1 /* 2 * Implementation of the security services. 3 * 4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil> 5 * James Morris <jmorris@redhat.com> 6 * 7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com> 8 * 9 * Support for enhanced MLS infrastructure. 10 * Support for context based audit filters. 11 * 12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com> 13 * 14 * Added conditional policy language extensions 15 * 16 * Updated: Hewlett-Packard <paul@paul-moore.com> 17 * 18 * Added support for NetLabel 19 * Added support for the policy capability bitmap 20 * 21 * Updated: Chad Sellers <csellers@tresys.com> 22 * 23 * Added validation of kernel classes and permissions 24 * 25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com> 26 * 27 * Added support for bounds domain and audit messaged on masked permissions 28 * 29 * Updated: Guido Trentalancia <guido@trentalancia.com> 30 * 31 * Added support for runtime switching of the policy type 32 * 33 * Copyright (C) 2008, 2009 NEC Corporation 34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P. 35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc. 36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC 37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> 38 * This program is free software; you can redistribute it and/or modify 39 * it under the terms of the GNU General Public License as published by 40 * the Free Software Foundation, version 2. 41 */ 42 #include <linux/kernel.h> 43 #include <linux/slab.h> 44 #include <linux/string.h> 45 #include <linux/spinlock.h> 46 #include <linux/rcupdate.h> 47 #include <linux/errno.h> 48 #include <linux/in.h> 49 #include <linux/sched.h> 50 #include <linux/audit.h> 51 #include <linux/mutex.h> 52 #include <linux/selinux.h> 53 #include <linux/flex_array.h> 54 #include <linux/vmalloc.h> 55 #include <net/netlabel.h> 56 57 #include "flask.h" 58 #include "avc.h" 59 #include "avc_ss.h" 60 #include "security.h" 61 #include "context.h" 62 #include "policydb.h" 63 #include "sidtab.h" 64 #include "services.h" 65 #include "conditional.h" 66 #include "mls.h" 67 #include "objsec.h" 68 #include "netlabel.h" 69 #include "xfrm.h" 70 #include "ebitmap.h" 71 #include "audit.h" 72 73 int selinux_policycap_netpeer; 74 int selinux_policycap_openperm; 75 int selinux_policycap_alwaysnetwork; 76 77 static DEFINE_RWLOCK(policy_rwlock); 78 79 static struct sidtab sidtab; 80 struct policydb policydb; 81 int ss_initialized; 82 83 /* 84 * The largest sequence number that has been used when 85 * providing an access decision to the access vector cache. 86 * The sequence number only changes when a policy change 87 * occurs. 88 */ 89 static u32 latest_granting; 90 91 /* Forward declaration. */ 92 static int context_struct_to_string(struct context *context, char **scontext, 93 u32 *scontext_len); 94 95 static void context_struct_compute_av(struct context *scontext, 96 struct context *tcontext, 97 u16 tclass, 98 struct av_decision *avd); 99 100 struct selinux_mapping { 101 u16 value; /* policy value */ 102 unsigned num_perms; 103 u32 perms[sizeof(u32) * 8]; 104 }; 105 106 static struct selinux_mapping *current_mapping; 107 static u16 current_mapping_size; 108 109 static int selinux_set_mapping(struct policydb *pol, 110 struct security_class_mapping *map, 111 struct selinux_mapping **out_map_p, 112 u16 *out_map_size) 113 { 114 struct selinux_mapping *out_map = NULL; 115 size_t size = sizeof(struct selinux_mapping); 116 u16 i, j; 117 unsigned k; 118 bool print_unknown_handle = false; 119 120 /* Find number of classes in the input mapping */ 121 if (!map) 122 return -EINVAL; 123 i = 0; 124 while (map[i].name) 125 i++; 126 127 /* Allocate space for the class records, plus one for class zero */ 128 out_map = kcalloc(++i, size, GFP_ATOMIC); 129 if (!out_map) 130 return -ENOMEM; 131 132 /* Store the raw class and permission values */ 133 j = 0; 134 while (map[j].name) { 135 struct security_class_mapping *p_in = map + (j++); 136 struct selinux_mapping *p_out = out_map + j; 137 138 /* An empty class string skips ahead */ 139 if (!strcmp(p_in->name, "")) { 140 p_out->num_perms = 0; 141 continue; 142 } 143 144 p_out->value = string_to_security_class(pol, p_in->name); 145 if (!p_out->value) { 146 printk(KERN_INFO 147 "SELinux: Class %s not defined in policy.\n", 148 p_in->name); 149 if (pol->reject_unknown) 150 goto err; 151 p_out->num_perms = 0; 152 print_unknown_handle = true; 153 continue; 154 } 155 156 k = 0; 157 while (p_in->perms && p_in->perms[k]) { 158 /* An empty permission string skips ahead */ 159 if (!*p_in->perms[k]) { 160 k++; 161 continue; 162 } 163 p_out->perms[k] = string_to_av_perm(pol, p_out->value, 164 p_in->perms[k]); 165 if (!p_out->perms[k]) { 166 printk(KERN_INFO 167 "SELinux: Permission %s in class %s not defined in policy.\n", 168 p_in->perms[k], p_in->name); 169 if (pol->reject_unknown) 170 goto err; 171 print_unknown_handle = true; 172 } 173 174 k++; 175 } 176 p_out->num_perms = k; 177 } 178 179 if (print_unknown_handle) 180 printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n", 181 pol->allow_unknown ? "allowed" : "denied"); 182 183 *out_map_p = out_map; 184 *out_map_size = i; 185 return 0; 186 err: 187 kfree(out_map); 188 return -EINVAL; 189 } 190 191 /* 192 * Get real, policy values from mapped values 193 */ 194 195 static u16 unmap_class(u16 tclass) 196 { 197 if (tclass < current_mapping_size) 198 return current_mapping[tclass].value; 199 200 return tclass; 201 } 202 203 /* 204 * Get kernel value for class from its policy value 205 */ 206 static u16 map_class(u16 pol_value) 207 { 208 u16 i; 209 210 for (i = 1; i < current_mapping_size; i++) { 211 if (current_mapping[i].value == pol_value) 212 return i; 213 } 214 215 return SECCLASS_NULL; 216 } 217 218 static void map_decision(u16 tclass, struct av_decision *avd, 219 int allow_unknown) 220 { 221 if (tclass < current_mapping_size) { 222 unsigned i, n = current_mapping[tclass].num_perms; 223 u32 result; 224 225 for (i = 0, result = 0; i < n; i++) { 226 if (avd->allowed & current_mapping[tclass].perms[i]) 227 result |= 1<<i; 228 if (allow_unknown && !current_mapping[tclass].perms[i]) 229 result |= 1<<i; 230 } 231 avd->allowed = result; 232 233 for (i = 0, result = 0; i < n; i++) 234 if (avd->auditallow & current_mapping[tclass].perms[i]) 235 result |= 1<<i; 236 avd->auditallow = result; 237 238 for (i = 0, result = 0; i < n; i++) { 239 if (avd->auditdeny & current_mapping[tclass].perms[i]) 240 result |= 1<<i; 241 if (!allow_unknown && !current_mapping[tclass].perms[i]) 242 result |= 1<<i; 243 } 244 /* 245 * In case the kernel has a bug and requests a permission 246 * between num_perms and the maximum permission number, we 247 * should audit that denial 248 */ 249 for (; i < (sizeof(u32)*8); i++) 250 result |= 1<<i; 251 avd->auditdeny = result; 252 } 253 } 254 255 int security_mls_enabled(void) 256 { 257 return policydb.mls_enabled; 258 } 259 260 /* 261 * Return the boolean value of a constraint expression 262 * when it is applied to the specified source and target 263 * security contexts. 264 * 265 * xcontext is a special beast... It is used by the validatetrans rules 266 * only. For these rules, scontext is the context before the transition, 267 * tcontext is the context after the transition, and xcontext is the context 268 * of the process performing the transition. All other callers of 269 * constraint_expr_eval should pass in NULL for xcontext. 270 */ 271 static int constraint_expr_eval(struct context *scontext, 272 struct context *tcontext, 273 struct context *xcontext, 274 struct constraint_expr *cexpr) 275 { 276 u32 val1, val2; 277 struct context *c; 278 struct role_datum *r1, *r2; 279 struct mls_level *l1, *l2; 280 struct constraint_expr *e; 281 int s[CEXPR_MAXDEPTH]; 282 int sp = -1; 283 284 for (e = cexpr; e; e = e->next) { 285 switch (e->expr_type) { 286 case CEXPR_NOT: 287 BUG_ON(sp < 0); 288 s[sp] = !s[sp]; 289 break; 290 case CEXPR_AND: 291 BUG_ON(sp < 1); 292 sp--; 293 s[sp] &= s[sp + 1]; 294 break; 295 case CEXPR_OR: 296 BUG_ON(sp < 1); 297 sp--; 298 s[sp] |= s[sp + 1]; 299 break; 300 case CEXPR_ATTR: 301 if (sp == (CEXPR_MAXDEPTH - 1)) 302 return 0; 303 switch (e->attr) { 304 case CEXPR_USER: 305 val1 = scontext->user; 306 val2 = tcontext->user; 307 break; 308 case CEXPR_TYPE: 309 val1 = scontext->type; 310 val2 = tcontext->type; 311 break; 312 case CEXPR_ROLE: 313 val1 = scontext->role; 314 val2 = tcontext->role; 315 r1 = policydb.role_val_to_struct[val1 - 1]; 316 r2 = policydb.role_val_to_struct[val2 - 1]; 317 switch (e->op) { 318 case CEXPR_DOM: 319 s[++sp] = ebitmap_get_bit(&r1->dominates, 320 val2 - 1); 321 continue; 322 case CEXPR_DOMBY: 323 s[++sp] = ebitmap_get_bit(&r2->dominates, 324 val1 - 1); 325 continue; 326 case CEXPR_INCOMP: 327 s[++sp] = (!ebitmap_get_bit(&r1->dominates, 328 val2 - 1) && 329 !ebitmap_get_bit(&r2->dominates, 330 val1 - 1)); 331 continue; 332 default: 333 break; 334 } 335 break; 336 case CEXPR_L1L2: 337 l1 = &(scontext->range.level[0]); 338 l2 = &(tcontext->range.level[0]); 339 goto mls_ops; 340 case CEXPR_L1H2: 341 l1 = &(scontext->range.level[0]); 342 l2 = &(tcontext->range.level[1]); 343 goto mls_ops; 344 case CEXPR_H1L2: 345 l1 = &(scontext->range.level[1]); 346 l2 = &(tcontext->range.level[0]); 347 goto mls_ops; 348 case CEXPR_H1H2: 349 l1 = &(scontext->range.level[1]); 350 l2 = &(tcontext->range.level[1]); 351 goto mls_ops; 352 case CEXPR_L1H1: 353 l1 = &(scontext->range.level[0]); 354 l2 = &(scontext->range.level[1]); 355 goto mls_ops; 356 case CEXPR_L2H2: 357 l1 = &(tcontext->range.level[0]); 358 l2 = &(tcontext->range.level[1]); 359 goto mls_ops; 360 mls_ops: 361 switch (e->op) { 362 case CEXPR_EQ: 363 s[++sp] = mls_level_eq(l1, l2); 364 continue; 365 case CEXPR_NEQ: 366 s[++sp] = !mls_level_eq(l1, l2); 367 continue; 368 case CEXPR_DOM: 369 s[++sp] = mls_level_dom(l1, l2); 370 continue; 371 case CEXPR_DOMBY: 372 s[++sp] = mls_level_dom(l2, l1); 373 continue; 374 case CEXPR_INCOMP: 375 s[++sp] = mls_level_incomp(l2, l1); 376 continue; 377 default: 378 BUG(); 379 return 0; 380 } 381 break; 382 default: 383 BUG(); 384 return 0; 385 } 386 387 switch (e->op) { 388 case CEXPR_EQ: 389 s[++sp] = (val1 == val2); 390 break; 391 case CEXPR_NEQ: 392 s[++sp] = (val1 != val2); 393 break; 394 default: 395 BUG(); 396 return 0; 397 } 398 break; 399 case CEXPR_NAMES: 400 if (sp == (CEXPR_MAXDEPTH-1)) 401 return 0; 402 c = scontext; 403 if (e->attr & CEXPR_TARGET) 404 c = tcontext; 405 else if (e->attr & CEXPR_XTARGET) { 406 c = xcontext; 407 if (!c) { 408 BUG(); 409 return 0; 410 } 411 } 412 if (e->attr & CEXPR_USER) 413 val1 = c->user; 414 else if (e->attr & CEXPR_ROLE) 415 val1 = c->role; 416 else if (e->attr & CEXPR_TYPE) 417 val1 = c->type; 418 else { 419 BUG(); 420 return 0; 421 } 422 423 switch (e->op) { 424 case CEXPR_EQ: 425 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1); 426 break; 427 case CEXPR_NEQ: 428 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1); 429 break; 430 default: 431 BUG(); 432 return 0; 433 } 434 break; 435 default: 436 BUG(); 437 return 0; 438 } 439 } 440 441 BUG_ON(sp != 0); 442 return s[0]; 443 } 444 445 /* 446 * security_dump_masked_av - dumps masked permissions during 447 * security_compute_av due to RBAC, MLS/Constraint and Type bounds. 448 */ 449 static int dump_masked_av_helper(void *k, void *d, void *args) 450 { 451 struct perm_datum *pdatum = d; 452 char **permission_names = args; 453 454 BUG_ON(pdatum->value < 1 || pdatum->value > 32); 455 456 permission_names[pdatum->value - 1] = (char *)k; 457 458 return 0; 459 } 460 461 static void security_dump_masked_av(struct context *scontext, 462 struct context *tcontext, 463 u16 tclass, 464 u32 permissions, 465 const char *reason) 466 { 467 struct common_datum *common_dat; 468 struct class_datum *tclass_dat; 469 struct audit_buffer *ab; 470 char *tclass_name; 471 char *scontext_name = NULL; 472 char *tcontext_name = NULL; 473 char *permission_names[32]; 474 int index; 475 u32 length; 476 bool need_comma = false; 477 478 if (!permissions) 479 return; 480 481 tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1); 482 tclass_dat = policydb.class_val_to_struct[tclass - 1]; 483 common_dat = tclass_dat->comdatum; 484 485 /* init permission_names */ 486 if (common_dat && 487 hashtab_map(common_dat->permissions.table, 488 dump_masked_av_helper, permission_names) < 0) 489 goto out; 490 491 if (hashtab_map(tclass_dat->permissions.table, 492 dump_masked_av_helper, permission_names) < 0) 493 goto out; 494 495 /* get scontext/tcontext in text form */ 496 if (context_struct_to_string(scontext, 497 &scontext_name, &length) < 0) 498 goto out; 499 500 if (context_struct_to_string(tcontext, 501 &tcontext_name, &length) < 0) 502 goto out; 503 504 /* audit a message */ 505 ab = audit_log_start(current->audit_context, 506 GFP_ATOMIC, AUDIT_SELINUX_ERR); 507 if (!ab) 508 goto out; 509 510 audit_log_format(ab, "op=security_compute_av reason=%s " 511 "scontext=%s tcontext=%s tclass=%s perms=", 512 reason, scontext_name, tcontext_name, tclass_name); 513 514 for (index = 0; index < 32; index++) { 515 u32 mask = (1 << index); 516 517 if ((mask & permissions) == 0) 518 continue; 519 520 audit_log_format(ab, "%s%s", 521 need_comma ? "," : "", 522 permission_names[index] 523 ? permission_names[index] : "????"); 524 need_comma = true; 525 } 526 audit_log_end(ab); 527 out: 528 /* release scontext/tcontext */ 529 kfree(tcontext_name); 530 kfree(scontext_name); 531 532 return; 533 } 534 535 /* 536 * security_boundary_permission - drops violated permissions 537 * on boundary constraint. 538 */ 539 static void type_attribute_bounds_av(struct context *scontext, 540 struct context *tcontext, 541 u16 tclass, 542 struct av_decision *avd) 543 { 544 struct context lo_scontext; 545 struct context lo_tcontext; 546 struct av_decision lo_avd; 547 struct type_datum *source; 548 struct type_datum *target; 549 u32 masked = 0; 550 551 source = flex_array_get_ptr(policydb.type_val_to_struct_array, 552 scontext->type - 1); 553 BUG_ON(!source); 554 555 target = flex_array_get_ptr(policydb.type_val_to_struct_array, 556 tcontext->type - 1); 557 BUG_ON(!target); 558 559 if (source->bounds) { 560 memset(&lo_avd, 0, sizeof(lo_avd)); 561 562 memcpy(&lo_scontext, scontext, sizeof(lo_scontext)); 563 lo_scontext.type = source->bounds; 564 565 context_struct_compute_av(&lo_scontext, 566 tcontext, 567 tclass, 568 &lo_avd); 569 if ((lo_avd.allowed & avd->allowed) == avd->allowed) 570 return; /* no masked permission */ 571 masked = ~lo_avd.allowed & avd->allowed; 572 } 573 574 if (target->bounds) { 575 memset(&lo_avd, 0, sizeof(lo_avd)); 576 577 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext)); 578 lo_tcontext.type = target->bounds; 579 580 context_struct_compute_av(scontext, 581 &lo_tcontext, 582 tclass, 583 &lo_avd); 584 if ((lo_avd.allowed & avd->allowed) == avd->allowed) 585 return; /* no masked permission */ 586 masked = ~lo_avd.allowed & avd->allowed; 587 } 588 589 if (source->bounds && target->bounds) { 590 memset(&lo_avd, 0, sizeof(lo_avd)); 591 /* 592 * lo_scontext and lo_tcontext are already 593 * set up. 594 */ 595 596 context_struct_compute_av(&lo_scontext, 597 &lo_tcontext, 598 tclass, 599 &lo_avd); 600 if ((lo_avd.allowed & avd->allowed) == avd->allowed) 601 return; /* no masked permission */ 602 masked = ~lo_avd.allowed & avd->allowed; 603 } 604 605 if (masked) { 606 /* mask violated permissions */ 607 avd->allowed &= ~masked; 608 609 /* audit masked permissions */ 610 security_dump_masked_av(scontext, tcontext, 611 tclass, masked, "bounds"); 612 } 613 } 614 615 /* 616 * Compute access vectors based on a context structure pair for 617 * the permissions in a particular class. 618 */ 619 static void context_struct_compute_av(struct context *scontext, 620 struct context *tcontext, 621 u16 tclass, 622 struct av_decision *avd) 623 { 624 struct constraint_node *constraint; 625 struct role_allow *ra; 626 struct avtab_key avkey; 627 struct avtab_node *node; 628 struct class_datum *tclass_datum; 629 struct ebitmap *sattr, *tattr; 630 struct ebitmap_node *snode, *tnode; 631 unsigned int i, j; 632 633 avd->allowed = 0; 634 avd->auditallow = 0; 635 avd->auditdeny = 0xffffffff; 636 637 if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) { 638 if (printk_ratelimit()) 639 printk(KERN_WARNING "SELinux: Invalid class %hu\n", tclass); 640 return; 641 } 642 643 tclass_datum = policydb.class_val_to_struct[tclass - 1]; 644 645 /* 646 * If a specific type enforcement rule was defined for 647 * this permission check, then use it. 648 */ 649 avkey.target_class = tclass; 650 avkey.specified = AVTAB_AV; 651 sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1); 652 BUG_ON(!sattr); 653 tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1); 654 BUG_ON(!tattr); 655 ebitmap_for_each_positive_bit(sattr, snode, i) { 656 ebitmap_for_each_positive_bit(tattr, tnode, j) { 657 avkey.source_type = i + 1; 658 avkey.target_type = j + 1; 659 for (node = avtab_search_node(&policydb.te_avtab, &avkey); 660 node; 661 node = avtab_search_node_next(node, avkey.specified)) { 662 if (node->key.specified == AVTAB_ALLOWED) 663 avd->allowed |= node->datum.data; 664 else if (node->key.specified == AVTAB_AUDITALLOW) 665 avd->auditallow |= node->datum.data; 666 else if (node->key.specified == AVTAB_AUDITDENY) 667 avd->auditdeny &= node->datum.data; 668 } 669 670 /* Check conditional av table for additional permissions */ 671 cond_compute_av(&policydb.te_cond_avtab, &avkey, avd); 672 673 } 674 } 675 676 /* 677 * Remove any permissions prohibited by a constraint (this includes 678 * the MLS policy). 679 */ 680 constraint = tclass_datum->constraints; 681 while (constraint) { 682 if ((constraint->permissions & (avd->allowed)) && 683 !constraint_expr_eval(scontext, tcontext, NULL, 684 constraint->expr)) { 685 avd->allowed &= ~(constraint->permissions); 686 } 687 constraint = constraint->next; 688 } 689 690 /* 691 * If checking process transition permission and the 692 * role is changing, then check the (current_role, new_role) 693 * pair. 694 */ 695 if (tclass == policydb.process_class && 696 (avd->allowed & policydb.process_trans_perms) && 697 scontext->role != tcontext->role) { 698 for (ra = policydb.role_allow; ra; ra = ra->next) { 699 if (scontext->role == ra->role && 700 tcontext->role == ra->new_role) 701 break; 702 } 703 if (!ra) 704 avd->allowed &= ~policydb.process_trans_perms; 705 } 706 707 /* 708 * If the given source and target types have boundary 709 * constraint, lazy checks have to mask any violated 710 * permission and notice it to userspace via audit. 711 */ 712 type_attribute_bounds_av(scontext, tcontext, 713 tclass, avd); 714 } 715 716 static int security_validtrans_handle_fail(struct context *ocontext, 717 struct context *ncontext, 718 struct context *tcontext, 719 u16 tclass) 720 { 721 char *o = NULL, *n = NULL, *t = NULL; 722 u32 olen, nlen, tlen; 723 724 if (context_struct_to_string(ocontext, &o, &olen)) 725 goto out; 726 if (context_struct_to_string(ncontext, &n, &nlen)) 727 goto out; 728 if (context_struct_to_string(tcontext, &t, &tlen)) 729 goto out; 730 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR, 731 "security_validate_transition: denied for" 732 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s", 733 o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1)); 734 out: 735 kfree(o); 736 kfree(n); 737 kfree(t); 738 739 if (!selinux_enforcing) 740 return 0; 741 return -EPERM; 742 } 743 744 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid, 745 u16 orig_tclass) 746 { 747 struct context *ocontext; 748 struct context *ncontext; 749 struct context *tcontext; 750 struct class_datum *tclass_datum; 751 struct constraint_node *constraint; 752 u16 tclass; 753 int rc = 0; 754 755 if (!ss_initialized) 756 return 0; 757 758 read_lock(&policy_rwlock); 759 760 tclass = unmap_class(orig_tclass); 761 762 if (!tclass || tclass > policydb.p_classes.nprim) { 763 printk(KERN_ERR "SELinux: %s: unrecognized class %d\n", 764 __func__, tclass); 765 rc = -EINVAL; 766 goto out; 767 } 768 tclass_datum = policydb.class_val_to_struct[tclass - 1]; 769 770 ocontext = sidtab_search(&sidtab, oldsid); 771 if (!ocontext) { 772 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 773 __func__, oldsid); 774 rc = -EINVAL; 775 goto out; 776 } 777 778 ncontext = sidtab_search(&sidtab, newsid); 779 if (!ncontext) { 780 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 781 __func__, newsid); 782 rc = -EINVAL; 783 goto out; 784 } 785 786 tcontext = sidtab_search(&sidtab, tasksid); 787 if (!tcontext) { 788 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 789 __func__, tasksid); 790 rc = -EINVAL; 791 goto out; 792 } 793 794 constraint = tclass_datum->validatetrans; 795 while (constraint) { 796 if (!constraint_expr_eval(ocontext, ncontext, tcontext, 797 constraint->expr)) { 798 rc = security_validtrans_handle_fail(ocontext, ncontext, 799 tcontext, tclass); 800 goto out; 801 } 802 constraint = constraint->next; 803 } 804 805 out: 806 read_unlock(&policy_rwlock); 807 return rc; 808 } 809 810 /* 811 * security_bounded_transition - check whether the given 812 * transition is directed to bounded, or not. 813 * It returns 0, if @newsid is bounded by @oldsid. 814 * Otherwise, it returns error code. 815 * 816 * @oldsid : current security identifier 817 * @newsid : destinated security identifier 818 */ 819 int security_bounded_transition(u32 old_sid, u32 new_sid) 820 { 821 struct context *old_context, *new_context; 822 struct type_datum *type; 823 int index; 824 int rc; 825 826 read_lock(&policy_rwlock); 827 828 rc = -EINVAL; 829 old_context = sidtab_search(&sidtab, old_sid); 830 if (!old_context) { 831 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n", 832 __func__, old_sid); 833 goto out; 834 } 835 836 rc = -EINVAL; 837 new_context = sidtab_search(&sidtab, new_sid); 838 if (!new_context) { 839 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n", 840 __func__, new_sid); 841 goto out; 842 } 843 844 rc = 0; 845 /* type/domain unchanged */ 846 if (old_context->type == new_context->type) 847 goto out; 848 849 index = new_context->type; 850 while (true) { 851 type = flex_array_get_ptr(policydb.type_val_to_struct_array, 852 index - 1); 853 BUG_ON(!type); 854 855 /* not bounded anymore */ 856 rc = -EPERM; 857 if (!type->bounds) 858 break; 859 860 /* @newsid is bounded by @oldsid */ 861 rc = 0; 862 if (type->bounds == old_context->type) 863 break; 864 865 index = type->bounds; 866 } 867 868 if (rc) { 869 char *old_name = NULL; 870 char *new_name = NULL; 871 u32 length; 872 873 if (!context_struct_to_string(old_context, 874 &old_name, &length) && 875 !context_struct_to_string(new_context, 876 &new_name, &length)) { 877 audit_log(current->audit_context, 878 GFP_ATOMIC, AUDIT_SELINUX_ERR, 879 "op=security_bounded_transition " 880 "result=denied " 881 "oldcontext=%s newcontext=%s", 882 old_name, new_name); 883 } 884 kfree(new_name); 885 kfree(old_name); 886 } 887 out: 888 read_unlock(&policy_rwlock); 889 890 return rc; 891 } 892 893 static void avd_init(struct av_decision *avd) 894 { 895 avd->allowed = 0; 896 avd->auditallow = 0; 897 avd->auditdeny = 0xffffffff; 898 avd->seqno = latest_granting; 899 avd->flags = 0; 900 } 901 902 903 /** 904 * security_compute_av - Compute access vector decisions. 905 * @ssid: source security identifier 906 * @tsid: target security identifier 907 * @tclass: target security class 908 * @avd: access vector decisions 909 * 910 * Compute a set of access vector decisions based on the 911 * SID pair (@ssid, @tsid) for the permissions in @tclass. 912 */ 913 void security_compute_av(u32 ssid, 914 u32 tsid, 915 u16 orig_tclass, 916 struct av_decision *avd) 917 { 918 u16 tclass; 919 struct context *scontext = NULL, *tcontext = NULL; 920 921 read_lock(&policy_rwlock); 922 avd_init(avd); 923 if (!ss_initialized) 924 goto allow; 925 926 scontext = sidtab_search(&sidtab, ssid); 927 if (!scontext) { 928 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 929 __func__, ssid); 930 goto out; 931 } 932 933 /* permissive domain? */ 934 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type)) 935 avd->flags |= AVD_FLAGS_PERMISSIVE; 936 937 tcontext = sidtab_search(&sidtab, tsid); 938 if (!tcontext) { 939 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 940 __func__, tsid); 941 goto out; 942 } 943 944 tclass = unmap_class(orig_tclass); 945 if (unlikely(orig_tclass && !tclass)) { 946 if (policydb.allow_unknown) 947 goto allow; 948 goto out; 949 } 950 context_struct_compute_av(scontext, tcontext, tclass, avd); 951 map_decision(orig_tclass, avd, policydb.allow_unknown); 952 out: 953 read_unlock(&policy_rwlock); 954 return; 955 allow: 956 avd->allowed = 0xffffffff; 957 goto out; 958 } 959 960 void security_compute_av_user(u32 ssid, 961 u32 tsid, 962 u16 tclass, 963 struct av_decision *avd) 964 { 965 struct context *scontext = NULL, *tcontext = NULL; 966 967 read_lock(&policy_rwlock); 968 avd_init(avd); 969 if (!ss_initialized) 970 goto allow; 971 972 scontext = sidtab_search(&sidtab, ssid); 973 if (!scontext) { 974 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 975 __func__, ssid); 976 goto out; 977 } 978 979 /* permissive domain? */ 980 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type)) 981 avd->flags |= AVD_FLAGS_PERMISSIVE; 982 983 tcontext = sidtab_search(&sidtab, tsid); 984 if (!tcontext) { 985 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 986 __func__, tsid); 987 goto out; 988 } 989 990 if (unlikely(!tclass)) { 991 if (policydb.allow_unknown) 992 goto allow; 993 goto out; 994 } 995 996 context_struct_compute_av(scontext, tcontext, tclass, avd); 997 out: 998 read_unlock(&policy_rwlock); 999 return; 1000 allow: 1001 avd->allowed = 0xffffffff; 1002 goto out; 1003 } 1004 1005 /* 1006 * Write the security context string representation of 1007 * the context structure `context' into a dynamically 1008 * allocated string of the correct size. Set `*scontext' 1009 * to point to this string and set `*scontext_len' to 1010 * the length of the string. 1011 */ 1012 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len) 1013 { 1014 char *scontextp; 1015 1016 if (scontext) 1017 *scontext = NULL; 1018 *scontext_len = 0; 1019 1020 if (context->len) { 1021 *scontext_len = context->len; 1022 if (scontext) { 1023 *scontext = kstrdup(context->str, GFP_ATOMIC); 1024 if (!(*scontext)) 1025 return -ENOMEM; 1026 } 1027 return 0; 1028 } 1029 1030 /* Compute the size of the context. */ 1031 *scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1; 1032 *scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1; 1033 *scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1; 1034 *scontext_len += mls_compute_context_len(context); 1035 1036 if (!scontext) 1037 return 0; 1038 1039 /* Allocate space for the context; caller must free this space. */ 1040 scontextp = kmalloc(*scontext_len, GFP_ATOMIC); 1041 if (!scontextp) 1042 return -ENOMEM; 1043 *scontext = scontextp; 1044 1045 /* 1046 * Copy the user name, role name and type name into the context. 1047 */ 1048 sprintf(scontextp, "%s:%s:%s", 1049 sym_name(&policydb, SYM_USERS, context->user - 1), 1050 sym_name(&policydb, SYM_ROLES, context->role - 1), 1051 sym_name(&policydb, SYM_TYPES, context->type - 1)); 1052 scontextp += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1053 1 + strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1054 1 + strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)); 1055 1056 mls_sid_to_context(context, &scontextp); 1057 1058 *scontextp = 0; 1059 1060 return 0; 1061 } 1062 1063 #include "initial_sid_to_string.h" 1064 1065 const char *security_get_initial_sid_context(u32 sid) 1066 { 1067 if (unlikely(sid > SECINITSID_NUM)) 1068 return NULL; 1069 return initial_sid_to_string[sid]; 1070 } 1071 1072 static int security_sid_to_context_core(u32 sid, char **scontext, 1073 u32 *scontext_len, int force) 1074 { 1075 struct context *context; 1076 int rc = 0; 1077 1078 if (scontext) 1079 *scontext = NULL; 1080 *scontext_len = 0; 1081 1082 if (!ss_initialized) { 1083 if (sid <= SECINITSID_NUM) { 1084 char *scontextp; 1085 1086 *scontext_len = strlen(initial_sid_to_string[sid]) + 1; 1087 if (!scontext) 1088 goto out; 1089 scontextp = kmalloc(*scontext_len, GFP_ATOMIC); 1090 if (!scontextp) { 1091 rc = -ENOMEM; 1092 goto out; 1093 } 1094 strcpy(scontextp, initial_sid_to_string[sid]); 1095 *scontext = scontextp; 1096 goto out; 1097 } 1098 printk(KERN_ERR "SELinux: %s: called before initial " 1099 "load_policy on unknown SID %d\n", __func__, sid); 1100 rc = -EINVAL; 1101 goto out; 1102 } 1103 read_lock(&policy_rwlock); 1104 if (force) 1105 context = sidtab_search_force(&sidtab, sid); 1106 else 1107 context = sidtab_search(&sidtab, sid); 1108 if (!context) { 1109 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 1110 __func__, sid); 1111 rc = -EINVAL; 1112 goto out_unlock; 1113 } 1114 rc = context_struct_to_string(context, scontext, scontext_len); 1115 out_unlock: 1116 read_unlock(&policy_rwlock); 1117 out: 1118 return rc; 1119 1120 } 1121 1122 /** 1123 * security_sid_to_context - Obtain a context for a given SID. 1124 * @sid: security identifier, SID 1125 * @scontext: security context 1126 * @scontext_len: length in bytes 1127 * 1128 * Write the string representation of the context associated with @sid 1129 * into a dynamically allocated string of the correct size. Set @scontext 1130 * to point to this string and set @scontext_len to the length of the string. 1131 */ 1132 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len) 1133 { 1134 return security_sid_to_context_core(sid, scontext, scontext_len, 0); 1135 } 1136 1137 int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len) 1138 { 1139 return security_sid_to_context_core(sid, scontext, scontext_len, 1); 1140 } 1141 1142 /* 1143 * Caveat: Mutates scontext. 1144 */ 1145 static int string_to_context_struct(struct policydb *pol, 1146 struct sidtab *sidtabp, 1147 char *scontext, 1148 u32 scontext_len, 1149 struct context *ctx, 1150 u32 def_sid) 1151 { 1152 struct role_datum *role; 1153 struct type_datum *typdatum; 1154 struct user_datum *usrdatum; 1155 char *scontextp, *p, oldc; 1156 int rc = 0; 1157 1158 context_init(ctx); 1159 1160 /* Parse the security context. */ 1161 1162 rc = -EINVAL; 1163 scontextp = (char *) scontext; 1164 1165 /* Extract the user. */ 1166 p = scontextp; 1167 while (*p && *p != ':') 1168 p++; 1169 1170 if (*p == 0) 1171 goto out; 1172 1173 *p++ = 0; 1174 1175 usrdatum = hashtab_search(pol->p_users.table, scontextp); 1176 if (!usrdatum) 1177 goto out; 1178 1179 ctx->user = usrdatum->value; 1180 1181 /* Extract role. */ 1182 scontextp = p; 1183 while (*p && *p != ':') 1184 p++; 1185 1186 if (*p == 0) 1187 goto out; 1188 1189 *p++ = 0; 1190 1191 role = hashtab_search(pol->p_roles.table, scontextp); 1192 if (!role) 1193 goto out; 1194 ctx->role = role->value; 1195 1196 /* Extract type. */ 1197 scontextp = p; 1198 while (*p && *p != ':') 1199 p++; 1200 oldc = *p; 1201 *p++ = 0; 1202 1203 typdatum = hashtab_search(pol->p_types.table, scontextp); 1204 if (!typdatum || typdatum->attribute) 1205 goto out; 1206 1207 ctx->type = typdatum->value; 1208 1209 rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid); 1210 if (rc) 1211 goto out; 1212 1213 rc = -EINVAL; 1214 if ((p - scontext) < scontext_len) 1215 goto out; 1216 1217 /* Check the validity of the new context. */ 1218 if (!policydb_context_isvalid(pol, ctx)) 1219 goto out; 1220 rc = 0; 1221 out: 1222 if (rc) 1223 context_destroy(ctx); 1224 return rc; 1225 } 1226 1227 static int security_context_to_sid_core(const char *scontext, u32 scontext_len, 1228 u32 *sid, u32 def_sid, gfp_t gfp_flags, 1229 int force) 1230 { 1231 char *scontext2, *str = NULL; 1232 struct context context; 1233 int rc = 0; 1234 1235 /* An empty security context is never valid. */ 1236 if (!scontext_len) 1237 return -EINVAL; 1238 1239 if (!ss_initialized) { 1240 int i; 1241 1242 for (i = 1; i < SECINITSID_NUM; i++) { 1243 if (!strcmp(initial_sid_to_string[i], scontext)) { 1244 *sid = i; 1245 return 0; 1246 } 1247 } 1248 *sid = SECINITSID_KERNEL; 1249 return 0; 1250 } 1251 *sid = SECSID_NULL; 1252 1253 /* Copy the string so that we can modify the copy as we parse it. */ 1254 scontext2 = kmalloc(scontext_len + 1, gfp_flags); 1255 if (!scontext2) 1256 return -ENOMEM; 1257 memcpy(scontext2, scontext, scontext_len); 1258 scontext2[scontext_len] = 0; 1259 1260 if (force) { 1261 /* Save another copy for storing in uninterpreted form */ 1262 rc = -ENOMEM; 1263 str = kstrdup(scontext2, gfp_flags); 1264 if (!str) 1265 goto out; 1266 } 1267 1268 read_lock(&policy_rwlock); 1269 rc = string_to_context_struct(&policydb, &sidtab, scontext2, 1270 scontext_len, &context, def_sid); 1271 if (rc == -EINVAL && force) { 1272 context.str = str; 1273 context.len = scontext_len; 1274 str = NULL; 1275 } else if (rc) 1276 goto out_unlock; 1277 rc = sidtab_context_to_sid(&sidtab, &context, sid); 1278 context_destroy(&context); 1279 out_unlock: 1280 read_unlock(&policy_rwlock); 1281 out: 1282 kfree(scontext2); 1283 kfree(str); 1284 return rc; 1285 } 1286 1287 /** 1288 * security_context_to_sid - Obtain a SID for a given security context. 1289 * @scontext: security context 1290 * @scontext_len: length in bytes 1291 * @sid: security identifier, SID 1292 * @gfp: context for the allocation 1293 * 1294 * Obtains a SID associated with the security context that 1295 * has the string representation specified by @scontext. 1296 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient 1297 * memory is available, or 0 on success. 1298 */ 1299 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid, 1300 gfp_t gfp) 1301 { 1302 return security_context_to_sid_core(scontext, scontext_len, 1303 sid, SECSID_NULL, gfp, 0); 1304 } 1305 1306 /** 1307 * security_context_to_sid_default - Obtain a SID for a given security context, 1308 * falling back to specified default if needed. 1309 * 1310 * @scontext: security context 1311 * @scontext_len: length in bytes 1312 * @sid: security identifier, SID 1313 * @def_sid: default SID to assign on error 1314 * 1315 * Obtains a SID associated with the security context that 1316 * has the string representation specified by @scontext. 1317 * The default SID is passed to the MLS layer to be used to allow 1318 * kernel labeling of the MLS field if the MLS field is not present 1319 * (for upgrading to MLS without full relabel). 1320 * Implicitly forces adding of the context even if it cannot be mapped yet. 1321 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient 1322 * memory is available, or 0 on success. 1323 */ 1324 int security_context_to_sid_default(const char *scontext, u32 scontext_len, 1325 u32 *sid, u32 def_sid, gfp_t gfp_flags) 1326 { 1327 return security_context_to_sid_core(scontext, scontext_len, 1328 sid, def_sid, gfp_flags, 1); 1329 } 1330 1331 int security_context_to_sid_force(const char *scontext, u32 scontext_len, 1332 u32 *sid) 1333 { 1334 return security_context_to_sid_core(scontext, scontext_len, 1335 sid, SECSID_NULL, GFP_KERNEL, 1); 1336 } 1337 1338 static int compute_sid_handle_invalid_context( 1339 struct context *scontext, 1340 struct context *tcontext, 1341 u16 tclass, 1342 struct context *newcontext) 1343 { 1344 char *s = NULL, *t = NULL, *n = NULL; 1345 u32 slen, tlen, nlen; 1346 1347 if (context_struct_to_string(scontext, &s, &slen)) 1348 goto out; 1349 if (context_struct_to_string(tcontext, &t, &tlen)) 1350 goto out; 1351 if (context_struct_to_string(newcontext, &n, &nlen)) 1352 goto out; 1353 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR, 1354 "security_compute_sid: invalid context %s" 1355 " for scontext=%s" 1356 " tcontext=%s" 1357 " tclass=%s", 1358 n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1)); 1359 out: 1360 kfree(s); 1361 kfree(t); 1362 kfree(n); 1363 if (!selinux_enforcing) 1364 return 0; 1365 return -EACCES; 1366 } 1367 1368 static void filename_compute_type(struct policydb *p, struct context *newcontext, 1369 u32 stype, u32 ttype, u16 tclass, 1370 const char *objname) 1371 { 1372 struct filename_trans ft; 1373 struct filename_trans_datum *otype; 1374 1375 /* 1376 * Most filename trans rules are going to live in specific directories 1377 * like /dev or /var/run. This bitmap will quickly skip rule searches 1378 * if the ttype does not contain any rules. 1379 */ 1380 if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype)) 1381 return; 1382 1383 ft.stype = stype; 1384 ft.ttype = ttype; 1385 ft.tclass = tclass; 1386 ft.name = objname; 1387 1388 otype = hashtab_search(p->filename_trans, &ft); 1389 if (otype) 1390 newcontext->type = otype->otype; 1391 } 1392 1393 static int security_compute_sid(u32 ssid, 1394 u32 tsid, 1395 u16 orig_tclass, 1396 u32 specified, 1397 const char *objname, 1398 u32 *out_sid, 1399 bool kern) 1400 { 1401 struct class_datum *cladatum = NULL; 1402 struct context *scontext = NULL, *tcontext = NULL, newcontext; 1403 struct role_trans *roletr = NULL; 1404 struct avtab_key avkey; 1405 struct avtab_datum *avdatum; 1406 struct avtab_node *node; 1407 u16 tclass; 1408 int rc = 0; 1409 bool sock; 1410 1411 if (!ss_initialized) { 1412 switch (orig_tclass) { 1413 case SECCLASS_PROCESS: /* kernel value */ 1414 *out_sid = ssid; 1415 break; 1416 default: 1417 *out_sid = tsid; 1418 break; 1419 } 1420 goto out; 1421 } 1422 1423 context_init(&newcontext); 1424 1425 read_lock(&policy_rwlock); 1426 1427 if (kern) { 1428 tclass = unmap_class(orig_tclass); 1429 sock = security_is_socket_class(orig_tclass); 1430 } else { 1431 tclass = orig_tclass; 1432 sock = security_is_socket_class(map_class(tclass)); 1433 } 1434 1435 scontext = sidtab_search(&sidtab, ssid); 1436 if (!scontext) { 1437 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 1438 __func__, ssid); 1439 rc = -EINVAL; 1440 goto out_unlock; 1441 } 1442 tcontext = sidtab_search(&sidtab, tsid); 1443 if (!tcontext) { 1444 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 1445 __func__, tsid); 1446 rc = -EINVAL; 1447 goto out_unlock; 1448 } 1449 1450 if (tclass && tclass <= policydb.p_classes.nprim) 1451 cladatum = policydb.class_val_to_struct[tclass - 1]; 1452 1453 /* Set the user identity. */ 1454 switch (specified) { 1455 case AVTAB_TRANSITION: 1456 case AVTAB_CHANGE: 1457 if (cladatum && cladatum->default_user == DEFAULT_TARGET) { 1458 newcontext.user = tcontext->user; 1459 } else { 1460 /* notice this gets both DEFAULT_SOURCE and unset */ 1461 /* Use the process user identity. */ 1462 newcontext.user = scontext->user; 1463 } 1464 break; 1465 case AVTAB_MEMBER: 1466 /* Use the related object owner. */ 1467 newcontext.user = tcontext->user; 1468 break; 1469 } 1470 1471 /* Set the role to default values. */ 1472 if (cladatum && cladatum->default_role == DEFAULT_SOURCE) { 1473 newcontext.role = scontext->role; 1474 } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) { 1475 newcontext.role = tcontext->role; 1476 } else { 1477 if ((tclass == policydb.process_class) || (sock == true)) 1478 newcontext.role = scontext->role; 1479 else 1480 newcontext.role = OBJECT_R_VAL; 1481 } 1482 1483 /* Set the type to default values. */ 1484 if (cladatum && cladatum->default_type == DEFAULT_SOURCE) { 1485 newcontext.type = scontext->type; 1486 } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) { 1487 newcontext.type = tcontext->type; 1488 } else { 1489 if ((tclass == policydb.process_class) || (sock == true)) { 1490 /* Use the type of process. */ 1491 newcontext.type = scontext->type; 1492 } else { 1493 /* Use the type of the related object. */ 1494 newcontext.type = tcontext->type; 1495 } 1496 } 1497 1498 /* Look for a type transition/member/change rule. */ 1499 avkey.source_type = scontext->type; 1500 avkey.target_type = tcontext->type; 1501 avkey.target_class = tclass; 1502 avkey.specified = specified; 1503 avdatum = avtab_search(&policydb.te_avtab, &avkey); 1504 1505 /* If no permanent rule, also check for enabled conditional rules */ 1506 if (!avdatum) { 1507 node = avtab_search_node(&policydb.te_cond_avtab, &avkey); 1508 for (; node; node = avtab_search_node_next(node, specified)) { 1509 if (node->key.specified & AVTAB_ENABLED) { 1510 avdatum = &node->datum; 1511 break; 1512 } 1513 } 1514 } 1515 1516 if (avdatum) { 1517 /* Use the type from the type transition/member/change rule. */ 1518 newcontext.type = avdatum->data; 1519 } 1520 1521 /* if we have a objname this is a file trans check so check those rules */ 1522 if (objname) 1523 filename_compute_type(&policydb, &newcontext, scontext->type, 1524 tcontext->type, tclass, objname); 1525 1526 /* Check for class-specific changes. */ 1527 if (specified & AVTAB_TRANSITION) { 1528 /* Look for a role transition rule. */ 1529 for (roletr = policydb.role_tr; roletr; roletr = roletr->next) { 1530 if ((roletr->role == scontext->role) && 1531 (roletr->type == tcontext->type) && 1532 (roletr->tclass == tclass)) { 1533 /* Use the role transition rule. */ 1534 newcontext.role = roletr->new_role; 1535 break; 1536 } 1537 } 1538 } 1539 1540 /* Set the MLS attributes. 1541 This is done last because it may allocate memory. */ 1542 rc = mls_compute_sid(scontext, tcontext, tclass, specified, 1543 &newcontext, sock); 1544 if (rc) 1545 goto out_unlock; 1546 1547 /* Check the validity of the context. */ 1548 if (!policydb_context_isvalid(&policydb, &newcontext)) { 1549 rc = compute_sid_handle_invalid_context(scontext, 1550 tcontext, 1551 tclass, 1552 &newcontext); 1553 if (rc) 1554 goto out_unlock; 1555 } 1556 /* Obtain the sid for the context. */ 1557 rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid); 1558 out_unlock: 1559 read_unlock(&policy_rwlock); 1560 context_destroy(&newcontext); 1561 out: 1562 return rc; 1563 } 1564 1565 /** 1566 * security_transition_sid - Compute the SID for a new subject/object. 1567 * @ssid: source security identifier 1568 * @tsid: target security identifier 1569 * @tclass: target security class 1570 * @out_sid: security identifier for new subject/object 1571 * 1572 * Compute a SID to use for labeling a new subject or object in the 1573 * class @tclass based on a SID pair (@ssid, @tsid). 1574 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM 1575 * if insufficient memory is available, or %0 if the new SID was 1576 * computed successfully. 1577 */ 1578 int security_transition_sid(u32 ssid, u32 tsid, u16 tclass, 1579 const struct qstr *qstr, u32 *out_sid) 1580 { 1581 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, 1582 qstr ? qstr->name : NULL, out_sid, true); 1583 } 1584 1585 int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass, 1586 const char *objname, u32 *out_sid) 1587 { 1588 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, 1589 objname, out_sid, false); 1590 } 1591 1592 /** 1593 * security_member_sid - Compute the SID for member selection. 1594 * @ssid: source security identifier 1595 * @tsid: target security identifier 1596 * @tclass: target security class 1597 * @out_sid: security identifier for selected member 1598 * 1599 * Compute a SID to use when selecting a member of a polyinstantiated 1600 * object of class @tclass based on a SID pair (@ssid, @tsid). 1601 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM 1602 * if insufficient memory is available, or %0 if the SID was 1603 * computed successfully. 1604 */ 1605 int security_member_sid(u32 ssid, 1606 u32 tsid, 1607 u16 tclass, 1608 u32 *out_sid) 1609 { 1610 return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL, 1611 out_sid, false); 1612 } 1613 1614 /** 1615 * security_change_sid - Compute the SID for object relabeling. 1616 * @ssid: source security identifier 1617 * @tsid: target security identifier 1618 * @tclass: target security class 1619 * @out_sid: security identifier for selected member 1620 * 1621 * Compute a SID to use for relabeling an object of class @tclass 1622 * based on a SID pair (@ssid, @tsid). 1623 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM 1624 * if insufficient memory is available, or %0 if the SID was 1625 * computed successfully. 1626 */ 1627 int security_change_sid(u32 ssid, 1628 u32 tsid, 1629 u16 tclass, 1630 u32 *out_sid) 1631 { 1632 return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL, 1633 out_sid, false); 1634 } 1635 1636 /* Clone the SID into the new SID table. */ 1637 static int clone_sid(u32 sid, 1638 struct context *context, 1639 void *arg) 1640 { 1641 struct sidtab *s = arg; 1642 1643 if (sid > SECINITSID_NUM) 1644 return sidtab_insert(s, sid, context); 1645 else 1646 return 0; 1647 } 1648 1649 static inline int convert_context_handle_invalid_context(struct context *context) 1650 { 1651 char *s; 1652 u32 len; 1653 1654 if (selinux_enforcing) 1655 return -EINVAL; 1656 1657 if (!context_struct_to_string(context, &s, &len)) { 1658 printk(KERN_WARNING "SELinux: Context %s would be invalid if enforcing\n", s); 1659 kfree(s); 1660 } 1661 return 0; 1662 } 1663 1664 struct convert_context_args { 1665 struct policydb *oldp; 1666 struct policydb *newp; 1667 }; 1668 1669 /* 1670 * Convert the values in the security context 1671 * structure `c' from the values specified 1672 * in the policy `p->oldp' to the values specified 1673 * in the policy `p->newp'. Verify that the 1674 * context is valid under the new policy. 1675 */ 1676 static int convert_context(u32 key, 1677 struct context *c, 1678 void *p) 1679 { 1680 struct convert_context_args *args; 1681 struct context oldc; 1682 struct ocontext *oc; 1683 struct mls_range *range; 1684 struct role_datum *role; 1685 struct type_datum *typdatum; 1686 struct user_datum *usrdatum; 1687 char *s; 1688 u32 len; 1689 int rc = 0; 1690 1691 if (key <= SECINITSID_NUM) 1692 goto out; 1693 1694 args = p; 1695 1696 if (c->str) { 1697 struct context ctx; 1698 1699 rc = -ENOMEM; 1700 s = kstrdup(c->str, GFP_KERNEL); 1701 if (!s) 1702 goto out; 1703 1704 rc = string_to_context_struct(args->newp, NULL, s, 1705 c->len, &ctx, SECSID_NULL); 1706 kfree(s); 1707 if (!rc) { 1708 printk(KERN_INFO "SELinux: Context %s became valid (mapped).\n", 1709 c->str); 1710 /* Replace string with mapped representation. */ 1711 kfree(c->str); 1712 memcpy(c, &ctx, sizeof(*c)); 1713 goto out; 1714 } else if (rc == -EINVAL) { 1715 /* Retain string representation for later mapping. */ 1716 rc = 0; 1717 goto out; 1718 } else { 1719 /* Other error condition, e.g. ENOMEM. */ 1720 printk(KERN_ERR "SELinux: Unable to map context %s, rc = %d.\n", 1721 c->str, -rc); 1722 goto out; 1723 } 1724 } 1725 1726 rc = context_cpy(&oldc, c); 1727 if (rc) 1728 goto out; 1729 1730 /* Convert the user. */ 1731 rc = -EINVAL; 1732 usrdatum = hashtab_search(args->newp->p_users.table, 1733 sym_name(args->oldp, SYM_USERS, c->user - 1)); 1734 if (!usrdatum) 1735 goto bad; 1736 c->user = usrdatum->value; 1737 1738 /* Convert the role. */ 1739 rc = -EINVAL; 1740 role = hashtab_search(args->newp->p_roles.table, 1741 sym_name(args->oldp, SYM_ROLES, c->role - 1)); 1742 if (!role) 1743 goto bad; 1744 c->role = role->value; 1745 1746 /* Convert the type. */ 1747 rc = -EINVAL; 1748 typdatum = hashtab_search(args->newp->p_types.table, 1749 sym_name(args->oldp, SYM_TYPES, c->type - 1)); 1750 if (!typdatum) 1751 goto bad; 1752 c->type = typdatum->value; 1753 1754 /* Convert the MLS fields if dealing with MLS policies */ 1755 if (args->oldp->mls_enabled && args->newp->mls_enabled) { 1756 rc = mls_convert_context(args->oldp, args->newp, c); 1757 if (rc) 1758 goto bad; 1759 } else if (args->oldp->mls_enabled && !args->newp->mls_enabled) { 1760 /* 1761 * Switching between MLS and non-MLS policy: 1762 * free any storage used by the MLS fields in the 1763 * context for all existing entries in the sidtab. 1764 */ 1765 mls_context_destroy(c); 1766 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) { 1767 /* 1768 * Switching between non-MLS and MLS policy: 1769 * ensure that the MLS fields of the context for all 1770 * existing entries in the sidtab are filled in with a 1771 * suitable default value, likely taken from one of the 1772 * initial SIDs. 1773 */ 1774 oc = args->newp->ocontexts[OCON_ISID]; 1775 while (oc && oc->sid[0] != SECINITSID_UNLABELED) 1776 oc = oc->next; 1777 rc = -EINVAL; 1778 if (!oc) { 1779 printk(KERN_ERR "SELinux: unable to look up" 1780 " the initial SIDs list\n"); 1781 goto bad; 1782 } 1783 range = &oc->context[0].range; 1784 rc = mls_range_set(c, range); 1785 if (rc) 1786 goto bad; 1787 } 1788 1789 /* Check the validity of the new context. */ 1790 if (!policydb_context_isvalid(args->newp, c)) { 1791 rc = convert_context_handle_invalid_context(&oldc); 1792 if (rc) 1793 goto bad; 1794 } 1795 1796 context_destroy(&oldc); 1797 1798 rc = 0; 1799 out: 1800 return rc; 1801 bad: 1802 /* Map old representation to string and save it. */ 1803 rc = context_struct_to_string(&oldc, &s, &len); 1804 if (rc) 1805 return rc; 1806 context_destroy(&oldc); 1807 context_destroy(c); 1808 c->str = s; 1809 c->len = len; 1810 printk(KERN_INFO "SELinux: Context %s became invalid (unmapped).\n", 1811 c->str); 1812 rc = 0; 1813 goto out; 1814 } 1815 1816 static void security_load_policycaps(void) 1817 { 1818 selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps, 1819 POLICYDB_CAPABILITY_NETPEER); 1820 selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps, 1821 POLICYDB_CAPABILITY_OPENPERM); 1822 selinux_policycap_alwaysnetwork = ebitmap_get_bit(&policydb.policycaps, 1823 POLICYDB_CAPABILITY_ALWAYSNETWORK); 1824 } 1825 1826 static int security_preserve_bools(struct policydb *p); 1827 1828 /** 1829 * security_load_policy - Load a security policy configuration. 1830 * @data: binary policy data 1831 * @len: length of data in bytes 1832 * 1833 * Load a new set of security policy configuration data, 1834 * validate it and convert the SID table as necessary. 1835 * This function will flush the access vector cache after 1836 * loading the new policy. 1837 */ 1838 int security_load_policy(void *data, size_t len) 1839 { 1840 struct policydb *oldpolicydb, *newpolicydb; 1841 struct sidtab oldsidtab, newsidtab; 1842 struct selinux_mapping *oldmap, *map = NULL; 1843 struct convert_context_args args; 1844 u32 seqno; 1845 u16 map_size; 1846 int rc = 0; 1847 struct policy_file file = { data, len }, *fp = &file; 1848 1849 oldpolicydb = kzalloc(2 * sizeof(*oldpolicydb), GFP_KERNEL); 1850 if (!oldpolicydb) { 1851 rc = -ENOMEM; 1852 goto out; 1853 } 1854 newpolicydb = oldpolicydb + 1; 1855 1856 if (!ss_initialized) { 1857 avtab_cache_init(); 1858 rc = policydb_read(&policydb, fp); 1859 if (rc) { 1860 avtab_cache_destroy(); 1861 goto out; 1862 } 1863 1864 policydb.len = len; 1865 rc = selinux_set_mapping(&policydb, secclass_map, 1866 ¤t_mapping, 1867 ¤t_mapping_size); 1868 if (rc) { 1869 policydb_destroy(&policydb); 1870 avtab_cache_destroy(); 1871 goto out; 1872 } 1873 1874 rc = policydb_load_isids(&policydb, &sidtab); 1875 if (rc) { 1876 policydb_destroy(&policydb); 1877 avtab_cache_destroy(); 1878 goto out; 1879 } 1880 1881 security_load_policycaps(); 1882 ss_initialized = 1; 1883 seqno = ++latest_granting; 1884 selinux_complete_init(); 1885 avc_ss_reset(seqno); 1886 selnl_notify_policyload(seqno); 1887 selinux_status_update_policyload(seqno); 1888 selinux_netlbl_cache_invalidate(); 1889 selinux_xfrm_notify_policyload(); 1890 goto out; 1891 } 1892 1893 #if 0 1894 sidtab_hash_eval(&sidtab, "sids"); 1895 #endif 1896 1897 rc = policydb_read(newpolicydb, fp); 1898 if (rc) 1899 goto out; 1900 1901 newpolicydb->len = len; 1902 /* If switching between different policy types, log MLS status */ 1903 if (policydb.mls_enabled && !newpolicydb->mls_enabled) 1904 printk(KERN_INFO "SELinux: Disabling MLS support...\n"); 1905 else if (!policydb.mls_enabled && newpolicydb->mls_enabled) 1906 printk(KERN_INFO "SELinux: Enabling MLS support...\n"); 1907 1908 rc = policydb_load_isids(newpolicydb, &newsidtab); 1909 if (rc) { 1910 printk(KERN_ERR "SELinux: unable to load the initial SIDs\n"); 1911 policydb_destroy(newpolicydb); 1912 goto out; 1913 } 1914 1915 rc = selinux_set_mapping(newpolicydb, secclass_map, &map, &map_size); 1916 if (rc) 1917 goto err; 1918 1919 rc = security_preserve_bools(newpolicydb); 1920 if (rc) { 1921 printk(KERN_ERR "SELinux: unable to preserve booleans\n"); 1922 goto err; 1923 } 1924 1925 /* Clone the SID table. */ 1926 sidtab_shutdown(&sidtab); 1927 1928 rc = sidtab_map(&sidtab, clone_sid, &newsidtab); 1929 if (rc) 1930 goto err; 1931 1932 /* 1933 * Convert the internal representations of contexts 1934 * in the new SID table. 1935 */ 1936 args.oldp = &policydb; 1937 args.newp = newpolicydb; 1938 rc = sidtab_map(&newsidtab, convert_context, &args); 1939 if (rc) { 1940 printk(KERN_ERR "SELinux: unable to convert the internal" 1941 " representation of contexts in the new SID" 1942 " table\n"); 1943 goto err; 1944 } 1945 1946 /* Save the old policydb and SID table to free later. */ 1947 memcpy(oldpolicydb, &policydb, sizeof(policydb)); 1948 sidtab_set(&oldsidtab, &sidtab); 1949 1950 /* Install the new policydb and SID table. */ 1951 write_lock_irq(&policy_rwlock); 1952 memcpy(&policydb, newpolicydb, sizeof(policydb)); 1953 sidtab_set(&sidtab, &newsidtab); 1954 security_load_policycaps(); 1955 oldmap = current_mapping; 1956 current_mapping = map; 1957 current_mapping_size = map_size; 1958 seqno = ++latest_granting; 1959 write_unlock_irq(&policy_rwlock); 1960 1961 /* Free the old policydb and SID table. */ 1962 policydb_destroy(oldpolicydb); 1963 sidtab_destroy(&oldsidtab); 1964 kfree(oldmap); 1965 1966 avc_ss_reset(seqno); 1967 selnl_notify_policyload(seqno); 1968 selinux_status_update_policyload(seqno); 1969 selinux_netlbl_cache_invalidate(); 1970 selinux_xfrm_notify_policyload(); 1971 1972 rc = 0; 1973 goto out; 1974 1975 err: 1976 kfree(map); 1977 sidtab_destroy(&newsidtab); 1978 policydb_destroy(newpolicydb); 1979 1980 out: 1981 kfree(oldpolicydb); 1982 return rc; 1983 } 1984 1985 size_t security_policydb_len(void) 1986 { 1987 size_t len; 1988 1989 read_lock(&policy_rwlock); 1990 len = policydb.len; 1991 read_unlock(&policy_rwlock); 1992 1993 return len; 1994 } 1995 1996 /** 1997 * security_port_sid - Obtain the SID for a port. 1998 * @protocol: protocol number 1999 * @port: port number 2000 * @out_sid: security identifier 2001 */ 2002 int security_port_sid(u8 protocol, u16 port, u32 *out_sid) 2003 { 2004 struct ocontext *c; 2005 int rc = 0; 2006 2007 read_lock(&policy_rwlock); 2008 2009 c = policydb.ocontexts[OCON_PORT]; 2010 while (c) { 2011 if (c->u.port.protocol == protocol && 2012 c->u.port.low_port <= port && 2013 c->u.port.high_port >= port) 2014 break; 2015 c = c->next; 2016 } 2017 2018 if (c) { 2019 if (!c->sid[0]) { 2020 rc = sidtab_context_to_sid(&sidtab, 2021 &c->context[0], 2022 &c->sid[0]); 2023 if (rc) 2024 goto out; 2025 } 2026 *out_sid = c->sid[0]; 2027 } else { 2028 *out_sid = SECINITSID_PORT; 2029 } 2030 2031 out: 2032 read_unlock(&policy_rwlock); 2033 return rc; 2034 } 2035 2036 /** 2037 * security_netif_sid - Obtain the SID for a network interface. 2038 * @name: interface name 2039 * @if_sid: interface SID 2040 */ 2041 int security_netif_sid(char *name, u32 *if_sid) 2042 { 2043 int rc = 0; 2044 struct ocontext *c; 2045 2046 read_lock(&policy_rwlock); 2047 2048 c = policydb.ocontexts[OCON_NETIF]; 2049 while (c) { 2050 if (strcmp(name, c->u.name) == 0) 2051 break; 2052 c = c->next; 2053 } 2054 2055 if (c) { 2056 if (!c->sid[0] || !c->sid[1]) { 2057 rc = sidtab_context_to_sid(&sidtab, 2058 &c->context[0], 2059 &c->sid[0]); 2060 if (rc) 2061 goto out; 2062 rc = sidtab_context_to_sid(&sidtab, 2063 &c->context[1], 2064 &c->sid[1]); 2065 if (rc) 2066 goto out; 2067 } 2068 *if_sid = c->sid[0]; 2069 } else 2070 *if_sid = SECINITSID_NETIF; 2071 2072 out: 2073 read_unlock(&policy_rwlock); 2074 return rc; 2075 } 2076 2077 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask) 2078 { 2079 int i, fail = 0; 2080 2081 for (i = 0; i < 4; i++) 2082 if (addr[i] != (input[i] & mask[i])) { 2083 fail = 1; 2084 break; 2085 } 2086 2087 return !fail; 2088 } 2089 2090 /** 2091 * security_node_sid - Obtain the SID for a node (host). 2092 * @domain: communication domain aka address family 2093 * @addrp: address 2094 * @addrlen: address length in bytes 2095 * @out_sid: security identifier 2096 */ 2097 int security_node_sid(u16 domain, 2098 void *addrp, 2099 u32 addrlen, 2100 u32 *out_sid) 2101 { 2102 int rc; 2103 struct ocontext *c; 2104 2105 read_lock(&policy_rwlock); 2106 2107 switch (domain) { 2108 case AF_INET: { 2109 u32 addr; 2110 2111 rc = -EINVAL; 2112 if (addrlen != sizeof(u32)) 2113 goto out; 2114 2115 addr = *((u32 *)addrp); 2116 2117 c = policydb.ocontexts[OCON_NODE]; 2118 while (c) { 2119 if (c->u.node.addr == (addr & c->u.node.mask)) 2120 break; 2121 c = c->next; 2122 } 2123 break; 2124 } 2125 2126 case AF_INET6: 2127 rc = -EINVAL; 2128 if (addrlen != sizeof(u64) * 2) 2129 goto out; 2130 c = policydb.ocontexts[OCON_NODE6]; 2131 while (c) { 2132 if (match_ipv6_addrmask(addrp, c->u.node6.addr, 2133 c->u.node6.mask)) 2134 break; 2135 c = c->next; 2136 } 2137 break; 2138 2139 default: 2140 rc = 0; 2141 *out_sid = SECINITSID_NODE; 2142 goto out; 2143 } 2144 2145 if (c) { 2146 if (!c->sid[0]) { 2147 rc = sidtab_context_to_sid(&sidtab, 2148 &c->context[0], 2149 &c->sid[0]); 2150 if (rc) 2151 goto out; 2152 } 2153 *out_sid = c->sid[0]; 2154 } else { 2155 *out_sid = SECINITSID_NODE; 2156 } 2157 2158 rc = 0; 2159 out: 2160 read_unlock(&policy_rwlock); 2161 return rc; 2162 } 2163 2164 #define SIDS_NEL 25 2165 2166 /** 2167 * security_get_user_sids - Obtain reachable SIDs for a user. 2168 * @fromsid: starting SID 2169 * @username: username 2170 * @sids: array of reachable SIDs for user 2171 * @nel: number of elements in @sids 2172 * 2173 * Generate the set of SIDs for legal security contexts 2174 * for a given user that can be reached by @fromsid. 2175 * Set *@sids to point to a dynamically allocated 2176 * array containing the set of SIDs. Set *@nel to the 2177 * number of elements in the array. 2178 */ 2179 2180 int security_get_user_sids(u32 fromsid, 2181 char *username, 2182 u32 **sids, 2183 u32 *nel) 2184 { 2185 struct context *fromcon, usercon; 2186 u32 *mysids = NULL, *mysids2, sid; 2187 u32 mynel = 0, maxnel = SIDS_NEL; 2188 struct user_datum *user; 2189 struct role_datum *role; 2190 struct ebitmap_node *rnode, *tnode; 2191 int rc = 0, i, j; 2192 2193 *sids = NULL; 2194 *nel = 0; 2195 2196 if (!ss_initialized) 2197 goto out; 2198 2199 read_lock(&policy_rwlock); 2200 2201 context_init(&usercon); 2202 2203 rc = -EINVAL; 2204 fromcon = sidtab_search(&sidtab, fromsid); 2205 if (!fromcon) 2206 goto out_unlock; 2207 2208 rc = -EINVAL; 2209 user = hashtab_search(policydb.p_users.table, username); 2210 if (!user) 2211 goto out_unlock; 2212 2213 usercon.user = user->value; 2214 2215 rc = -ENOMEM; 2216 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC); 2217 if (!mysids) 2218 goto out_unlock; 2219 2220 ebitmap_for_each_positive_bit(&user->roles, rnode, i) { 2221 role = policydb.role_val_to_struct[i]; 2222 usercon.role = i + 1; 2223 ebitmap_for_each_positive_bit(&role->types, tnode, j) { 2224 usercon.type = j + 1; 2225 2226 if (mls_setup_user_range(fromcon, user, &usercon)) 2227 continue; 2228 2229 rc = sidtab_context_to_sid(&sidtab, &usercon, &sid); 2230 if (rc) 2231 goto out_unlock; 2232 if (mynel < maxnel) { 2233 mysids[mynel++] = sid; 2234 } else { 2235 rc = -ENOMEM; 2236 maxnel += SIDS_NEL; 2237 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC); 2238 if (!mysids2) 2239 goto out_unlock; 2240 memcpy(mysids2, mysids, mynel * sizeof(*mysids2)); 2241 kfree(mysids); 2242 mysids = mysids2; 2243 mysids[mynel++] = sid; 2244 } 2245 } 2246 } 2247 rc = 0; 2248 out_unlock: 2249 read_unlock(&policy_rwlock); 2250 if (rc || !mynel) { 2251 kfree(mysids); 2252 goto out; 2253 } 2254 2255 rc = -ENOMEM; 2256 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL); 2257 if (!mysids2) { 2258 kfree(mysids); 2259 goto out; 2260 } 2261 for (i = 0, j = 0; i < mynel; i++) { 2262 struct av_decision dummy_avd; 2263 rc = avc_has_perm_noaudit(fromsid, mysids[i], 2264 SECCLASS_PROCESS, /* kernel value */ 2265 PROCESS__TRANSITION, AVC_STRICT, 2266 &dummy_avd); 2267 if (!rc) 2268 mysids2[j++] = mysids[i]; 2269 cond_resched(); 2270 } 2271 rc = 0; 2272 kfree(mysids); 2273 *sids = mysids2; 2274 *nel = j; 2275 out: 2276 return rc; 2277 } 2278 2279 /** 2280 * security_genfs_sid - Obtain a SID for a file in a filesystem 2281 * @fstype: filesystem type 2282 * @path: path from root of mount 2283 * @sclass: file security class 2284 * @sid: SID for path 2285 * 2286 * Obtain a SID to use for a file in a filesystem that 2287 * cannot support xattr or use a fixed labeling behavior like 2288 * transition SIDs or task SIDs. 2289 */ 2290 int security_genfs_sid(const char *fstype, 2291 char *path, 2292 u16 orig_sclass, 2293 u32 *sid) 2294 { 2295 int len; 2296 u16 sclass; 2297 struct genfs *genfs; 2298 struct ocontext *c; 2299 int rc, cmp = 0; 2300 2301 while (path[0] == '/' && path[1] == '/') 2302 path++; 2303 2304 read_lock(&policy_rwlock); 2305 2306 sclass = unmap_class(orig_sclass); 2307 *sid = SECINITSID_UNLABELED; 2308 2309 for (genfs = policydb.genfs; genfs; genfs = genfs->next) { 2310 cmp = strcmp(fstype, genfs->fstype); 2311 if (cmp <= 0) 2312 break; 2313 } 2314 2315 rc = -ENOENT; 2316 if (!genfs || cmp) 2317 goto out; 2318 2319 for (c = genfs->head; c; c = c->next) { 2320 len = strlen(c->u.name); 2321 if ((!c->v.sclass || sclass == c->v.sclass) && 2322 (strncmp(c->u.name, path, len) == 0)) 2323 break; 2324 } 2325 2326 rc = -ENOENT; 2327 if (!c) 2328 goto out; 2329 2330 if (!c->sid[0]) { 2331 rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]); 2332 if (rc) 2333 goto out; 2334 } 2335 2336 *sid = c->sid[0]; 2337 rc = 0; 2338 out: 2339 read_unlock(&policy_rwlock); 2340 return rc; 2341 } 2342 2343 /** 2344 * security_fs_use - Determine how to handle labeling for a filesystem. 2345 * @sb: superblock in question 2346 */ 2347 int security_fs_use(struct super_block *sb) 2348 { 2349 int rc = 0; 2350 struct ocontext *c; 2351 struct superblock_security_struct *sbsec = sb->s_security; 2352 const char *fstype = sb->s_type->name; 2353 2354 read_lock(&policy_rwlock); 2355 2356 c = policydb.ocontexts[OCON_FSUSE]; 2357 while (c) { 2358 if (strcmp(fstype, c->u.name) == 0) 2359 break; 2360 c = c->next; 2361 } 2362 2363 if (c) { 2364 sbsec->behavior = c->v.behavior; 2365 if (!c->sid[0]) { 2366 rc = sidtab_context_to_sid(&sidtab, &c->context[0], 2367 &c->sid[0]); 2368 if (rc) 2369 goto out; 2370 } 2371 sbsec->sid = c->sid[0]; 2372 } else { 2373 rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, &sbsec->sid); 2374 if (rc) { 2375 sbsec->behavior = SECURITY_FS_USE_NONE; 2376 rc = 0; 2377 } else { 2378 sbsec->behavior = SECURITY_FS_USE_GENFS; 2379 } 2380 } 2381 2382 out: 2383 read_unlock(&policy_rwlock); 2384 return rc; 2385 } 2386 2387 int security_get_bools(int *len, char ***names, int **values) 2388 { 2389 int i, rc; 2390 2391 read_lock(&policy_rwlock); 2392 *names = NULL; 2393 *values = NULL; 2394 2395 rc = 0; 2396 *len = policydb.p_bools.nprim; 2397 if (!*len) 2398 goto out; 2399 2400 rc = -ENOMEM; 2401 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC); 2402 if (!*names) 2403 goto err; 2404 2405 rc = -ENOMEM; 2406 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC); 2407 if (!*values) 2408 goto err; 2409 2410 for (i = 0; i < *len; i++) { 2411 size_t name_len; 2412 2413 (*values)[i] = policydb.bool_val_to_struct[i]->state; 2414 name_len = strlen(sym_name(&policydb, SYM_BOOLS, i)) + 1; 2415 2416 rc = -ENOMEM; 2417 (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC); 2418 if (!(*names)[i]) 2419 goto err; 2420 2421 strncpy((*names)[i], sym_name(&policydb, SYM_BOOLS, i), name_len); 2422 (*names)[i][name_len - 1] = 0; 2423 } 2424 rc = 0; 2425 out: 2426 read_unlock(&policy_rwlock); 2427 return rc; 2428 err: 2429 if (*names) { 2430 for (i = 0; i < *len; i++) 2431 kfree((*names)[i]); 2432 } 2433 kfree(*values); 2434 goto out; 2435 } 2436 2437 2438 int security_set_bools(int len, int *values) 2439 { 2440 int i, rc; 2441 int lenp, seqno = 0; 2442 struct cond_node *cur; 2443 2444 write_lock_irq(&policy_rwlock); 2445 2446 rc = -EFAULT; 2447 lenp = policydb.p_bools.nprim; 2448 if (len != lenp) 2449 goto out; 2450 2451 for (i = 0; i < len; i++) { 2452 if (!!values[i] != policydb.bool_val_to_struct[i]->state) { 2453 audit_log(current->audit_context, GFP_ATOMIC, 2454 AUDIT_MAC_CONFIG_CHANGE, 2455 "bool=%s val=%d old_val=%d auid=%u ses=%u", 2456 sym_name(&policydb, SYM_BOOLS, i), 2457 !!values[i], 2458 policydb.bool_val_to_struct[i]->state, 2459 from_kuid(&init_user_ns, audit_get_loginuid(current)), 2460 audit_get_sessionid(current)); 2461 } 2462 if (values[i]) 2463 policydb.bool_val_to_struct[i]->state = 1; 2464 else 2465 policydb.bool_val_to_struct[i]->state = 0; 2466 } 2467 2468 for (cur = policydb.cond_list; cur; cur = cur->next) { 2469 rc = evaluate_cond_node(&policydb, cur); 2470 if (rc) 2471 goto out; 2472 } 2473 2474 seqno = ++latest_granting; 2475 rc = 0; 2476 out: 2477 write_unlock_irq(&policy_rwlock); 2478 if (!rc) { 2479 avc_ss_reset(seqno); 2480 selnl_notify_policyload(seqno); 2481 selinux_status_update_policyload(seqno); 2482 selinux_xfrm_notify_policyload(); 2483 } 2484 return rc; 2485 } 2486 2487 int security_get_bool_value(int bool) 2488 { 2489 int rc; 2490 int len; 2491 2492 read_lock(&policy_rwlock); 2493 2494 rc = -EFAULT; 2495 len = policydb.p_bools.nprim; 2496 if (bool >= len) 2497 goto out; 2498 2499 rc = policydb.bool_val_to_struct[bool]->state; 2500 out: 2501 read_unlock(&policy_rwlock); 2502 return rc; 2503 } 2504 2505 static int security_preserve_bools(struct policydb *p) 2506 { 2507 int rc, nbools = 0, *bvalues = NULL, i; 2508 char **bnames = NULL; 2509 struct cond_bool_datum *booldatum; 2510 struct cond_node *cur; 2511 2512 rc = security_get_bools(&nbools, &bnames, &bvalues); 2513 if (rc) 2514 goto out; 2515 for (i = 0; i < nbools; i++) { 2516 booldatum = hashtab_search(p->p_bools.table, bnames[i]); 2517 if (booldatum) 2518 booldatum->state = bvalues[i]; 2519 } 2520 for (cur = p->cond_list; cur; cur = cur->next) { 2521 rc = evaluate_cond_node(p, cur); 2522 if (rc) 2523 goto out; 2524 } 2525 2526 out: 2527 if (bnames) { 2528 for (i = 0; i < nbools; i++) 2529 kfree(bnames[i]); 2530 } 2531 kfree(bnames); 2532 kfree(bvalues); 2533 return rc; 2534 } 2535 2536 /* 2537 * security_sid_mls_copy() - computes a new sid based on the given 2538 * sid and the mls portion of mls_sid. 2539 */ 2540 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid) 2541 { 2542 struct context *context1; 2543 struct context *context2; 2544 struct context newcon; 2545 char *s; 2546 u32 len; 2547 int rc; 2548 2549 rc = 0; 2550 if (!ss_initialized || !policydb.mls_enabled) { 2551 *new_sid = sid; 2552 goto out; 2553 } 2554 2555 context_init(&newcon); 2556 2557 read_lock(&policy_rwlock); 2558 2559 rc = -EINVAL; 2560 context1 = sidtab_search(&sidtab, sid); 2561 if (!context1) { 2562 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 2563 __func__, sid); 2564 goto out_unlock; 2565 } 2566 2567 rc = -EINVAL; 2568 context2 = sidtab_search(&sidtab, mls_sid); 2569 if (!context2) { 2570 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 2571 __func__, mls_sid); 2572 goto out_unlock; 2573 } 2574 2575 newcon.user = context1->user; 2576 newcon.role = context1->role; 2577 newcon.type = context1->type; 2578 rc = mls_context_cpy(&newcon, context2); 2579 if (rc) 2580 goto out_unlock; 2581 2582 /* Check the validity of the new context. */ 2583 if (!policydb_context_isvalid(&policydb, &newcon)) { 2584 rc = convert_context_handle_invalid_context(&newcon); 2585 if (rc) { 2586 if (!context_struct_to_string(&newcon, &s, &len)) { 2587 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR, 2588 "security_sid_mls_copy: invalid context %s", s); 2589 kfree(s); 2590 } 2591 goto out_unlock; 2592 } 2593 } 2594 2595 rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid); 2596 out_unlock: 2597 read_unlock(&policy_rwlock); 2598 context_destroy(&newcon); 2599 out: 2600 return rc; 2601 } 2602 2603 /** 2604 * security_net_peersid_resolve - Compare and resolve two network peer SIDs 2605 * @nlbl_sid: NetLabel SID 2606 * @nlbl_type: NetLabel labeling protocol type 2607 * @xfrm_sid: XFRM SID 2608 * 2609 * Description: 2610 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be 2611 * resolved into a single SID it is returned via @peer_sid and the function 2612 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function 2613 * returns a negative value. A table summarizing the behavior is below: 2614 * 2615 * | function return | @sid 2616 * ------------------------------+-----------------+----------------- 2617 * no peer labels | 0 | SECSID_NULL 2618 * single peer label | 0 | <peer_label> 2619 * multiple, consistent labels | 0 | <peer_label> 2620 * multiple, inconsistent labels | -<errno> | SECSID_NULL 2621 * 2622 */ 2623 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type, 2624 u32 xfrm_sid, 2625 u32 *peer_sid) 2626 { 2627 int rc; 2628 struct context *nlbl_ctx; 2629 struct context *xfrm_ctx; 2630 2631 *peer_sid = SECSID_NULL; 2632 2633 /* handle the common (which also happens to be the set of easy) cases 2634 * right away, these two if statements catch everything involving a 2635 * single or absent peer SID/label */ 2636 if (xfrm_sid == SECSID_NULL) { 2637 *peer_sid = nlbl_sid; 2638 return 0; 2639 } 2640 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label 2641 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label 2642 * is present */ 2643 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) { 2644 *peer_sid = xfrm_sid; 2645 return 0; 2646 } 2647 2648 /* we don't need to check ss_initialized here since the only way both 2649 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the 2650 * security server was initialized and ss_initialized was true */ 2651 if (!policydb.mls_enabled) 2652 return 0; 2653 2654 read_lock(&policy_rwlock); 2655 2656 rc = -EINVAL; 2657 nlbl_ctx = sidtab_search(&sidtab, nlbl_sid); 2658 if (!nlbl_ctx) { 2659 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 2660 __func__, nlbl_sid); 2661 goto out; 2662 } 2663 rc = -EINVAL; 2664 xfrm_ctx = sidtab_search(&sidtab, xfrm_sid); 2665 if (!xfrm_ctx) { 2666 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 2667 __func__, xfrm_sid); 2668 goto out; 2669 } 2670 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES); 2671 if (rc) 2672 goto out; 2673 2674 /* at present NetLabel SIDs/labels really only carry MLS 2675 * information so if the MLS portion of the NetLabel SID 2676 * matches the MLS portion of the labeled XFRM SID/label 2677 * then pass along the XFRM SID as it is the most 2678 * expressive */ 2679 *peer_sid = xfrm_sid; 2680 out: 2681 read_unlock(&policy_rwlock); 2682 return rc; 2683 } 2684 2685 static int get_classes_callback(void *k, void *d, void *args) 2686 { 2687 struct class_datum *datum = d; 2688 char *name = k, **classes = args; 2689 int value = datum->value - 1; 2690 2691 classes[value] = kstrdup(name, GFP_ATOMIC); 2692 if (!classes[value]) 2693 return -ENOMEM; 2694 2695 return 0; 2696 } 2697 2698 int security_get_classes(char ***classes, int *nclasses) 2699 { 2700 int rc; 2701 2702 read_lock(&policy_rwlock); 2703 2704 rc = -ENOMEM; 2705 *nclasses = policydb.p_classes.nprim; 2706 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC); 2707 if (!*classes) 2708 goto out; 2709 2710 rc = hashtab_map(policydb.p_classes.table, get_classes_callback, 2711 *classes); 2712 if (rc) { 2713 int i; 2714 for (i = 0; i < *nclasses; i++) 2715 kfree((*classes)[i]); 2716 kfree(*classes); 2717 } 2718 2719 out: 2720 read_unlock(&policy_rwlock); 2721 return rc; 2722 } 2723 2724 static int get_permissions_callback(void *k, void *d, void *args) 2725 { 2726 struct perm_datum *datum = d; 2727 char *name = k, **perms = args; 2728 int value = datum->value - 1; 2729 2730 perms[value] = kstrdup(name, GFP_ATOMIC); 2731 if (!perms[value]) 2732 return -ENOMEM; 2733 2734 return 0; 2735 } 2736 2737 int security_get_permissions(char *class, char ***perms, int *nperms) 2738 { 2739 int rc, i; 2740 struct class_datum *match; 2741 2742 read_lock(&policy_rwlock); 2743 2744 rc = -EINVAL; 2745 match = hashtab_search(policydb.p_classes.table, class); 2746 if (!match) { 2747 printk(KERN_ERR "SELinux: %s: unrecognized class %s\n", 2748 __func__, class); 2749 goto out; 2750 } 2751 2752 rc = -ENOMEM; 2753 *nperms = match->permissions.nprim; 2754 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC); 2755 if (!*perms) 2756 goto out; 2757 2758 if (match->comdatum) { 2759 rc = hashtab_map(match->comdatum->permissions.table, 2760 get_permissions_callback, *perms); 2761 if (rc) 2762 goto err; 2763 } 2764 2765 rc = hashtab_map(match->permissions.table, get_permissions_callback, 2766 *perms); 2767 if (rc) 2768 goto err; 2769 2770 out: 2771 read_unlock(&policy_rwlock); 2772 return rc; 2773 2774 err: 2775 read_unlock(&policy_rwlock); 2776 for (i = 0; i < *nperms; i++) 2777 kfree((*perms)[i]); 2778 kfree(*perms); 2779 return rc; 2780 } 2781 2782 int security_get_reject_unknown(void) 2783 { 2784 return policydb.reject_unknown; 2785 } 2786 2787 int security_get_allow_unknown(void) 2788 { 2789 return policydb.allow_unknown; 2790 } 2791 2792 /** 2793 * security_policycap_supported - Check for a specific policy capability 2794 * @req_cap: capability 2795 * 2796 * Description: 2797 * This function queries the currently loaded policy to see if it supports the 2798 * capability specified by @req_cap. Returns true (1) if the capability is 2799 * supported, false (0) if it isn't supported. 2800 * 2801 */ 2802 int security_policycap_supported(unsigned int req_cap) 2803 { 2804 int rc; 2805 2806 read_lock(&policy_rwlock); 2807 rc = ebitmap_get_bit(&policydb.policycaps, req_cap); 2808 read_unlock(&policy_rwlock); 2809 2810 return rc; 2811 } 2812 2813 struct selinux_audit_rule { 2814 u32 au_seqno; 2815 struct context au_ctxt; 2816 }; 2817 2818 void selinux_audit_rule_free(void *vrule) 2819 { 2820 struct selinux_audit_rule *rule = vrule; 2821 2822 if (rule) { 2823 context_destroy(&rule->au_ctxt); 2824 kfree(rule); 2825 } 2826 } 2827 2828 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule) 2829 { 2830 struct selinux_audit_rule *tmprule; 2831 struct role_datum *roledatum; 2832 struct type_datum *typedatum; 2833 struct user_datum *userdatum; 2834 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule; 2835 int rc = 0; 2836 2837 *rule = NULL; 2838 2839 if (!ss_initialized) 2840 return -EOPNOTSUPP; 2841 2842 switch (field) { 2843 case AUDIT_SUBJ_USER: 2844 case AUDIT_SUBJ_ROLE: 2845 case AUDIT_SUBJ_TYPE: 2846 case AUDIT_OBJ_USER: 2847 case AUDIT_OBJ_ROLE: 2848 case AUDIT_OBJ_TYPE: 2849 /* only 'equals' and 'not equals' fit user, role, and type */ 2850 if (op != Audit_equal && op != Audit_not_equal) 2851 return -EINVAL; 2852 break; 2853 case AUDIT_SUBJ_SEN: 2854 case AUDIT_SUBJ_CLR: 2855 case AUDIT_OBJ_LEV_LOW: 2856 case AUDIT_OBJ_LEV_HIGH: 2857 /* we do not allow a range, indicated by the presence of '-' */ 2858 if (strchr(rulestr, '-')) 2859 return -EINVAL; 2860 break; 2861 default: 2862 /* only the above fields are valid */ 2863 return -EINVAL; 2864 } 2865 2866 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL); 2867 if (!tmprule) 2868 return -ENOMEM; 2869 2870 context_init(&tmprule->au_ctxt); 2871 2872 read_lock(&policy_rwlock); 2873 2874 tmprule->au_seqno = latest_granting; 2875 2876 switch (field) { 2877 case AUDIT_SUBJ_USER: 2878 case AUDIT_OBJ_USER: 2879 rc = -EINVAL; 2880 userdatum = hashtab_search(policydb.p_users.table, rulestr); 2881 if (!userdatum) 2882 goto out; 2883 tmprule->au_ctxt.user = userdatum->value; 2884 break; 2885 case AUDIT_SUBJ_ROLE: 2886 case AUDIT_OBJ_ROLE: 2887 rc = -EINVAL; 2888 roledatum = hashtab_search(policydb.p_roles.table, rulestr); 2889 if (!roledatum) 2890 goto out; 2891 tmprule->au_ctxt.role = roledatum->value; 2892 break; 2893 case AUDIT_SUBJ_TYPE: 2894 case AUDIT_OBJ_TYPE: 2895 rc = -EINVAL; 2896 typedatum = hashtab_search(policydb.p_types.table, rulestr); 2897 if (!typedatum) 2898 goto out; 2899 tmprule->au_ctxt.type = typedatum->value; 2900 break; 2901 case AUDIT_SUBJ_SEN: 2902 case AUDIT_SUBJ_CLR: 2903 case AUDIT_OBJ_LEV_LOW: 2904 case AUDIT_OBJ_LEV_HIGH: 2905 rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC); 2906 if (rc) 2907 goto out; 2908 break; 2909 } 2910 rc = 0; 2911 out: 2912 read_unlock(&policy_rwlock); 2913 2914 if (rc) { 2915 selinux_audit_rule_free(tmprule); 2916 tmprule = NULL; 2917 } 2918 2919 *rule = tmprule; 2920 2921 return rc; 2922 } 2923 2924 /* Check to see if the rule contains any selinux fields */ 2925 int selinux_audit_rule_known(struct audit_krule *rule) 2926 { 2927 int i; 2928 2929 for (i = 0; i < rule->field_count; i++) { 2930 struct audit_field *f = &rule->fields[i]; 2931 switch (f->type) { 2932 case AUDIT_SUBJ_USER: 2933 case AUDIT_SUBJ_ROLE: 2934 case AUDIT_SUBJ_TYPE: 2935 case AUDIT_SUBJ_SEN: 2936 case AUDIT_SUBJ_CLR: 2937 case AUDIT_OBJ_USER: 2938 case AUDIT_OBJ_ROLE: 2939 case AUDIT_OBJ_TYPE: 2940 case AUDIT_OBJ_LEV_LOW: 2941 case AUDIT_OBJ_LEV_HIGH: 2942 return 1; 2943 } 2944 } 2945 2946 return 0; 2947 } 2948 2949 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule, 2950 struct audit_context *actx) 2951 { 2952 struct context *ctxt; 2953 struct mls_level *level; 2954 struct selinux_audit_rule *rule = vrule; 2955 int match = 0; 2956 2957 if (unlikely(!rule)) { 2958 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n"); 2959 return -ENOENT; 2960 } 2961 2962 read_lock(&policy_rwlock); 2963 2964 if (rule->au_seqno < latest_granting) { 2965 match = -ESTALE; 2966 goto out; 2967 } 2968 2969 ctxt = sidtab_search(&sidtab, sid); 2970 if (unlikely(!ctxt)) { 2971 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n", 2972 sid); 2973 match = -ENOENT; 2974 goto out; 2975 } 2976 2977 /* a field/op pair that is not caught here will simply fall through 2978 without a match */ 2979 switch (field) { 2980 case AUDIT_SUBJ_USER: 2981 case AUDIT_OBJ_USER: 2982 switch (op) { 2983 case Audit_equal: 2984 match = (ctxt->user == rule->au_ctxt.user); 2985 break; 2986 case Audit_not_equal: 2987 match = (ctxt->user != rule->au_ctxt.user); 2988 break; 2989 } 2990 break; 2991 case AUDIT_SUBJ_ROLE: 2992 case AUDIT_OBJ_ROLE: 2993 switch (op) { 2994 case Audit_equal: 2995 match = (ctxt->role == rule->au_ctxt.role); 2996 break; 2997 case Audit_not_equal: 2998 match = (ctxt->role != rule->au_ctxt.role); 2999 break; 3000 } 3001 break; 3002 case AUDIT_SUBJ_TYPE: 3003 case AUDIT_OBJ_TYPE: 3004 switch (op) { 3005 case Audit_equal: 3006 match = (ctxt->type == rule->au_ctxt.type); 3007 break; 3008 case Audit_not_equal: 3009 match = (ctxt->type != rule->au_ctxt.type); 3010 break; 3011 } 3012 break; 3013 case AUDIT_SUBJ_SEN: 3014 case AUDIT_SUBJ_CLR: 3015 case AUDIT_OBJ_LEV_LOW: 3016 case AUDIT_OBJ_LEV_HIGH: 3017 level = ((field == AUDIT_SUBJ_SEN || 3018 field == AUDIT_OBJ_LEV_LOW) ? 3019 &ctxt->range.level[0] : &ctxt->range.level[1]); 3020 switch (op) { 3021 case Audit_equal: 3022 match = mls_level_eq(&rule->au_ctxt.range.level[0], 3023 level); 3024 break; 3025 case Audit_not_equal: 3026 match = !mls_level_eq(&rule->au_ctxt.range.level[0], 3027 level); 3028 break; 3029 case Audit_lt: 3030 match = (mls_level_dom(&rule->au_ctxt.range.level[0], 3031 level) && 3032 !mls_level_eq(&rule->au_ctxt.range.level[0], 3033 level)); 3034 break; 3035 case Audit_le: 3036 match = mls_level_dom(&rule->au_ctxt.range.level[0], 3037 level); 3038 break; 3039 case Audit_gt: 3040 match = (mls_level_dom(level, 3041 &rule->au_ctxt.range.level[0]) && 3042 !mls_level_eq(level, 3043 &rule->au_ctxt.range.level[0])); 3044 break; 3045 case Audit_ge: 3046 match = mls_level_dom(level, 3047 &rule->au_ctxt.range.level[0]); 3048 break; 3049 } 3050 } 3051 3052 out: 3053 read_unlock(&policy_rwlock); 3054 return match; 3055 } 3056 3057 static int (*aurule_callback)(void) = audit_update_lsm_rules; 3058 3059 static int aurule_avc_callback(u32 event) 3060 { 3061 int err = 0; 3062 3063 if (event == AVC_CALLBACK_RESET && aurule_callback) 3064 err = aurule_callback(); 3065 return err; 3066 } 3067 3068 static int __init aurule_init(void) 3069 { 3070 int err; 3071 3072 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET); 3073 if (err) 3074 panic("avc_add_callback() failed, error %d\n", err); 3075 3076 return err; 3077 } 3078 __initcall(aurule_init); 3079 3080 #ifdef CONFIG_NETLABEL 3081 /** 3082 * security_netlbl_cache_add - Add an entry to the NetLabel cache 3083 * @secattr: the NetLabel packet security attributes 3084 * @sid: the SELinux SID 3085 * 3086 * Description: 3087 * Attempt to cache the context in @ctx, which was derived from the packet in 3088 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has 3089 * already been initialized. 3090 * 3091 */ 3092 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr, 3093 u32 sid) 3094 { 3095 u32 *sid_cache; 3096 3097 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC); 3098 if (sid_cache == NULL) 3099 return; 3100 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC); 3101 if (secattr->cache == NULL) { 3102 kfree(sid_cache); 3103 return; 3104 } 3105 3106 *sid_cache = sid; 3107 secattr->cache->free = kfree; 3108 secattr->cache->data = sid_cache; 3109 secattr->flags |= NETLBL_SECATTR_CACHE; 3110 } 3111 3112 /** 3113 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID 3114 * @secattr: the NetLabel packet security attributes 3115 * @sid: the SELinux SID 3116 * 3117 * Description: 3118 * Convert the given NetLabel security attributes in @secattr into a 3119 * SELinux SID. If the @secattr field does not contain a full SELinux 3120 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the 3121 * 'cache' field of @secattr is set and the CACHE flag is set; this is to 3122 * allow the @secattr to be used by NetLabel to cache the secattr to SID 3123 * conversion for future lookups. Returns zero on success, negative values on 3124 * failure. 3125 * 3126 */ 3127 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr, 3128 u32 *sid) 3129 { 3130 int rc; 3131 struct context *ctx; 3132 struct context ctx_new; 3133 3134 if (!ss_initialized) { 3135 *sid = SECSID_NULL; 3136 return 0; 3137 } 3138 3139 read_lock(&policy_rwlock); 3140 3141 if (secattr->flags & NETLBL_SECATTR_CACHE) 3142 *sid = *(u32 *)secattr->cache->data; 3143 else if (secattr->flags & NETLBL_SECATTR_SECID) 3144 *sid = secattr->attr.secid; 3145 else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) { 3146 rc = -EIDRM; 3147 ctx = sidtab_search(&sidtab, SECINITSID_NETMSG); 3148 if (ctx == NULL) 3149 goto out; 3150 3151 context_init(&ctx_new); 3152 ctx_new.user = ctx->user; 3153 ctx_new.role = ctx->role; 3154 ctx_new.type = ctx->type; 3155 mls_import_netlbl_lvl(&ctx_new, secattr); 3156 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) { 3157 rc = ebitmap_netlbl_import(&ctx_new.range.level[0].cat, 3158 secattr->attr.mls.cat); 3159 if (rc) 3160 goto out; 3161 memcpy(&ctx_new.range.level[1].cat, 3162 &ctx_new.range.level[0].cat, 3163 sizeof(ctx_new.range.level[0].cat)); 3164 } 3165 rc = -EIDRM; 3166 if (!mls_context_isvalid(&policydb, &ctx_new)) 3167 goto out_free; 3168 3169 rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid); 3170 if (rc) 3171 goto out_free; 3172 3173 security_netlbl_cache_add(secattr, *sid); 3174 3175 ebitmap_destroy(&ctx_new.range.level[0].cat); 3176 } else 3177 *sid = SECSID_NULL; 3178 3179 read_unlock(&policy_rwlock); 3180 return 0; 3181 out_free: 3182 ebitmap_destroy(&ctx_new.range.level[0].cat); 3183 out: 3184 read_unlock(&policy_rwlock); 3185 return rc; 3186 } 3187 3188 /** 3189 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr 3190 * @sid: the SELinux SID 3191 * @secattr: the NetLabel packet security attributes 3192 * 3193 * Description: 3194 * Convert the given SELinux SID in @sid into a NetLabel security attribute. 3195 * Returns zero on success, negative values on failure. 3196 * 3197 */ 3198 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr) 3199 { 3200 int rc; 3201 struct context *ctx; 3202 3203 if (!ss_initialized) 3204 return 0; 3205 3206 read_lock(&policy_rwlock); 3207 3208 rc = -ENOENT; 3209 ctx = sidtab_search(&sidtab, sid); 3210 if (ctx == NULL) 3211 goto out; 3212 3213 rc = -ENOMEM; 3214 secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1), 3215 GFP_ATOMIC); 3216 if (secattr->domain == NULL) 3217 goto out; 3218 3219 secattr->attr.secid = sid; 3220 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID; 3221 mls_export_netlbl_lvl(ctx, secattr); 3222 rc = mls_export_netlbl_cat(ctx, secattr); 3223 out: 3224 read_unlock(&policy_rwlock); 3225 return rc; 3226 } 3227 #endif /* CONFIG_NETLABEL */ 3228 3229 /** 3230 * security_read_policy - read the policy. 3231 * @data: binary policy data 3232 * @len: length of data in bytes 3233 * 3234 */ 3235 int security_read_policy(void **data, size_t *len) 3236 { 3237 int rc; 3238 struct policy_file fp; 3239 3240 if (!ss_initialized) 3241 return -EINVAL; 3242 3243 *len = security_policydb_len(); 3244 3245 *data = vmalloc_user(*len); 3246 if (!*data) 3247 return -ENOMEM; 3248 3249 fp.data = *data; 3250 fp.len = *len; 3251 3252 read_lock(&policy_rwlock); 3253 rc = policydb_write(&policydb, &fp); 3254 read_unlock(&policy_rwlock); 3255 3256 if (rc) 3257 return rc; 3258 3259 *len = (unsigned long)fp.data - (unsigned long)*data; 3260 return 0; 3261 3262 } 3263