xref: /openbmc/linux/security/selinux/ss/policydb.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * Implementation of the policy database.
3  *
4  * Author : Stephen Smalley, <sds@epoch.ncsc.mil>
5  */
6 
7 /*
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *	Support for enhanced MLS infrastructure.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *	Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul.moore@hp.com>
17  *
18  *      Added support for the policy capability bitmap
19  *
20  * Copyright (C) 2007 Hewlett-Packard Development Company, L.P.
21  * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
22  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
23  *	This program is free software; you can redistribute it and/or modify
24  *	it under the terms of the GNU General Public License as published by
25  *	the Free Software Foundation, version 2.
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/string.h>
32 #include <linux/errno.h>
33 #include <linux/audit.h>
34 #include <linux/flex_array.h>
35 #include "security.h"
36 
37 #include "policydb.h"
38 #include "conditional.h"
39 #include "mls.h"
40 #include "services.h"
41 
42 #define _DEBUG_HASHES
43 
44 #ifdef DEBUG_HASHES
45 static const char *symtab_name[SYM_NUM] = {
46 	"common prefixes",
47 	"classes",
48 	"roles",
49 	"types",
50 	"users",
51 	"bools",
52 	"levels",
53 	"categories",
54 };
55 #endif
56 
57 static unsigned int symtab_sizes[SYM_NUM] = {
58 	2,
59 	32,
60 	16,
61 	512,
62 	128,
63 	16,
64 	16,
65 	16,
66 };
67 
68 struct policydb_compat_info {
69 	int version;
70 	int sym_num;
71 	int ocon_num;
72 };
73 
74 /* These need to be updated if SYM_NUM or OCON_NUM changes */
75 static struct policydb_compat_info policydb_compat[] = {
76 	{
77 		.version	= POLICYDB_VERSION_BASE,
78 		.sym_num	= SYM_NUM - 3,
79 		.ocon_num	= OCON_NUM - 1,
80 	},
81 	{
82 		.version	= POLICYDB_VERSION_BOOL,
83 		.sym_num	= SYM_NUM - 2,
84 		.ocon_num	= OCON_NUM - 1,
85 	},
86 	{
87 		.version	= POLICYDB_VERSION_IPV6,
88 		.sym_num	= SYM_NUM - 2,
89 		.ocon_num	= OCON_NUM,
90 	},
91 	{
92 		.version	= POLICYDB_VERSION_NLCLASS,
93 		.sym_num	= SYM_NUM - 2,
94 		.ocon_num	= OCON_NUM,
95 	},
96 	{
97 		.version	= POLICYDB_VERSION_MLS,
98 		.sym_num	= SYM_NUM,
99 		.ocon_num	= OCON_NUM,
100 	},
101 	{
102 		.version	= POLICYDB_VERSION_AVTAB,
103 		.sym_num	= SYM_NUM,
104 		.ocon_num	= OCON_NUM,
105 	},
106 	{
107 		.version	= POLICYDB_VERSION_RANGETRANS,
108 		.sym_num	= SYM_NUM,
109 		.ocon_num	= OCON_NUM,
110 	},
111 	{
112 		.version	= POLICYDB_VERSION_POLCAP,
113 		.sym_num	= SYM_NUM,
114 		.ocon_num	= OCON_NUM,
115 	},
116 	{
117 		.version	= POLICYDB_VERSION_PERMISSIVE,
118 		.sym_num	= SYM_NUM,
119 		.ocon_num	= OCON_NUM,
120 	},
121 	{
122 		.version	= POLICYDB_VERSION_BOUNDARY,
123 		.sym_num	= SYM_NUM,
124 		.ocon_num	= OCON_NUM,
125 	},
126 };
127 
128 static struct policydb_compat_info *policydb_lookup_compat(int version)
129 {
130 	int i;
131 	struct policydb_compat_info *info = NULL;
132 
133 	for (i = 0; i < ARRAY_SIZE(policydb_compat); i++) {
134 		if (policydb_compat[i].version == version) {
135 			info = &policydb_compat[i];
136 			break;
137 		}
138 	}
139 	return info;
140 }
141 
142 /*
143  * Initialize the role table.
144  */
145 static int roles_init(struct policydb *p)
146 {
147 	char *key = NULL;
148 	int rc;
149 	struct role_datum *role;
150 
151 	rc = -ENOMEM;
152 	role = kzalloc(sizeof(*role), GFP_KERNEL);
153 	if (!role)
154 		goto out;
155 
156 	rc = -EINVAL;
157 	role->value = ++p->p_roles.nprim;
158 	if (role->value != OBJECT_R_VAL)
159 		goto out;
160 
161 	rc = -ENOMEM;
162 	key = kstrdup(OBJECT_R, GFP_KERNEL);
163 	if (!key)
164 		goto out;
165 
166 	rc = hashtab_insert(p->p_roles.table, key, role);
167 	if (rc)
168 		goto out;
169 
170 	return 0;
171 out:
172 	kfree(key);
173 	kfree(role);
174 	return rc;
175 }
176 
177 static u32 rangetr_hash(struct hashtab *h, const void *k)
178 {
179 	const struct range_trans *key = k;
180 	return (key->source_type + (key->target_type << 3) +
181 		(key->target_class << 5)) & (h->size - 1);
182 }
183 
184 static int rangetr_cmp(struct hashtab *h, const void *k1, const void *k2)
185 {
186 	const struct range_trans *key1 = k1, *key2 = k2;
187 	int v;
188 
189 	v = key1->source_type - key2->source_type;
190 	if (v)
191 		return v;
192 
193 	v = key1->target_type - key2->target_type;
194 	if (v)
195 		return v;
196 
197 	v = key1->target_class - key2->target_class;
198 
199 	return v;
200 }
201 
202 /*
203  * Initialize a policy database structure.
204  */
205 static int policydb_init(struct policydb *p)
206 {
207 	int i, rc;
208 
209 	memset(p, 0, sizeof(*p));
210 
211 	for (i = 0; i < SYM_NUM; i++) {
212 		rc = symtab_init(&p->symtab[i], symtab_sizes[i]);
213 		if (rc)
214 			goto out;
215 	}
216 
217 	rc = avtab_init(&p->te_avtab);
218 	if (rc)
219 		goto out;
220 
221 	rc = roles_init(p);
222 	if (rc)
223 		goto out;
224 
225 	rc = cond_policydb_init(p);
226 	if (rc)
227 		goto out;
228 
229 	p->range_tr = hashtab_create(rangetr_hash, rangetr_cmp, 256);
230 	if (!p->range_tr)
231 		goto out;
232 
233 	ebitmap_init(&p->policycaps);
234 	ebitmap_init(&p->permissive_map);
235 
236 	return 0;
237 out:
238 	for (i = 0; i < SYM_NUM; i++)
239 		hashtab_destroy(p->symtab[i].table);
240 	return rc;
241 }
242 
243 /*
244  * The following *_index functions are used to
245  * define the val_to_name and val_to_struct arrays
246  * in a policy database structure.  The val_to_name
247  * arrays are used when converting security context
248  * structures into string representations.  The
249  * val_to_struct arrays are used when the attributes
250  * of a class, role, or user are needed.
251  */
252 
253 static int common_index(void *key, void *datum, void *datap)
254 {
255 	struct policydb *p;
256 	struct common_datum *comdatum;
257 	struct flex_array *fa;
258 
259 	comdatum = datum;
260 	p = datap;
261 	if (!comdatum->value || comdatum->value > p->p_commons.nprim)
262 		return -EINVAL;
263 
264 	fa = p->sym_val_to_name[SYM_COMMONS];
265 	if (flex_array_put_ptr(fa, comdatum->value - 1, key,
266 			       GFP_KERNEL | __GFP_ZERO))
267 		BUG();
268 	return 0;
269 }
270 
271 static int class_index(void *key, void *datum, void *datap)
272 {
273 	struct policydb *p;
274 	struct class_datum *cladatum;
275 	struct flex_array *fa;
276 
277 	cladatum = datum;
278 	p = datap;
279 	if (!cladatum->value || cladatum->value > p->p_classes.nprim)
280 		return -EINVAL;
281 	fa = p->sym_val_to_name[SYM_CLASSES];
282 	if (flex_array_put_ptr(fa, cladatum->value - 1, key,
283 			       GFP_KERNEL | __GFP_ZERO))
284 		BUG();
285 	p->class_val_to_struct[cladatum->value - 1] = cladatum;
286 	return 0;
287 }
288 
289 static int role_index(void *key, void *datum, void *datap)
290 {
291 	struct policydb *p;
292 	struct role_datum *role;
293 	struct flex_array *fa;
294 
295 	role = datum;
296 	p = datap;
297 	if (!role->value
298 	    || role->value > p->p_roles.nprim
299 	    || role->bounds > p->p_roles.nprim)
300 		return -EINVAL;
301 
302 	fa = p->sym_val_to_name[SYM_ROLES];
303 	if (flex_array_put_ptr(fa, role->value - 1, key,
304 			       GFP_KERNEL | __GFP_ZERO))
305 		BUG();
306 	p->role_val_to_struct[role->value - 1] = role;
307 	return 0;
308 }
309 
310 static int type_index(void *key, void *datum, void *datap)
311 {
312 	struct policydb *p;
313 	struct type_datum *typdatum;
314 	struct flex_array *fa;
315 
316 	typdatum = datum;
317 	p = datap;
318 
319 	if (typdatum->primary) {
320 		if (!typdatum->value
321 		    || typdatum->value > p->p_types.nprim
322 		    || typdatum->bounds > p->p_types.nprim)
323 			return -EINVAL;
324 		fa = p->sym_val_to_name[SYM_TYPES];
325 		if (flex_array_put_ptr(fa, typdatum->value - 1, key,
326 				       GFP_KERNEL | __GFP_ZERO))
327 			BUG();
328 
329 		fa = p->type_val_to_struct_array;
330 		if (flex_array_put_ptr(fa, typdatum->value - 1, typdatum,
331 				       GFP_KERNEL | __GFP_ZERO))
332 			BUG();
333 	}
334 
335 	return 0;
336 }
337 
338 static int user_index(void *key, void *datum, void *datap)
339 {
340 	struct policydb *p;
341 	struct user_datum *usrdatum;
342 	struct flex_array *fa;
343 
344 	usrdatum = datum;
345 	p = datap;
346 	if (!usrdatum->value
347 	    || usrdatum->value > p->p_users.nprim
348 	    || usrdatum->bounds > p->p_users.nprim)
349 		return -EINVAL;
350 
351 	fa = p->sym_val_to_name[SYM_USERS];
352 	if (flex_array_put_ptr(fa, usrdatum->value - 1, key,
353 			       GFP_KERNEL | __GFP_ZERO))
354 		BUG();
355 	p->user_val_to_struct[usrdatum->value - 1] = usrdatum;
356 	return 0;
357 }
358 
359 static int sens_index(void *key, void *datum, void *datap)
360 {
361 	struct policydb *p;
362 	struct level_datum *levdatum;
363 	struct flex_array *fa;
364 
365 	levdatum = datum;
366 	p = datap;
367 
368 	if (!levdatum->isalias) {
369 		if (!levdatum->level->sens ||
370 		    levdatum->level->sens > p->p_levels.nprim)
371 			return -EINVAL;
372 		fa = p->sym_val_to_name[SYM_LEVELS];
373 		if (flex_array_put_ptr(fa, levdatum->level->sens - 1, key,
374 				       GFP_KERNEL | __GFP_ZERO))
375 			BUG();
376 	}
377 
378 	return 0;
379 }
380 
381 static int cat_index(void *key, void *datum, void *datap)
382 {
383 	struct policydb *p;
384 	struct cat_datum *catdatum;
385 	struct flex_array *fa;
386 
387 	catdatum = datum;
388 	p = datap;
389 
390 	if (!catdatum->isalias) {
391 		if (!catdatum->value || catdatum->value > p->p_cats.nprim)
392 			return -EINVAL;
393 		fa = p->sym_val_to_name[SYM_CATS];
394 		if (flex_array_put_ptr(fa, catdatum->value - 1, key,
395 				       GFP_KERNEL | __GFP_ZERO))
396 			BUG();
397 	}
398 
399 	return 0;
400 }
401 
402 static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) =
403 {
404 	common_index,
405 	class_index,
406 	role_index,
407 	type_index,
408 	user_index,
409 	cond_index_bool,
410 	sens_index,
411 	cat_index,
412 };
413 
414 #ifdef DEBUG_HASHES
415 static void symtab_hash_eval(struct symtab *s)
416 {
417 	int i;
418 
419 	for (i = 0; i < SYM_NUM; i++) {
420 		struct hashtab *h = s[i].table;
421 		struct hashtab_info info;
422 
423 		hashtab_stat(h, &info);
424 		printk(KERN_DEBUG "SELinux: %s:  %d entries and %d/%d buckets used, "
425 		       "longest chain length %d\n", symtab_name[i], h->nel,
426 		       info.slots_used, h->size, info.max_chain_len);
427 	}
428 }
429 
430 static void rangetr_hash_eval(struct hashtab *h)
431 {
432 	struct hashtab_info info;
433 
434 	hashtab_stat(h, &info);
435 	printk(KERN_DEBUG "SELinux: rangetr:  %d entries and %d/%d buckets used, "
436 	       "longest chain length %d\n", h->nel,
437 	       info.slots_used, h->size, info.max_chain_len);
438 }
439 #else
440 static inline void rangetr_hash_eval(struct hashtab *h)
441 {
442 }
443 #endif
444 
445 /*
446  * Define the other val_to_name and val_to_struct arrays
447  * in a policy database structure.
448  *
449  * Caller must clean up on failure.
450  */
451 static int policydb_index(struct policydb *p)
452 {
453 	int i, rc;
454 
455 	printk(KERN_DEBUG "SELinux:  %d users, %d roles, %d types, %d bools",
456 	       p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim);
457 	if (p->mls_enabled)
458 		printk(", %d sens, %d cats", p->p_levels.nprim,
459 		       p->p_cats.nprim);
460 	printk("\n");
461 
462 	printk(KERN_DEBUG "SELinux:  %d classes, %d rules\n",
463 	       p->p_classes.nprim, p->te_avtab.nel);
464 
465 #ifdef DEBUG_HASHES
466 	avtab_hash_eval(&p->te_avtab, "rules");
467 	symtab_hash_eval(p->symtab);
468 #endif
469 
470 	rc = -ENOMEM;
471 	p->class_val_to_struct =
472 		kmalloc(p->p_classes.nprim * sizeof(*(p->class_val_to_struct)),
473 			GFP_KERNEL);
474 	if (!p->class_val_to_struct)
475 		goto out;
476 
477 	rc = -ENOMEM;
478 	p->role_val_to_struct =
479 		kmalloc(p->p_roles.nprim * sizeof(*(p->role_val_to_struct)),
480 			GFP_KERNEL);
481 	if (!p->role_val_to_struct)
482 		goto out;
483 
484 	rc = -ENOMEM;
485 	p->user_val_to_struct =
486 		kmalloc(p->p_users.nprim * sizeof(*(p->user_val_to_struct)),
487 			GFP_KERNEL);
488 	if (!p->user_val_to_struct)
489 		goto out;
490 
491 	/* Yes, I want the sizeof the pointer, not the structure */
492 	rc = -ENOMEM;
493 	p->type_val_to_struct_array = flex_array_alloc(sizeof(struct type_datum *),
494 						       p->p_types.nprim,
495 						       GFP_KERNEL | __GFP_ZERO);
496 	if (!p->type_val_to_struct_array)
497 		goto out;
498 
499 	rc = flex_array_prealloc(p->type_val_to_struct_array, 0,
500 				 p->p_types.nprim - 1, GFP_KERNEL | __GFP_ZERO);
501 	if (rc)
502 		goto out;
503 
504 	rc = cond_init_bool_indexes(p);
505 	if (rc)
506 		goto out;
507 
508 	for (i = 0; i < SYM_NUM; i++) {
509 		rc = -ENOMEM;
510 		p->sym_val_to_name[i] = flex_array_alloc(sizeof(char *),
511 							 p->symtab[i].nprim,
512 							 GFP_KERNEL | __GFP_ZERO);
513 		if (!p->sym_val_to_name[i])
514 			goto out;
515 
516 		rc = flex_array_prealloc(p->sym_val_to_name[i],
517 					 0, p->symtab[i].nprim - 1,
518 					 GFP_KERNEL | __GFP_ZERO);
519 		if (rc)
520 			goto out;
521 
522 		rc = hashtab_map(p->symtab[i].table, index_f[i], p);
523 		if (rc)
524 			goto out;
525 	}
526 	rc = 0;
527 out:
528 	return rc;
529 }
530 
531 /*
532  * The following *_destroy functions are used to
533  * free any memory allocated for each kind of
534  * symbol data in the policy database.
535  */
536 
537 static int perm_destroy(void *key, void *datum, void *p)
538 {
539 	kfree(key);
540 	kfree(datum);
541 	return 0;
542 }
543 
544 static int common_destroy(void *key, void *datum, void *p)
545 {
546 	struct common_datum *comdatum;
547 
548 	kfree(key);
549 	if (datum) {
550 		comdatum = datum;
551 		hashtab_map(comdatum->permissions.table, perm_destroy, NULL);
552 		hashtab_destroy(comdatum->permissions.table);
553 	}
554 	kfree(datum);
555 	return 0;
556 }
557 
558 static int cls_destroy(void *key, void *datum, void *p)
559 {
560 	struct class_datum *cladatum;
561 	struct constraint_node *constraint, *ctemp;
562 	struct constraint_expr *e, *etmp;
563 
564 	kfree(key);
565 	if (datum) {
566 		cladatum = datum;
567 		hashtab_map(cladatum->permissions.table, perm_destroy, NULL);
568 		hashtab_destroy(cladatum->permissions.table);
569 		constraint = cladatum->constraints;
570 		while (constraint) {
571 			e = constraint->expr;
572 			while (e) {
573 				ebitmap_destroy(&e->names);
574 				etmp = e;
575 				e = e->next;
576 				kfree(etmp);
577 			}
578 			ctemp = constraint;
579 			constraint = constraint->next;
580 			kfree(ctemp);
581 		}
582 
583 		constraint = cladatum->validatetrans;
584 		while (constraint) {
585 			e = constraint->expr;
586 			while (e) {
587 				ebitmap_destroy(&e->names);
588 				etmp = e;
589 				e = e->next;
590 				kfree(etmp);
591 			}
592 			ctemp = constraint;
593 			constraint = constraint->next;
594 			kfree(ctemp);
595 		}
596 
597 		kfree(cladatum->comkey);
598 	}
599 	kfree(datum);
600 	return 0;
601 }
602 
603 static int role_destroy(void *key, void *datum, void *p)
604 {
605 	struct role_datum *role;
606 
607 	kfree(key);
608 	if (datum) {
609 		role = datum;
610 		ebitmap_destroy(&role->dominates);
611 		ebitmap_destroy(&role->types);
612 	}
613 	kfree(datum);
614 	return 0;
615 }
616 
617 static int type_destroy(void *key, void *datum, void *p)
618 {
619 	kfree(key);
620 	kfree(datum);
621 	return 0;
622 }
623 
624 static int user_destroy(void *key, void *datum, void *p)
625 {
626 	struct user_datum *usrdatum;
627 
628 	kfree(key);
629 	if (datum) {
630 		usrdatum = datum;
631 		ebitmap_destroy(&usrdatum->roles);
632 		ebitmap_destroy(&usrdatum->range.level[0].cat);
633 		ebitmap_destroy(&usrdatum->range.level[1].cat);
634 		ebitmap_destroy(&usrdatum->dfltlevel.cat);
635 	}
636 	kfree(datum);
637 	return 0;
638 }
639 
640 static int sens_destroy(void *key, void *datum, void *p)
641 {
642 	struct level_datum *levdatum;
643 
644 	kfree(key);
645 	if (datum) {
646 		levdatum = datum;
647 		ebitmap_destroy(&levdatum->level->cat);
648 		kfree(levdatum->level);
649 	}
650 	kfree(datum);
651 	return 0;
652 }
653 
654 static int cat_destroy(void *key, void *datum, void *p)
655 {
656 	kfree(key);
657 	kfree(datum);
658 	return 0;
659 }
660 
661 static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) =
662 {
663 	common_destroy,
664 	cls_destroy,
665 	role_destroy,
666 	type_destroy,
667 	user_destroy,
668 	cond_destroy_bool,
669 	sens_destroy,
670 	cat_destroy,
671 };
672 
673 static int range_tr_destroy(void *key, void *datum, void *p)
674 {
675 	struct mls_range *rt = datum;
676 	kfree(key);
677 	ebitmap_destroy(&rt->level[0].cat);
678 	ebitmap_destroy(&rt->level[1].cat);
679 	kfree(datum);
680 	cond_resched();
681 	return 0;
682 }
683 
684 static void ocontext_destroy(struct ocontext *c, int i)
685 {
686 	if (!c)
687 		return;
688 
689 	context_destroy(&c->context[0]);
690 	context_destroy(&c->context[1]);
691 	if (i == OCON_ISID || i == OCON_FS ||
692 	    i == OCON_NETIF || i == OCON_FSUSE)
693 		kfree(c->u.name);
694 	kfree(c);
695 }
696 
697 /*
698  * Free any memory allocated by a policy database structure.
699  */
700 void policydb_destroy(struct policydb *p)
701 {
702 	struct ocontext *c, *ctmp;
703 	struct genfs *g, *gtmp;
704 	int i;
705 	struct role_allow *ra, *lra = NULL;
706 	struct role_trans *tr, *ltr = NULL;
707 
708 	for (i = 0; i < SYM_NUM; i++) {
709 		cond_resched();
710 		hashtab_map(p->symtab[i].table, destroy_f[i], NULL);
711 		hashtab_destroy(p->symtab[i].table);
712 	}
713 
714 	for (i = 0; i < SYM_NUM; i++) {
715 		if (p->sym_val_to_name[i])
716 			flex_array_free(p->sym_val_to_name[i]);
717 	}
718 
719 	kfree(p->class_val_to_struct);
720 	kfree(p->role_val_to_struct);
721 	kfree(p->user_val_to_struct);
722 	if (p->type_val_to_struct_array)
723 		flex_array_free(p->type_val_to_struct_array);
724 
725 	avtab_destroy(&p->te_avtab);
726 
727 	for (i = 0; i < OCON_NUM; i++) {
728 		cond_resched();
729 		c = p->ocontexts[i];
730 		while (c) {
731 			ctmp = c;
732 			c = c->next;
733 			ocontext_destroy(ctmp, i);
734 		}
735 		p->ocontexts[i] = NULL;
736 	}
737 
738 	g = p->genfs;
739 	while (g) {
740 		cond_resched();
741 		kfree(g->fstype);
742 		c = g->head;
743 		while (c) {
744 			ctmp = c;
745 			c = c->next;
746 			ocontext_destroy(ctmp, OCON_FSUSE);
747 		}
748 		gtmp = g;
749 		g = g->next;
750 		kfree(gtmp);
751 	}
752 	p->genfs = NULL;
753 
754 	cond_policydb_destroy(p);
755 
756 	for (tr = p->role_tr; tr; tr = tr->next) {
757 		cond_resched();
758 		kfree(ltr);
759 		ltr = tr;
760 	}
761 	kfree(ltr);
762 
763 	for (ra = p->role_allow; ra; ra = ra->next) {
764 		cond_resched();
765 		kfree(lra);
766 		lra = ra;
767 	}
768 	kfree(lra);
769 
770 	hashtab_map(p->range_tr, range_tr_destroy, NULL);
771 	hashtab_destroy(p->range_tr);
772 
773 	if (p->type_attr_map_array) {
774 		for (i = 0; i < p->p_types.nprim; i++) {
775 			struct ebitmap *e;
776 
777 			e = flex_array_get(p->type_attr_map_array, i);
778 			if (!e)
779 				continue;
780 			ebitmap_destroy(e);
781 		}
782 		flex_array_free(p->type_attr_map_array);
783 	}
784 	ebitmap_destroy(&p->policycaps);
785 	ebitmap_destroy(&p->permissive_map);
786 
787 	return;
788 }
789 
790 /*
791  * Load the initial SIDs specified in a policy database
792  * structure into a SID table.
793  */
794 int policydb_load_isids(struct policydb *p, struct sidtab *s)
795 {
796 	struct ocontext *head, *c;
797 	int rc;
798 
799 	rc = sidtab_init(s);
800 	if (rc) {
801 		printk(KERN_ERR "SELinux:  out of memory on SID table init\n");
802 		goto out;
803 	}
804 
805 	head = p->ocontexts[OCON_ISID];
806 	for (c = head; c; c = c->next) {
807 		rc = -EINVAL;
808 		if (!c->context[0].user) {
809 			printk(KERN_ERR "SELinux:  SID %s was never defined.\n",
810 				c->u.name);
811 			goto out;
812 		}
813 
814 		rc = sidtab_insert(s, c->sid[0], &c->context[0]);
815 		if (rc) {
816 			printk(KERN_ERR "SELinux:  unable to load initial SID %s.\n",
817 				c->u.name);
818 			goto out;
819 		}
820 	}
821 	rc = 0;
822 out:
823 	return rc;
824 }
825 
826 int policydb_class_isvalid(struct policydb *p, unsigned int class)
827 {
828 	if (!class || class > p->p_classes.nprim)
829 		return 0;
830 	return 1;
831 }
832 
833 int policydb_role_isvalid(struct policydb *p, unsigned int role)
834 {
835 	if (!role || role > p->p_roles.nprim)
836 		return 0;
837 	return 1;
838 }
839 
840 int policydb_type_isvalid(struct policydb *p, unsigned int type)
841 {
842 	if (!type || type > p->p_types.nprim)
843 		return 0;
844 	return 1;
845 }
846 
847 /*
848  * Return 1 if the fields in the security context
849  * structure `c' are valid.  Return 0 otherwise.
850  */
851 int policydb_context_isvalid(struct policydb *p, struct context *c)
852 {
853 	struct role_datum *role;
854 	struct user_datum *usrdatum;
855 
856 	if (!c->role || c->role > p->p_roles.nprim)
857 		return 0;
858 
859 	if (!c->user || c->user > p->p_users.nprim)
860 		return 0;
861 
862 	if (!c->type || c->type > p->p_types.nprim)
863 		return 0;
864 
865 	if (c->role != OBJECT_R_VAL) {
866 		/*
867 		 * Role must be authorized for the type.
868 		 */
869 		role = p->role_val_to_struct[c->role - 1];
870 		if (!ebitmap_get_bit(&role->types, c->type - 1))
871 			/* role may not be associated with type */
872 			return 0;
873 
874 		/*
875 		 * User must be authorized for the role.
876 		 */
877 		usrdatum = p->user_val_to_struct[c->user - 1];
878 		if (!usrdatum)
879 			return 0;
880 
881 		if (!ebitmap_get_bit(&usrdatum->roles, c->role - 1))
882 			/* user may not be associated with role */
883 			return 0;
884 	}
885 
886 	if (!mls_context_isvalid(p, c))
887 		return 0;
888 
889 	return 1;
890 }
891 
892 /*
893  * Read a MLS range structure from a policydb binary
894  * representation file.
895  */
896 static int mls_read_range_helper(struct mls_range *r, void *fp)
897 {
898 	__le32 buf[2];
899 	u32 items;
900 	int rc;
901 
902 	rc = next_entry(buf, fp, sizeof(u32));
903 	if (rc)
904 		goto out;
905 
906 	rc = -EINVAL;
907 	items = le32_to_cpu(buf[0]);
908 	if (items > ARRAY_SIZE(buf)) {
909 		printk(KERN_ERR "SELinux: mls:  range overflow\n");
910 		goto out;
911 	}
912 
913 	rc = next_entry(buf, fp, sizeof(u32) * items);
914 	if (rc) {
915 		printk(KERN_ERR "SELinux: mls:  truncated range\n");
916 		goto out;
917 	}
918 
919 	r->level[0].sens = le32_to_cpu(buf[0]);
920 	if (items > 1)
921 		r->level[1].sens = le32_to_cpu(buf[1]);
922 	else
923 		r->level[1].sens = r->level[0].sens;
924 
925 	rc = ebitmap_read(&r->level[0].cat, fp);
926 	if (rc) {
927 		printk(KERN_ERR "SELinux: mls:  error reading low categories\n");
928 		goto out;
929 	}
930 	if (items > 1) {
931 		rc = ebitmap_read(&r->level[1].cat, fp);
932 		if (rc) {
933 			printk(KERN_ERR "SELinux: mls:  error reading high categories\n");
934 			goto bad_high;
935 		}
936 	} else {
937 		rc = ebitmap_cpy(&r->level[1].cat, &r->level[0].cat);
938 		if (rc) {
939 			printk(KERN_ERR "SELinux: mls:  out of memory\n");
940 			goto bad_high;
941 		}
942 	}
943 
944 	return 0;
945 bad_high:
946 	ebitmap_destroy(&r->level[0].cat);
947 out:
948 	return rc;
949 }
950 
951 /*
952  * Read and validate a security context structure
953  * from a policydb binary representation file.
954  */
955 static int context_read_and_validate(struct context *c,
956 				     struct policydb *p,
957 				     void *fp)
958 {
959 	__le32 buf[3];
960 	int rc;
961 
962 	rc = next_entry(buf, fp, sizeof buf);
963 	if (rc) {
964 		printk(KERN_ERR "SELinux: context truncated\n");
965 		goto out;
966 	}
967 	c->user = le32_to_cpu(buf[0]);
968 	c->role = le32_to_cpu(buf[1]);
969 	c->type = le32_to_cpu(buf[2]);
970 	if (p->policyvers >= POLICYDB_VERSION_MLS) {
971 		rc = mls_read_range_helper(&c->range, fp);
972 		if (rc) {
973 			printk(KERN_ERR "SELinux: error reading MLS range of context\n");
974 			goto out;
975 		}
976 	}
977 
978 	rc = -EINVAL;
979 	if (!policydb_context_isvalid(p, c)) {
980 		printk(KERN_ERR "SELinux:  invalid security context\n");
981 		context_destroy(c);
982 		goto out;
983 	}
984 	rc = 0;
985 out:
986 	return rc;
987 }
988 
989 /*
990  * The following *_read functions are used to
991  * read the symbol data from a policy database
992  * binary representation file.
993  */
994 
995 static int perm_read(struct policydb *p, struct hashtab *h, void *fp)
996 {
997 	char *key = NULL;
998 	struct perm_datum *perdatum;
999 	int rc;
1000 	__le32 buf[2];
1001 	u32 len;
1002 
1003 	rc = -ENOMEM;
1004 	perdatum = kzalloc(sizeof(*perdatum), GFP_KERNEL);
1005 	if (!perdatum)
1006 		goto bad;
1007 
1008 	rc = next_entry(buf, fp, sizeof buf);
1009 	if (rc)
1010 		goto bad;
1011 
1012 	len = le32_to_cpu(buf[0]);
1013 	perdatum->value = le32_to_cpu(buf[1]);
1014 
1015 	rc = -ENOMEM;
1016 	key = kmalloc(len + 1, GFP_KERNEL);
1017 	if (!key)
1018 		goto bad;
1019 
1020 	rc = next_entry(key, fp, len);
1021 	if (rc)
1022 		goto bad;
1023 	key[len] = '\0';
1024 
1025 	rc = hashtab_insert(h, key, perdatum);
1026 	if (rc)
1027 		goto bad;
1028 
1029 	return 0;
1030 bad:
1031 	perm_destroy(key, perdatum, NULL);
1032 	return rc;
1033 }
1034 
1035 static int common_read(struct policydb *p, struct hashtab *h, void *fp)
1036 {
1037 	char *key = NULL;
1038 	struct common_datum *comdatum;
1039 	__le32 buf[4];
1040 	u32 len, nel;
1041 	int i, rc;
1042 
1043 	rc = -ENOMEM;
1044 	comdatum = kzalloc(sizeof(*comdatum), GFP_KERNEL);
1045 	if (!comdatum)
1046 		goto bad;
1047 
1048 	rc = next_entry(buf, fp, sizeof buf);
1049 	if (rc)
1050 		goto bad;
1051 
1052 	len = le32_to_cpu(buf[0]);
1053 	comdatum->value = le32_to_cpu(buf[1]);
1054 
1055 	rc = symtab_init(&comdatum->permissions, PERM_SYMTAB_SIZE);
1056 	if (rc)
1057 		goto bad;
1058 	comdatum->permissions.nprim = le32_to_cpu(buf[2]);
1059 	nel = le32_to_cpu(buf[3]);
1060 
1061 	rc = -ENOMEM;
1062 	key = kmalloc(len + 1, GFP_KERNEL);
1063 	if (!key)
1064 		goto bad;
1065 
1066 	rc = next_entry(key, fp, len);
1067 	if (rc)
1068 		goto bad;
1069 	key[len] = '\0';
1070 
1071 	for (i = 0; i < nel; i++) {
1072 		rc = perm_read(p, comdatum->permissions.table, fp);
1073 		if (rc)
1074 			goto bad;
1075 	}
1076 
1077 	rc = hashtab_insert(h, key, comdatum);
1078 	if (rc)
1079 		goto bad;
1080 	return 0;
1081 bad:
1082 	common_destroy(key, comdatum, NULL);
1083 	return rc;
1084 }
1085 
1086 static int read_cons_helper(struct constraint_node **nodep, int ncons,
1087 			    int allowxtarget, void *fp)
1088 {
1089 	struct constraint_node *c, *lc;
1090 	struct constraint_expr *e, *le;
1091 	__le32 buf[3];
1092 	u32 nexpr;
1093 	int rc, i, j, depth;
1094 
1095 	lc = NULL;
1096 	for (i = 0; i < ncons; i++) {
1097 		c = kzalloc(sizeof(*c), GFP_KERNEL);
1098 		if (!c)
1099 			return -ENOMEM;
1100 
1101 		if (lc)
1102 			lc->next = c;
1103 		else
1104 			*nodep = c;
1105 
1106 		rc = next_entry(buf, fp, (sizeof(u32) * 2));
1107 		if (rc)
1108 			return rc;
1109 		c->permissions = le32_to_cpu(buf[0]);
1110 		nexpr = le32_to_cpu(buf[1]);
1111 		le = NULL;
1112 		depth = -1;
1113 		for (j = 0; j < nexpr; j++) {
1114 			e = kzalloc(sizeof(*e), GFP_KERNEL);
1115 			if (!e)
1116 				return -ENOMEM;
1117 
1118 			if (le)
1119 				le->next = e;
1120 			else
1121 				c->expr = e;
1122 
1123 			rc = next_entry(buf, fp, (sizeof(u32) * 3));
1124 			if (rc)
1125 				return rc;
1126 			e->expr_type = le32_to_cpu(buf[0]);
1127 			e->attr = le32_to_cpu(buf[1]);
1128 			e->op = le32_to_cpu(buf[2]);
1129 
1130 			switch (e->expr_type) {
1131 			case CEXPR_NOT:
1132 				if (depth < 0)
1133 					return -EINVAL;
1134 				break;
1135 			case CEXPR_AND:
1136 			case CEXPR_OR:
1137 				if (depth < 1)
1138 					return -EINVAL;
1139 				depth--;
1140 				break;
1141 			case CEXPR_ATTR:
1142 				if (depth == (CEXPR_MAXDEPTH - 1))
1143 					return -EINVAL;
1144 				depth++;
1145 				break;
1146 			case CEXPR_NAMES:
1147 				if (!allowxtarget && (e->attr & CEXPR_XTARGET))
1148 					return -EINVAL;
1149 				if (depth == (CEXPR_MAXDEPTH - 1))
1150 					return -EINVAL;
1151 				depth++;
1152 				rc = ebitmap_read(&e->names, fp);
1153 				if (rc)
1154 					return rc;
1155 				break;
1156 			default:
1157 				return -EINVAL;
1158 			}
1159 			le = e;
1160 		}
1161 		if (depth != 0)
1162 			return -EINVAL;
1163 		lc = c;
1164 	}
1165 
1166 	return 0;
1167 }
1168 
1169 static int class_read(struct policydb *p, struct hashtab *h, void *fp)
1170 {
1171 	char *key = NULL;
1172 	struct class_datum *cladatum;
1173 	__le32 buf[6];
1174 	u32 len, len2, ncons, nel;
1175 	int i, rc;
1176 
1177 	rc = -ENOMEM;
1178 	cladatum = kzalloc(sizeof(*cladatum), GFP_KERNEL);
1179 	if (!cladatum)
1180 		goto bad;
1181 
1182 	rc = next_entry(buf, fp, sizeof(u32)*6);
1183 	if (rc)
1184 		goto bad;
1185 
1186 	len = le32_to_cpu(buf[0]);
1187 	len2 = le32_to_cpu(buf[1]);
1188 	cladatum->value = le32_to_cpu(buf[2]);
1189 
1190 	rc = symtab_init(&cladatum->permissions, PERM_SYMTAB_SIZE);
1191 	if (rc)
1192 		goto bad;
1193 	cladatum->permissions.nprim = le32_to_cpu(buf[3]);
1194 	nel = le32_to_cpu(buf[4]);
1195 
1196 	ncons = le32_to_cpu(buf[5]);
1197 
1198 	rc = -ENOMEM;
1199 	key = kmalloc(len + 1, GFP_KERNEL);
1200 	if (!key)
1201 		goto bad;
1202 
1203 	rc = next_entry(key, fp, len);
1204 	if (rc)
1205 		goto bad;
1206 	key[len] = '\0';
1207 
1208 	if (len2) {
1209 		rc = -ENOMEM;
1210 		cladatum->comkey = kmalloc(len2 + 1, GFP_KERNEL);
1211 		if (!cladatum->comkey)
1212 			goto bad;
1213 		rc = next_entry(cladatum->comkey, fp, len2);
1214 		if (rc)
1215 			goto bad;
1216 		cladatum->comkey[len2] = '\0';
1217 
1218 		rc = -EINVAL;
1219 		cladatum->comdatum = hashtab_search(p->p_commons.table, cladatum->comkey);
1220 		if (!cladatum->comdatum) {
1221 			printk(KERN_ERR "SELinux:  unknown common %s\n", cladatum->comkey);
1222 			goto bad;
1223 		}
1224 	}
1225 	for (i = 0; i < nel; i++) {
1226 		rc = perm_read(p, cladatum->permissions.table, fp);
1227 		if (rc)
1228 			goto bad;
1229 	}
1230 
1231 	rc = read_cons_helper(&cladatum->constraints, ncons, 0, fp);
1232 	if (rc)
1233 		goto bad;
1234 
1235 	if (p->policyvers >= POLICYDB_VERSION_VALIDATETRANS) {
1236 		/* grab the validatetrans rules */
1237 		rc = next_entry(buf, fp, sizeof(u32));
1238 		if (rc)
1239 			goto bad;
1240 		ncons = le32_to_cpu(buf[0]);
1241 		rc = read_cons_helper(&cladatum->validatetrans, ncons, 1, fp);
1242 		if (rc)
1243 			goto bad;
1244 	}
1245 
1246 	rc = hashtab_insert(h, key, cladatum);
1247 	if (rc)
1248 		goto bad;
1249 
1250 	return 0;
1251 bad:
1252 	cls_destroy(key, cladatum, NULL);
1253 	return rc;
1254 }
1255 
1256 static int role_read(struct policydb *p, struct hashtab *h, void *fp)
1257 {
1258 	char *key = NULL;
1259 	struct role_datum *role;
1260 	int rc, to_read = 2;
1261 	__le32 buf[3];
1262 	u32 len;
1263 
1264 	rc = -ENOMEM;
1265 	role = kzalloc(sizeof(*role), GFP_KERNEL);
1266 	if (!role)
1267 		goto bad;
1268 
1269 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1270 		to_read = 3;
1271 
1272 	rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
1273 	if (rc)
1274 		goto bad;
1275 
1276 	len = le32_to_cpu(buf[0]);
1277 	role->value = le32_to_cpu(buf[1]);
1278 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1279 		role->bounds = le32_to_cpu(buf[2]);
1280 
1281 	rc = -ENOMEM;
1282 	key = kmalloc(len + 1, GFP_KERNEL);
1283 	if (!key)
1284 		goto bad;
1285 
1286 	rc = next_entry(key, fp, len);
1287 	if (rc)
1288 		goto bad;
1289 	key[len] = '\0';
1290 
1291 	rc = ebitmap_read(&role->dominates, fp);
1292 	if (rc)
1293 		goto bad;
1294 
1295 	rc = ebitmap_read(&role->types, fp);
1296 	if (rc)
1297 		goto bad;
1298 
1299 	if (strcmp(key, OBJECT_R) == 0) {
1300 		rc = -EINVAL;
1301 		if (role->value != OBJECT_R_VAL) {
1302 			printk(KERN_ERR "SELinux: Role %s has wrong value %d\n",
1303 			       OBJECT_R, role->value);
1304 			goto bad;
1305 		}
1306 		rc = 0;
1307 		goto bad;
1308 	}
1309 
1310 	rc = hashtab_insert(h, key, role);
1311 	if (rc)
1312 		goto bad;
1313 	return 0;
1314 bad:
1315 	role_destroy(key, role, NULL);
1316 	return rc;
1317 }
1318 
1319 static int type_read(struct policydb *p, struct hashtab *h, void *fp)
1320 {
1321 	char *key = NULL;
1322 	struct type_datum *typdatum;
1323 	int rc, to_read = 3;
1324 	__le32 buf[4];
1325 	u32 len;
1326 
1327 	rc = -ENOMEM;
1328 	typdatum = kzalloc(sizeof(*typdatum), GFP_KERNEL);
1329 	if (!typdatum)
1330 		goto bad;
1331 
1332 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1333 		to_read = 4;
1334 
1335 	rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
1336 	if (rc)
1337 		goto bad;
1338 
1339 	len = le32_to_cpu(buf[0]);
1340 	typdatum->value = le32_to_cpu(buf[1]);
1341 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) {
1342 		u32 prop = le32_to_cpu(buf[2]);
1343 
1344 		if (prop & TYPEDATUM_PROPERTY_PRIMARY)
1345 			typdatum->primary = 1;
1346 		if (prop & TYPEDATUM_PROPERTY_ATTRIBUTE)
1347 			typdatum->attribute = 1;
1348 
1349 		typdatum->bounds = le32_to_cpu(buf[3]);
1350 	} else {
1351 		typdatum->primary = le32_to_cpu(buf[2]);
1352 	}
1353 
1354 	rc = -ENOMEM;
1355 	key = kmalloc(len + 1, GFP_KERNEL);
1356 	if (!key)
1357 		goto bad;
1358 	rc = next_entry(key, fp, len);
1359 	if (rc)
1360 		goto bad;
1361 	key[len] = '\0';
1362 
1363 	rc = hashtab_insert(h, key, typdatum);
1364 	if (rc)
1365 		goto bad;
1366 	return 0;
1367 bad:
1368 	type_destroy(key, typdatum, NULL);
1369 	return rc;
1370 }
1371 
1372 
1373 /*
1374  * Read a MLS level structure from a policydb binary
1375  * representation file.
1376  */
1377 static int mls_read_level(struct mls_level *lp, void *fp)
1378 {
1379 	__le32 buf[1];
1380 	int rc;
1381 
1382 	memset(lp, 0, sizeof(*lp));
1383 
1384 	rc = next_entry(buf, fp, sizeof buf);
1385 	if (rc) {
1386 		printk(KERN_ERR "SELinux: mls: truncated level\n");
1387 		return rc;
1388 	}
1389 	lp->sens = le32_to_cpu(buf[0]);
1390 
1391 	rc = ebitmap_read(&lp->cat, fp);
1392 	if (rc) {
1393 		printk(KERN_ERR "SELinux: mls:  error reading level categories\n");
1394 		return rc;
1395 	}
1396 	return 0;
1397 }
1398 
1399 static int user_read(struct policydb *p, struct hashtab *h, void *fp)
1400 {
1401 	char *key = NULL;
1402 	struct user_datum *usrdatum;
1403 	int rc, to_read = 2;
1404 	__le32 buf[3];
1405 	u32 len;
1406 
1407 	rc = -ENOMEM;
1408 	usrdatum = kzalloc(sizeof(*usrdatum), GFP_KERNEL);
1409 	if (!usrdatum)
1410 		goto bad;
1411 
1412 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1413 		to_read = 3;
1414 
1415 	rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
1416 	if (rc)
1417 		goto bad;
1418 
1419 	len = le32_to_cpu(buf[0]);
1420 	usrdatum->value = le32_to_cpu(buf[1]);
1421 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1422 		usrdatum->bounds = le32_to_cpu(buf[2]);
1423 
1424 	rc = -ENOMEM;
1425 	key = kmalloc(len + 1, GFP_KERNEL);
1426 	if (!key)
1427 		goto bad;
1428 	rc = next_entry(key, fp, len);
1429 	if (rc)
1430 		goto bad;
1431 	key[len] = '\0';
1432 
1433 	rc = ebitmap_read(&usrdatum->roles, fp);
1434 	if (rc)
1435 		goto bad;
1436 
1437 	if (p->policyvers >= POLICYDB_VERSION_MLS) {
1438 		rc = mls_read_range_helper(&usrdatum->range, fp);
1439 		if (rc)
1440 			goto bad;
1441 		rc = mls_read_level(&usrdatum->dfltlevel, fp);
1442 		if (rc)
1443 			goto bad;
1444 	}
1445 
1446 	rc = hashtab_insert(h, key, usrdatum);
1447 	if (rc)
1448 		goto bad;
1449 	return 0;
1450 bad:
1451 	user_destroy(key, usrdatum, NULL);
1452 	return rc;
1453 }
1454 
1455 static int sens_read(struct policydb *p, struct hashtab *h, void *fp)
1456 {
1457 	char *key = NULL;
1458 	struct level_datum *levdatum;
1459 	int rc;
1460 	__le32 buf[2];
1461 	u32 len;
1462 
1463 	rc = -ENOMEM;
1464 	levdatum = kzalloc(sizeof(*levdatum), GFP_ATOMIC);
1465 	if (!levdatum)
1466 		goto bad;
1467 
1468 	rc = next_entry(buf, fp, sizeof buf);
1469 	if (rc)
1470 		goto bad;
1471 
1472 	len = le32_to_cpu(buf[0]);
1473 	levdatum->isalias = le32_to_cpu(buf[1]);
1474 
1475 	rc = -ENOMEM;
1476 	key = kmalloc(len + 1, GFP_ATOMIC);
1477 	if (!key)
1478 		goto bad;
1479 	rc = next_entry(key, fp, len);
1480 	if (rc)
1481 		goto bad;
1482 	key[len] = '\0';
1483 
1484 	rc = -ENOMEM;
1485 	levdatum->level = kmalloc(sizeof(struct mls_level), GFP_ATOMIC);
1486 	if (!levdatum->level)
1487 		goto bad;
1488 
1489 	rc = mls_read_level(levdatum->level, fp);
1490 	if (rc)
1491 		goto bad;
1492 
1493 	rc = hashtab_insert(h, key, levdatum);
1494 	if (rc)
1495 		goto bad;
1496 	return 0;
1497 bad:
1498 	sens_destroy(key, levdatum, NULL);
1499 	return rc;
1500 }
1501 
1502 static int cat_read(struct policydb *p, struct hashtab *h, void *fp)
1503 {
1504 	char *key = NULL;
1505 	struct cat_datum *catdatum;
1506 	int rc;
1507 	__le32 buf[3];
1508 	u32 len;
1509 
1510 	rc = -ENOMEM;
1511 	catdatum = kzalloc(sizeof(*catdatum), GFP_ATOMIC);
1512 	if (!catdatum)
1513 		goto bad;
1514 
1515 	rc = next_entry(buf, fp, sizeof buf);
1516 	if (rc)
1517 		goto bad;
1518 
1519 	len = le32_to_cpu(buf[0]);
1520 	catdatum->value = le32_to_cpu(buf[1]);
1521 	catdatum->isalias = le32_to_cpu(buf[2]);
1522 
1523 	rc = -ENOMEM;
1524 	key = kmalloc(len + 1, GFP_ATOMIC);
1525 	if (!key)
1526 		goto bad;
1527 	rc = next_entry(key, fp, len);
1528 	if (rc)
1529 		goto bad;
1530 	key[len] = '\0';
1531 
1532 	rc = hashtab_insert(h, key, catdatum);
1533 	if (rc)
1534 		goto bad;
1535 	return 0;
1536 bad:
1537 	cat_destroy(key, catdatum, NULL);
1538 	return rc;
1539 }
1540 
1541 static int (*read_f[SYM_NUM]) (struct policydb *p, struct hashtab *h, void *fp) =
1542 {
1543 	common_read,
1544 	class_read,
1545 	role_read,
1546 	type_read,
1547 	user_read,
1548 	cond_read_bool,
1549 	sens_read,
1550 	cat_read,
1551 };
1552 
1553 static int user_bounds_sanity_check(void *key, void *datum, void *datap)
1554 {
1555 	struct user_datum *upper, *user;
1556 	struct policydb *p = datap;
1557 	int depth = 0;
1558 
1559 	upper = user = datum;
1560 	while (upper->bounds) {
1561 		struct ebitmap_node *node;
1562 		unsigned long bit;
1563 
1564 		if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
1565 			printk(KERN_ERR "SELinux: user %s: "
1566 			       "too deep or looped boundary",
1567 			       (char *) key);
1568 			return -EINVAL;
1569 		}
1570 
1571 		upper = p->user_val_to_struct[upper->bounds - 1];
1572 		ebitmap_for_each_positive_bit(&user->roles, node, bit) {
1573 			if (ebitmap_get_bit(&upper->roles, bit))
1574 				continue;
1575 
1576 			printk(KERN_ERR
1577 			       "SELinux: boundary violated policy: "
1578 			       "user=%s role=%s bounds=%s\n",
1579 			       sym_name(p, SYM_USERS, user->value - 1),
1580 			       sym_name(p, SYM_ROLES, bit),
1581 			       sym_name(p, SYM_USERS, upper->value - 1));
1582 
1583 			return -EINVAL;
1584 		}
1585 	}
1586 
1587 	return 0;
1588 }
1589 
1590 static int role_bounds_sanity_check(void *key, void *datum, void *datap)
1591 {
1592 	struct role_datum *upper, *role;
1593 	struct policydb *p = datap;
1594 	int depth = 0;
1595 
1596 	upper = role = datum;
1597 	while (upper->bounds) {
1598 		struct ebitmap_node *node;
1599 		unsigned long bit;
1600 
1601 		if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
1602 			printk(KERN_ERR "SELinux: role %s: "
1603 			       "too deep or looped bounds\n",
1604 			       (char *) key);
1605 			return -EINVAL;
1606 		}
1607 
1608 		upper = p->role_val_to_struct[upper->bounds - 1];
1609 		ebitmap_for_each_positive_bit(&role->types, node, bit) {
1610 			if (ebitmap_get_bit(&upper->types, bit))
1611 				continue;
1612 
1613 			printk(KERN_ERR
1614 			       "SELinux: boundary violated policy: "
1615 			       "role=%s type=%s bounds=%s\n",
1616 			       sym_name(p, SYM_ROLES, role->value - 1),
1617 			       sym_name(p, SYM_TYPES, bit),
1618 			       sym_name(p, SYM_ROLES, upper->value - 1));
1619 
1620 			return -EINVAL;
1621 		}
1622 	}
1623 
1624 	return 0;
1625 }
1626 
1627 static int type_bounds_sanity_check(void *key, void *datum, void *datap)
1628 {
1629 	struct type_datum *upper;
1630 	struct policydb *p = datap;
1631 	int depth = 0;
1632 
1633 	upper = datum;
1634 	while (upper->bounds) {
1635 		if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
1636 			printk(KERN_ERR "SELinux: type %s: "
1637 			       "too deep or looped boundary\n",
1638 			       (char *) key);
1639 			return -EINVAL;
1640 		}
1641 
1642 		upper = flex_array_get_ptr(p->type_val_to_struct_array,
1643 					   upper->bounds - 1);
1644 		BUG_ON(!upper);
1645 
1646 		if (upper->attribute) {
1647 			printk(KERN_ERR "SELinux: type %s: "
1648 			       "bounded by attribute %s",
1649 			       (char *) key,
1650 			       sym_name(p, SYM_TYPES, upper->value - 1));
1651 			return -EINVAL;
1652 		}
1653 	}
1654 
1655 	return 0;
1656 }
1657 
1658 static int policydb_bounds_sanity_check(struct policydb *p)
1659 {
1660 	int rc;
1661 
1662 	if (p->policyvers < POLICYDB_VERSION_BOUNDARY)
1663 		return 0;
1664 
1665 	rc = hashtab_map(p->p_users.table,
1666 			 user_bounds_sanity_check, p);
1667 	if (rc)
1668 		return rc;
1669 
1670 	rc = hashtab_map(p->p_roles.table,
1671 			 role_bounds_sanity_check, p);
1672 	if (rc)
1673 		return rc;
1674 
1675 	rc = hashtab_map(p->p_types.table,
1676 			 type_bounds_sanity_check, p);
1677 	if (rc)
1678 		return rc;
1679 
1680 	return 0;
1681 }
1682 
1683 extern int ss_initialized;
1684 
1685 u16 string_to_security_class(struct policydb *p, const char *name)
1686 {
1687 	struct class_datum *cladatum;
1688 
1689 	cladatum = hashtab_search(p->p_classes.table, name);
1690 	if (!cladatum)
1691 		return 0;
1692 
1693 	return cladatum->value;
1694 }
1695 
1696 u32 string_to_av_perm(struct policydb *p, u16 tclass, const char *name)
1697 {
1698 	struct class_datum *cladatum;
1699 	struct perm_datum *perdatum = NULL;
1700 	struct common_datum *comdatum;
1701 
1702 	if (!tclass || tclass > p->p_classes.nprim)
1703 		return 0;
1704 
1705 	cladatum = p->class_val_to_struct[tclass-1];
1706 	comdatum = cladatum->comdatum;
1707 	if (comdatum)
1708 		perdatum = hashtab_search(comdatum->permissions.table,
1709 					  name);
1710 	if (!perdatum)
1711 		perdatum = hashtab_search(cladatum->permissions.table,
1712 					  name);
1713 	if (!perdatum)
1714 		return 0;
1715 
1716 	return 1U << (perdatum->value-1);
1717 }
1718 
1719 static int range_read(struct policydb *p, void *fp)
1720 {
1721 	struct range_trans *rt = NULL;
1722 	struct mls_range *r = NULL;
1723 	int i, rc;
1724 	__le32 buf[2];
1725 	u32 nel;
1726 
1727 	if (p->policyvers < POLICYDB_VERSION_MLS)
1728 		return 0;
1729 
1730 	rc = next_entry(buf, fp, sizeof(u32));
1731 	if (rc)
1732 		goto out;
1733 
1734 	nel = le32_to_cpu(buf[0]);
1735 	for (i = 0; i < nel; i++) {
1736 		rc = -ENOMEM;
1737 		rt = kzalloc(sizeof(*rt), GFP_KERNEL);
1738 		if (!rt)
1739 			goto out;
1740 
1741 		rc = next_entry(buf, fp, (sizeof(u32) * 2));
1742 		if (rc)
1743 			goto out;
1744 
1745 		rt->source_type = le32_to_cpu(buf[0]);
1746 		rt->target_type = le32_to_cpu(buf[1]);
1747 		if (p->policyvers >= POLICYDB_VERSION_RANGETRANS) {
1748 			rc = next_entry(buf, fp, sizeof(u32));
1749 			if (rc)
1750 				goto out;
1751 			rt->target_class = le32_to_cpu(buf[0]);
1752 		} else
1753 			rt->target_class = p->process_class;
1754 
1755 		rc = -EINVAL;
1756 		if (!policydb_type_isvalid(p, rt->source_type) ||
1757 		    !policydb_type_isvalid(p, rt->target_type) ||
1758 		    !policydb_class_isvalid(p, rt->target_class))
1759 			goto out;
1760 
1761 		rc = -ENOMEM;
1762 		r = kzalloc(sizeof(*r), GFP_KERNEL);
1763 		if (!r)
1764 			goto out;
1765 
1766 		rc = mls_read_range_helper(r, fp);
1767 		if (rc)
1768 			goto out;
1769 
1770 		rc = -EINVAL;
1771 		if (!mls_range_isvalid(p, r)) {
1772 			printk(KERN_WARNING "SELinux:  rangetrans:  invalid range\n");
1773 			goto out;
1774 		}
1775 
1776 		rc = hashtab_insert(p->range_tr, rt, r);
1777 		if (rc)
1778 			goto out;
1779 
1780 		rt = NULL;
1781 		r = NULL;
1782 	}
1783 	rangetr_hash_eval(p->range_tr);
1784 	rc = 0;
1785 out:
1786 	kfree(rt);
1787 	kfree(r);
1788 	return rc;
1789 }
1790 
1791 static int genfs_read(struct policydb *p, void *fp)
1792 {
1793 	int i, j, rc;
1794 	u32 nel, nel2, len, len2;
1795 	__le32 buf[1];
1796 	struct ocontext *l, *c;
1797 	struct ocontext *newc = NULL;
1798 	struct genfs *genfs_p, *genfs;
1799 	struct genfs *newgenfs = NULL;
1800 
1801 	rc = next_entry(buf, fp, sizeof(u32));
1802 	if (rc)
1803 		goto out;
1804 	nel = le32_to_cpu(buf[0]);
1805 
1806 	for (i = 0; i < nel; i++) {
1807 		rc = next_entry(buf, fp, sizeof(u32));
1808 		if (rc)
1809 			goto out;
1810 		len = le32_to_cpu(buf[0]);
1811 
1812 		rc = -ENOMEM;
1813 		newgenfs = kzalloc(sizeof(*newgenfs), GFP_KERNEL);
1814 		if (!newgenfs)
1815 			goto out;
1816 
1817 		rc = -ENOMEM;
1818 		newgenfs->fstype = kmalloc(len + 1, GFP_KERNEL);
1819 		if (!newgenfs->fstype)
1820 			goto out;
1821 
1822 		rc = next_entry(newgenfs->fstype, fp, len);
1823 		if (rc)
1824 			goto out;
1825 
1826 		newgenfs->fstype[len] = 0;
1827 
1828 		for (genfs_p = NULL, genfs = p->genfs; genfs;
1829 		     genfs_p = genfs, genfs = genfs->next) {
1830 			rc = -EINVAL;
1831 			if (strcmp(newgenfs->fstype, genfs->fstype) == 0) {
1832 				printk(KERN_ERR "SELinux:  dup genfs fstype %s\n",
1833 				       newgenfs->fstype);
1834 				goto out;
1835 			}
1836 			if (strcmp(newgenfs->fstype, genfs->fstype) < 0)
1837 				break;
1838 		}
1839 		newgenfs->next = genfs;
1840 		if (genfs_p)
1841 			genfs_p->next = newgenfs;
1842 		else
1843 			p->genfs = newgenfs;
1844 		genfs = newgenfs;
1845 		newgenfs = NULL;
1846 
1847 		rc = next_entry(buf, fp, sizeof(u32));
1848 		if (rc)
1849 			goto out;
1850 
1851 		nel2 = le32_to_cpu(buf[0]);
1852 		for (j = 0; j < nel2; j++) {
1853 			rc = next_entry(buf, fp, sizeof(u32));
1854 			if (rc)
1855 				goto out;
1856 			len = le32_to_cpu(buf[0]);
1857 
1858 			rc = -ENOMEM;
1859 			newc = kzalloc(sizeof(*newc), GFP_KERNEL);
1860 			if (!newc)
1861 				goto out;
1862 
1863 			rc = -ENOMEM;
1864 			newc->u.name = kmalloc(len + 1, GFP_KERNEL);
1865 			if (!newc->u.name)
1866 				goto out;
1867 
1868 			rc = next_entry(newc->u.name, fp, len);
1869 			if (rc)
1870 				goto out;
1871 			newc->u.name[len] = 0;
1872 
1873 			rc = next_entry(buf, fp, sizeof(u32));
1874 			if (rc)
1875 				goto out;
1876 
1877 			newc->v.sclass = le32_to_cpu(buf[0]);
1878 			rc = context_read_and_validate(&newc->context[0], p, fp);
1879 			if (rc)
1880 				goto out;
1881 
1882 			for (l = NULL, c = genfs->head; c;
1883 			     l = c, c = c->next) {
1884 				rc = -EINVAL;
1885 				if (!strcmp(newc->u.name, c->u.name) &&
1886 				    (!c->v.sclass || !newc->v.sclass ||
1887 				     newc->v.sclass == c->v.sclass)) {
1888 					printk(KERN_ERR "SELinux:  dup genfs entry (%s,%s)\n",
1889 					       genfs->fstype, c->u.name);
1890 					goto out;
1891 				}
1892 				len = strlen(newc->u.name);
1893 				len2 = strlen(c->u.name);
1894 				if (len > len2)
1895 					break;
1896 			}
1897 
1898 			newc->next = c;
1899 			if (l)
1900 				l->next = newc;
1901 			else
1902 				genfs->head = newc;
1903 			newc = NULL;
1904 		}
1905 	}
1906 	rc = 0;
1907 out:
1908 	if (newgenfs)
1909 		kfree(newgenfs->fstype);
1910 	kfree(newgenfs);
1911 	ocontext_destroy(newc, OCON_FSUSE);
1912 
1913 	return rc;
1914 }
1915 
1916 static int ocontext_read(struct policydb *p, struct policydb_compat_info *info,
1917 			 void *fp)
1918 {
1919 	int i, j, rc;
1920 	u32 nel, len;
1921 	__le32 buf[3];
1922 	struct ocontext *l, *c;
1923 	u32 nodebuf[8];
1924 
1925 	for (i = 0; i < info->ocon_num; i++) {
1926 		rc = next_entry(buf, fp, sizeof(u32));
1927 		if (rc)
1928 			goto out;
1929 		nel = le32_to_cpu(buf[0]);
1930 
1931 		l = NULL;
1932 		for (j = 0; j < nel; j++) {
1933 			rc = -ENOMEM;
1934 			c = kzalloc(sizeof(*c), GFP_KERNEL);
1935 			if (!c)
1936 				goto out;
1937 			if (l)
1938 				l->next = c;
1939 			else
1940 				p->ocontexts[i] = c;
1941 			l = c;
1942 
1943 			switch (i) {
1944 			case OCON_ISID:
1945 				rc = next_entry(buf, fp, sizeof(u32));
1946 				if (rc)
1947 					goto out;
1948 
1949 				c->sid[0] = le32_to_cpu(buf[0]);
1950 				rc = context_read_and_validate(&c->context[0], p, fp);
1951 				if (rc)
1952 					goto out;
1953 				break;
1954 			case OCON_FS:
1955 			case OCON_NETIF:
1956 				rc = next_entry(buf, fp, sizeof(u32));
1957 				if (rc)
1958 					goto out;
1959 				len = le32_to_cpu(buf[0]);
1960 
1961 				rc = -ENOMEM;
1962 				c->u.name = kmalloc(len + 1, GFP_KERNEL);
1963 				if (!c->u.name)
1964 					goto out;
1965 
1966 				rc = next_entry(c->u.name, fp, len);
1967 				if (rc)
1968 					goto out;
1969 
1970 				c->u.name[len] = 0;
1971 				rc = context_read_and_validate(&c->context[0], p, fp);
1972 				if (rc)
1973 					goto out;
1974 				rc = context_read_and_validate(&c->context[1], p, fp);
1975 				if (rc)
1976 					goto out;
1977 				break;
1978 			case OCON_PORT:
1979 				rc = next_entry(buf, fp, sizeof(u32)*3);
1980 				if (rc)
1981 					goto out;
1982 				c->u.port.protocol = le32_to_cpu(buf[0]);
1983 				c->u.port.low_port = le32_to_cpu(buf[1]);
1984 				c->u.port.high_port = le32_to_cpu(buf[2]);
1985 				rc = context_read_and_validate(&c->context[0], p, fp);
1986 				if (rc)
1987 					goto out;
1988 				break;
1989 			case OCON_NODE:
1990 				rc = next_entry(nodebuf, fp, sizeof(u32) * 2);
1991 				if (rc)
1992 					goto out;
1993 				c->u.node.addr = nodebuf[0]; /* network order */
1994 				c->u.node.mask = nodebuf[1]; /* network order */
1995 				rc = context_read_and_validate(&c->context[0], p, fp);
1996 				if (rc)
1997 					goto out;
1998 				break;
1999 			case OCON_FSUSE:
2000 				rc = next_entry(buf, fp, sizeof(u32)*2);
2001 				if (rc)
2002 					goto out;
2003 
2004 				rc = -EINVAL;
2005 				c->v.behavior = le32_to_cpu(buf[0]);
2006 				if (c->v.behavior > SECURITY_FS_USE_NONE)
2007 					goto out;
2008 
2009 				rc = -ENOMEM;
2010 				len = le32_to_cpu(buf[1]);
2011 				c->u.name = kmalloc(len + 1, GFP_KERNEL);
2012 				if (!c->u.name)
2013 					goto out;
2014 
2015 				rc = next_entry(c->u.name, fp, len);
2016 				if (rc)
2017 					goto out;
2018 				c->u.name[len] = 0;
2019 				rc = context_read_and_validate(&c->context[0], p, fp);
2020 				if (rc)
2021 					goto out;
2022 				break;
2023 			case OCON_NODE6: {
2024 				int k;
2025 
2026 				rc = next_entry(nodebuf, fp, sizeof(u32) * 8);
2027 				if (rc)
2028 					goto out;
2029 				for (k = 0; k < 4; k++)
2030 					c->u.node6.addr[k] = nodebuf[k];
2031 				for (k = 0; k < 4; k++)
2032 					c->u.node6.mask[k] = nodebuf[k+4];
2033 				rc = context_read_and_validate(&c->context[0], p, fp);
2034 				if (rc)
2035 					goto out;
2036 				break;
2037 			}
2038 			}
2039 		}
2040 	}
2041 	rc = 0;
2042 out:
2043 	return rc;
2044 }
2045 
2046 /*
2047  * Read the configuration data from a policy database binary
2048  * representation file into a policy database structure.
2049  */
2050 int policydb_read(struct policydb *p, void *fp)
2051 {
2052 	struct role_allow *ra, *lra;
2053 	struct role_trans *tr, *ltr;
2054 	int i, j, rc;
2055 	__le32 buf[4];
2056 	u32 len, nprim, nel;
2057 
2058 	char *policydb_str;
2059 	struct policydb_compat_info *info;
2060 
2061 	rc = policydb_init(p);
2062 	if (rc)
2063 		return rc;
2064 
2065 	/* Read the magic number and string length. */
2066 	rc = next_entry(buf, fp, sizeof(u32) * 2);
2067 	if (rc)
2068 		goto bad;
2069 
2070 	rc = -EINVAL;
2071 	if (le32_to_cpu(buf[0]) != POLICYDB_MAGIC) {
2072 		printk(KERN_ERR "SELinux:  policydb magic number 0x%x does "
2073 		       "not match expected magic number 0x%x\n",
2074 		       le32_to_cpu(buf[0]), POLICYDB_MAGIC);
2075 		goto bad;
2076 	}
2077 
2078 	rc = -EINVAL;
2079 	len = le32_to_cpu(buf[1]);
2080 	if (len != strlen(POLICYDB_STRING)) {
2081 		printk(KERN_ERR "SELinux:  policydb string length %d does not "
2082 		       "match expected length %Zu\n",
2083 		       len, strlen(POLICYDB_STRING));
2084 		goto bad;
2085 	}
2086 
2087 	rc = -ENOMEM;
2088 	policydb_str = kmalloc(len + 1, GFP_KERNEL);
2089 	if (!policydb_str) {
2090 		printk(KERN_ERR "SELinux:  unable to allocate memory for policydb "
2091 		       "string of length %d\n", len);
2092 		goto bad;
2093 	}
2094 
2095 	rc = next_entry(policydb_str, fp, len);
2096 	if (rc) {
2097 		printk(KERN_ERR "SELinux:  truncated policydb string identifier\n");
2098 		kfree(policydb_str);
2099 		goto bad;
2100 	}
2101 
2102 	rc = -EINVAL;
2103 	policydb_str[len] = '\0';
2104 	if (strcmp(policydb_str, POLICYDB_STRING)) {
2105 		printk(KERN_ERR "SELinux:  policydb string %s does not match "
2106 		       "my string %s\n", policydb_str, POLICYDB_STRING);
2107 		kfree(policydb_str);
2108 		goto bad;
2109 	}
2110 	/* Done with policydb_str. */
2111 	kfree(policydb_str);
2112 	policydb_str = NULL;
2113 
2114 	/* Read the version and table sizes. */
2115 	rc = next_entry(buf, fp, sizeof(u32)*4);
2116 	if (rc)
2117 		goto bad;
2118 
2119 	rc = -EINVAL;
2120 	p->policyvers = le32_to_cpu(buf[0]);
2121 	if (p->policyvers < POLICYDB_VERSION_MIN ||
2122 	    p->policyvers > POLICYDB_VERSION_MAX) {
2123 		printk(KERN_ERR "SELinux:  policydb version %d does not match "
2124 		       "my version range %d-%d\n",
2125 		       le32_to_cpu(buf[0]), POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX);
2126 		goto bad;
2127 	}
2128 
2129 	if ((le32_to_cpu(buf[1]) & POLICYDB_CONFIG_MLS)) {
2130 		p->mls_enabled = 1;
2131 
2132 		rc = -EINVAL;
2133 		if (p->policyvers < POLICYDB_VERSION_MLS) {
2134 			printk(KERN_ERR "SELinux: security policydb version %d "
2135 				"(MLS) not backwards compatible\n",
2136 				p->policyvers);
2137 			goto bad;
2138 		}
2139 	}
2140 	p->reject_unknown = !!(le32_to_cpu(buf[1]) & REJECT_UNKNOWN);
2141 	p->allow_unknown = !!(le32_to_cpu(buf[1]) & ALLOW_UNKNOWN);
2142 
2143 	if (p->policyvers >= POLICYDB_VERSION_POLCAP) {
2144 		rc = ebitmap_read(&p->policycaps, fp);
2145 		if (rc)
2146 			goto bad;
2147 	}
2148 
2149 	if (p->policyvers >= POLICYDB_VERSION_PERMISSIVE) {
2150 		rc = ebitmap_read(&p->permissive_map, fp);
2151 		if (rc)
2152 			goto bad;
2153 	}
2154 
2155 	rc = -EINVAL;
2156 	info = policydb_lookup_compat(p->policyvers);
2157 	if (!info) {
2158 		printk(KERN_ERR "SELinux:  unable to find policy compat info "
2159 		       "for version %d\n", p->policyvers);
2160 		goto bad;
2161 	}
2162 
2163 	rc = -EINVAL;
2164 	if (le32_to_cpu(buf[2]) != info->sym_num ||
2165 		le32_to_cpu(buf[3]) != info->ocon_num) {
2166 		printk(KERN_ERR "SELinux:  policydb table sizes (%d,%d) do "
2167 		       "not match mine (%d,%d)\n", le32_to_cpu(buf[2]),
2168 			le32_to_cpu(buf[3]),
2169 		       info->sym_num, info->ocon_num);
2170 		goto bad;
2171 	}
2172 
2173 	for (i = 0; i < info->sym_num; i++) {
2174 		rc = next_entry(buf, fp, sizeof(u32)*2);
2175 		if (rc)
2176 			goto bad;
2177 		nprim = le32_to_cpu(buf[0]);
2178 		nel = le32_to_cpu(buf[1]);
2179 		for (j = 0; j < nel; j++) {
2180 			rc = read_f[i](p, p->symtab[i].table, fp);
2181 			if (rc)
2182 				goto bad;
2183 		}
2184 
2185 		p->symtab[i].nprim = nprim;
2186 	}
2187 
2188 	rc = avtab_read(&p->te_avtab, fp, p);
2189 	if (rc)
2190 		goto bad;
2191 
2192 	if (p->policyvers >= POLICYDB_VERSION_BOOL) {
2193 		rc = cond_read_list(p, fp);
2194 		if (rc)
2195 			goto bad;
2196 	}
2197 
2198 	rc = next_entry(buf, fp, sizeof(u32));
2199 	if (rc)
2200 		goto bad;
2201 	nel = le32_to_cpu(buf[0]);
2202 	ltr = NULL;
2203 	for (i = 0; i < nel; i++) {
2204 		rc = -ENOMEM;
2205 		tr = kzalloc(sizeof(*tr), GFP_KERNEL);
2206 		if (!tr)
2207 			goto bad;
2208 		if (ltr)
2209 			ltr->next = tr;
2210 		else
2211 			p->role_tr = tr;
2212 		rc = next_entry(buf, fp, sizeof(u32)*3);
2213 		if (rc)
2214 			goto bad;
2215 
2216 		rc = -EINVAL;
2217 		tr->role = le32_to_cpu(buf[0]);
2218 		tr->type = le32_to_cpu(buf[1]);
2219 		tr->new_role = le32_to_cpu(buf[2]);
2220 		if (!policydb_role_isvalid(p, tr->role) ||
2221 		    !policydb_type_isvalid(p, tr->type) ||
2222 		    !policydb_role_isvalid(p, tr->new_role))
2223 			goto bad;
2224 		ltr = tr;
2225 	}
2226 
2227 	rc = next_entry(buf, fp, sizeof(u32));
2228 	if (rc)
2229 		goto bad;
2230 	nel = le32_to_cpu(buf[0]);
2231 	lra = NULL;
2232 	for (i = 0; i < nel; i++) {
2233 		rc = -ENOMEM;
2234 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
2235 		if (!ra)
2236 			goto bad;
2237 		if (lra)
2238 			lra->next = ra;
2239 		else
2240 			p->role_allow = ra;
2241 		rc = next_entry(buf, fp, sizeof(u32)*2);
2242 		if (rc)
2243 			goto bad;
2244 
2245 		rc = -EINVAL;
2246 		ra->role = le32_to_cpu(buf[0]);
2247 		ra->new_role = le32_to_cpu(buf[1]);
2248 		if (!policydb_role_isvalid(p, ra->role) ||
2249 		    !policydb_role_isvalid(p, ra->new_role))
2250 			goto bad;
2251 		lra = ra;
2252 	}
2253 
2254 	rc = policydb_index(p);
2255 	if (rc)
2256 		goto bad;
2257 
2258 	rc = -EINVAL;
2259 	p->process_class = string_to_security_class(p, "process");
2260 	if (!p->process_class)
2261 		goto bad;
2262 
2263 	rc = -EINVAL;
2264 	p->process_trans_perms = string_to_av_perm(p, p->process_class, "transition");
2265 	p->process_trans_perms |= string_to_av_perm(p, p->process_class, "dyntransition");
2266 	if (!p->process_trans_perms)
2267 		goto bad;
2268 
2269 	rc = ocontext_read(p, info, fp);
2270 	if (rc)
2271 		goto bad;
2272 
2273 	rc = genfs_read(p, fp);
2274 	if (rc)
2275 		goto bad;
2276 
2277 	rc = range_read(p, fp);
2278 	if (rc)
2279 		goto bad;
2280 
2281 	rc = -ENOMEM;
2282 	p->type_attr_map_array = flex_array_alloc(sizeof(struct ebitmap),
2283 						  p->p_types.nprim,
2284 						  GFP_KERNEL | __GFP_ZERO);
2285 	if (!p->type_attr_map_array)
2286 		goto bad;
2287 
2288 	/* preallocate so we don't have to worry about the put ever failing */
2289 	rc = flex_array_prealloc(p->type_attr_map_array, 0, p->p_types.nprim - 1,
2290 				 GFP_KERNEL | __GFP_ZERO);
2291 	if (rc)
2292 		goto bad;
2293 
2294 	for (i = 0; i < p->p_types.nprim; i++) {
2295 		struct ebitmap *e = flex_array_get(p->type_attr_map_array, i);
2296 
2297 		BUG_ON(!e);
2298 		ebitmap_init(e);
2299 		if (p->policyvers >= POLICYDB_VERSION_AVTAB) {
2300 			rc = ebitmap_read(e, fp);
2301 			if (rc)
2302 				goto bad;
2303 		}
2304 		/* add the type itself as the degenerate case */
2305 		rc = ebitmap_set_bit(e, i, 1);
2306 		if (rc)
2307 			goto bad;
2308 	}
2309 
2310 	rc = policydb_bounds_sanity_check(p);
2311 	if (rc)
2312 		goto bad;
2313 
2314 	rc = 0;
2315 out:
2316 	return rc;
2317 bad:
2318 	policydb_destroy(p);
2319 	goto out;
2320 }
2321 
2322 /*
2323  * Write a MLS level structure to a policydb binary
2324  * representation file.
2325  */
2326 static int mls_write_level(struct mls_level *l, void *fp)
2327 {
2328 	__le32 buf[1];
2329 	int rc;
2330 
2331 	buf[0] = cpu_to_le32(l->sens);
2332 	rc = put_entry(buf, sizeof(u32), 1, fp);
2333 	if (rc)
2334 		return rc;
2335 
2336 	rc = ebitmap_write(&l->cat, fp);
2337 	if (rc)
2338 		return rc;
2339 
2340 	return 0;
2341 }
2342 
2343 /*
2344  * Write a MLS range structure to a policydb binary
2345  * representation file.
2346  */
2347 static int mls_write_range_helper(struct mls_range *r, void *fp)
2348 {
2349 	__le32 buf[3];
2350 	size_t items;
2351 	int rc, eq;
2352 
2353 	eq = mls_level_eq(&r->level[1], &r->level[0]);
2354 
2355 	if (eq)
2356 		items = 2;
2357 	else
2358 		items = 3;
2359 	buf[0] = cpu_to_le32(items-1);
2360 	buf[1] = cpu_to_le32(r->level[0].sens);
2361 	if (!eq)
2362 		buf[2] = cpu_to_le32(r->level[1].sens);
2363 
2364 	BUG_ON(items > (sizeof(buf)/sizeof(buf[0])));
2365 
2366 	rc = put_entry(buf, sizeof(u32), items, fp);
2367 	if (rc)
2368 		return rc;
2369 
2370 	rc = ebitmap_write(&r->level[0].cat, fp);
2371 	if (rc)
2372 		return rc;
2373 	if (!eq) {
2374 		rc = ebitmap_write(&r->level[1].cat, fp);
2375 		if (rc)
2376 			return rc;
2377 	}
2378 
2379 	return 0;
2380 }
2381 
2382 static int sens_write(void *vkey, void *datum, void *ptr)
2383 {
2384 	char *key = vkey;
2385 	struct level_datum *levdatum = datum;
2386 	struct policy_data *pd = ptr;
2387 	void *fp = pd->fp;
2388 	__le32 buf[2];
2389 	size_t len;
2390 	int rc;
2391 
2392 	len = strlen(key);
2393 	buf[0] = cpu_to_le32(len);
2394 	buf[1] = cpu_to_le32(levdatum->isalias);
2395 	rc = put_entry(buf, sizeof(u32), 2, fp);
2396 	if (rc)
2397 		return rc;
2398 
2399 	rc = put_entry(key, 1, len, fp);
2400 	if (rc)
2401 		return rc;
2402 
2403 	rc = mls_write_level(levdatum->level, fp);
2404 	if (rc)
2405 		return rc;
2406 
2407 	return 0;
2408 }
2409 
2410 static int cat_write(void *vkey, void *datum, void *ptr)
2411 {
2412 	char *key = vkey;
2413 	struct cat_datum *catdatum = datum;
2414 	struct policy_data *pd = ptr;
2415 	void *fp = pd->fp;
2416 	__le32 buf[3];
2417 	size_t len;
2418 	int rc;
2419 
2420 	len = strlen(key);
2421 	buf[0] = cpu_to_le32(len);
2422 	buf[1] = cpu_to_le32(catdatum->value);
2423 	buf[2] = cpu_to_le32(catdatum->isalias);
2424 	rc = put_entry(buf, sizeof(u32), 3, fp);
2425 	if (rc)
2426 		return rc;
2427 
2428 	rc = put_entry(key, 1, len, fp);
2429 	if (rc)
2430 		return rc;
2431 
2432 	return 0;
2433 }
2434 
2435 static int role_trans_write(struct role_trans *r, void *fp)
2436 {
2437 	struct role_trans *tr;
2438 	u32 buf[3];
2439 	size_t nel;
2440 	int rc;
2441 
2442 	nel = 0;
2443 	for (tr = r; tr; tr = tr->next)
2444 		nel++;
2445 	buf[0] = cpu_to_le32(nel);
2446 	rc = put_entry(buf, sizeof(u32), 1, fp);
2447 	if (rc)
2448 		return rc;
2449 	for (tr = r; tr; tr = tr->next) {
2450 		buf[0] = cpu_to_le32(tr->role);
2451 		buf[1] = cpu_to_le32(tr->type);
2452 		buf[2] = cpu_to_le32(tr->new_role);
2453 		rc = put_entry(buf, sizeof(u32), 3, fp);
2454 		if (rc)
2455 			return rc;
2456 	}
2457 
2458 	return 0;
2459 }
2460 
2461 static int role_allow_write(struct role_allow *r, void *fp)
2462 {
2463 	struct role_allow *ra;
2464 	u32 buf[2];
2465 	size_t nel;
2466 	int rc;
2467 
2468 	nel = 0;
2469 	for (ra = r; ra; ra = ra->next)
2470 		nel++;
2471 	buf[0] = cpu_to_le32(nel);
2472 	rc = put_entry(buf, sizeof(u32), 1, fp);
2473 	if (rc)
2474 		return rc;
2475 	for (ra = r; ra; ra = ra->next) {
2476 		buf[0] = cpu_to_le32(ra->role);
2477 		buf[1] = cpu_to_le32(ra->new_role);
2478 		rc = put_entry(buf, sizeof(u32), 2, fp);
2479 		if (rc)
2480 			return rc;
2481 	}
2482 	return 0;
2483 }
2484 
2485 /*
2486  * Write a security context structure
2487  * to a policydb binary representation file.
2488  */
2489 static int context_write(struct policydb *p, struct context *c,
2490 			 void *fp)
2491 {
2492 	int rc;
2493 	__le32 buf[3];
2494 
2495 	buf[0] = cpu_to_le32(c->user);
2496 	buf[1] = cpu_to_le32(c->role);
2497 	buf[2] = cpu_to_le32(c->type);
2498 
2499 	rc = put_entry(buf, sizeof(u32), 3, fp);
2500 	if (rc)
2501 		return rc;
2502 
2503 	rc = mls_write_range_helper(&c->range, fp);
2504 	if (rc)
2505 		return rc;
2506 
2507 	return 0;
2508 }
2509 
2510 /*
2511  * The following *_write functions are used to
2512  * write the symbol data to a policy database
2513  * binary representation file.
2514  */
2515 
2516 static int perm_write(void *vkey, void *datum, void *fp)
2517 {
2518 	char *key = vkey;
2519 	struct perm_datum *perdatum = datum;
2520 	__le32 buf[2];
2521 	size_t len;
2522 	int rc;
2523 
2524 	len = strlen(key);
2525 	buf[0] = cpu_to_le32(len);
2526 	buf[1] = cpu_to_le32(perdatum->value);
2527 	rc = put_entry(buf, sizeof(u32), 2, fp);
2528 	if (rc)
2529 		return rc;
2530 
2531 	rc = put_entry(key, 1, len, fp);
2532 	if (rc)
2533 		return rc;
2534 
2535 	return 0;
2536 }
2537 
2538 static int common_write(void *vkey, void *datum, void *ptr)
2539 {
2540 	char *key = vkey;
2541 	struct common_datum *comdatum = datum;
2542 	struct policy_data *pd = ptr;
2543 	void *fp = pd->fp;
2544 	__le32 buf[4];
2545 	size_t len;
2546 	int rc;
2547 
2548 	len = strlen(key);
2549 	buf[0] = cpu_to_le32(len);
2550 	buf[1] = cpu_to_le32(comdatum->value);
2551 	buf[2] = cpu_to_le32(comdatum->permissions.nprim);
2552 	buf[3] = cpu_to_le32(comdatum->permissions.table->nel);
2553 	rc = put_entry(buf, sizeof(u32), 4, fp);
2554 	if (rc)
2555 		return rc;
2556 
2557 	rc = put_entry(key, 1, len, fp);
2558 	if (rc)
2559 		return rc;
2560 
2561 	rc = hashtab_map(comdatum->permissions.table, perm_write, fp);
2562 	if (rc)
2563 		return rc;
2564 
2565 	return 0;
2566 }
2567 
2568 static int write_cons_helper(struct policydb *p, struct constraint_node *node,
2569 			     void *fp)
2570 {
2571 	struct constraint_node *c;
2572 	struct constraint_expr *e;
2573 	__le32 buf[3];
2574 	u32 nel;
2575 	int rc;
2576 
2577 	for (c = node; c; c = c->next) {
2578 		nel = 0;
2579 		for (e = c->expr; e; e = e->next)
2580 			nel++;
2581 		buf[0] = cpu_to_le32(c->permissions);
2582 		buf[1] = cpu_to_le32(nel);
2583 		rc = put_entry(buf, sizeof(u32), 2, fp);
2584 		if (rc)
2585 			return rc;
2586 		for (e = c->expr; e; e = e->next) {
2587 			buf[0] = cpu_to_le32(e->expr_type);
2588 			buf[1] = cpu_to_le32(e->attr);
2589 			buf[2] = cpu_to_le32(e->op);
2590 			rc = put_entry(buf, sizeof(u32), 3, fp);
2591 			if (rc)
2592 				return rc;
2593 
2594 			switch (e->expr_type) {
2595 			case CEXPR_NAMES:
2596 				rc = ebitmap_write(&e->names, fp);
2597 				if (rc)
2598 					return rc;
2599 				break;
2600 			default:
2601 				break;
2602 			}
2603 		}
2604 	}
2605 
2606 	return 0;
2607 }
2608 
2609 static int class_write(void *vkey, void *datum, void *ptr)
2610 {
2611 	char *key = vkey;
2612 	struct class_datum *cladatum = datum;
2613 	struct policy_data *pd = ptr;
2614 	void *fp = pd->fp;
2615 	struct policydb *p = pd->p;
2616 	struct constraint_node *c;
2617 	__le32 buf[6];
2618 	u32 ncons;
2619 	size_t len, len2;
2620 	int rc;
2621 
2622 	len = strlen(key);
2623 	if (cladatum->comkey)
2624 		len2 = strlen(cladatum->comkey);
2625 	else
2626 		len2 = 0;
2627 
2628 	ncons = 0;
2629 	for (c = cladatum->constraints; c; c = c->next)
2630 		ncons++;
2631 
2632 	buf[0] = cpu_to_le32(len);
2633 	buf[1] = cpu_to_le32(len2);
2634 	buf[2] = cpu_to_le32(cladatum->value);
2635 	buf[3] = cpu_to_le32(cladatum->permissions.nprim);
2636 	if (cladatum->permissions.table)
2637 		buf[4] = cpu_to_le32(cladatum->permissions.table->nel);
2638 	else
2639 		buf[4] = 0;
2640 	buf[5] = cpu_to_le32(ncons);
2641 	rc = put_entry(buf, sizeof(u32), 6, fp);
2642 	if (rc)
2643 		return rc;
2644 
2645 	rc = put_entry(key, 1, len, fp);
2646 	if (rc)
2647 		return rc;
2648 
2649 	if (cladatum->comkey) {
2650 		rc = put_entry(cladatum->comkey, 1, len2, fp);
2651 		if (rc)
2652 			return rc;
2653 	}
2654 
2655 	rc = hashtab_map(cladatum->permissions.table, perm_write, fp);
2656 	if (rc)
2657 		return rc;
2658 
2659 	rc = write_cons_helper(p, cladatum->constraints, fp);
2660 	if (rc)
2661 		return rc;
2662 
2663 	/* write out the validatetrans rule */
2664 	ncons = 0;
2665 	for (c = cladatum->validatetrans; c; c = c->next)
2666 		ncons++;
2667 
2668 	buf[0] = cpu_to_le32(ncons);
2669 	rc = put_entry(buf, sizeof(u32), 1, fp);
2670 	if (rc)
2671 		return rc;
2672 
2673 	rc = write_cons_helper(p, cladatum->validatetrans, fp);
2674 	if (rc)
2675 		return rc;
2676 
2677 	return 0;
2678 }
2679 
2680 static int role_write(void *vkey, void *datum, void *ptr)
2681 {
2682 	char *key = vkey;
2683 	struct role_datum *role = datum;
2684 	struct policy_data *pd = ptr;
2685 	void *fp = pd->fp;
2686 	struct policydb *p = pd->p;
2687 	__le32 buf[3];
2688 	size_t items, len;
2689 	int rc;
2690 
2691 	len = strlen(key);
2692 	items = 0;
2693 	buf[items++] = cpu_to_le32(len);
2694 	buf[items++] = cpu_to_le32(role->value);
2695 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
2696 		buf[items++] = cpu_to_le32(role->bounds);
2697 
2698 	BUG_ON(items > (sizeof(buf)/sizeof(buf[0])));
2699 
2700 	rc = put_entry(buf, sizeof(u32), items, fp);
2701 	if (rc)
2702 		return rc;
2703 
2704 	rc = put_entry(key, 1, len, fp);
2705 	if (rc)
2706 		return rc;
2707 
2708 	rc = ebitmap_write(&role->dominates, fp);
2709 	if (rc)
2710 		return rc;
2711 
2712 	rc = ebitmap_write(&role->types, fp);
2713 	if (rc)
2714 		return rc;
2715 
2716 	return 0;
2717 }
2718 
2719 static int type_write(void *vkey, void *datum, void *ptr)
2720 {
2721 	char *key = vkey;
2722 	struct type_datum *typdatum = datum;
2723 	struct policy_data *pd = ptr;
2724 	struct policydb *p = pd->p;
2725 	void *fp = pd->fp;
2726 	__le32 buf[4];
2727 	int rc;
2728 	size_t items, len;
2729 
2730 	len = strlen(key);
2731 	items = 0;
2732 	buf[items++] = cpu_to_le32(len);
2733 	buf[items++] = cpu_to_le32(typdatum->value);
2734 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) {
2735 		u32 properties = 0;
2736 
2737 		if (typdatum->primary)
2738 			properties |= TYPEDATUM_PROPERTY_PRIMARY;
2739 
2740 		if (typdatum->attribute)
2741 			properties |= TYPEDATUM_PROPERTY_ATTRIBUTE;
2742 
2743 		buf[items++] = cpu_to_le32(properties);
2744 		buf[items++] = cpu_to_le32(typdatum->bounds);
2745 	} else {
2746 		buf[items++] = cpu_to_le32(typdatum->primary);
2747 	}
2748 	BUG_ON(items > (sizeof(buf) / sizeof(buf[0])));
2749 	rc = put_entry(buf, sizeof(u32), items, fp);
2750 	if (rc)
2751 		return rc;
2752 
2753 	rc = put_entry(key, 1, len, fp);
2754 	if (rc)
2755 		return rc;
2756 
2757 	return 0;
2758 }
2759 
2760 static int user_write(void *vkey, void *datum, void *ptr)
2761 {
2762 	char *key = vkey;
2763 	struct user_datum *usrdatum = datum;
2764 	struct policy_data *pd = ptr;
2765 	struct policydb *p = pd->p;
2766 	void *fp = pd->fp;
2767 	__le32 buf[3];
2768 	size_t items, len;
2769 	int rc;
2770 
2771 	len = strlen(key);
2772 	items = 0;
2773 	buf[items++] = cpu_to_le32(len);
2774 	buf[items++] = cpu_to_le32(usrdatum->value);
2775 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
2776 		buf[items++] = cpu_to_le32(usrdatum->bounds);
2777 	BUG_ON(items > (sizeof(buf) / sizeof(buf[0])));
2778 	rc = put_entry(buf, sizeof(u32), items, fp);
2779 	if (rc)
2780 		return rc;
2781 
2782 	rc = put_entry(key, 1, len, fp);
2783 	if (rc)
2784 		return rc;
2785 
2786 	rc = ebitmap_write(&usrdatum->roles, fp);
2787 	if (rc)
2788 		return rc;
2789 
2790 	rc = mls_write_range_helper(&usrdatum->range, fp);
2791 	if (rc)
2792 		return rc;
2793 
2794 	rc = mls_write_level(&usrdatum->dfltlevel, fp);
2795 	if (rc)
2796 		return rc;
2797 
2798 	return 0;
2799 }
2800 
2801 static int (*write_f[SYM_NUM]) (void *key, void *datum,
2802 				void *datap) =
2803 {
2804 	common_write,
2805 	class_write,
2806 	role_write,
2807 	type_write,
2808 	user_write,
2809 	cond_write_bool,
2810 	sens_write,
2811 	cat_write,
2812 };
2813 
2814 static int ocontext_write(struct policydb *p, struct policydb_compat_info *info,
2815 			  void *fp)
2816 {
2817 	unsigned int i, j, rc;
2818 	size_t nel, len;
2819 	__le32 buf[3];
2820 	u32 nodebuf[8];
2821 	struct ocontext *c;
2822 	for (i = 0; i < info->ocon_num; i++) {
2823 		nel = 0;
2824 		for (c = p->ocontexts[i]; c; c = c->next)
2825 			nel++;
2826 		buf[0] = cpu_to_le32(nel);
2827 		rc = put_entry(buf, sizeof(u32), 1, fp);
2828 		if (rc)
2829 			return rc;
2830 		for (c = p->ocontexts[i]; c; c = c->next) {
2831 			switch (i) {
2832 			case OCON_ISID:
2833 				buf[0] = cpu_to_le32(c->sid[0]);
2834 				rc = put_entry(buf, sizeof(u32), 1, fp);
2835 				if (rc)
2836 					return rc;
2837 				rc = context_write(p, &c->context[0], fp);
2838 				if (rc)
2839 					return rc;
2840 				break;
2841 			case OCON_FS:
2842 			case OCON_NETIF:
2843 				len = strlen(c->u.name);
2844 				buf[0] = cpu_to_le32(len);
2845 				rc = put_entry(buf, sizeof(u32), 1, fp);
2846 				if (rc)
2847 					return rc;
2848 				rc = put_entry(c->u.name, 1, len, fp);
2849 				if (rc)
2850 					return rc;
2851 				rc = context_write(p, &c->context[0], fp);
2852 				if (rc)
2853 					return rc;
2854 				rc = context_write(p, &c->context[1], fp);
2855 				if (rc)
2856 					return rc;
2857 				break;
2858 			case OCON_PORT:
2859 				buf[0] = cpu_to_le32(c->u.port.protocol);
2860 				buf[1] = cpu_to_le32(c->u.port.low_port);
2861 				buf[2] = cpu_to_le32(c->u.port.high_port);
2862 				rc = put_entry(buf, sizeof(u32), 3, fp);
2863 				if (rc)
2864 					return rc;
2865 				rc = context_write(p, &c->context[0], fp);
2866 				if (rc)
2867 					return rc;
2868 				break;
2869 			case OCON_NODE:
2870 				nodebuf[0] = c->u.node.addr; /* network order */
2871 				nodebuf[1] = c->u.node.mask; /* network order */
2872 				rc = put_entry(nodebuf, sizeof(u32), 2, fp);
2873 				if (rc)
2874 					return rc;
2875 				rc = context_write(p, &c->context[0], fp);
2876 				if (rc)
2877 					return rc;
2878 				break;
2879 			case OCON_FSUSE:
2880 				buf[0] = cpu_to_le32(c->v.behavior);
2881 				len = strlen(c->u.name);
2882 				buf[1] = cpu_to_le32(len);
2883 				rc = put_entry(buf, sizeof(u32), 2, fp);
2884 				if (rc)
2885 					return rc;
2886 				rc = put_entry(c->u.name, 1, len, fp);
2887 				if (rc)
2888 					return rc;
2889 				rc = context_write(p, &c->context[0], fp);
2890 				if (rc)
2891 					return rc;
2892 				break;
2893 			case OCON_NODE6:
2894 				for (j = 0; j < 4; j++)
2895 					nodebuf[j] = c->u.node6.addr[j]; /* network order */
2896 				for (j = 0; j < 4; j++)
2897 					nodebuf[j + 4] = c->u.node6.mask[j]; /* network order */
2898 				rc = put_entry(nodebuf, sizeof(u32), 8, fp);
2899 				if (rc)
2900 					return rc;
2901 				rc = context_write(p, &c->context[0], fp);
2902 				if (rc)
2903 					return rc;
2904 				break;
2905 			}
2906 		}
2907 	}
2908 	return 0;
2909 }
2910 
2911 static int genfs_write(struct policydb *p, void *fp)
2912 {
2913 	struct genfs *genfs;
2914 	struct ocontext *c;
2915 	size_t len;
2916 	__le32 buf[1];
2917 	int rc;
2918 
2919 	len = 0;
2920 	for (genfs = p->genfs; genfs; genfs = genfs->next)
2921 		len++;
2922 	buf[0] = cpu_to_le32(len);
2923 	rc = put_entry(buf, sizeof(u32), 1, fp);
2924 	if (rc)
2925 		return rc;
2926 	for (genfs = p->genfs; genfs; genfs = genfs->next) {
2927 		len = strlen(genfs->fstype);
2928 		buf[0] = cpu_to_le32(len);
2929 		rc = put_entry(buf, sizeof(u32), 1, fp);
2930 		if (rc)
2931 			return rc;
2932 		rc = put_entry(genfs->fstype, 1, len, fp);
2933 		if (rc)
2934 			return rc;
2935 		len = 0;
2936 		for (c = genfs->head; c; c = c->next)
2937 			len++;
2938 		buf[0] = cpu_to_le32(len);
2939 		rc = put_entry(buf, sizeof(u32), 1, fp);
2940 		if (rc)
2941 			return rc;
2942 		for (c = genfs->head; c; c = c->next) {
2943 			len = strlen(c->u.name);
2944 			buf[0] = cpu_to_le32(len);
2945 			rc = put_entry(buf, sizeof(u32), 1, fp);
2946 			if (rc)
2947 				return rc;
2948 			rc = put_entry(c->u.name, 1, len, fp);
2949 			if (rc)
2950 				return rc;
2951 			buf[0] = cpu_to_le32(c->v.sclass);
2952 			rc = put_entry(buf, sizeof(u32), 1, fp);
2953 			if (rc)
2954 				return rc;
2955 			rc = context_write(p, &c->context[0], fp);
2956 			if (rc)
2957 				return rc;
2958 		}
2959 	}
2960 	return 0;
2961 }
2962 
2963 static int range_count(void *key, void *data, void *ptr)
2964 {
2965 	int *cnt = ptr;
2966 	*cnt = *cnt + 1;
2967 
2968 	return 0;
2969 }
2970 
2971 static int range_write_helper(void *key, void *data, void *ptr)
2972 {
2973 	__le32 buf[2];
2974 	struct range_trans *rt = key;
2975 	struct mls_range *r = data;
2976 	struct policy_data *pd = ptr;
2977 	void *fp = pd->fp;
2978 	struct policydb *p = pd->p;
2979 	int rc;
2980 
2981 	buf[0] = cpu_to_le32(rt->source_type);
2982 	buf[1] = cpu_to_le32(rt->target_type);
2983 	rc = put_entry(buf, sizeof(u32), 2, fp);
2984 	if (rc)
2985 		return rc;
2986 	if (p->policyvers >= POLICYDB_VERSION_RANGETRANS) {
2987 		buf[0] = cpu_to_le32(rt->target_class);
2988 		rc = put_entry(buf, sizeof(u32), 1, fp);
2989 		if (rc)
2990 			return rc;
2991 	}
2992 	rc = mls_write_range_helper(r, fp);
2993 	if (rc)
2994 		return rc;
2995 
2996 	return 0;
2997 }
2998 
2999 static int range_write(struct policydb *p, void *fp)
3000 {
3001 	size_t nel;
3002 	__le32 buf[1];
3003 	int rc;
3004 	struct policy_data pd;
3005 
3006 	pd.p = p;
3007 	pd.fp = fp;
3008 
3009 	/* count the number of entries in the hashtab */
3010 	nel = 0;
3011 	rc = hashtab_map(p->range_tr, range_count, &nel);
3012 	if (rc)
3013 		return rc;
3014 
3015 	buf[0] = cpu_to_le32(nel);
3016 	rc = put_entry(buf, sizeof(u32), 1, fp);
3017 	if (rc)
3018 		return rc;
3019 
3020 	/* actually write all of the entries */
3021 	rc = hashtab_map(p->range_tr, range_write_helper, &pd);
3022 	if (rc)
3023 		return rc;
3024 
3025 	return 0;
3026 }
3027 
3028 /*
3029  * Write the configuration data in a policy database
3030  * structure to a policy database binary representation
3031  * file.
3032  */
3033 int policydb_write(struct policydb *p, void *fp)
3034 {
3035 	unsigned int i, num_syms;
3036 	int rc;
3037 	__le32 buf[4];
3038 	u32 config;
3039 	size_t len;
3040 	struct policydb_compat_info *info;
3041 
3042 	/*
3043 	 * refuse to write policy older than compressed avtab
3044 	 * to simplify the writer.  There are other tests dropped
3045 	 * since we assume this throughout the writer code.  Be
3046 	 * careful if you ever try to remove this restriction
3047 	 */
3048 	if (p->policyvers < POLICYDB_VERSION_AVTAB) {
3049 		printk(KERN_ERR "SELinux: refusing to write policy version %d."
3050 		       "  Because it is less than version %d\n", p->policyvers,
3051 		       POLICYDB_VERSION_AVTAB);
3052 		return -EINVAL;
3053 	}
3054 
3055 	config = 0;
3056 	if (p->mls_enabled)
3057 		config |= POLICYDB_CONFIG_MLS;
3058 
3059 	if (p->reject_unknown)
3060 		config |= REJECT_UNKNOWN;
3061 	if (p->allow_unknown)
3062 		config |= ALLOW_UNKNOWN;
3063 
3064 	/* Write the magic number and string identifiers. */
3065 	buf[0] = cpu_to_le32(POLICYDB_MAGIC);
3066 	len = strlen(POLICYDB_STRING);
3067 	buf[1] = cpu_to_le32(len);
3068 	rc = put_entry(buf, sizeof(u32), 2, fp);
3069 	if (rc)
3070 		return rc;
3071 	rc = put_entry(POLICYDB_STRING, 1, len, fp);
3072 	if (rc)
3073 		return rc;
3074 
3075 	/* Write the version, config, and table sizes. */
3076 	info = policydb_lookup_compat(p->policyvers);
3077 	if (!info) {
3078 		printk(KERN_ERR "SELinux: compatibility lookup failed for policy "
3079 		    "version %d", p->policyvers);
3080 		return -EINVAL;
3081 	}
3082 
3083 	buf[0] = cpu_to_le32(p->policyvers);
3084 	buf[1] = cpu_to_le32(config);
3085 	buf[2] = cpu_to_le32(info->sym_num);
3086 	buf[3] = cpu_to_le32(info->ocon_num);
3087 
3088 	rc = put_entry(buf, sizeof(u32), 4, fp);
3089 	if (rc)
3090 		return rc;
3091 
3092 	if (p->policyvers >= POLICYDB_VERSION_POLCAP) {
3093 		rc = ebitmap_write(&p->policycaps, fp);
3094 		if (rc)
3095 			return rc;
3096 	}
3097 
3098 	if (p->policyvers >= POLICYDB_VERSION_PERMISSIVE) {
3099 		rc = ebitmap_write(&p->permissive_map, fp);
3100 		if (rc)
3101 			return rc;
3102 	}
3103 
3104 	num_syms = info->sym_num;
3105 	for (i = 0; i < num_syms; i++) {
3106 		struct policy_data pd;
3107 
3108 		pd.fp = fp;
3109 		pd.p = p;
3110 
3111 		buf[0] = cpu_to_le32(p->symtab[i].nprim);
3112 		buf[1] = cpu_to_le32(p->symtab[i].table->nel);
3113 
3114 		rc = put_entry(buf, sizeof(u32), 2, fp);
3115 		if (rc)
3116 			return rc;
3117 		rc = hashtab_map(p->symtab[i].table, write_f[i], &pd);
3118 		if (rc)
3119 			return rc;
3120 	}
3121 
3122 	rc = avtab_write(p, &p->te_avtab, fp);
3123 	if (rc)
3124 		return rc;
3125 
3126 	rc = cond_write_list(p, p->cond_list, fp);
3127 	if (rc)
3128 		return rc;
3129 
3130 	rc = role_trans_write(p->role_tr, fp);
3131 	if (rc)
3132 		return rc;
3133 
3134 	rc = role_allow_write(p->role_allow, fp);
3135 	if (rc)
3136 		return rc;
3137 
3138 	rc = ocontext_write(p, info, fp);
3139 	if (rc)
3140 		return rc;
3141 
3142 	rc = genfs_write(p, fp);
3143 	if (rc)
3144 		return rc;
3145 
3146 	rc = range_write(p, fp);
3147 	if (rc)
3148 		return rc;
3149 
3150 	for (i = 0; i < p->p_types.nprim; i++) {
3151 		struct ebitmap *e = flex_array_get(p->type_attr_map_array, i);
3152 
3153 		BUG_ON(!e);
3154 		rc = ebitmap_write(e, fp);
3155 		if (rc)
3156 			return rc;
3157 	}
3158 
3159 	return 0;
3160 }
3161