xref: /openbmc/linux/security/selinux/ss/policydb.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * Implementation of the policy database.
3  *
4  * Author : Stephen Smalley, <sds@epoch.ncsc.mil>
5  */
6 
7 /*
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *	Support for enhanced MLS infrastructure.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *	Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul.moore@hp.com>
17  *
18  *      Added support for the policy capability bitmap
19  *
20  * Copyright (C) 2007 Hewlett-Packard Development Company, L.P.
21  * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
22  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
23  *	This program is free software; you can redistribute it and/or modify
24  *	it under the terms of the GNU General Public License as published by
25  *	the Free Software Foundation, version 2.
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/string.h>
32 #include <linux/errno.h>
33 #include <linux/audit.h>
34 #include <linux/flex_array.h>
35 #include "security.h"
36 
37 #include "policydb.h"
38 #include "conditional.h"
39 #include "mls.h"
40 #include "services.h"
41 
42 #define _DEBUG_HASHES
43 
44 #ifdef DEBUG_HASHES
45 static const char *symtab_name[SYM_NUM] = {
46 	"common prefixes",
47 	"classes",
48 	"roles",
49 	"types",
50 	"users",
51 	"bools",
52 	"levels",
53 	"categories",
54 };
55 #endif
56 
57 static unsigned int symtab_sizes[SYM_NUM] = {
58 	2,
59 	32,
60 	16,
61 	512,
62 	128,
63 	16,
64 	16,
65 	16,
66 };
67 
68 struct policydb_compat_info {
69 	int version;
70 	int sym_num;
71 	int ocon_num;
72 };
73 
74 /* These need to be updated if SYM_NUM or OCON_NUM changes */
75 static struct policydb_compat_info policydb_compat[] = {
76 	{
77 		.version	= POLICYDB_VERSION_BASE,
78 		.sym_num	= SYM_NUM - 3,
79 		.ocon_num	= OCON_NUM - 1,
80 	},
81 	{
82 		.version	= POLICYDB_VERSION_BOOL,
83 		.sym_num	= SYM_NUM - 2,
84 		.ocon_num	= OCON_NUM - 1,
85 	},
86 	{
87 		.version	= POLICYDB_VERSION_IPV6,
88 		.sym_num	= SYM_NUM - 2,
89 		.ocon_num	= OCON_NUM,
90 	},
91 	{
92 		.version	= POLICYDB_VERSION_NLCLASS,
93 		.sym_num	= SYM_NUM - 2,
94 		.ocon_num	= OCON_NUM,
95 	},
96 	{
97 		.version	= POLICYDB_VERSION_MLS,
98 		.sym_num	= SYM_NUM,
99 		.ocon_num	= OCON_NUM,
100 	},
101 	{
102 		.version	= POLICYDB_VERSION_AVTAB,
103 		.sym_num	= SYM_NUM,
104 		.ocon_num	= OCON_NUM,
105 	},
106 	{
107 		.version	= POLICYDB_VERSION_RANGETRANS,
108 		.sym_num	= SYM_NUM,
109 		.ocon_num	= OCON_NUM,
110 	},
111 	{
112 		.version	= POLICYDB_VERSION_POLCAP,
113 		.sym_num	= SYM_NUM,
114 		.ocon_num	= OCON_NUM,
115 	},
116 	{
117 		.version	= POLICYDB_VERSION_PERMISSIVE,
118 		.sym_num	= SYM_NUM,
119 		.ocon_num	= OCON_NUM,
120 	},
121 	{
122 		.version	= POLICYDB_VERSION_BOUNDARY,
123 		.sym_num	= SYM_NUM,
124 		.ocon_num	= OCON_NUM,
125 	},
126 };
127 
128 static struct policydb_compat_info *policydb_lookup_compat(int version)
129 {
130 	int i;
131 	struct policydb_compat_info *info = NULL;
132 
133 	for (i = 0; i < ARRAY_SIZE(policydb_compat); i++) {
134 		if (policydb_compat[i].version == version) {
135 			info = &policydb_compat[i];
136 			break;
137 		}
138 	}
139 	return info;
140 }
141 
142 /*
143  * Initialize the role table.
144  */
145 static int roles_init(struct policydb *p)
146 {
147 	char *key = NULL;
148 	int rc;
149 	struct role_datum *role;
150 
151 	role = kzalloc(sizeof(*role), GFP_KERNEL);
152 	if (!role) {
153 		rc = -ENOMEM;
154 		goto out;
155 	}
156 	role->value = ++p->p_roles.nprim;
157 	if (role->value != OBJECT_R_VAL) {
158 		rc = -EINVAL;
159 		goto out_free_role;
160 	}
161 	key = kstrdup(OBJECT_R, GFP_KERNEL);
162 	if (!key) {
163 		rc = -ENOMEM;
164 		goto out_free_role;
165 	}
166 	rc = hashtab_insert(p->p_roles.table, key, role);
167 	if (rc)
168 		goto out_free_key;
169 out:
170 	return rc;
171 
172 out_free_key:
173 	kfree(key);
174 out_free_role:
175 	kfree(role);
176 	goto out;
177 }
178 
179 static u32 rangetr_hash(struct hashtab *h, const void *k)
180 {
181 	const struct range_trans *key = k;
182 	return (key->source_type + (key->target_type << 3) +
183 		(key->target_class << 5)) & (h->size - 1);
184 }
185 
186 static int rangetr_cmp(struct hashtab *h, const void *k1, const void *k2)
187 {
188 	const struct range_trans *key1 = k1, *key2 = k2;
189 	int v;
190 
191 	v = key1->source_type - key2->source_type;
192 	if (v)
193 		return v;
194 
195 	v = key1->target_type - key2->target_type;
196 	if (v)
197 		return v;
198 
199 	v = key1->target_class - key2->target_class;
200 
201 	return v;
202 }
203 
204 /*
205  * Initialize a policy database structure.
206  */
207 static int policydb_init(struct policydb *p)
208 {
209 	int i, rc;
210 
211 	memset(p, 0, sizeof(*p));
212 
213 	for (i = 0; i < SYM_NUM; i++) {
214 		rc = symtab_init(&p->symtab[i], symtab_sizes[i]);
215 		if (rc)
216 			goto out_free_symtab;
217 	}
218 
219 	rc = avtab_init(&p->te_avtab);
220 	if (rc)
221 		goto out_free_symtab;
222 
223 	rc = roles_init(p);
224 	if (rc)
225 		goto out_free_symtab;
226 
227 	rc = cond_policydb_init(p);
228 	if (rc)
229 		goto out_free_symtab;
230 
231 	p->range_tr = hashtab_create(rangetr_hash, rangetr_cmp, 256);
232 	if (!p->range_tr)
233 		goto out_free_symtab;
234 
235 	ebitmap_init(&p->policycaps);
236 	ebitmap_init(&p->permissive_map);
237 
238 out:
239 	return rc;
240 
241 out_free_symtab:
242 	for (i = 0; i < SYM_NUM; i++)
243 		hashtab_destroy(p->symtab[i].table);
244 	goto out;
245 }
246 
247 /*
248  * The following *_index functions are used to
249  * define the val_to_name and val_to_struct arrays
250  * in a policy database structure.  The val_to_name
251  * arrays are used when converting security context
252  * structures into string representations.  The
253  * val_to_struct arrays are used when the attributes
254  * of a class, role, or user are needed.
255  */
256 
257 static int common_index(void *key, void *datum, void *datap)
258 {
259 	struct policydb *p;
260 	struct common_datum *comdatum;
261 
262 	comdatum = datum;
263 	p = datap;
264 	if (!comdatum->value || comdatum->value > p->p_commons.nprim)
265 		return -EINVAL;
266 	p->p_common_val_to_name[comdatum->value - 1] = key;
267 	return 0;
268 }
269 
270 static int class_index(void *key, void *datum, void *datap)
271 {
272 	struct policydb *p;
273 	struct class_datum *cladatum;
274 
275 	cladatum = datum;
276 	p = datap;
277 	if (!cladatum->value || cladatum->value > p->p_classes.nprim)
278 		return -EINVAL;
279 	p->p_class_val_to_name[cladatum->value - 1] = key;
280 	p->class_val_to_struct[cladatum->value - 1] = cladatum;
281 	return 0;
282 }
283 
284 static int role_index(void *key, void *datum, void *datap)
285 {
286 	struct policydb *p;
287 	struct role_datum *role;
288 
289 	role = datum;
290 	p = datap;
291 	if (!role->value
292 	    || role->value > p->p_roles.nprim
293 	    || role->bounds > p->p_roles.nprim)
294 		return -EINVAL;
295 	p->p_role_val_to_name[role->value - 1] = key;
296 	p->role_val_to_struct[role->value - 1] = role;
297 	return 0;
298 }
299 
300 static int type_index(void *key, void *datum, void *datap)
301 {
302 	struct policydb *p;
303 	struct type_datum *typdatum;
304 
305 	typdatum = datum;
306 	p = datap;
307 
308 	if (typdatum->primary) {
309 		if (!typdatum->value
310 		    || typdatum->value > p->p_types.nprim
311 		    || typdatum->bounds > p->p_types.nprim)
312 			return -EINVAL;
313 		p->p_type_val_to_name[typdatum->value - 1] = key;
314 		p->type_val_to_struct[typdatum->value - 1] = typdatum;
315 	}
316 
317 	return 0;
318 }
319 
320 static int user_index(void *key, void *datum, void *datap)
321 {
322 	struct policydb *p;
323 	struct user_datum *usrdatum;
324 
325 	usrdatum = datum;
326 	p = datap;
327 	if (!usrdatum->value
328 	    || usrdatum->value > p->p_users.nprim
329 	    || usrdatum->bounds > p->p_users.nprim)
330 		return -EINVAL;
331 	p->p_user_val_to_name[usrdatum->value - 1] = key;
332 	p->user_val_to_struct[usrdatum->value - 1] = usrdatum;
333 	return 0;
334 }
335 
336 static int sens_index(void *key, void *datum, void *datap)
337 {
338 	struct policydb *p;
339 	struct level_datum *levdatum;
340 
341 	levdatum = datum;
342 	p = datap;
343 
344 	if (!levdatum->isalias) {
345 		if (!levdatum->level->sens ||
346 		    levdatum->level->sens > p->p_levels.nprim)
347 			return -EINVAL;
348 		p->p_sens_val_to_name[levdatum->level->sens - 1] = key;
349 	}
350 
351 	return 0;
352 }
353 
354 static int cat_index(void *key, void *datum, void *datap)
355 {
356 	struct policydb *p;
357 	struct cat_datum *catdatum;
358 
359 	catdatum = datum;
360 	p = datap;
361 
362 	if (!catdatum->isalias) {
363 		if (!catdatum->value || catdatum->value > p->p_cats.nprim)
364 			return -EINVAL;
365 		p->p_cat_val_to_name[catdatum->value - 1] = key;
366 	}
367 
368 	return 0;
369 }
370 
371 static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) =
372 {
373 	common_index,
374 	class_index,
375 	role_index,
376 	type_index,
377 	user_index,
378 	cond_index_bool,
379 	sens_index,
380 	cat_index,
381 };
382 
383 /*
384  * Define the common val_to_name array and the class
385  * val_to_name and val_to_struct arrays in a policy
386  * database structure.
387  *
388  * Caller must clean up upon failure.
389  */
390 static int policydb_index_classes(struct policydb *p)
391 {
392 	int rc;
393 
394 	p->p_common_val_to_name =
395 		kmalloc(p->p_commons.nprim * sizeof(char *), GFP_KERNEL);
396 	if (!p->p_common_val_to_name) {
397 		rc = -ENOMEM;
398 		goto out;
399 	}
400 
401 	rc = hashtab_map(p->p_commons.table, common_index, p);
402 	if (rc)
403 		goto out;
404 
405 	p->class_val_to_struct =
406 		kmalloc(p->p_classes.nprim * sizeof(*(p->class_val_to_struct)), GFP_KERNEL);
407 	if (!p->class_val_to_struct) {
408 		rc = -ENOMEM;
409 		goto out;
410 	}
411 
412 	p->p_class_val_to_name =
413 		kmalloc(p->p_classes.nprim * sizeof(char *), GFP_KERNEL);
414 	if (!p->p_class_val_to_name) {
415 		rc = -ENOMEM;
416 		goto out;
417 	}
418 
419 	rc = hashtab_map(p->p_classes.table, class_index, p);
420 out:
421 	return rc;
422 }
423 
424 #ifdef DEBUG_HASHES
425 static void symtab_hash_eval(struct symtab *s)
426 {
427 	int i;
428 
429 	for (i = 0; i < SYM_NUM; i++) {
430 		struct hashtab *h = s[i].table;
431 		struct hashtab_info info;
432 
433 		hashtab_stat(h, &info);
434 		printk(KERN_DEBUG "SELinux: %s:  %d entries and %d/%d buckets used, "
435 		       "longest chain length %d\n", symtab_name[i], h->nel,
436 		       info.slots_used, h->size, info.max_chain_len);
437 	}
438 }
439 
440 static void rangetr_hash_eval(struct hashtab *h)
441 {
442 	struct hashtab_info info;
443 
444 	hashtab_stat(h, &info);
445 	printk(KERN_DEBUG "SELinux: rangetr:  %d entries and %d/%d buckets used, "
446 	       "longest chain length %d\n", h->nel,
447 	       info.slots_used, h->size, info.max_chain_len);
448 }
449 #else
450 static inline void rangetr_hash_eval(struct hashtab *h)
451 {
452 }
453 #endif
454 
455 /*
456  * Define the other val_to_name and val_to_struct arrays
457  * in a policy database structure.
458  *
459  * Caller must clean up on failure.
460  */
461 static int policydb_index_others(struct policydb *p)
462 {
463 	int i, rc = 0;
464 
465 	printk(KERN_DEBUG "SELinux:  %d users, %d roles, %d types, %d bools",
466 	       p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim);
467 	if (p->mls_enabled)
468 		printk(", %d sens, %d cats", p->p_levels.nprim,
469 		       p->p_cats.nprim);
470 	printk("\n");
471 
472 	printk(KERN_DEBUG "SELinux:  %d classes, %d rules\n",
473 	       p->p_classes.nprim, p->te_avtab.nel);
474 
475 #ifdef DEBUG_HASHES
476 	avtab_hash_eval(&p->te_avtab, "rules");
477 	symtab_hash_eval(p->symtab);
478 #endif
479 
480 	p->role_val_to_struct =
481 		kmalloc(p->p_roles.nprim * sizeof(*(p->role_val_to_struct)),
482 			GFP_KERNEL);
483 	if (!p->role_val_to_struct) {
484 		rc = -ENOMEM;
485 		goto out;
486 	}
487 
488 	p->user_val_to_struct =
489 		kmalloc(p->p_users.nprim * sizeof(*(p->user_val_to_struct)),
490 			GFP_KERNEL);
491 	if (!p->user_val_to_struct) {
492 		rc = -ENOMEM;
493 		goto out;
494 	}
495 
496 	p->type_val_to_struct =
497 		kmalloc(p->p_types.nprim * sizeof(*(p->type_val_to_struct)),
498 			GFP_KERNEL);
499 	if (!p->type_val_to_struct) {
500 		rc = -ENOMEM;
501 		goto out;
502 	}
503 
504 	if (cond_init_bool_indexes(p)) {
505 		rc = -ENOMEM;
506 		goto out;
507 	}
508 
509 	for (i = SYM_ROLES; i < SYM_NUM; i++) {
510 		p->sym_val_to_name[i] =
511 			kmalloc(p->symtab[i].nprim * sizeof(char *), GFP_KERNEL);
512 		if (!p->sym_val_to_name[i]) {
513 			rc = -ENOMEM;
514 			goto out;
515 		}
516 		rc = hashtab_map(p->symtab[i].table, index_f[i], p);
517 		if (rc)
518 			goto out;
519 	}
520 
521 out:
522 	return rc;
523 }
524 
525 /*
526  * The following *_destroy functions are used to
527  * free any memory allocated for each kind of
528  * symbol data in the policy database.
529  */
530 
531 static int perm_destroy(void *key, void *datum, void *p)
532 {
533 	kfree(key);
534 	kfree(datum);
535 	return 0;
536 }
537 
538 static int common_destroy(void *key, void *datum, void *p)
539 {
540 	struct common_datum *comdatum;
541 
542 	kfree(key);
543 	comdatum = datum;
544 	hashtab_map(comdatum->permissions.table, perm_destroy, NULL);
545 	hashtab_destroy(comdatum->permissions.table);
546 	kfree(datum);
547 	return 0;
548 }
549 
550 static int cls_destroy(void *key, void *datum, void *p)
551 {
552 	struct class_datum *cladatum;
553 	struct constraint_node *constraint, *ctemp;
554 	struct constraint_expr *e, *etmp;
555 
556 	kfree(key);
557 	cladatum = datum;
558 	hashtab_map(cladatum->permissions.table, perm_destroy, NULL);
559 	hashtab_destroy(cladatum->permissions.table);
560 	constraint = cladatum->constraints;
561 	while (constraint) {
562 		e = constraint->expr;
563 		while (e) {
564 			ebitmap_destroy(&e->names);
565 			etmp = e;
566 			e = e->next;
567 			kfree(etmp);
568 		}
569 		ctemp = constraint;
570 		constraint = constraint->next;
571 		kfree(ctemp);
572 	}
573 
574 	constraint = cladatum->validatetrans;
575 	while (constraint) {
576 		e = constraint->expr;
577 		while (e) {
578 			ebitmap_destroy(&e->names);
579 			etmp = e;
580 			e = e->next;
581 			kfree(etmp);
582 		}
583 		ctemp = constraint;
584 		constraint = constraint->next;
585 		kfree(ctemp);
586 	}
587 
588 	kfree(cladatum->comkey);
589 	kfree(datum);
590 	return 0;
591 }
592 
593 static int role_destroy(void *key, void *datum, void *p)
594 {
595 	struct role_datum *role;
596 
597 	kfree(key);
598 	role = datum;
599 	ebitmap_destroy(&role->dominates);
600 	ebitmap_destroy(&role->types);
601 	kfree(datum);
602 	return 0;
603 }
604 
605 static int type_destroy(void *key, void *datum, void *p)
606 {
607 	kfree(key);
608 	kfree(datum);
609 	return 0;
610 }
611 
612 static int user_destroy(void *key, void *datum, void *p)
613 {
614 	struct user_datum *usrdatum;
615 
616 	kfree(key);
617 	usrdatum = datum;
618 	ebitmap_destroy(&usrdatum->roles);
619 	ebitmap_destroy(&usrdatum->range.level[0].cat);
620 	ebitmap_destroy(&usrdatum->range.level[1].cat);
621 	ebitmap_destroy(&usrdatum->dfltlevel.cat);
622 	kfree(datum);
623 	return 0;
624 }
625 
626 static int sens_destroy(void *key, void *datum, void *p)
627 {
628 	struct level_datum *levdatum;
629 
630 	kfree(key);
631 	levdatum = datum;
632 	ebitmap_destroy(&levdatum->level->cat);
633 	kfree(levdatum->level);
634 	kfree(datum);
635 	return 0;
636 }
637 
638 static int cat_destroy(void *key, void *datum, void *p)
639 {
640 	kfree(key);
641 	kfree(datum);
642 	return 0;
643 }
644 
645 static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) =
646 {
647 	common_destroy,
648 	cls_destroy,
649 	role_destroy,
650 	type_destroy,
651 	user_destroy,
652 	cond_destroy_bool,
653 	sens_destroy,
654 	cat_destroy,
655 };
656 
657 static int range_tr_destroy(void *key, void *datum, void *p)
658 {
659 	struct mls_range *rt = datum;
660 	kfree(key);
661 	ebitmap_destroy(&rt->level[0].cat);
662 	ebitmap_destroy(&rt->level[1].cat);
663 	kfree(datum);
664 	cond_resched();
665 	return 0;
666 }
667 
668 static void ocontext_destroy(struct ocontext *c, int i)
669 {
670 	if (!c)
671 		return;
672 
673 	context_destroy(&c->context[0]);
674 	context_destroy(&c->context[1]);
675 	if (i == OCON_ISID || i == OCON_FS ||
676 	    i == OCON_NETIF || i == OCON_FSUSE)
677 		kfree(c->u.name);
678 	kfree(c);
679 }
680 
681 /*
682  * Free any memory allocated by a policy database structure.
683  */
684 void policydb_destroy(struct policydb *p)
685 {
686 	struct ocontext *c, *ctmp;
687 	struct genfs *g, *gtmp;
688 	int i;
689 	struct role_allow *ra, *lra = NULL;
690 	struct role_trans *tr, *ltr = NULL;
691 
692 	for (i = 0; i < SYM_NUM; i++) {
693 		cond_resched();
694 		hashtab_map(p->symtab[i].table, destroy_f[i], NULL);
695 		hashtab_destroy(p->symtab[i].table);
696 	}
697 
698 	for (i = 0; i < SYM_NUM; i++)
699 		kfree(p->sym_val_to_name[i]);
700 
701 	kfree(p->class_val_to_struct);
702 	kfree(p->role_val_to_struct);
703 	kfree(p->user_val_to_struct);
704 	kfree(p->type_val_to_struct);
705 
706 	avtab_destroy(&p->te_avtab);
707 
708 	for (i = 0; i < OCON_NUM; i++) {
709 		cond_resched();
710 		c = p->ocontexts[i];
711 		while (c) {
712 			ctmp = c;
713 			c = c->next;
714 			ocontext_destroy(ctmp, i);
715 		}
716 		p->ocontexts[i] = NULL;
717 	}
718 
719 	g = p->genfs;
720 	while (g) {
721 		cond_resched();
722 		kfree(g->fstype);
723 		c = g->head;
724 		while (c) {
725 			ctmp = c;
726 			c = c->next;
727 			ocontext_destroy(ctmp, OCON_FSUSE);
728 		}
729 		gtmp = g;
730 		g = g->next;
731 		kfree(gtmp);
732 	}
733 	p->genfs = NULL;
734 
735 	cond_policydb_destroy(p);
736 
737 	for (tr = p->role_tr; tr; tr = tr->next) {
738 		cond_resched();
739 		kfree(ltr);
740 		ltr = tr;
741 	}
742 	kfree(ltr);
743 
744 	for (ra = p->role_allow; ra; ra = ra->next) {
745 		cond_resched();
746 		kfree(lra);
747 		lra = ra;
748 	}
749 	kfree(lra);
750 
751 	hashtab_map(p->range_tr, range_tr_destroy, NULL);
752 	hashtab_destroy(p->range_tr);
753 
754 	if (p->type_attr_map_array) {
755 		for (i = 0; i < p->p_types.nprim; i++) {
756 			struct ebitmap *e;
757 
758 			e = flex_array_get(p->type_attr_map_array, i);
759 			if (!e)
760 				continue;
761 			ebitmap_destroy(e);
762 		}
763 		flex_array_free(p->type_attr_map_array);
764 	}
765 	ebitmap_destroy(&p->policycaps);
766 	ebitmap_destroy(&p->permissive_map);
767 
768 	return;
769 }
770 
771 /*
772  * Load the initial SIDs specified in a policy database
773  * structure into a SID table.
774  */
775 int policydb_load_isids(struct policydb *p, struct sidtab *s)
776 {
777 	struct ocontext *head, *c;
778 	int rc;
779 
780 	rc = sidtab_init(s);
781 	if (rc) {
782 		printk(KERN_ERR "SELinux:  out of memory on SID table init\n");
783 		goto out;
784 	}
785 
786 	head = p->ocontexts[OCON_ISID];
787 	for (c = head; c; c = c->next) {
788 		if (!c->context[0].user) {
789 			printk(KERN_ERR "SELinux:  SID %s was never "
790 			       "defined.\n", c->u.name);
791 			rc = -EINVAL;
792 			goto out;
793 		}
794 		if (sidtab_insert(s, c->sid[0], &c->context[0])) {
795 			printk(KERN_ERR "SELinux:  unable to load initial "
796 			       "SID %s.\n", c->u.name);
797 			rc = -EINVAL;
798 			goto out;
799 		}
800 	}
801 out:
802 	return rc;
803 }
804 
805 int policydb_class_isvalid(struct policydb *p, unsigned int class)
806 {
807 	if (!class || class > p->p_classes.nprim)
808 		return 0;
809 	return 1;
810 }
811 
812 int policydb_role_isvalid(struct policydb *p, unsigned int role)
813 {
814 	if (!role || role > p->p_roles.nprim)
815 		return 0;
816 	return 1;
817 }
818 
819 int policydb_type_isvalid(struct policydb *p, unsigned int type)
820 {
821 	if (!type || type > p->p_types.nprim)
822 		return 0;
823 	return 1;
824 }
825 
826 /*
827  * Return 1 if the fields in the security context
828  * structure `c' are valid.  Return 0 otherwise.
829  */
830 int policydb_context_isvalid(struct policydb *p, struct context *c)
831 {
832 	struct role_datum *role;
833 	struct user_datum *usrdatum;
834 
835 	if (!c->role || c->role > p->p_roles.nprim)
836 		return 0;
837 
838 	if (!c->user || c->user > p->p_users.nprim)
839 		return 0;
840 
841 	if (!c->type || c->type > p->p_types.nprim)
842 		return 0;
843 
844 	if (c->role != OBJECT_R_VAL) {
845 		/*
846 		 * Role must be authorized for the type.
847 		 */
848 		role = p->role_val_to_struct[c->role - 1];
849 		if (!ebitmap_get_bit(&role->types,
850 				     c->type - 1))
851 			/* role may not be associated with type */
852 			return 0;
853 
854 		/*
855 		 * User must be authorized for the role.
856 		 */
857 		usrdatum = p->user_val_to_struct[c->user - 1];
858 		if (!usrdatum)
859 			return 0;
860 
861 		if (!ebitmap_get_bit(&usrdatum->roles,
862 				     c->role - 1))
863 			/* user may not be associated with role */
864 			return 0;
865 	}
866 
867 	if (!mls_context_isvalid(p, c))
868 		return 0;
869 
870 	return 1;
871 }
872 
873 /*
874  * Read a MLS range structure from a policydb binary
875  * representation file.
876  */
877 static int mls_read_range_helper(struct mls_range *r, void *fp)
878 {
879 	__le32 buf[2];
880 	u32 items;
881 	int rc;
882 
883 	rc = next_entry(buf, fp, sizeof(u32));
884 	if (rc < 0)
885 		goto out;
886 
887 	items = le32_to_cpu(buf[0]);
888 	if (items > ARRAY_SIZE(buf)) {
889 		printk(KERN_ERR "SELinux: mls:  range overflow\n");
890 		rc = -EINVAL;
891 		goto out;
892 	}
893 	rc = next_entry(buf, fp, sizeof(u32) * items);
894 	if (rc < 0) {
895 		printk(KERN_ERR "SELinux: mls:  truncated range\n");
896 		goto out;
897 	}
898 	r->level[0].sens = le32_to_cpu(buf[0]);
899 	if (items > 1)
900 		r->level[1].sens = le32_to_cpu(buf[1]);
901 	else
902 		r->level[1].sens = r->level[0].sens;
903 
904 	rc = ebitmap_read(&r->level[0].cat, fp);
905 	if (rc) {
906 		printk(KERN_ERR "SELinux: mls:  error reading low "
907 		       "categories\n");
908 		goto out;
909 	}
910 	if (items > 1) {
911 		rc = ebitmap_read(&r->level[1].cat, fp);
912 		if (rc) {
913 			printk(KERN_ERR "SELinux: mls:  error reading high "
914 			       "categories\n");
915 			goto bad_high;
916 		}
917 	} else {
918 		rc = ebitmap_cpy(&r->level[1].cat, &r->level[0].cat);
919 		if (rc) {
920 			printk(KERN_ERR "SELinux: mls:  out of memory\n");
921 			goto bad_high;
922 		}
923 	}
924 
925 	rc = 0;
926 out:
927 	return rc;
928 bad_high:
929 	ebitmap_destroy(&r->level[0].cat);
930 	goto out;
931 }
932 
933 /*
934  * Read and validate a security context structure
935  * from a policydb binary representation file.
936  */
937 static int context_read_and_validate(struct context *c,
938 				     struct policydb *p,
939 				     void *fp)
940 {
941 	__le32 buf[3];
942 	int rc;
943 
944 	rc = next_entry(buf, fp, sizeof buf);
945 	if (rc < 0) {
946 		printk(KERN_ERR "SELinux: context truncated\n");
947 		goto out;
948 	}
949 	c->user = le32_to_cpu(buf[0]);
950 	c->role = le32_to_cpu(buf[1]);
951 	c->type = le32_to_cpu(buf[2]);
952 	if (p->policyvers >= POLICYDB_VERSION_MLS) {
953 		if (mls_read_range_helper(&c->range, fp)) {
954 			printk(KERN_ERR "SELinux: error reading MLS range of "
955 			       "context\n");
956 			rc = -EINVAL;
957 			goto out;
958 		}
959 	}
960 
961 	if (!policydb_context_isvalid(p, c)) {
962 		printk(KERN_ERR "SELinux:  invalid security context\n");
963 		context_destroy(c);
964 		rc = -EINVAL;
965 	}
966 out:
967 	return rc;
968 }
969 
970 /*
971  * The following *_read functions are used to
972  * read the symbol data from a policy database
973  * binary representation file.
974  */
975 
976 static int perm_read(struct policydb *p, struct hashtab *h, void *fp)
977 {
978 	char *key = NULL;
979 	struct perm_datum *perdatum;
980 	int rc;
981 	__le32 buf[2];
982 	u32 len;
983 
984 	perdatum = kzalloc(sizeof(*perdatum), GFP_KERNEL);
985 	if (!perdatum) {
986 		rc = -ENOMEM;
987 		goto out;
988 	}
989 
990 	rc = next_entry(buf, fp, sizeof buf);
991 	if (rc < 0)
992 		goto bad;
993 
994 	len = le32_to_cpu(buf[0]);
995 	perdatum->value = le32_to_cpu(buf[1]);
996 
997 	key = kmalloc(len + 1, GFP_KERNEL);
998 	if (!key) {
999 		rc = -ENOMEM;
1000 		goto bad;
1001 	}
1002 	rc = next_entry(key, fp, len);
1003 	if (rc < 0)
1004 		goto bad;
1005 	key[len] = '\0';
1006 
1007 	rc = hashtab_insert(h, key, perdatum);
1008 	if (rc)
1009 		goto bad;
1010 out:
1011 	return rc;
1012 bad:
1013 	perm_destroy(key, perdatum, NULL);
1014 	goto out;
1015 }
1016 
1017 static int common_read(struct policydb *p, struct hashtab *h, void *fp)
1018 {
1019 	char *key = NULL;
1020 	struct common_datum *comdatum;
1021 	__le32 buf[4];
1022 	u32 len, nel;
1023 	int i, rc;
1024 
1025 	comdatum = kzalloc(sizeof(*comdatum), GFP_KERNEL);
1026 	if (!comdatum) {
1027 		rc = -ENOMEM;
1028 		goto out;
1029 	}
1030 
1031 	rc = next_entry(buf, fp, sizeof buf);
1032 	if (rc < 0)
1033 		goto bad;
1034 
1035 	len = le32_to_cpu(buf[0]);
1036 	comdatum->value = le32_to_cpu(buf[1]);
1037 
1038 	rc = symtab_init(&comdatum->permissions, PERM_SYMTAB_SIZE);
1039 	if (rc)
1040 		goto bad;
1041 	comdatum->permissions.nprim = le32_to_cpu(buf[2]);
1042 	nel = le32_to_cpu(buf[3]);
1043 
1044 	key = kmalloc(len + 1, GFP_KERNEL);
1045 	if (!key) {
1046 		rc = -ENOMEM;
1047 		goto bad;
1048 	}
1049 	rc = next_entry(key, fp, len);
1050 	if (rc < 0)
1051 		goto bad;
1052 	key[len] = '\0';
1053 
1054 	for (i = 0; i < nel; i++) {
1055 		rc = perm_read(p, comdatum->permissions.table, fp);
1056 		if (rc)
1057 			goto bad;
1058 	}
1059 
1060 	rc = hashtab_insert(h, key, comdatum);
1061 	if (rc)
1062 		goto bad;
1063 out:
1064 	return rc;
1065 bad:
1066 	common_destroy(key, comdatum, NULL);
1067 	goto out;
1068 }
1069 
1070 static int read_cons_helper(struct constraint_node **nodep, int ncons,
1071 			    int allowxtarget, void *fp)
1072 {
1073 	struct constraint_node *c, *lc;
1074 	struct constraint_expr *e, *le;
1075 	__le32 buf[3];
1076 	u32 nexpr;
1077 	int rc, i, j, depth;
1078 
1079 	lc = NULL;
1080 	for (i = 0; i < ncons; i++) {
1081 		c = kzalloc(sizeof(*c), GFP_KERNEL);
1082 		if (!c)
1083 			return -ENOMEM;
1084 
1085 		if (lc)
1086 			lc->next = c;
1087 		else
1088 			*nodep = c;
1089 
1090 		rc = next_entry(buf, fp, (sizeof(u32) * 2));
1091 		if (rc < 0)
1092 			return rc;
1093 		c->permissions = le32_to_cpu(buf[0]);
1094 		nexpr = le32_to_cpu(buf[1]);
1095 		le = NULL;
1096 		depth = -1;
1097 		for (j = 0; j < nexpr; j++) {
1098 			e = kzalloc(sizeof(*e), GFP_KERNEL);
1099 			if (!e)
1100 				return -ENOMEM;
1101 
1102 			if (le)
1103 				le->next = e;
1104 			else
1105 				c->expr = e;
1106 
1107 			rc = next_entry(buf, fp, (sizeof(u32) * 3));
1108 			if (rc < 0)
1109 				return rc;
1110 			e->expr_type = le32_to_cpu(buf[0]);
1111 			e->attr = le32_to_cpu(buf[1]);
1112 			e->op = le32_to_cpu(buf[2]);
1113 
1114 			switch (e->expr_type) {
1115 			case CEXPR_NOT:
1116 				if (depth < 0)
1117 					return -EINVAL;
1118 				break;
1119 			case CEXPR_AND:
1120 			case CEXPR_OR:
1121 				if (depth < 1)
1122 					return -EINVAL;
1123 				depth--;
1124 				break;
1125 			case CEXPR_ATTR:
1126 				if (depth == (CEXPR_MAXDEPTH - 1))
1127 					return -EINVAL;
1128 				depth++;
1129 				break;
1130 			case CEXPR_NAMES:
1131 				if (!allowxtarget && (e->attr & CEXPR_XTARGET))
1132 					return -EINVAL;
1133 				if (depth == (CEXPR_MAXDEPTH - 1))
1134 					return -EINVAL;
1135 				depth++;
1136 				if (ebitmap_read(&e->names, fp))
1137 					return -EINVAL;
1138 				break;
1139 			default:
1140 				return -EINVAL;
1141 			}
1142 			le = e;
1143 		}
1144 		if (depth != 0)
1145 			return -EINVAL;
1146 		lc = c;
1147 	}
1148 
1149 	return 0;
1150 }
1151 
1152 static int class_read(struct policydb *p, struct hashtab *h, void *fp)
1153 {
1154 	char *key = NULL;
1155 	struct class_datum *cladatum;
1156 	__le32 buf[6];
1157 	u32 len, len2, ncons, nel;
1158 	int i, rc;
1159 
1160 	cladatum = kzalloc(sizeof(*cladatum), GFP_KERNEL);
1161 	if (!cladatum) {
1162 		rc = -ENOMEM;
1163 		goto out;
1164 	}
1165 
1166 	rc = next_entry(buf, fp, sizeof(u32)*6);
1167 	if (rc < 0)
1168 		goto bad;
1169 
1170 	len = le32_to_cpu(buf[0]);
1171 	len2 = le32_to_cpu(buf[1]);
1172 	cladatum->value = le32_to_cpu(buf[2]);
1173 
1174 	rc = symtab_init(&cladatum->permissions, PERM_SYMTAB_SIZE);
1175 	if (rc)
1176 		goto bad;
1177 	cladatum->permissions.nprim = le32_to_cpu(buf[3]);
1178 	nel = le32_to_cpu(buf[4]);
1179 
1180 	ncons = le32_to_cpu(buf[5]);
1181 
1182 	key = kmalloc(len + 1, GFP_KERNEL);
1183 	if (!key) {
1184 		rc = -ENOMEM;
1185 		goto bad;
1186 	}
1187 	rc = next_entry(key, fp, len);
1188 	if (rc < 0)
1189 		goto bad;
1190 	key[len] = '\0';
1191 
1192 	if (len2) {
1193 		cladatum->comkey = kmalloc(len2 + 1, GFP_KERNEL);
1194 		if (!cladatum->comkey) {
1195 			rc = -ENOMEM;
1196 			goto bad;
1197 		}
1198 		rc = next_entry(cladatum->comkey, fp, len2);
1199 		if (rc < 0)
1200 			goto bad;
1201 		cladatum->comkey[len2] = '\0';
1202 
1203 		cladatum->comdatum = hashtab_search(p->p_commons.table,
1204 						    cladatum->comkey);
1205 		if (!cladatum->comdatum) {
1206 			printk(KERN_ERR "SELinux:  unknown common %s\n",
1207 			       cladatum->comkey);
1208 			rc = -EINVAL;
1209 			goto bad;
1210 		}
1211 	}
1212 	for (i = 0; i < nel; i++) {
1213 		rc = perm_read(p, cladatum->permissions.table, fp);
1214 		if (rc)
1215 			goto bad;
1216 	}
1217 
1218 	rc = read_cons_helper(&cladatum->constraints, ncons, 0, fp);
1219 	if (rc)
1220 		goto bad;
1221 
1222 	if (p->policyvers >= POLICYDB_VERSION_VALIDATETRANS) {
1223 		/* grab the validatetrans rules */
1224 		rc = next_entry(buf, fp, sizeof(u32));
1225 		if (rc < 0)
1226 			goto bad;
1227 		ncons = le32_to_cpu(buf[0]);
1228 		rc = read_cons_helper(&cladatum->validatetrans, ncons, 1, fp);
1229 		if (rc)
1230 			goto bad;
1231 	}
1232 
1233 	rc = hashtab_insert(h, key, cladatum);
1234 	if (rc)
1235 		goto bad;
1236 
1237 	rc = 0;
1238 out:
1239 	return rc;
1240 bad:
1241 	cls_destroy(key, cladatum, NULL);
1242 	goto out;
1243 }
1244 
1245 static int role_read(struct policydb *p, struct hashtab *h, void *fp)
1246 {
1247 	char *key = NULL;
1248 	struct role_datum *role;
1249 	int rc, to_read = 2;
1250 	__le32 buf[3];
1251 	u32 len;
1252 
1253 	role = kzalloc(sizeof(*role), GFP_KERNEL);
1254 	if (!role) {
1255 		rc = -ENOMEM;
1256 		goto out;
1257 	}
1258 
1259 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1260 		to_read = 3;
1261 
1262 	rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
1263 	if (rc < 0)
1264 		goto bad;
1265 
1266 	len = le32_to_cpu(buf[0]);
1267 	role->value = le32_to_cpu(buf[1]);
1268 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1269 		role->bounds = le32_to_cpu(buf[2]);
1270 
1271 	key = kmalloc(len + 1, GFP_KERNEL);
1272 	if (!key) {
1273 		rc = -ENOMEM;
1274 		goto bad;
1275 	}
1276 	rc = next_entry(key, fp, len);
1277 	if (rc < 0)
1278 		goto bad;
1279 	key[len] = '\0';
1280 
1281 	rc = ebitmap_read(&role->dominates, fp);
1282 	if (rc)
1283 		goto bad;
1284 
1285 	rc = ebitmap_read(&role->types, fp);
1286 	if (rc)
1287 		goto bad;
1288 
1289 	if (strcmp(key, OBJECT_R) == 0) {
1290 		if (role->value != OBJECT_R_VAL) {
1291 			printk(KERN_ERR "SELinux: Role %s has wrong value %d\n",
1292 			       OBJECT_R, role->value);
1293 			rc = -EINVAL;
1294 			goto bad;
1295 		}
1296 		rc = 0;
1297 		goto bad;
1298 	}
1299 
1300 	rc = hashtab_insert(h, key, role);
1301 	if (rc)
1302 		goto bad;
1303 out:
1304 	return rc;
1305 bad:
1306 	role_destroy(key, role, NULL);
1307 	goto out;
1308 }
1309 
1310 static int type_read(struct policydb *p, struct hashtab *h, void *fp)
1311 {
1312 	char *key = NULL;
1313 	struct type_datum *typdatum;
1314 	int rc, to_read = 3;
1315 	__le32 buf[4];
1316 	u32 len;
1317 
1318 	typdatum = kzalloc(sizeof(*typdatum), GFP_KERNEL);
1319 	if (!typdatum) {
1320 		rc = -ENOMEM;
1321 		return rc;
1322 	}
1323 
1324 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1325 		to_read = 4;
1326 
1327 	rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
1328 	if (rc < 0)
1329 		goto bad;
1330 
1331 	len = le32_to_cpu(buf[0]);
1332 	typdatum->value = le32_to_cpu(buf[1]);
1333 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) {
1334 		u32 prop = le32_to_cpu(buf[2]);
1335 
1336 		if (prop & TYPEDATUM_PROPERTY_PRIMARY)
1337 			typdatum->primary = 1;
1338 		if (prop & TYPEDATUM_PROPERTY_ATTRIBUTE)
1339 			typdatum->attribute = 1;
1340 
1341 		typdatum->bounds = le32_to_cpu(buf[3]);
1342 	} else {
1343 		typdatum->primary = le32_to_cpu(buf[2]);
1344 	}
1345 
1346 	key = kmalloc(len + 1, GFP_KERNEL);
1347 	if (!key) {
1348 		rc = -ENOMEM;
1349 		goto bad;
1350 	}
1351 	rc = next_entry(key, fp, len);
1352 	if (rc < 0)
1353 		goto bad;
1354 	key[len] = '\0';
1355 
1356 	rc = hashtab_insert(h, key, typdatum);
1357 	if (rc)
1358 		goto bad;
1359 out:
1360 	return rc;
1361 bad:
1362 	type_destroy(key, typdatum, NULL);
1363 	goto out;
1364 }
1365 
1366 
1367 /*
1368  * Read a MLS level structure from a policydb binary
1369  * representation file.
1370  */
1371 static int mls_read_level(struct mls_level *lp, void *fp)
1372 {
1373 	__le32 buf[1];
1374 	int rc;
1375 
1376 	memset(lp, 0, sizeof(*lp));
1377 
1378 	rc = next_entry(buf, fp, sizeof buf);
1379 	if (rc < 0) {
1380 		printk(KERN_ERR "SELinux: mls: truncated level\n");
1381 		goto bad;
1382 	}
1383 	lp->sens = le32_to_cpu(buf[0]);
1384 
1385 	if (ebitmap_read(&lp->cat, fp)) {
1386 		printk(KERN_ERR "SELinux: mls:  error reading level "
1387 		       "categories\n");
1388 		goto bad;
1389 	}
1390 
1391 	return 0;
1392 
1393 bad:
1394 	return -EINVAL;
1395 }
1396 
1397 static int user_read(struct policydb *p, struct hashtab *h, void *fp)
1398 {
1399 	char *key = NULL;
1400 	struct user_datum *usrdatum;
1401 	int rc, to_read = 2;
1402 	__le32 buf[3];
1403 	u32 len;
1404 
1405 	usrdatum = kzalloc(sizeof(*usrdatum), GFP_KERNEL);
1406 	if (!usrdatum) {
1407 		rc = -ENOMEM;
1408 		goto out;
1409 	}
1410 
1411 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1412 		to_read = 3;
1413 
1414 	rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
1415 	if (rc < 0)
1416 		goto bad;
1417 
1418 	len = le32_to_cpu(buf[0]);
1419 	usrdatum->value = le32_to_cpu(buf[1]);
1420 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1421 		usrdatum->bounds = le32_to_cpu(buf[2]);
1422 
1423 	key = kmalloc(len + 1, GFP_KERNEL);
1424 	if (!key) {
1425 		rc = -ENOMEM;
1426 		goto bad;
1427 	}
1428 	rc = next_entry(key, fp, len);
1429 	if (rc < 0)
1430 		goto bad;
1431 	key[len] = '\0';
1432 
1433 	rc = ebitmap_read(&usrdatum->roles, fp);
1434 	if (rc)
1435 		goto bad;
1436 
1437 	if (p->policyvers >= POLICYDB_VERSION_MLS) {
1438 		rc = mls_read_range_helper(&usrdatum->range, fp);
1439 		if (rc)
1440 			goto bad;
1441 		rc = mls_read_level(&usrdatum->dfltlevel, fp);
1442 		if (rc)
1443 			goto bad;
1444 	}
1445 
1446 	rc = hashtab_insert(h, key, usrdatum);
1447 	if (rc)
1448 		goto bad;
1449 out:
1450 	return rc;
1451 bad:
1452 	user_destroy(key, usrdatum, NULL);
1453 	goto out;
1454 }
1455 
1456 static int sens_read(struct policydb *p, struct hashtab *h, void *fp)
1457 {
1458 	char *key = NULL;
1459 	struct level_datum *levdatum;
1460 	int rc;
1461 	__le32 buf[2];
1462 	u32 len;
1463 
1464 	levdatum = kzalloc(sizeof(*levdatum), GFP_ATOMIC);
1465 	if (!levdatum) {
1466 		rc = -ENOMEM;
1467 		goto out;
1468 	}
1469 
1470 	rc = next_entry(buf, fp, sizeof buf);
1471 	if (rc < 0)
1472 		goto bad;
1473 
1474 	len = le32_to_cpu(buf[0]);
1475 	levdatum->isalias = le32_to_cpu(buf[1]);
1476 
1477 	key = kmalloc(len + 1, GFP_ATOMIC);
1478 	if (!key) {
1479 		rc = -ENOMEM;
1480 		goto bad;
1481 	}
1482 	rc = next_entry(key, fp, len);
1483 	if (rc < 0)
1484 		goto bad;
1485 	key[len] = '\0';
1486 
1487 	levdatum->level = kmalloc(sizeof(struct mls_level), GFP_ATOMIC);
1488 	if (!levdatum->level) {
1489 		rc = -ENOMEM;
1490 		goto bad;
1491 	}
1492 	if (mls_read_level(levdatum->level, fp)) {
1493 		rc = -EINVAL;
1494 		goto bad;
1495 	}
1496 
1497 	rc = hashtab_insert(h, key, levdatum);
1498 	if (rc)
1499 		goto bad;
1500 out:
1501 	return rc;
1502 bad:
1503 	sens_destroy(key, levdatum, NULL);
1504 	goto out;
1505 }
1506 
1507 static int cat_read(struct policydb *p, struct hashtab *h, void *fp)
1508 {
1509 	char *key = NULL;
1510 	struct cat_datum *catdatum;
1511 	int rc;
1512 	__le32 buf[3];
1513 	u32 len;
1514 
1515 	catdatum = kzalloc(sizeof(*catdatum), GFP_ATOMIC);
1516 	if (!catdatum) {
1517 		rc = -ENOMEM;
1518 		goto out;
1519 	}
1520 
1521 	rc = next_entry(buf, fp, sizeof buf);
1522 	if (rc < 0)
1523 		goto bad;
1524 
1525 	len = le32_to_cpu(buf[0]);
1526 	catdatum->value = le32_to_cpu(buf[1]);
1527 	catdatum->isalias = le32_to_cpu(buf[2]);
1528 
1529 	key = kmalloc(len + 1, GFP_ATOMIC);
1530 	if (!key) {
1531 		rc = -ENOMEM;
1532 		goto bad;
1533 	}
1534 	rc = next_entry(key, fp, len);
1535 	if (rc < 0)
1536 		goto bad;
1537 	key[len] = '\0';
1538 
1539 	rc = hashtab_insert(h, key, catdatum);
1540 	if (rc)
1541 		goto bad;
1542 out:
1543 	return rc;
1544 
1545 bad:
1546 	cat_destroy(key, catdatum, NULL);
1547 	goto out;
1548 }
1549 
1550 static int (*read_f[SYM_NUM]) (struct policydb *p, struct hashtab *h, void *fp) =
1551 {
1552 	common_read,
1553 	class_read,
1554 	role_read,
1555 	type_read,
1556 	user_read,
1557 	cond_read_bool,
1558 	sens_read,
1559 	cat_read,
1560 };
1561 
1562 static int user_bounds_sanity_check(void *key, void *datum, void *datap)
1563 {
1564 	struct user_datum *upper, *user;
1565 	struct policydb *p = datap;
1566 	int depth = 0;
1567 
1568 	upper = user = datum;
1569 	while (upper->bounds) {
1570 		struct ebitmap_node *node;
1571 		unsigned long bit;
1572 
1573 		if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
1574 			printk(KERN_ERR "SELinux: user %s: "
1575 			       "too deep or looped boundary",
1576 			       (char *) key);
1577 			return -EINVAL;
1578 		}
1579 
1580 		upper = p->user_val_to_struct[upper->bounds - 1];
1581 		ebitmap_for_each_positive_bit(&user->roles, node, bit) {
1582 			if (ebitmap_get_bit(&upper->roles, bit))
1583 				continue;
1584 
1585 			printk(KERN_ERR
1586 			       "SELinux: boundary violated policy: "
1587 			       "user=%s role=%s bounds=%s\n",
1588 			       p->p_user_val_to_name[user->value - 1],
1589 			       p->p_role_val_to_name[bit],
1590 			       p->p_user_val_to_name[upper->value - 1]);
1591 
1592 			return -EINVAL;
1593 		}
1594 	}
1595 
1596 	return 0;
1597 }
1598 
1599 static int role_bounds_sanity_check(void *key, void *datum, void *datap)
1600 {
1601 	struct role_datum *upper, *role;
1602 	struct policydb *p = datap;
1603 	int depth = 0;
1604 
1605 	upper = role = datum;
1606 	while (upper->bounds) {
1607 		struct ebitmap_node *node;
1608 		unsigned long bit;
1609 
1610 		if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
1611 			printk(KERN_ERR "SELinux: role %s: "
1612 			       "too deep or looped bounds\n",
1613 			       (char *) key);
1614 			return -EINVAL;
1615 		}
1616 
1617 		upper = p->role_val_to_struct[upper->bounds - 1];
1618 		ebitmap_for_each_positive_bit(&role->types, node, bit) {
1619 			if (ebitmap_get_bit(&upper->types, bit))
1620 				continue;
1621 
1622 			printk(KERN_ERR
1623 			       "SELinux: boundary violated policy: "
1624 			       "role=%s type=%s bounds=%s\n",
1625 			       p->p_role_val_to_name[role->value - 1],
1626 			       p->p_type_val_to_name[bit],
1627 			       p->p_role_val_to_name[upper->value - 1]);
1628 
1629 			return -EINVAL;
1630 		}
1631 	}
1632 
1633 	return 0;
1634 }
1635 
1636 static int type_bounds_sanity_check(void *key, void *datum, void *datap)
1637 {
1638 	struct type_datum *upper;
1639 	struct policydb *p = datap;
1640 	int depth = 0;
1641 
1642 	upper = datum;
1643 	while (upper->bounds) {
1644 		if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
1645 			printk(KERN_ERR "SELinux: type %s: "
1646 			       "too deep or looped boundary\n",
1647 			       (char *) key);
1648 			return -EINVAL;
1649 		}
1650 
1651 		upper = p->type_val_to_struct[upper->bounds - 1];
1652 		if (upper->attribute) {
1653 			printk(KERN_ERR "SELinux: type %s: "
1654 			       "bounded by attribute %s",
1655 			       (char *) key,
1656 			       p->p_type_val_to_name[upper->value - 1]);
1657 			return -EINVAL;
1658 		}
1659 	}
1660 
1661 	return 0;
1662 }
1663 
1664 static int policydb_bounds_sanity_check(struct policydb *p)
1665 {
1666 	int rc;
1667 
1668 	if (p->policyvers < POLICYDB_VERSION_BOUNDARY)
1669 		return 0;
1670 
1671 	rc = hashtab_map(p->p_users.table,
1672 			 user_bounds_sanity_check, p);
1673 	if (rc)
1674 		return rc;
1675 
1676 	rc = hashtab_map(p->p_roles.table,
1677 			 role_bounds_sanity_check, p);
1678 	if (rc)
1679 		return rc;
1680 
1681 	rc = hashtab_map(p->p_types.table,
1682 			 type_bounds_sanity_check, p);
1683 	if (rc)
1684 		return rc;
1685 
1686 	return 0;
1687 }
1688 
1689 extern int ss_initialized;
1690 
1691 u16 string_to_security_class(struct policydb *p, const char *name)
1692 {
1693 	struct class_datum *cladatum;
1694 
1695 	cladatum = hashtab_search(p->p_classes.table, name);
1696 	if (!cladatum)
1697 		return 0;
1698 
1699 	return cladatum->value;
1700 }
1701 
1702 u32 string_to_av_perm(struct policydb *p, u16 tclass, const char *name)
1703 {
1704 	struct class_datum *cladatum;
1705 	struct perm_datum *perdatum = NULL;
1706 	struct common_datum *comdatum;
1707 
1708 	if (!tclass || tclass > p->p_classes.nprim)
1709 		return 0;
1710 
1711 	cladatum = p->class_val_to_struct[tclass-1];
1712 	comdatum = cladatum->comdatum;
1713 	if (comdatum)
1714 		perdatum = hashtab_search(comdatum->permissions.table,
1715 					  name);
1716 	if (!perdatum)
1717 		perdatum = hashtab_search(cladatum->permissions.table,
1718 					  name);
1719 	if (!perdatum)
1720 		return 0;
1721 
1722 	return 1U << (perdatum->value-1);
1723 }
1724 
1725 static int range_read(struct policydb *p, void *fp)
1726 {
1727 	struct range_trans *rt = NULL;
1728 	struct mls_range *r = NULL;
1729 	int i, rc;
1730 	__le32 buf[2];
1731 	u32 nel;
1732 
1733 	if (p->policyvers < POLICYDB_VERSION_MLS)
1734 		return 0;
1735 
1736 	rc = next_entry(buf, fp, sizeof(u32));
1737 	if (rc)
1738 		goto out;
1739 
1740 	nel = le32_to_cpu(buf[0]);
1741 	for (i = 0; i < nel; i++) {
1742 		rc = -ENOMEM;
1743 		rt = kzalloc(sizeof(*rt), GFP_KERNEL);
1744 		if (!rt)
1745 			goto out;
1746 
1747 		rc = next_entry(buf, fp, (sizeof(u32) * 2));
1748 		if (rc)
1749 			goto out;
1750 
1751 		rt->source_type = le32_to_cpu(buf[0]);
1752 		rt->target_type = le32_to_cpu(buf[1]);
1753 		if (p->policyvers >= POLICYDB_VERSION_RANGETRANS) {
1754 			rc = next_entry(buf, fp, sizeof(u32));
1755 			if (rc)
1756 				goto out;
1757 			rt->target_class = le32_to_cpu(buf[0]);
1758 		} else
1759 			rt->target_class = p->process_class;
1760 
1761 		rc = -EINVAL;
1762 		if (!policydb_type_isvalid(p, rt->source_type) ||
1763 		    !policydb_type_isvalid(p, rt->target_type) ||
1764 		    !policydb_class_isvalid(p, rt->target_class))
1765 			goto out;
1766 
1767 		rc = -ENOMEM;
1768 		r = kzalloc(sizeof(*r), GFP_KERNEL);
1769 		if (!r)
1770 			goto out;
1771 
1772 		rc = mls_read_range_helper(r, fp);
1773 		if (rc)
1774 			goto out;
1775 
1776 		rc = -EINVAL;
1777 		if (!mls_range_isvalid(p, r)) {
1778 			printk(KERN_WARNING "SELinux:  rangetrans:  invalid range\n");
1779 			goto out;
1780 		}
1781 
1782 		rc = hashtab_insert(p->range_tr, rt, r);
1783 		if (rc)
1784 			goto out;
1785 
1786 		rt = NULL;
1787 		r = NULL;
1788 	}
1789 	rangetr_hash_eval(p->range_tr);
1790 	rc = 0;
1791 out:
1792 	kfree(rt);
1793 	kfree(r);
1794 	return rc;
1795 }
1796 
1797 static int genfs_read(struct policydb *p, void *fp)
1798 {
1799 	int i, j, rc;
1800 	u32 nel, nel2, len, len2;
1801 	__le32 buf[1];
1802 	struct ocontext *l, *c;
1803 	struct ocontext *newc = NULL;
1804 	struct genfs *genfs_p, *genfs;
1805 	struct genfs *newgenfs = NULL;
1806 
1807 	rc = next_entry(buf, fp, sizeof(u32));
1808 	if (rc)
1809 		goto out;
1810 	nel = le32_to_cpu(buf[0]);
1811 
1812 	for (i = 0; i < nel; i++) {
1813 		rc = next_entry(buf, fp, sizeof(u32));
1814 		if (rc)
1815 			goto out;
1816 		len = le32_to_cpu(buf[0]);
1817 
1818 		rc = -ENOMEM;
1819 		newgenfs = kzalloc(sizeof(*newgenfs), GFP_KERNEL);
1820 		if (!newgenfs)
1821 			goto out;
1822 
1823 		rc = -ENOMEM;
1824 		newgenfs->fstype = kmalloc(len + 1, GFP_KERNEL);
1825 		if (!newgenfs->fstype)
1826 			goto out;
1827 
1828 		rc = next_entry(newgenfs->fstype, fp, len);
1829 		if (rc)
1830 			goto out;
1831 
1832 		newgenfs->fstype[len] = 0;
1833 
1834 		for (genfs_p = NULL, genfs = p->genfs; genfs;
1835 		     genfs_p = genfs, genfs = genfs->next) {
1836 			rc = -EINVAL;
1837 			if (strcmp(newgenfs->fstype, genfs->fstype) == 0) {
1838 				printk(KERN_ERR "SELinux:  dup genfs fstype %s\n",
1839 				       newgenfs->fstype);
1840 				goto out;
1841 			}
1842 			if (strcmp(newgenfs->fstype, genfs->fstype) < 0)
1843 				break;
1844 		}
1845 		newgenfs->next = genfs;
1846 		if (genfs_p)
1847 			genfs_p->next = newgenfs;
1848 		else
1849 			p->genfs = newgenfs;
1850 		genfs = newgenfs;
1851 		newgenfs = NULL;
1852 
1853 		rc = next_entry(buf, fp, sizeof(u32));
1854 		if (rc)
1855 			goto out;
1856 
1857 		nel2 = le32_to_cpu(buf[0]);
1858 		for (j = 0; j < nel2; j++) {
1859 			rc = next_entry(buf, fp, sizeof(u32));
1860 			if (rc)
1861 				goto out;
1862 			len = le32_to_cpu(buf[0]);
1863 
1864 			rc = -ENOMEM;
1865 			newc = kzalloc(sizeof(*newc), GFP_KERNEL);
1866 			if (!newc)
1867 				goto out;
1868 
1869 			rc = -ENOMEM;
1870 			newc->u.name = kmalloc(len + 1, GFP_KERNEL);
1871 			if (!newc->u.name)
1872 				goto out;
1873 
1874 			rc = next_entry(newc->u.name, fp, len);
1875 			if (rc)
1876 				goto out;
1877 			newc->u.name[len] = 0;
1878 
1879 			rc = next_entry(buf, fp, sizeof(u32));
1880 			if (rc)
1881 				goto out;
1882 
1883 			newc->v.sclass = le32_to_cpu(buf[0]);
1884 			rc = context_read_and_validate(&newc->context[0], p, fp);
1885 			if (rc)
1886 				goto out;
1887 
1888 			for (l = NULL, c = genfs->head; c;
1889 			     l = c, c = c->next) {
1890 				rc = -EINVAL;
1891 				if (!strcmp(newc->u.name, c->u.name) &&
1892 				    (!c->v.sclass || !newc->v.sclass ||
1893 				     newc->v.sclass == c->v.sclass)) {
1894 					printk(KERN_ERR "SELinux:  dup genfs entry (%s,%s)\n",
1895 					       genfs->fstype, c->u.name);
1896 					goto out;
1897 				}
1898 				len = strlen(newc->u.name);
1899 				len2 = strlen(c->u.name);
1900 				if (len > len2)
1901 					break;
1902 			}
1903 
1904 			newc->next = c;
1905 			if (l)
1906 				l->next = newc;
1907 			else
1908 				genfs->head = newc;
1909 			newc = NULL;
1910 		}
1911 	}
1912 	rc = 0;
1913 out:
1914 	if (newgenfs)
1915 		kfree(newgenfs->fstype);
1916 	kfree(newgenfs);
1917 	ocontext_destroy(newc, OCON_FSUSE);
1918 
1919 	return rc;
1920 }
1921 
1922 static int ocontext_read(struct policydb *p, struct policydb_compat_info *info,
1923 			 void *fp)
1924 {
1925 	int i, j, rc;
1926 	u32 nel, len;
1927 	__le32 buf[3];
1928 	struct ocontext *l, *c;
1929 	u32 nodebuf[8];
1930 
1931 	for (i = 0; i < info->ocon_num; i++) {
1932 		rc = next_entry(buf, fp, sizeof(u32));
1933 		if (rc)
1934 			goto out;
1935 		nel = le32_to_cpu(buf[0]);
1936 
1937 		l = NULL;
1938 		for (j = 0; j < nel; j++) {
1939 			rc = -ENOMEM;
1940 			c = kzalloc(sizeof(*c), GFP_KERNEL);
1941 			if (!c)
1942 				goto out;
1943 			if (l)
1944 				l->next = c;
1945 			else
1946 				p->ocontexts[i] = c;
1947 			l = c;
1948 
1949 			switch (i) {
1950 			case OCON_ISID:
1951 				rc = next_entry(buf, fp, sizeof(u32));
1952 				if (rc)
1953 					goto out;
1954 
1955 				c->sid[0] = le32_to_cpu(buf[0]);
1956 				rc = context_read_and_validate(&c->context[0], p, fp);
1957 				if (rc)
1958 					goto out;
1959 				break;
1960 			case OCON_FS:
1961 			case OCON_NETIF:
1962 				rc = next_entry(buf, fp, sizeof(u32));
1963 				if (rc)
1964 					goto out;
1965 				len = le32_to_cpu(buf[0]);
1966 
1967 				rc = -ENOMEM;
1968 				c->u.name = kmalloc(len + 1, GFP_KERNEL);
1969 				if (!c->u.name)
1970 					goto out;
1971 
1972 				rc = next_entry(c->u.name, fp, len);
1973 				if (rc)
1974 					goto out;
1975 
1976 				c->u.name[len] = 0;
1977 				rc = context_read_and_validate(&c->context[0], p, fp);
1978 				if (rc)
1979 					goto out;
1980 				rc = context_read_and_validate(&c->context[1], p, fp);
1981 				if (rc)
1982 					goto out;
1983 				break;
1984 			case OCON_PORT:
1985 				rc = next_entry(buf, fp, sizeof(u32)*3);
1986 				if (rc)
1987 					goto out;
1988 				c->u.port.protocol = le32_to_cpu(buf[0]);
1989 				c->u.port.low_port = le32_to_cpu(buf[1]);
1990 				c->u.port.high_port = le32_to_cpu(buf[2]);
1991 				rc = context_read_and_validate(&c->context[0], p, fp);
1992 				if (rc)
1993 					goto out;
1994 				break;
1995 			case OCON_NODE:
1996 				rc = next_entry(nodebuf, fp, sizeof(u32) * 2);
1997 				if (rc)
1998 					goto out;
1999 				c->u.node.addr = nodebuf[0]; /* network order */
2000 				c->u.node.mask = nodebuf[1]; /* network order */
2001 				rc = context_read_and_validate(&c->context[0], p, fp);
2002 				if (rc)
2003 					goto out;
2004 				break;
2005 			case OCON_FSUSE:
2006 				rc = next_entry(buf, fp, sizeof(u32)*2);
2007 				if (rc)
2008 					goto out;
2009 
2010 				rc = -EINVAL;
2011 				c->v.behavior = le32_to_cpu(buf[0]);
2012 				if (c->v.behavior > SECURITY_FS_USE_NONE)
2013 					goto out;
2014 
2015 				rc = -ENOMEM;
2016 				len = le32_to_cpu(buf[1]);
2017 				c->u.name = kmalloc(len + 1, GFP_KERNEL);
2018 				if (!c->u.name)
2019 					goto out;
2020 
2021 				rc = next_entry(c->u.name, fp, len);
2022 				if (rc)
2023 					goto out;
2024 				c->u.name[len] = 0;
2025 				rc = context_read_and_validate(&c->context[0], p, fp);
2026 				if (rc)
2027 					goto out;
2028 				break;
2029 			case OCON_NODE6: {
2030 				int k;
2031 
2032 				rc = next_entry(nodebuf, fp, sizeof(u32) * 8);
2033 				if (rc)
2034 					goto out;
2035 				for (k = 0; k < 4; k++)
2036 					c->u.node6.addr[k] = nodebuf[k];
2037 				for (k = 0; k < 4; k++)
2038 					c->u.node6.mask[k] = nodebuf[k+4];
2039 				rc = context_read_and_validate(&c->context[0], p, fp);
2040 				if (rc)
2041 					goto out;
2042 				break;
2043 			}
2044 			}
2045 		}
2046 	}
2047 	rc = 0;
2048 out:
2049 	return rc;
2050 }
2051 
2052 /*
2053  * Read the configuration data from a policy database binary
2054  * representation file into a policy database structure.
2055  */
2056 int policydb_read(struct policydb *p, void *fp)
2057 {
2058 	struct role_allow *ra, *lra;
2059 	struct role_trans *tr, *ltr;
2060 	int i, j, rc;
2061 	__le32 buf[4];
2062 	u32 len, nprim, nel;
2063 
2064 	char *policydb_str;
2065 	struct policydb_compat_info *info;
2066 
2067 	rc = policydb_init(p);
2068 	if (rc)
2069 		goto out;
2070 
2071 	/* Read the magic number and string length. */
2072 	rc = next_entry(buf, fp, sizeof(u32) * 2);
2073 	if (rc < 0)
2074 		goto bad;
2075 
2076 	if (le32_to_cpu(buf[0]) != POLICYDB_MAGIC) {
2077 		printk(KERN_ERR "SELinux:  policydb magic number 0x%x does "
2078 		       "not match expected magic number 0x%x\n",
2079 		       le32_to_cpu(buf[0]), POLICYDB_MAGIC);
2080 		goto bad;
2081 	}
2082 
2083 	len = le32_to_cpu(buf[1]);
2084 	if (len != strlen(POLICYDB_STRING)) {
2085 		printk(KERN_ERR "SELinux:  policydb string length %d does not "
2086 		       "match expected length %Zu\n",
2087 		       len, strlen(POLICYDB_STRING));
2088 		goto bad;
2089 	}
2090 	policydb_str = kmalloc(len + 1, GFP_KERNEL);
2091 	if (!policydb_str) {
2092 		printk(KERN_ERR "SELinux:  unable to allocate memory for policydb "
2093 		       "string of length %d\n", len);
2094 		rc = -ENOMEM;
2095 		goto bad;
2096 	}
2097 	rc = next_entry(policydb_str, fp, len);
2098 	if (rc < 0) {
2099 		printk(KERN_ERR "SELinux:  truncated policydb string identifier\n");
2100 		kfree(policydb_str);
2101 		goto bad;
2102 	}
2103 	policydb_str[len] = '\0';
2104 	if (strcmp(policydb_str, POLICYDB_STRING)) {
2105 		printk(KERN_ERR "SELinux:  policydb string %s does not match "
2106 		       "my string %s\n", policydb_str, POLICYDB_STRING);
2107 		kfree(policydb_str);
2108 		goto bad;
2109 	}
2110 	/* Done with policydb_str. */
2111 	kfree(policydb_str);
2112 	policydb_str = NULL;
2113 
2114 	/* Read the version and table sizes. */
2115 	rc = next_entry(buf, fp, sizeof(u32)*4);
2116 	if (rc < 0)
2117 		goto bad;
2118 
2119 	p->policyvers = le32_to_cpu(buf[0]);
2120 	if (p->policyvers < POLICYDB_VERSION_MIN ||
2121 	    p->policyvers > POLICYDB_VERSION_MAX) {
2122 		printk(KERN_ERR "SELinux:  policydb version %d does not match "
2123 		       "my version range %d-%d\n",
2124 		       le32_to_cpu(buf[0]), POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX);
2125 		goto bad;
2126 	}
2127 
2128 	if ((le32_to_cpu(buf[1]) & POLICYDB_CONFIG_MLS)) {
2129 		p->mls_enabled = 1;
2130 
2131 		if (p->policyvers < POLICYDB_VERSION_MLS) {
2132 			printk(KERN_ERR "SELinux: security policydb version %d "
2133 				"(MLS) not backwards compatible\n",
2134 				p->policyvers);
2135 			goto bad;
2136 		}
2137 	}
2138 	p->reject_unknown = !!(le32_to_cpu(buf[1]) & REJECT_UNKNOWN);
2139 	p->allow_unknown = !!(le32_to_cpu(buf[1]) & ALLOW_UNKNOWN);
2140 
2141 	if (p->policyvers >= POLICYDB_VERSION_POLCAP &&
2142 	    ebitmap_read(&p->policycaps, fp) != 0)
2143 		goto bad;
2144 
2145 	if (p->policyvers >= POLICYDB_VERSION_PERMISSIVE &&
2146 	    ebitmap_read(&p->permissive_map, fp) != 0)
2147 		goto bad;
2148 
2149 	info = policydb_lookup_compat(p->policyvers);
2150 	if (!info) {
2151 		printk(KERN_ERR "SELinux:  unable to find policy compat info "
2152 		       "for version %d\n", p->policyvers);
2153 		goto bad;
2154 	}
2155 
2156 	if (le32_to_cpu(buf[2]) != info->sym_num ||
2157 		le32_to_cpu(buf[3]) != info->ocon_num) {
2158 		printk(KERN_ERR "SELinux:  policydb table sizes (%d,%d) do "
2159 		       "not match mine (%d,%d)\n", le32_to_cpu(buf[2]),
2160 			le32_to_cpu(buf[3]),
2161 		       info->sym_num, info->ocon_num);
2162 		goto bad;
2163 	}
2164 
2165 	for (i = 0; i < info->sym_num; i++) {
2166 		rc = next_entry(buf, fp, sizeof(u32)*2);
2167 		if (rc < 0)
2168 			goto bad;
2169 		nprim = le32_to_cpu(buf[0]);
2170 		nel = le32_to_cpu(buf[1]);
2171 		for (j = 0; j < nel; j++) {
2172 			rc = read_f[i](p, p->symtab[i].table, fp);
2173 			if (rc)
2174 				goto bad;
2175 		}
2176 
2177 		p->symtab[i].nprim = nprim;
2178 	}
2179 
2180 	rc = avtab_read(&p->te_avtab, fp, p);
2181 	if (rc)
2182 		goto bad;
2183 
2184 	if (p->policyvers >= POLICYDB_VERSION_BOOL) {
2185 		rc = cond_read_list(p, fp);
2186 		if (rc)
2187 			goto bad;
2188 	}
2189 
2190 	rc = next_entry(buf, fp, sizeof(u32));
2191 	if (rc < 0)
2192 		goto bad;
2193 	nel = le32_to_cpu(buf[0]);
2194 	ltr = NULL;
2195 	for (i = 0; i < nel; i++) {
2196 		tr = kzalloc(sizeof(*tr), GFP_KERNEL);
2197 		if (!tr) {
2198 			rc = -ENOMEM;
2199 			goto bad;
2200 		}
2201 		if (ltr)
2202 			ltr->next = tr;
2203 		else
2204 			p->role_tr = tr;
2205 		rc = next_entry(buf, fp, sizeof(u32)*3);
2206 		if (rc < 0)
2207 			goto bad;
2208 		tr->role = le32_to_cpu(buf[0]);
2209 		tr->type = le32_to_cpu(buf[1]);
2210 		tr->new_role = le32_to_cpu(buf[2]);
2211 		if (!policydb_role_isvalid(p, tr->role) ||
2212 		    !policydb_type_isvalid(p, tr->type) ||
2213 		    !policydb_role_isvalid(p, tr->new_role)) {
2214 			rc = -EINVAL;
2215 			goto bad;
2216 		}
2217 		ltr = tr;
2218 	}
2219 
2220 	rc = next_entry(buf, fp, sizeof(u32));
2221 	if (rc < 0)
2222 		goto bad;
2223 	nel = le32_to_cpu(buf[0]);
2224 	lra = NULL;
2225 	for (i = 0; i < nel; i++) {
2226 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
2227 		if (!ra) {
2228 			rc = -ENOMEM;
2229 			goto bad;
2230 		}
2231 		if (lra)
2232 			lra->next = ra;
2233 		else
2234 			p->role_allow = ra;
2235 		rc = next_entry(buf, fp, sizeof(u32)*2);
2236 		if (rc < 0)
2237 			goto bad;
2238 		ra->role = le32_to_cpu(buf[0]);
2239 		ra->new_role = le32_to_cpu(buf[1]);
2240 		if (!policydb_role_isvalid(p, ra->role) ||
2241 		    !policydb_role_isvalid(p, ra->new_role)) {
2242 			rc = -EINVAL;
2243 			goto bad;
2244 		}
2245 		lra = ra;
2246 	}
2247 
2248 	rc = policydb_index_classes(p);
2249 	if (rc)
2250 		goto bad;
2251 
2252 	rc = policydb_index_others(p);
2253 	if (rc)
2254 		goto bad;
2255 
2256 	p->process_class = string_to_security_class(p, "process");
2257 	if (!p->process_class)
2258 		goto bad;
2259 	p->process_trans_perms = string_to_av_perm(p, p->process_class,
2260 						   "transition");
2261 	p->process_trans_perms |= string_to_av_perm(p, p->process_class,
2262 						    "dyntransition");
2263 	if (!p->process_trans_perms)
2264 		goto bad;
2265 
2266 	rc = ocontext_read(p, info, fp);
2267 	if (rc)
2268 		goto bad;
2269 
2270 	rc = genfs_read(p, fp);
2271 	if (rc)
2272 		goto bad;
2273 
2274 	rc = range_read(p, fp);
2275 	if (rc)
2276 		goto bad;
2277 
2278 	rc = -ENOMEM;
2279 	p->type_attr_map_array = flex_array_alloc(sizeof(struct ebitmap),
2280 						  p->p_types.nprim,
2281 						  GFP_KERNEL | __GFP_ZERO);
2282 	if (!p->type_attr_map_array)
2283 		goto bad;
2284 
2285 	/* preallocate so we don't have to worry about the put ever failing */
2286 	rc = flex_array_prealloc(p->type_attr_map_array, 0, p->p_types.nprim - 1,
2287 				 GFP_KERNEL | __GFP_ZERO);
2288 	if (rc)
2289 		goto bad;
2290 
2291 	for (i = 0; i < p->p_types.nprim; i++) {
2292 		struct ebitmap *e = flex_array_get(p->type_attr_map_array, i);
2293 
2294 		BUG_ON(!e);
2295 		ebitmap_init(e);
2296 		if (p->policyvers >= POLICYDB_VERSION_AVTAB) {
2297 			rc = ebitmap_read(e, fp);
2298 			if (rc)
2299 				goto bad;
2300 		}
2301 		/* add the type itself as the degenerate case */
2302 		rc = ebitmap_set_bit(e, i, 1);
2303 		if (rc)
2304 			goto bad;
2305 	}
2306 
2307 	rc = policydb_bounds_sanity_check(p);
2308 	if (rc)
2309 		goto bad;
2310 
2311 	rc = 0;
2312 out:
2313 	return rc;
2314 bad:
2315 	if (!rc)
2316 		rc = -EINVAL;
2317 	policydb_destroy(p);
2318 	goto out;
2319 }
2320 
2321 /*
2322  * Write a MLS level structure to a policydb binary
2323  * representation file.
2324  */
2325 static int mls_write_level(struct mls_level *l, void *fp)
2326 {
2327 	__le32 buf[1];
2328 	int rc;
2329 
2330 	buf[0] = cpu_to_le32(l->sens);
2331 	rc = put_entry(buf, sizeof(u32), 1, fp);
2332 	if (rc)
2333 		return rc;
2334 
2335 	rc = ebitmap_write(&l->cat, fp);
2336 	if (rc)
2337 		return rc;
2338 
2339 	return 0;
2340 }
2341 
2342 /*
2343  * Write a MLS range structure to a policydb binary
2344  * representation file.
2345  */
2346 static int mls_write_range_helper(struct mls_range *r, void *fp)
2347 {
2348 	__le32 buf[3];
2349 	size_t items;
2350 	int rc, eq;
2351 
2352 	eq = mls_level_eq(&r->level[1], &r->level[0]);
2353 
2354 	if (eq)
2355 		items = 2;
2356 	else
2357 		items = 3;
2358 	buf[0] = cpu_to_le32(items-1);
2359 	buf[1] = cpu_to_le32(r->level[0].sens);
2360 	if (!eq)
2361 		buf[2] = cpu_to_le32(r->level[1].sens);
2362 
2363 	BUG_ON(items > (sizeof(buf)/sizeof(buf[0])));
2364 
2365 	rc = put_entry(buf, sizeof(u32), items, fp);
2366 	if (rc)
2367 		return rc;
2368 
2369 	rc = ebitmap_write(&r->level[0].cat, fp);
2370 	if (rc)
2371 		return rc;
2372 	if (!eq) {
2373 		rc = ebitmap_write(&r->level[1].cat, fp);
2374 		if (rc)
2375 			return rc;
2376 	}
2377 
2378 	return 0;
2379 }
2380 
2381 static int sens_write(void *vkey, void *datum, void *ptr)
2382 {
2383 	char *key = vkey;
2384 	struct level_datum *levdatum = datum;
2385 	struct policy_data *pd = ptr;
2386 	void *fp = pd->fp;
2387 	__le32 buf[2];
2388 	size_t len;
2389 	int rc;
2390 
2391 	len = strlen(key);
2392 	buf[0] = cpu_to_le32(len);
2393 	buf[1] = cpu_to_le32(levdatum->isalias);
2394 	rc = put_entry(buf, sizeof(u32), 2, fp);
2395 	if (rc)
2396 		return rc;
2397 
2398 	rc = put_entry(key, 1, len, fp);
2399 	if (rc)
2400 		return rc;
2401 
2402 	rc = mls_write_level(levdatum->level, fp);
2403 	if (rc)
2404 		return rc;
2405 
2406 	return 0;
2407 }
2408 
2409 static int cat_write(void *vkey, void *datum, void *ptr)
2410 {
2411 	char *key = vkey;
2412 	struct cat_datum *catdatum = datum;
2413 	struct policy_data *pd = ptr;
2414 	void *fp = pd->fp;
2415 	__le32 buf[3];
2416 	size_t len;
2417 	int rc;
2418 
2419 	len = strlen(key);
2420 	buf[0] = cpu_to_le32(len);
2421 	buf[1] = cpu_to_le32(catdatum->value);
2422 	buf[2] = cpu_to_le32(catdatum->isalias);
2423 	rc = put_entry(buf, sizeof(u32), 3, fp);
2424 	if (rc)
2425 		return rc;
2426 
2427 	rc = put_entry(key, 1, len, fp);
2428 	if (rc)
2429 		return rc;
2430 
2431 	return 0;
2432 }
2433 
2434 static int role_trans_write(struct role_trans *r, void *fp)
2435 {
2436 	struct role_trans *tr;
2437 	u32 buf[3];
2438 	size_t nel;
2439 	int rc;
2440 
2441 	nel = 0;
2442 	for (tr = r; tr; tr = tr->next)
2443 		nel++;
2444 	buf[0] = cpu_to_le32(nel);
2445 	rc = put_entry(buf, sizeof(u32), 1, fp);
2446 	if (rc)
2447 		return rc;
2448 	for (tr = r; tr; tr = tr->next) {
2449 		buf[0] = cpu_to_le32(tr->role);
2450 		buf[1] = cpu_to_le32(tr->type);
2451 		buf[2] = cpu_to_le32(tr->new_role);
2452 		rc = put_entry(buf, sizeof(u32), 3, fp);
2453 		if (rc)
2454 			return rc;
2455 	}
2456 
2457 	return 0;
2458 }
2459 
2460 static int role_allow_write(struct role_allow *r, void *fp)
2461 {
2462 	struct role_allow *ra;
2463 	u32 buf[2];
2464 	size_t nel;
2465 	int rc;
2466 
2467 	nel = 0;
2468 	for (ra = r; ra; ra = ra->next)
2469 		nel++;
2470 	buf[0] = cpu_to_le32(nel);
2471 	rc = put_entry(buf, sizeof(u32), 1, fp);
2472 	if (rc)
2473 		return rc;
2474 	for (ra = r; ra; ra = ra->next) {
2475 		buf[0] = cpu_to_le32(ra->role);
2476 		buf[1] = cpu_to_le32(ra->new_role);
2477 		rc = put_entry(buf, sizeof(u32), 2, fp);
2478 		if (rc)
2479 			return rc;
2480 	}
2481 	return 0;
2482 }
2483 
2484 /*
2485  * Write a security context structure
2486  * to a policydb binary representation file.
2487  */
2488 static int context_write(struct policydb *p, struct context *c,
2489 			 void *fp)
2490 {
2491 	int rc;
2492 	__le32 buf[3];
2493 
2494 	buf[0] = cpu_to_le32(c->user);
2495 	buf[1] = cpu_to_le32(c->role);
2496 	buf[2] = cpu_to_le32(c->type);
2497 
2498 	rc = put_entry(buf, sizeof(u32), 3, fp);
2499 	if (rc)
2500 		return rc;
2501 
2502 	rc = mls_write_range_helper(&c->range, fp);
2503 	if (rc)
2504 		return rc;
2505 
2506 	return 0;
2507 }
2508 
2509 /*
2510  * The following *_write functions are used to
2511  * write the symbol data to a policy database
2512  * binary representation file.
2513  */
2514 
2515 static int perm_write(void *vkey, void *datum, void *fp)
2516 {
2517 	char *key = vkey;
2518 	struct perm_datum *perdatum = datum;
2519 	__le32 buf[2];
2520 	size_t len;
2521 	int rc;
2522 
2523 	len = strlen(key);
2524 	buf[0] = cpu_to_le32(len);
2525 	buf[1] = cpu_to_le32(perdatum->value);
2526 	rc = put_entry(buf, sizeof(u32), 2, fp);
2527 	if (rc)
2528 		return rc;
2529 
2530 	rc = put_entry(key, 1, len, fp);
2531 	if (rc)
2532 		return rc;
2533 
2534 	return 0;
2535 }
2536 
2537 static int common_write(void *vkey, void *datum, void *ptr)
2538 {
2539 	char *key = vkey;
2540 	struct common_datum *comdatum = datum;
2541 	struct policy_data *pd = ptr;
2542 	void *fp = pd->fp;
2543 	__le32 buf[4];
2544 	size_t len;
2545 	int rc;
2546 
2547 	len = strlen(key);
2548 	buf[0] = cpu_to_le32(len);
2549 	buf[1] = cpu_to_le32(comdatum->value);
2550 	buf[2] = cpu_to_le32(comdatum->permissions.nprim);
2551 	buf[3] = cpu_to_le32(comdatum->permissions.table->nel);
2552 	rc = put_entry(buf, sizeof(u32), 4, fp);
2553 	if (rc)
2554 		return rc;
2555 
2556 	rc = put_entry(key, 1, len, fp);
2557 	if (rc)
2558 		return rc;
2559 
2560 	rc = hashtab_map(comdatum->permissions.table, perm_write, fp);
2561 	if (rc)
2562 		return rc;
2563 
2564 	return 0;
2565 }
2566 
2567 static int write_cons_helper(struct policydb *p, struct constraint_node *node,
2568 			     void *fp)
2569 {
2570 	struct constraint_node *c;
2571 	struct constraint_expr *e;
2572 	__le32 buf[3];
2573 	u32 nel;
2574 	int rc;
2575 
2576 	for (c = node; c; c = c->next) {
2577 		nel = 0;
2578 		for (e = c->expr; e; e = e->next)
2579 			nel++;
2580 		buf[0] = cpu_to_le32(c->permissions);
2581 		buf[1] = cpu_to_le32(nel);
2582 		rc = put_entry(buf, sizeof(u32), 2, fp);
2583 		if (rc)
2584 			return rc;
2585 		for (e = c->expr; e; e = e->next) {
2586 			buf[0] = cpu_to_le32(e->expr_type);
2587 			buf[1] = cpu_to_le32(e->attr);
2588 			buf[2] = cpu_to_le32(e->op);
2589 			rc = put_entry(buf, sizeof(u32), 3, fp);
2590 			if (rc)
2591 				return rc;
2592 
2593 			switch (e->expr_type) {
2594 			case CEXPR_NAMES:
2595 				rc = ebitmap_write(&e->names, fp);
2596 				if (rc)
2597 					return rc;
2598 				break;
2599 			default:
2600 				break;
2601 			}
2602 		}
2603 	}
2604 
2605 	return 0;
2606 }
2607 
2608 static int class_write(void *vkey, void *datum, void *ptr)
2609 {
2610 	char *key = vkey;
2611 	struct class_datum *cladatum = datum;
2612 	struct policy_data *pd = ptr;
2613 	void *fp = pd->fp;
2614 	struct policydb *p = pd->p;
2615 	struct constraint_node *c;
2616 	__le32 buf[6];
2617 	u32 ncons;
2618 	size_t len, len2;
2619 	int rc;
2620 
2621 	len = strlen(key);
2622 	if (cladatum->comkey)
2623 		len2 = strlen(cladatum->comkey);
2624 	else
2625 		len2 = 0;
2626 
2627 	ncons = 0;
2628 	for (c = cladatum->constraints; c; c = c->next)
2629 		ncons++;
2630 
2631 	buf[0] = cpu_to_le32(len);
2632 	buf[1] = cpu_to_le32(len2);
2633 	buf[2] = cpu_to_le32(cladatum->value);
2634 	buf[3] = cpu_to_le32(cladatum->permissions.nprim);
2635 	if (cladatum->permissions.table)
2636 		buf[4] = cpu_to_le32(cladatum->permissions.table->nel);
2637 	else
2638 		buf[4] = 0;
2639 	buf[5] = cpu_to_le32(ncons);
2640 	rc = put_entry(buf, sizeof(u32), 6, fp);
2641 	if (rc)
2642 		return rc;
2643 
2644 	rc = put_entry(key, 1, len, fp);
2645 	if (rc)
2646 		return rc;
2647 
2648 	if (cladatum->comkey) {
2649 		rc = put_entry(cladatum->comkey, 1, len2, fp);
2650 		if (rc)
2651 			return rc;
2652 	}
2653 
2654 	rc = hashtab_map(cladatum->permissions.table, perm_write, fp);
2655 	if (rc)
2656 		return rc;
2657 
2658 	rc = write_cons_helper(p, cladatum->constraints, fp);
2659 	if (rc)
2660 		return rc;
2661 
2662 	/* write out the validatetrans rule */
2663 	ncons = 0;
2664 	for (c = cladatum->validatetrans; c; c = c->next)
2665 		ncons++;
2666 
2667 	buf[0] = cpu_to_le32(ncons);
2668 	rc = put_entry(buf, sizeof(u32), 1, fp);
2669 	if (rc)
2670 		return rc;
2671 
2672 	rc = write_cons_helper(p, cladatum->validatetrans, fp);
2673 	if (rc)
2674 		return rc;
2675 
2676 	return 0;
2677 }
2678 
2679 static int role_write(void *vkey, void *datum, void *ptr)
2680 {
2681 	char *key = vkey;
2682 	struct role_datum *role = datum;
2683 	struct policy_data *pd = ptr;
2684 	void *fp = pd->fp;
2685 	struct policydb *p = pd->p;
2686 	__le32 buf[3];
2687 	size_t items, len;
2688 	int rc;
2689 
2690 	len = strlen(key);
2691 	items = 0;
2692 	buf[items++] = cpu_to_le32(len);
2693 	buf[items++] = cpu_to_le32(role->value);
2694 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
2695 		buf[items++] = cpu_to_le32(role->bounds);
2696 
2697 	BUG_ON(items > (sizeof(buf)/sizeof(buf[0])));
2698 
2699 	rc = put_entry(buf, sizeof(u32), items, fp);
2700 	if (rc)
2701 		return rc;
2702 
2703 	rc = put_entry(key, 1, len, fp);
2704 	if (rc)
2705 		return rc;
2706 
2707 	rc = ebitmap_write(&role->dominates, fp);
2708 	if (rc)
2709 		return rc;
2710 
2711 	rc = ebitmap_write(&role->types, fp);
2712 	if (rc)
2713 		return rc;
2714 
2715 	return 0;
2716 }
2717 
2718 static int type_write(void *vkey, void *datum, void *ptr)
2719 {
2720 	char *key = vkey;
2721 	struct type_datum *typdatum = datum;
2722 	struct policy_data *pd = ptr;
2723 	struct policydb *p = pd->p;
2724 	void *fp = pd->fp;
2725 	__le32 buf[4];
2726 	int rc;
2727 	size_t items, len;
2728 
2729 	len = strlen(key);
2730 	items = 0;
2731 	buf[items++] = cpu_to_le32(len);
2732 	buf[items++] = cpu_to_le32(typdatum->value);
2733 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) {
2734 		u32 properties = 0;
2735 
2736 		if (typdatum->primary)
2737 			properties |= TYPEDATUM_PROPERTY_PRIMARY;
2738 
2739 		if (typdatum->attribute)
2740 			properties |= TYPEDATUM_PROPERTY_ATTRIBUTE;
2741 
2742 		buf[items++] = cpu_to_le32(properties);
2743 		buf[items++] = cpu_to_le32(typdatum->bounds);
2744 	} else {
2745 		buf[items++] = cpu_to_le32(typdatum->primary);
2746 	}
2747 	BUG_ON(items > (sizeof(buf) / sizeof(buf[0])));
2748 	rc = put_entry(buf, sizeof(u32), items, fp);
2749 	if (rc)
2750 		return rc;
2751 
2752 	rc = put_entry(key, 1, len, fp);
2753 	if (rc)
2754 		return rc;
2755 
2756 	return 0;
2757 }
2758 
2759 static int user_write(void *vkey, void *datum, void *ptr)
2760 {
2761 	char *key = vkey;
2762 	struct user_datum *usrdatum = datum;
2763 	struct policy_data *pd = ptr;
2764 	struct policydb *p = pd->p;
2765 	void *fp = pd->fp;
2766 	__le32 buf[3];
2767 	size_t items, len;
2768 	int rc;
2769 
2770 	len = strlen(key);
2771 	items = 0;
2772 	buf[items++] = cpu_to_le32(len);
2773 	buf[items++] = cpu_to_le32(usrdatum->value);
2774 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
2775 		buf[items++] = cpu_to_le32(usrdatum->bounds);
2776 	BUG_ON(items > (sizeof(buf) / sizeof(buf[0])));
2777 	rc = put_entry(buf, sizeof(u32), items, fp);
2778 	if (rc)
2779 		return rc;
2780 
2781 	rc = put_entry(key, 1, len, fp);
2782 	if (rc)
2783 		return rc;
2784 
2785 	rc = ebitmap_write(&usrdatum->roles, fp);
2786 	if (rc)
2787 		return rc;
2788 
2789 	rc = mls_write_range_helper(&usrdatum->range, fp);
2790 	if (rc)
2791 		return rc;
2792 
2793 	rc = mls_write_level(&usrdatum->dfltlevel, fp);
2794 	if (rc)
2795 		return rc;
2796 
2797 	return 0;
2798 }
2799 
2800 static int (*write_f[SYM_NUM]) (void *key, void *datum,
2801 				void *datap) =
2802 {
2803 	common_write,
2804 	class_write,
2805 	role_write,
2806 	type_write,
2807 	user_write,
2808 	cond_write_bool,
2809 	sens_write,
2810 	cat_write,
2811 };
2812 
2813 static int ocontext_write(struct policydb *p, struct policydb_compat_info *info,
2814 			  void *fp)
2815 {
2816 	unsigned int i, j, rc;
2817 	size_t nel, len;
2818 	__le32 buf[3];
2819 	u32 nodebuf[8];
2820 	struct ocontext *c;
2821 	for (i = 0; i < info->ocon_num; i++) {
2822 		nel = 0;
2823 		for (c = p->ocontexts[i]; c; c = c->next)
2824 			nel++;
2825 		buf[0] = cpu_to_le32(nel);
2826 		rc = put_entry(buf, sizeof(u32), 1, fp);
2827 		if (rc)
2828 			return rc;
2829 		for (c = p->ocontexts[i]; c; c = c->next) {
2830 			switch (i) {
2831 			case OCON_ISID:
2832 				buf[0] = cpu_to_le32(c->sid[0]);
2833 				rc = put_entry(buf, sizeof(u32), 1, fp);
2834 				if (rc)
2835 					return rc;
2836 				rc = context_write(p, &c->context[0], fp);
2837 				if (rc)
2838 					return rc;
2839 				break;
2840 			case OCON_FS:
2841 			case OCON_NETIF:
2842 				len = strlen(c->u.name);
2843 				buf[0] = cpu_to_le32(len);
2844 				rc = put_entry(buf, sizeof(u32), 1, fp);
2845 				if (rc)
2846 					return rc;
2847 				rc = put_entry(c->u.name, 1, len, fp);
2848 				if (rc)
2849 					return rc;
2850 				rc = context_write(p, &c->context[0], fp);
2851 				if (rc)
2852 					return rc;
2853 				rc = context_write(p, &c->context[1], fp);
2854 				if (rc)
2855 					return rc;
2856 				break;
2857 			case OCON_PORT:
2858 				buf[0] = cpu_to_le32(c->u.port.protocol);
2859 				buf[1] = cpu_to_le32(c->u.port.low_port);
2860 				buf[2] = cpu_to_le32(c->u.port.high_port);
2861 				rc = put_entry(buf, sizeof(u32), 3, fp);
2862 				if (rc)
2863 					return rc;
2864 				rc = context_write(p, &c->context[0], fp);
2865 				if (rc)
2866 					return rc;
2867 				break;
2868 			case OCON_NODE:
2869 				nodebuf[0] = c->u.node.addr; /* network order */
2870 				nodebuf[1] = c->u.node.mask; /* network order */
2871 				rc = put_entry(nodebuf, sizeof(u32), 2, fp);
2872 				if (rc)
2873 					return rc;
2874 				rc = context_write(p, &c->context[0], fp);
2875 				if (rc)
2876 					return rc;
2877 				break;
2878 			case OCON_FSUSE:
2879 				buf[0] = cpu_to_le32(c->v.behavior);
2880 				len = strlen(c->u.name);
2881 				buf[1] = cpu_to_le32(len);
2882 				rc = put_entry(buf, sizeof(u32), 2, fp);
2883 				if (rc)
2884 					return rc;
2885 				rc = put_entry(c->u.name, 1, len, fp);
2886 				if (rc)
2887 					return rc;
2888 				rc = context_write(p, &c->context[0], fp);
2889 				if (rc)
2890 					return rc;
2891 				break;
2892 			case OCON_NODE6:
2893 				for (j = 0; j < 4; j++)
2894 					nodebuf[j] = c->u.node6.addr[j]; /* network order */
2895 				for (j = 0; j < 4; j++)
2896 					nodebuf[j + 4] = c->u.node6.mask[j]; /* network order */
2897 				rc = put_entry(nodebuf, sizeof(u32), 8, fp);
2898 				if (rc)
2899 					return rc;
2900 				rc = context_write(p, &c->context[0], fp);
2901 				if (rc)
2902 					return rc;
2903 				break;
2904 			}
2905 		}
2906 	}
2907 	return 0;
2908 }
2909 
2910 static int genfs_write(struct policydb *p, void *fp)
2911 {
2912 	struct genfs *genfs;
2913 	struct ocontext *c;
2914 	size_t len;
2915 	__le32 buf[1];
2916 	int rc;
2917 
2918 	len = 0;
2919 	for (genfs = p->genfs; genfs; genfs = genfs->next)
2920 		len++;
2921 	buf[0] = cpu_to_le32(len);
2922 	rc = put_entry(buf, sizeof(u32), 1, fp);
2923 	if (rc)
2924 		return rc;
2925 	for (genfs = p->genfs; genfs; genfs = genfs->next) {
2926 		len = strlen(genfs->fstype);
2927 		buf[0] = cpu_to_le32(len);
2928 		rc = put_entry(buf, sizeof(u32), 1, fp);
2929 		if (rc)
2930 			return rc;
2931 		rc = put_entry(genfs->fstype, 1, len, fp);
2932 		if (rc)
2933 			return rc;
2934 		len = 0;
2935 		for (c = genfs->head; c; c = c->next)
2936 			len++;
2937 		buf[0] = cpu_to_le32(len);
2938 		rc = put_entry(buf, sizeof(u32), 1, fp);
2939 		if (rc)
2940 			return rc;
2941 		for (c = genfs->head; c; c = c->next) {
2942 			len = strlen(c->u.name);
2943 			buf[0] = cpu_to_le32(len);
2944 			rc = put_entry(buf, sizeof(u32), 1, fp);
2945 			if (rc)
2946 				return rc;
2947 			rc = put_entry(c->u.name, 1, len, fp);
2948 			if (rc)
2949 				return rc;
2950 			buf[0] = cpu_to_le32(c->v.sclass);
2951 			rc = put_entry(buf, sizeof(u32), 1, fp);
2952 			if (rc)
2953 				return rc;
2954 			rc = context_write(p, &c->context[0], fp);
2955 			if (rc)
2956 				return rc;
2957 		}
2958 	}
2959 	return 0;
2960 }
2961 
2962 static int range_count(void *key, void *data, void *ptr)
2963 {
2964 	int *cnt = ptr;
2965 	*cnt = *cnt + 1;
2966 
2967 	return 0;
2968 }
2969 
2970 static int range_write_helper(void *key, void *data, void *ptr)
2971 {
2972 	__le32 buf[2];
2973 	struct range_trans *rt = key;
2974 	struct mls_range *r = data;
2975 	struct policy_data *pd = ptr;
2976 	void *fp = pd->fp;
2977 	struct policydb *p = pd->p;
2978 	int rc;
2979 
2980 	buf[0] = cpu_to_le32(rt->source_type);
2981 	buf[1] = cpu_to_le32(rt->target_type);
2982 	rc = put_entry(buf, sizeof(u32), 2, fp);
2983 	if (rc)
2984 		return rc;
2985 	if (p->policyvers >= POLICYDB_VERSION_RANGETRANS) {
2986 		buf[0] = cpu_to_le32(rt->target_class);
2987 		rc = put_entry(buf, sizeof(u32), 1, fp);
2988 		if (rc)
2989 			return rc;
2990 	}
2991 	rc = mls_write_range_helper(r, fp);
2992 	if (rc)
2993 		return rc;
2994 
2995 	return 0;
2996 }
2997 
2998 static int range_write(struct policydb *p, void *fp)
2999 {
3000 	size_t nel;
3001 	__le32 buf[1];
3002 	int rc;
3003 	struct policy_data pd;
3004 
3005 	pd.p = p;
3006 	pd.fp = fp;
3007 
3008 	/* count the number of entries in the hashtab */
3009 	nel = 0;
3010 	rc = hashtab_map(p->range_tr, range_count, &nel);
3011 	if (rc)
3012 		return rc;
3013 
3014 	buf[0] = cpu_to_le32(nel);
3015 	rc = put_entry(buf, sizeof(u32), 1, fp);
3016 	if (rc)
3017 		return rc;
3018 
3019 	/* actually write all of the entries */
3020 	rc = hashtab_map(p->range_tr, range_write_helper, &pd);
3021 	if (rc)
3022 		return rc;
3023 
3024 	return 0;
3025 }
3026 
3027 /*
3028  * Write the configuration data in a policy database
3029  * structure to a policy database binary representation
3030  * file.
3031  */
3032 int policydb_write(struct policydb *p, void *fp)
3033 {
3034 	unsigned int i, num_syms;
3035 	int rc;
3036 	__le32 buf[4];
3037 	u32 config;
3038 	size_t len;
3039 	struct policydb_compat_info *info;
3040 
3041 	/*
3042 	 * refuse to write policy older than compressed avtab
3043 	 * to simplify the writer.  There are other tests dropped
3044 	 * since we assume this throughout the writer code.  Be
3045 	 * careful if you ever try to remove this restriction
3046 	 */
3047 	if (p->policyvers < POLICYDB_VERSION_AVTAB) {
3048 		printk(KERN_ERR "SELinux: refusing to write policy version %d."
3049 		       "  Because it is less than version %d\n", p->policyvers,
3050 		       POLICYDB_VERSION_AVTAB);
3051 		return -EINVAL;
3052 	}
3053 
3054 	config = 0;
3055 	if (p->mls_enabled)
3056 		config |= POLICYDB_CONFIG_MLS;
3057 
3058 	if (p->reject_unknown)
3059 		config |= REJECT_UNKNOWN;
3060 	if (p->allow_unknown)
3061 		config |= ALLOW_UNKNOWN;
3062 
3063 	/* Write the magic number and string identifiers. */
3064 	buf[0] = cpu_to_le32(POLICYDB_MAGIC);
3065 	len = strlen(POLICYDB_STRING);
3066 	buf[1] = cpu_to_le32(len);
3067 	rc = put_entry(buf, sizeof(u32), 2, fp);
3068 	if (rc)
3069 		return rc;
3070 	rc = put_entry(POLICYDB_STRING, 1, len, fp);
3071 	if (rc)
3072 		return rc;
3073 
3074 	/* Write the version, config, and table sizes. */
3075 	info = policydb_lookup_compat(p->policyvers);
3076 	if (!info) {
3077 		printk(KERN_ERR "SELinux: compatibility lookup failed for policy "
3078 		    "version %d", p->policyvers);
3079 		return rc;
3080 	}
3081 
3082 	buf[0] = cpu_to_le32(p->policyvers);
3083 	buf[1] = cpu_to_le32(config);
3084 	buf[2] = cpu_to_le32(info->sym_num);
3085 	buf[3] = cpu_to_le32(info->ocon_num);
3086 
3087 	rc = put_entry(buf, sizeof(u32), 4, fp);
3088 	if (rc)
3089 		return rc;
3090 
3091 	if (p->policyvers >= POLICYDB_VERSION_POLCAP) {
3092 		rc = ebitmap_write(&p->policycaps, fp);
3093 		if (rc)
3094 			return rc;
3095 	}
3096 
3097 	if (p->policyvers >= POLICYDB_VERSION_PERMISSIVE) {
3098 		rc = ebitmap_write(&p->permissive_map, fp);
3099 		if (rc)
3100 			return rc;
3101 	}
3102 
3103 	num_syms = info->sym_num;
3104 	for (i = 0; i < num_syms; i++) {
3105 		struct policy_data pd;
3106 
3107 		pd.fp = fp;
3108 		pd.p = p;
3109 
3110 		buf[0] = cpu_to_le32(p->symtab[i].nprim);
3111 		buf[1] = cpu_to_le32(p->symtab[i].table->nel);
3112 
3113 		rc = put_entry(buf, sizeof(u32), 2, fp);
3114 		if (rc)
3115 			return rc;
3116 		rc = hashtab_map(p->symtab[i].table, write_f[i], &pd);
3117 		if (rc)
3118 			return rc;
3119 	}
3120 
3121 	rc = avtab_write(p, &p->te_avtab, fp);
3122 	if (rc)
3123 		return rc;
3124 
3125 	rc = cond_write_list(p, p->cond_list, fp);
3126 	if (rc)
3127 		return rc;
3128 
3129 	rc = role_trans_write(p->role_tr, fp);
3130 	if (rc)
3131 		return rc;
3132 
3133 	rc = role_allow_write(p->role_allow, fp);
3134 	if (rc)
3135 		return rc;
3136 
3137 	rc = ocontext_write(p, info, fp);
3138 	if (rc)
3139 		return rc;
3140 
3141 	rc = genfs_write(p, fp);
3142 	if (rc)
3143 		return rc;
3144 
3145 	rc = range_write(p, fp);
3146 	if (rc)
3147 		return rc;
3148 
3149 	for (i = 0; i < p->p_types.nprim; i++) {
3150 		struct ebitmap *e = flex_array_get(p->type_attr_map_array, i);
3151 
3152 		BUG_ON(!e);
3153 		rc = ebitmap_write(e, fp);
3154 		if (rc)
3155 			return rc;
3156 	}
3157 
3158 	return 0;
3159 }
3160