xref: /openbmc/linux/security/selinux/ss/services.c (revision 151f4e2b)
1 /*
2  * Implementation of the security services.
3  *
4  * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
5  *	     James Morris <jmorris@redhat.com>
6  *
7  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8  *
9  *	Support for enhanced MLS infrastructure.
10  *	Support for context based audit filters.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *	Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul@paul-moore.com>
17  *
18  *      Added support for NetLabel
19  *      Added support for the policy capability bitmap
20  *
21  * Updated: Chad Sellers <csellers@tresys.com>
22  *
23  *  Added validation of kernel classes and permissions
24  *
25  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
26  *
27  *  Added support for bounds domain and audit messaged on masked permissions
28  *
29  * Updated: Guido Trentalancia <guido@trentalancia.com>
30  *
31  *  Added support for runtime switching of the policy type
32  *
33  * Copyright (C) 2008, 2009 NEC Corporation
34  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38  *	This program is free software; you can redistribute it and/or modify
39  *	it under the terms of the GNU General Public License as published by
40  *	the Free Software Foundation, version 2.
41  */
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/errno.h>
48 #include <linux/in.h>
49 #include <linux/sched.h>
50 #include <linux/audit.h>
51 #include <linux/mutex.h>
52 #include <linux/vmalloc.h>
53 #include <net/netlabel.h>
54 
55 #include "flask.h"
56 #include "avc.h"
57 #include "avc_ss.h"
58 #include "security.h"
59 #include "context.h"
60 #include "policydb.h"
61 #include "sidtab.h"
62 #include "services.h"
63 #include "conditional.h"
64 #include "mls.h"
65 #include "objsec.h"
66 #include "netlabel.h"
67 #include "xfrm.h"
68 #include "ebitmap.h"
69 #include "audit.h"
70 
71 /* Policy capability names */
72 const char *selinux_policycap_names[__POLICYDB_CAPABILITY_MAX] = {
73 	"network_peer_controls",
74 	"open_perms",
75 	"extended_socket_class",
76 	"always_check_network",
77 	"cgroup_seclabel",
78 	"nnp_nosuid_transition"
79 };
80 
81 static struct selinux_ss selinux_ss;
82 
83 void selinux_ss_init(struct selinux_ss **ss)
84 {
85 	rwlock_init(&selinux_ss.policy_rwlock);
86 	mutex_init(&selinux_ss.status_lock);
87 	*ss = &selinux_ss;
88 }
89 
90 /* Forward declaration. */
91 static int context_struct_to_string(struct policydb *policydb,
92 				    struct context *context,
93 				    char **scontext,
94 				    u32 *scontext_len);
95 
96 static void context_struct_compute_av(struct policydb *policydb,
97 				      struct context *scontext,
98 				      struct context *tcontext,
99 				      u16 tclass,
100 				      struct av_decision *avd,
101 				      struct extended_perms *xperms);
102 
103 static int selinux_set_mapping(struct policydb *pol,
104 			       struct security_class_mapping *map,
105 			       struct selinux_map *out_map)
106 {
107 	u16 i, j;
108 	unsigned k;
109 	bool print_unknown_handle = false;
110 
111 	/* Find number of classes in the input mapping */
112 	if (!map)
113 		return -EINVAL;
114 	i = 0;
115 	while (map[i].name)
116 		i++;
117 
118 	/* Allocate space for the class records, plus one for class zero */
119 	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
120 	if (!out_map->mapping)
121 		return -ENOMEM;
122 
123 	/* Store the raw class and permission values */
124 	j = 0;
125 	while (map[j].name) {
126 		struct security_class_mapping *p_in = map + (j++);
127 		struct selinux_mapping *p_out = out_map->mapping + j;
128 
129 		/* An empty class string skips ahead */
130 		if (!strcmp(p_in->name, "")) {
131 			p_out->num_perms = 0;
132 			continue;
133 		}
134 
135 		p_out->value = string_to_security_class(pol, p_in->name);
136 		if (!p_out->value) {
137 			pr_info("SELinux:  Class %s not defined in policy.\n",
138 			       p_in->name);
139 			if (pol->reject_unknown)
140 				goto err;
141 			p_out->num_perms = 0;
142 			print_unknown_handle = true;
143 			continue;
144 		}
145 
146 		k = 0;
147 		while (p_in->perms[k]) {
148 			/* An empty permission string skips ahead */
149 			if (!*p_in->perms[k]) {
150 				k++;
151 				continue;
152 			}
153 			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
154 							    p_in->perms[k]);
155 			if (!p_out->perms[k]) {
156 				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
157 				       p_in->perms[k], p_in->name);
158 				if (pol->reject_unknown)
159 					goto err;
160 				print_unknown_handle = true;
161 			}
162 
163 			k++;
164 		}
165 		p_out->num_perms = k;
166 	}
167 
168 	if (print_unknown_handle)
169 		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
170 		       pol->allow_unknown ? "allowed" : "denied");
171 
172 	out_map->size = i;
173 	return 0;
174 err:
175 	kfree(out_map->mapping);
176 	out_map->mapping = NULL;
177 	return -EINVAL;
178 }
179 
180 /*
181  * Get real, policy values from mapped values
182  */
183 
184 static u16 unmap_class(struct selinux_map *map, u16 tclass)
185 {
186 	if (tclass < map->size)
187 		return map->mapping[tclass].value;
188 
189 	return tclass;
190 }
191 
192 /*
193  * Get kernel value for class from its policy value
194  */
195 static u16 map_class(struct selinux_map *map, u16 pol_value)
196 {
197 	u16 i;
198 
199 	for (i = 1; i < map->size; i++) {
200 		if (map->mapping[i].value == pol_value)
201 			return i;
202 	}
203 
204 	return SECCLASS_NULL;
205 }
206 
207 static void map_decision(struct selinux_map *map,
208 			 u16 tclass, struct av_decision *avd,
209 			 int allow_unknown)
210 {
211 	if (tclass < map->size) {
212 		struct selinux_mapping *mapping = &map->mapping[tclass];
213 		unsigned int i, n = mapping->num_perms;
214 		u32 result;
215 
216 		for (i = 0, result = 0; i < n; i++) {
217 			if (avd->allowed & mapping->perms[i])
218 				result |= 1<<i;
219 			if (allow_unknown && !mapping->perms[i])
220 				result |= 1<<i;
221 		}
222 		avd->allowed = result;
223 
224 		for (i = 0, result = 0; i < n; i++)
225 			if (avd->auditallow & mapping->perms[i])
226 				result |= 1<<i;
227 		avd->auditallow = result;
228 
229 		for (i = 0, result = 0; i < n; i++) {
230 			if (avd->auditdeny & mapping->perms[i])
231 				result |= 1<<i;
232 			if (!allow_unknown && !mapping->perms[i])
233 				result |= 1<<i;
234 		}
235 		/*
236 		 * In case the kernel has a bug and requests a permission
237 		 * between num_perms and the maximum permission number, we
238 		 * should audit that denial
239 		 */
240 		for (; i < (sizeof(u32)*8); i++)
241 			result |= 1<<i;
242 		avd->auditdeny = result;
243 	}
244 }
245 
246 int security_mls_enabled(struct selinux_state *state)
247 {
248 	struct policydb *p = &state->ss->policydb;
249 
250 	return p->mls_enabled;
251 }
252 
253 /*
254  * Return the boolean value of a constraint expression
255  * when it is applied to the specified source and target
256  * security contexts.
257  *
258  * xcontext is a special beast...  It is used by the validatetrans rules
259  * only.  For these rules, scontext is the context before the transition,
260  * tcontext is the context after the transition, and xcontext is the context
261  * of the process performing the transition.  All other callers of
262  * constraint_expr_eval should pass in NULL for xcontext.
263  */
264 static int constraint_expr_eval(struct policydb *policydb,
265 				struct context *scontext,
266 				struct context *tcontext,
267 				struct context *xcontext,
268 				struct constraint_expr *cexpr)
269 {
270 	u32 val1, val2;
271 	struct context *c;
272 	struct role_datum *r1, *r2;
273 	struct mls_level *l1, *l2;
274 	struct constraint_expr *e;
275 	int s[CEXPR_MAXDEPTH];
276 	int sp = -1;
277 
278 	for (e = cexpr; e; e = e->next) {
279 		switch (e->expr_type) {
280 		case CEXPR_NOT:
281 			BUG_ON(sp < 0);
282 			s[sp] = !s[sp];
283 			break;
284 		case CEXPR_AND:
285 			BUG_ON(sp < 1);
286 			sp--;
287 			s[sp] &= s[sp + 1];
288 			break;
289 		case CEXPR_OR:
290 			BUG_ON(sp < 1);
291 			sp--;
292 			s[sp] |= s[sp + 1];
293 			break;
294 		case CEXPR_ATTR:
295 			if (sp == (CEXPR_MAXDEPTH - 1))
296 				return 0;
297 			switch (e->attr) {
298 			case CEXPR_USER:
299 				val1 = scontext->user;
300 				val2 = tcontext->user;
301 				break;
302 			case CEXPR_TYPE:
303 				val1 = scontext->type;
304 				val2 = tcontext->type;
305 				break;
306 			case CEXPR_ROLE:
307 				val1 = scontext->role;
308 				val2 = tcontext->role;
309 				r1 = policydb->role_val_to_struct[val1 - 1];
310 				r2 = policydb->role_val_to_struct[val2 - 1];
311 				switch (e->op) {
312 				case CEXPR_DOM:
313 					s[++sp] = ebitmap_get_bit(&r1->dominates,
314 								  val2 - 1);
315 					continue;
316 				case CEXPR_DOMBY:
317 					s[++sp] = ebitmap_get_bit(&r2->dominates,
318 								  val1 - 1);
319 					continue;
320 				case CEXPR_INCOMP:
321 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
322 								    val2 - 1) &&
323 						   !ebitmap_get_bit(&r2->dominates,
324 								    val1 - 1));
325 					continue;
326 				default:
327 					break;
328 				}
329 				break;
330 			case CEXPR_L1L2:
331 				l1 = &(scontext->range.level[0]);
332 				l2 = &(tcontext->range.level[0]);
333 				goto mls_ops;
334 			case CEXPR_L1H2:
335 				l1 = &(scontext->range.level[0]);
336 				l2 = &(tcontext->range.level[1]);
337 				goto mls_ops;
338 			case CEXPR_H1L2:
339 				l1 = &(scontext->range.level[1]);
340 				l2 = &(tcontext->range.level[0]);
341 				goto mls_ops;
342 			case CEXPR_H1H2:
343 				l1 = &(scontext->range.level[1]);
344 				l2 = &(tcontext->range.level[1]);
345 				goto mls_ops;
346 			case CEXPR_L1H1:
347 				l1 = &(scontext->range.level[0]);
348 				l2 = &(scontext->range.level[1]);
349 				goto mls_ops;
350 			case CEXPR_L2H2:
351 				l1 = &(tcontext->range.level[0]);
352 				l2 = &(tcontext->range.level[1]);
353 				goto mls_ops;
354 mls_ops:
355 			switch (e->op) {
356 			case CEXPR_EQ:
357 				s[++sp] = mls_level_eq(l1, l2);
358 				continue;
359 			case CEXPR_NEQ:
360 				s[++sp] = !mls_level_eq(l1, l2);
361 				continue;
362 			case CEXPR_DOM:
363 				s[++sp] = mls_level_dom(l1, l2);
364 				continue;
365 			case CEXPR_DOMBY:
366 				s[++sp] = mls_level_dom(l2, l1);
367 				continue;
368 			case CEXPR_INCOMP:
369 				s[++sp] = mls_level_incomp(l2, l1);
370 				continue;
371 			default:
372 				BUG();
373 				return 0;
374 			}
375 			break;
376 			default:
377 				BUG();
378 				return 0;
379 			}
380 
381 			switch (e->op) {
382 			case CEXPR_EQ:
383 				s[++sp] = (val1 == val2);
384 				break;
385 			case CEXPR_NEQ:
386 				s[++sp] = (val1 != val2);
387 				break;
388 			default:
389 				BUG();
390 				return 0;
391 			}
392 			break;
393 		case CEXPR_NAMES:
394 			if (sp == (CEXPR_MAXDEPTH-1))
395 				return 0;
396 			c = scontext;
397 			if (e->attr & CEXPR_TARGET)
398 				c = tcontext;
399 			else if (e->attr & CEXPR_XTARGET) {
400 				c = xcontext;
401 				if (!c) {
402 					BUG();
403 					return 0;
404 				}
405 			}
406 			if (e->attr & CEXPR_USER)
407 				val1 = c->user;
408 			else if (e->attr & CEXPR_ROLE)
409 				val1 = c->role;
410 			else if (e->attr & CEXPR_TYPE)
411 				val1 = c->type;
412 			else {
413 				BUG();
414 				return 0;
415 			}
416 
417 			switch (e->op) {
418 			case CEXPR_EQ:
419 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
420 				break;
421 			case CEXPR_NEQ:
422 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
423 				break;
424 			default:
425 				BUG();
426 				return 0;
427 			}
428 			break;
429 		default:
430 			BUG();
431 			return 0;
432 		}
433 	}
434 
435 	BUG_ON(sp != 0);
436 	return s[0];
437 }
438 
439 /*
440  * security_dump_masked_av - dumps masked permissions during
441  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
442  */
443 static int dump_masked_av_helper(void *k, void *d, void *args)
444 {
445 	struct perm_datum *pdatum = d;
446 	char **permission_names = args;
447 
448 	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
449 
450 	permission_names[pdatum->value - 1] = (char *)k;
451 
452 	return 0;
453 }
454 
455 static void security_dump_masked_av(struct policydb *policydb,
456 				    struct context *scontext,
457 				    struct context *tcontext,
458 				    u16 tclass,
459 				    u32 permissions,
460 				    const char *reason)
461 {
462 	struct common_datum *common_dat;
463 	struct class_datum *tclass_dat;
464 	struct audit_buffer *ab;
465 	char *tclass_name;
466 	char *scontext_name = NULL;
467 	char *tcontext_name = NULL;
468 	char *permission_names[32];
469 	int index;
470 	u32 length;
471 	bool need_comma = false;
472 
473 	if (!permissions)
474 		return;
475 
476 	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
477 	tclass_dat = policydb->class_val_to_struct[tclass - 1];
478 	common_dat = tclass_dat->comdatum;
479 
480 	/* init permission_names */
481 	if (common_dat &&
482 	    hashtab_map(common_dat->permissions.table,
483 			dump_masked_av_helper, permission_names) < 0)
484 		goto out;
485 
486 	if (hashtab_map(tclass_dat->permissions.table,
487 			dump_masked_av_helper, permission_names) < 0)
488 		goto out;
489 
490 	/* get scontext/tcontext in text form */
491 	if (context_struct_to_string(policydb, scontext,
492 				     &scontext_name, &length) < 0)
493 		goto out;
494 
495 	if (context_struct_to_string(policydb, tcontext,
496 				     &tcontext_name, &length) < 0)
497 		goto out;
498 
499 	/* audit a message */
500 	ab = audit_log_start(audit_context(),
501 			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
502 	if (!ab)
503 		goto out;
504 
505 	audit_log_format(ab, "op=security_compute_av reason=%s "
506 			 "scontext=%s tcontext=%s tclass=%s perms=",
507 			 reason, scontext_name, tcontext_name, tclass_name);
508 
509 	for (index = 0; index < 32; index++) {
510 		u32 mask = (1 << index);
511 
512 		if ((mask & permissions) == 0)
513 			continue;
514 
515 		audit_log_format(ab, "%s%s",
516 				 need_comma ? "," : "",
517 				 permission_names[index]
518 				 ? permission_names[index] : "????");
519 		need_comma = true;
520 	}
521 	audit_log_end(ab);
522 out:
523 	/* release scontext/tcontext */
524 	kfree(tcontext_name);
525 	kfree(scontext_name);
526 
527 	return;
528 }
529 
530 /*
531  * security_boundary_permission - drops violated permissions
532  * on boundary constraint.
533  */
534 static void type_attribute_bounds_av(struct policydb *policydb,
535 				     struct context *scontext,
536 				     struct context *tcontext,
537 				     u16 tclass,
538 				     struct av_decision *avd)
539 {
540 	struct context lo_scontext;
541 	struct context lo_tcontext, *tcontextp = tcontext;
542 	struct av_decision lo_avd;
543 	struct type_datum *source;
544 	struct type_datum *target;
545 	u32 masked = 0;
546 
547 	source = policydb->type_val_to_struct_array[scontext->type - 1];
548 	BUG_ON(!source);
549 
550 	if (!source->bounds)
551 		return;
552 
553 	target = policydb->type_val_to_struct_array[tcontext->type - 1];
554 	BUG_ON(!target);
555 
556 	memset(&lo_avd, 0, sizeof(lo_avd));
557 
558 	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
559 	lo_scontext.type = source->bounds;
560 
561 	if (target->bounds) {
562 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
563 		lo_tcontext.type = target->bounds;
564 		tcontextp = &lo_tcontext;
565 	}
566 
567 	context_struct_compute_av(policydb, &lo_scontext,
568 				  tcontextp,
569 				  tclass,
570 				  &lo_avd,
571 				  NULL);
572 
573 	masked = ~lo_avd.allowed & avd->allowed;
574 
575 	if (likely(!masked))
576 		return;		/* no masked permission */
577 
578 	/* mask violated permissions */
579 	avd->allowed &= ~masked;
580 
581 	/* audit masked permissions */
582 	security_dump_masked_av(policydb, scontext, tcontext,
583 				tclass, masked, "bounds");
584 }
585 
586 /*
587  * flag which drivers have permissions
588  * only looking for ioctl based extended permssions
589  */
590 void services_compute_xperms_drivers(
591 		struct extended_perms *xperms,
592 		struct avtab_node *node)
593 {
594 	unsigned int i;
595 
596 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
597 		/* if one or more driver has all permissions allowed */
598 		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
599 			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
600 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
601 		/* if allowing permissions within a driver */
602 		security_xperm_set(xperms->drivers.p,
603 					node->datum.u.xperms->driver);
604 	}
605 
606 	/* If no ioctl commands are allowed, ignore auditallow and auditdeny */
607 	if (node->key.specified & AVTAB_XPERMS_ALLOWED)
608 		xperms->len = 1;
609 }
610 
611 /*
612  * Compute access vectors and extended permissions based on a context
613  * structure pair for the permissions in a particular class.
614  */
615 static void context_struct_compute_av(struct policydb *policydb,
616 				      struct context *scontext,
617 				      struct context *tcontext,
618 				      u16 tclass,
619 				      struct av_decision *avd,
620 				      struct extended_perms *xperms)
621 {
622 	struct constraint_node *constraint;
623 	struct role_allow *ra;
624 	struct avtab_key avkey;
625 	struct avtab_node *node;
626 	struct class_datum *tclass_datum;
627 	struct ebitmap *sattr, *tattr;
628 	struct ebitmap_node *snode, *tnode;
629 	unsigned int i, j;
630 
631 	avd->allowed = 0;
632 	avd->auditallow = 0;
633 	avd->auditdeny = 0xffffffff;
634 	if (xperms) {
635 		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
636 		xperms->len = 0;
637 	}
638 
639 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
640 		if (printk_ratelimit())
641 			pr_warn("SELinux:  Invalid class %hu\n", tclass);
642 		return;
643 	}
644 
645 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
646 
647 	/*
648 	 * If a specific type enforcement rule was defined for
649 	 * this permission check, then use it.
650 	 */
651 	avkey.target_class = tclass;
652 	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
653 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
654 	BUG_ON(!sattr);
655 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
656 	BUG_ON(!tattr);
657 	ebitmap_for_each_positive_bit(sattr, snode, i) {
658 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
659 			avkey.source_type = i + 1;
660 			avkey.target_type = j + 1;
661 			for (node = avtab_search_node(&policydb->te_avtab,
662 						      &avkey);
663 			     node;
664 			     node = avtab_search_node_next(node, avkey.specified)) {
665 				if (node->key.specified == AVTAB_ALLOWED)
666 					avd->allowed |= node->datum.u.data;
667 				else if (node->key.specified == AVTAB_AUDITALLOW)
668 					avd->auditallow |= node->datum.u.data;
669 				else if (node->key.specified == AVTAB_AUDITDENY)
670 					avd->auditdeny &= node->datum.u.data;
671 				else if (xperms && (node->key.specified & AVTAB_XPERMS))
672 					services_compute_xperms_drivers(xperms, node);
673 			}
674 
675 			/* Check conditional av table for additional permissions */
676 			cond_compute_av(&policydb->te_cond_avtab, &avkey,
677 					avd, xperms);
678 
679 		}
680 	}
681 
682 	/*
683 	 * Remove any permissions prohibited by a constraint (this includes
684 	 * the MLS policy).
685 	 */
686 	constraint = tclass_datum->constraints;
687 	while (constraint) {
688 		if ((constraint->permissions & (avd->allowed)) &&
689 		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
690 					  constraint->expr)) {
691 			avd->allowed &= ~(constraint->permissions);
692 		}
693 		constraint = constraint->next;
694 	}
695 
696 	/*
697 	 * If checking process transition permission and the
698 	 * role is changing, then check the (current_role, new_role)
699 	 * pair.
700 	 */
701 	if (tclass == policydb->process_class &&
702 	    (avd->allowed & policydb->process_trans_perms) &&
703 	    scontext->role != tcontext->role) {
704 		for (ra = policydb->role_allow; ra; ra = ra->next) {
705 			if (scontext->role == ra->role &&
706 			    tcontext->role == ra->new_role)
707 				break;
708 		}
709 		if (!ra)
710 			avd->allowed &= ~policydb->process_trans_perms;
711 	}
712 
713 	/*
714 	 * If the given source and target types have boundary
715 	 * constraint, lazy checks have to mask any violated
716 	 * permission and notice it to userspace via audit.
717 	 */
718 	type_attribute_bounds_av(policydb, scontext, tcontext,
719 				 tclass, avd);
720 }
721 
722 static int security_validtrans_handle_fail(struct selinux_state *state,
723 					   struct context *ocontext,
724 					   struct context *ncontext,
725 					   struct context *tcontext,
726 					   u16 tclass)
727 {
728 	struct policydb *p = &state->ss->policydb;
729 	char *o = NULL, *n = NULL, *t = NULL;
730 	u32 olen, nlen, tlen;
731 
732 	if (context_struct_to_string(p, ocontext, &o, &olen))
733 		goto out;
734 	if (context_struct_to_string(p, ncontext, &n, &nlen))
735 		goto out;
736 	if (context_struct_to_string(p, tcontext, &t, &tlen))
737 		goto out;
738 	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
739 		  "op=security_validate_transition seresult=denied"
740 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
741 		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
742 out:
743 	kfree(o);
744 	kfree(n);
745 	kfree(t);
746 
747 	if (!enforcing_enabled(state))
748 		return 0;
749 	return -EPERM;
750 }
751 
752 static int security_compute_validatetrans(struct selinux_state *state,
753 					  u32 oldsid, u32 newsid, u32 tasksid,
754 					  u16 orig_tclass, bool user)
755 {
756 	struct policydb *policydb;
757 	struct sidtab *sidtab;
758 	struct context *ocontext;
759 	struct context *ncontext;
760 	struct context *tcontext;
761 	struct class_datum *tclass_datum;
762 	struct constraint_node *constraint;
763 	u16 tclass;
764 	int rc = 0;
765 
766 
767 	if (!state->initialized)
768 		return 0;
769 
770 	read_lock(&state->ss->policy_rwlock);
771 
772 	policydb = &state->ss->policydb;
773 	sidtab = state->ss->sidtab;
774 
775 	if (!user)
776 		tclass = unmap_class(&state->ss->map, orig_tclass);
777 	else
778 		tclass = orig_tclass;
779 
780 	if (!tclass || tclass > policydb->p_classes.nprim) {
781 		rc = -EINVAL;
782 		goto out;
783 	}
784 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
785 
786 	ocontext = sidtab_search(sidtab, oldsid);
787 	if (!ocontext) {
788 		pr_err("SELinux: %s:  unrecognized SID %d\n",
789 			__func__, oldsid);
790 		rc = -EINVAL;
791 		goto out;
792 	}
793 
794 	ncontext = sidtab_search(sidtab, newsid);
795 	if (!ncontext) {
796 		pr_err("SELinux: %s:  unrecognized SID %d\n",
797 			__func__, newsid);
798 		rc = -EINVAL;
799 		goto out;
800 	}
801 
802 	tcontext = sidtab_search(sidtab, tasksid);
803 	if (!tcontext) {
804 		pr_err("SELinux: %s:  unrecognized SID %d\n",
805 			__func__, tasksid);
806 		rc = -EINVAL;
807 		goto out;
808 	}
809 
810 	constraint = tclass_datum->validatetrans;
811 	while (constraint) {
812 		if (!constraint_expr_eval(policydb, ocontext, ncontext,
813 					  tcontext, constraint->expr)) {
814 			if (user)
815 				rc = -EPERM;
816 			else
817 				rc = security_validtrans_handle_fail(state,
818 								     ocontext,
819 								     ncontext,
820 								     tcontext,
821 								     tclass);
822 			goto out;
823 		}
824 		constraint = constraint->next;
825 	}
826 
827 out:
828 	read_unlock(&state->ss->policy_rwlock);
829 	return rc;
830 }
831 
832 int security_validate_transition_user(struct selinux_state *state,
833 				      u32 oldsid, u32 newsid, u32 tasksid,
834 				      u16 tclass)
835 {
836 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
837 					      tclass, true);
838 }
839 
840 int security_validate_transition(struct selinux_state *state,
841 				 u32 oldsid, u32 newsid, u32 tasksid,
842 				 u16 orig_tclass)
843 {
844 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
845 					      orig_tclass, false);
846 }
847 
848 /*
849  * security_bounded_transition - check whether the given
850  * transition is directed to bounded, or not.
851  * It returns 0, if @newsid is bounded by @oldsid.
852  * Otherwise, it returns error code.
853  *
854  * @oldsid : current security identifier
855  * @newsid : destinated security identifier
856  */
857 int security_bounded_transition(struct selinux_state *state,
858 				u32 old_sid, u32 new_sid)
859 {
860 	struct policydb *policydb;
861 	struct sidtab *sidtab;
862 	struct context *old_context, *new_context;
863 	struct type_datum *type;
864 	int index;
865 	int rc;
866 
867 	if (!state->initialized)
868 		return 0;
869 
870 	read_lock(&state->ss->policy_rwlock);
871 
872 	policydb = &state->ss->policydb;
873 	sidtab = state->ss->sidtab;
874 
875 	rc = -EINVAL;
876 	old_context = sidtab_search(sidtab, old_sid);
877 	if (!old_context) {
878 		pr_err("SELinux: %s: unrecognized SID %u\n",
879 		       __func__, old_sid);
880 		goto out;
881 	}
882 
883 	rc = -EINVAL;
884 	new_context = sidtab_search(sidtab, new_sid);
885 	if (!new_context) {
886 		pr_err("SELinux: %s: unrecognized SID %u\n",
887 		       __func__, new_sid);
888 		goto out;
889 	}
890 
891 	rc = 0;
892 	/* type/domain unchanged */
893 	if (old_context->type == new_context->type)
894 		goto out;
895 
896 	index = new_context->type;
897 	while (true) {
898 		type = policydb->type_val_to_struct_array[index - 1];
899 		BUG_ON(!type);
900 
901 		/* not bounded anymore */
902 		rc = -EPERM;
903 		if (!type->bounds)
904 			break;
905 
906 		/* @newsid is bounded by @oldsid */
907 		rc = 0;
908 		if (type->bounds == old_context->type)
909 			break;
910 
911 		index = type->bounds;
912 	}
913 
914 	if (rc) {
915 		char *old_name = NULL;
916 		char *new_name = NULL;
917 		u32 length;
918 
919 		if (!context_struct_to_string(policydb, old_context,
920 					      &old_name, &length) &&
921 		    !context_struct_to_string(policydb, new_context,
922 					      &new_name, &length)) {
923 			audit_log(audit_context(),
924 				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
925 				  "op=security_bounded_transition "
926 				  "seresult=denied "
927 				  "oldcontext=%s newcontext=%s",
928 				  old_name, new_name);
929 		}
930 		kfree(new_name);
931 		kfree(old_name);
932 	}
933 out:
934 	read_unlock(&state->ss->policy_rwlock);
935 
936 	return rc;
937 }
938 
939 static void avd_init(struct selinux_state *state, struct av_decision *avd)
940 {
941 	avd->allowed = 0;
942 	avd->auditallow = 0;
943 	avd->auditdeny = 0xffffffff;
944 	avd->seqno = state->ss->latest_granting;
945 	avd->flags = 0;
946 }
947 
948 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
949 					struct avtab_node *node)
950 {
951 	unsigned int i;
952 
953 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
954 		if (xpermd->driver != node->datum.u.xperms->driver)
955 			return;
956 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
957 		if (!security_xperm_test(node->datum.u.xperms->perms.p,
958 					xpermd->driver))
959 			return;
960 	} else {
961 		BUG();
962 	}
963 
964 	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
965 		xpermd->used |= XPERMS_ALLOWED;
966 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
967 			memset(xpermd->allowed->p, 0xff,
968 					sizeof(xpermd->allowed->p));
969 		}
970 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
971 			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
972 				xpermd->allowed->p[i] |=
973 					node->datum.u.xperms->perms.p[i];
974 		}
975 	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
976 		xpermd->used |= XPERMS_AUDITALLOW;
977 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
978 			memset(xpermd->auditallow->p, 0xff,
979 					sizeof(xpermd->auditallow->p));
980 		}
981 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
982 			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
983 				xpermd->auditallow->p[i] |=
984 					node->datum.u.xperms->perms.p[i];
985 		}
986 	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
987 		xpermd->used |= XPERMS_DONTAUDIT;
988 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
989 			memset(xpermd->dontaudit->p, 0xff,
990 					sizeof(xpermd->dontaudit->p));
991 		}
992 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
993 			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
994 				xpermd->dontaudit->p[i] |=
995 					node->datum.u.xperms->perms.p[i];
996 		}
997 	} else {
998 		BUG();
999 	}
1000 }
1001 
1002 void security_compute_xperms_decision(struct selinux_state *state,
1003 				      u32 ssid,
1004 				      u32 tsid,
1005 				      u16 orig_tclass,
1006 				      u8 driver,
1007 				      struct extended_perms_decision *xpermd)
1008 {
1009 	struct policydb *policydb;
1010 	struct sidtab *sidtab;
1011 	u16 tclass;
1012 	struct context *scontext, *tcontext;
1013 	struct avtab_key avkey;
1014 	struct avtab_node *node;
1015 	struct ebitmap *sattr, *tattr;
1016 	struct ebitmap_node *snode, *tnode;
1017 	unsigned int i, j;
1018 
1019 	xpermd->driver = driver;
1020 	xpermd->used = 0;
1021 	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1022 	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1023 	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1024 
1025 	read_lock(&state->ss->policy_rwlock);
1026 	if (!state->initialized)
1027 		goto allow;
1028 
1029 	policydb = &state->ss->policydb;
1030 	sidtab = state->ss->sidtab;
1031 
1032 	scontext = sidtab_search(sidtab, ssid);
1033 	if (!scontext) {
1034 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1035 		       __func__, ssid);
1036 		goto out;
1037 	}
1038 
1039 	tcontext = sidtab_search(sidtab, tsid);
1040 	if (!tcontext) {
1041 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1042 		       __func__, tsid);
1043 		goto out;
1044 	}
1045 
1046 	tclass = unmap_class(&state->ss->map, orig_tclass);
1047 	if (unlikely(orig_tclass && !tclass)) {
1048 		if (policydb->allow_unknown)
1049 			goto allow;
1050 		goto out;
1051 	}
1052 
1053 
1054 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1055 		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1056 		goto out;
1057 	}
1058 
1059 	avkey.target_class = tclass;
1060 	avkey.specified = AVTAB_XPERMS;
1061 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1062 	BUG_ON(!sattr);
1063 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1064 	BUG_ON(!tattr);
1065 	ebitmap_for_each_positive_bit(sattr, snode, i) {
1066 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1067 			avkey.source_type = i + 1;
1068 			avkey.target_type = j + 1;
1069 			for (node = avtab_search_node(&policydb->te_avtab,
1070 						      &avkey);
1071 			     node;
1072 			     node = avtab_search_node_next(node, avkey.specified))
1073 				services_compute_xperms_decision(xpermd, node);
1074 
1075 			cond_compute_xperms(&policydb->te_cond_avtab,
1076 						&avkey, xpermd);
1077 		}
1078 	}
1079 out:
1080 	read_unlock(&state->ss->policy_rwlock);
1081 	return;
1082 allow:
1083 	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1084 	goto out;
1085 }
1086 
1087 /**
1088  * security_compute_av - Compute access vector decisions.
1089  * @ssid: source security identifier
1090  * @tsid: target security identifier
1091  * @tclass: target security class
1092  * @avd: access vector decisions
1093  * @xperms: extended permissions
1094  *
1095  * Compute a set of access vector decisions based on the
1096  * SID pair (@ssid, @tsid) for the permissions in @tclass.
1097  */
1098 void security_compute_av(struct selinux_state *state,
1099 			 u32 ssid,
1100 			 u32 tsid,
1101 			 u16 orig_tclass,
1102 			 struct av_decision *avd,
1103 			 struct extended_perms *xperms)
1104 {
1105 	struct policydb *policydb;
1106 	struct sidtab *sidtab;
1107 	u16 tclass;
1108 	struct context *scontext = NULL, *tcontext = NULL;
1109 
1110 	read_lock(&state->ss->policy_rwlock);
1111 	avd_init(state, avd);
1112 	xperms->len = 0;
1113 	if (!state->initialized)
1114 		goto allow;
1115 
1116 	policydb = &state->ss->policydb;
1117 	sidtab = state->ss->sidtab;
1118 
1119 	scontext = sidtab_search(sidtab, ssid);
1120 	if (!scontext) {
1121 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1122 		       __func__, ssid);
1123 		goto out;
1124 	}
1125 
1126 	/* permissive domain? */
1127 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1128 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1129 
1130 	tcontext = sidtab_search(sidtab, tsid);
1131 	if (!tcontext) {
1132 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1133 		       __func__, tsid);
1134 		goto out;
1135 	}
1136 
1137 	tclass = unmap_class(&state->ss->map, orig_tclass);
1138 	if (unlikely(orig_tclass && !tclass)) {
1139 		if (policydb->allow_unknown)
1140 			goto allow;
1141 		goto out;
1142 	}
1143 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1144 				  xperms);
1145 	map_decision(&state->ss->map, orig_tclass, avd,
1146 		     policydb->allow_unknown);
1147 out:
1148 	read_unlock(&state->ss->policy_rwlock);
1149 	return;
1150 allow:
1151 	avd->allowed = 0xffffffff;
1152 	goto out;
1153 }
1154 
1155 void security_compute_av_user(struct selinux_state *state,
1156 			      u32 ssid,
1157 			      u32 tsid,
1158 			      u16 tclass,
1159 			      struct av_decision *avd)
1160 {
1161 	struct policydb *policydb;
1162 	struct sidtab *sidtab;
1163 	struct context *scontext = NULL, *tcontext = NULL;
1164 
1165 	read_lock(&state->ss->policy_rwlock);
1166 	avd_init(state, avd);
1167 	if (!state->initialized)
1168 		goto allow;
1169 
1170 	policydb = &state->ss->policydb;
1171 	sidtab = state->ss->sidtab;
1172 
1173 	scontext = sidtab_search(sidtab, ssid);
1174 	if (!scontext) {
1175 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1176 		       __func__, ssid);
1177 		goto out;
1178 	}
1179 
1180 	/* permissive domain? */
1181 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1182 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1183 
1184 	tcontext = sidtab_search(sidtab, tsid);
1185 	if (!tcontext) {
1186 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1187 		       __func__, tsid);
1188 		goto out;
1189 	}
1190 
1191 	if (unlikely(!tclass)) {
1192 		if (policydb->allow_unknown)
1193 			goto allow;
1194 		goto out;
1195 	}
1196 
1197 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1198 				  NULL);
1199  out:
1200 	read_unlock(&state->ss->policy_rwlock);
1201 	return;
1202 allow:
1203 	avd->allowed = 0xffffffff;
1204 	goto out;
1205 }
1206 
1207 /*
1208  * Write the security context string representation of
1209  * the context structure `context' into a dynamically
1210  * allocated string of the correct size.  Set `*scontext'
1211  * to point to this string and set `*scontext_len' to
1212  * the length of the string.
1213  */
1214 static int context_struct_to_string(struct policydb *p,
1215 				    struct context *context,
1216 				    char **scontext, u32 *scontext_len)
1217 {
1218 	char *scontextp;
1219 
1220 	if (scontext)
1221 		*scontext = NULL;
1222 	*scontext_len = 0;
1223 
1224 	if (context->len) {
1225 		*scontext_len = context->len;
1226 		if (scontext) {
1227 			*scontext = kstrdup(context->str, GFP_ATOMIC);
1228 			if (!(*scontext))
1229 				return -ENOMEM;
1230 		}
1231 		return 0;
1232 	}
1233 
1234 	/* Compute the size of the context. */
1235 	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1236 	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1237 	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1238 	*scontext_len += mls_compute_context_len(p, context);
1239 
1240 	if (!scontext)
1241 		return 0;
1242 
1243 	/* Allocate space for the context; caller must free this space. */
1244 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1245 	if (!scontextp)
1246 		return -ENOMEM;
1247 	*scontext = scontextp;
1248 
1249 	/*
1250 	 * Copy the user name, role name and type name into the context.
1251 	 */
1252 	scontextp += sprintf(scontextp, "%s:%s:%s",
1253 		sym_name(p, SYM_USERS, context->user - 1),
1254 		sym_name(p, SYM_ROLES, context->role - 1),
1255 		sym_name(p, SYM_TYPES, context->type - 1));
1256 
1257 	mls_sid_to_context(p, context, &scontextp);
1258 
1259 	*scontextp = 0;
1260 
1261 	return 0;
1262 }
1263 
1264 #include "initial_sid_to_string.h"
1265 
1266 const char *security_get_initial_sid_context(u32 sid)
1267 {
1268 	if (unlikely(sid > SECINITSID_NUM))
1269 		return NULL;
1270 	return initial_sid_to_string[sid];
1271 }
1272 
1273 static int security_sid_to_context_core(struct selinux_state *state,
1274 					u32 sid, char **scontext,
1275 					u32 *scontext_len, int force,
1276 					int only_invalid)
1277 {
1278 	struct policydb *policydb;
1279 	struct sidtab *sidtab;
1280 	struct context *context;
1281 	int rc = 0;
1282 
1283 	if (scontext)
1284 		*scontext = NULL;
1285 	*scontext_len  = 0;
1286 
1287 	if (!state->initialized) {
1288 		if (sid <= SECINITSID_NUM) {
1289 			char *scontextp;
1290 
1291 			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1292 			if (!scontext)
1293 				goto out;
1294 			scontextp = kmemdup(initial_sid_to_string[sid],
1295 					    *scontext_len, GFP_ATOMIC);
1296 			if (!scontextp) {
1297 				rc = -ENOMEM;
1298 				goto out;
1299 			}
1300 			*scontext = scontextp;
1301 			goto out;
1302 		}
1303 		pr_err("SELinux: %s:  called before initial "
1304 		       "load_policy on unknown SID %d\n", __func__, sid);
1305 		rc = -EINVAL;
1306 		goto out;
1307 	}
1308 	read_lock(&state->ss->policy_rwlock);
1309 	policydb = &state->ss->policydb;
1310 	sidtab = state->ss->sidtab;
1311 	if (force)
1312 		context = sidtab_search_force(sidtab, sid);
1313 	else
1314 		context = sidtab_search(sidtab, sid);
1315 	if (!context) {
1316 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1317 			__func__, sid);
1318 		rc = -EINVAL;
1319 		goto out_unlock;
1320 	}
1321 	if (only_invalid && !context->len)
1322 		rc = 0;
1323 	else
1324 		rc = context_struct_to_string(policydb, context, scontext,
1325 					      scontext_len);
1326 out_unlock:
1327 	read_unlock(&state->ss->policy_rwlock);
1328 out:
1329 	return rc;
1330 
1331 }
1332 
1333 /**
1334  * security_sid_to_context - Obtain a context for a given SID.
1335  * @sid: security identifier, SID
1336  * @scontext: security context
1337  * @scontext_len: length in bytes
1338  *
1339  * Write the string representation of the context associated with @sid
1340  * into a dynamically allocated string of the correct size.  Set @scontext
1341  * to point to this string and set @scontext_len to the length of the string.
1342  */
1343 int security_sid_to_context(struct selinux_state *state,
1344 			    u32 sid, char **scontext, u32 *scontext_len)
1345 {
1346 	return security_sid_to_context_core(state, sid, scontext,
1347 					    scontext_len, 0, 0);
1348 }
1349 
1350 int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1351 				  char **scontext, u32 *scontext_len)
1352 {
1353 	return security_sid_to_context_core(state, sid, scontext,
1354 					    scontext_len, 1, 0);
1355 }
1356 
1357 /**
1358  * security_sid_to_context_inval - Obtain a context for a given SID if it
1359  *                                 is invalid.
1360  * @sid: security identifier, SID
1361  * @scontext: security context
1362  * @scontext_len: length in bytes
1363  *
1364  * Write the string representation of the context associated with @sid
1365  * into a dynamically allocated string of the correct size, but only if the
1366  * context is invalid in the current policy.  Set @scontext to point to
1367  * this string (or NULL if the context is valid) and set @scontext_len to
1368  * the length of the string (or 0 if the context is valid).
1369  */
1370 int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1371 				  char **scontext, u32 *scontext_len)
1372 {
1373 	return security_sid_to_context_core(state, sid, scontext,
1374 					    scontext_len, 1, 1);
1375 }
1376 
1377 /*
1378  * Caveat:  Mutates scontext.
1379  */
1380 static int string_to_context_struct(struct policydb *pol,
1381 				    struct sidtab *sidtabp,
1382 				    char *scontext,
1383 				    struct context *ctx,
1384 				    u32 def_sid)
1385 {
1386 	struct role_datum *role;
1387 	struct type_datum *typdatum;
1388 	struct user_datum *usrdatum;
1389 	char *scontextp, *p, oldc;
1390 	int rc = 0;
1391 
1392 	context_init(ctx);
1393 
1394 	/* Parse the security context. */
1395 
1396 	rc = -EINVAL;
1397 	scontextp = (char *) scontext;
1398 
1399 	/* Extract the user. */
1400 	p = scontextp;
1401 	while (*p && *p != ':')
1402 		p++;
1403 
1404 	if (*p == 0)
1405 		goto out;
1406 
1407 	*p++ = 0;
1408 
1409 	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1410 	if (!usrdatum)
1411 		goto out;
1412 
1413 	ctx->user = usrdatum->value;
1414 
1415 	/* Extract role. */
1416 	scontextp = p;
1417 	while (*p && *p != ':')
1418 		p++;
1419 
1420 	if (*p == 0)
1421 		goto out;
1422 
1423 	*p++ = 0;
1424 
1425 	role = hashtab_search(pol->p_roles.table, scontextp);
1426 	if (!role)
1427 		goto out;
1428 	ctx->role = role->value;
1429 
1430 	/* Extract type. */
1431 	scontextp = p;
1432 	while (*p && *p != ':')
1433 		p++;
1434 	oldc = *p;
1435 	*p++ = 0;
1436 
1437 	typdatum = hashtab_search(pol->p_types.table, scontextp);
1438 	if (!typdatum || typdatum->attribute)
1439 		goto out;
1440 
1441 	ctx->type = typdatum->value;
1442 
1443 	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1444 	if (rc)
1445 		goto out;
1446 
1447 	/* Check the validity of the new context. */
1448 	rc = -EINVAL;
1449 	if (!policydb_context_isvalid(pol, ctx))
1450 		goto out;
1451 	rc = 0;
1452 out:
1453 	if (rc)
1454 		context_destroy(ctx);
1455 	return rc;
1456 }
1457 
1458 static int security_context_to_sid_core(struct selinux_state *state,
1459 					const char *scontext, u32 scontext_len,
1460 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1461 					int force)
1462 {
1463 	struct policydb *policydb;
1464 	struct sidtab *sidtab;
1465 	char *scontext2, *str = NULL;
1466 	struct context context;
1467 	int rc = 0;
1468 
1469 	/* An empty security context is never valid. */
1470 	if (!scontext_len)
1471 		return -EINVAL;
1472 
1473 	/* Copy the string to allow changes and ensure a NUL terminator */
1474 	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1475 	if (!scontext2)
1476 		return -ENOMEM;
1477 
1478 	if (!state->initialized) {
1479 		int i;
1480 
1481 		for (i = 1; i < SECINITSID_NUM; i++) {
1482 			if (!strcmp(initial_sid_to_string[i], scontext2)) {
1483 				*sid = i;
1484 				goto out;
1485 			}
1486 		}
1487 		*sid = SECINITSID_KERNEL;
1488 		goto out;
1489 	}
1490 	*sid = SECSID_NULL;
1491 
1492 	if (force) {
1493 		/* Save another copy for storing in uninterpreted form */
1494 		rc = -ENOMEM;
1495 		str = kstrdup(scontext2, gfp_flags);
1496 		if (!str)
1497 			goto out;
1498 	}
1499 	read_lock(&state->ss->policy_rwlock);
1500 	policydb = &state->ss->policydb;
1501 	sidtab = state->ss->sidtab;
1502 	rc = string_to_context_struct(policydb, sidtab, scontext2,
1503 				      &context, def_sid);
1504 	if (rc == -EINVAL && force) {
1505 		context.str = str;
1506 		context.len = strlen(str) + 1;
1507 		str = NULL;
1508 	} else if (rc)
1509 		goto out_unlock;
1510 	rc = sidtab_context_to_sid(sidtab, &context, sid);
1511 	context_destroy(&context);
1512 out_unlock:
1513 	read_unlock(&state->ss->policy_rwlock);
1514 out:
1515 	kfree(scontext2);
1516 	kfree(str);
1517 	return rc;
1518 }
1519 
1520 /**
1521  * security_context_to_sid - Obtain a SID for a given security context.
1522  * @scontext: security context
1523  * @scontext_len: length in bytes
1524  * @sid: security identifier, SID
1525  * @gfp: context for the allocation
1526  *
1527  * Obtains a SID associated with the security context that
1528  * has the string representation specified by @scontext.
1529  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1530  * memory is available, or 0 on success.
1531  */
1532 int security_context_to_sid(struct selinux_state *state,
1533 			    const char *scontext, u32 scontext_len, u32 *sid,
1534 			    gfp_t gfp)
1535 {
1536 	return security_context_to_sid_core(state, scontext, scontext_len,
1537 					    sid, SECSID_NULL, gfp, 0);
1538 }
1539 
1540 int security_context_str_to_sid(struct selinux_state *state,
1541 				const char *scontext, u32 *sid, gfp_t gfp)
1542 {
1543 	return security_context_to_sid(state, scontext, strlen(scontext),
1544 				       sid, gfp);
1545 }
1546 
1547 /**
1548  * security_context_to_sid_default - Obtain a SID for a given security context,
1549  * falling back to specified default if needed.
1550  *
1551  * @scontext: security context
1552  * @scontext_len: length in bytes
1553  * @sid: security identifier, SID
1554  * @def_sid: default SID to assign on error
1555  *
1556  * Obtains a SID associated with the security context that
1557  * has the string representation specified by @scontext.
1558  * The default SID is passed to the MLS layer to be used to allow
1559  * kernel labeling of the MLS field if the MLS field is not present
1560  * (for upgrading to MLS without full relabel).
1561  * Implicitly forces adding of the context even if it cannot be mapped yet.
1562  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1563  * memory is available, or 0 on success.
1564  */
1565 int security_context_to_sid_default(struct selinux_state *state,
1566 				    const char *scontext, u32 scontext_len,
1567 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1568 {
1569 	return security_context_to_sid_core(state, scontext, scontext_len,
1570 					    sid, def_sid, gfp_flags, 1);
1571 }
1572 
1573 int security_context_to_sid_force(struct selinux_state *state,
1574 				  const char *scontext, u32 scontext_len,
1575 				  u32 *sid)
1576 {
1577 	return security_context_to_sid_core(state, scontext, scontext_len,
1578 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1579 }
1580 
1581 static int compute_sid_handle_invalid_context(
1582 	struct selinux_state *state,
1583 	struct context *scontext,
1584 	struct context *tcontext,
1585 	u16 tclass,
1586 	struct context *newcontext)
1587 {
1588 	struct policydb *policydb = &state->ss->policydb;
1589 	char *s = NULL, *t = NULL, *n = NULL;
1590 	u32 slen, tlen, nlen;
1591 
1592 	if (context_struct_to_string(policydb, scontext, &s, &slen))
1593 		goto out;
1594 	if (context_struct_to_string(policydb, tcontext, &t, &tlen))
1595 		goto out;
1596 	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1597 		goto out;
1598 	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
1599 		  "op=security_compute_sid invalid_context=%s"
1600 		  " scontext=%s"
1601 		  " tcontext=%s"
1602 		  " tclass=%s",
1603 		  n, s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1604 out:
1605 	kfree(s);
1606 	kfree(t);
1607 	kfree(n);
1608 	if (!enforcing_enabled(state))
1609 		return 0;
1610 	return -EACCES;
1611 }
1612 
1613 static void filename_compute_type(struct policydb *policydb,
1614 				  struct context *newcontext,
1615 				  u32 stype, u32 ttype, u16 tclass,
1616 				  const char *objname)
1617 {
1618 	struct filename_trans ft;
1619 	struct filename_trans_datum *otype;
1620 
1621 	/*
1622 	 * Most filename trans rules are going to live in specific directories
1623 	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1624 	 * if the ttype does not contain any rules.
1625 	 */
1626 	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1627 		return;
1628 
1629 	ft.stype = stype;
1630 	ft.ttype = ttype;
1631 	ft.tclass = tclass;
1632 	ft.name = objname;
1633 
1634 	otype = hashtab_search(policydb->filename_trans, &ft);
1635 	if (otype)
1636 		newcontext->type = otype->otype;
1637 }
1638 
1639 static int security_compute_sid(struct selinux_state *state,
1640 				u32 ssid,
1641 				u32 tsid,
1642 				u16 orig_tclass,
1643 				u32 specified,
1644 				const char *objname,
1645 				u32 *out_sid,
1646 				bool kern)
1647 {
1648 	struct policydb *policydb;
1649 	struct sidtab *sidtab;
1650 	struct class_datum *cladatum = NULL;
1651 	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1652 	struct role_trans *roletr = NULL;
1653 	struct avtab_key avkey;
1654 	struct avtab_datum *avdatum;
1655 	struct avtab_node *node;
1656 	u16 tclass;
1657 	int rc = 0;
1658 	bool sock;
1659 
1660 	if (!state->initialized) {
1661 		switch (orig_tclass) {
1662 		case SECCLASS_PROCESS: /* kernel value */
1663 			*out_sid = ssid;
1664 			break;
1665 		default:
1666 			*out_sid = tsid;
1667 			break;
1668 		}
1669 		goto out;
1670 	}
1671 
1672 	context_init(&newcontext);
1673 
1674 	read_lock(&state->ss->policy_rwlock);
1675 
1676 	if (kern) {
1677 		tclass = unmap_class(&state->ss->map, orig_tclass);
1678 		sock = security_is_socket_class(orig_tclass);
1679 	} else {
1680 		tclass = orig_tclass;
1681 		sock = security_is_socket_class(map_class(&state->ss->map,
1682 							  tclass));
1683 	}
1684 
1685 	policydb = &state->ss->policydb;
1686 	sidtab = state->ss->sidtab;
1687 
1688 	scontext = sidtab_search(sidtab, ssid);
1689 	if (!scontext) {
1690 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1691 		       __func__, ssid);
1692 		rc = -EINVAL;
1693 		goto out_unlock;
1694 	}
1695 	tcontext = sidtab_search(sidtab, tsid);
1696 	if (!tcontext) {
1697 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1698 		       __func__, tsid);
1699 		rc = -EINVAL;
1700 		goto out_unlock;
1701 	}
1702 
1703 	if (tclass && tclass <= policydb->p_classes.nprim)
1704 		cladatum = policydb->class_val_to_struct[tclass - 1];
1705 
1706 	/* Set the user identity. */
1707 	switch (specified) {
1708 	case AVTAB_TRANSITION:
1709 	case AVTAB_CHANGE:
1710 		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1711 			newcontext.user = tcontext->user;
1712 		} else {
1713 			/* notice this gets both DEFAULT_SOURCE and unset */
1714 			/* Use the process user identity. */
1715 			newcontext.user = scontext->user;
1716 		}
1717 		break;
1718 	case AVTAB_MEMBER:
1719 		/* Use the related object owner. */
1720 		newcontext.user = tcontext->user;
1721 		break;
1722 	}
1723 
1724 	/* Set the role to default values. */
1725 	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1726 		newcontext.role = scontext->role;
1727 	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1728 		newcontext.role = tcontext->role;
1729 	} else {
1730 		if ((tclass == policydb->process_class) || (sock == true))
1731 			newcontext.role = scontext->role;
1732 		else
1733 			newcontext.role = OBJECT_R_VAL;
1734 	}
1735 
1736 	/* Set the type to default values. */
1737 	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1738 		newcontext.type = scontext->type;
1739 	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1740 		newcontext.type = tcontext->type;
1741 	} else {
1742 		if ((tclass == policydb->process_class) || (sock == true)) {
1743 			/* Use the type of process. */
1744 			newcontext.type = scontext->type;
1745 		} else {
1746 			/* Use the type of the related object. */
1747 			newcontext.type = tcontext->type;
1748 		}
1749 	}
1750 
1751 	/* Look for a type transition/member/change rule. */
1752 	avkey.source_type = scontext->type;
1753 	avkey.target_type = tcontext->type;
1754 	avkey.target_class = tclass;
1755 	avkey.specified = specified;
1756 	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1757 
1758 	/* If no permanent rule, also check for enabled conditional rules */
1759 	if (!avdatum) {
1760 		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1761 		for (; node; node = avtab_search_node_next(node, specified)) {
1762 			if (node->key.specified & AVTAB_ENABLED) {
1763 				avdatum = &node->datum;
1764 				break;
1765 			}
1766 		}
1767 	}
1768 
1769 	if (avdatum) {
1770 		/* Use the type from the type transition/member/change rule. */
1771 		newcontext.type = avdatum->u.data;
1772 	}
1773 
1774 	/* if we have a objname this is a file trans check so check those rules */
1775 	if (objname)
1776 		filename_compute_type(policydb, &newcontext, scontext->type,
1777 				      tcontext->type, tclass, objname);
1778 
1779 	/* Check for class-specific changes. */
1780 	if (specified & AVTAB_TRANSITION) {
1781 		/* Look for a role transition rule. */
1782 		for (roletr = policydb->role_tr; roletr;
1783 		     roletr = roletr->next) {
1784 			if ((roletr->role == scontext->role) &&
1785 			    (roletr->type == tcontext->type) &&
1786 			    (roletr->tclass == tclass)) {
1787 				/* Use the role transition rule. */
1788 				newcontext.role = roletr->new_role;
1789 				break;
1790 			}
1791 		}
1792 	}
1793 
1794 	/* Set the MLS attributes.
1795 	   This is done last because it may allocate memory. */
1796 	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1797 			     &newcontext, sock);
1798 	if (rc)
1799 		goto out_unlock;
1800 
1801 	/* Check the validity of the context. */
1802 	if (!policydb_context_isvalid(policydb, &newcontext)) {
1803 		rc = compute_sid_handle_invalid_context(state, scontext,
1804 							tcontext,
1805 							tclass,
1806 							&newcontext);
1807 		if (rc)
1808 			goto out_unlock;
1809 	}
1810 	/* Obtain the sid for the context. */
1811 	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1812 out_unlock:
1813 	read_unlock(&state->ss->policy_rwlock);
1814 	context_destroy(&newcontext);
1815 out:
1816 	return rc;
1817 }
1818 
1819 /**
1820  * security_transition_sid - Compute the SID for a new subject/object.
1821  * @ssid: source security identifier
1822  * @tsid: target security identifier
1823  * @tclass: target security class
1824  * @out_sid: security identifier for new subject/object
1825  *
1826  * Compute a SID to use for labeling a new subject or object in the
1827  * class @tclass based on a SID pair (@ssid, @tsid).
1828  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1829  * if insufficient memory is available, or %0 if the new SID was
1830  * computed successfully.
1831  */
1832 int security_transition_sid(struct selinux_state *state,
1833 			    u32 ssid, u32 tsid, u16 tclass,
1834 			    const struct qstr *qstr, u32 *out_sid)
1835 {
1836 	return security_compute_sid(state, ssid, tsid, tclass,
1837 				    AVTAB_TRANSITION,
1838 				    qstr ? qstr->name : NULL, out_sid, true);
1839 }
1840 
1841 int security_transition_sid_user(struct selinux_state *state,
1842 				 u32 ssid, u32 tsid, u16 tclass,
1843 				 const char *objname, u32 *out_sid)
1844 {
1845 	return security_compute_sid(state, ssid, tsid, tclass,
1846 				    AVTAB_TRANSITION,
1847 				    objname, out_sid, false);
1848 }
1849 
1850 /**
1851  * security_member_sid - Compute the SID for member selection.
1852  * @ssid: source security identifier
1853  * @tsid: target security identifier
1854  * @tclass: target security class
1855  * @out_sid: security identifier for selected member
1856  *
1857  * Compute a SID to use when selecting a member of a polyinstantiated
1858  * object of class @tclass based on a SID pair (@ssid, @tsid).
1859  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1860  * if insufficient memory is available, or %0 if the SID was
1861  * computed successfully.
1862  */
1863 int security_member_sid(struct selinux_state *state,
1864 			u32 ssid,
1865 			u32 tsid,
1866 			u16 tclass,
1867 			u32 *out_sid)
1868 {
1869 	return security_compute_sid(state, ssid, tsid, tclass,
1870 				    AVTAB_MEMBER, NULL,
1871 				    out_sid, false);
1872 }
1873 
1874 /**
1875  * security_change_sid - Compute the SID for object relabeling.
1876  * @ssid: source security identifier
1877  * @tsid: target security identifier
1878  * @tclass: target security class
1879  * @out_sid: security identifier for selected member
1880  *
1881  * Compute a SID to use for relabeling an object of class @tclass
1882  * based on a SID pair (@ssid, @tsid).
1883  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1884  * if insufficient memory is available, or %0 if the SID was
1885  * computed successfully.
1886  */
1887 int security_change_sid(struct selinux_state *state,
1888 			u32 ssid,
1889 			u32 tsid,
1890 			u16 tclass,
1891 			u32 *out_sid)
1892 {
1893 	return security_compute_sid(state,
1894 				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1895 				    out_sid, false);
1896 }
1897 
1898 static inline int convert_context_handle_invalid_context(
1899 	struct selinux_state *state,
1900 	struct context *context)
1901 {
1902 	struct policydb *policydb = &state->ss->policydb;
1903 	char *s;
1904 	u32 len;
1905 
1906 	if (enforcing_enabled(state))
1907 		return -EINVAL;
1908 
1909 	if (!context_struct_to_string(policydb, context, &s, &len)) {
1910 		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
1911 			s);
1912 		kfree(s);
1913 	}
1914 	return 0;
1915 }
1916 
1917 struct convert_context_args {
1918 	struct selinux_state *state;
1919 	struct policydb *oldp;
1920 	struct policydb *newp;
1921 };
1922 
1923 /*
1924  * Convert the values in the security context
1925  * structure `oldc' from the values specified
1926  * in the policy `p->oldp' to the values specified
1927  * in the policy `p->newp', storing the new context
1928  * in `newc'.  Verify that the context is valid
1929  * under the new policy.
1930  */
1931 static int convert_context(struct context *oldc, struct context *newc, void *p)
1932 {
1933 	struct convert_context_args *args;
1934 	struct ocontext *oc;
1935 	struct role_datum *role;
1936 	struct type_datum *typdatum;
1937 	struct user_datum *usrdatum;
1938 	char *s;
1939 	u32 len;
1940 	int rc;
1941 
1942 	args = p;
1943 
1944 	if (oldc->str) {
1945 		s = kstrdup(oldc->str, GFP_KERNEL);
1946 		if (!s)
1947 			return -ENOMEM;
1948 
1949 		rc = string_to_context_struct(args->newp, NULL, s,
1950 					      newc, SECSID_NULL);
1951 		if (rc == -EINVAL) {
1952 			/* Retain string representation for later mapping. */
1953 			context_init(newc);
1954 			newc->str = s;
1955 			newc->len = oldc->len;
1956 			return 0;
1957 		}
1958 		kfree(s);
1959 		if (rc) {
1960 			/* Other error condition, e.g. ENOMEM. */
1961 			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
1962 			       oldc->str, -rc);
1963 			return rc;
1964 		}
1965 		pr_info("SELinux:  Context %s became valid (mapped).\n",
1966 			oldc->str);
1967 		return 0;
1968 	}
1969 
1970 	context_init(newc);
1971 
1972 	/* Convert the user. */
1973 	rc = -EINVAL;
1974 	usrdatum = hashtab_search(args->newp->p_users.table,
1975 				  sym_name(args->oldp,
1976 					   SYM_USERS, oldc->user - 1));
1977 	if (!usrdatum)
1978 		goto bad;
1979 	newc->user = usrdatum->value;
1980 
1981 	/* Convert the role. */
1982 	rc = -EINVAL;
1983 	role = hashtab_search(args->newp->p_roles.table,
1984 			      sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
1985 	if (!role)
1986 		goto bad;
1987 	newc->role = role->value;
1988 
1989 	/* Convert the type. */
1990 	rc = -EINVAL;
1991 	typdatum = hashtab_search(args->newp->p_types.table,
1992 				  sym_name(args->oldp,
1993 					   SYM_TYPES, oldc->type - 1));
1994 	if (!typdatum)
1995 		goto bad;
1996 	newc->type = typdatum->value;
1997 
1998 	/* Convert the MLS fields if dealing with MLS policies */
1999 	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2000 		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2001 		if (rc)
2002 			goto bad;
2003 	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2004 		/*
2005 		 * Switching between non-MLS and MLS policy:
2006 		 * ensure that the MLS fields of the context for all
2007 		 * existing entries in the sidtab are filled in with a
2008 		 * suitable default value, likely taken from one of the
2009 		 * initial SIDs.
2010 		 */
2011 		oc = args->newp->ocontexts[OCON_ISID];
2012 		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2013 			oc = oc->next;
2014 		rc = -EINVAL;
2015 		if (!oc) {
2016 			pr_err("SELinux:  unable to look up"
2017 				" the initial SIDs list\n");
2018 			goto bad;
2019 		}
2020 		rc = mls_range_set(newc, &oc->context[0].range);
2021 		if (rc)
2022 			goto bad;
2023 	}
2024 
2025 	/* Check the validity of the new context. */
2026 	if (!policydb_context_isvalid(args->newp, newc)) {
2027 		rc = convert_context_handle_invalid_context(args->state, oldc);
2028 		if (rc)
2029 			goto bad;
2030 	}
2031 
2032 	return 0;
2033 bad:
2034 	/* Map old representation to string and save it. */
2035 	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2036 	if (rc)
2037 		return rc;
2038 	context_destroy(newc);
2039 	newc->str = s;
2040 	newc->len = len;
2041 	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2042 		newc->str);
2043 	return 0;
2044 }
2045 
2046 static void security_load_policycaps(struct selinux_state *state)
2047 {
2048 	struct policydb *p = &state->ss->policydb;
2049 	unsigned int i;
2050 	struct ebitmap_node *node;
2051 
2052 	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2053 		state->policycap[i] = ebitmap_get_bit(&p->policycaps, i);
2054 
2055 	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2056 		pr_info("SELinux:  policy capability %s=%d\n",
2057 			selinux_policycap_names[i],
2058 			ebitmap_get_bit(&p->policycaps, i));
2059 
2060 	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2061 		if (i >= ARRAY_SIZE(selinux_policycap_names))
2062 			pr_info("SELinux:  unknown policy capability %u\n",
2063 				i);
2064 	}
2065 }
2066 
2067 static int security_preserve_bools(struct selinux_state *state,
2068 				   struct policydb *newpolicydb);
2069 
2070 /**
2071  * security_load_policy - Load a security policy configuration.
2072  * @data: binary policy data
2073  * @len: length of data in bytes
2074  *
2075  * Load a new set of security policy configuration data,
2076  * validate it and convert the SID table as necessary.
2077  * This function will flush the access vector cache after
2078  * loading the new policy.
2079  */
2080 int security_load_policy(struct selinux_state *state, void *data, size_t len)
2081 {
2082 	struct policydb *policydb;
2083 	struct sidtab *oldsidtab, *newsidtab;
2084 	struct policydb *oldpolicydb, *newpolicydb;
2085 	struct selinux_mapping *oldmapping;
2086 	struct selinux_map newmap;
2087 	struct sidtab_convert_params convert_params;
2088 	struct convert_context_args args;
2089 	u32 seqno;
2090 	int rc = 0;
2091 	struct policy_file file = { data, len }, *fp = &file;
2092 
2093 	oldpolicydb = kcalloc(2, sizeof(*oldpolicydb), GFP_KERNEL);
2094 	if (!oldpolicydb) {
2095 		rc = -ENOMEM;
2096 		goto out;
2097 	}
2098 	newpolicydb = oldpolicydb + 1;
2099 
2100 	policydb = &state->ss->policydb;
2101 
2102 	newsidtab = kmalloc(sizeof(*newsidtab), GFP_KERNEL);
2103 	if (!newsidtab) {
2104 		rc = -ENOMEM;
2105 		goto out;
2106 	}
2107 
2108 	if (!state->initialized) {
2109 		rc = policydb_read(policydb, fp);
2110 		if (rc) {
2111 			kfree(newsidtab);
2112 			goto out;
2113 		}
2114 
2115 		policydb->len = len;
2116 		rc = selinux_set_mapping(policydb, secclass_map,
2117 					 &state->ss->map);
2118 		if (rc) {
2119 			kfree(newsidtab);
2120 			policydb_destroy(policydb);
2121 			goto out;
2122 		}
2123 
2124 		rc = policydb_load_isids(policydb, newsidtab);
2125 		if (rc) {
2126 			kfree(newsidtab);
2127 			policydb_destroy(policydb);
2128 			goto out;
2129 		}
2130 
2131 		state->ss->sidtab = newsidtab;
2132 		security_load_policycaps(state);
2133 		state->initialized = 1;
2134 		seqno = ++state->ss->latest_granting;
2135 		selinux_complete_init();
2136 		avc_ss_reset(state->avc, seqno);
2137 		selnl_notify_policyload(seqno);
2138 		selinux_status_update_policyload(state, seqno);
2139 		selinux_netlbl_cache_invalidate();
2140 		selinux_xfrm_notify_policyload();
2141 		goto out;
2142 	}
2143 
2144 	rc = policydb_read(newpolicydb, fp);
2145 	if (rc) {
2146 		kfree(newsidtab);
2147 		goto out;
2148 	}
2149 
2150 	newpolicydb->len = len;
2151 	/* If switching between different policy types, log MLS status */
2152 	if (policydb->mls_enabled && !newpolicydb->mls_enabled)
2153 		pr_info("SELinux: Disabling MLS support...\n");
2154 	else if (!policydb->mls_enabled && newpolicydb->mls_enabled)
2155 		pr_info("SELinux: Enabling MLS support...\n");
2156 
2157 	rc = policydb_load_isids(newpolicydb, newsidtab);
2158 	if (rc) {
2159 		pr_err("SELinux:  unable to load the initial SIDs\n");
2160 		policydb_destroy(newpolicydb);
2161 		kfree(newsidtab);
2162 		goto out;
2163 	}
2164 
2165 	rc = selinux_set_mapping(newpolicydb, secclass_map, &newmap);
2166 	if (rc)
2167 		goto err;
2168 
2169 	rc = security_preserve_bools(state, newpolicydb);
2170 	if (rc) {
2171 		pr_err("SELinux:  unable to preserve booleans\n");
2172 		goto err;
2173 	}
2174 
2175 	oldsidtab = state->ss->sidtab;
2176 
2177 	/*
2178 	 * Convert the internal representations of contexts
2179 	 * in the new SID table.
2180 	 */
2181 	args.state = state;
2182 	args.oldp = policydb;
2183 	args.newp = newpolicydb;
2184 
2185 	convert_params.func = convert_context;
2186 	convert_params.args = &args;
2187 	convert_params.target = newsidtab;
2188 
2189 	rc = sidtab_convert(oldsidtab, &convert_params);
2190 	if (rc) {
2191 		pr_err("SELinux:  unable to convert the internal"
2192 			" representation of contexts in the new SID"
2193 			" table\n");
2194 		goto err;
2195 	}
2196 
2197 	/* Save the old policydb and SID table to free later. */
2198 	memcpy(oldpolicydb, policydb, sizeof(*policydb));
2199 
2200 	/* Install the new policydb and SID table. */
2201 	write_lock_irq(&state->ss->policy_rwlock);
2202 	memcpy(policydb, newpolicydb, sizeof(*policydb));
2203 	state->ss->sidtab = newsidtab;
2204 	security_load_policycaps(state);
2205 	oldmapping = state->ss->map.mapping;
2206 	state->ss->map.mapping = newmap.mapping;
2207 	state->ss->map.size = newmap.size;
2208 	seqno = ++state->ss->latest_granting;
2209 	write_unlock_irq(&state->ss->policy_rwlock);
2210 
2211 	/* Free the old policydb and SID table. */
2212 	policydb_destroy(oldpolicydb);
2213 	sidtab_destroy(oldsidtab);
2214 	kfree(oldsidtab);
2215 	kfree(oldmapping);
2216 
2217 	avc_ss_reset(state->avc, seqno);
2218 	selnl_notify_policyload(seqno);
2219 	selinux_status_update_policyload(state, seqno);
2220 	selinux_netlbl_cache_invalidate();
2221 	selinux_xfrm_notify_policyload();
2222 
2223 	rc = 0;
2224 	goto out;
2225 
2226 err:
2227 	kfree(newmap.mapping);
2228 	sidtab_destroy(newsidtab);
2229 	kfree(newsidtab);
2230 	policydb_destroy(newpolicydb);
2231 
2232 out:
2233 	kfree(oldpolicydb);
2234 	return rc;
2235 }
2236 
2237 size_t security_policydb_len(struct selinux_state *state)
2238 {
2239 	struct policydb *p = &state->ss->policydb;
2240 	size_t len;
2241 
2242 	read_lock(&state->ss->policy_rwlock);
2243 	len = p->len;
2244 	read_unlock(&state->ss->policy_rwlock);
2245 
2246 	return len;
2247 }
2248 
2249 /**
2250  * security_port_sid - Obtain the SID for a port.
2251  * @protocol: protocol number
2252  * @port: port number
2253  * @out_sid: security identifier
2254  */
2255 int security_port_sid(struct selinux_state *state,
2256 		      u8 protocol, u16 port, u32 *out_sid)
2257 {
2258 	struct policydb *policydb;
2259 	struct sidtab *sidtab;
2260 	struct ocontext *c;
2261 	int rc = 0;
2262 
2263 	read_lock(&state->ss->policy_rwlock);
2264 
2265 	policydb = &state->ss->policydb;
2266 	sidtab = state->ss->sidtab;
2267 
2268 	c = policydb->ocontexts[OCON_PORT];
2269 	while (c) {
2270 		if (c->u.port.protocol == protocol &&
2271 		    c->u.port.low_port <= port &&
2272 		    c->u.port.high_port >= port)
2273 			break;
2274 		c = c->next;
2275 	}
2276 
2277 	if (c) {
2278 		if (!c->sid[0]) {
2279 			rc = sidtab_context_to_sid(sidtab,
2280 						   &c->context[0],
2281 						   &c->sid[0]);
2282 			if (rc)
2283 				goto out;
2284 		}
2285 		*out_sid = c->sid[0];
2286 	} else {
2287 		*out_sid = SECINITSID_PORT;
2288 	}
2289 
2290 out:
2291 	read_unlock(&state->ss->policy_rwlock);
2292 	return rc;
2293 }
2294 
2295 /**
2296  * security_pkey_sid - Obtain the SID for a pkey.
2297  * @subnet_prefix: Subnet Prefix
2298  * @pkey_num: pkey number
2299  * @out_sid: security identifier
2300  */
2301 int security_ib_pkey_sid(struct selinux_state *state,
2302 			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2303 {
2304 	struct policydb *policydb;
2305 	struct sidtab *sidtab;
2306 	struct ocontext *c;
2307 	int rc = 0;
2308 
2309 	read_lock(&state->ss->policy_rwlock);
2310 
2311 	policydb = &state->ss->policydb;
2312 	sidtab = state->ss->sidtab;
2313 
2314 	c = policydb->ocontexts[OCON_IBPKEY];
2315 	while (c) {
2316 		if (c->u.ibpkey.low_pkey <= pkey_num &&
2317 		    c->u.ibpkey.high_pkey >= pkey_num &&
2318 		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2319 			break;
2320 
2321 		c = c->next;
2322 	}
2323 
2324 	if (c) {
2325 		if (!c->sid[0]) {
2326 			rc = sidtab_context_to_sid(sidtab,
2327 						   &c->context[0],
2328 						   &c->sid[0]);
2329 			if (rc)
2330 				goto out;
2331 		}
2332 		*out_sid = c->sid[0];
2333 	} else
2334 		*out_sid = SECINITSID_UNLABELED;
2335 
2336 out:
2337 	read_unlock(&state->ss->policy_rwlock);
2338 	return rc;
2339 }
2340 
2341 /**
2342  * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2343  * @dev_name: device name
2344  * @port: port number
2345  * @out_sid: security identifier
2346  */
2347 int security_ib_endport_sid(struct selinux_state *state,
2348 			    const char *dev_name, u8 port_num, u32 *out_sid)
2349 {
2350 	struct policydb *policydb;
2351 	struct sidtab *sidtab;
2352 	struct ocontext *c;
2353 	int rc = 0;
2354 
2355 	read_lock(&state->ss->policy_rwlock);
2356 
2357 	policydb = &state->ss->policydb;
2358 	sidtab = state->ss->sidtab;
2359 
2360 	c = policydb->ocontexts[OCON_IBENDPORT];
2361 	while (c) {
2362 		if (c->u.ibendport.port == port_num &&
2363 		    !strncmp(c->u.ibendport.dev_name,
2364 			     dev_name,
2365 			     IB_DEVICE_NAME_MAX))
2366 			break;
2367 
2368 		c = c->next;
2369 	}
2370 
2371 	if (c) {
2372 		if (!c->sid[0]) {
2373 			rc = sidtab_context_to_sid(sidtab,
2374 						   &c->context[0],
2375 						   &c->sid[0]);
2376 			if (rc)
2377 				goto out;
2378 		}
2379 		*out_sid = c->sid[0];
2380 	} else
2381 		*out_sid = SECINITSID_UNLABELED;
2382 
2383 out:
2384 	read_unlock(&state->ss->policy_rwlock);
2385 	return rc;
2386 }
2387 
2388 /**
2389  * security_netif_sid - Obtain the SID for a network interface.
2390  * @name: interface name
2391  * @if_sid: interface SID
2392  */
2393 int security_netif_sid(struct selinux_state *state,
2394 		       char *name, u32 *if_sid)
2395 {
2396 	struct policydb *policydb;
2397 	struct sidtab *sidtab;
2398 	int rc = 0;
2399 	struct ocontext *c;
2400 
2401 	read_lock(&state->ss->policy_rwlock);
2402 
2403 	policydb = &state->ss->policydb;
2404 	sidtab = state->ss->sidtab;
2405 
2406 	c = policydb->ocontexts[OCON_NETIF];
2407 	while (c) {
2408 		if (strcmp(name, c->u.name) == 0)
2409 			break;
2410 		c = c->next;
2411 	}
2412 
2413 	if (c) {
2414 		if (!c->sid[0] || !c->sid[1]) {
2415 			rc = sidtab_context_to_sid(sidtab,
2416 						  &c->context[0],
2417 						  &c->sid[0]);
2418 			if (rc)
2419 				goto out;
2420 			rc = sidtab_context_to_sid(sidtab,
2421 						   &c->context[1],
2422 						   &c->sid[1]);
2423 			if (rc)
2424 				goto out;
2425 		}
2426 		*if_sid = c->sid[0];
2427 	} else
2428 		*if_sid = SECINITSID_NETIF;
2429 
2430 out:
2431 	read_unlock(&state->ss->policy_rwlock);
2432 	return rc;
2433 }
2434 
2435 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2436 {
2437 	int i, fail = 0;
2438 
2439 	for (i = 0; i < 4; i++)
2440 		if (addr[i] != (input[i] & mask[i])) {
2441 			fail = 1;
2442 			break;
2443 		}
2444 
2445 	return !fail;
2446 }
2447 
2448 /**
2449  * security_node_sid - Obtain the SID for a node (host).
2450  * @domain: communication domain aka address family
2451  * @addrp: address
2452  * @addrlen: address length in bytes
2453  * @out_sid: security identifier
2454  */
2455 int security_node_sid(struct selinux_state *state,
2456 		      u16 domain,
2457 		      void *addrp,
2458 		      u32 addrlen,
2459 		      u32 *out_sid)
2460 {
2461 	struct policydb *policydb;
2462 	struct sidtab *sidtab;
2463 	int rc;
2464 	struct ocontext *c;
2465 
2466 	read_lock(&state->ss->policy_rwlock);
2467 
2468 	policydb = &state->ss->policydb;
2469 	sidtab = state->ss->sidtab;
2470 
2471 	switch (domain) {
2472 	case AF_INET: {
2473 		u32 addr;
2474 
2475 		rc = -EINVAL;
2476 		if (addrlen != sizeof(u32))
2477 			goto out;
2478 
2479 		addr = *((u32 *)addrp);
2480 
2481 		c = policydb->ocontexts[OCON_NODE];
2482 		while (c) {
2483 			if (c->u.node.addr == (addr & c->u.node.mask))
2484 				break;
2485 			c = c->next;
2486 		}
2487 		break;
2488 	}
2489 
2490 	case AF_INET6:
2491 		rc = -EINVAL;
2492 		if (addrlen != sizeof(u64) * 2)
2493 			goto out;
2494 		c = policydb->ocontexts[OCON_NODE6];
2495 		while (c) {
2496 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2497 						c->u.node6.mask))
2498 				break;
2499 			c = c->next;
2500 		}
2501 		break;
2502 
2503 	default:
2504 		rc = 0;
2505 		*out_sid = SECINITSID_NODE;
2506 		goto out;
2507 	}
2508 
2509 	if (c) {
2510 		if (!c->sid[0]) {
2511 			rc = sidtab_context_to_sid(sidtab,
2512 						   &c->context[0],
2513 						   &c->sid[0]);
2514 			if (rc)
2515 				goto out;
2516 		}
2517 		*out_sid = c->sid[0];
2518 	} else {
2519 		*out_sid = SECINITSID_NODE;
2520 	}
2521 
2522 	rc = 0;
2523 out:
2524 	read_unlock(&state->ss->policy_rwlock);
2525 	return rc;
2526 }
2527 
2528 #define SIDS_NEL 25
2529 
2530 /**
2531  * security_get_user_sids - Obtain reachable SIDs for a user.
2532  * @fromsid: starting SID
2533  * @username: username
2534  * @sids: array of reachable SIDs for user
2535  * @nel: number of elements in @sids
2536  *
2537  * Generate the set of SIDs for legal security contexts
2538  * for a given user that can be reached by @fromsid.
2539  * Set *@sids to point to a dynamically allocated
2540  * array containing the set of SIDs.  Set *@nel to the
2541  * number of elements in the array.
2542  */
2543 
2544 int security_get_user_sids(struct selinux_state *state,
2545 			   u32 fromsid,
2546 			   char *username,
2547 			   u32 **sids,
2548 			   u32 *nel)
2549 {
2550 	struct policydb *policydb;
2551 	struct sidtab *sidtab;
2552 	struct context *fromcon, usercon;
2553 	u32 *mysids = NULL, *mysids2, sid;
2554 	u32 mynel = 0, maxnel = SIDS_NEL;
2555 	struct user_datum *user;
2556 	struct role_datum *role;
2557 	struct ebitmap_node *rnode, *tnode;
2558 	int rc = 0, i, j;
2559 
2560 	*sids = NULL;
2561 	*nel = 0;
2562 
2563 	if (!state->initialized)
2564 		goto out;
2565 
2566 	read_lock(&state->ss->policy_rwlock);
2567 
2568 	policydb = &state->ss->policydb;
2569 	sidtab = state->ss->sidtab;
2570 
2571 	context_init(&usercon);
2572 
2573 	rc = -EINVAL;
2574 	fromcon = sidtab_search(sidtab, fromsid);
2575 	if (!fromcon)
2576 		goto out_unlock;
2577 
2578 	rc = -EINVAL;
2579 	user = hashtab_search(policydb->p_users.table, username);
2580 	if (!user)
2581 		goto out_unlock;
2582 
2583 	usercon.user = user->value;
2584 
2585 	rc = -ENOMEM;
2586 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2587 	if (!mysids)
2588 		goto out_unlock;
2589 
2590 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2591 		role = policydb->role_val_to_struct[i];
2592 		usercon.role = i + 1;
2593 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2594 			usercon.type = j + 1;
2595 
2596 			if (mls_setup_user_range(policydb, fromcon, user,
2597 						 &usercon))
2598 				continue;
2599 
2600 			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2601 			if (rc)
2602 				goto out_unlock;
2603 			if (mynel < maxnel) {
2604 				mysids[mynel++] = sid;
2605 			} else {
2606 				rc = -ENOMEM;
2607 				maxnel += SIDS_NEL;
2608 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2609 				if (!mysids2)
2610 					goto out_unlock;
2611 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2612 				kfree(mysids);
2613 				mysids = mysids2;
2614 				mysids[mynel++] = sid;
2615 			}
2616 		}
2617 	}
2618 	rc = 0;
2619 out_unlock:
2620 	read_unlock(&state->ss->policy_rwlock);
2621 	if (rc || !mynel) {
2622 		kfree(mysids);
2623 		goto out;
2624 	}
2625 
2626 	rc = -ENOMEM;
2627 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2628 	if (!mysids2) {
2629 		kfree(mysids);
2630 		goto out;
2631 	}
2632 	for (i = 0, j = 0; i < mynel; i++) {
2633 		struct av_decision dummy_avd;
2634 		rc = avc_has_perm_noaudit(state,
2635 					  fromsid, mysids[i],
2636 					  SECCLASS_PROCESS, /* kernel value */
2637 					  PROCESS__TRANSITION, AVC_STRICT,
2638 					  &dummy_avd);
2639 		if (!rc)
2640 			mysids2[j++] = mysids[i];
2641 		cond_resched();
2642 	}
2643 	rc = 0;
2644 	kfree(mysids);
2645 	*sids = mysids2;
2646 	*nel = j;
2647 out:
2648 	return rc;
2649 }
2650 
2651 /**
2652  * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2653  * @fstype: filesystem type
2654  * @path: path from root of mount
2655  * @sclass: file security class
2656  * @sid: SID for path
2657  *
2658  * Obtain a SID to use for a file in a filesystem that
2659  * cannot support xattr or use a fixed labeling behavior like
2660  * transition SIDs or task SIDs.
2661  *
2662  * The caller must acquire the policy_rwlock before calling this function.
2663  */
2664 static inline int __security_genfs_sid(struct selinux_state *state,
2665 				       const char *fstype,
2666 				       char *path,
2667 				       u16 orig_sclass,
2668 				       u32 *sid)
2669 {
2670 	struct policydb *policydb = &state->ss->policydb;
2671 	struct sidtab *sidtab = state->ss->sidtab;
2672 	int len;
2673 	u16 sclass;
2674 	struct genfs *genfs;
2675 	struct ocontext *c;
2676 	int rc, cmp = 0;
2677 
2678 	while (path[0] == '/' && path[1] == '/')
2679 		path++;
2680 
2681 	sclass = unmap_class(&state->ss->map, orig_sclass);
2682 	*sid = SECINITSID_UNLABELED;
2683 
2684 	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2685 		cmp = strcmp(fstype, genfs->fstype);
2686 		if (cmp <= 0)
2687 			break;
2688 	}
2689 
2690 	rc = -ENOENT;
2691 	if (!genfs || cmp)
2692 		goto out;
2693 
2694 	for (c = genfs->head; c; c = c->next) {
2695 		len = strlen(c->u.name);
2696 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2697 		    (strncmp(c->u.name, path, len) == 0))
2698 			break;
2699 	}
2700 
2701 	rc = -ENOENT;
2702 	if (!c)
2703 		goto out;
2704 
2705 	if (!c->sid[0]) {
2706 		rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2707 		if (rc)
2708 			goto out;
2709 	}
2710 
2711 	*sid = c->sid[0];
2712 	rc = 0;
2713 out:
2714 	return rc;
2715 }
2716 
2717 /**
2718  * security_genfs_sid - Obtain a SID for a file in a filesystem
2719  * @fstype: filesystem type
2720  * @path: path from root of mount
2721  * @sclass: file security class
2722  * @sid: SID for path
2723  *
2724  * Acquire policy_rwlock before calling __security_genfs_sid() and release
2725  * it afterward.
2726  */
2727 int security_genfs_sid(struct selinux_state *state,
2728 		       const char *fstype,
2729 		       char *path,
2730 		       u16 orig_sclass,
2731 		       u32 *sid)
2732 {
2733 	int retval;
2734 
2735 	read_lock(&state->ss->policy_rwlock);
2736 	retval = __security_genfs_sid(state, fstype, path, orig_sclass, sid);
2737 	read_unlock(&state->ss->policy_rwlock);
2738 	return retval;
2739 }
2740 
2741 /**
2742  * security_fs_use - Determine how to handle labeling for a filesystem.
2743  * @sb: superblock in question
2744  */
2745 int security_fs_use(struct selinux_state *state, struct super_block *sb)
2746 {
2747 	struct policydb *policydb;
2748 	struct sidtab *sidtab;
2749 	int rc = 0;
2750 	struct ocontext *c;
2751 	struct superblock_security_struct *sbsec = sb->s_security;
2752 	const char *fstype = sb->s_type->name;
2753 
2754 	read_lock(&state->ss->policy_rwlock);
2755 
2756 	policydb = &state->ss->policydb;
2757 	sidtab = state->ss->sidtab;
2758 
2759 	c = policydb->ocontexts[OCON_FSUSE];
2760 	while (c) {
2761 		if (strcmp(fstype, c->u.name) == 0)
2762 			break;
2763 		c = c->next;
2764 	}
2765 
2766 	if (c) {
2767 		sbsec->behavior = c->v.behavior;
2768 		if (!c->sid[0]) {
2769 			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2770 						   &c->sid[0]);
2771 			if (rc)
2772 				goto out;
2773 		}
2774 		sbsec->sid = c->sid[0];
2775 	} else {
2776 		rc = __security_genfs_sid(state, fstype, "/", SECCLASS_DIR,
2777 					  &sbsec->sid);
2778 		if (rc) {
2779 			sbsec->behavior = SECURITY_FS_USE_NONE;
2780 			rc = 0;
2781 		} else {
2782 			sbsec->behavior = SECURITY_FS_USE_GENFS;
2783 		}
2784 	}
2785 
2786 out:
2787 	read_unlock(&state->ss->policy_rwlock);
2788 	return rc;
2789 }
2790 
2791 int security_get_bools(struct selinux_state *state,
2792 		       int *len, char ***names, int **values)
2793 {
2794 	struct policydb *policydb;
2795 	int i, rc;
2796 
2797 	if (!state->initialized) {
2798 		*len = 0;
2799 		*names = NULL;
2800 		*values = NULL;
2801 		return 0;
2802 	}
2803 
2804 	read_lock(&state->ss->policy_rwlock);
2805 
2806 	policydb = &state->ss->policydb;
2807 
2808 	*names = NULL;
2809 	*values = NULL;
2810 
2811 	rc = 0;
2812 	*len = policydb->p_bools.nprim;
2813 	if (!*len)
2814 		goto out;
2815 
2816 	rc = -ENOMEM;
2817 	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2818 	if (!*names)
2819 		goto err;
2820 
2821 	rc = -ENOMEM;
2822 	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2823 	if (!*values)
2824 		goto err;
2825 
2826 	for (i = 0; i < *len; i++) {
2827 		(*values)[i] = policydb->bool_val_to_struct[i]->state;
2828 
2829 		rc = -ENOMEM;
2830 		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2831 				      GFP_ATOMIC);
2832 		if (!(*names)[i])
2833 			goto err;
2834 	}
2835 	rc = 0;
2836 out:
2837 	read_unlock(&state->ss->policy_rwlock);
2838 	return rc;
2839 err:
2840 	if (*names) {
2841 		for (i = 0; i < *len; i++)
2842 			kfree((*names)[i]);
2843 	}
2844 	kfree(*values);
2845 	goto out;
2846 }
2847 
2848 
2849 int security_set_bools(struct selinux_state *state, int len, int *values)
2850 {
2851 	struct policydb *policydb;
2852 	int i, rc;
2853 	int lenp, seqno = 0;
2854 	struct cond_node *cur;
2855 
2856 	write_lock_irq(&state->ss->policy_rwlock);
2857 
2858 	policydb = &state->ss->policydb;
2859 
2860 	rc = -EFAULT;
2861 	lenp = policydb->p_bools.nprim;
2862 	if (len != lenp)
2863 		goto out;
2864 
2865 	for (i = 0; i < len; i++) {
2866 		if (!!values[i] != policydb->bool_val_to_struct[i]->state) {
2867 			audit_log(audit_context(), GFP_ATOMIC,
2868 				AUDIT_MAC_CONFIG_CHANGE,
2869 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2870 				sym_name(policydb, SYM_BOOLS, i),
2871 				!!values[i],
2872 				policydb->bool_val_to_struct[i]->state,
2873 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
2874 				audit_get_sessionid(current));
2875 		}
2876 		if (values[i])
2877 			policydb->bool_val_to_struct[i]->state = 1;
2878 		else
2879 			policydb->bool_val_to_struct[i]->state = 0;
2880 	}
2881 
2882 	for (cur = policydb->cond_list; cur; cur = cur->next) {
2883 		rc = evaluate_cond_node(policydb, cur);
2884 		if (rc)
2885 			goto out;
2886 	}
2887 
2888 	seqno = ++state->ss->latest_granting;
2889 	rc = 0;
2890 out:
2891 	write_unlock_irq(&state->ss->policy_rwlock);
2892 	if (!rc) {
2893 		avc_ss_reset(state->avc, seqno);
2894 		selnl_notify_policyload(seqno);
2895 		selinux_status_update_policyload(state, seqno);
2896 		selinux_xfrm_notify_policyload();
2897 	}
2898 	return rc;
2899 }
2900 
2901 int security_get_bool_value(struct selinux_state *state,
2902 			    int index)
2903 {
2904 	struct policydb *policydb;
2905 	int rc;
2906 	int len;
2907 
2908 	read_lock(&state->ss->policy_rwlock);
2909 
2910 	policydb = &state->ss->policydb;
2911 
2912 	rc = -EFAULT;
2913 	len = policydb->p_bools.nprim;
2914 	if (index >= len)
2915 		goto out;
2916 
2917 	rc = policydb->bool_val_to_struct[index]->state;
2918 out:
2919 	read_unlock(&state->ss->policy_rwlock);
2920 	return rc;
2921 }
2922 
2923 static int security_preserve_bools(struct selinux_state *state,
2924 				   struct policydb *policydb)
2925 {
2926 	int rc, nbools = 0, *bvalues = NULL, i;
2927 	char **bnames = NULL;
2928 	struct cond_bool_datum *booldatum;
2929 	struct cond_node *cur;
2930 
2931 	rc = security_get_bools(state, &nbools, &bnames, &bvalues);
2932 	if (rc)
2933 		goto out;
2934 	for (i = 0; i < nbools; i++) {
2935 		booldatum = hashtab_search(policydb->p_bools.table, bnames[i]);
2936 		if (booldatum)
2937 			booldatum->state = bvalues[i];
2938 	}
2939 	for (cur = policydb->cond_list; cur; cur = cur->next) {
2940 		rc = evaluate_cond_node(policydb, cur);
2941 		if (rc)
2942 			goto out;
2943 	}
2944 
2945 out:
2946 	if (bnames) {
2947 		for (i = 0; i < nbools; i++)
2948 			kfree(bnames[i]);
2949 	}
2950 	kfree(bnames);
2951 	kfree(bvalues);
2952 	return rc;
2953 }
2954 
2955 /*
2956  * security_sid_mls_copy() - computes a new sid based on the given
2957  * sid and the mls portion of mls_sid.
2958  */
2959 int security_sid_mls_copy(struct selinux_state *state,
2960 			  u32 sid, u32 mls_sid, u32 *new_sid)
2961 {
2962 	struct policydb *policydb = &state->ss->policydb;
2963 	struct sidtab *sidtab = state->ss->sidtab;
2964 	struct context *context1;
2965 	struct context *context2;
2966 	struct context newcon;
2967 	char *s;
2968 	u32 len;
2969 	int rc;
2970 
2971 	rc = 0;
2972 	if (!state->initialized || !policydb->mls_enabled) {
2973 		*new_sid = sid;
2974 		goto out;
2975 	}
2976 
2977 	context_init(&newcon);
2978 
2979 	read_lock(&state->ss->policy_rwlock);
2980 
2981 	rc = -EINVAL;
2982 	context1 = sidtab_search(sidtab, sid);
2983 	if (!context1) {
2984 		pr_err("SELinux: %s:  unrecognized SID %d\n",
2985 			__func__, sid);
2986 		goto out_unlock;
2987 	}
2988 
2989 	rc = -EINVAL;
2990 	context2 = sidtab_search(sidtab, mls_sid);
2991 	if (!context2) {
2992 		pr_err("SELinux: %s:  unrecognized SID %d\n",
2993 			__func__, mls_sid);
2994 		goto out_unlock;
2995 	}
2996 
2997 	newcon.user = context1->user;
2998 	newcon.role = context1->role;
2999 	newcon.type = context1->type;
3000 	rc = mls_context_cpy(&newcon, context2);
3001 	if (rc)
3002 		goto out_unlock;
3003 
3004 	/* Check the validity of the new context. */
3005 	if (!policydb_context_isvalid(policydb, &newcon)) {
3006 		rc = convert_context_handle_invalid_context(state, &newcon);
3007 		if (rc) {
3008 			if (!context_struct_to_string(policydb, &newcon, &s,
3009 						      &len)) {
3010 				audit_log(audit_context(),
3011 					  GFP_ATOMIC, AUDIT_SELINUX_ERR,
3012 					  "op=security_sid_mls_copy "
3013 					  "invalid_context=%s", s);
3014 				kfree(s);
3015 			}
3016 			goto out_unlock;
3017 		}
3018 	}
3019 
3020 	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3021 out_unlock:
3022 	read_unlock(&state->ss->policy_rwlock);
3023 	context_destroy(&newcon);
3024 out:
3025 	return rc;
3026 }
3027 
3028 /**
3029  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3030  * @nlbl_sid: NetLabel SID
3031  * @nlbl_type: NetLabel labeling protocol type
3032  * @xfrm_sid: XFRM SID
3033  *
3034  * Description:
3035  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3036  * resolved into a single SID it is returned via @peer_sid and the function
3037  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3038  * returns a negative value.  A table summarizing the behavior is below:
3039  *
3040  *                                 | function return |      @sid
3041  *   ------------------------------+-----------------+-----------------
3042  *   no peer labels                |        0        |    SECSID_NULL
3043  *   single peer label             |        0        |    <peer_label>
3044  *   multiple, consistent labels   |        0        |    <peer_label>
3045  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3046  *
3047  */
3048 int security_net_peersid_resolve(struct selinux_state *state,
3049 				 u32 nlbl_sid, u32 nlbl_type,
3050 				 u32 xfrm_sid,
3051 				 u32 *peer_sid)
3052 {
3053 	struct policydb *policydb = &state->ss->policydb;
3054 	struct sidtab *sidtab = state->ss->sidtab;
3055 	int rc;
3056 	struct context *nlbl_ctx;
3057 	struct context *xfrm_ctx;
3058 
3059 	*peer_sid = SECSID_NULL;
3060 
3061 	/* handle the common (which also happens to be the set of easy) cases
3062 	 * right away, these two if statements catch everything involving a
3063 	 * single or absent peer SID/label */
3064 	if (xfrm_sid == SECSID_NULL) {
3065 		*peer_sid = nlbl_sid;
3066 		return 0;
3067 	}
3068 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3069 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3070 	 * is present */
3071 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3072 		*peer_sid = xfrm_sid;
3073 		return 0;
3074 	}
3075 
3076 	/*
3077 	 * We don't need to check initialized here since the only way both
3078 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3079 	 * security server was initialized and state->initialized was true.
3080 	 */
3081 	if (!policydb->mls_enabled)
3082 		return 0;
3083 
3084 	read_lock(&state->ss->policy_rwlock);
3085 
3086 	rc = -EINVAL;
3087 	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3088 	if (!nlbl_ctx) {
3089 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3090 		       __func__, nlbl_sid);
3091 		goto out;
3092 	}
3093 	rc = -EINVAL;
3094 	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3095 	if (!xfrm_ctx) {
3096 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3097 		       __func__, xfrm_sid);
3098 		goto out;
3099 	}
3100 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3101 	if (rc)
3102 		goto out;
3103 
3104 	/* at present NetLabel SIDs/labels really only carry MLS
3105 	 * information so if the MLS portion of the NetLabel SID
3106 	 * matches the MLS portion of the labeled XFRM SID/label
3107 	 * then pass along the XFRM SID as it is the most
3108 	 * expressive */
3109 	*peer_sid = xfrm_sid;
3110 out:
3111 	read_unlock(&state->ss->policy_rwlock);
3112 	return rc;
3113 }
3114 
3115 static int get_classes_callback(void *k, void *d, void *args)
3116 {
3117 	struct class_datum *datum = d;
3118 	char *name = k, **classes = args;
3119 	int value = datum->value - 1;
3120 
3121 	classes[value] = kstrdup(name, GFP_ATOMIC);
3122 	if (!classes[value])
3123 		return -ENOMEM;
3124 
3125 	return 0;
3126 }
3127 
3128 int security_get_classes(struct selinux_state *state,
3129 			 char ***classes, int *nclasses)
3130 {
3131 	struct policydb *policydb = &state->ss->policydb;
3132 	int rc;
3133 
3134 	if (!state->initialized) {
3135 		*nclasses = 0;
3136 		*classes = NULL;
3137 		return 0;
3138 	}
3139 
3140 	read_lock(&state->ss->policy_rwlock);
3141 
3142 	rc = -ENOMEM;
3143 	*nclasses = policydb->p_classes.nprim;
3144 	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3145 	if (!*classes)
3146 		goto out;
3147 
3148 	rc = hashtab_map(policydb->p_classes.table, get_classes_callback,
3149 			*classes);
3150 	if (rc) {
3151 		int i;
3152 		for (i = 0; i < *nclasses; i++)
3153 			kfree((*classes)[i]);
3154 		kfree(*classes);
3155 	}
3156 
3157 out:
3158 	read_unlock(&state->ss->policy_rwlock);
3159 	return rc;
3160 }
3161 
3162 static int get_permissions_callback(void *k, void *d, void *args)
3163 {
3164 	struct perm_datum *datum = d;
3165 	char *name = k, **perms = args;
3166 	int value = datum->value - 1;
3167 
3168 	perms[value] = kstrdup(name, GFP_ATOMIC);
3169 	if (!perms[value])
3170 		return -ENOMEM;
3171 
3172 	return 0;
3173 }
3174 
3175 int security_get_permissions(struct selinux_state *state,
3176 			     char *class, char ***perms, int *nperms)
3177 {
3178 	struct policydb *policydb = &state->ss->policydb;
3179 	int rc, i;
3180 	struct class_datum *match;
3181 
3182 	read_lock(&state->ss->policy_rwlock);
3183 
3184 	rc = -EINVAL;
3185 	match = hashtab_search(policydb->p_classes.table, class);
3186 	if (!match) {
3187 		pr_err("SELinux: %s:  unrecognized class %s\n",
3188 			__func__, class);
3189 		goto out;
3190 	}
3191 
3192 	rc = -ENOMEM;
3193 	*nperms = match->permissions.nprim;
3194 	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3195 	if (!*perms)
3196 		goto out;
3197 
3198 	if (match->comdatum) {
3199 		rc = hashtab_map(match->comdatum->permissions.table,
3200 				get_permissions_callback, *perms);
3201 		if (rc)
3202 			goto err;
3203 	}
3204 
3205 	rc = hashtab_map(match->permissions.table, get_permissions_callback,
3206 			*perms);
3207 	if (rc)
3208 		goto err;
3209 
3210 out:
3211 	read_unlock(&state->ss->policy_rwlock);
3212 	return rc;
3213 
3214 err:
3215 	read_unlock(&state->ss->policy_rwlock);
3216 	for (i = 0; i < *nperms; i++)
3217 		kfree((*perms)[i]);
3218 	kfree(*perms);
3219 	return rc;
3220 }
3221 
3222 int security_get_reject_unknown(struct selinux_state *state)
3223 {
3224 	return state->ss->policydb.reject_unknown;
3225 }
3226 
3227 int security_get_allow_unknown(struct selinux_state *state)
3228 {
3229 	return state->ss->policydb.allow_unknown;
3230 }
3231 
3232 /**
3233  * security_policycap_supported - Check for a specific policy capability
3234  * @req_cap: capability
3235  *
3236  * Description:
3237  * This function queries the currently loaded policy to see if it supports the
3238  * capability specified by @req_cap.  Returns true (1) if the capability is
3239  * supported, false (0) if it isn't supported.
3240  *
3241  */
3242 int security_policycap_supported(struct selinux_state *state,
3243 				 unsigned int req_cap)
3244 {
3245 	struct policydb *policydb = &state->ss->policydb;
3246 	int rc;
3247 
3248 	read_lock(&state->ss->policy_rwlock);
3249 	rc = ebitmap_get_bit(&policydb->policycaps, req_cap);
3250 	read_unlock(&state->ss->policy_rwlock);
3251 
3252 	return rc;
3253 }
3254 
3255 struct selinux_audit_rule {
3256 	u32 au_seqno;
3257 	struct context au_ctxt;
3258 };
3259 
3260 void selinux_audit_rule_free(void *vrule)
3261 {
3262 	struct selinux_audit_rule *rule = vrule;
3263 
3264 	if (rule) {
3265 		context_destroy(&rule->au_ctxt);
3266 		kfree(rule);
3267 	}
3268 }
3269 
3270 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3271 {
3272 	struct selinux_state *state = &selinux_state;
3273 	struct policydb *policydb = &state->ss->policydb;
3274 	struct selinux_audit_rule *tmprule;
3275 	struct role_datum *roledatum;
3276 	struct type_datum *typedatum;
3277 	struct user_datum *userdatum;
3278 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3279 	int rc = 0;
3280 
3281 	*rule = NULL;
3282 
3283 	if (!state->initialized)
3284 		return -EOPNOTSUPP;
3285 
3286 	switch (field) {
3287 	case AUDIT_SUBJ_USER:
3288 	case AUDIT_SUBJ_ROLE:
3289 	case AUDIT_SUBJ_TYPE:
3290 	case AUDIT_OBJ_USER:
3291 	case AUDIT_OBJ_ROLE:
3292 	case AUDIT_OBJ_TYPE:
3293 		/* only 'equals' and 'not equals' fit user, role, and type */
3294 		if (op != Audit_equal && op != Audit_not_equal)
3295 			return -EINVAL;
3296 		break;
3297 	case AUDIT_SUBJ_SEN:
3298 	case AUDIT_SUBJ_CLR:
3299 	case AUDIT_OBJ_LEV_LOW:
3300 	case AUDIT_OBJ_LEV_HIGH:
3301 		/* we do not allow a range, indicated by the presence of '-' */
3302 		if (strchr(rulestr, '-'))
3303 			return -EINVAL;
3304 		break;
3305 	default:
3306 		/* only the above fields are valid */
3307 		return -EINVAL;
3308 	}
3309 
3310 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3311 	if (!tmprule)
3312 		return -ENOMEM;
3313 
3314 	context_init(&tmprule->au_ctxt);
3315 
3316 	read_lock(&state->ss->policy_rwlock);
3317 
3318 	tmprule->au_seqno = state->ss->latest_granting;
3319 
3320 	switch (field) {
3321 	case AUDIT_SUBJ_USER:
3322 	case AUDIT_OBJ_USER:
3323 		rc = -EINVAL;
3324 		userdatum = hashtab_search(policydb->p_users.table, rulestr);
3325 		if (!userdatum)
3326 			goto out;
3327 		tmprule->au_ctxt.user = userdatum->value;
3328 		break;
3329 	case AUDIT_SUBJ_ROLE:
3330 	case AUDIT_OBJ_ROLE:
3331 		rc = -EINVAL;
3332 		roledatum = hashtab_search(policydb->p_roles.table, rulestr);
3333 		if (!roledatum)
3334 			goto out;
3335 		tmprule->au_ctxt.role = roledatum->value;
3336 		break;
3337 	case AUDIT_SUBJ_TYPE:
3338 	case AUDIT_OBJ_TYPE:
3339 		rc = -EINVAL;
3340 		typedatum = hashtab_search(policydb->p_types.table, rulestr);
3341 		if (!typedatum)
3342 			goto out;
3343 		tmprule->au_ctxt.type = typedatum->value;
3344 		break;
3345 	case AUDIT_SUBJ_SEN:
3346 	case AUDIT_SUBJ_CLR:
3347 	case AUDIT_OBJ_LEV_LOW:
3348 	case AUDIT_OBJ_LEV_HIGH:
3349 		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3350 				     GFP_ATOMIC);
3351 		if (rc)
3352 			goto out;
3353 		break;
3354 	}
3355 	rc = 0;
3356 out:
3357 	read_unlock(&state->ss->policy_rwlock);
3358 
3359 	if (rc) {
3360 		selinux_audit_rule_free(tmprule);
3361 		tmprule = NULL;
3362 	}
3363 
3364 	*rule = tmprule;
3365 
3366 	return rc;
3367 }
3368 
3369 /* Check to see if the rule contains any selinux fields */
3370 int selinux_audit_rule_known(struct audit_krule *rule)
3371 {
3372 	int i;
3373 
3374 	for (i = 0; i < rule->field_count; i++) {
3375 		struct audit_field *f = &rule->fields[i];
3376 		switch (f->type) {
3377 		case AUDIT_SUBJ_USER:
3378 		case AUDIT_SUBJ_ROLE:
3379 		case AUDIT_SUBJ_TYPE:
3380 		case AUDIT_SUBJ_SEN:
3381 		case AUDIT_SUBJ_CLR:
3382 		case AUDIT_OBJ_USER:
3383 		case AUDIT_OBJ_ROLE:
3384 		case AUDIT_OBJ_TYPE:
3385 		case AUDIT_OBJ_LEV_LOW:
3386 		case AUDIT_OBJ_LEV_HIGH:
3387 			return 1;
3388 		}
3389 	}
3390 
3391 	return 0;
3392 }
3393 
3394 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3395 {
3396 	struct selinux_state *state = &selinux_state;
3397 	struct context *ctxt;
3398 	struct mls_level *level;
3399 	struct selinux_audit_rule *rule = vrule;
3400 	int match = 0;
3401 
3402 	if (unlikely(!rule)) {
3403 		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3404 		return -ENOENT;
3405 	}
3406 
3407 	read_lock(&state->ss->policy_rwlock);
3408 
3409 	if (rule->au_seqno < state->ss->latest_granting) {
3410 		match = -ESTALE;
3411 		goto out;
3412 	}
3413 
3414 	ctxt = sidtab_search(state->ss->sidtab, sid);
3415 	if (unlikely(!ctxt)) {
3416 		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3417 			  sid);
3418 		match = -ENOENT;
3419 		goto out;
3420 	}
3421 
3422 	/* a field/op pair that is not caught here will simply fall through
3423 	   without a match */
3424 	switch (field) {
3425 	case AUDIT_SUBJ_USER:
3426 	case AUDIT_OBJ_USER:
3427 		switch (op) {
3428 		case Audit_equal:
3429 			match = (ctxt->user == rule->au_ctxt.user);
3430 			break;
3431 		case Audit_not_equal:
3432 			match = (ctxt->user != rule->au_ctxt.user);
3433 			break;
3434 		}
3435 		break;
3436 	case AUDIT_SUBJ_ROLE:
3437 	case AUDIT_OBJ_ROLE:
3438 		switch (op) {
3439 		case Audit_equal:
3440 			match = (ctxt->role == rule->au_ctxt.role);
3441 			break;
3442 		case Audit_not_equal:
3443 			match = (ctxt->role != rule->au_ctxt.role);
3444 			break;
3445 		}
3446 		break;
3447 	case AUDIT_SUBJ_TYPE:
3448 	case AUDIT_OBJ_TYPE:
3449 		switch (op) {
3450 		case Audit_equal:
3451 			match = (ctxt->type == rule->au_ctxt.type);
3452 			break;
3453 		case Audit_not_equal:
3454 			match = (ctxt->type != rule->au_ctxt.type);
3455 			break;
3456 		}
3457 		break;
3458 	case AUDIT_SUBJ_SEN:
3459 	case AUDIT_SUBJ_CLR:
3460 	case AUDIT_OBJ_LEV_LOW:
3461 	case AUDIT_OBJ_LEV_HIGH:
3462 		level = ((field == AUDIT_SUBJ_SEN ||
3463 			  field == AUDIT_OBJ_LEV_LOW) ?
3464 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3465 		switch (op) {
3466 		case Audit_equal:
3467 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3468 					     level);
3469 			break;
3470 		case Audit_not_equal:
3471 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3472 					      level);
3473 			break;
3474 		case Audit_lt:
3475 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3476 					       level) &&
3477 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3478 					       level));
3479 			break;
3480 		case Audit_le:
3481 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3482 					      level);
3483 			break;
3484 		case Audit_gt:
3485 			match = (mls_level_dom(level,
3486 					      &rule->au_ctxt.range.level[0]) &&
3487 				 !mls_level_eq(level,
3488 					       &rule->au_ctxt.range.level[0]));
3489 			break;
3490 		case Audit_ge:
3491 			match = mls_level_dom(level,
3492 					      &rule->au_ctxt.range.level[0]);
3493 			break;
3494 		}
3495 	}
3496 
3497 out:
3498 	read_unlock(&state->ss->policy_rwlock);
3499 	return match;
3500 }
3501 
3502 static int (*aurule_callback)(void) = audit_update_lsm_rules;
3503 
3504 static int aurule_avc_callback(u32 event)
3505 {
3506 	int err = 0;
3507 
3508 	if (event == AVC_CALLBACK_RESET && aurule_callback)
3509 		err = aurule_callback();
3510 	return err;
3511 }
3512 
3513 static int __init aurule_init(void)
3514 {
3515 	int err;
3516 
3517 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3518 	if (err)
3519 		panic("avc_add_callback() failed, error %d\n", err);
3520 
3521 	return err;
3522 }
3523 __initcall(aurule_init);
3524 
3525 #ifdef CONFIG_NETLABEL
3526 /**
3527  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3528  * @secattr: the NetLabel packet security attributes
3529  * @sid: the SELinux SID
3530  *
3531  * Description:
3532  * Attempt to cache the context in @ctx, which was derived from the packet in
3533  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3534  * already been initialized.
3535  *
3536  */
3537 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3538 				      u32 sid)
3539 {
3540 	u32 *sid_cache;
3541 
3542 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3543 	if (sid_cache == NULL)
3544 		return;
3545 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3546 	if (secattr->cache == NULL) {
3547 		kfree(sid_cache);
3548 		return;
3549 	}
3550 
3551 	*sid_cache = sid;
3552 	secattr->cache->free = kfree;
3553 	secattr->cache->data = sid_cache;
3554 	secattr->flags |= NETLBL_SECATTR_CACHE;
3555 }
3556 
3557 /**
3558  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3559  * @secattr: the NetLabel packet security attributes
3560  * @sid: the SELinux SID
3561  *
3562  * Description:
3563  * Convert the given NetLabel security attributes in @secattr into a
3564  * SELinux SID.  If the @secattr field does not contain a full SELinux
3565  * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3566  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3567  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3568  * conversion for future lookups.  Returns zero on success, negative values on
3569  * failure.
3570  *
3571  */
3572 int security_netlbl_secattr_to_sid(struct selinux_state *state,
3573 				   struct netlbl_lsm_secattr *secattr,
3574 				   u32 *sid)
3575 {
3576 	struct policydb *policydb = &state->ss->policydb;
3577 	struct sidtab *sidtab = state->ss->sidtab;
3578 	int rc;
3579 	struct context *ctx;
3580 	struct context ctx_new;
3581 
3582 	if (!state->initialized) {
3583 		*sid = SECSID_NULL;
3584 		return 0;
3585 	}
3586 
3587 	read_lock(&state->ss->policy_rwlock);
3588 
3589 	if (secattr->flags & NETLBL_SECATTR_CACHE)
3590 		*sid = *(u32 *)secattr->cache->data;
3591 	else if (secattr->flags & NETLBL_SECATTR_SECID)
3592 		*sid = secattr->attr.secid;
3593 	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3594 		rc = -EIDRM;
3595 		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3596 		if (ctx == NULL)
3597 			goto out;
3598 
3599 		context_init(&ctx_new);
3600 		ctx_new.user = ctx->user;
3601 		ctx_new.role = ctx->role;
3602 		ctx_new.type = ctx->type;
3603 		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3604 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3605 			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3606 			if (rc)
3607 				goto out;
3608 		}
3609 		rc = -EIDRM;
3610 		if (!mls_context_isvalid(policydb, &ctx_new))
3611 			goto out_free;
3612 
3613 		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3614 		if (rc)
3615 			goto out_free;
3616 
3617 		security_netlbl_cache_add(secattr, *sid);
3618 
3619 		ebitmap_destroy(&ctx_new.range.level[0].cat);
3620 	} else
3621 		*sid = SECSID_NULL;
3622 
3623 	read_unlock(&state->ss->policy_rwlock);
3624 	return 0;
3625 out_free:
3626 	ebitmap_destroy(&ctx_new.range.level[0].cat);
3627 out:
3628 	read_unlock(&state->ss->policy_rwlock);
3629 	return rc;
3630 }
3631 
3632 /**
3633  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3634  * @sid: the SELinux SID
3635  * @secattr: the NetLabel packet security attributes
3636  *
3637  * Description:
3638  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3639  * Returns zero on success, negative values on failure.
3640  *
3641  */
3642 int security_netlbl_sid_to_secattr(struct selinux_state *state,
3643 				   u32 sid, struct netlbl_lsm_secattr *secattr)
3644 {
3645 	struct policydb *policydb = &state->ss->policydb;
3646 	int rc;
3647 	struct context *ctx;
3648 
3649 	if (!state->initialized)
3650 		return 0;
3651 
3652 	read_lock(&state->ss->policy_rwlock);
3653 
3654 	rc = -ENOENT;
3655 	ctx = sidtab_search(state->ss->sidtab, sid);
3656 	if (ctx == NULL)
3657 		goto out;
3658 
3659 	rc = -ENOMEM;
3660 	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3661 				  GFP_ATOMIC);
3662 	if (secattr->domain == NULL)
3663 		goto out;
3664 
3665 	secattr->attr.secid = sid;
3666 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3667 	mls_export_netlbl_lvl(policydb, ctx, secattr);
3668 	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3669 out:
3670 	read_unlock(&state->ss->policy_rwlock);
3671 	return rc;
3672 }
3673 #endif /* CONFIG_NETLABEL */
3674 
3675 /**
3676  * security_read_policy - read the policy.
3677  * @data: binary policy data
3678  * @len: length of data in bytes
3679  *
3680  */
3681 int security_read_policy(struct selinux_state *state,
3682 			 void **data, size_t *len)
3683 {
3684 	struct policydb *policydb = &state->ss->policydb;
3685 	int rc;
3686 	struct policy_file fp;
3687 
3688 	if (!state->initialized)
3689 		return -EINVAL;
3690 
3691 	*len = security_policydb_len(state);
3692 
3693 	*data = vmalloc_user(*len);
3694 	if (!*data)
3695 		return -ENOMEM;
3696 
3697 	fp.data = *data;
3698 	fp.len = *len;
3699 
3700 	read_lock(&state->ss->policy_rwlock);
3701 	rc = policydb_write(policydb, &fp);
3702 	read_unlock(&state->ss->policy_rwlock);
3703 
3704 	if (rc)
3705 		return rc;
3706 
3707 	*len = (unsigned long)fp.data - (unsigned long)*data;
3708 	return 0;
3709 
3710 }
3711