1 /* 2 * Implementation of the security services. 3 * 4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil> 5 * James Morris <jmorris@redhat.com> 6 * 7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com> 8 * 9 * Support for enhanced MLS infrastructure. 10 * Support for context based audit filters. 11 * 12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com> 13 * 14 * Added conditional policy language extensions 15 * 16 * Updated: Hewlett-Packard <paul@paul-moore.com> 17 * 18 * Added support for NetLabel 19 * Added support for the policy capability bitmap 20 * 21 * Updated: Chad Sellers <csellers@tresys.com> 22 * 23 * Added validation of kernel classes and permissions 24 * 25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com> 26 * 27 * Added support for bounds domain and audit messaged on masked permissions 28 * 29 * Updated: Guido Trentalancia <guido@trentalancia.com> 30 * 31 * Added support for runtime switching of the policy type 32 * 33 * Copyright (C) 2008, 2009 NEC Corporation 34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P. 35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc. 36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC 37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> 38 * This program is free software; you can redistribute it and/or modify 39 * it under the terms of the GNU General Public License as published by 40 * the Free Software Foundation, version 2. 41 */ 42 #include <linux/kernel.h> 43 #include <linux/slab.h> 44 #include <linux/string.h> 45 #include <linux/spinlock.h> 46 #include <linux/rcupdate.h> 47 #include <linux/errno.h> 48 #include <linux/in.h> 49 #include <linux/sched.h> 50 #include <linux/audit.h> 51 #include <linux/mutex.h> 52 #include <linux/selinux.h> 53 #include <linux/flex_array.h> 54 #include <linux/vmalloc.h> 55 #include <net/netlabel.h> 56 57 #include "flask.h" 58 #include "avc.h" 59 #include "avc_ss.h" 60 #include "security.h" 61 #include "context.h" 62 #include "policydb.h" 63 #include "sidtab.h" 64 #include "services.h" 65 #include "conditional.h" 66 #include "mls.h" 67 #include "objsec.h" 68 #include "netlabel.h" 69 #include "xfrm.h" 70 #include "ebitmap.h" 71 #include "audit.h" 72 73 int selinux_policycap_netpeer; 74 int selinux_policycap_openperm; 75 int selinux_policycap_extsockclass; 76 int selinux_policycap_alwaysnetwork; 77 78 static DEFINE_RWLOCK(policy_rwlock); 79 80 static struct sidtab sidtab; 81 struct policydb policydb; 82 int ss_initialized; 83 84 /* 85 * The largest sequence number that has been used when 86 * providing an access decision to the access vector cache. 87 * The sequence number only changes when a policy change 88 * occurs. 89 */ 90 static u32 latest_granting; 91 92 /* Forward declaration. */ 93 static int context_struct_to_string(struct context *context, char **scontext, 94 u32 *scontext_len); 95 96 static void context_struct_compute_av(struct context *scontext, 97 struct context *tcontext, 98 u16 tclass, 99 struct av_decision *avd, 100 struct extended_perms *xperms); 101 102 struct selinux_mapping { 103 u16 value; /* policy value */ 104 unsigned num_perms; 105 u32 perms[sizeof(u32) * 8]; 106 }; 107 108 static struct selinux_mapping *current_mapping; 109 static u16 current_mapping_size; 110 111 static int selinux_set_mapping(struct policydb *pol, 112 struct security_class_mapping *map, 113 struct selinux_mapping **out_map_p, 114 u16 *out_map_size) 115 { 116 struct selinux_mapping *out_map = NULL; 117 size_t size = sizeof(struct selinux_mapping); 118 u16 i, j; 119 unsigned k; 120 bool print_unknown_handle = false; 121 122 /* Find number of classes in the input mapping */ 123 if (!map) 124 return -EINVAL; 125 i = 0; 126 while (map[i].name) 127 i++; 128 129 /* Allocate space for the class records, plus one for class zero */ 130 out_map = kcalloc(++i, size, GFP_ATOMIC); 131 if (!out_map) 132 return -ENOMEM; 133 134 /* Store the raw class and permission values */ 135 j = 0; 136 while (map[j].name) { 137 struct security_class_mapping *p_in = map + (j++); 138 struct selinux_mapping *p_out = out_map + j; 139 140 /* An empty class string skips ahead */ 141 if (!strcmp(p_in->name, "")) { 142 p_out->num_perms = 0; 143 continue; 144 } 145 146 p_out->value = string_to_security_class(pol, p_in->name); 147 if (!p_out->value) { 148 printk(KERN_INFO 149 "SELinux: Class %s not defined in policy.\n", 150 p_in->name); 151 if (pol->reject_unknown) 152 goto err; 153 p_out->num_perms = 0; 154 print_unknown_handle = true; 155 continue; 156 } 157 158 k = 0; 159 while (p_in->perms && p_in->perms[k]) { 160 /* An empty permission string skips ahead */ 161 if (!*p_in->perms[k]) { 162 k++; 163 continue; 164 } 165 p_out->perms[k] = string_to_av_perm(pol, p_out->value, 166 p_in->perms[k]); 167 if (!p_out->perms[k]) { 168 printk(KERN_INFO 169 "SELinux: Permission %s in class %s not defined in policy.\n", 170 p_in->perms[k], p_in->name); 171 if (pol->reject_unknown) 172 goto err; 173 print_unknown_handle = true; 174 } 175 176 k++; 177 } 178 p_out->num_perms = k; 179 } 180 181 if (print_unknown_handle) 182 printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n", 183 pol->allow_unknown ? "allowed" : "denied"); 184 185 *out_map_p = out_map; 186 *out_map_size = i; 187 return 0; 188 err: 189 kfree(out_map); 190 return -EINVAL; 191 } 192 193 /* 194 * Get real, policy values from mapped values 195 */ 196 197 static u16 unmap_class(u16 tclass) 198 { 199 if (tclass < current_mapping_size) 200 return current_mapping[tclass].value; 201 202 return tclass; 203 } 204 205 /* 206 * Get kernel value for class from its policy value 207 */ 208 static u16 map_class(u16 pol_value) 209 { 210 u16 i; 211 212 for (i = 1; i < current_mapping_size; i++) { 213 if (current_mapping[i].value == pol_value) 214 return i; 215 } 216 217 return SECCLASS_NULL; 218 } 219 220 static void map_decision(u16 tclass, struct av_decision *avd, 221 int allow_unknown) 222 { 223 if (tclass < current_mapping_size) { 224 unsigned i, n = current_mapping[tclass].num_perms; 225 u32 result; 226 227 for (i = 0, result = 0; i < n; i++) { 228 if (avd->allowed & current_mapping[tclass].perms[i]) 229 result |= 1<<i; 230 if (allow_unknown && !current_mapping[tclass].perms[i]) 231 result |= 1<<i; 232 } 233 avd->allowed = result; 234 235 for (i = 0, result = 0; i < n; i++) 236 if (avd->auditallow & current_mapping[tclass].perms[i]) 237 result |= 1<<i; 238 avd->auditallow = result; 239 240 for (i = 0, result = 0; i < n; i++) { 241 if (avd->auditdeny & current_mapping[tclass].perms[i]) 242 result |= 1<<i; 243 if (!allow_unknown && !current_mapping[tclass].perms[i]) 244 result |= 1<<i; 245 } 246 /* 247 * In case the kernel has a bug and requests a permission 248 * between num_perms and the maximum permission number, we 249 * should audit that denial 250 */ 251 for (; i < (sizeof(u32)*8); i++) 252 result |= 1<<i; 253 avd->auditdeny = result; 254 } 255 } 256 257 int security_mls_enabled(void) 258 { 259 return policydb.mls_enabled; 260 } 261 262 /* 263 * Return the boolean value of a constraint expression 264 * when it is applied to the specified source and target 265 * security contexts. 266 * 267 * xcontext is a special beast... It is used by the validatetrans rules 268 * only. For these rules, scontext is the context before the transition, 269 * tcontext is the context after the transition, and xcontext is the context 270 * of the process performing the transition. All other callers of 271 * constraint_expr_eval should pass in NULL for xcontext. 272 */ 273 static int constraint_expr_eval(struct context *scontext, 274 struct context *tcontext, 275 struct context *xcontext, 276 struct constraint_expr *cexpr) 277 { 278 u32 val1, val2; 279 struct context *c; 280 struct role_datum *r1, *r2; 281 struct mls_level *l1, *l2; 282 struct constraint_expr *e; 283 int s[CEXPR_MAXDEPTH]; 284 int sp = -1; 285 286 for (e = cexpr; e; e = e->next) { 287 switch (e->expr_type) { 288 case CEXPR_NOT: 289 BUG_ON(sp < 0); 290 s[sp] = !s[sp]; 291 break; 292 case CEXPR_AND: 293 BUG_ON(sp < 1); 294 sp--; 295 s[sp] &= s[sp + 1]; 296 break; 297 case CEXPR_OR: 298 BUG_ON(sp < 1); 299 sp--; 300 s[sp] |= s[sp + 1]; 301 break; 302 case CEXPR_ATTR: 303 if (sp == (CEXPR_MAXDEPTH - 1)) 304 return 0; 305 switch (e->attr) { 306 case CEXPR_USER: 307 val1 = scontext->user; 308 val2 = tcontext->user; 309 break; 310 case CEXPR_TYPE: 311 val1 = scontext->type; 312 val2 = tcontext->type; 313 break; 314 case CEXPR_ROLE: 315 val1 = scontext->role; 316 val2 = tcontext->role; 317 r1 = policydb.role_val_to_struct[val1 - 1]; 318 r2 = policydb.role_val_to_struct[val2 - 1]; 319 switch (e->op) { 320 case CEXPR_DOM: 321 s[++sp] = ebitmap_get_bit(&r1->dominates, 322 val2 - 1); 323 continue; 324 case CEXPR_DOMBY: 325 s[++sp] = ebitmap_get_bit(&r2->dominates, 326 val1 - 1); 327 continue; 328 case CEXPR_INCOMP: 329 s[++sp] = (!ebitmap_get_bit(&r1->dominates, 330 val2 - 1) && 331 !ebitmap_get_bit(&r2->dominates, 332 val1 - 1)); 333 continue; 334 default: 335 break; 336 } 337 break; 338 case CEXPR_L1L2: 339 l1 = &(scontext->range.level[0]); 340 l2 = &(tcontext->range.level[0]); 341 goto mls_ops; 342 case CEXPR_L1H2: 343 l1 = &(scontext->range.level[0]); 344 l2 = &(tcontext->range.level[1]); 345 goto mls_ops; 346 case CEXPR_H1L2: 347 l1 = &(scontext->range.level[1]); 348 l2 = &(tcontext->range.level[0]); 349 goto mls_ops; 350 case CEXPR_H1H2: 351 l1 = &(scontext->range.level[1]); 352 l2 = &(tcontext->range.level[1]); 353 goto mls_ops; 354 case CEXPR_L1H1: 355 l1 = &(scontext->range.level[0]); 356 l2 = &(scontext->range.level[1]); 357 goto mls_ops; 358 case CEXPR_L2H2: 359 l1 = &(tcontext->range.level[0]); 360 l2 = &(tcontext->range.level[1]); 361 goto mls_ops; 362 mls_ops: 363 switch (e->op) { 364 case CEXPR_EQ: 365 s[++sp] = mls_level_eq(l1, l2); 366 continue; 367 case CEXPR_NEQ: 368 s[++sp] = !mls_level_eq(l1, l2); 369 continue; 370 case CEXPR_DOM: 371 s[++sp] = mls_level_dom(l1, l2); 372 continue; 373 case CEXPR_DOMBY: 374 s[++sp] = mls_level_dom(l2, l1); 375 continue; 376 case CEXPR_INCOMP: 377 s[++sp] = mls_level_incomp(l2, l1); 378 continue; 379 default: 380 BUG(); 381 return 0; 382 } 383 break; 384 default: 385 BUG(); 386 return 0; 387 } 388 389 switch (e->op) { 390 case CEXPR_EQ: 391 s[++sp] = (val1 == val2); 392 break; 393 case CEXPR_NEQ: 394 s[++sp] = (val1 != val2); 395 break; 396 default: 397 BUG(); 398 return 0; 399 } 400 break; 401 case CEXPR_NAMES: 402 if (sp == (CEXPR_MAXDEPTH-1)) 403 return 0; 404 c = scontext; 405 if (e->attr & CEXPR_TARGET) 406 c = tcontext; 407 else if (e->attr & CEXPR_XTARGET) { 408 c = xcontext; 409 if (!c) { 410 BUG(); 411 return 0; 412 } 413 } 414 if (e->attr & CEXPR_USER) 415 val1 = c->user; 416 else if (e->attr & CEXPR_ROLE) 417 val1 = c->role; 418 else if (e->attr & CEXPR_TYPE) 419 val1 = c->type; 420 else { 421 BUG(); 422 return 0; 423 } 424 425 switch (e->op) { 426 case CEXPR_EQ: 427 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1); 428 break; 429 case CEXPR_NEQ: 430 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1); 431 break; 432 default: 433 BUG(); 434 return 0; 435 } 436 break; 437 default: 438 BUG(); 439 return 0; 440 } 441 } 442 443 BUG_ON(sp != 0); 444 return s[0]; 445 } 446 447 /* 448 * security_dump_masked_av - dumps masked permissions during 449 * security_compute_av due to RBAC, MLS/Constraint and Type bounds. 450 */ 451 static int dump_masked_av_helper(void *k, void *d, void *args) 452 { 453 struct perm_datum *pdatum = d; 454 char **permission_names = args; 455 456 BUG_ON(pdatum->value < 1 || pdatum->value > 32); 457 458 permission_names[pdatum->value - 1] = (char *)k; 459 460 return 0; 461 } 462 463 static void security_dump_masked_av(struct context *scontext, 464 struct context *tcontext, 465 u16 tclass, 466 u32 permissions, 467 const char *reason) 468 { 469 struct common_datum *common_dat; 470 struct class_datum *tclass_dat; 471 struct audit_buffer *ab; 472 char *tclass_name; 473 char *scontext_name = NULL; 474 char *tcontext_name = NULL; 475 char *permission_names[32]; 476 int index; 477 u32 length; 478 bool need_comma = false; 479 480 if (!permissions) 481 return; 482 483 tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1); 484 tclass_dat = policydb.class_val_to_struct[tclass - 1]; 485 common_dat = tclass_dat->comdatum; 486 487 /* init permission_names */ 488 if (common_dat && 489 hashtab_map(common_dat->permissions.table, 490 dump_masked_av_helper, permission_names) < 0) 491 goto out; 492 493 if (hashtab_map(tclass_dat->permissions.table, 494 dump_masked_av_helper, permission_names) < 0) 495 goto out; 496 497 /* get scontext/tcontext in text form */ 498 if (context_struct_to_string(scontext, 499 &scontext_name, &length) < 0) 500 goto out; 501 502 if (context_struct_to_string(tcontext, 503 &tcontext_name, &length) < 0) 504 goto out; 505 506 /* audit a message */ 507 ab = audit_log_start(current->audit_context, 508 GFP_ATOMIC, AUDIT_SELINUX_ERR); 509 if (!ab) 510 goto out; 511 512 audit_log_format(ab, "op=security_compute_av reason=%s " 513 "scontext=%s tcontext=%s tclass=%s perms=", 514 reason, scontext_name, tcontext_name, tclass_name); 515 516 for (index = 0; index < 32; index++) { 517 u32 mask = (1 << index); 518 519 if ((mask & permissions) == 0) 520 continue; 521 522 audit_log_format(ab, "%s%s", 523 need_comma ? "," : "", 524 permission_names[index] 525 ? permission_names[index] : "????"); 526 need_comma = true; 527 } 528 audit_log_end(ab); 529 out: 530 /* release scontext/tcontext */ 531 kfree(tcontext_name); 532 kfree(scontext_name); 533 534 return; 535 } 536 537 /* 538 * security_boundary_permission - drops violated permissions 539 * on boundary constraint. 540 */ 541 static void type_attribute_bounds_av(struct context *scontext, 542 struct context *tcontext, 543 u16 tclass, 544 struct av_decision *avd) 545 { 546 struct context lo_scontext; 547 struct context lo_tcontext, *tcontextp = tcontext; 548 struct av_decision lo_avd; 549 struct type_datum *source; 550 struct type_datum *target; 551 u32 masked = 0; 552 553 source = flex_array_get_ptr(policydb.type_val_to_struct_array, 554 scontext->type - 1); 555 BUG_ON(!source); 556 557 if (!source->bounds) 558 return; 559 560 target = flex_array_get_ptr(policydb.type_val_to_struct_array, 561 tcontext->type - 1); 562 BUG_ON(!target); 563 564 memset(&lo_avd, 0, sizeof(lo_avd)); 565 566 memcpy(&lo_scontext, scontext, sizeof(lo_scontext)); 567 lo_scontext.type = source->bounds; 568 569 if (target->bounds) { 570 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext)); 571 lo_tcontext.type = target->bounds; 572 tcontextp = &lo_tcontext; 573 } 574 575 context_struct_compute_av(&lo_scontext, 576 tcontextp, 577 tclass, 578 &lo_avd, 579 NULL); 580 581 masked = ~lo_avd.allowed & avd->allowed; 582 583 if (likely(!masked)) 584 return; /* no masked permission */ 585 586 /* mask violated permissions */ 587 avd->allowed &= ~masked; 588 589 /* audit masked permissions */ 590 security_dump_masked_av(scontext, tcontext, 591 tclass, masked, "bounds"); 592 } 593 594 /* 595 * flag which drivers have permissions 596 * only looking for ioctl based extended permssions 597 */ 598 void services_compute_xperms_drivers( 599 struct extended_perms *xperms, 600 struct avtab_node *node) 601 { 602 unsigned int i; 603 604 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) { 605 /* if one or more driver has all permissions allowed */ 606 for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++) 607 xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i]; 608 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) { 609 /* if allowing permissions within a driver */ 610 security_xperm_set(xperms->drivers.p, 611 node->datum.u.xperms->driver); 612 } 613 614 /* If no ioctl commands are allowed, ignore auditallow and auditdeny */ 615 if (node->key.specified & AVTAB_XPERMS_ALLOWED) 616 xperms->len = 1; 617 } 618 619 /* 620 * Compute access vectors and extended permissions based on a context 621 * structure pair for the permissions in a particular class. 622 */ 623 static void context_struct_compute_av(struct context *scontext, 624 struct context *tcontext, 625 u16 tclass, 626 struct av_decision *avd, 627 struct extended_perms *xperms) 628 { 629 struct constraint_node *constraint; 630 struct role_allow *ra; 631 struct avtab_key avkey; 632 struct avtab_node *node; 633 struct class_datum *tclass_datum; 634 struct ebitmap *sattr, *tattr; 635 struct ebitmap_node *snode, *tnode; 636 unsigned int i, j; 637 638 avd->allowed = 0; 639 avd->auditallow = 0; 640 avd->auditdeny = 0xffffffff; 641 if (xperms) { 642 memset(&xperms->drivers, 0, sizeof(xperms->drivers)); 643 xperms->len = 0; 644 } 645 646 if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) { 647 if (printk_ratelimit()) 648 printk(KERN_WARNING "SELinux: Invalid class %hu\n", tclass); 649 return; 650 } 651 652 tclass_datum = policydb.class_val_to_struct[tclass - 1]; 653 654 /* 655 * If a specific type enforcement rule was defined for 656 * this permission check, then use it. 657 */ 658 avkey.target_class = tclass; 659 avkey.specified = AVTAB_AV | AVTAB_XPERMS; 660 sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1); 661 BUG_ON(!sattr); 662 tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1); 663 BUG_ON(!tattr); 664 ebitmap_for_each_positive_bit(sattr, snode, i) { 665 ebitmap_for_each_positive_bit(tattr, tnode, j) { 666 avkey.source_type = i + 1; 667 avkey.target_type = j + 1; 668 for (node = avtab_search_node(&policydb.te_avtab, &avkey); 669 node; 670 node = avtab_search_node_next(node, avkey.specified)) { 671 if (node->key.specified == AVTAB_ALLOWED) 672 avd->allowed |= node->datum.u.data; 673 else if (node->key.specified == AVTAB_AUDITALLOW) 674 avd->auditallow |= node->datum.u.data; 675 else if (node->key.specified == AVTAB_AUDITDENY) 676 avd->auditdeny &= node->datum.u.data; 677 else if (xperms && (node->key.specified & AVTAB_XPERMS)) 678 services_compute_xperms_drivers(xperms, node); 679 } 680 681 /* Check conditional av table for additional permissions */ 682 cond_compute_av(&policydb.te_cond_avtab, &avkey, 683 avd, xperms); 684 685 } 686 } 687 688 /* 689 * Remove any permissions prohibited by a constraint (this includes 690 * the MLS policy). 691 */ 692 constraint = tclass_datum->constraints; 693 while (constraint) { 694 if ((constraint->permissions & (avd->allowed)) && 695 !constraint_expr_eval(scontext, tcontext, NULL, 696 constraint->expr)) { 697 avd->allowed &= ~(constraint->permissions); 698 } 699 constraint = constraint->next; 700 } 701 702 /* 703 * If checking process transition permission and the 704 * role is changing, then check the (current_role, new_role) 705 * pair. 706 */ 707 if (tclass == policydb.process_class && 708 (avd->allowed & policydb.process_trans_perms) && 709 scontext->role != tcontext->role) { 710 for (ra = policydb.role_allow; ra; ra = ra->next) { 711 if (scontext->role == ra->role && 712 tcontext->role == ra->new_role) 713 break; 714 } 715 if (!ra) 716 avd->allowed &= ~policydb.process_trans_perms; 717 } 718 719 /* 720 * If the given source and target types have boundary 721 * constraint, lazy checks have to mask any violated 722 * permission and notice it to userspace via audit. 723 */ 724 type_attribute_bounds_av(scontext, tcontext, 725 tclass, avd); 726 } 727 728 static int security_validtrans_handle_fail(struct context *ocontext, 729 struct context *ncontext, 730 struct context *tcontext, 731 u16 tclass) 732 { 733 char *o = NULL, *n = NULL, *t = NULL; 734 u32 olen, nlen, tlen; 735 736 if (context_struct_to_string(ocontext, &o, &olen)) 737 goto out; 738 if (context_struct_to_string(ncontext, &n, &nlen)) 739 goto out; 740 if (context_struct_to_string(tcontext, &t, &tlen)) 741 goto out; 742 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR, 743 "op=security_validate_transition seresult=denied" 744 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s", 745 o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1)); 746 out: 747 kfree(o); 748 kfree(n); 749 kfree(t); 750 751 if (!selinux_enforcing) 752 return 0; 753 return -EPERM; 754 } 755 756 static int security_compute_validatetrans(u32 oldsid, u32 newsid, u32 tasksid, 757 u16 orig_tclass, bool user) 758 { 759 struct context *ocontext; 760 struct context *ncontext; 761 struct context *tcontext; 762 struct class_datum *tclass_datum; 763 struct constraint_node *constraint; 764 u16 tclass; 765 int rc = 0; 766 767 if (!ss_initialized) 768 return 0; 769 770 read_lock(&policy_rwlock); 771 772 if (!user) 773 tclass = unmap_class(orig_tclass); 774 else 775 tclass = orig_tclass; 776 777 if (!tclass || tclass > policydb.p_classes.nprim) { 778 rc = -EINVAL; 779 goto out; 780 } 781 tclass_datum = policydb.class_val_to_struct[tclass - 1]; 782 783 ocontext = sidtab_search(&sidtab, oldsid); 784 if (!ocontext) { 785 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 786 __func__, oldsid); 787 rc = -EINVAL; 788 goto out; 789 } 790 791 ncontext = sidtab_search(&sidtab, newsid); 792 if (!ncontext) { 793 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 794 __func__, newsid); 795 rc = -EINVAL; 796 goto out; 797 } 798 799 tcontext = sidtab_search(&sidtab, tasksid); 800 if (!tcontext) { 801 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 802 __func__, tasksid); 803 rc = -EINVAL; 804 goto out; 805 } 806 807 constraint = tclass_datum->validatetrans; 808 while (constraint) { 809 if (!constraint_expr_eval(ocontext, ncontext, tcontext, 810 constraint->expr)) { 811 if (user) 812 rc = -EPERM; 813 else 814 rc = security_validtrans_handle_fail(ocontext, 815 ncontext, 816 tcontext, 817 tclass); 818 goto out; 819 } 820 constraint = constraint->next; 821 } 822 823 out: 824 read_unlock(&policy_rwlock); 825 return rc; 826 } 827 828 int security_validate_transition_user(u32 oldsid, u32 newsid, u32 tasksid, 829 u16 tclass) 830 { 831 return security_compute_validatetrans(oldsid, newsid, tasksid, 832 tclass, true); 833 } 834 835 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid, 836 u16 orig_tclass) 837 { 838 return security_compute_validatetrans(oldsid, newsid, tasksid, 839 orig_tclass, false); 840 } 841 842 /* 843 * security_bounded_transition - check whether the given 844 * transition is directed to bounded, or not. 845 * It returns 0, if @newsid is bounded by @oldsid. 846 * Otherwise, it returns error code. 847 * 848 * @oldsid : current security identifier 849 * @newsid : destinated security identifier 850 */ 851 int security_bounded_transition(u32 old_sid, u32 new_sid) 852 { 853 struct context *old_context, *new_context; 854 struct type_datum *type; 855 int index; 856 int rc; 857 858 read_lock(&policy_rwlock); 859 860 rc = -EINVAL; 861 old_context = sidtab_search(&sidtab, old_sid); 862 if (!old_context) { 863 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n", 864 __func__, old_sid); 865 goto out; 866 } 867 868 rc = -EINVAL; 869 new_context = sidtab_search(&sidtab, new_sid); 870 if (!new_context) { 871 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n", 872 __func__, new_sid); 873 goto out; 874 } 875 876 rc = 0; 877 /* type/domain unchanged */ 878 if (old_context->type == new_context->type) 879 goto out; 880 881 index = new_context->type; 882 while (true) { 883 type = flex_array_get_ptr(policydb.type_val_to_struct_array, 884 index - 1); 885 BUG_ON(!type); 886 887 /* not bounded anymore */ 888 rc = -EPERM; 889 if (!type->bounds) 890 break; 891 892 /* @newsid is bounded by @oldsid */ 893 rc = 0; 894 if (type->bounds == old_context->type) 895 break; 896 897 index = type->bounds; 898 } 899 900 if (rc) { 901 char *old_name = NULL; 902 char *new_name = NULL; 903 u32 length; 904 905 if (!context_struct_to_string(old_context, 906 &old_name, &length) && 907 !context_struct_to_string(new_context, 908 &new_name, &length)) { 909 audit_log(current->audit_context, 910 GFP_ATOMIC, AUDIT_SELINUX_ERR, 911 "op=security_bounded_transition " 912 "seresult=denied " 913 "oldcontext=%s newcontext=%s", 914 old_name, new_name); 915 } 916 kfree(new_name); 917 kfree(old_name); 918 } 919 out: 920 read_unlock(&policy_rwlock); 921 922 return rc; 923 } 924 925 static void avd_init(struct av_decision *avd) 926 { 927 avd->allowed = 0; 928 avd->auditallow = 0; 929 avd->auditdeny = 0xffffffff; 930 avd->seqno = latest_granting; 931 avd->flags = 0; 932 } 933 934 void services_compute_xperms_decision(struct extended_perms_decision *xpermd, 935 struct avtab_node *node) 936 { 937 unsigned int i; 938 939 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) { 940 if (xpermd->driver != node->datum.u.xperms->driver) 941 return; 942 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) { 943 if (!security_xperm_test(node->datum.u.xperms->perms.p, 944 xpermd->driver)) 945 return; 946 } else { 947 BUG(); 948 } 949 950 if (node->key.specified == AVTAB_XPERMS_ALLOWED) { 951 xpermd->used |= XPERMS_ALLOWED; 952 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) { 953 memset(xpermd->allowed->p, 0xff, 954 sizeof(xpermd->allowed->p)); 955 } 956 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) { 957 for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++) 958 xpermd->allowed->p[i] |= 959 node->datum.u.xperms->perms.p[i]; 960 } 961 } else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) { 962 xpermd->used |= XPERMS_AUDITALLOW; 963 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) { 964 memset(xpermd->auditallow->p, 0xff, 965 sizeof(xpermd->auditallow->p)); 966 } 967 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) { 968 for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++) 969 xpermd->auditallow->p[i] |= 970 node->datum.u.xperms->perms.p[i]; 971 } 972 } else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) { 973 xpermd->used |= XPERMS_DONTAUDIT; 974 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) { 975 memset(xpermd->dontaudit->p, 0xff, 976 sizeof(xpermd->dontaudit->p)); 977 } 978 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) { 979 for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++) 980 xpermd->dontaudit->p[i] |= 981 node->datum.u.xperms->perms.p[i]; 982 } 983 } else { 984 BUG(); 985 } 986 } 987 988 void security_compute_xperms_decision(u32 ssid, 989 u32 tsid, 990 u16 orig_tclass, 991 u8 driver, 992 struct extended_perms_decision *xpermd) 993 { 994 u16 tclass; 995 struct context *scontext, *tcontext; 996 struct avtab_key avkey; 997 struct avtab_node *node; 998 struct ebitmap *sattr, *tattr; 999 struct ebitmap_node *snode, *tnode; 1000 unsigned int i, j; 1001 1002 xpermd->driver = driver; 1003 xpermd->used = 0; 1004 memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p)); 1005 memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p)); 1006 memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p)); 1007 1008 read_lock(&policy_rwlock); 1009 if (!ss_initialized) 1010 goto allow; 1011 1012 scontext = sidtab_search(&sidtab, ssid); 1013 if (!scontext) { 1014 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 1015 __func__, ssid); 1016 goto out; 1017 } 1018 1019 tcontext = sidtab_search(&sidtab, tsid); 1020 if (!tcontext) { 1021 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 1022 __func__, tsid); 1023 goto out; 1024 } 1025 1026 tclass = unmap_class(orig_tclass); 1027 if (unlikely(orig_tclass && !tclass)) { 1028 if (policydb.allow_unknown) 1029 goto allow; 1030 goto out; 1031 } 1032 1033 1034 if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) { 1035 pr_warn_ratelimited("SELinux: Invalid class %hu\n", tclass); 1036 goto out; 1037 } 1038 1039 avkey.target_class = tclass; 1040 avkey.specified = AVTAB_XPERMS; 1041 sattr = flex_array_get(policydb.type_attr_map_array, 1042 scontext->type - 1); 1043 BUG_ON(!sattr); 1044 tattr = flex_array_get(policydb.type_attr_map_array, 1045 tcontext->type - 1); 1046 BUG_ON(!tattr); 1047 ebitmap_for_each_positive_bit(sattr, snode, i) { 1048 ebitmap_for_each_positive_bit(tattr, tnode, j) { 1049 avkey.source_type = i + 1; 1050 avkey.target_type = j + 1; 1051 for (node = avtab_search_node(&policydb.te_avtab, &avkey); 1052 node; 1053 node = avtab_search_node_next(node, avkey.specified)) 1054 services_compute_xperms_decision(xpermd, node); 1055 1056 cond_compute_xperms(&policydb.te_cond_avtab, 1057 &avkey, xpermd); 1058 } 1059 } 1060 out: 1061 read_unlock(&policy_rwlock); 1062 return; 1063 allow: 1064 memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p)); 1065 goto out; 1066 } 1067 1068 /** 1069 * security_compute_av - Compute access vector decisions. 1070 * @ssid: source security identifier 1071 * @tsid: target security identifier 1072 * @tclass: target security class 1073 * @avd: access vector decisions 1074 * @xperms: extended permissions 1075 * 1076 * Compute a set of access vector decisions based on the 1077 * SID pair (@ssid, @tsid) for the permissions in @tclass. 1078 */ 1079 void security_compute_av(u32 ssid, 1080 u32 tsid, 1081 u16 orig_tclass, 1082 struct av_decision *avd, 1083 struct extended_perms *xperms) 1084 { 1085 u16 tclass; 1086 struct context *scontext = NULL, *tcontext = NULL; 1087 1088 read_lock(&policy_rwlock); 1089 avd_init(avd); 1090 xperms->len = 0; 1091 if (!ss_initialized) 1092 goto allow; 1093 1094 scontext = sidtab_search(&sidtab, ssid); 1095 if (!scontext) { 1096 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 1097 __func__, ssid); 1098 goto out; 1099 } 1100 1101 /* permissive domain? */ 1102 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type)) 1103 avd->flags |= AVD_FLAGS_PERMISSIVE; 1104 1105 tcontext = sidtab_search(&sidtab, tsid); 1106 if (!tcontext) { 1107 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 1108 __func__, tsid); 1109 goto out; 1110 } 1111 1112 tclass = unmap_class(orig_tclass); 1113 if (unlikely(orig_tclass && !tclass)) { 1114 if (policydb.allow_unknown) 1115 goto allow; 1116 goto out; 1117 } 1118 context_struct_compute_av(scontext, tcontext, tclass, avd, xperms); 1119 map_decision(orig_tclass, avd, policydb.allow_unknown); 1120 out: 1121 read_unlock(&policy_rwlock); 1122 return; 1123 allow: 1124 avd->allowed = 0xffffffff; 1125 goto out; 1126 } 1127 1128 void security_compute_av_user(u32 ssid, 1129 u32 tsid, 1130 u16 tclass, 1131 struct av_decision *avd) 1132 { 1133 struct context *scontext = NULL, *tcontext = NULL; 1134 1135 read_lock(&policy_rwlock); 1136 avd_init(avd); 1137 if (!ss_initialized) 1138 goto allow; 1139 1140 scontext = sidtab_search(&sidtab, ssid); 1141 if (!scontext) { 1142 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 1143 __func__, ssid); 1144 goto out; 1145 } 1146 1147 /* permissive domain? */ 1148 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type)) 1149 avd->flags |= AVD_FLAGS_PERMISSIVE; 1150 1151 tcontext = sidtab_search(&sidtab, tsid); 1152 if (!tcontext) { 1153 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 1154 __func__, tsid); 1155 goto out; 1156 } 1157 1158 if (unlikely(!tclass)) { 1159 if (policydb.allow_unknown) 1160 goto allow; 1161 goto out; 1162 } 1163 1164 context_struct_compute_av(scontext, tcontext, tclass, avd, NULL); 1165 out: 1166 read_unlock(&policy_rwlock); 1167 return; 1168 allow: 1169 avd->allowed = 0xffffffff; 1170 goto out; 1171 } 1172 1173 /* 1174 * Write the security context string representation of 1175 * the context structure `context' into a dynamically 1176 * allocated string of the correct size. Set `*scontext' 1177 * to point to this string and set `*scontext_len' to 1178 * the length of the string. 1179 */ 1180 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len) 1181 { 1182 char *scontextp; 1183 1184 if (scontext) 1185 *scontext = NULL; 1186 *scontext_len = 0; 1187 1188 if (context->len) { 1189 *scontext_len = context->len; 1190 if (scontext) { 1191 *scontext = kstrdup(context->str, GFP_ATOMIC); 1192 if (!(*scontext)) 1193 return -ENOMEM; 1194 } 1195 return 0; 1196 } 1197 1198 /* Compute the size of the context. */ 1199 *scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1; 1200 *scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1; 1201 *scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1; 1202 *scontext_len += mls_compute_context_len(context); 1203 1204 if (!scontext) 1205 return 0; 1206 1207 /* Allocate space for the context; caller must free this space. */ 1208 scontextp = kmalloc(*scontext_len, GFP_ATOMIC); 1209 if (!scontextp) 1210 return -ENOMEM; 1211 *scontext = scontextp; 1212 1213 /* 1214 * Copy the user name, role name and type name into the context. 1215 */ 1216 scontextp += sprintf(scontextp, "%s:%s:%s", 1217 sym_name(&policydb, SYM_USERS, context->user - 1), 1218 sym_name(&policydb, SYM_ROLES, context->role - 1), 1219 sym_name(&policydb, SYM_TYPES, context->type - 1)); 1220 1221 mls_sid_to_context(context, &scontextp); 1222 1223 *scontextp = 0; 1224 1225 return 0; 1226 } 1227 1228 #include "initial_sid_to_string.h" 1229 1230 const char *security_get_initial_sid_context(u32 sid) 1231 { 1232 if (unlikely(sid > SECINITSID_NUM)) 1233 return NULL; 1234 return initial_sid_to_string[sid]; 1235 } 1236 1237 static int security_sid_to_context_core(u32 sid, char **scontext, 1238 u32 *scontext_len, int force) 1239 { 1240 struct context *context; 1241 int rc = 0; 1242 1243 if (scontext) 1244 *scontext = NULL; 1245 *scontext_len = 0; 1246 1247 if (!ss_initialized) { 1248 if (sid <= SECINITSID_NUM) { 1249 char *scontextp; 1250 1251 *scontext_len = strlen(initial_sid_to_string[sid]) + 1; 1252 if (!scontext) 1253 goto out; 1254 scontextp = kmemdup(initial_sid_to_string[sid], 1255 *scontext_len, GFP_ATOMIC); 1256 if (!scontextp) { 1257 rc = -ENOMEM; 1258 goto out; 1259 } 1260 *scontext = scontextp; 1261 goto out; 1262 } 1263 printk(KERN_ERR "SELinux: %s: called before initial " 1264 "load_policy on unknown SID %d\n", __func__, sid); 1265 rc = -EINVAL; 1266 goto out; 1267 } 1268 read_lock(&policy_rwlock); 1269 if (force) 1270 context = sidtab_search_force(&sidtab, sid); 1271 else 1272 context = sidtab_search(&sidtab, sid); 1273 if (!context) { 1274 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 1275 __func__, sid); 1276 rc = -EINVAL; 1277 goto out_unlock; 1278 } 1279 rc = context_struct_to_string(context, scontext, scontext_len); 1280 out_unlock: 1281 read_unlock(&policy_rwlock); 1282 out: 1283 return rc; 1284 1285 } 1286 1287 /** 1288 * security_sid_to_context - Obtain a context for a given SID. 1289 * @sid: security identifier, SID 1290 * @scontext: security context 1291 * @scontext_len: length in bytes 1292 * 1293 * Write the string representation of the context associated with @sid 1294 * into a dynamically allocated string of the correct size. Set @scontext 1295 * to point to this string and set @scontext_len to the length of the string. 1296 */ 1297 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len) 1298 { 1299 return security_sid_to_context_core(sid, scontext, scontext_len, 0); 1300 } 1301 1302 int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len) 1303 { 1304 return security_sid_to_context_core(sid, scontext, scontext_len, 1); 1305 } 1306 1307 /* 1308 * Caveat: Mutates scontext. 1309 */ 1310 static int string_to_context_struct(struct policydb *pol, 1311 struct sidtab *sidtabp, 1312 char *scontext, 1313 u32 scontext_len, 1314 struct context *ctx, 1315 u32 def_sid) 1316 { 1317 struct role_datum *role; 1318 struct type_datum *typdatum; 1319 struct user_datum *usrdatum; 1320 char *scontextp, *p, oldc; 1321 int rc = 0; 1322 1323 context_init(ctx); 1324 1325 /* Parse the security context. */ 1326 1327 rc = -EINVAL; 1328 scontextp = (char *) scontext; 1329 1330 /* Extract the user. */ 1331 p = scontextp; 1332 while (*p && *p != ':') 1333 p++; 1334 1335 if (*p == 0) 1336 goto out; 1337 1338 *p++ = 0; 1339 1340 usrdatum = hashtab_search(pol->p_users.table, scontextp); 1341 if (!usrdatum) 1342 goto out; 1343 1344 ctx->user = usrdatum->value; 1345 1346 /* Extract role. */ 1347 scontextp = p; 1348 while (*p && *p != ':') 1349 p++; 1350 1351 if (*p == 0) 1352 goto out; 1353 1354 *p++ = 0; 1355 1356 role = hashtab_search(pol->p_roles.table, scontextp); 1357 if (!role) 1358 goto out; 1359 ctx->role = role->value; 1360 1361 /* Extract type. */ 1362 scontextp = p; 1363 while (*p && *p != ':') 1364 p++; 1365 oldc = *p; 1366 *p++ = 0; 1367 1368 typdatum = hashtab_search(pol->p_types.table, scontextp); 1369 if (!typdatum || typdatum->attribute) 1370 goto out; 1371 1372 ctx->type = typdatum->value; 1373 1374 rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid); 1375 if (rc) 1376 goto out; 1377 1378 rc = -EINVAL; 1379 if ((p - scontext) < scontext_len) 1380 goto out; 1381 1382 /* Check the validity of the new context. */ 1383 if (!policydb_context_isvalid(pol, ctx)) 1384 goto out; 1385 rc = 0; 1386 out: 1387 if (rc) 1388 context_destroy(ctx); 1389 return rc; 1390 } 1391 1392 static int security_context_to_sid_core(const char *scontext, u32 scontext_len, 1393 u32 *sid, u32 def_sid, gfp_t gfp_flags, 1394 int force) 1395 { 1396 char *scontext2, *str = NULL; 1397 struct context context; 1398 int rc = 0; 1399 1400 /* An empty security context is never valid. */ 1401 if (!scontext_len) 1402 return -EINVAL; 1403 1404 if (!ss_initialized) { 1405 int i; 1406 1407 for (i = 1; i < SECINITSID_NUM; i++) { 1408 if (!strcmp(initial_sid_to_string[i], scontext)) { 1409 *sid = i; 1410 return 0; 1411 } 1412 } 1413 *sid = SECINITSID_KERNEL; 1414 return 0; 1415 } 1416 *sid = SECSID_NULL; 1417 1418 /* Copy the string so that we can modify the copy as we parse it. */ 1419 scontext2 = kmalloc(scontext_len + 1, gfp_flags); 1420 if (!scontext2) 1421 return -ENOMEM; 1422 memcpy(scontext2, scontext, scontext_len); 1423 scontext2[scontext_len] = 0; 1424 1425 if (force) { 1426 /* Save another copy for storing in uninterpreted form */ 1427 rc = -ENOMEM; 1428 str = kstrdup(scontext2, gfp_flags); 1429 if (!str) 1430 goto out; 1431 } 1432 1433 read_lock(&policy_rwlock); 1434 rc = string_to_context_struct(&policydb, &sidtab, scontext2, 1435 scontext_len, &context, def_sid); 1436 if (rc == -EINVAL && force) { 1437 context.str = str; 1438 context.len = scontext_len; 1439 str = NULL; 1440 } else if (rc) 1441 goto out_unlock; 1442 rc = sidtab_context_to_sid(&sidtab, &context, sid); 1443 context_destroy(&context); 1444 out_unlock: 1445 read_unlock(&policy_rwlock); 1446 out: 1447 kfree(scontext2); 1448 kfree(str); 1449 return rc; 1450 } 1451 1452 /** 1453 * security_context_to_sid - Obtain a SID for a given security context. 1454 * @scontext: security context 1455 * @scontext_len: length in bytes 1456 * @sid: security identifier, SID 1457 * @gfp: context for the allocation 1458 * 1459 * Obtains a SID associated with the security context that 1460 * has the string representation specified by @scontext. 1461 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient 1462 * memory is available, or 0 on success. 1463 */ 1464 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid, 1465 gfp_t gfp) 1466 { 1467 return security_context_to_sid_core(scontext, scontext_len, 1468 sid, SECSID_NULL, gfp, 0); 1469 } 1470 1471 int security_context_str_to_sid(const char *scontext, u32 *sid, gfp_t gfp) 1472 { 1473 return security_context_to_sid(scontext, strlen(scontext), sid, gfp); 1474 } 1475 1476 /** 1477 * security_context_to_sid_default - Obtain a SID for a given security context, 1478 * falling back to specified default if needed. 1479 * 1480 * @scontext: security context 1481 * @scontext_len: length in bytes 1482 * @sid: security identifier, SID 1483 * @def_sid: default SID to assign on error 1484 * 1485 * Obtains a SID associated with the security context that 1486 * has the string representation specified by @scontext. 1487 * The default SID is passed to the MLS layer to be used to allow 1488 * kernel labeling of the MLS field if the MLS field is not present 1489 * (for upgrading to MLS without full relabel). 1490 * Implicitly forces adding of the context even if it cannot be mapped yet. 1491 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient 1492 * memory is available, or 0 on success. 1493 */ 1494 int security_context_to_sid_default(const char *scontext, u32 scontext_len, 1495 u32 *sid, u32 def_sid, gfp_t gfp_flags) 1496 { 1497 return security_context_to_sid_core(scontext, scontext_len, 1498 sid, def_sid, gfp_flags, 1); 1499 } 1500 1501 int security_context_to_sid_force(const char *scontext, u32 scontext_len, 1502 u32 *sid) 1503 { 1504 return security_context_to_sid_core(scontext, scontext_len, 1505 sid, SECSID_NULL, GFP_KERNEL, 1); 1506 } 1507 1508 static int compute_sid_handle_invalid_context( 1509 struct context *scontext, 1510 struct context *tcontext, 1511 u16 tclass, 1512 struct context *newcontext) 1513 { 1514 char *s = NULL, *t = NULL, *n = NULL; 1515 u32 slen, tlen, nlen; 1516 1517 if (context_struct_to_string(scontext, &s, &slen)) 1518 goto out; 1519 if (context_struct_to_string(tcontext, &t, &tlen)) 1520 goto out; 1521 if (context_struct_to_string(newcontext, &n, &nlen)) 1522 goto out; 1523 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR, 1524 "op=security_compute_sid invalid_context=%s" 1525 " scontext=%s" 1526 " tcontext=%s" 1527 " tclass=%s", 1528 n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1)); 1529 out: 1530 kfree(s); 1531 kfree(t); 1532 kfree(n); 1533 if (!selinux_enforcing) 1534 return 0; 1535 return -EACCES; 1536 } 1537 1538 static void filename_compute_type(struct policydb *p, struct context *newcontext, 1539 u32 stype, u32 ttype, u16 tclass, 1540 const char *objname) 1541 { 1542 struct filename_trans ft; 1543 struct filename_trans_datum *otype; 1544 1545 /* 1546 * Most filename trans rules are going to live in specific directories 1547 * like /dev or /var/run. This bitmap will quickly skip rule searches 1548 * if the ttype does not contain any rules. 1549 */ 1550 if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype)) 1551 return; 1552 1553 ft.stype = stype; 1554 ft.ttype = ttype; 1555 ft.tclass = tclass; 1556 ft.name = objname; 1557 1558 otype = hashtab_search(p->filename_trans, &ft); 1559 if (otype) 1560 newcontext->type = otype->otype; 1561 } 1562 1563 static int security_compute_sid(u32 ssid, 1564 u32 tsid, 1565 u16 orig_tclass, 1566 u32 specified, 1567 const char *objname, 1568 u32 *out_sid, 1569 bool kern) 1570 { 1571 struct class_datum *cladatum = NULL; 1572 struct context *scontext = NULL, *tcontext = NULL, newcontext; 1573 struct role_trans *roletr = NULL; 1574 struct avtab_key avkey; 1575 struct avtab_datum *avdatum; 1576 struct avtab_node *node; 1577 u16 tclass; 1578 int rc = 0; 1579 bool sock; 1580 1581 if (!ss_initialized) { 1582 switch (orig_tclass) { 1583 case SECCLASS_PROCESS: /* kernel value */ 1584 *out_sid = ssid; 1585 break; 1586 default: 1587 *out_sid = tsid; 1588 break; 1589 } 1590 goto out; 1591 } 1592 1593 context_init(&newcontext); 1594 1595 read_lock(&policy_rwlock); 1596 1597 if (kern) { 1598 tclass = unmap_class(orig_tclass); 1599 sock = security_is_socket_class(orig_tclass); 1600 } else { 1601 tclass = orig_tclass; 1602 sock = security_is_socket_class(map_class(tclass)); 1603 } 1604 1605 scontext = sidtab_search(&sidtab, ssid); 1606 if (!scontext) { 1607 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 1608 __func__, ssid); 1609 rc = -EINVAL; 1610 goto out_unlock; 1611 } 1612 tcontext = sidtab_search(&sidtab, tsid); 1613 if (!tcontext) { 1614 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 1615 __func__, tsid); 1616 rc = -EINVAL; 1617 goto out_unlock; 1618 } 1619 1620 if (tclass && tclass <= policydb.p_classes.nprim) 1621 cladatum = policydb.class_val_to_struct[tclass - 1]; 1622 1623 /* Set the user identity. */ 1624 switch (specified) { 1625 case AVTAB_TRANSITION: 1626 case AVTAB_CHANGE: 1627 if (cladatum && cladatum->default_user == DEFAULT_TARGET) { 1628 newcontext.user = tcontext->user; 1629 } else { 1630 /* notice this gets both DEFAULT_SOURCE and unset */ 1631 /* Use the process user identity. */ 1632 newcontext.user = scontext->user; 1633 } 1634 break; 1635 case AVTAB_MEMBER: 1636 /* Use the related object owner. */ 1637 newcontext.user = tcontext->user; 1638 break; 1639 } 1640 1641 /* Set the role to default values. */ 1642 if (cladatum && cladatum->default_role == DEFAULT_SOURCE) { 1643 newcontext.role = scontext->role; 1644 } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) { 1645 newcontext.role = tcontext->role; 1646 } else { 1647 if ((tclass == policydb.process_class) || (sock == true)) 1648 newcontext.role = scontext->role; 1649 else 1650 newcontext.role = OBJECT_R_VAL; 1651 } 1652 1653 /* Set the type to default values. */ 1654 if (cladatum && cladatum->default_type == DEFAULT_SOURCE) { 1655 newcontext.type = scontext->type; 1656 } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) { 1657 newcontext.type = tcontext->type; 1658 } else { 1659 if ((tclass == policydb.process_class) || (sock == true)) { 1660 /* Use the type of process. */ 1661 newcontext.type = scontext->type; 1662 } else { 1663 /* Use the type of the related object. */ 1664 newcontext.type = tcontext->type; 1665 } 1666 } 1667 1668 /* Look for a type transition/member/change rule. */ 1669 avkey.source_type = scontext->type; 1670 avkey.target_type = tcontext->type; 1671 avkey.target_class = tclass; 1672 avkey.specified = specified; 1673 avdatum = avtab_search(&policydb.te_avtab, &avkey); 1674 1675 /* If no permanent rule, also check for enabled conditional rules */ 1676 if (!avdatum) { 1677 node = avtab_search_node(&policydb.te_cond_avtab, &avkey); 1678 for (; node; node = avtab_search_node_next(node, specified)) { 1679 if (node->key.specified & AVTAB_ENABLED) { 1680 avdatum = &node->datum; 1681 break; 1682 } 1683 } 1684 } 1685 1686 if (avdatum) { 1687 /* Use the type from the type transition/member/change rule. */ 1688 newcontext.type = avdatum->u.data; 1689 } 1690 1691 /* if we have a objname this is a file trans check so check those rules */ 1692 if (objname) 1693 filename_compute_type(&policydb, &newcontext, scontext->type, 1694 tcontext->type, tclass, objname); 1695 1696 /* Check for class-specific changes. */ 1697 if (specified & AVTAB_TRANSITION) { 1698 /* Look for a role transition rule. */ 1699 for (roletr = policydb.role_tr; roletr; roletr = roletr->next) { 1700 if ((roletr->role == scontext->role) && 1701 (roletr->type == tcontext->type) && 1702 (roletr->tclass == tclass)) { 1703 /* Use the role transition rule. */ 1704 newcontext.role = roletr->new_role; 1705 break; 1706 } 1707 } 1708 } 1709 1710 /* Set the MLS attributes. 1711 This is done last because it may allocate memory. */ 1712 rc = mls_compute_sid(scontext, tcontext, tclass, specified, 1713 &newcontext, sock); 1714 if (rc) 1715 goto out_unlock; 1716 1717 /* Check the validity of the context. */ 1718 if (!policydb_context_isvalid(&policydb, &newcontext)) { 1719 rc = compute_sid_handle_invalid_context(scontext, 1720 tcontext, 1721 tclass, 1722 &newcontext); 1723 if (rc) 1724 goto out_unlock; 1725 } 1726 /* Obtain the sid for the context. */ 1727 rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid); 1728 out_unlock: 1729 read_unlock(&policy_rwlock); 1730 context_destroy(&newcontext); 1731 out: 1732 return rc; 1733 } 1734 1735 /** 1736 * security_transition_sid - Compute the SID for a new subject/object. 1737 * @ssid: source security identifier 1738 * @tsid: target security identifier 1739 * @tclass: target security class 1740 * @out_sid: security identifier for new subject/object 1741 * 1742 * Compute a SID to use for labeling a new subject or object in the 1743 * class @tclass based on a SID pair (@ssid, @tsid). 1744 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM 1745 * if insufficient memory is available, or %0 if the new SID was 1746 * computed successfully. 1747 */ 1748 int security_transition_sid(u32 ssid, u32 tsid, u16 tclass, 1749 const struct qstr *qstr, u32 *out_sid) 1750 { 1751 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, 1752 qstr ? qstr->name : NULL, out_sid, true); 1753 } 1754 1755 int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass, 1756 const char *objname, u32 *out_sid) 1757 { 1758 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, 1759 objname, out_sid, false); 1760 } 1761 1762 /** 1763 * security_member_sid - Compute the SID for member selection. 1764 * @ssid: source security identifier 1765 * @tsid: target security identifier 1766 * @tclass: target security class 1767 * @out_sid: security identifier for selected member 1768 * 1769 * Compute a SID to use when selecting a member of a polyinstantiated 1770 * object of class @tclass based on a SID pair (@ssid, @tsid). 1771 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM 1772 * if insufficient memory is available, or %0 if the SID was 1773 * computed successfully. 1774 */ 1775 int security_member_sid(u32 ssid, 1776 u32 tsid, 1777 u16 tclass, 1778 u32 *out_sid) 1779 { 1780 return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL, 1781 out_sid, false); 1782 } 1783 1784 /** 1785 * security_change_sid - Compute the SID for object relabeling. 1786 * @ssid: source security identifier 1787 * @tsid: target security identifier 1788 * @tclass: target security class 1789 * @out_sid: security identifier for selected member 1790 * 1791 * Compute a SID to use for relabeling an object of class @tclass 1792 * based on a SID pair (@ssid, @tsid). 1793 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM 1794 * if insufficient memory is available, or %0 if the SID was 1795 * computed successfully. 1796 */ 1797 int security_change_sid(u32 ssid, 1798 u32 tsid, 1799 u16 tclass, 1800 u32 *out_sid) 1801 { 1802 return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL, 1803 out_sid, false); 1804 } 1805 1806 /* Clone the SID into the new SID table. */ 1807 static int clone_sid(u32 sid, 1808 struct context *context, 1809 void *arg) 1810 { 1811 struct sidtab *s = arg; 1812 1813 if (sid > SECINITSID_NUM) 1814 return sidtab_insert(s, sid, context); 1815 else 1816 return 0; 1817 } 1818 1819 static inline int convert_context_handle_invalid_context(struct context *context) 1820 { 1821 char *s; 1822 u32 len; 1823 1824 if (selinux_enforcing) 1825 return -EINVAL; 1826 1827 if (!context_struct_to_string(context, &s, &len)) { 1828 printk(KERN_WARNING "SELinux: Context %s would be invalid if enforcing\n", s); 1829 kfree(s); 1830 } 1831 return 0; 1832 } 1833 1834 struct convert_context_args { 1835 struct policydb *oldp; 1836 struct policydb *newp; 1837 }; 1838 1839 /* 1840 * Convert the values in the security context 1841 * structure `c' from the values specified 1842 * in the policy `p->oldp' to the values specified 1843 * in the policy `p->newp'. Verify that the 1844 * context is valid under the new policy. 1845 */ 1846 static int convert_context(u32 key, 1847 struct context *c, 1848 void *p) 1849 { 1850 struct convert_context_args *args; 1851 struct context oldc; 1852 struct ocontext *oc; 1853 struct mls_range *range; 1854 struct role_datum *role; 1855 struct type_datum *typdatum; 1856 struct user_datum *usrdatum; 1857 char *s; 1858 u32 len; 1859 int rc = 0; 1860 1861 if (key <= SECINITSID_NUM) 1862 goto out; 1863 1864 args = p; 1865 1866 if (c->str) { 1867 struct context ctx; 1868 1869 rc = -ENOMEM; 1870 s = kstrdup(c->str, GFP_KERNEL); 1871 if (!s) 1872 goto out; 1873 1874 rc = string_to_context_struct(args->newp, NULL, s, 1875 c->len, &ctx, SECSID_NULL); 1876 kfree(s); 1877 if (!rc) { 1878 printk(KERN_INFO "SELinux: Context %s became valid (mapped).\n", 1879 c->str); 1880 /* Replace string with mapped representation. */ 1881 kfree(c->str); 1882 memcpy(c, &ctx, sizeof(*c)); 1883 goto out; 1884 } else if (rc == -EINVAL) { 1885 /* Retain string representation for later mapping. */ 1886 rc = 0; 1887 goto out; 1888 } else { 1889 /* Other error condition, e.g. ENOMEM. */ 1890 printk(KERN_ERR "SELinux: Unable to map context %s, rc = %d.\n", 1891 c->str, -rc); 1892 goto out; 1893 } 1894 } 1895 1896 rc = context_cpy(&oldc, c); 1897 if (rc) 1898 goto out; 1899 1900 /* Convert the user. */ 1901 rc = -EINVAL; 1902 usrdatum = hashtab_search(args->newp->p_users.table, 1903 sym_name(args->oldp, SYM_USERS, c->user - 1)); 1904 if (!usrdatum) 1905 goto bad; 1906 c->user = usrdatum->value; 1907 1908 /* Convert the role. */ 1909 rc = -EINVAL; 1910 role = hashtab_search(args->newp->p_roles.table, 1911 sym_name(args->oldp, SYM_ROLES, c->role - 1)); 1912 if (!role) 1913 goto bad; 1914 c->role = role->value; 1915 1916 /* Convert the type. */ 1917 rc = -EINVAL; 1918 typdatum = hashtab_search(args->newp->p_types.table, 1919 sym_name(args->oldp, SYM_TYPES, c->type - 1)); 1920 if (!typdatum) 1921 goto bad; 1922 c->type = typdatum->value; 1923 1924 /* Convert the MLS fields if dealing with MLS policies */ 1925 if (args->oldp->mls_enabled && args->newp->mls_enabled) { 1926 rc = mls_convert_context(args->oldp, args->newp, c); 1927 if (rc) 1928 goto bad; 1929 } else if (args->oldp->mls_enabled && !args->newp->mls_enabled) { 1930 /* 1931 * Switching between MLS and non-MLS policy: 1932 * free any storage used by the MLS fields in the 1933 * context for all existing entries in the sidtab. 1934 */ 1935 mls_context_destroy(c); 1936 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) { 1937 /* 1938 * Switching between non-MLS and MLS policy: 1939 * ensure that the MLS fields of the context for all 1940 * existing entries in the sidtab are filled in with a 1941 * suitable default value, likely taken from one of the 1942 * initial SIDs. 1943 */ 1944 oc = args->newp->ocontexts[OCON_ISID]; 1945 while (oc && oc->sid[0] != SECINITSID_UNLABELED) 1946 oc = oc->next; 1947 rc = -EINVAL; 1948 if (!oc) { 1949 printk(KERN_ERR "SELinux: unable to look up" 1950 " the initial SIDs list\n"); 1951 goto bad; 1952 } 1953 range = &oc->context[0].range; 1954 rc = mls_range_set(c, range); 1955 if (rc) 1956 goto bad; 1957 } 1958 1959 /* Check the validity of the new context. */ 1960 if (!policydb_context_isvalid(args->newp, c)) { 1961 rc = convert_context_handle_invalid_context(&oldc); 1962 if (rc) 1963 goto bad; 1964 } 1965 1966 context_destroy(&oldc); 1967 1968 rc = 0; 1969 out: 1970 return rc; 1971 bad: 1972 /* Map old representation to string and save it. */ 1973 rc = context_struct_to_string(&oldc, &s, &len); 1974 if (rc) 1975 return rc; 1976 context_destroy(&oldc); 1977 context_destroy(c); 1978 c->str = s; 1979 c->len = len; 1980 printk(KERN_INFO "SELinux: Context %s became invalid (unmapped).\n", 1981 c->str); 1982 rc = 0; 1983 goto out; 1984 } 1985 1986 static void security_load_policycaps(void) 1987 { 1988 selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps, 1989 POLICYDB_CAPABILITY_NETPEER); 1990 selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps, 1991 POLICYDB_CAPABILITY_OPENPERM); 1992 selinux_policycap_extsockclass = ebitmap_get_bit(&policydb.policycaps, 1993 POLICYDB_CAPABILITY_EXTSOCKCLASS); 1994 selinux_policycap_alwaysnetwork = ebitmap_get_bit(&policydb.policycaps, 1995 POLICYDB_CAPABILITY_ALWAYSNETWORK); 1996 } 1997 1998 static int security_preserve_bools(struct policydb *p); 1999 2000 /** 2001 * security_load_policy - Load a security policy configuration. 2002 * @data: binary policy data 2003 * @len: length of data in bytes 2004 * 2005 * Load a new set of security policy configuration data, 2006 * validate it and convert the SID table as necessary. 2007 * This function will flush the access vector cache after 2008 * loading the new policy. 2009 */ 2010 int security_load_policy(void *data, size_t len) 2011 { 2012 struct policydb *oldpolicydb, *newpolicydb; 2013 struct sidtab oldsidtab, newsidtab; 2014 struct selinux_mapping *oldmap, *map = NULL; 2015 struct convert_context_args args; 2016 u32 seqno; 2017 u16 map_size; 2018 int rc = 0; 2019 struct policy_file file = { data, len }, *fp = &file; 2020 2021 oldpolicydb = kzalloc(2 * sizeof(*oldpolicydb), GFP_KERNEL); 2022 if (!oldpolicydb) { 2023 rc = -ENOMEM; 2024 goto out; 2025 } 2026 newpolicydb = oldpolicydb + 1; 2027 2028 if (!ss_initialized) { 2029 avtab_cache_init(); 2030 rc = policydb_read(&policydb, fp); 2031 if (rc) { 2032 avtab_cache_destroy(); 2033 goto out; 2034 } 2035 2036 policydb.len = len; 2037 rc = selinux_set_mapping(&policydb, secclass_map, 2038 ¤t_mapping, 2039 ¤t_mapping_size); 2040 if (rc) { 2041 policydb_destroy(&policydb); 2042 avtab_cache_destroy(); 2043 goto out; 2044 } 2045 2046 rc = policydb_load_isids(&policydb, &sidtab); 2047 if (rc) { 2048 policydb_destroy(&policydb); 2049 avtab_cache_destroy(); 2050 goto out; 2051 } 2052 2053 security_load_policycaps(); 2054 ss_initialized = 1; 2055 seqno = ++latest_granting; 2056 selinux_complete_init(); 2057 avc_ss_reset(seqno); 2058 selnl_notify_policyload(seqno); 2059 selinux_status_update_policyload(seqno); 2060 selinux_netlbl_cache_invalidate(); 2061 selinux_xfrm_notify_policyload(); 2062 goto out; 2063 } 2064 2065 #if 0 2066 sidtab_hash_eval(&sidtab, "sids"); 2067 #endif 2068 2069 rc = policydb_read(newpolicydb, fp); 2070 if (rc) 2071 goto out; 2072 2073 newpolicydb->len = len; 2074 /* If switching between different policy types, log MLS status */ 2075 if (policydb.mls_enabled && !newpolicydb->mls_enabled) 2076 printk(KERN_INFO "SELinux: Disabling MLS support...\n"); 2077 else if (!policydb.mls_enabled && newpolicydb->mls_enabled) 2078 printk(KERN_INFO "SELinux: Enabling MLS support...\n"); 2079 2080 rc = policydb_load_isids(newpolicydb, &newsidtab); 2081 if (rc) { 2082 printk(KERN_ERR "SELinux: unable to load the initial SIDs\n"); 2083 policydb_destroy(newpolicydb); 2084 goto out; 2085 } 2086 2087 rc = selinux_set_mapping(newpolicydb, secclass_map, &map, &map_size); 2088 if (rc) 2089 goto err; 2090 2091 rc = security_preserve_bools(newpolicydb); 2092 if (rc) { 2093 printk(KERN_ERR "SELinux: unable to preserve booleans\n"); 2094 goto err; 2095 } 2096 2097 /* Clone the SID table. */ 2098 sidtab_shutdown(&sidtab); 2099 2100 rc = sidtab_map(&sidtab, clone_sid, &newsidtab); 2101 if (rc) 2102 goto err; 2103 2104 /* 2105 * Convert the internal representations of contexts 2106 * in the new SID table. 2107 */ 2108 args.oldp = &policydb; 2109 args.newp = newpolicydb; 2110 rc = sidtab_map(&newsidtab, convert_context, &args); 2111 if (rc) { 2112 printk(KERN_ERR "SELinux: unable to convert the internal" 2113 " representation of contexts in the new SID" 2114 " table\n"); 2115 goto err; 2116 } 2117 2118 /* Save the old policydb and SID table to free later. */ 2119 memcpy(oldpolicydb, &policydb, sizeof(policydb)); 2120 sidtab_set(&oldsidtab, &sidtab); 2121 2122 /* Install the new policydb and SID table. */ 2123 write_lock_irq(&policy_rwlock); 2124 memcpy(&policydb, newpolicydb, sizeof(policydb)); 2125 sidtab_set(&sidtab, &newsidtab); 2126 security_load_policycaps(); 2127 oldmap = current_mapping; 2128 current_mapping = map; 2129 current_mapping_size = map_size; 2130 seqno = ++latest_granting; 2131 write_unlock_irq(&policy_rwlock); 2132 2133 /* Free the old policydb and SID table. */ 2134 policydb_destroy(oldpolicydb); 2135 sidtab_destroy(&oldsidtab); 2136 kfree(oldmap); 2137 2138 avc_ss_reset(seqno); 2139 selnl_notify_policyload(seqno); 2140 selinux_status_update_policyload(seqno); 2141 selinux_netlbl_cache_invalidate(); 2142 selinux_xfrm_notify_policyload(); 2143 2144 rc = 0; 2145 goto out; 2146 2147 err: 2148 kfree(map); 2149 sidtab_destroy(&newsidtab); 2150 policydb_destroy(newpolicydb); 2151 2152 out: 2153 kfree(oldpolicydb); 2154 return rc; 2155 } 2156 2157 size_t security_policydb_len(void) 2158 { 2159 size_t len; 2160 2161 read_lock(&policy_rwlock); 2162 len = policydb.len; 2163 read_unlock(&policy_rwlock); 2164 2165 return len; 2166 } 2167 2168 /** 2169 * security_port_sid - Obtain the SID for a port. 2170 * @protocol: protocol number 2171 * @port: port number 2172 * @out_sid: security identifier 2173 */ 2174 int security_port_sid(u8 protocol, u16 port, u32 *out_sid) 2175 { 2176 struct ocontext *c; 2177 int rc = 0; 2178 2179 read_lock(&policy_rwlock); 2180 2181 c = policydb.ocontexts[OCON_PORT]; 2182 while (c) { 2183 if (c->u.port.protocol == protocol && 2184 c->u.port.low_port <= port && 2185 c->u.port.high_port >= port) 2186 break; 2187 c = c->next; 2188 } 2189 2190 if (c) { 2191 if (!c->sid[0]) { 2192 rc = sidtab_context_to_sid(&sidtab, 2193 &c->context[0], 2194 &c->sid[0]); 2195 if (rc) 2196 goto out; 2197 } 2198 *out_sid = c->sid[0]; 2199 } else { 2200 *out_sid = SECINITSID_PORT; 2201 } 2202 2203 out: 2204 read_unlock(&policy_rwlock); 2205 return rc; 2206 } 2207 2208 /** 2209 * security_netif_sid - Obtain the SID for a network interface. 2210 * @name: interface name 2211 * @if_sid: interface SID 2212 */ 2213 int security_netif_sid(char *name, u32 *if_sid) 2214 { 2215 int rc = 0; 2216 struct ocontext *c; 2217 2218 read_lock(&policy_rwlock); 2219 2220 c = policydb.ocontexts[OCON_NETIF]; 2221 while (c) { 2222 if (strcmp(name, c->u.name) == 0) 2223 break; 2224 c = c->next; 2225 } 2226 2227 if (c) { 2228 if (!c->sid[0] || !c->sid[1]) { 2229 rc = sidtab_context_to_sid(&sidtab, 2230 &c->context[0], 2231 &c->sid[0]); 2232 if (rc) 2233 goto out; 2234 rc = sidtab_context_to_sid(&sidtab, 2235 &c->context[1], 2236 &c->sid[1]); 2237 if (rc) 2238 goto out; 2239 } 2240 *if_sid = c->sid[0]; 2241 } else 2242 *if_sid = SECINITSID_NETIF; 2243 2244 out: 2245 read_unlock(&policy_rwlock); 2246 return rc; 2247 } 2248 2249 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask) 2250 { 2251 int i, fail = 0; 2252 2253 for (i = 0; i < 4; i++) 2254 if (addr[i] != (input[i] & mask[i])) { 2255 fail = 1; 2256 break; 2257 } 2258 2259 return !fail; 2260 } 2261 2262 /** 2263 * security_node_sid - Obtain the SID for a node (host). 2264 * @domain: communication domain aka address family 2265 * @addrp: address 2266 * @addrlen: address length in bytes 2267 * @out_sid: security identifier 2268 */ 2269 int security_node_sid(u16 domain, 2270 void *addrp, 2271 u32 addrlen, 2272 u32 *out_sid) 2273 { 2274 int rc; 2275 struct ocontext *c; 2276 2277 read_lock(&policy_rwlock); 2278 2279 switch (domain) { 2280 case AF_INET: { 2281 u32 addr; 2282 2283 rc = -EINVAL; 2284 if (addrlen != sizeof(u32)) 2285 goto out; 2286 2287 addr = *((u32 *)addrp); 2288 2289 c = policydb.ocontexts[OCON_NODE]; 2290 while (c) { 2291 if (c->u.node.addr == (addr & c->u.node.mask)) 2292 break; 2293 c = c->next; 2294 } 2295 break; 2296 } 2297 2298 case AF_INET6: 2299 rc = -EINVAL; 2300 if (addrlen != sizeof(u64) * 2) 2301 goto out; 2302 c = policydb.ocontexts[OCON_NODE6]; 2303 while (c) { 2304 if (match_ipv6_addrmask(addrp, c->u.node6.addr, 2305 c->u.node6.mask)) 2306 break; 2307 c = c->next; 2308 } 2309 break; 2310 2311 default: 2312 rc = 0; 2313 *out_sid = SECINITSID_NODE; 2314 goto out; 2315 } 2316 2317 if (c) { 2318 if (!c->sid[0]) { 2319 rc = sidtab_context_to_sid(&sidtab, 2320 &c->context[0], 2321 &c->sid[0]); 2322 if (rc) 2323 goto out; 2324 } 2325 *out_sid = c->sid[0]; 2326 } else { 2327 *out_sid = SECINITSID_NODE; 2328 } 2329 2330 rc = 0; 2331 out: 2332 read_unlock(&policy_rwlock); 2333 return rc; 2334 } 2335 2336 #define SIDS_NEL 25 2337 2338 /** 2339 * security_get_user_sids - Obtain reachable SIDs for a user. 2340 * @fromsid: starting SID 2341 * @username: username 2342 * @sids: array of reachable SIDs for user 2343 * @nel: number of elements in @sids 2344 * 2345 * Generate the set of SIDs for legal security contexts 2346 * for a given user that can be reached by @fromsid. 2347 * Set *@sids to point to a dynamically allocated 2348 * array containing the set of SIDs. Set *@nel to the 2349 * number of elements in the array. 2350 */ 2351 2352 int security_get_user_sids(u32 fromsid, 2353 char *username, 2354 u32 **sids, 2355 u32 *nel) 2356 { 2357 struct context *fromcon, usercon; 2358 u32 *mysids = NULL, *mysids2, sid; 2359 u32 mynel = 0, maxnel = SIDS_NEL; 2360 struct user_datum *user; 2361 struct role_datum *role; 2362 struct ebitmap_node *rnode, *tnode; 2363 int rc = 0, i, j; 2364 2365 *sids = NULL; 2366 *nel = 0; 2367 2368 if (!ss_initialized) 2369 goto out; 2370 2371 read_lock(&policy_rwlock); 2372 2373 context_init(&usercon); 2374 2375 rc = -EINVAL; 2376 fromcon = sidtab_search(&sidtab, fromsid); 2377 if (!fromcon) 2378 goto out_unlock; 2379 2380 rc = -EINVAL; 2381 user = hashtab_search(policydb.p_users.table, username); 2382 if (!user) 2383 goto out_unlock; 2384 2385 usercon.user = user->value; 2386 2387 rc = -ENOMEM; 2388 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC); 2389 if (!mysids) 2390 goto out_unlock; 2391 2392 ebitmap_for_each_positive_bit(&user->roles, rnode, i) { 2393 role = policydb.role_val_to_struct[i]; 2394 usercon.role = i + 1; 2395 ebitmap_for_each_positive_bit(&role->types, tnode, j) { 2396 usercon.type = j + 1; 2397 2398 if (mls_setup_user_range(fromcon, user, &usercon)) 2399 continue; 2400 2401 rc = sidtab_context_to_sid(&sidtab, &usercon, &sid); 2402 if (rc) 2403 goto out_unlock; 2404 if (mynel < maxnel) { 2405 mysids[mynel++] = sid; 2406 } else { 2407 rc = -ENOMEM; 2408 maxnel += SIDS_NEL; 2409 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC); 2410 if (!mysids2) 2411 goto out_unlock; 2412 memcpy(mysids2, mysids, mynel * sizeof(*mysids2)); 2413 kfree(mysids); 2414 mysids = mysids2; 2415 mysids[mynel++] = sid; 2416 } 2417 } 2418 } 2419 rc = 0; 2420 out_unlock: 2421 read_unlock(&policy_rwlock); 2422 if (rc || !mynel) { 2423 kfree(mysids); 2424 goto out; 2425 } 2426 2427 rc = -ENOMEM; 2428 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL); 2429 if (!mysids2) { 2430 kfree(mysids); 2431 goto out; 2432 } 2433 for (i = 0, j = 0; i < mynel; i++) { 2434 struct av_decision dummy_avd; 2435 rc = avc_has_perm_noaudit(fromsid, mysids[i], 2436 SECCLASS_PROCESS, /* kernel value */ 2437 PROCESS__TRANSITION, AVC_STRICT, 2438 &dummy_avd); 2439 if (!rc) 2440 mysids2[j++] = mysids[i]; 2441 cond_resched(); 2442 } 2443 rc = 0; 2444 kfree(mysids); 2445 *sids = mysids2; 2446 *nel = j; 2447 out: 2448 return rc; 2449 } 2450 2451 /** 2452 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem 2453 * @fstype: filesystem type 2454 * @path: path from root of mount 2455 * @sclass: file security class 2456 * @sid: SID for path 2457 * 2458 * Obtain a SID to use for a file in a filesystem that 2459 * cannot support xattr or use a fixed labeling behavior like 2460 * transition SIDs or task SIDs. 2461 * 2462 * The caller must acquire the policy_rwlock before calling this function. 2463 */ 2464 static inline int __security_genfs_sid(const char *fstype, 2465 char *path, 2466 u16 orig_sclass, 2467 u32 *sid) 2468 { 2469 int len; 2470 u16 sclass; 2471 struct genfs *genfs; 2472 struct ocontext *c; 2473 int rc, cmp = 0; 2474 2475 while (path[0] == '/' && path[1] == '/') 2476 path++; 2477 2478 sclass = unmap_class(orig_sclass); 2479 *sid = SECINITSID_UNLABELED; 2480 2481 for (genfs = policydb.genfs; genfs; genfs = genfs->next) { 2482 cmp = strcmp(fstype, genfs->fstype); 2483 if (cmp <= 0) 2484 break; 2485 } 2486 2487 rc = -ENOENT; 2488 if (!genfs || cmp) 2489 goto out; 2490 2491 for (c = genfs->head; c; c = c->next) { 2492 len = strlen(c->u.name); 2493 if ((!c->v.sclass || sclass == c->v.sclass) && 2494 (strncmp(c->u.name, path, len) == 0)) 2495 break; 2496 } 2497 2498 rc = -ENOENT; 2499 if (!c) 2500 goto out; 2501 2502 if (!c->sid[0]) { 2503 rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]); 2504 if (rc) 2505 goto out; 2506 } 2507 2508 *sid = c->sid[0]; 2509 rc = 0; 2510 out: 2511 return rc; 2512 } 2513 2514 /** 2515 * security_genfs_sid - Obtain a SID for a file in a filesystem 2516 * @fstype: filesystem type 2517 * @path: path from root of mount 2518 * @sclass: file security class 2519 * @sid: SID for path 2520 * 2521 * Acquire policy_rwlock before calling __security_genfs_sid() and release 2522 * it afterward. 2523 */ 2524 int security_genfs_sid(const char *fstype, 2525 char *path, 2526 u16 orig_sclass, 2527 u32 *sid) 2528 { 2529 int retval; 2530 2531 read_lock(&policy_rwlock); 2532 retval = __security_genfs_sid(fstype, path, orig_sclass, sid); 2533 read_unlock(&policy_rwlock); 2534 return retval; 2535 } 2536 2537 /** 2538 * security_fs_use - Determine how to handle labeling for a filesystem. 2539 * @sb: superblock in question 2540 */ 2541 int security_fs_use(struct super_block *sb) 2542 { 2543 int rc = 0; 2544 struct ocontext *c; 2545 struct superblock_security_struct *sbsec = sb->s_security; 2546 const char *fstype = sb->s_type->name; 2547 2548 read_lock(&policy_rwlock); 2549 2550 c = policydb.ocontexts[OCON_FSUSE]; 2551 while (c) { 2552 if (strcmp(fstype, c->u.name) == 0) 2553 break; 2554 c = c->next; 2555 } 2556 2557 if (c) { 2558 sbsec->behavior = c->v.behavior; 2559 if (!c->sid[0]) { 2560 rc = sidtab_context_to_sid(&sidtab, &c->context[0], 2561 &c->sid[0]); 2562 if (rc) 2563 goto out; 2564 } 2565 sbsec->sid = c->sid[0]; 2566 } else { 2567 rc = __security_genfs_sid(fstype, "/", SECCLASS_DIR, 2568 &sbsec->sid); 2569 if (rc) { 2570 sbsec->behavior = SECURITY_FS_USE_NONE; 2571 rc = 0; 2572 } else { 2573 sbsec->behavior = SECURITY_FS_USE_GENFS; 2574 } 2575 } 2576 2577 out: 2578 read_unlock(&policy_rwlock); 2579 return rc; 2580 } 2581 2582 int security_get_bools(int *len, char ***names, int **values) 2583 { 2584 int i, rc; 2585 2586 read_lock(&policy_rwlock); 2587 *names = NULL; 2588 *values = NULL; 2589 2590 rc = 0; 2591 *len = policydb.p_bools.nprim; 2592 if (!*len) 2593 goto out; 2594 2595 rc = -ENOMEM; 2596 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC); 2597 if (!*names) 2598 goto err; 2599 2600 rc = -ENOMEM; 2601 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC); 2602 if (!*values) 2603 goto err; 2604 2605 for (i = 0; i < *len; i++) { 2606 (*values)[i] = policydb.bool_val_to_struct[i]->state; 2607 2608 rc = -ENOMEM; 2609 (*names)[i] = kstrdup(sym_name(&policydb, SYM_BOOLS, i), GFP_ATOMIC); 2610 if (!(*names)[i]) 2611 goto err; 2612 } 2613 rc = 0; 2614 out: 2615 read_unlock(&policy_rwlock); 2616 return rc; 2617 err: 2618 if (*names) { 2619 for (i = 0; i < *len; i++) 2620 kfree((*names)[i]); 2621 } 2622 kfree(*values); 2623 goto out; 2624 } 2625 2626 2627 int security_set_bools(int len, int *values) 2628 { 2629 int i, rc; 2630 int lenp, seqno = 0; 2631 struct cond_node *cur; 2632 2633 write_lock_irq(&policy_rwlock); 2634 2635 rc = -EFAULT; 2636 lenp = policydb.p_bools.nprim; 2637 if (len != lenp) 2638 goto out; 2639 2640 for (i = 0; i < len; i++) { 2641 if (!!values[i] != policydb.bool_val_to_struct[i]->state) { 2642 audit_log(current->audit_context, GFP_ATOMIC, 2643 AUDIT_MAC_CONFIG_CHANGE, 2644 "bool=%s val=%d old_val=%d auid=%u ses=%u", 2645 sym_name(&policydb, SYM_BOOLS, i), 2646 !!values[i], 2647 policydb.bool_val_to_struct[i]->state, 2648 from_kuid(&init_user_ns, audit_get_loginuid(current)), 2649 audit_get_sessionid(current)); 2650 } 2651 if (values[i]) 2652 policydb.bool_val_to_struct[i]->state = 1; 2653 else 2654 policydb.bool_val_to_struct[i]->state = 0; 2655 } 2656 2657 for (cur = policydb.cond_list; cur; cur = cur->next) { 2658 rc = evaluate_cond_node(&policydb, cur); 2659 if (rc) 2660 goto out; 2661 } 2662 2663 seqno = ++latest_granting; 2664 rc = 0; 2665 out: 2666 write_unlock_irq(&policy_rwlock); 2667 if (!rc) { 2668 avc_ss_reset(seqno); 2669 selnl_notify_policyload(seqno); 2670 selinux_status_update_policyload(seqno); 2671 selinux_xfrm_notify_policyload(); 2672 } 2673 return rc; 2674 } 2675 2676 int security_get_bool_value(int index) 2677 { 2678 int rc; 2679 int len; 2680 2681 read_lock(&policy_rwlock); 2682 2683 rc = -EFAULT; 2684 len = policydb.p_bools.nprim; 2685 if (index >= len) 2686 goto out; 2687 2688 rc = policydb.bool_val_to_struct[index]->state; 2689 out: 2690 read_unlock(&policy_rwlock); 2691 return rc; 2692 } 2693 2694 static int security_preserve_bools(struct policydb *p) 2695 { 2696 int rc, nbools = 0, *bvalues = NULL, i; 2697 char **bnames = NULL; 2698 struct cond_bool_datum *booldatum; 2699 struct cond_node *cur; 2700 2701 rc = security_get_bools(&nbools, &bnames, &bvalues); 2702 if (rc) 2703 goto out; 2704 for (i = 0; i < nbools; i++) { 2705 booldatum = hashtab_search(p->p_bools.table, bnames[i]); 2706 if (booldatum) 2707 booldatum->state = bvalues[i]; 2708 } 2709 for (cur = p->cond_list; cur; cur = cur->next) { 2710 rc = evaluate_cond_node(p, cur); 2711 if (rc) 2712 goto out; 2713 } 2714 2715 out: 2716 if (bnames) { 2717 for (i = 0; i < nbools; i++) 2718 kfree(bnames[i]); 2719 } 2720 kfree(bnames); 2721 kfree(bvalues); 2722 return rc; 2723 } 2724 2725 /* 2726 * security_sid_mls_copy() - computes a new sid based on the given 2727 * sid and the mls portion of mls_sid. 2728 */ 2729 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid) 2730 { 2731 struct context *context1; 2732 struct context *context2; 2733 struct context newcon; 2734 char *s; 2735 u32 len; 2736 int rc; 2737 2738 rc = 0; 2739 if (!ss_initialized || !policydb.mls_enabled) { 2740 *new_sid = sid; 2741 goto out; 2742 } 2743 2744 context_init(&newcon); 2745 2746 read_lock(&policy_rwlock); 2747 2748 rc = -EINVAL; 2749 context1 = sidtab_search(&sidtab, sid); 2750 if (!context1) { 2751 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 2752 __func__, sid); 2753 goto out_unlock; 2754 } 2755 2756 rc = -EINVAL; 2757 context2 = sidtab_search(&sidtab, mls_sid); 2758 if (!context2) { 2759 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 2760 __func__, mls_sid); 2761 goto out_unlock; 2762 } 2763 2764 newcon.user = context1->user; 2765 newcon.role = context1->role; 2766 newcon.type = context1->type; 2767 rc = mls_context_cpy(&newcon, context2); 2768 if (rc) 2769 goto out_unlock; 2770 2771 /* Check the validity of the new context. */ 2772 if (!policydb_context_isvalid(&policydb, &newcon)) { 2773 rc = convert_context_handle_invalid_context(&newcon); 2774 if (rc) { 2775 if (!context_struct_to_string(&newcon, &s, &len)) { 2776 audit_log(current->audit_context, 2777 GFP_ATOMIC, AUDIT_SELINUX_ERR, 2778 "op=security_sid_mls_copy " 2779 "invalid_context=%s", s); 2780 kfree(s); 2781 } 2782 goto out_unlock; 2783 } 2784 } 2785 2786 rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid); 2787 out_unlock: 2788 read_unlock(&policy_rwlock); 2789 context_destroy(&newcon); 2790 out: 2791 return rc; 2792 } 2793 2794 /** 2795 * security_net_peersid_resolve - Compare and resolve two network peer SIDs 2796 * @nlbl_sid: NetLabel SID 2797 * @nlbl_type: NetLabel labeling protocol type 2798 * @xfrm_sid: XFRM SID 2799 * 2800 * Description: 2801 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be 2802 * resolved into a single SID it is returned via @peer_sid and the function 2803 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function 2804 * returns a negative value. A table summarizing the behavior is below: 2805 * 2806 * | function return | @sid 2807 * ------------------------------+-----------------+----------------- 2808 * no peer labels | 0 | SECSID_NULL 2809 * single peer label | 0 | <peer_label> 2810 * multiple, consistent labels | 0 | <peer_label> 2811 * multiple, inconsistent labels | -<errno> | SECSID_NULL 2812 * 2813 */ 2814 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type, 2815 u32 xfrm_sid, 2816 u32 *peer_sid) 2817 { 2818 int rc; 2819 struct context *nlbl_ctx; 2820 struct context *xfrm_ctx; 2821 2822 *peer_sid = SECSID_NULL; 2823 2824 /* handle the common (which also happens to be the set of easy) cases 2825 * right away, these two if statements catch everything involving a 2826 * single or absent peer SID/label */ 2827 if (xfrm_sid == SECSID_NULL) { 2828 *peer_sid = nlbl_sid; 2829 return 0; 2830 } 2831 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label 2832 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label 2833 * is present */ 2834 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) { 2835 *peer_sid = xfrm_sid; 2836 return 0; 2837 } 2838 2839 /* we don't need to check ss_initialized here since the only way both 2840 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the 2841 * security server was initialized and ss_initialized was true */ 2842 if (!policydb.mls_enabled) 2843 return 0; 2844 2845 read_lock(&policy_rwlock); 2846 2847 rc = -EINVAL; 2848 nlbl_ctx = sidtab_search(&sidtab, nlbl_sid); 2849 if (!nlbl_ctx) { 2850 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 2851 __func__, nlbl_sid); 2852 goto out; 2853 } 2854 rc = -EINVAL; 2855 xfrm_ctx = sidtab_search(&sidtab, xfrm_sid); 2856 if (!xfrm_ctx) { 2857 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 2858 __func__, xfrm_sid); 2859 goto out; 2860 } 2861 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES); 2862 if (rc) 2863 goto out; 2864 2865 /* at present NetLabel SIDs/labels really only carry MLS 2866 * information so if the MLS portion of the NetLabel SID 2867 * matches the MLS portion of the labeled XFRM SID/label 2868 * then pass along the XFRM SID as it is the most 2869 * expressive */ 2870 *peer_sid = xfrm_sid; 2871 out: 2872 read_unlock(&policy_rwlock); 2873 return rc; 2874 } 2875 2876 static int get_classes_callback(void *k, void *d, void *args) 2877 { 2878 struct class_datum *datum = d; 2879 char *name = k, **classes = args; 2880 int value = datum->value - 1; 2881 2882 classes[value] = kstrdup(name, GFP_ATOMIC); 2883 if (!classes[value]) 2884 return -ENOMEM; 2885 2886 return 0; 2887 } 2888 2889 int security_get_classes(char ***classes, int *nclasses) 2890 { 2891 int rc; 2892 2893 read_lock(&policy_rwlock); 2894 2895 rc = -ENOMEM; 2896 *nclasses = policydb.p_classes.nprim; 2897 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC); 2898 if (!*classes) 2899 goto out; 2900 2901 rc = hashtab_map(policydb.p_classes.table, get_classes_callback, 2902 *classes); 2903 if (rc) { 2904 int i; 2905 for (i = 0; i < *nclasses; i++) 2906 kfree((*classes)[i]); 2907 kfree(*classes); 2908 } 2909 2910 out: 2911 read_unlock(&policy_rwlock); 2912 return rc; 2913 } 2914 2915 static int get_permissions_callback(void *k, void *d, void *args) 2916 { 2917 struct perm_datum *datum = d; 2918 char *name = k, **perms = args; 2919 int value = datum->value - 1; 2920 2921 perms[value] = kstrdup(name, GFP_ATOMIC); 2922 if (!perms[value]) 2923 return -ENOMEM; 2924 2925 return 0; 2926 } 2927 2928 int security_get_permissions(char *class, char ***perms, int *nperms) 2929 { 2930 int rc, i; 2931 struct class_datum *match; 2932 2933 read_lock(&policy_rwlock); 2934 2935 rc = -EINVAL; 2936 match = hashtab_search(policydb.p_classes.table, class); 2937 if (!match) { 2938 printk(KERN_ERR "SELinux: %s: unrecognized class %s\n", 2939 __func__, class); 2940 goto out; 2941 } 2942 2943 rc = -ENOMEM; 2944 *nperms = match->permissions.nprim; 2945 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC); 2946 if (!*perms) 2947 goto out; 2948 2949 if (match->comdatum) { 2950 rc = hashtab_map(match->comdatum->permissions.table, 2951 get_permissions_callback, *perms); 2952 if (rc) 2953 goto err; 2954 } 2955 2956 rc = hashtab_map(match->permissions.table, get_permissions_callback, 2957 *perms); 2958 if (rc) 2959 goto err; 2960 2961 out: 2962 read_unlock(&policy_rwlock); 2963 return rc; 2964 2965 err: 2966 read_unlock(&policy_rwlock); 2967 for (i = 0; i < *nperms; i++) 2968 kfree((*perms)[i]); 2969 kfree(*perms); 2970 return rc; 2971 } 2972 2973 int security_get_reject_unknown(void) 2974 { 2975 return policydb.reject_unknown; 2976 } 2977 2978 int security_get_allow_unknown(void) 2979 { 2980 return policydb.allow_unknown; 2981 } 2982 2983 /** 2984 * security_policycap_supported - Check for a specific policy capability 2985 * @req_cap: capability 2986 * 2987 * Description: 2988 * This function queries the currently loaded policy to see if it supports the 2989 * capability specified by @req_cap. Returns true (1) if the capability is 2990 * supported, false (0) if it isn't supported. 2991 * 2992 */ 2993 int security_policycap_supported(unsigned int req_cap) 2994 { 2995 int rc; 2996 2997 read_lock(&policy_rwlock); 2998 rc = ebitmap_get_bit(&policydb.policycaps, req_cap); 2999 read_unlock(&policy_rwlock); 3000 3001 return rc; 3002 } 3003 3004 struct selinux_audit_rule { 3005 u32 au_seqno; 3006 struct context au_ctxt; 3007 }; 3008 3009 void selinux_audit_rule_free(void *vrule) 3010 { 3011 struct selinux_audit_rule *rule = vrule; 3012 3013 if (rule) { 3014 context_destroy(&rule->au_ctxt); 3015 kfree(rule); 3016 } 3017 } 3018 3019 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule) 3020 { 3021 struct selinux_audit_rule *tmprule; 3022 struct role_datum *roledatum; 3023 struct type_datum *typedatum; 3024 struct user_datum *userdatum; 3025 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule; 3026 int rc = 0; 3027 3028 *rule = NULL; 3029 3030 if (!ss_initialized) 3031 return -EOPNOTSUPP; 3032 3033 switch (field) { 3034 case AUDIT_SUBJ_USER: 3035 case AUDIT_SUBJ_ROLE: 3036 case AUDIT_SUBJ_TYPE: 3037 case AUDIT_OBJ_USER: 3038 case AUDIT_OBJ_ROLE: 3039 case AUDIT_OBJ_TYPE: 3040 /* only 'equals' and 'not equals' fit user, role, and type */ 3041 if (op != Audit_equal && op != Audit_not_equal) 3042 return -EINVAL; 3043 break; 3044 case AUDIT_SUBJ_SEN: 3045 case AUDIT_SUBJ_CLR: 3046 case AUDIT_OBJ_LEV_LOW: 3047 case AUDIT_OBJ_LEV_HIGH: 3048 /* we do not allow a range, indicated by the presence of '-' */ 3049 if (strchr(rulestr, '-')) 3050 return -EINVAL; 3051 break; 3052 default: 3053 /* only the above fields are valid */ 3054 return -EINVAL; 3055 } 3056 3057 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL); 3058 if (!tmprule) 3059 return -ENOMEM; 3060 3061 context_init(&tmprule->au_ctxt); 3062 3063 read_lock(&policy_rwlock); 3064 3065 tmprule->au_seqno = latest_granting; 3066 3067 switch (field) { 3068 case AUDIT_SUBJ_USER: 3069 case AUDIT_OBJ_USER: 3070 rc = -EINVAL; 3071 userdatum = hashtab_search(policydb.p_users.table, rulestr); 3072 if (!userdatum) 3073 goto out; 3074 tmprule->au_ctxt.user = userdatum->value; 3075 break; 3076 case AUDIT_SUBJ_ROLE: 3077 case AUDIT_OBJ_ROLE: 3078 rc = -EINVAL; 3079 roledatum = hashtab_search(policydb.p_roles.table, rulestr); 3080 if (!roledatum) 3081 goto out; 3082 tmprule->au_ctxt.role = roledatum->value; 3083 break; 3084 case AUDIT_SUBJ_TYPE: 3085 case AUDIT_OBJ_TYPE: 3086 rc = -EINVAL; 3087 typedatum = hashtab_search(policydb.p_types.table, rulestr); 3088 if (!typedatum) 3089 goto out; 3090 tmprule->au_ctxt.type = typedatum->value; 3091 break; 3092 case AUDIT_SUBJ_SEN: 3093 case AUDIT_SUBJ_CLR: 3094 case AUDIT_OBJ_LEV_LOW: 3095 case AUDIT_OBJ_LEV_HIGH: 3096 rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC); 3097 if (rc) 3098 goto out; 3099 break; 3100 } 3101 rc = 0; 3102 out: 3103 read_unlock(&policy_rwlock); 3104 3105 if (rc) { 3106 selinux_audit_rule_free(tmprule); 3107 tmprule = NULL; 3108 } 3109 3110 *rule = tmprule; 3111 3112 return rc; 3113 } 3114 3115 /* Check to see if the rule contains any selinux fields */ 3116 int selinux_audit_rule_known(struct audit_krule *rule) 3117 { 3118 int i; 3119 3120 for (i = 0; i < rule->field_count; i++) { 3121 struct audit_field *f = &rule->fields[i]; 3122 switch (f->type) { 3123 case AUDIT_SUBJ_USER: 3124 case AUDIT_SUBJ_ROLE: 3125 case AUDIT_SUBJ_TYPE: 3126 case AUDIT_SUBJ_SEN: 3127 case AUDIT_SUBJ_CLR: 3128 case AUDIT_OBJ_USER: 3129 case AUDIT_OBJ_ROLE: 3130 case AUDIT_OBJ_TYPE: 3131 case AUDIT_OBJ_LEV_LOW: 3132 case AUDIT_OBJ_LEV_HIGH: 3133 return 1; 3134 } 3135 } 3136 3137 return 0; 3138 } 3139 3140 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule, 3141 struct audit_context *actx) 3142 { 3143 struct context *ctxt; 3144 struct mls_level *level; 3145 struct selinux_audit_rule *rule = vrule; 3146 int match = 0; 3147 3148 if (unlikely(!rule)) { 3149 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n"); 3150 return -ENOENT; 3151 } 3152 3153 read_lock(&policy_rwlock); 3154 3155 if (rule->au_seqno < latest_granting) { 3156 match = -ESTALE; 3157 goto out; 3158 } 3159 3160 ctxt = sidtab_search(&sidtab, sid); 3161 if (unlikely(!ctxt)) { 3162 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n", 3163 sid); 3164 match = -ENOENT; 3165 goto out; 3166 } 3167 3168 /* a field/op pair that is not caught here will simply fall through 3169 without a match */ 3170 switch (field) { 3171 case AUDIT_SUBJ_USER: 3172 case AUDIT_OBJ_USER: 3173 switch (op) { 3174 case Audit_equal: 3175 match = (ctxt->user == rule->au_ctxt.user); 3176 break; 3177 case Audit_not_equal: 3178 match = (ctxt->user != rule->au_ctxt.user); 3179 break; 3180 } 3181 break; 3182 case AUDIT_SUBJ_ROLE: 3183 case AUDIT_OBJ_ROLE: 3184 switch (op) { 3185 case Audit_equal: 3186 match = (ctxt->role == rule->au_ctxt.role); 3187 break; 3188 case Audit_not_equal: 3189 match = (ctxt->role != rule->au_ctxt.role); 3190 break; 3191 } 3192 break; 3193 case AUDIT_SUBJ_TYPE: 3194 case AUDIT_OBJ_TYPE: 3195 switch (op) { 3196 case Audit_equal: 3197 match = (ctxt->type == rule->au_ctxt.type); 3198 break; 3199 case Audit_not_equal: 3200 match = (ctxt->type != rule->au_ctxt.type); 3201 break; 3202 } 3203 break; 3204 case AUDIT_SUBJ_SEN: 3205 case AUDIT_SUBJ_CLR: 3206 case AUDIT_OBJ_LEV_LOW: 3207 case AUDIT_OBJ_LEV_HIGH: 3208 level = ((field == AUDIT_SUBJ_SEN || 3209 field == AUDIT_OBJ_LEV_LOW) ? 3210 &ctxt->range.level[0] : &ctxt->range.level[1]); 3211 switch (op) { 3212 case Audit_equal: 3213 match = mls_level_eq(&rule->au_ctxt.range.level[0], 3214 level); 3215 break; 3216 case Audit_not_equal: 3217 match = !mls_level_eq(&rule->au_ctxt.range.level[0], 3218 level); 3219 break; 3220 case Audit_lt: 3221 match = (mls_level_dom(&rule->au_ctxt.range.level[0], 3222 level) && 3223 !mls_level_eq(&rule->au_ctxt.range.level[0], 3224 level)); 3225 break; 3226 case Audit_le: 3227 match = mls_level_dom(&rule->au_ctxt.range.level[0], 3228 level); 3229 break; 3230 case Audit_gt: 3231 match = (mls_level_dom(level, 3232 &rule->au_ctxt.range.level[0]) && 3233 !mls_level_eq(level, 3234 &rule->au_ctxt.range.level[0])); 3235 break; 3236 case Audit_ge: 3237 match = mls_level_dom(level, 3238 &rule->au_ctxt.range.level[0]); 3239 break; 3240 } 3241 } 3242 3243 out: 3244 read_unlock(&policy_rwlock); 3245 return match; 3246 } 3247 3248 static int (*aurule_callback)(void) = audit_update_lsm_rules; 3249 3250 static int aurule_avc_callback(u32 event) 3251 { 3252 int err = 0; 3253 3254 if (event == AVC_CALLBACK_RESET && aurule_callback) 3255 err = aurule_callback(); 3256 return err; 3257 } 3258 3259 static int __init aurule_init(void) 3260 { 3261 int err; 3262 3263 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET); 3264 if (err) 3265 panic("avc_add_callback() failed, error %d\n", err); 3266 3267 return err; 3268 } 3269 __initcall(aurule_init); 3270 3271 #ifdef CONFIG_NETLABEL 3272 /** 3273 * security_netlbl_cache_add - Add an entry to the NetLabel cache 3274 * @secattr: the NetLabel packet security attributes 3275 * @sid: the SELinux SID 3276 * 3277 * Description: 3278 * Attempt to cache the context in @ctx, which was derived from the packet in 3279 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has 3280 * already been initialized. 3281 * 3282 */ 3283 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr, 3284 u32 sid) 3285 { 3286 u32 *sid_cache; 3287 3288 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC); 3289 if (sid_cache == NULL) 3290 return; 3291 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC); 3292 if (secattr->cache == NULL) { 3293 kfree(sid_cache); 3294 return; 3295 } 3296 3297 *sid_cache = sid; 3298 secattr->cache->free = kfree; 3299 secattr->cache->data = sid_cache; 3300 secattr->flags |= NETLBL_SECATTR_CACHE; 3301 } 3302 3303 /** 3304 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID 3305 * @secattr: the NetLabel packet security attributes 3306 * @sid: the SELinux SID 3307 * 3308 * Description: 3309 * Convert the given NetLabel security attributes in @secattr into a 3310 * SELinux SID. If the @secattr field does not contain a full SELinux 3311 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the 3312 * 'cache' field of @secattr is set and the CACHE flag is set; this is to 3313 * allow the @secattr to be used by NetLabel to cache the secattr to SID 3314 * conversion for future lookups. Returns zero on success, negative values on 3315 * failure. 3316 * 3317 */ 3318 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr, 3319 u32 *sid) 3320 { 3321 int rc; 3322 struct context *ctx; 3323 struct context ctx_new; 3324 3325 if (!ss_initialized) { 3326 *sid = SECSID_NULL; 3327 return 0; 3328 } 3329 3330 read_lock(&policy_rwlock); 3331 3332 if (secattr->flags & NETLBL_SECATTR_CACHE) 3333 *sid = *(u32 *)secattr->cache->data; 3334 else if (secattr->flags & NETLBL_SECATTR_SECID) 3335 *sid = secattr->attr.secid; 3336 else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) { 3337 rc = -EIDRM; 3338 ctx = sidtab_search(&sidtab, SECINITSID_NETMSG); 3339 if (ctx == NULL) 3340 goto out; 3341 3342 context_init(&ctx_new); 3343 ctx_new.user = ctx->user; 3344 ctx_new.role = ctx->role; 3345 ctx_new.type = ctx->type; 3346 mls_import_netlbl_lvl(&ctx_new, secattr); 3347 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) { 3348 rc = mls_import_netlbl_cat(&ctx_new, secattr); 3349 if (rc) 3350 goto out; 3351 } 3352 rc = -EIDRM; 3353 if (!mls_context_isvalid(&policydb, &ctx_new)) 3354 goto out_free; 3355 3356 rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid); 3357 if (rc) 3358 goto out_free; 3359 3360 security_netlbl_cache_add(secattr, *sid); 3361 3362 ebitmap_destroy(&ctx_new.range.level[0].cat); 3363 } else 3364 *sid = SECSID_NULL; 3365 3366 read_unlock(&policy_rwlock); 3367 return 0; 3368 out_free: 3369 ebitmap_destroy(&ctx_new.range.level[0].cat); 3370 out: 3371 read_unlock(&policy_rwlock); 3372 return rc; 3373 } 3374 3375 /** 3376 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr 3377 * @sid: the SELinux SID 3378 * @secattr: the NetLabel packet security attributes 3379 * 3380 * Description: 3381 * Convert the given SELinux SID in @sid into a NetLabel security attribute. 3382 * Returns zero on success, negative values on failure. 3383 * 3384 */ 3385 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr) 3386 { 3387 int rc; 3388 struct context *ctx; 3389 3390 if (!ss_initialized) 3391 return 0; 3392 3393 read_lock(&policy_rwlock); 3394 3395 rc = -ENOENT; 3396 ctx = sidtab_search(&sidtab, sid); 3397 if (ctx == NULL) 3398 goto out; 3399 3400 rc = -ENOMEM; 3401 secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1), 3402 GFP_ATOMIC); 3403 if (secattr->domain == NULL) 3404 goto out; 3405 3406 secattr->attr.secid = sid; 3407 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID; 3408 mls_export_netlbl_lvl(ctx, secattr); 3409 rc = mls_export_netlbl_cat(ctx, secattr); 3410 out: 3411 read_unlock(&policy_rwlock); 3412 return rc; 3413 } 3414 #endif /* CONFIG_NETLABEL */ 3415 3416 /** 3417 * security_read_policy - read the policy. 3418 * @data: binary policy data 3419 * @len: length of data in bytes 3420 * 3421 */ 3422 int security_read_policy(void **data, size_t *len) 3423 { 3424 int rc; 3425 struct policy_file fp; 3426 3427 if (!ss_initialized) 3428 return -EINVAL; 3429 3430 *len = security_policydb_len(); 3431 3432 *data = vmalloc_user(*len); 3433 if (!*data) 3434 return -ENOMEM; 3435 3436 fp.data = *data; 3437 fp.len = *len; 3438 3439 read_lock(&policy_rwlock); 3440 rc = policydb_write(&policydb, &fp); 3441 read_unlock(&policy_rwlock); 3442 3443 if (rc) 3444 return rc; 3445 3446 *len = (unsigned long)fp.data - (unsigned long)*data; 3447 return 0; 3448 3449 } 3450