and SID table. */
2252 	write_lock_irq(&state->ss->policy_rwlock);
2253 	memcpy(policydb, newpolicydb, sizeof(*policydb));
2254 	state->ss->sidtab = newsidtab;
2255 	security_load_policycaps(state);
2256 	oldmapping = state->ss->map.mapping;
2257 	state->ss->map.mapping = newmap.mapping;
2258 	state->ss->map.size = newmap.size;
2259 	seqno = ++state->ss->latest_granting;
2260 	write_unlock_irq(&state->ss->policy_rwlock);
2261 
2262 	/* Free the old policydb and SID table. */
2263 	policydb_destroy(oldpolicydb);
2264 	sidtab_destroy(oldsidtab);
2265 	kfree(oldsidtab);
2266 	kfree(oldmapping);
2267 
2268 	avc_ss_reset(state->avc, seqno);
2269 	selnl_notify_policyload(seqno);
2270 	selinux_status_update_policyload(state, seqno);
2271 	selinux_netlbl_cache_invalidate();
2272 	selinux_xfrm_notify_policyload();
2273 
2274 	rc = 0;
2275 	goto out;
2276 
2277 err:
2278 	kfree(newmap.mapping);
2279 	sidtab_destroy(newsidtab);
2280 	kfree(newsidtab);
2281 	policydb_destroy(newpolicydb);
2282 
2283 out:
2284 	kfree(oldpolicydb);
2285 	return rc;
2286 }
2287 
2288 size_t security_policydb_len(struct selinux_state *state)
2289 {
2290 	struct policydb *p = &state->ss->policydb;
2291 	size_t len;
2292 
2293 	read_lock(&state->ss->policy_rwlock);
2294 	len = p->len;
2295 	read_unlock(&state->ss->policy_rwlock);
2296 
2297 	return len;
2298 }
2299 
2300 /**
2301  * security_port_sid - Obtain the SID for a port.
2302  * @protocol: protocol number
2303  * @port: port number
2304  * @out_sid: security identifier
2305  */
2306 int security_port_sid(struct selinux_state *state,
2307 		      u8 protocol, u16 port, u32 *out_sid)
2308 {
2309 	struct policydb *policydb;
2310 	struct sidtab *sidtab;
2311 	struct ocontext *c;
2312 	int rc = 0;
2313 
2314 	read_lock(&state->ss->policy_rwlock);
2315 
2316 	policydb = &state->ss->policydb;
2317 	sidtab = state->ss->sidtab;
2318 
2319 	c = policydb->ocontexts[OCON_PORT];
2320 	while (c) {
2321 		if (c->u.port.protocol == protocol &&
2322 		    c->u.port.low_port <= port &&
2323 		    c->u.port.high_port >= port)
2324 			break;
2325 		c = c->next;
2326 	}
2327 
2328 	if (c) {
2329 		if (!c->sid[0]) {
2330 			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2331 						   &c->sid[0]);
2332 			if (rc)
2333 				goto out;
2334 		}
2335 		*out_sid = c->sid[0];
2336 	} else {
2337 		*out_sid = SECINITSID_PORT;
2338 	}
2339 
2340 out:
2341 	read_unlock(&state->ss->policy_rwlock);
2342 	return rc;
2343 }
2344 
2345 /**
2346  * security_pkey_sid - Obtain the SID for a pkey.
2347  * @subnet_prefix: Subnet Prefix
2348  * @pkey_num: pkey number
2349  * @out_sid: security identifier
2350  */
2351 int security_ib_pkey_sid(struct selinux_state *state,
2352 			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2353 {
2354 	struct policydb *policydb;
2355 	struct sidtab *sidtab;
2356 	struct ocontext *c;
2357 	int rc = 0;
2358 
2359 	read_lock(&state->ss->policy_rwlock);
2360 
2361 	policydb = &state->ss->policydb;
2362 	sidtab = state->ss->sidtab;
2363 
2364 	c = policydb->ocontexts[OCON_IBPKEY];
2365 	while (c) {
2366 		if (c->u.ibpkey.low_pkey <= pkey_num &&
2367 		    c->u.ibpkey.high_pkey >= pkey_num &&
2368 		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2369 			break;
2370 
2371 		c = c->next;
2372 	}
2373 
2374 	if (c) {
2375 		if (!c->sid[0]) {
2376 			rc = sidtab_context_to_sid(sidtab,
2377 						   &c->context[0],
2378 						   &c->sid[0]);
2379 			if (rc)
2380 				goto out;
2381 		}
2382 		*out_sid = c->sid[0];
2383 	} else
2384 		*out_sid = SECINITSID_UNLABELED;
2385 
2386 out:
2387 	read_unlock(&state->ss->policy_rwlock);
2388 	return rc;
2389 }
2390 
2391 /**
2392  * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2393  * @dev_name: device name
2394  * @port: port number
2395  * @out_sid: security identifier
2396  */
2397 int security_ib_endport_sid(struct selinux_state *state,
2398 			    const char *dev_name, u8 port_num, u32 *out_sid)
2399 {
2400 	struct policydb *policydb;
2401 	struct sidtab *sidtab;
2402 	struct ocontext *c;
2403 	int rc = 0;
2404 
2405 	read_lock(&state->ss->policy_rwlock);
2406 
2407 	policydb = &state->ss->policydb;
2408 	sidtab = state->ss->sidtab;
2409 
2410 	c = policydb->ocontexts[OCON_IBENDPORT];
2411 	while (c) {
2412 		if (c->u.ibendport.port == port_num &&
2413 		    !strncmp(c->u.ibendport.dev_name,
2414 			     dev_name,
2415 			     IB_DEVICE_NAME_MAX))
2416 			break;
2417 
2418 		c = c->next;
2419 	}
2420 
2421 	if (c) {
2422 		if (!c->sid[0]) {
2423 			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2424 						   &c->sid[0]);
2425 			if (rc)
2426 				goto out;
2427 		}
2428 		*out_sid = c->sid[0];
2429 	} else
2430 		*out_sid = SECINITSID_UNLABELED;
2431 
2432 out:
2433 	read_unlock(&state->ss->policy_rwlock);
2434 	return rc;
2435 }
2436 
2437 /**
2438  * security_netif_sid - Obtain the SID for a network interface.
2439  * @name: interface name
2440  * @if_sid: interface SID
2441  */
2442 int security_netif_sid(struct selinux_state *state,
2443 		       char *name, u32 *if_sid)
2444 {
2445 	struct policydb *policydb;
2446 	struct sidtab *sidtab;
2447 	int rc = 0;
2448 	struct ocontext *c;
2449 
2450 	read_lock(&state->ss->policy_rwlock);
2451 
2452 	policydb = &state->ss->policydb;
2453 	sidtab = state->ss->sidtab;
2454 
2455 	c = policydb->ocontexts[OCON_NETIF];
2456 	while (c) {
2457 		if (strcmp(name, c->u.name) == 0)
2458 			break;
2459 		c = c->next;
2460 	}
2461 
2462 	if (c) {
2463 		if (!c->sid[0] || !c->sid[1]) {
2464 			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2465 						   &c->sid[0]);
2466 			if (rc)
2467 				goto out;
2468 			rc = sidtab_context_to_sid(sidtab, &c->context[1],
2469 						   &c->sid[1]);
2470 			if (rc)
2471 				goto out;
2472 		}
2473 		*if_sid = c->sid[0];
2474 	} else
2475 		*if_sid = SECINITSID_NETIF;
2476 
2477 out:
2478 	read_unlock(&state->ss->policy_rwlock);
2479 	return rc;
2480 }
2481 
2482 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2483 {
2484 	int i, fail = 0;
2485 
2486 	for (i = 0; i < 4; i++)
2487 		if (addr[i] != (input[i] & mask[i])) {
2488 			fail = 1;
2489 			break;
2490 		}
2491 
2492 	return !fail;
2493 }
2494 
2495 /**
2496  * security_node_sid - Obtain the SID for a node (host).
2497  * @domain: communication domain aka address family
2498  * @addrp: address
2499  * @addrlen: address length in bytes
2500  * @out_sid: security identifier
2501  */
2502 int security_node_sid(struct selinux_state *state,
2503 		      u16 domain,
2504 		      void *addrp,
2505 		      u32 addrlen,
2506 		      u32 *out_sid)
2507 {
2508 	struct policydb *policydb;
2509 	struct sidtab *sidtab;
2510 	int rc;
2511 	struct ocontext *c;
2512 
2513 	read_lock(&state->ss->policy_rwlock);
2514 
2515 	policydb = &state->ss->policydb;
2516 	sidtab = state->ss->sidtab;
2517 
2518 	switch (domain) {
2519 	case AF_INET: {
2520 		u32 addr;
2521 
2522 		rc = -EINVAL;
2523 		if (addrlen != sizeof(u32))
2524 			goto out;
2525 
2526 		addr = *((u32 *)addrp);
2527 
2528 		c = policydb->ocontexts[OCON_NODE];
2529 		while (c) {
2530 			if (c->u.node.addr == (addr & c->u.node.mask))
2531 				break;
2532 			c = c->next;
2533 		}
2534 		break;
2535 	}
2536 
2537 	case AF_INET6:
2538 		rc = -EINVAL;
2539 		if (addrlen != sizeof(u64) * 2)
2540 			goto out;
2541 		c = policydb->ocontexts[OCON_NODE6];
2542 		while (c) {
2543 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2544 						c->u.node6.mask))
2545 				break;
2546 			c = c->next;
2547 		}
2548 		break;
2549 
2550 	default:
2551 		rc = 0;
2552 		*out_sid = SECINITSID_NODE;
2553 		goto out;
2554 	}
2555 
2556 	if (c) {
2557 		if (!c->sid[0]) {
2558 			rc = sidtab_context_to_sid(sidtab,
2559 						   &c->context[0],
2560 						   &c->sid[0]);
2561 			if (rc)
2562 				goto out;
2563 		}
2564 		*out_sid = c->sid[0];
2565 	} else {
2566 		*out_sid = SECINITSID_NODE;
2567 	}
2568 
2569 	rc = 0;
2570 out:
2571 	read_unlock(&state->ss->policy_rwlock);
2572 	return rc;
2573 }
2574 
2575 #define SIDS_NEL 25
2576 
2577 /**
2578  * security_get_user_sids - Obtain reachable SIDs for a user.
2579  * @fromsid: starting SID
2580  * @username: username
2581  * @sids: array of reachable SIDs for user
2582  * @nel: number of elements in @sids
2583  *
2584  * Generate the set of SIDs for legal security contexts
2585  * for a given user that can be reached by @fromsid.
2586  * Set *@sids to point to a dynamically allocated
2587  * array containing the set of SIDs.  Set *@nel to the
2588  * number of elements in the array.
2589  */
2590 
2591 int security_get_user_sids(struct selinux_state *state,
2592 			   u32 fromsid,
2593 			   char *username,
2594 			   u32 **sids,
2595 			   u32 *nel)
2596 {
2597 	struct policydb *policydb;
2598 	struct sidtab *sidtab;
2599 	struct context *fromcon, usercon;
2600 	u32 *mysids = NULL, *mysids2, sid;
2601 	u32 mynel = 0, maxnel = SIDS_NEL;
2602 	struct user_datum *user;
2603 	struct role_datum *role;
2604 	struct ebitmap_node *rnode, *tnode;
2605 	int rc = 0, i, j;
2606 
2607 	*sids = NULL;
2608 	*nel = 0;
2609 
2610 	if (!selinux_initialized(state))
2611 		goto out;
2612 
2613 	read_lock(&state->ss->policy_rwlock);
2614 
2615 	policydb = &state->ss->policydb;
2616 	sidtab = state->ss->sidtab;
2617 
2618 	context_init(&usercon);
2619 
2620 	rc = -EINVAL;
2621 	fromcon = sidtab_search(sidtab, fromsid);
2622 	if (!fromcon)
2623 		goto out_unlock;
2624 
2625 	rc = -EINVAL;
2626 	user = hashtab_search(&policydb->p_users.table, username);
2627 	if (!user)
2628 		goto out_unlock;
2629 
2630 	usercon.user = user->value;
2631 
2632 	rc = -ENOMEM;
2633 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2634 	if (!mysids)
2635 		goto out_unlock;
2636 
2637 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2638 		role = policydb->role_val_to_struct[i];
2639 		usercon.role = i + 1;
2640 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2641 			usercon.type = j + 1;
2642 
2643 			if (mls_setup_user_range(policydb, fromcon, user,
2644 						 &usercon))
2645 				continue;
2646 
2647 			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2648 			if (rc)
2649 				goto out_unlock;
2650 			if (mynel < maxnel) {
2651 				mysids[mynel++] = sid;
2652 			} else {
2653 				rc = -ENOMEM;
2654 				maxnel += SIDS_NEL;
2655 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2656 				if (!mysids2)
2657 					goto out_unlock;
2658 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2659 				kfree(mysids);
2660 				mysids = mysids2;
2661 				mysids[mynel++] = sid;
2662 			}
2663 		}
2664 	}
2665 	rc = 0;
2666 out_unlock:
2667 	read_unlock(&state->ss->policy_rwlock);
2668 	if (rc || !mynel) {
2669 		kfree(mysids);
2670 		goto out;
2671 	}
2672 
2673 	rc = -ENOMEM;
2674 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2675 	if (!mysids2) {
2676 		kfree(mysids);
2677 		goto out;
2678 	}
2679 	for (i = 0, j = 0; i < mynel; i++) {
2680 		struct av_decision dummy_avd;
2681 		rc = avc_has_perm_noaudit(state,
2682 					  fromsid, mysids[i],
2683 					  SECCLASS_PROCESS, /* kernel value */
2684 					  PROCESS__TRANSITION, AVC_STRICT,
2685 					  &dummy_avd);
2686 		if (!rc)
2687 			mysids2[j++] = mysids[i];
2688 		cond_resched();
2689 	}
2690 	rc = 0;
2691 	kfree(mysids);
2692 	*sids = mysids2;
2693 	*nel = j;
2694 out:
2695 	return rc;
2696 }
2697 
2698 /**
2699  * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2700  * @fstype: filesystem type
2701  * @path: path from root of mount
2702  * @sclass: file security class
2703  * @sid: SID for path
2704  *
2705  * Obtain a SID to use for a file in a filesystem that
2706  * cannot support xattr or use a fixed labeling behavior like
2707  * transition SIDs or task SIDs.
2708  *
2709  * The caller must acquire the policy_rwlock before calling this function.
2710  */
2711 static inline int __security_genfs_sid(struct selinux_state *state,
2712 				       const char *fstype,
2713 				       char *path,
2714 				       u16 orig_sclass,
2715 				       u32 *sid)
2716 {
2717 	struct policydb *policydb = &state->ss->policydb;
2718 	struct sidtab *sidtab = state->ss->sidtab;
2719 	int len;
2720 	u16 sclass;
2721 	struct genfs *genfs;
2722 	struct ocontext *c;
2723 	int rc, cmp = 0;
2724 
2725 	while (path[0] == '/' && path[1] == '/')
2726 		path++;
2727 
2728 	sclass = unmap_class(&state->ss->map, orig_sclass);
2729 	*sid = SECINITSID_UNLABELED;
2730 
2731 	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2732 		cmp = strcmp(fstype, genfs->fstype);
2733 		if (cmp <= 0)
2734 			break;
2735 	}
2736 
2737 	rc = -ENOENT;
2738 	if (!genfs || cmp)
2739 		goto out;
2740 
2741 	for (c = genfs->head; c; c = c->next) {
2742 		len = strlen(c->u.name);
2743 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2744 		    (strncmp(c->u.name, path, len) == 0))
2745 			break;
2746 	}
2747 
2748 	rc = -ENOENT;
2749 	if (!c)
2750 		goto out;
2751 
2752 	if (!c->sid[0]) {
2753 		rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2754 		if (rc)
2755 			goto out;
2756 	}
2757 
2758 	*sid = c->sid[0];
2759 	rc = 0;
2760 out:
2761 	return rc;
2762 }
2763 
2764 /**
2765  * security_genfs_sid - Obtain a SID for a file in a filesystem
2766  * @fstype: filesystem type
2767  * @path: path from root of mount
2768  * @sclass: file security class
2769  * @sid: SID for path
2770  *
2771  * Acquire policy_rwlock before calling __security_genfs_sid() and release
2772  * it afterward.
2773  */
2774 int security_genfs_sid(struct selinux_state *state,
2775 		       const char *fstype,
2776 		       char *path,
2777 		       u16 orig_sclass,
2778 		       u32 *sid)
2779 {
2780 	int retval;
2781 
2782 	read_lock(&state->ss->policy_rwlock);
2783 	retval = __security_genfs_sid(state, fstype, path, orig_sclass, sid);
2784 	read_unlock(&state->ss->policy_rwlock);
2785 	return retval;
2786 }
2787 
2788 /**
2789  * security_fs_use - Determine how to handle labeling for a filesystem.
2790  * @sb: superblock in question
2791  */
2792 int security_fs_use(struct selinux_state *state, struct super_block *sb)
2793 {
2794 	struct policydb *policydb;
2795 	struct sidtab *sidtab;
2796 	int rc = 0;
2797 	struct ocontext *c;
2798 	struct superblock_security_struct *sbsec = sb->s_security;
2799 	const char *fstype = sb->s_type->name;
2800 
2801 	read_lock(&state->ss->policy_rwlock);
2802 
2803 	policydb = &state->ss->policydb;
2804 	sidtab = state->ss->sidtab;
2805 
2806 	c = policydb->ocontexts[OCON_FSUSE];
2807 	while (c) {
2808 		if (strcmp(fstype, c->u.name) == 0)
2809 			break;
2810 		c = c->next;
2811 	}
2812 
2813 	if (c) {
2814 		sbsec->behavior = c->v.behavior;
2815 		if (!c->sid[0]) {
2816 			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2817 						   &c->sid[0]);
2818 			if (rc)
2819 				goto out;
2820 		}
2821 		sbsec->sid = c->sid[0];
2822 	} else {
2823 		rc = __security_genfs_sid(state, fstype, "/", SECCLASS_DIR,
2824 					  &sbsec->sid);
2825 		if (rc) {
2826 			sbsec->behavior = SECURITY_FS_USE_NONE;
2827 			rc = 0;
2828 		} else {
2829 			sbsec->behavior = SECURITY_FS_USE_GENFS;
2830 		}
2831 	}
2832 
2833 out:
2834 	read_unlock(&state->ss->policy_rwlock);
2835 	return rc;
2836 }
2837 
2838 int security_get_bools(struct selinux_state *state,
2839 		       u32 *len, char ***names, int **values)
2840 {
2841 	struct policydb *policydb;
2842 	u32 i;
2843 	int rc;
2844 
2845 	if (!selinux_initialized(state)) {
2846 		*len = 0;
2847 		*names = NULL;
2848 		*values = NULL;
2849 		return 0;
2850 	}
2851 
2852 	read_lock(&state->ss->policy_rwlock);
2853 
2854 	policydb = &state->ss->policydb;
2855 
2856 	*names = NULL;
2857 	*values = NULL;
2858 
2859 	rc = 0;
2860 	*len = policydb->p_bools.nprim;
2861 	if (!*len)
2862 		goto out;
2863 
2864 	rc = -ENOMEM;
2865 	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2866 	if (!*names)
2867 		goto err;
2868 
2869 	rc = -ENOMEM;
2870 	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2871 	if (!*values)
2872 		goto err;
2873 
2874 	for (i = 0; i < *len; i++) {
2875 		(*values)[i] = policydb->bool_val_to_struct[i]->state;
2876 
2877 		rc = -ENOMEM;
2878 		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2879 				      GFP_ATOMIC);
2880 		if (!(*names)[i])
2881 			goto err;
2882 	}
2883 	rc = 0;
2884 out:
2885 	read_unlock(&state->ss->policy_rwlock);
2886 	return rc;
2887 err:
2888 	if (*names) {
2889 		for (i = 0; i < *len; i++)
2890 			kfree((*names)[i]);
2891 		kfree(*names);
2892 	}
2893 	kfree(*values);
2894 	*len = 0;
2895 	*names = NULL;
2896 	*values = NULL;
2897 	goto out;
2898 }
2899 
2900 
2901 int security_set_bools(struct selinux_state *state, u32 len, int *values)
2902 {
2903 	struct policydb *policydb;
2904 	int rc;
2905 	u32 i, lenp, seqno = 0;
2906 
2907 	write_lock_irq(&state->ss->policy_rwlock);
2908 
2909 	policydb = &state->ss->policydb;
2910 
2911 	rc = -EFAULT;
2912 	lenp = policydb->p_bools.nprim;
2913 	if (len != lenp)
2914 		goto out;
2915 
2916 	for (i = 0; i < len; i++) {
2917 		if (!!values[i] != policydb->bool_val_to_struct[i]->state) {
2918 			audit_log(audit_context(), GFP_ATOMIC,
2919 				AUDIT_MAC_CONFIG_CHANGE,
2920 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2921 				sym_name(policydb, SYM_BOOLS, i),
2922 				!!values[i],
2923 				policydb->bool_val_to_struct[i]->state,
2924 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
2925 				audit_get_sessionid(current));
2926 		}
2927 		if (values[i])
2928 			policydb->bool_val_to_struct[i]->state = 1;
2929 		else
2930 			policydb->bool_val_to_struct[i]->state = 0;
2931 	}
2932 
2933 	evaluate_cond_nodes(policydb);
2934 
2935 	seqno = ++state->ss->latest_granting;
2936 	rc = 0;
2937 out:
2938 	write_unlock_irq(&state->ss->policy_rwlock);
2939 	if (!rc) {
2940 		avc_ss_reset(state->avc, seqno);
2941 		selnl_notify_policyload(seqno);
2942 		selinux_status_update_policyload(state, seqno);
2943 		selinux_xfrm_notify_policyload();
2944 	}
2945 	return rc;
2946 }
2947 
2948 int security_get_bool_value(struct selinux_state *state,
2949 			    u32 index)
2950 {
2951 	struct policydb *policydb;
2952 	int rc;
2953 	u32 len;
2954 
2955 	read_lock(&state->ss->policy_rwlock);
2956 
2957 	policydb = &state->ss->policydb;
2958 
2959 	rc = -EFAULT;
2960 	len = policydb->p_bools.nprim;
2961 	if (index >= len)
2962 		goto out;
2963 
2964 	rc = policydb->bool_val_to_struct[index]->state;
2965 out:
2966 	read_unlock(&state->ss->policy_rwlock);
2967 	return rc;
2968 }
2969 
2970 static int security_preserve_bools(struct selinux_state *state,
2971 				   struct policydb *policydb)
2972 {
2973 	int rc, *bvalues = NULL;
2974 	char **bnames = NULL;
2975 	struct cond_bool_datum *booldatum;
2976 	u32 i, nbools = 0;
2977 
2978 	rc = security_get_bools(state, &nbools, &bnames, &bvalues);
2979 	if (rc)
2980 		goto out;
2981 	for (i = 0; i < nbools; i++) {
2982 		booldatum = hashtab_search(&policydb->p_bools.table, bnames[i]);
2983 		if (booldatum)
2984 			booldatum->state = bvalues[i];
2985 	}
2986 	evaluate_cond_nodes(policydb);
2987 
2988 out:
2989 	if (bnames) {
2990 		for (i = 0; i < nbools; i++)
2991 			kfree(bnames[i]);
2992 	}
2993 	kfree(bnames);
2994 	kfree(bvalues);
2995 	return rc;
2996 }
2997 
2998 /*
2999  * security_sid_mls_copy() - computes a new sid based on the given
3000  * sid and the mls portion of mls_sid.
3001  */
3002 int security_sid_mls_copy(struct selinux_state *state,
3003 			  u32 sid, u32 mls_sid, u32 *new_sid)
3004 {
3005 	struct policydb *policydb = &state->ss->policydb;
3006 	struct sidtab *sidtab = state->ss->sidtab;
3007 	struct context *context1;
3008 	struct context *context2;
3009 	struct context newcon;
3010 	char *s;
3011 	u32 len;
3012 	int rc;
3013 
3014 	rc = 0;
3015 	if (!selinux_initialized(state) || !policydb->mls_enabled) {
3016 		*new_sid = sid;
3017 		goto out;
3018 	}
3019 
3020 	context_init(&newcon);
3021 
3022 	read_lock(&state->ss->policy_rwlock);
3023 
3024 	rc = -EINVAL;
3025 	context1 = sidtab_search(sidtab, sid);
3026 	if (!context1) {
3027 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3028 			__func__, sid);
3029 		goto out_unlock;
3030 	}
3031 
3032 	rc = -EINVAL;
3033 	context2 = sidtab_search(sidtab, mls_sid);
3034 	if (!context2) {
3035 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3036 			__func__, mls_sid);
3037 		goto out_unlock;
3038 	}
3039 
3040 	newcon.user = context1->user;
3041 	newcon.role = context1->role;
3042 	newcon.type = context1->type;
3043 	rc = mls_context_cpy(&newcon, context2);
3044 	if (rc)
3045 		goto out_unlock;
3046 
3047 	/* Check the validity of the new context. */
3048 	if (!policydb_context_isvalid(policydb, &newcon)) {
3049 		rc = convert_context_handle_invalid_context(state, &newcon);
3050 		if (rc) {
3051 			if (!context_struct_to_string(policydb, &newcon, &s,
3052 						      &len)) {
3053 				struct audit_buffer *ab;
3054 
3055 				ab = audit_log_start(audit_context(),
3056 						     GFP_ATOMIC,
3057 						     AUDIT_SELINUX_ERR);
3058 				audit_log_format(ab,
3059 						 "op=security_sid_mls_copy invalid_context=");
3060 				/* don't record NUL with untrusted strings */
3061 				audit_log_n_untrustedstring(ab, s, len - 1);
3062 				audit_log_end(ab);
3063 				kfree(s);
3064 			}
3065 			goto out_unlock;
3066 		}
3067 	}
3068 	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3069 out_unlock:
3070 	read_unlock(&state->ss->policy_rwlock);
3071 	context_destroy(&newcon);
3072 out:
3073 	return rc;
3074 }
3075 
3076 /**
3077  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3078  * @nlbl_sid: NetLabel SID
3079  * @nlbl_type: NetLabel labeling protocol type
3080  * @xfrm_sid: XFRM SID
3081  *
3082  * Description:
3083  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3084  * resolved into a single SID it is returned via @peer_sid and the function
3085  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3086  * returns a negative value.  A table summarizing the behavior is below:
3087  *
3088  *                                 | function return |      @sid
3089  *   ------------------------------+-----------------+-----------------
3090  *   no peer labels                |        0        |    SECSID_NULL
3091  *   single peer label             |        0        |    <peer_label>
3092  *   multiple, consistent labels   |        0        |    <peer_label>
3093  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3094  *
3095  */
3096 int security_net_peersid_resolve(struct selinux_state *state,
3097 				 u32 nlbl_sid, u32 nlbl_type,
3098 				 u32 xfrm_sid,
3099 				 u32 *peer_sid)
3100 {
3101 	struct policydb *policydb = &state->ss->policydb;
3102 	struct sidtab *sidtab = state->ss->sidtab;
3103 	int rc;
3104 	struct context *nlbl_ctx;
3105 	struct context *xfrm_ctx;
3106 
3107 	*peer_sid = SECSID_NULL;
3108 
3109 	/* handle the common (which also happens to be the set of easy) cases
3110 	 * right away, these two if statements catch everything involving a
3111 	 * single or absent peer SID/label */
3112 	if (xfrm_sid == SECSID_NULL) {
3113 		*peer_sid = nlbl_sid;
3114 		return 0;
3115 	}
3116 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3117 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3118 	 * is present */
3119 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3120 		*peer_sid = xfrm_sid;
3121 		return 0;
3122 	}
3123 
3124 	/*
3125 	 * We don't need to check initialized here since the only way both
3126 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3127 	 * security server was initialized and state->initialized was true.
3128 	 */
3129 	if (!policydb->mls_enabled)
3130 		return 0;
3131 
3132 	read_lock(&state->ss->policy_rwlock);
3133 
3134 	rc = -EINVAL;
3135 	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3136 	if (!nlbl_ctx) {
3137 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3138 		       __func__, nlbl_sid);
3139 		goto out;
3140 	}
3141 	rc = -EINVAL;
3142 	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3143 	if (!xfrm_ctx) {
3144 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3145 		       __func__, xfrm_sid);
3146 		goto out;
3147 	}
3148 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3149 	if (rc)
3150 		goto out;
3151 
3152 	/* at present NetLabel SIDs/labels really only carry MLS
3153 	 * information so if the MLS portion of the NetLabel SID
3154 	 * matches the MLS portion of the labeled XFRM SID/label
3155 	 * then pass along the XFRM SID as it is the most
3156 	 * expressive */
3157 	*peer_sid = xfrm_sid;
3158 out:
3159 	read_unlock(&state->ss->policy_rwlock);
3160 	return rc;
3161 }
3162 
3163 static int get_classes_callback(void *k, void *d, void *args)
3164 {
3165 	struct class_datum *datum = d;
3166 	char *name = k, **classes = args;
3167 	int value = datum->value - 1;
3168 
3169 	classes[value] = kstrdup(name, GFP_ATOMIC);
3170 	if (!classes[value])
3171 		return -ENOMEM;
3172 
3173 	return 0;
3174 }
3175 
3176 int security_get_classes(struct selinux_state *state,
3177 			 char ***classes, int *nclasses)
3178 {
3179 	struct policydb *policydb = &state->ss->policydb;
3180 	int rc;
3181 
3182 	if (!selinux_initialized(state)) {
3183 		*nclasses = 0;
3184 		*classes = NULL;
3185 		return 0;
3186 	}
3187 
3188 	read_lock(&state->ss->policy_rwlock);
3189 
3190 	rc = -ENOMEM;
3191 	*nclasses = policydb->p_classes.nprim;
3192 	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3193 	if (!*classes)
3194 		goto out;
3195 
3196 	rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3197 			 *classes);
3198 	if (rc) {
3199 		int i;
3200 		for (i = 0; i < *nclasses; i++)
3201 			kfree((*classes)[i]);
3202 		kfree(*classes);
3203 	}
3204 
3205 out:
3206 	read_unlock(&state->ss->policy_rwlock);
3207 	return rc;
3208 }
3209 
3210 static int get_permissions_callback(void *k, void *d, void *args)
3211 {
3212 	struct perm_datum *datum = d;
3213 	char *name = k, **perms = args;
3214 	int value = datum->value - 1;
3215 
3216 	perms[value] = kstrdup(name, GFP_ATOMIC);
3217 	if (!perms[value])
3218 		return -ENOMEM;
3219 
3220 	return 0;
3221 }
3222 
3223 int security_get_permissions(struct selinux_state *state,
3224 			     char *class, char ***perms, int *nperms)
3225 {
3226 	struct policydb *policydb = &state->ss->policydb;
3227 	int rc, i;
3228 	struct class_datum *match;
3229 
3230 	read_lock(&state->ss->policy_rwlock);
3231 
3232 	rc = -EINVAL;
3233 	match = hashtab_search(&policydb->p_classes.table, class);
3234 	if (!match) {
3235 		pr_err("SELinux: %s:  unrecognized class %s\n",
3236 			__func__, class);
3237 		goto out;
3238 	}
3239 
3240 	rc = -ENOMEM;
3241 	*nperms = match->permissions.nprim;
3242 	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3243 	if (!*perms)
3244 		goto out;
3245 
3246 	if (match->comdatum) {
3247 		rc = hashtab_map(&match->comdatum->permissions.table,
3248 				 get_permissions_callback, *perms);
3249 		if (rc)
3250 			goto err;
3251 	}
3252 
3253 	rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3254 			 *perms);
3255 	if (rc)
3256 		goto err;
3257 
3258 out:
3259 	read_unlock(&state->ss->policy_rwlock);
3260 	return rc;
3261 
3262 err:
3263 	read_unlock(&state->ss->policy_rwlock);
3264 	for (i = 0; i < *nperms; i++)
3265 		kfree((*perms)[i]);
3266 	kfree(*perms);
3267 	return rc;
3268 }
3269 
3270 int security_get_reject_unknown(struct selinux_state *state)
3271 {
3272 	return state->ss->policydb.reject_unknown;
3273 }
3274 
3275 int security_get_allow_unknown(struct selinux_state *state)
3276 {
3277 	return state->ss->policydb.allow_unknown;
3278 }
3279 
3280 /**
3281  * security_policycap_supported - Check for a specific policy capability
3282  * @req_cap: capability
3283  *
3284  * Description:
3285  * This function queries the currently loaded policy to see if it supports the
3286  * capability specified by @req_cap.  Returns true (1) if the capability is
3287  * supported, false (0) if it isn't supported.
3288  *
3289  */
3290 int security_policycap_supported(struct selinux_state *state,
3291 				 unsigned int req_cap)
3292 {
3293 	struct policydb *policydb = &state->ss->policydb;
3294 	int rc;
3295 
3296 	read_lock(&state->ss->policy_rwlock);
3297 	rc = ebitmap_get_bit(&policydb->policycaps, req_cap);
3298 	read_unlock(&state->ss->policy_rwlock);
3299 
3300 	return rc;
3301 }
3302 
3303 struct selinux_audit_rule {
3304 	u32 au_seqno;
3305 	struct context au_ctxt;
3306 };
3307 
3308 void selinux_audit_rule_free(void *vrule)
3309 {
3310 	struct selinux_audit_rule *rule = vrule;
3311 
3312 	if (rule) {
3313 		context_destroy(&rule->au_ctxt);
3314 		kfree(rule);
3315 	}
3316 }
3317 
3318 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3319 {
3320 	struct selinux_state *state = &selinux_state;
3321 	struct policydb *policydb = &state->ss->policydb;
3322 	struct selinux_audit_rule *tmprule;
3323 	struct role_datum *roledatum;
3324 	struct type_datum *typedatum;
3325 	struct user_datum *userdatum;
3326 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3327 	int rc = 0;
3328 
3329 	*rule = NULL;
3330 
3331 	if (!selinux_initialized(state))
3332 		return -EOPNOTSUPP;
3333 
3334 	switch (field) {
3335 	case AUDIT_SUBJ_USER:
3336 	case AUDIT_SUBJ_ROLE:
3337 	case AUDIT_SUBJ_TYPE:
3338 	case AUDIT_OBJ_USER:
3339 	case AUDIT_OBJ_ROLE:
3340 	case AUDIT_OBJ_TYPE:
3341 		/* only 'equals' and 'not equals' fit user, role, and type */
3342 		if (op != Audit_equal && op != Audit_not_equal)
3343 			return -EINVAL;
3344 		break;
3345 	case AUDIT_SUBJ_SEN:
3346 	case AUDIT_SUBJ_CLR:
3347 	case AUDIT_OBJ_LEV_LOW:
3348 	case AUDIT_OBJ_LEV_HIGH:
3349 		/* we do not allow a range, indicated by the presence of '-' */
3350 		if (strchr(rulestr, '-'))
3351 			return -EINVAL;
3352 		break;
3353 	default:
3354 		/* only the above fields are valid */
3355 		return -EINVAL;
3356 	}
3357 
3358 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3359 	if (!tmprule)
3360 		return -ENOMEM;
3361 
3362 	context_init(&tmprule->au_ctxt);
3363 
3364 	read_lock(&state->ss->policy_rwlock);
3365 
3366 	tmprule->au_seqno = state->ss->latest_granting;
3367 
3368 	switch (field) {
3369 	case AUDIT_SUBJ_USER:
3370 	case AUDIT_OBJ_USER:
3371 		rc = -EINVAL;
3372 		userdatum = hashtab_search(&policydb->p_users.table, rulestr);
3373 		if (!userdatum)
3374 			goto out;
3375 		tmprule->au_ctxt.user = userdatum->value;
3376 		break;
3377 	case AUDIT_SUBJ_ROLE:
3378 	case AUDIT_OBJ_ROLE:
3379 		rc = -EINVAL;
3380 		roledatum = hashtab_search(&policydb->p_roles.table, rulestr);
3381 		if (!roledatum)
3382 			goto out;
3383 		tmprule->au_ctxt.role = roledatum->value;
3384 		break;
3385 	case AUDIT_SUBJ_TYPE:
3386 	case AUDIT_OBJ_TYPE:
3387 		rc = -EINVAL;
3388 		typedatum = hashtab_search(&policydb->p_types.table, rulestr);
3389 		if (!typedatum)
3390 			goto out;
3391 		tmprule->au_ctxt.type = typedatum->value;
3392 		break;
3393 	case AUDIT_SUBJ_SEN:
3394 	case AUDIT_SUBJ_CLR:
3395 	case AUDIT_OBJ_LEV_LOW:
3396 	case AUDIT_OBJ_LEV_HIGH:
3397 		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3398 				     GFP_ATOMIC);
3399 		if (rc)
3400 			goto out;
3401 		break;
3402 	}
3403 	rc = 0;
3404 out:
3405 	read_unlock(&state->ss->policy_rwlock);
3406 
3407 	if (rc) {
3408 		selinux_audit_rule_free(tmprule);
3409 		tmprule = NULL;
3410 	}
3411 
3412 	*rule = tmprule;
3413 
3414 	return rc;
3415 }
3416 
3417 /* Check to see if the rule contains any selinux fields */
3418 int selinux_audit_rule_known(struct audit_krule *rule)
3419 {
3420 	int i;
3421 
3422 	for (i = 0; i < rule->field_count; i++) {
3423 		struct audit_field *f = &rule->fields[i];
3424 		switch (f->type) {
3425 		case AUDIT_SUBJ_USER:
3426 		case AUDIT_SUBJ_ROLE:
3427 		case AUDIT_SUBJ_TYPE:
3428 		case AUDIT_SUBJ_SEN:
3429 		case AUDIT_SUBJ_CLR:
3430 		case AUDIT_OBJ_USER:
3431 		case AUDIT_OBJ_ROLE:
3432 		case AUDIT_OBJ_TYPE:
3433 		case AUDIT_OBJ_LEV_LOW:
3434 		case AUDIT_OBJ_LEV_HIGH:
3435 			return 1;
3436 		}
3437 	}
3438 
3439 	return 0;
3440 }
3441 
3442 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3443 {
3444 	struct selinux_state *state = &selinux_state;
3445 	struct context *ctxt;
3446 	struct mls_level *level;
3447 	struct selinux_audit_rule *rule = vrule;
3448 	int match = 0;
3449 
3450 	if (unlikely(!rule)) {
3451 		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3452 		return -ENOENT;
3453 	}
3454 
3455 	read_lock(&state->ss->policy_rwlock);
3456 
3457 	if (rule->au_seqno < state->ss->latest_granting) {
3458 		match = -ESTALE;
3459 		goto out;
3460 	}
3461 
3462 	ctxt = sidtab_search(state->ss->sidtab, sid);
3463 	if (unlikely(!ctxt)) {
3464 		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3465 			  sid);
3466 		match = -ENOENT;
3467 		goto out;
3468 	}
3469 
3470 	/* a field/op pair that is not caught here will simply fall through
3471 	   without a match */
3472 	switch (field) {
3473 	case AUDIT_SUBJ_USER:
3474 	case AUDIT_OBJ_USER:
3475 		switch (op) {
3476 		case Audit_equal:
3477 			match = (ctxt->user == rule->au_ctxt.user);
3478 			break;
3479 		case Audit_not_equal:
3480 			match = (ctxt->user != rule->au_ctxt.user);
3481 			break;
3482 		}
3483 		break;
3484 	case AUDIT_SUBJ_ROLE:
3485 	case AUDIT_OBJ_ROLE:
3486 		switch (op) {
3487 		case Audit_equal:
3488 			match = (ctxt->role == rule->au_ctxt.role);
3489 			break;
3490 		case Audit_not_equal:
3491 			match = (ctxt->role != rule->au_ctxt.role);
3492 			break;
3493 		}
3494 		break;
3495 	case AUDIT_SUBJ_TYPE:
3496 	case AUDIT_OBJ_TYPE:
3497 		switch (op) {
3498 		case Audit_equal:
3499 			match = (ctxt->type == rule->au_ctxt.type);
3500 			break;
3501 		case Audit_not_equal:
3502 			match = (ctxt->type != rule->au_ctxt.type);
3503 			break;
3504 		}
3505 		break;
3506 	case AUDIT_SUBJ_SEN:
3507 	case AUDIT_SUBJ_CLR:
3508 	case AUDIT_OBJ_LEV_LOW:
3509 	case AUDIT_OBJ_LEV_HIGH:
3510 		level = ((field == AUDIT_SUBJ_SEN ||
3511 			  field == AUDIT_OBJ_LEV_LOW) ?
3512 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3513 		switch (op) {
3514 		case Audit_equal:
3515 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3516 					     level);
3517 			break;
3518 		case Audit_not_equal:
3519 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3520 					      level);
3521 			break;
3522 		case Audit_lt:
3523 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3524 					       level) &&
3525 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3526 					       level));
3527 			break;
3528 		case Audit_le:
3529 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3530 					      level);
3531 			break;
3532 		case Audit_gt:
3533 			match = (mls_level_dom(level,
3534 					      &rule->au_ctxt.range.level[0]) &&
3535 				 !mls_level_eq(level,
3536 					       &rule->au_ctxt.range.level[0]));
3537 			break;
3538 		case Audit_ge:
3539 			match = mls_level_dom(level,
3540 					      &rule->au_ctxt.range.level[0]);
3541 			break;
3542 		}
3543 	}
3544 
3545 out:
3546 	read_unlock(&state->ss->policy_rwlock);
3547 	return match;
3548 }
3549 
3550 static int (*aurule_callback)(void) = audit_update_lsm_rules;
3551 
3552 static int aurule_avc_callback(u32 event)
3553 {
3554 	int err = 0;
3555 
3556 	if (event == AVC_CALLBACK_RESET && aurule_callback)
3557 		err = aurule_callback();
3558 	return err;
3559 }
3560 
3561 static int __init aurule_init(void)
3562 {
3563 	int err;
3564 
3565 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3566 	if (err)
3567 		panic("avc_add_callback() failed, error %d\n", err);
3568 
3569 	return err;
3570 }
3571 __initcall(aurule_init);
3572 
3573 #ifdef CONFIG_NETLABEL
3574 /**
3575  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3576  * @secattr: the NetLabel packet security attributes
3577  * @sid: the SELinux SID
3578  *
3579  * Description:
3580  * Attempt to cache the context in @ctx, which was derived from the packet in
3581  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3582  * already been initialized.
3583  *
3584  */
3585 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3586 				      u32 sid)
3587 {
3588 	u32 *sid_cache;
3589 
3590 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3591 	if (sid_cache == NULL)
3592 		return;
3593 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3594 	if (secattr->cache == NULL) {
3595 		kfree(sid_cache);
3596 		return;
3597 	}
3598 
3599 	*sid_cache = sid;
3600 	secattr->cache->free = kfree;
3601 	secattr->cache->data = sid_cache;
3602 	secattr->flags |= NETLBL_SECATTR_CACHE;
3603 }
3604 
3605 /**
3606  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3607  * @secattr: the NetLabel packet security attributes
3608  * @sid: the SELinux SID
3609  *
3610  * Description:
3611  * Convert the given NetLabel security attributes in @secattr into a
3612  * SELinux SID.  If the @secattr field does not contain a full SELinux
3613  * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3614  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3615  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3616  * conversion for future lookups.  Returns zero on success, negative values on
3617  * failure.
3618  *
3619  */
3620 int security_netlbl_secattr_to_sid(struct selinux_state *state,
3621 				   struct netlbl_lsm_secattr *secattr,
3622 				   u32 *sid)
3623 {
3624 	struct policydb *policydb = &state->ss->policydb;
3625 	struct sidtab *sidtab = state->ss->sidtab;
3626 	int rc;
3627 	struct context *ctx;
3628 	struct context ctx_new;
3629 
3630 	if (!selinux_initialized(state)) {
3631 		*sid = SECSID_NULL;
3632 		return 0;
3633 	}
3634 
3635 	read_lock(&state->ss->policy_rwlock);
3636 
3637 	if (secattr->flags & NETLBL_SECATTR_CACHE)
3638 		*sid = *(u32 *)secattr->cache->data;
3639 	else if (secattr->flags & NETLBL_SECATTR_SECID)
3640 		*sid = secattr->attr.secid;
3641 	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3642 		rc = -EIDRM;
3643 		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3644 		if (ctx == NULL)
3645 			goto out;
3646 
3647 		context_init(&ctx_new);
3648 		ctx_new.user = ctx->user;
3649 		ctx_new.role = ctx->role;
3650 		ctx_new.type = ctx->type;
3651 		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3652 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3653 			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3654 			if (rc)
3655 				goto out;
3656 		}
3657 		rc = -EIDRM;
3658 		if (!mls_context_isvalid(policydb, &ctx_new))
3659 			goto out_free;
3660 
3661 		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3662 		if (rc)
3663 			goto out_free;
3664 
3665 		security_netlbl_cache_add(secattr, *sid);
3666 
3667 		ebitmap_destroy(&ctx_new.range.level[0].cat);
3668 	} else
3669 		*sid = SECSID_NULL;
3670 
3671 	read_unlock(&state->ss->policy_rwlock);
3672 	return 0;
3673 out_free:
3674 	ebitmap_destroy(&ctx_new.range.level[0].cat);
3675 out:
3676 	read_unlock(&state->ss->policy_rwlock);
3677 	return rc;
3678 }
3679 
3680 /**
3681  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3682  * @sid: the SELinux SID
3683  * @secattr: the NetLabel packet security attributes
3684  *
3685  * Description:
3686  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3687  * Returns zero on success, negative values on failure.
3688  *
3689  */
3690 int security_netlbl_sid_to_secattr(struct selinux_state *state,
3691 				   u32 sid, struct netlbl_lsm_secattr *secattr)
3692 {
3693 	struct policydb *policydb = &state->ss->policydb;
3694 	int rc;
3695 	struct context *ctx;
3696 
3697 	if (!selinux_initialized(state))
3698 		return 0;
3699 
3700 	read_lock(&state->ss->policy_rwlock);
3701 
3702 	rc = -ENOENT;
3703 	ctx = sidtab_search(state->ss->sidtab, sid);
3704 	if (ctx == NULL)
3705 		goto out;
3706 
3707 	rc = -ENOMEM;
3708 	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3709 				  GFP_ATOMIC);
3710 	if (secattr->domain == NULL)
3711 		goto out;
3712 
3713 	secattr->attr.secid = sid;
3714 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3715 	mls_export_netlbl_lvl(policydb, ctx, secattr);
3716 	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3717 out:
3718 	read_unlock(&state->ss->policy_rwlock);
3719 	return rc;
3720 }
3721 #endif /* CONFIG_NETLABEL */
3722 
3723 /**
3724  * security_read_policy - read the policy.
3725  * @data: binary policy data
3726  * @len: length of data in bytes
3727  *
3728  */
3729 int security_read_policy(struct selinux_state *state,
3730 			 void **data, size_t *len)
3731 {
3732 	struct policydb *policydb = &state->ss->policydb;
3733 	int rc;
3734 	struct policy_file fp;
3735 
3736 	if (!selinux_initialized(state))
3737 		return -EINVAL;
3738 
3739 	*len = security_policydb_len(state);
3740 
3741 	*data = vmalloc_user(*len);
3742 	if (!*data)
3743 		return -ENOMEM;
3744 
3745 	fp.data = *data;
3746 	fp.len = *len;
3747 
3748 	read_lock(&state->ss->policy_rwlock);
3749 	rc = policydb_write(policydb, &fp);
3750 	read_unlock(&state->ss->policy_rwlock);
3751 
3752 	if (rc)
3753 		return rc;
3754 
3755 	*len = (unsigned long)fp.data - (unsigned long)*data;
3756 	return 0;
3757 
3758 }
3759