xref: /openbmc/linux/security/selinux/ss/policydb.c (revision a1e58bbd)
1 /*
2  * Implementation of the policy database.
3  *
4  * Author : Stephen Smalley, <sds@epoch.ncsc.mil>
5  */
6 
7 /*
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *	Support for enhanced MLS infrastructure.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  * 	Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul.moore@hp.com>
17  *
18  *      Added support for the policy capability bitmap
19  *
20  * Copyright (C) 2007 Hewlett-Packard Development Company, L.P.
21  * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
22  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
23  *	This program is free software; you can redistribute it and/or modify
24  *  	it under the terms of the GNU General Public License as published by
25  *	the Free Software Foundation, version 2.
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/string.h>
32 #include <linux/errno.h>
33 #include "security.h"
34 
35 #include "policydb.h"
36 #include "conditional.h"
37 #include "mls.h"
38 
39 #define _DEBUG_HASHES
40 
41 #ifdef DEBUG_HASHES
42 static char *symtab_name[SYM_NUM] = {
43 	"common prefixes",
44 	"classes",
45 	"roles",
46 	"types",
47 	"users",
48 	"bools",
49 	"levels",
50 	"categories",
51 };
52 #endif
53 
54 int selinux_mls_enabled = 0;
55 
56 static unsigned int symtab_sizes[SYM_NUM] = {
57 	2,
58 	32,
59 	16,
60 	512,
61 	128,
62 	16,
63 	16,
64 	16,
65 };
66 
67 struct policydb_compat_info {
68 	int version;
69 	int sym_num;
70 	int ocon_num;
71 };
72 
73 /* These need to be updated if SYM_NUM or OCON_NUM changes */
74 static struct policydb_compat_info policydb_compat[] = {
75 	{
76 		.version        = POLICYDB_VERSION_BASE,
77 		.sym_num        = SYM_NUM - 3,
78 		.ocon_num       = OCON_NUM - 1,
79 	},
80 	{
81 		.version        = POLICYDB_VERSION_BOOL,
82 		.sym_num        = SYM_NUM - 2,
83 		.ocon_num       = OCON_NUM - 1,
84 	},
85 	{
86 		.version        = POLICYDB_VERSION_IPV6,
87 		.sym_num        = SYM_NUM - 2,
88 		.ocon_num       = OCON_NUM,
89 	},
90 	{
91 		.version        = POLICYDB_VERSION_NLCLASS,
92 		.sym_num        = SYM_NUM - 2,
93 		.ocon_num       = OCON_NUM,
94 	},
95 	{
96 		.version        = POLICYDB_VERSION_MLS,
97 		.sym_num        = SYM_NUM,
98 		.ocon_num       = OCON_NUM,
99 	},
100 	{
101 		.version        = POLICYDB_VERSION_AVTAB,
102 		.sym_num        = SYM_NUM,
103 		.ocon_num       = OCON_NUM,
104 	},
105 	{
106 		.version        = POLICYDB_VERSION_RANGETRANS,
107 		.sym_num        = SYM_NUM,
108 		.ocon_num       = OCON_NUM,
109 	},
110 	{
111 		.version	= POLICYDB_VERSION_POLCAP,
112 		.sym_num	= SYM_NUM,
113 		.ocon_num	= OCON_NUM,
114 	}
115 };
116 
117 static struct policydb_compat_info *policydb_lookup_compat(int version)
118 {
119 	int i;
120 	struct policydb_compat_info *info = NULL;
121 
122 	for (i = 0; i < ARRAY_SIZE(policydb_compat); i++) {
123 		if (policydb_compat[i].version == version) {
124 			info = &policydb_compat[i];
125 			break;
126 		}
127 	}
128 	return info;
129 }
130 
131 /*
132  * Initialize the role table.
133  */
134 static int roles_init(struct policydb *p)
135 {
136 	char *key = NULL;
137 	int rc;
138 	struct role_datum *role;
139 
140 	role = kzalloc(sizeof(*role), GFP_KERNEL);
141 	if (!role) {
142 		rc = -ENOMEM;
143 		goto out;
144 	}
145 	role->value = ++p->p_roles.nprim;
146 	if (role->value != OBJECT_R_VAL) {
147 		rc = -EINVAL;
148 		goto out_free_role;
149 	}
150 	key = kmalloc(strlen(OBJECT_R)+1,GFP_KERNEL);
151 	if (!key) {
152 		rc = -ENOMEM;
153 		goto out_free_role;
154 	}
155 	strcpy(key, OBJECT_R);
156 	rc = hashtab_insert(p->p_roles.table, key, role);
157 	if (rc)
158 		goto out_free_key;
159 out:
160 	return rc;
161 
162 out_free_key:
163 	kfree(key);
164 out_free_role:
165 	kfree(role);
166 	goto out;
167 }
168 
169 /*
170  * Initialize a policy database structure.
171  */
172 static int policydb_init(struct policydb *p)
173 {
174 	int i, rc;
175 
176 	memset(p, 0, sizeof(*p));
177 
178 	for (i = 0; i < SYM_NUM; i++) {
179 		rc = symtab_init(&p->symtab[i], symtab_sizes[i]);
180 		if (rc)
181 			goto out_free_symtab;
182 	}
183 
184 	rc = avtab_init(&p->te_avtab);
185 	if (rc)
186 		goto out_free_symtab;
187 
188 	rc = roles_init(p);
189 	if (rc)
190 		goto out_free_symtab;
191 
192 	rc = cond_policydb_init(p);
193 	if (rc)
194 		goto out_free_symtab;
195 
196 	ebitmap_init(&p->policycaps);
197 
198 out:
199 	return rc;
200 
201 out_free_symtab:
202 	for (i = 0; i < SYM_NUM; i++)
203 		hashtab_destroy(p->symtab[i].table);
204 	goto out;
205 }
206 
207 /*
208  * The following *_index functions are used to
209  * define the val_to_name and val_to_struct arrays
210  * in a policy database structure.  The val_to_name
211  * arrays are used when converting security context
212  * structures into string representations.  The
213  * val_to_struct arrays are used when the attributes
214  * of a class, role, or user are needed.
215  */
216 
217 static int common_index(void *key, void *datum, void *datap)
218 {
219 	struct policydb *p;
220 	struct common_datum *comdatum;
221 
222 	comdatum = datum;
223 	p = datap;
224 	if (!comdatum->value || comdatum->value > p->p_commons.nprim)
225 		return -EINVAL;
226 	p->p_common_val_to_name[comdatum->value - 1] = key;
227 	return 0;
228 }
229 
230 static int class_index(void *key, void *datum, void *datap)
231 {
232 	struct policydb *p;
233 	struct class_datum *cladatum;
234 
235 	cladatum = datum;
236 	p = datap;
237 	if (!cladatum->value || cladatum->value > p->p_classes.nprim)
238 		return -EINVAL;
239 	p->p_class_val_to_name[cladatum->value - 1] = key;
240 	p->class_val_to_struct[cladatum->value - 1] = cladatum;
241 	return 0;
242 }
243 
244 static int role_index(void *key, void *datum, void *datap)
245 {
246 	struct policydb *p;
247 	struct role_datum *role;
248 
249 	role = datum;
250 	p = datap;
251 	if (!role->value || role->value > p->p_roles.nprim)
252 		return -EINVAL;
253 	p->p_role_val_to_name[role->value - 1] = key;
254 	p->role_val_to_struct[role->value - 1] = role;
255 	return 0;
256 }
257 
258 static int type_index(void *key, void *datum, void *datap)
259 {
260 	struct policydb *p;
261 	struct type_datum *typdatum;
262 
263 	typdatum = datum;
264 	p = datap;
265 
266 	if (typdatum->primary) {
267 		if (!typdatum->value || typdatum->value > p->p_types.nprim)
268 			return -EINVAL;
269 		p->p_type_val_to_name[typdatum->value - 1] = key;
270 	}
271 
272 	return 0;
273 }
274 
275 static int user_index(void *key, void *datum, void *datap)
276 {
277 	struct policydb *p;
278 	struct user_datum *usrdatum;
279 
280 	usrdatum = datum;
281 	p = datap;
282 	if (!usrdatum->value || usrdatum->value > p->p_users.nprim)
283 		return -EINVAL;
284 	p->p_user_val_to_name[usrdatum->value - 1] = key;
285 	p->user_val_to_struct[usrdatum->value - 1] = usrdatum;
286 	return 0;
287 }
288 
289 static int sens_index(void *key, void *datum, void *datap)
290 {
291 	struct policydb *p;
292 	struct level_datum *levdatum;
293 
294 	levdatum = datum;
295 	p = datap;
296 
297 	if (!levdatum->isalias) {
298 		if (!levdatum->level->sens ||
299 		    levdatum->level->sens > p->p_levels.nprim)
300 			return -EINVAL;
301 		p->p_sens_val_to_name[levdatum->level->sens - 1] = key;
302 	}
303 
304 	return 0;
305 }
306 
307 static int cat_index(void *key, void *datum, void *datap)
308 {
309 	struct policydb *p;
310 	struct cat_datum *catdatum;
311 
312 	catdatum = datum;
313 	p = datap;
314 
315 	if (!catdatum->isalias) {
316 		if (!catdatum->value || catdatum->value > p->p_cats.nprim)
317 			return -EINVAL;
318 		p->p_cat_val_to_name[catdatum->value - 1] = key;
319 	}
320 
321 	return 0;
322 }
323 
324 static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) =
325 {
326 	common_index,
327 	class_index,
328 	role_index,
329 	type_index,
330 	user_index,
331 	cond_index_bool,
332 	sens_index,
333 	cat_index,
334 };
335 
336 /*
337  * Define the common val_to_name array and the class
338  * val_to_name and val_to_struct arrays in a policy
339  * database structure.
340  *
341  * Caller must clean up upon failure.
342  */
343 static int policydb_index_classes(struct policydb *p)
344 {
345 	int rc;
346 
347 	p->p_common_val_to_name =
348 		kmalloc(p->p_commons.nprim * sizeof(char *), GFP_KERNEL);
349 	if (!p->p_common_val_to_name) {
350 		rc = -ENOMEM;
351 		goto out;
352 	}
353 
354 	rc = hashtab_map(p->p_commons.table, common_index, p);
355 	if (rc)
356 		goto out;
357 
358 	p->class_val_to_struct =
359 		kmalloc(p->p_classes.nprim * sizeof(*(p->class_val_to_struct)), GFP_KERNEL);
360 	if (!p->class_val_to_struct) {
361 		rc = -ENOMEM;
362 		goto out;
363 	}
364 
365 	p->p_class_val_to_name =
366 		kmalloc(p->p_classes.nprim * sizeof(char *), GFP_KERNEL);
367 	if (!p->p_class_val_to_name) {
368 		rc = -ENOMEM;
369 		goto out;
370 	}
371 
372 	rc = hashtab_map(p->p_classes.table, class_index, p);
373 out:
374 	return rc;
375 }
376 
377 #ifdef DEBUG_HASHES
378 static void symtab_hash_eval(struct symtab *s)
379 {
380 	int i;
381 
382 	for (i = 0; i < SYM_NUM; i++) {
383 		struct hashtab *h = s[i].table;
384 		struct hashtab_info info;
385 
386 		hashtab_stat(h, &info);
387 		printk(KERN_DEBUG "%s:  %d entries and %d/%d buckets used, "
388 		       "longest chain length %d\n", symtab_name[i], h->nel,
389 		       info.slots_used, h->size, info.max_chain_len);
390 	}
391 }
392 #endif
393 
394 /*
395  * Define the other val_to_name and val_to_struct arrays
396  * in a policy database structure.
397  *
398  * Caller must clean up on failure.
399  */
400 static int policydb_index_others(struct policydb *p)
401 {
402 	int i, rc = 0;
403 
404 	printk(KERN_DEBUG "security:  %d users, %d roles, %d types, %d bools",
405 	       p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim);
406 	if (selinux_mls_enabled)
407 		printk(", %d sens, %d cats", p->p_levels.nprim,
408 		       p->p_cats.nprim);
409 	printk("\n");
410 
411 	printk(KERN_DEBUG "security:  %d classes, %d rules\n",
412 	       p->p_classes.nprim, p->te_avtab.nel);
413 
414 #ifdef DEBUG_HASHES
415 	avtab_hash_eval(&p->te_avtab, "rules");
416 	symtab_hash_eval(p->symtab);
417 #endif
418 
419 	p->role_val_to_struct =
420 		kmalloc(p->p_roles.nprim * sizeof(*(p->role_val_to_struct)),
421 		        GFP_KERNEL);
422 	if (!p->role_val_to_struct) {
423 		rc = -ENOMEM;
424 		goto out;
425 	}
426 
427 	p->user_val_to_struct =
428 		kmalloc(p->p_users.nprim * sizeof(*(p->user_val_to_struct)),
429 		        GFP_KERNEL);
430 	if (!p->user_val_to_struct) {
431 		rc = -ENOMEM;
432 		goto out;
433 	}
434 
435 	if (cond_init_bool_indexes(p)) {
436 		rc = -ENOMEM;
437 		goto out;
438 	}
439 
440 	for (i = SYM_ROLES; i < SYM_NUM; i++) {
441 		p->sym_val_to_name[i] =
442 			kmalloc(p->symtab[i].nprim * sizeof(char *), GFP_KERNEL);
443 		if (!p->sym_val_to_name[i]) {
444 			rc = -ENOMEM;
445 			goto out;
446 		}
447 		rc = hashtab_map(p->symtab[i].table, index_f[i], p);
448 		if (rc)
449 			goto out;
450 	}
451 
452 out:
453 	return rc;
454 }
455 
456 /*
457  * The following *_destroy functions are used to
458  * free any memory allocated for each kind of
459  * symbol data in the policy database.
460  */
461 
462 static int perm_destroy(void *key, void *datum, void *p)
463 {
464 	kfree(key);
465 	kfree(datum);
466 	return 0;
467 }
468 
469 static int common_destroy(void *key, void *datum, void *p)
470 {
471 	struct common_datum *comdatum;
472 
473 	kfree(key);
474 	comdatum = datum;
475 	hashtab_map(comdatum->permissions.table, perm_destroy, NULL);
476 	hashtab_destroy(comdatum->permissions.table);
477 	kfree(datum);
478 	return 0;
479 }
480 
481 static int cls_destroy(void *key, void *datum, void *p)
482 {
483 	struct class_datum *cladatum;
484 	struct constraint_node *constraint, *ctemp;
485 	struct constraint_expr *e, *etmp;
486 
487 	kfree(key);
488 	cladatum = datum;
489 	hashtab_map(cladatum->permissions.table, perm_destroy, NULL);
490 	hashtab_destroy(cladatum->permissions.table);
491 	constraint = cladatum->constraints;
492 	while (constraint) {
493 		e = constraint->expr;
494 		while (e) {
495 			ebitmap_destroy(&e->names);
496 			etmp = e;
497 			e = e->next;
498 			kfree(etmp);
499 		}
500 		ctemp = constraint;
501 		constraint = constraint->next;
502 		kfree(ctemp);
503 	}
504 
505 	constraint = cladatum->validatetrans;
506 	while (constraint) {
507 		e = constraint->expr;
508 		while (e) {
509 			ebitmap_destroy(&e->names);
510 			etmp = e;
511 			e = e->next;
512 			kfree(etmp);
513 		}
514 		ctemp = constraint;
515 		constraint = constraint->next;
516 		kfree(ctemp);
517 	}
518 
519 	kfree(cladatum->comkey);
520 	kfree(datum);
521 	return 0;
522 }
523 
524 static int role_destroy(void *key, void *datum, void *p)
525 {
526 	struct role_datum *role;
527 
528 	kfree(key);
529 	role = datum;
530 	ebitmap_destroy(&role->dominates);
531 	ebitmap_destroy(&role->types);
532 	kfree(datum);
533 	return 0;
534 }
535 
536 static int type_destroy(void *key, void *datum, void *p)
537 {
538 	kfree(key);
539 	kfree(datum);
540 	return 0;
541 }
542 
543 static int user_destroy(void *key, void *datum, void *p)
544 {
545 	struct user_datum *usrdatum;
546 
547 	kfree(key);
548 	usrdatum = datum;
549 	ebitmap_destroy(&usrdatum->roles);
550 	ebitmap_destroy(&usrdatum->range.level[0].cat);
551 	ebitmap_destroy(&usrdatum->range.level[1].cat);
552 	ebitmap_destroy(&usrdatum->dfltlevel.cat);
553 	kfree(datum);
554 	return 0;
555 }
556 
557 static int sens_destroy(void *key, void *datum, void *p)
558 {
559 	struct level_datum *levdatum;
560 
561 	kfree(key);
562 	levdatum = datum;
563 	ebitmap_destroy(&levdatum->level->cat);
564 	kfree(levdatum->level);
565 	kfree(datum);
566 	return 0;
567 }
568 
569 static int cat_destroy(void *key, void *datum, void *p)
570 {
571 	kfree(key);
572 	kfree(datum);
573 	return 0;
574 }
575 
576 static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) =
577 {
578 	common_destroy,
579 	cls_destroy,
580 	role_destroy,
581 	type_destroy,
582 	user_destroy,
583 	cond_destroy_bool,
584 	sens_destroy,
585 	cat_destroy,
586 };
587 
588 static void ocontext_destroy(struct ocontext *c, int i)
589 {
590 	context_destroy(&c->context[0]);
591 	context_destroy(&c->context[1]);
592 	if (i == OCON_ISID || i == OCON_FS ||
593 	    i == OCON_NETIF || i == OCON_FSUSE)
594 		kfree(c->u.name);
595 	kfree(c);
596 }
597 
598 /*
599  * Free any memory allocated by a policy database structure.
600  */
601 void policydb_destroy(struct policydb *p)
602 {
603 	struct ocontext *c, *ctmp;
604 	struct genfs *g, *gtmp;
605 	int i;
606 	struct role_allow *ra, *lra = NULL;
607 	struct role_trans *tr, *ltr = NULL;
608 	struct range_trans *rt, *lrt = NULL;
609 
610 	for (i = 0; i < SYM_NUM; i++) {
611 		cond_resched();
612 		hashtab_map(p->symtab[i].table, destroy_f[i], NULL);
613 		hashtab_destroy(p->symtab[i].table);
614 	}
615 
616 	for (i = 0; i < SYM_NUM; i++)
617 		kfree(p->sym_val_to_name[i]);
618 
619 	kfree(p->class_val_to_struct);
620 	kfree(p->role_val_to_struct);
621 	kfree(p->user_val_to_struct);
622 
623 	avtab_destroy(&p->te_avtab);
624 
625 	for (i = 0; i < OCON_NUM; i++) {
626 		cond_resched();
627 		c = p->ocontexts[i];
628 		while (c) {
629 			ctmp = c;
630 			c = c->next;
631 			ocontext_destroy(ctmp,i);
632 		}
633 		p->ocontexts[i] = NULL;
634 	}
635 
636 	g = p->genfs;
637 	while (g) {
638 		cond_resched();
639 		kfree(g->fstype);
640 		c = g->head;
641 		while (c) {
642 			ctmp = c;
643 			c = c->next;
644 			ocontext_destroy(ctmp,OCON_FSUSE);
645 		}
646 		gtmp = g;
647 		g = g->next;
648 		kfree(gtmp);
649 	}
650 	p->genfs = NULL;
651 
652 	cond_policydb_destroy(p);
653 
654 	for (tr = p->role_tr; tr; tr = tr->next) {
655 		cond_resched();
656 		kfree(ltr);
657 		ltr = tr;
658 	}
659 	kfree(ltr);
660 
661 	for (ra = p->role_allow; ra; ra = ra -> next) {
662 		cond_resched();
663 		kfree(lra);
664 		lra = ra;
665 	}
666 	kfree(lra);
667 
668 	for (rt = p->range_tr; rt; rt = rt -> next) {
669 		cond_resched();
670 		if (lrt) {
671 			ebitmap_destroy(&lrt->target_range.level[0].cat);
672 			ebitmap_destroy(&lrt->target_range.level[1].cat);
673 			kfree(lrt);
674 		}
675 		lrt = rt;
676 	}
677 	if (lrt) {
678 		ebitmap_destroy(&lrt->target_range.level[0].cat);
679 		ebitmap_destroy(&lrt->target_range.level[1].cat);
680 		kfree(lrt);
681 	}
682 
683 	if (p->type_attr_map) {
684 		for (i = 0; i < p->p_types.nprim; i++)
685 			ebitmap_destroy(&p->type_attr_map[i]);
686 	}
687 	kfree(p->type_attr_map);
688 	kfree(p->undefined_perms);
689 	ebitmap_destroy(&p->policycaps);
690 
691 	return;
692 }
693 
694 /*
695  * Load the initial SIDs specified in a policy database
696  * structure into a SID table.
697  */
698 int policydb_load_isids(struct policydb *p, struct sidtab *s)
699 {
700 	struct ocontext *head, *c;
701 	int rc;
702 
703 	rc = sidtab_init(s);
704 	if (rc) {
705 		printk(KERN_ERR "security:  out of memory on SID table init\n");
706 		goto out;
707 	}
708 
709 	head = p->ocontexts[OCON_ISID];
710 	for (c = head; c; c = c->next) {
711 		if (!c->context[0].user) {
712 			printk(KERN_ERR "security:  SID %s was never "
713 			       "defined.\n", c->u.name);
714 			rc = -EINVAL;
715 			goto out;
716 		}
717 		if (sidtab_insert(s, c->sid[0], &c->context[0])) {
718 			printk(KERN_ERR "security:  unable to load initial "
719 			       "SID %s.\n", c->u.name);
720 			rc = -EINVAL;
721 			goto out;
722 		}
723 	}
724 out:
725 	return rc;
726 }
727 
728 int policydb_class_isvalid(struct policydb *p, unsigned int class)
729 {
730 	if (!class || class > p->p_classes.nprim)
731 		return 0;
732 	return 1;
733 }
734 
735 int policydb_role_isvalid(struct policydb *p, unsigned int role)
736 {
737 	if (!role || role > p->p_roles.nprim)
738 		return 0;
739 	return 1;
740 }
741 
742 int policydb_type_isvalid(struct policydb *p, unsigned int type)
743 {
744 	if (!type || type > p->p_types.nprim)
745 		return 0;
746 	return 1;
747 }
748 
749 /*
750  * Return 1 if the fields in the security context
751  * structure `c' are valid.  Return 0 otherwise.
752  */
753 int policydb_context_isvalid(struct policydb *p, struct context *c)
754 {
755 	struct role_datum *role;
756 	struct user_datum *usrdatum;
757 
758 	if (!c->role || c->role > p->p_roles.nprim)
759 		return 0;
760 
761 	if (!c->user || c->user > p->p_users.nprim)
762 		return 0;
763 
764 	if (!c->type || c->type > p->p_types.nprim)
765 		return 0;
766 
767 	if (c->role != OBJECT_R_VAL) {
768 		/*
769 		 * Role must be authorized for the type.
770 		 */
771 		role = p->role_val_to_struct[c->role - 1];
772 		if (!ebitmap_get_bit(&role->types,
773 				     c->type - 1))
774 			/* role may not be associated with type */
775 			return 0;
776 
777 		/*
778 		 * User must be authorized for the role.
779 		 */
780 		usrdatum = p->user_val_to_struct[c->user - 1];
781 		if (!usrdatum)
782 			return 0;
783 
784 		if (!ebitmap_get_bit(&usrdatum->roles,
785 				     c->role - 1))
786 			/* user may not be associated with role */
787 			return 0;
788 	}
789 
790 	if (!mls_context_isvalid(p, c))
791 		return 0;
792 
793 	return 1;
794 }
795 
796 /*
797  * Read a MLS range structure from a policydb binary
798  * representation file.
799  */
800 static int mls_read_range_helper(struct mls_range *r, void *fp)
801 {
802 	__le32 buf[2];
803 	u32 items;
804 	int rc;
805 
806 	rc = next_entry(buf, fp, sizeof(u32));
807 	if (rc < 0)
808 		goto out;
809 
810 	items = le32_to_cpu(buf[0]);
811 	if (items > ARRAY_SIZE(buf)) {
812 		printk(KERN_ERR "security: mls:  range overflow\n");
813 		rc = -EINVAL;
814 		goto out;
815 	}
816 	rc = next_entry(buf, fp, sizeof(u32) * items);
817 	if (rc < 0) {
818 		printk(KERN_ERR "security: mls:  truncated range\n");
819 		goto out;
820 	}
821 	r->level[0].sens = le32_to_cpu(buf[0]);
822 	if (items > 1)
823 		r->level[1].sens = le32_to_cpu(buf[1]);
824 	else
825 		r->level[1].sens = r->level[0].sens;
826 
827 	rc = ebitmap_read(&r->level[0].cat, fp);
828 	if (rc) {
829 		printk(KERN_ERR "security: mls:  error reading low "
830 		       "categories\n");
831 		goto out;
832 	}
833 	if (items > 1) {
834 		rc = ebitmap_read(&r->level[1].cat, fp);
835 		if (rc) {
836 			printk(KERN_ERR "security: mls:  error reading high "
837 			       "categories\n");
838 			goto bad_high;
839 		}
840 	} else {
841 		rc = ebitmap_cpy(&r->level[1].cat, &r->level[0].cat);
842 		if (rc) {
843 			printk(KERN_ERR "security: mls:  out of memory\n");
844 			goto bad_high;
845 		}
846 	}
847 
848 	rc = 0;
849 out:
850 	return rc;
851 bad_high:
852 	ebitmap_destroy(&r->level[0].cat);
853 	goto out;
854 }
855 
856 /*
857  * Read and validate a security context structure
858  * from a policydb binary representation file.
859  */
860 static int context_read_and_validate(struct context *c,
861 				     struct policydb *p,
862 				     void *fp)
863 {
864 	__le32 buf[3];
865 	int rc;
866 
867 	rc = next_entry(buf, fp, sizeof buf);
868 	if (rc < 0) {
869 		printk(KERN_ERR "security: context truncated\n");
870 		goto out;
871 	}
872 	c->user = le32_to_cpu(buf[0]);
873 	c->role = le32_to_cpu(buf[1]);
874 	c->type = le32_to_cpu(buf[2]);
875 	if (p->policyvers >= POLICYDB_VERSION_MLS) {
876 		if (mls_read_range_helper(&c->range, fp)) {
877 			printk(KERN_ERR "security: error reading MLS range of "
878 			       "context\n");
879 			rc = -EINVAL;
880 			goto out;
881 		}
882 	}
883 
884 	if (!policydb_context_isvalid(p, c)) {
885 		printk(KERN_ERR "security:  invalid security context\n");
886 		context_destroy(c);
887 		rc = -EINVAL;
888 	}
889 out:
890 	return rc;
891 }
892 
893 /*
894  * The following *_read functions are used to
895  * read the symbol data from a policy database
896  * binary representation file.
897  */
898 
899 static int perm_read(struct policydb *p, struct hashtab *h, void *fp)
900 {
901 	char *key = NULL;
902 	struct perm_datum *perdatum;
903 	int rc;
904 	__le32 buf[2];
905 	u32 len;
906 
907 	perdatum = kzalloc(sizeof(*perdatum), GFP_KERNEL);
908 	if (!perdatum) {
909 		rc = -ENOMEM;
910 		goto out;
911 	}
912 
913 	rc = next_entry(buf, fp, sizeof buf);
914 	if (rc < 0)
915 		goto bad;
916 
917 	len = le32_to_cpu(buf[0]);
918 	perdatum->value = le32_to_cpu(buf[1]);
919 
920 	key = kmalloc(len + 1,GFP_KERNEL);
921 	if (!key) {
922 		rc = -ENOMEM;
923 		goto bad;
924 	}
925 	rc = next_entry(key, fp, len);
926 	if (rc < 0)
927 		goto bad;
928 	key[len] = 0;
929 
930 	rc = hashtab_insert(h, key, perdatum);
931 	if (rc)
932 		goto bad;
933 out:
934 	return rc;
935 bad:
936 	perm_destroy(key, perdatum, NULL);
937 	goto out;
938 }
939 
940 static int common_read(struct policydb *p, struct hashtab *h, void *fp)
941 {
942 	char *key = NULL;
943 	struct common_datum *comdatum;
944 	__le32 buf[4];
945 	u32 len, nel;
946 	int i, rc;
947 
948 	comdatum = kzalloc(sizeof(*comdatum), GFP_KERNEL);
949 	if (!comdatum) {
950 		rc = -ENOMEM;
951 		goto out;
952 	}
953 
954 	rc = next_entry(buf, fp, sizeof buf);
955 	if (rc < 0)
956 		goto bad;
957 
958 	len = le32_to_cpu(buf[0]);
959 	comdatum->value = le32_to_cpu(buf[1]);
960 
961 	rc = symtab_init(&comdatum->permissions, PERM_SYMTAB_SIZE);
962 	if (rc)
963 		goto bad;
964 	comdatum->permissions.nprim = le32_to_cpu(buf[2]);
965 	nel = le32_to_cpu(buf[3]);
966 
967 	key = kmalloc(len + 1,GFP_KERNEL);
968 	if (!key) {
969 		rc = -ENOMEM;
970 		goto bad;
971 	}
972 	rc = next_entry(key, fp, len);
973 	if (rc < 0)
974 		goto bad;
975 	key[len] = 0;
976 
977 	for (i = 0; i < nel; i++) {
978 		rc = perm_read(p, comdatum->permissions.table, fp);
979 		if (rc)
980 			goto bad;
981 	}
982 
983 	rc = hashtab_insert(h, key, comdatum);
984 	if (rc)
985 		goto bad;
986 out:
987 	return rc;
988 bad:
989 	common_destroy(key, comdatum, NULL);
990 	goto out;
991 }
992 
993 static int read_cons_helper(struct constraint_node **nodep, int ncons,
994                             int allowxtarget, void *fp)
995 {
996 	struct constraint_node *c, *lc;
997 	struct constraint_expr *e, *le;
998 	__le32 buf[3];
999 	u32 nexpr;
1000 	int rc, i, j, depth;
1001 
1002 	lc = NULL;
1003 	for (i = 0; i < ncons; i++) {
1004 		c = kzalloc(sizeof(*c), GFP_KERNEL);
1005 		if (!c)
1006 			return -ENOMEM;
1007 
1008 		if (lc) {
1009 			lc->next = c;
1010 		} else {
1011 			*nodep = c;
1012 		}
1013 
1014 		rc = next_entry(buf, fp, (sizeof(u32) * 2));
1015 		if (rc < 0)
1016 			return rc;
1017 		c->permissions = le32_to_cpu(buf[0]);
1018 		nexpr = le32_to_cpu(buf[1]);
1019 		le = NULL;
1020 		depth = -1;
1021 		for (j = 0; j < nexpr; j++) {
1022 			e = kzalloc(sizeof(*e), GFP_KERNEL);
1023 			if (!e)
1024 				return -ENOMEM;
1025 
1026 			if (le) {
1027 				le->next = e;
1028 			} else {
1029 				c->expr = e;
1030 			}
1031 
1032 			rc = next_entry(buf, fp, (sizeof(u32) * 3));
1033 			if (rc < 0)
1034 				return rc;
1035 			e->expr_type = le32_to_cpu(buf[0]);
1036 			e->attr = le32_to_cpu(buf[1]);
1037 			e->op = le32_to_cpu(buf[2]);
1038 
1039 			switch (e->expr_type) {
1040 			case CEXPR_NOT:
1041 				if (depth < 0)
1042 					return -EINVAL;
1043 				break;
1044 			case CEXPR_AND:
1045 			case CEXPR_OR:
1046 				if (depth < 1)
1047 					return -EINVAL;
1048 				depth--;
1049 				break;
1050 			case CEXPR_ATTR:
1051 				if (depth == (CEXPR_MAXDEPTH - 1))
1052 					return -EINVAL;
1053 				depth++;
1054 				break;
1055 			case CEXPR_NAMES:
1056 				if (!allowxtarget && (e->attr & CEXPR_XTARGET))
1057 					return -EINVAL;
1058 				if (depth == (CEXPR_MAXDEPTH - 1))
1059 					return -EINVAL;
1060 				depth++;
1061 				if (ebitmap_read(&e->names, fp))
1062 					return -EINVAL;
1063 				break;
1064 			default:
1065 				return -EINVAL;
1066 			}
1067 			le = e;
1068 		}
1069 		if (depth != 0)
1070 			return -EINVAL;
1071 		lc = c;
1072 	}
1073 
1074 	return 0;
1075 }
1076 
1077 static int class_read(struct policydb *p, struct hashtab *h, void *fp)
1078 {
1079 	char *key = NULL;
1080 	struct class_datum *cladatum;
1081 	__le32 buf[6];
1082 	u32 len, len2, ncons, nel;
1083 	int i, rc;
1084 
1085 	cladatum = kzalloc(sizeof(*cladatum), GFP_KERNEL);
1086 	if (!cladatum) {
1087 		rc = -ENOMEM;
1088 		goto out;
1089 	}
1090 
1091 	rc = next_entry(buf, fp, sizeof(u32)*6);
1092 	if (rc < 0)
1093 		goto bad;
1094 
1095 	len = le32_to_cpu(buf[0]);
1096 	len2 = le32_to_cpu(buf[1]);
1097 	cladatum->value = le32_to_cpu(buf[2]);
1098 
1099 	rc = symtab_init(&cladatum->permissions, PERM_SYMTAB_SIZE);
1100 	if (rc)
1101 		goto bad;
1102 	cladatum->permissions.nprim = le32_to_cpu(buf[3]);
1103 	nel = le32_to_cpu(buf[4]);
1104 
1105 	ncons = le32_to_cpu(buf[5]);
1106 
1107 	key = kmalloc(len + 1,GFP_KERNEL);
1108 	if (!key) {
1109 		rc = -ENOMEM;
1110 		goto bad;
1111 	}
1112 	rc = next_entry(key, fp, len);
1113 	if (rc < 0)
1114 		goto bad;
1115 	key[len] = 0;
1116 
1117 	if (len2) {
1118 		cladatum->comkey = kmalloc(len2 + 1,GFP_KERNEL);
1119 		if (!cladatum->comkey) {
1120 			rc = -ENOMEM;
1121 			goto bad;
1122 		}
1123 		rc = next_entry(cladatum->comkey, fp, len2);
1124 		if (rc < 0)
1125 			goto bad;
1126 		cladatum->comkey[len2] = 0;
1127 
1128 		cladatum->comdatum = hashtab_search(p->p_commons.table,
1129 						    cladatum->comkey);
1130 		if (!cladatum->comdatum) {
1131 			printk(KERN_ERR "security:  unknown common %s\n",
1132 			       cladatum->comkey);
1133 			rc = -EINVAL;
1134 			goto bad;
1135 		}
1136 	}
1137 	for (i = 0; i < nel; i++) {
1138 		rc = perm_read(p, cladatum->permissions.table, fp);
1139 		if (rc)
1140 			goto bad;
1141 	}
1142 
1143 	rc = read_cons_helper(&cladatum->constraints, ncons, 0, fp);
1144 	if (rc)
1145 		goto bad;
1146 
1147 	if (p->policyvers >= POLICYDB_VERSION_VALIDATETRANS) {
1148 		/* grab the validatetrans rules */
1149 		rc = next_entry(buf, fp, sizeof(u32));
1150 		if (rc < 0)
1151 			goto bad;
1152 		ncons = le32_to_cpu(buf[0]);
1153 		rc = read_cons_helper(&cladatum->validatetrans, ncons, 1, fp);
1154 		if (rc)
1155 			goto bad;
1156 	}
1157 
1158 	rc = hashtab_insert(h, key, cladatum);
1159 	if (rc)
1160 		goto bad;
1161 
1162 	rc = 0;
1163 out:
1164 	return rc;
1165 bad:
1166 	cls_destroy(key, cladatum, NULL);
1167 	goto out;
1168 }
1169 
1170 static int role_read(struct policydb *p, struct hashtab *h, void *fp)
1171 {
1172 	char *key = NULL;
1173 	struct role_datum *role;
1174 	int rc;
1175 	__le32 buf[2];
1176 	u32 len;
1177 
1178 	role = kzalloc(sizeof(*role), GFP_KERNEL);
1179 	if (!role) {
1180 		rc = -ENOMEM;
1181 		goto out;
1182 	}
1183 
1184 	rc = next_entry(buf, fp, sizeof buf);
1185 	if (rc < 0)
1186 		goto bad;
1187 
1188 	len = le32_to_cpu(buf[0]);
1189 	role->value = le32_to_cpu(buf[1]);
1190 
1191 	key = kmalloc(len + 1,GFP_KERNEL);
1192 	if (!key) {
1193 		rc = -ENOMEM;
1194 		goto bad;
1195 	}
1196 	rc = next_entry(key, fp, len);
1197 	if (rc < 0)
1198 		goto bad;
1199 	key[len] = 0;
1200 
1201 	rc = ebitmap_read(&role->dominates, fp);
1202 	if (rc)
1203 		goto bad;
1204 
1205 	rc = ebitmap_read(&role->types, fp);
1206 	if (rc)
1207 		goto bad;
1208 
1209 	if (strcmp(key, OBJECT_R) == 0) {
1210 		if (role->value != OBJECT_R_VAL) {
1211 			printk(KERN_ERR "Role %s has wrong value %d\n",
1212 			       OBJECT_R, role->value);
1213 			rc = -EINVAL;
1214 			goto bad;
1215 		}
1216 		rc = 0;
1217 		goto bad;
1218 	}
1219 
1220 	rc = hashtab_insert(h, key, role);
1221 	if (rc)
1222 		goto bad;
1223 out:
1224 	return rc;
1225 bad:
1226 	role_destroy(key, role, NULL);
1227 	goto out;
1228 }
1229 
1230 static int type_read(struct policydb *p, struct hashtab *h, void *fp)
1231 {
1232 	char *key = NULL;
1233 	struct type_datum *typdatum;
1234 	int rc;
1235 	__le32 buf[3];
1236 	u32 len;
1237 
1238 	typdatum = kzalloc(sizeof(*typdatum),GFP_KERNEL);
1239 	if (!typdatum) {
1240 		rc = -ENOMEM;
1241 		return rc;
1242 	}
1243 
1244 	rc = next_entry(buf, fp, sizeof buf);
1245 	if (rc < 0)
1246 		goto bad;
1247 
1248 	len = le32_to_cpu(buf[0]);
1249 	typdatum->value = le32_to_cpu(buf[1]);
1250 	typdatum->primary = le32_to_cpu(buf[2]);
1251 
1252 	key = kmalloc(len + 1,GFP_KERNEL);
1253 	if (!key) {
1254 		rc = -ENOMEM;
1255 		goto bad;
1256 	}
1257 	rc = next_entry(key, fp, len);
1258 	if (rc < 0)
1259 		goto bad;
1260 	key[len] = 0;
1261 
1262 	rc = hashtab_insert(h, key, typdatum);
1263 	if (rc)
1264 		goto bad;
1265 out:
1266 	return rc;
1267 bad:
1268 	type_destroy(key, typdatum, NULL);
1269 	goto out;
1270 }
1271 
1272 
1273 /*
1274  * Read a MLS level structure from a policydb binary
1275  * representation file.
1276  */
1277 static int mls_read_level(struct mls_level *lp, void *fp)
1278 {
1279 	__le32 buf[1];
1280 	int rc;
1281 
1282 	memset(lp, 0, sizeof(*lp));
1283 
1284 	rc = next_entry(buf, fp, sizeof buf);
1285 	if (rc < 0) {
1286 		printk(KERN_ERR "security: mls: truncated level\n");
1287 		goto bad;
1288 	}
1289 	lp->sens = le32_to_cpu(buf[0]);
1290 
1291 	if (ebitmap_read(&lp->cat, fp)) {
1292 		printk(KERN_ERR "security: mls:  error reading level "
1293 		       "categories\n");
1294 		goto bad;
1295 	}
1296 
1297 	return 0;
1298 
1299 bad:
1300 	return -EINVAL;
1301 }
1302 
1303 static int user_read(struct policydb *p, struct hashtab *h, void *fp)
1304 {
1305 	char *key = NULL;
1306 	struct user_datum *usrdatum;
1307 	int rc;
1308 	__le32 buf[2];
1309 	u32 len;
1310 
1311 	usrdatum = kzalloc(sizeof(*usrdatum), GFP_KERNEL);
1312 	if (!usrdatum) {
1313 		rc = -ENOMEM;
1314 		goto out;
1315 	}
1316 
1317 	rc = next_entry(buf, fp, sizeof buf);
1318 	if (rc < 0)
1319 		goto bad;
1320 
1321 	len = le32_to_cpu(buf[0]);
1322 	usrdatum->value = le32_to_cpu(buf[1]);
1323 
1324 	key = kmalloc(len + 1,GFP_KERNEL);
1325 	if (!key) {
1326 		rc = -ENOMEM;
1327 		goto bad;
1328 	}
1329 	rc = next_entry(key, fp, len);
1330 	if (rc < 0)
1331 		goto bad;
1332 	key[len] = 0;
1333 
1334 	rc = ebitmap_read(&usrdatum->roles, fp);
1335 	if (rc)
1336 		goto bad;
1337 
1338 	if (p->policyvers >= POLICYDB_VERSION_MLS) {
1339 		rc = mls_read_range_helper(&usrdatum->range, fp);
1340 		if (rc)
1341 			goto bad;
1342 		rc = mls_read_level(&usrdatum->dfltlevel, fp);
1343 		if (rc)
1344 			goto bad;
1345 	}
1346 
1347 	rc = hashtab_insert(h, key, usrdatum);
1348 	if (rc)
1349 		goto bad;
1350 out:
1351 	return rc;
1352 bad:
1353 	user_destroy(key, usrdatum, NULL);
1354 	goto out;
1355 }
1356 
1357 static int sens_read(struct policydb *p, struct hashtab *h, void *fp)
1358 {
1359 	char *key = NULL;
1360 	struct level_datum *levdatum;
1361 	int rc;
1362 	__le32 buf[2];
1363 	u32 len;
1364 
1365 	levdatum = kzalloc(sizeof(*levdatum), GFP_ATOMIC);
1366 	if (!levdatum) {
1367 		rc = -ENOMEM;
1368 		goto out;
1369 	}
1370 
1371 	rc = next_entry(buf, fp, sizeof buf);
1372 	if (rc < 0)
1373 		goto bad;
1374 
1375 	len = le32_to_cpu(buf[0]);
1376 	levdatum->isalias = le32_to_cpu(buf[1]);
1377 
1378 	key = kmalloc(len + 1,GFP_ATOMIC);
1379 	if (!key) {
1380 		rc = -ENOMEM;
1381 		goto bad;
1382 	}
1383 	rc = next_entry(key, fp, len);
1384 	if (rc < 0)
1385 		goto bad;
1386 	key[len] = 0;
1387 
1388 	levdatum->level = kmalloc(sizeof(struct mls_level), GFP_ATOMIC);
1389 	if (!levdatum->level) {
1390 		rc = -ENOMEM;
1391 		goto bad;
1392 	}
1393 	if (mls_read_level(levdatum->level, fp)) {
1394 		rc = -EINVAL;
1395 		goto bad;
1396 	}
1397 
1398 	rc = hashtab_insert(h, key, levdatum);
1399 	if (rc)
1400 		goto bad;
1401 out:
1402 	return rc;
1403 bad:
1404 	sens_destroy(key, levdatum, NULL);
1405 	goto out;
1406 }
1407 
1408 static int cat_read(struct policydb *p, struct hashtab *h, void *fp)
1409 {
1410 	char *key = NULL;
1411 	struct cat_datum *catdatum;
1412 	int rc;
1413 	__le32 buf[3];
1414 	u32 len;
1415 
1416 	catdatum = kzalloc(sizeof(*catdatum), GFP_ATOMIC);
1417 	if (!catdatum) {
1418 		rc = -ENOMEM;
1419 		goto out;
1420 	}
1421 
1422 	rc = next_entry(buf, fp, sizeof buf);
1423 	if (rc < 0)
1424 		goto bad;
1425 
1426 	len = le32_to_cpu(buf[0]);
1427 	catdatum->value = le32_to_cpu(buf[1]);
1428 	catdatum->isalias = le32_to_cpu(buf[2]);
1429 
1430 	key = kmalloc(len + 1,GFP_ATOMIC);
1431 	if (!key) {
1432 		rc = -ENOMEM;
1433 		goto bad;
1434 	}
1435 	rc = next_entry(key, fp, len);
1436 	if (rc < 0)
1437 		goto bad;
1438 	key[len] = 0;
1439 
1440 	rc = hashtab_insert(h, key, catdatum);
1441 	if (rc)
1442 		goto bad;
1443 out:
1444 	return rc;
1445 
1446 bad:
1447 	cat_destroy(key, catdatum, NULL);
1448 	goto out;
1449 }
1450 
1451 static int (*read_f[SYM_NUM]) (struct policydb *p, struct hashtab *h, void *fp) =
1452 {
1453 	common_read,
1454 	class_read,
1455 	role_read,
1456 	type_read,
1457 	user_read,
1458 	cond_read_bool,
1459 	sens_read,
1460 	cat_read,
1461 };
1462 
1463 extern int ss_initialized;
1464 
1465 /*
1466  * Read the configuration data from a policy database binary
1467  * representation file into a policy database structure.
1468  */
1469 int policydb_read(struct policydb *p, void *fp)
1470 {
1471 	struct role_allow *ra, *lra;
1472 	struct role_trans *tr, *ltr;
1473 	struct ocontext *l, *c, *newc;
1474 	struct genfs *genfs_p, *genfs, *newgenfs;
1475 	int i, j, rc;
1476 	__le32 buf[8];
1477 	u32 len, len2, config, nprim, nel, nel2;
1478 	char *policydb_str;
1479 	struct policydb_compat_info *info;
1480 	struct range_trans *rt, *lrt;
1481 
1482 	config = 0;
1483 
1484 	rc = policydb_init(p);
1485 	if (rc)
1486 		goto out;
1487 
1488 	/* Read the magic number and string length. */
1489 	rc = next_entry(buf, fp, sizeof(u32)* 2);
1490 	if (rc < 0)
1491 		goto bad;
1492 
1493 	if (le32_to_cpu(buf[0]) != POLICYDB_MAGIC) {
1494 		printk(KERN_ERR "security:  policydb magic number 0x%x does "
1495 		       "not match expected magic number 0x%x\n",
1496 		       le32_to_cpu(buf[0]), POLICYDB_MAGIC);
1497 		goto bad;
1498 	}
1499 
1500 	len = le32_to_cpu(buf[1]);
1501 	if (len != strlen(POLICYDB_STRING)) {
1502 		printk(KERN_ERR "security:  policydb string length %d does not "
1503 		       "match expected length %Zu\n",
1504 		       len, strlen(POLICYDB_STRING));
1505 		goto bad;
1506 	}
1507 	policydb_str = kmalloc(len + 1,GFP_KERNEL);
1508 	if (!policydb_str) {
1509 		printk(KERN_ERR "security:  unable to allocate memory for policydb "
1510 		       "string of length %d\n", len);
1511 		rc = -ENOMEM;
1512 		goto bad;
1513 	}
1514 	rc = next_entry(policydb_str, fp, len);
1515 	if (rc < 0) {
1516 		printk(KERN_ERR "security:  truncated policydb string identifier\n");
1517 		kfree(policydb_str);
1518 		goto bad;
1519 	}
1520 	policydb_str[len] = 0;
1521 	if (strcmp(policydb_str, POLICYDB_STRING)) {
1522 		printk(KERN_ERR "security:  policydb string %s does not match "
1523 		       "my string %s\n", policydb_str, POLICYDB_STRING);
1524 		kfree(policydb_str);
1525 		goto bad;
1526 	}
1527 	/* Done with policydb_str. */
1528 	kfree(policydb_str);
1529 	policydb_str = NULL;
1530 
1531 	/* Read the version, config, and table sizes. */
1532 	rc = next_entry(buf, fp, sizeof(u32)*4);
1533 	if (rc < 0)
1534 		goto bad;
1535 
1536 	p->policyvers = le32_to_cpu(buf[0]);
1537 	if (p->policyvers < POLICYDB_VERSION_MIN ||
1538 	    p->policyvers > POLICYDB_VERSION_MAX) {
1539 	    	printk(KERN_ERR "security:  policydb version %d does not match "
1540 	    	       "my version range %d-%d\n",
1541 	    	       le32_to_cpu(buf[0]), POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX);
1542 	    	goto bad;
1543 	}
1544 
1545 	if ((le32_to_cpu(buf[1]) & POLICYDB_CONFIG_MLS)) {
1546 		if (ss_initialized && !selinux_mls_enabled) {
1547 			printk(KERN_ERR "Cannot switch between non-MLS and MLS "
1548 			       "policies\n");
1549 			goto bad;
1550 		}
1551 		selinux_mls_enabled = 1;
1552 		config |= POLICYDB_CONFIG_MLS;
1553 
1554 		if (p->policyvers < POLICYDB_VERSION_MLS) {
1555 			printk(KERN_ERR "security policydb version %d (MLS) "
1556 			       "not backwards compatible\n", p->policyvers);
1557 			goto bad;
1558 		}
1559 	} else {
1560 		if (ss_initialized && selinux_mls_enabled) {
1561 			printk(KERN_ERR "Cannot switch between MLS and non-MLS "
1562 			       "policies\n");
1563 			goto bad;
1564 		}
1565 	}
1566 	p->reject_unknown = !!(le32_to_cpu(buf[1]) & REJECT_UNKNOWN);
1567 	p->allow_unknown = !!(le32_to_cpu(buf[1]) & ALLOW_UNKNOWN);
1568 
1569 	if (p->policyvers >= POLICYDB_VERSION_POLCAP &&
1570 	    ebitmap_read(&p->policycaps, fp) != 0)
1571 		goto bad;
1572 
1573 	info = policydb_lookup_compat(p->policyvers);
1574 	if (!info) {
1575 		printk(KERN_ERR "security:  unable to find policy compat info "
1576 		       "for version %d\n", p->policyvers);
1577 		goto bad;
1578 	}
1579 
1580 	if (le32_to_cpu(buf[2]) != info->sym_num ||
1581 		le32_to_cpu(buf[3]) != info->ocon_num) {
1582 		printk(KERN_ERR "security:  policydb table sizes (%d,%d) do "
1583 		       "not match mine (%d,%d)\n", le32_to_cpu(buf[2]),
1584 			le32_to_cpu(buf[3]),
1585 		       info->sym_num, info->ocon_num);
1586 		goto bad;
1587 	}
1588 
1589 	for (i = 0; i < info->sym_num; i++) {
1590 		rc = next_entry(buf, fp, sizeof(u32)*2);
1591 		if (rc < 0)
1592 			goto bad;
1593 		nprim = le32_to_cpu(buf[0]);
1594 		nel = le32_to_cpu(buf[1]);
1595 		for (j = 0; j < nel; j++) {
1596 			rc = read_f[i](p, p->symtab[i].table, fp);
1597 			if (rc)
1598 				goto bad;
1599 		}
1600 
1601 		p->symtab[i].nprim = nprim;
1602 	}
1603 
1604 	rc = avtab_read(&p->te_avtab, fp, p);
1605 	if (rc)
1606 		goto bad;
1607 
1608 	if (p->policyvers >= POLICYDB_VERSION_BOOL) {
1609 		rc = cond_read_list(p, fp);
1610 		if (rc)
1611 			goto bad;
1612 	}
1613 
1614 	rc = next_entry(buf, fp, sizeof(u32));
1615 	if (rc < 0)
1616 		goto bad;
1617 	nel = le32_to_cpu(buf[0]);
1618 	ltr = NULL;
1619 	for (i = 0; i < nel; i++) {
1620 		tr = kzalloc(sizeof(*tr), GFP_KERNEL);
1621 		if (!tr) {
1622 			rc = -ENOMEM;
1623 			goto bad;
1624 		}
1625 		if (ltr) {
1626 			ltr->next = tr;
1627 		} else {
1628 			p->role_tr = tr;
1629 		}
1630 		rc = next_entry(buf, fp, sizeof(u32)*3);
1631 		if (rc < 0)
1632 			goto bad;
1633 		tr->role = le32_to_cpu(buf[0]);
1634 		tr->type = le32_to_cpu(buf[1]);
1635 		tr->new_role = le32_to_cpu(buf[2]);
1636 		if (!policydb_role_isvalid(p, tr->role) ||
1637 		    !policydb_type_isvalid(p, tr->type) ||
1638 		    !policydb_role_isvalid(p, tr->new_role)) {
1639 			rc = -EINVAL;
1640 			goto bad;
1641 		}
1642 		ltr = tr;
1643 	}
1644 
1645 	rc = next_entry(buf, fp, sizeof(u32));
1646 	if (rc < 0)
1647 		goto bad;
1648 	nel = le32_to_cpu(buf[0]);
1649 	lra = NULL;
1650 	for (i = 0; i < nel; i++) {
1651 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1652 		if (!ra) {
1653 			rc = -ENOMEM;
1654 			goto bad;
1655 		}
1656 		if (lra) {
1657 			lra->next = ra;
1658 		} else {
1659 			p->role_allow = ra;
1660 		}
1661 		rc = next_entry(buf, fp, sizeof(u32)*2);
1662 		if (rc < 0)
1663 			goto bad;
1664 		ra->role = le32_to_cpu(buf[0]);
1665 		ra->new_role = le32_to_cpu(buf[1]);
1666 		if (!policydb_role_isvalid(p, ra->role) ||
1667 		    !policydb_role_isvalid(p, ra->new_role)) {
1668 			rc = -EINVAL;
1669 			goto bad;
1670 		}
1671 		lra = ra;
1672 	}
1673 
1674 	rc = policydb_index_classes(p);
1675 	if (rc)
1676 		goto bad;
1677 
1678 	rc = policydb_index_others(p);
1679 	if (rc)
1680 		goto bad;
1681 
1682 	for (i = 0; i < info->ocon_num; i++) {
1683 		rc = next_entry(buf, fp, sizeof(u32));
1684 		if (rc < 0)
1685 			goto bad;
1686 		nel = le32_to_cpu(buf[0]);
1687 		l = NULL;
1688 		for (j = 0; j < nel; j++) {
1689 			c = kzalloc(sizeof(*c), GFP_KERNEL);
1690 			if (!c) {
1691 				rc = -ENOMEM;
1692 				goto bad;
1693 			}
1694 			if (l) {
1695 				l->next = c;
1696 			} else {
1697 				p->ocontexts[i] = c;
1698 			}
1699 			l = c;
1700 			rc = -EINVAL;
1701 			switch (i) {
1702 			case OCON_ISID:
1703 				rc = next_entry(buf, fp, sizeof(u32));
1704 				if (rc < 0)
1705 					goto bad;
1706 				c->sid[0] = le32_to_cpu(buf[0]);
1707 				rc = context_read_and_validate(&c->context[0], p, fp);
1708 				if (rc)
1709 					goto bad;
1710 				break;
1711 			case OCON_FS:
1712 			case OCON_NETIF:
1713 				rc = next_entry(buf, fp, sizeof(u32));
1714 				if (rc < 0)
1715 					goto bad;
1716 				len = le32_to_cpu(buf[0]);
1717 				c->u.name = kmalloc(len + 1,GFP_KERNEL);
1718 				if (!c->u.name) {
1719 					rc = -ENOMEM;
1720 					goto bad;
1721 				}
1722 				rc = next_entry(c->u.name, fp, len);
1723 				if (rc < 0)
1724 					goto bad;
1725 				c->u.name[len] = 0;
1726 				rc = context_read_and_validate(&c->context[0], p, fp);
1727 				if (rc)
1728 					goto bad;
1729 				rc = context_read_and_validate(&c->context[1], p, fp);
1730 				if (rc)
1731 					goto bad;
1732 				break;
1733 			case OCON_PORT:
1734 				rc = next_entry(buf, fp, sizeof(u32)*3);
1735 				if (rc < 0)
1736 					goto bad;
1737 				c->u.port.protocol = le32_to_cpu(buf[0]);
1738 				c->u.port.low_port = le32_to_cpu(buf[1]);
1739 				c->u.port.high_port = le32_to_cpu(buf[2]);
1740 				rc = context_read_and_validate(&c->context[0], p, fp);
1741 				if (rc)
1742 					goto bad;
1743 				break;
1744 			case OCON_NODE:
1745 				rc = next_entry(buf, fp, sizeof(u32)* 2);
1746 				if (rc < 0)
1747 					goto bad;
1748 				c->u.node.addr = le32_to_cpu(buf[0]);
1749 				c->u.node.mask = le32_to_cpu(buf[1]);
1750 				rc = context_read_and_validate(&c->context[0], p, fp);
1751 				if (rc)
1752 					goto bad;
1753 				break;
1754 			case OCON_FSUSE:
1755 				rc = next_entry(buf, fp, sizeof(u32)*2);
1756 				if (rc < 0)
1757 					goto bad;
1758 				c->v.behavior = le32_to_cpu(buf[0]);
1759 				if (c->v.behavior > SECURITY_FS_USE_NONE)
1760 					goto bad;
1761 				len = le32_to_cpu(buf[1]);
1762 				c->u.name = kmalloc(len + 1,GFP_KERNEL);
1763 				if (!c->u.name) {
1764 					rc = -ENOMEM;
1765 					goto bad;
1766 				}
1767 				rc = next_entry(c->u.name, fp, len);
1768 				if (rc < 0)
1769 					goto bad;
1770 				c->u.name[len] = 0;
1771 				rc = context_read_and_validate(&c->context[0], p, fp);
1772 				if (rc)
1773 					goto bad;
1774 				break;
1775 			case OCON_NODE6: {
1776 				int k;
1777 
1778 				rc = next_entry(buf, fp, sizeof(u32) * 8);
1779 				if (rc < 0)
1780 					goto bad;
1781 				for (k = 0; k < 4; k++)
1782 					c->u.node6.addr[k] = le32_to_cpu(buf[k]);
1783 				for (k = 0; k < 4; k++)
1784 					c->u.node6.mask[k] = le32_to_cpu(buf[k+4]);
1785 				if (context_read_and_validate(&c->context[0], p, fp))
1786 					goto bad;
1787 				break;
1788 			}
1789 			}
1790 		}
1791 	}
1792 
1793 	rc = next_entry(buf, fp, sizeof(u32));
1794 	if (rc < 0)
1795 		goto bad;
1796 	nel = le32_to_cpu(buf[0]);
1797 	genfs_p = NULL;
1798 	rc = -EINVAL;
1799 	for (i = 0; i < nel; i++) {
1800 		rc = next_entry(buf, fp, sizeof(u32));
1801 		if (rc < 0)
1802 			goto bad;
1803 		len = le32_to_cpu(buf[0]);
1804 		newgenfs = kzalloc(sizeof(*newgenfs), GFP_KERNEL);
1805 		if (!newgenfs) {
1806 			rc = -ENOMEM;
1807 			goto bad;
1808 		}
1809 
1810 		newgenfs->fstype = kmalloc(len + 1,GFP_KERNEL);
1811 		if (!newgenfs->fstype) {
1812 			rc = -ENOMEM;
1813 			kfree(newgenfs);
1814 			goto bad;
1815 		}
1816 		rc = next_entry(newgenfs->fstype, fp, len);
1817 		if (rc < 0) {
1818 			kfree(newgenfs->fstype);
1819 			kfree(newgenfs);
1820 			goto bad;
1821 		}
1822 		newgenfs->fstype[len] = 0;
1823 		for (genfs_p = NULL, genfs = p->genfs; genfs;
1824 		     genfs_p = genfs, genfs = genfs->next) {
1825 			if (strcmp(newgenfs->fstype, genfs->fstype) == 0) {
1826 				printk(KERN_ERR "security:  dup genfs "
1827 				       "fstype %s\n", newgenfs->fstype);
1828 				kfree(newgenfs->fstype);
1829 				kfree(newgenfs);
1830 				goto bad;
1831 			}
1832 			if (strcmp(newgenfs->fstype, genfs->fstype) < 0)
1833 				break;
1834 		}
1835 		newgenfs->next = genfs;
1836 		if (genfs_p)
1837 			genfs_p->next = newgenfs;
1838 		else
1839 			p->genfs = newgenfs;
1840 		rc = next_entry(buf, fp, sizeof(u32));
1841 		if (rc < 0)
1842 			goto bad;
1843 		nel2 = le32_to_cpu(buf[0]);
1844 		for (j = 0; j < nel2; j++) {
1845 			rc = next_entry(buf, fp, sizeof(u32));
1846 			if (rc < 0)
1847 				goto bad;
1848 			len = le32_to_cpu(buf[0]);
1849 
1850 			newc = kzalloc(sizeof(*newc), GFP_KERNEL);
1851 			if (!newc) {
1852 				rc = -ENOMEM;
1853 				goto bad;
1854 			}
1855 
1856 			newc->u.name = kmalloc(len + 1,GFP_KERNEL);
1857 			if (!newc->u.name) {
1858 				rc = -ENOMEM;
1859 				goto bad_newc;
1860 			}
1861 			rc = next_entry(newc->u.name, fp, len);
1862 			if (rc < 0)
1863 				goto bad_newc;
1864 			newc->u.name[len] = 0;
1865 			rc = next_entry(buf, fp, sizeof(u32));
1866 			if (rc < 0)
1867 				goto bad_newc;
1868 			newc->v.sclass = le32_to_cpu(buf[0]);
1869 			if (context_read_and_validate(&newc->context[0], p, fp))
1870 				goto bad_newc;
1871 			for (l = NULL, c = newgenfs->head; c;
1872 			     l = c, c = c->next) {
1873 				if (!strcmp(newc->u.name, c->u.name) &&
1874 				    (!c->v.sclass || !newc->v.sclass ||
1875 				     newc->v.sclass == c->v.sclass)) {
1876 					printk(KERN_ERR "security:  dup genfs "
1877 					       "entry (%s,%s)\n",
1878 					       newgenfs->fstype, c->u.name);
1879 					goto bad_newc;
1880 				}
1881 				len = strlen(newc->u.name);
1882 				len2 = strlen(c->u.name);
1883 				if (len > len2)
1884 					break;
1885 			}
1886 
1887 			newc->next = c;
1888 			if (l)
1889 				l->next = newc;
1890 			else
1891 				newgenfs->head = newc;
1892 		}
1893 	}
1894 
1895 	if (p->policyvers >= POLICYDB_VERSION_MLS) {
1896 		int new_rangetr = p->policyvers >= POLICYDB_VERSION_RANGETRANS;
1897 		rc = next_entry(buf, fp, sizeof(u32));
1898 		if (rc < 0)
1899 			goto bad;
1900 		nel = le32_to_cpu(buf[0]);
1901 		lrt = NULL;
1902 		for (i = 0; i < nel; i++) {
1903 			rt = kzalloc(sizeof(*rt), GFP_KERNEL);
1904 			if (!rt) {
1905 				rc = -ENOMEM;
1906 				goto bad;
1907 			}
1908 			if (lrt)
1909 				lrt->next = rt;
1910 			else
1911 				p->range_tr = rt;
1912 			rc = next_entry(buf, fp, (sizeof(u32) * 2));
1913 			if (rc < 0)
1914 				goto bad;
1915 			rt->source_type = le32_to_cpu(buf[0]);
1916 			rt->target_type = le32_to_cpu(buf[1]);
1917 			if (new_rangetr) {
1918 				rc = next_entry(buf, fp, sizeof(u32));
1919 				if (rc < 0)
1920 					goto bad;
1921 				rt->target_class = le32_to_cpu(buf[0]);
1922 			} else
1923 				rt->target_class = SECCLASS_PROCESS;
1924 			if (!policydb_type_isvalid(p, rt->source_type) ||
1925 			    !policydb_type_isvalid(p, rt->target_type) ||
1926 			    !policydb_class_isvalid(p, rt->target_class)) {
1927 				rc = -EINVAL;
1928 				goto bad;
1929 			}
1930 			rc = mls_read_range_helper(&rt->target_range, fp);
1931 			if (rc)
1932 				goto bad;
1933 			if (!mls_range_isvalid(p, &rt->target_range)) {
1934 				printk(KERN_WARNING "security:  rangetrans:  invalid range\n");
1935 				goto bad;
1936 			}
1937 			lrt = rt;
1938 		}
1939 	}
1940 
1941 	p->type_attr_map = kmalloc(p->p_types.nprim*sizeof(struct ebitmap), GFP_KERNEL);
1942 	if (!p->type_attr_map)
1943 		goto bad;
1944 
1945 	for (i = 0; i < p->p_types.nprim; i++) {
1946 		ebitmap_init(&p->type_attr_map[i]);
1947 		if (p->policyvers >= POLICYDB_VERSION_AVTAB) {
1948 			if (ebitmap_read(&p->type_attr_map[i], fp))
1949 				goto bad;
1950 		}
1951 		/* add the type itself as the degenerate case */
1952 		if (ebitmap_set_bit(&p->type_attr_map[i], i, 1))
1953 				goto bad;
1954 	}
1955 
1956 	rc = 0;
1957 out:
1958 	return rc;
1959 bad_newc:
1960 	ocontext_destroy(newc,OCON_FSUSE);
1961 bad:
1962 	if (!rc)
1963 		rc = -EINVAL;
1964 	policydb_destroy(p);
1965 	goto out;
1966 }
1967