1 /* 2 * Implementation of the policy database. 3 * 4 * Author : Stephen Smalley, <sds@tycho.nsa.gov> 5 */ 6 7 /* 8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com> 9 * 10 * Support for enhanced MLS infrastructure. 11 * 12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com> 13 * 14 * Added conditional policy language extensions 15 * 16 * Updated: Hewlett-Packard <paul@paul-moore.com> 17 * 18 * Added support for the policy capability bitmap 19 * 20 * Update: Mellanox Techonologies 21 * 22 * Added Infiniband support 23 * 24 * Copyright (C) 2016 Mellanox Techonologies 25 * Copyright (C) 2007 Hewlett-Packard Development Company, L.P. 26 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 27 * Copyright (C) 2003 - 2004 Tresys Technology, LLC 28 * This program is free software; you can redistribute it and/or modify 29 * it under the terms of the GNU General Public License as published by 30 * the Free Software Foundation, version 2. 31 */ 32 33 #include <linux/kernel.h> 34 #include <linux/sched.h> 35 #include <linux/slab.h> 36 #include <linux/string.h> 37 #include <linux/errno.h> 38 #include <linux/audit.h> 39 #include <linux/flex_array.h> 40 #include "security.h" 41 42 #include "policydb.h" 43 #include "conditional.h" 44 #include "mls.h" 45 #include "services.h" 46 47 #define _DEBUG_HASHES 48 49 #ifdef DEBUG_HASHES 50 static const char *symtab_name[SYM_NUM] = { 51 "common prefixes", 52 "classes", 53 "roles", 54 "types", 55 "users", 56 "bools", 57 "levels", 58 "categories", 59 }; 60 #endif 61 62 static unsigned int symtab_sizes[SYM_NUM] = { 63 2, 64 32, 65 16, 66 512, 67 128, 68 16, 69 16, 70 16, 71 }; 72 73 struct policydb_compat_info { 74 int version; 75 int sym_num; 76 int ocon_num; 77 }; 78 79 /* These need to be updated if SYM_NUM or OCON_NUM changes */ 80 static struct policydb_compat_info policydb_compat[] = { 81 { 82 .version = POLICYDB_VERSION_BASE, 83 .sym_num = SYM_NUM - 3, 84 .ocon_num = OCON_NUM - 3, 85 }, 86 { 87 .version = POLICYDB_VERSION_BOOL, 88 .sym_num = SYM_NUM - 2, 89 .ocon_num = OCON_NUM - 3, 90 }, 91 { 92 .version = POLICYDB_VERSION_IPV6, 93 .sym_num = SYM_NUM - 2, 94 .ocon_num = OCON_NUM - 2, 95 }, 96 { 97 .version = POLICYDB_VERSION_NLCLASS, 98 .sym_num = SYM_NUM - 2, 99 .ocon_num = OCON_NUM - 2, 100 }, 101 { 102 .version = POLICYDB_VERSION_MLS, 103 .sym_num = SYM_NUM, 104 .ocon_num = OCON_NUM - 2, 105 }, 106 { 107 .version = POLICYDB_VERSION_AVTAB, 108 .sym_num = SYM_NUM, 109 .ocon_num = OCON_NUM - 2, 110 }, 111 { 112 .version = POLICYDB_VERSION_RANGETRANS, 113 .sym_num = SYM_NUM, 114 .ocon_num = OCON_NUM - 2, 115 }, 116 { 117 .version = POLICYDB_VERSION_POLCAP, 118 .sym_num = SYM_NUM, 119 .ocon_num = OCON_NUM - 2, 120 }, 121 { 122 .version = POLICYDB_VERSION_PERMISSIVE, 123 .sym_num = SYM_NUM, 124 .ocon_num = OCON_NUM - 2, 125 }, 126 { 127 .version = POLICYDB_VERSION_BOUNDARY, 128 .sym_num = SYM_NUM, 129 .ocon_num = OCON_NUM - 2, 130 }, 131 { 132 .version = POLICYDB_VERSION_FILENAME_TRANS, 133 .sym_num = SYM_NUM, 134 .ocon_num = OCON_NUM - 2, 135 }, 136 { 137 .version = POLICYDB_VERSION_ROLETRANS, 138 .sym_num = SYM_NUM, 139 .ocon_num = OCON_NUM - 2, 140 }, 141 { 142 .version = POLICYDB_VERSION_NEW_OBJECT_DEFAULTS, 143 .sym_num = SYM_NUM, 144 .ocon_num = OCON_NUM - 2, 145 }, 146 { 147 .version = POLICYDB_VERSION_DEFAULT_TYPE, 148 .sym_num = SYM_NUM, 149 .ocon_num = OCON_NUM - 2, 150 }, 151 { 152 .version = POLICYDB_VERSION_CONSTRAINT_NAMES, 153 .sym_num = SYM_NUM, 154 .ocon_num = OCON_NUM - 2, 155 }, 156 { 157 .version = POLICYDB_VERSION_XPERMS_IOCTL, 158 .sym_num = SYM_NUM, 159 .ocon_num = OCON_NUM - 2, 160 }, 161 { 162 .version = POLICYDB_VERSION_INFINIBAND, 163 .sym_num = SYM_NUM, 164 .ocon_num = OCON_NUM, 165 }, 166 }; 167 168 static struct policydb_compat_info *policydb_lookup_compat(int version) 169 { 170 int i; 171 struct policydb_compat_info *info = NULL; 172 173 for (i = 0; i < ARRAY_SIZE(policydb_compat); i++) { 174 if (policydb_compat[i].version == version) { 175 info = &policydb_compat[i]; 176 break; 177 } 178 } 179 return info; 180 } 181 182 /* 183 * Initialize the role table. 184 */ 185 static int roles_init(struct policydb *p) 186 { 187 char *key = NULL; 188 int rc; 189 struct role_datum *role; 190 191 role = kzalloc(sizeof(*role), GFP_KERNEL); 192 if (!role) 193 return -ENOMEM; 194 195 rc = -EINVAL; 196 role->value = ++p->p_roles.nprim; 197 if (role->value != OBJECT_R_VAL) 198 goto out; 199 200 rc = -ENOMEM; 201 key = kstrdup(OBJECT_R, GFP_KERNEL); 202 if (!key) 203 goto out; 204 205 rc = hashtab_insert(p->p_roles.table, key, role); 206 if (rc) 207 goto out; 208 209 return 0; 210 out: 211 kfree(key); 212 kfree(role); 213 return rc; 214 } 215 216 static u32 filenametr_hash(struct hashtab *h, const void *k) 217 { 218 const struct filename_trans *ft = k; 219 unsigned long hash; 220 unsigned int byte_num; 221 unsigned char focus; 222 223 hash = ft->stype ^ ft->ttype ^ ft->tclass; 224 225 byte_num = 0; 226 while ((focus = ft->name[byte_num++])) 227 hash = partial_name_hash(focus, hash); 228 return hash & (h->size - 1); 229 } 230 231 static int filenametr_cmp(struct hashtab *h, const void *k1, const void *k2) 232 { 233 const struct filename_trans *ft1 = k1; 234 const struct filename_trans *ft2 = k2; 235 int v; 236 237 v = ft1->stype - ft2->stype; 238 if (v) 239 return v; 240 241 v = ft1->ttype - ft2->ttype; 242 if (v) 243 return v; 244 245 v = ft1->tclass - ft2->tclass; 246 if (v) 247 return v; 248 249 return strcmp(ft1->name, ft2->name); 250 251 } 252 253 static u32 rangetr_hash(struct hashtab *h, const void *k) 254 { 255 const struct range_trans *key = k; 256 return (key->source_type + (key->target_type << 3) + 257 (key->target_class << 5)) & (h->size - 1); 258 } 259 260 static int rangetr_cmp(struct hashtab *h, const void *k1, const void *k2) 261 { 262 const struct range_trans *key1 = k1, *key2 = k2; 263 int v; 264 265 v = key1->source_type - key2->source_type; 266 if (v) 267 return v; 268 269 v = key1->target_type - key2->target_type; 270 if (v) 271 return v; 272 273 v = key1->target_class - key2->target_class; 274 275 return v; 276 } 277 278 /* 279 * Initialize a policy database structure. 280 */ 281 static int policydb_init(struct policydb *p) 282 { 283 int i, rc; 284 285 memset(p, 0, sizeof(*p)); 286 287 for (i = 0; i < SYM_NUM; i++) { 288 rc = symtab_init(&p->symtab[i], symtab_sizes[i]); 289 if (rc) 290 goto out; 291 } 292 293 rc = avtab_init(&p->te_avtab); 294 if (rc) 295 goto out; 296 297 rc = roles_init(p); 298 if (rc) 299 goto out; 300 301 rc = cond_policydb_init(p); 302 if (rc) 303 goto out; 304 305 p->filename_trans = hashtab_create(filenametr_hash, filenametr_cmp, (1 << 10)); 306 if (!p->filename_trans) { 307 rc = -ENOMEM; 308 goto out; 309 } 310 311 p->range_tr = hashtab_create(rangetr_hash, rangetr_cmp, 256); 312 if (!p->range_tr) { 313 rc = -ENOMEM; 314 goto out; 315 } 316 317 ebitmap_init(&p->filename_trans_ttypes); 318 ebitmap_init(&p->policycaps); 319 ebitmap_init(&p->permissive_map); 320 321 return 0; 322 out: 323 hashtab_destroy(p->filename_trans); 324 hashtab_destroy(p->range_tr); 325 for (i = 0; i < SYM_NUM; i++) 326 hashtab_destroy(p->symtab[i].table); 327 return rc; 328 } 329 330 /* 331 * The following *_index functions are used to 332 * define the val_to_name and val_to_struct arrays 333 * in a policy database structure. The val_to_name 334 * arrays are used when converting security context 335 * structures into string representations. The 336 * val_to_struct arrays are used when the attributes 337 * of a class, role, or user are needed. 338 */ 339 340 static int common_index(void *key, void *datum, void *datap) 341 { 342 struct policydb *p; 343 struct common_datum *comdatum; 344 struct flex_array *fa; 345 346 comdatum = datum; 347 p = datap; 348 if (!comdatum->value || comdatum->value > p->p_commons.nprim) 349 return -EINVAL; 350 351 fa = p->sym_val_to_name[SYM_COMMONS]; 352 if (flex_array_put_ptr(fa, comdatum->value - 1, key, 353 GFP_KERNEL | __GFP_ZERO)) 354 BUG(); 355 return 0; 356 } 357 358 static int class_index(void *key, void *datum, void *datap) 359 { 360 struct policydb *p; 361 struct class_datum *cladatum; 362 struct flex_array *fa; 363 364 cladatum = datum; 365 p = datap; 366 if (!cladatum->value || cladatum->value > p->p_classes.nprim) 367 return -EINVAL; 368 fa = p->sym_val_to_name[SYM_CLASSES]; 369 if (flex_array_put_ptr(fa, cladatum->value - 1, key, 370 GFP_KERNEL | __GFP_ZERO)) 371 BUG(); 372 p->class_val_to_struct[cladatum->value - 1] = cladatum; 373 return 0; 374 } 375 376 static int role_index(void *key, void *datum, void *datap) 377 { 378 struct policydb *p; 379 struct role_datum *role; 380 struct flex_array *fa; 381 382 role = datum; 383 p = datap; 384 if (!role->value 385 || role->value > p->p_roles.nprim 386 || role->bounds > p->p_roles.nprim) 387 return -EINVAL; 388 389 fa = p->sym_val_to_name[SYM_ROLES]; 390 if (flex_array_put_ptr(fa, role->value - 1, key, 391 GFP_KERNEL | __GFP_ZERO)) 392 BUG(); 393 p->role_val_to_struct[role->value - 1] = role; 394 return 0; 395 } 396 397 static int type_index(void *key, void *datum, void *datap) 398 { 399 struct policydb *p; 400 struct type_datum *typdatum; 401 struct flex_array *fa; 402 403 typdatum = datum; 404 p = datap; 405 406 if (typdatum->primary) { 407 if (!typdatum->value 408 || typdatum->value > p->p_types.nprim 409 || typdatum->bounds > p->p_types.nprim) 410 return -EINVAL; 411 fa = p->sym_val_to_name[SYM_TYPES]; 412 if (flex_array_put_ptr(fa, typdatum->value - 1, key, 413 GFP_KERNEL | __GFP_ZERO)) 414 BUG(); 415 416 fa = p->type_val_to_struct_array; 417 if (flex_array_put_ptr(fa, typdatum->value - 1, typdatum, 418 GFP_KERNEL | __GFP_ZERO)) 419 BUG(); 420 } 421 422 return 0; 423 } 424 425 static int user_index(void *key, void *datum, void *datap) 426 { 427 struct policydb *p; 428 struct user_datum *usrdatum; 429 struct flex_array *fa; 430 431 usrdatum = datum; 432 p = datap; 433 if (!usrdatum->value 434 || usrdatum->value > p->p_users.nprim 435 || usrdatum->bounds > p->p_users.nprim) 436 return -EINVAL; 437 438 fa = p->sym_val_to_name[SYM_USERS]; 439 if (flex_array_put_ptr(fa, usrdatum->value - 1, key, 440 GFP_KERNEL | __GFP_ZERO)) 441 BUG(); 442 p->user_val_to_struct[usrdatum->value - 1] = usrdatum; 443 return 0; 444 } 445 446 static int sens_index(void *key, void *datum, void *datap) 447 { 448 struct policydb *p; 449 struct level_datum *levdatum; 450 struct flex_array *fa; 451 452 levdatum = datum; 453 p = datap; 454 455 if (!levdatum->isalias) { 456 if (!levdatum->level->sens || 457 levdatum->level->sens > p->p_levels.nprim) 458 return -EINVAL; 459 fa = p->sym_val_to_name[SYM_LEVELS]; 460 if (flex_array_put_ptr(fa, levdatum->level->sens - 1, key, 461 GFP_KERNEL | __GFP_ZERO)) 462 BUG(); 463 } 464 465 return 0; 466 } 467 468 static int cat_index(void *key, void *datum, void *datap) 469 { 470 struct policydb *p; 471 struct cat_datum *catdatum; 472 struct flex_array *fa; 473 474 catdatum = datum; 475 p = datap; 476 477 if (!catdatum->isalias) { 478 if (!catdatum->value || catdatum->value > p->p_cats.nprim) 479 return -EINVAL; 480 fa = p->sym_val_to_name[SYM_CATS]; 481 if (flex_array_put_ptr(fa, catdatum->value - 1, key, 482 GFP_KERNEL | __GFP_ZERO)) 483 BUG(); 484 } 485 486 return 0; 487 } 488 489 static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) = 490 { 491 common_index, 492 class_index, 493 role_index, 494 type_index, 495 user_index, 496 cond_index_bool, 497 sens_index, 498 cat_index, 499 }; 500 501 #ifdef DEBUG_HASHES 502 static void hash_eval(struct hashtab *h, const char *hash_name) 503 { 504 struct hashtab_info info; 505 506 hashtab_stat(h, &info); 507 printk(KERN_DEBUG "SELinux: %s: %d entries and %d/%d buckets used, " 508 "longest chain length %d\n", hash_name, h->nel, 509 info.slots_used, h->size, info.max_chain_len); 510 } 511 512 static void symtab_hash_eval(struct symtab *s) 513 { 514 int i; 515 516 for (i = 0; i < SYM_NUM; i++) 517 hash_eval(s[i].table, symtab_name[i]); 518 } 519 520 #else 521 static inline void hash_eval(struct hashtab *h, char *hash_name) 522 { 523 } 524 #endif 525 526 /* 527 * Define the other val_to_name and val_to_struct arrays 528 * in a policy database structure. 529 * 530 * Caller must clean up on failure. 531 */ 532 static int policydb_index(struct policydb *p) 533 { 534 int i, rc; 535 536 printk(KERN_DEBUG "SELinux: %d users, %d roles, %d types, %d bools", 537 p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim); 538 if (p->mls_enabled) 539 printk(KERN_CONT ", %d sens, %d cats", p->p_levels.nprim, 540 p->p_cats.nprim); 541 printk(KERN_CONT "\n"); 542 543 printk(KERN_DEBUG "SELinux: %d classes, %d rules\n", 544 p->p_classes.nprim, p->te_avtab.nel); 545 546 #ifdef DEBUG_HASHES 547 avtab_hash_eval(&p->te_avtab, "rules"); 548 symtab_hash_eval(p->symtab); 549 #endif 550 551 p->class_val_to_struct = kcalloc(p->p_classes.nprim, 552 sizeof(*p->class_val_to_struct), 553 GFP_KERNEL); 554 if (!p->class_val_to_struct) 555 return -ENOMEM; 556 557 p->role_val_to_struct = kcalloc(p->p_roles.nprim, 558 sizeof(*p->role_val_to_struct), 559 GFP_KERNEL); 560 if (!p->role_val_to_struct) 561 return -ENOMEM; 562 563 p->user_val_to_struct = kcalloc(p->p_users.nprim, 564 sizeof(*p->user_val_to_struct), 565 GFP_KERNEL); 566 if (!p->user_val_to_struct) 567 return -ENOMEM; 568 569 /* Yes, I want the sizeof the pointer, not the structure */ 570 p->type_val_to_struct_array = flex_array_alloc(sizeof(struct type_datum *), 571 p->p_types.nprim, 572 GFP_KERNEL | __GFP_ZERO); 573 if (!p->type_val_to_struct_array) 574 return -ENOMEM; 575 576 rc = flex_array_prealloc(p->type_val_to_struct_array, 0, 577 p->p_types.nprim, GFP_KERNEL | __GFP_ZERO); 578 if (rc) 579 goto out; 580 581 rc = cond_init_bool_indexes(p); 582 if (rc) 583 goto out; 584 585 for (i = 0; i < SYM_NUM; i++) { 586 p->sym_val_to_name[i] = flex_array_alloc(sizeof(char *), 587 p->symtab[i].nprim, 588 GFP_KERNEL | __GFP_ZERO); 589 if (!p->sym_val_to_name[i]) 590 return -ENOMEM; 591 592 rc = flex_array_prealloc(p->sym_val_to_name[i], 593 0, p->symtab[i].nprim, 594 GFP_KERNEL | __GFP_ZERO); 595 if (rc) 596 goto out; 597 598 rc = hashtab_map(p->symtab[i].table, index_f[i], p); 599 if (rc) 600 goto out; 601 } 602 rc = 0; 603 out: 604 return rc; 605 } 606 607 /* 608 * The following *_destroy functions are used to 609 * free any memory allocated for each kind of 610 * symbol data in the policy database. 611 */ 612 613 static int perm_destroy(void *key, void *datum, void *p) 614 { 615 kfree(key); 616 kfree(datum); 617 return 0; 618 } 619 620 static int common_destroy(void *key, void *datum, void *p) 621 { 622 struct common_datum *comdatum; 623 624 kfree(key); 625 if (datum) { 626 comdatum = datum; 627 hashtab_map(comdatum->permissions.table, perm_destroy, NULL); 628 hashtab_destroy(comdatum->permissions.table); 629 } 630 kfree(datum); 631 return 0; 632 } 633 634 static void constraint_expr_destroy(struct constraint_expr *expr) 635 { 636 if (expr) { 637 ebitmap_destroy(&expr->names); 638 if (expr->type_names) { 639 ebitmap_destroy(&expr->type_names->types); 640 ebitmap_destroy(&expr->type_names->negset); 641 kfree(expr->type_names); 642 } 643 kfree(expr); 644 } 645 } 646 647 static int cls_destroy(void *key, void *datum, void *p) 648 { 649 struct class_datum *cladatum; 650 struct constraint_node *constraint, *ctemp; 651 struct constraint_expr *e, *etmp; 652 653 kfree(key); 654 if (datum) { 655 cladatum = datum; 656 hashtab_map(cladatum->permissions.table, perm_destroy, NULL); 657 hashtab_destroy(cladatum->permissions.table); 658 constraint = cladatum->constraints; 659 while (constraint) { 660 e = constraint->expr; 661 while (e) { 662 etmp = e; 663 e = e->next; 664 constraint_expr_destroy(etmp); 665 } 666 ctemp = constraint; 667 constraint = constraint->next; 668 kfree(ctemp); 669 } 670 671 constraint = cladatum->validatetrans; 672 while (constraint) { 673 e = constraint->expr; 674 while (e) { 675 etmp = e; 676 e = e->next; 677 constraint_expr_destroy(etmp); 678 } 679 ctemp = constraint; 680 constraint = constraint->next; 681 kfree(ctemp); 682 } 683 kfree(cladatum->comkey); 684 } 685 kfree(datum); 686 return 0; 687 } 688 689 static int role_destroy(void *key, void *datum, void *p) 690 { 691 struct role_datum *role; 692 693 kfree(key); 694 if (datum) { 695 role = datum; 696 ebitmap_destroy(&role->dominates); 697 ebitmap_destroy(&role->types); 698 } 699 kfree(datum); 700 return 0; 701 } 702 703 static int type_destroy(void *key, void *datum, void *p) 704 { 705 kfree(key); 706 kfree(datum); 707 return 0; 708 } 709 710 static int user_destroy(void *key, void *datum, void *p) 711 { 712 struct user_datum *usrdatum; 713 714 kfree(key); 715 if (datum) { 716 usrdatum = datum; 717 ebitmap_destroy(&usrdatum->roles); 718 ebitmap_destroy(&usrdatum->range.level[0].cat); 719 ebitmap_destroy(&usrdatum->range.level[1].cat); 720 ebitmap_destroy(&usrdatum->dfltlevel.cat); 721 } 722 kfree(datum); 723 return 0; 724 } 725 726 static int sens_destroy(void *key, void *datum, void *p) 727 { 728 struct level_datum *levdatum; 729 730 kfree(key); 731 if (datum) { 732 levdatum = datum; 733 ebitmap_destroy(&levdatum->level->cat); 734 kfree(levdatum->level); 735 } 736 kfree(datum); 737 return 0; 738 } 739 740 static int cat_destroy(void *key, void *datum, void *p) 741 { 742 kfree(key); 743 kfree(datum); 744 return 0; 745 } 746 747 static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) = 748 { 749 common_destroy, 750 cls_destroy, 751 role_destroy, 752 type_destroy, 753 user_destroy, 754 cond_destroy_bool, 755 sens_destroy, 756 cat_destroy, 757 }; 758 759 static int filenametr_destroy(void *key, void *datum, void *p) 760 { 761 struct filename_trans *ft = key; 762 kfree(ft->name); 763 kfree(key); 764 kfree(datum); 765 cond_resched(); 766 return 0; 767 } 768 769 static int range_tr_destroy(void *key, void *datum, void *p) 770 { 771 struct mls_range *rt = datum; 772 kfree(key); 773 ebitmap_destroy(&rt->level[0].cat); 774 ebitmap_destroy(&rt->level[1].cat); 775 kfree(datum); 776 cond_resched(); 777 return 0; 778 } 779 780 static void ocontext_destroy(struct ocontext *c, int i) 781 { 782 if (!c) 783 return; 784 785 context_destroy(&c->context[0]); 786 context_destroy(&c->context[1]); 787 if (i == OCON_ISID || i == OCON_FS || 788 i == OCON_NETIF || i == OCON_FSUSE) 789 kfree(c->u.name); 790 kfree(c); 791 } 792 793 /* 794 * Free any memory allocated by a policy database structure. 795 */ 796 void policydb_destroy(struct policydb *p) 797 { 798 struct ocontext *c, *ctmp; 799 struct genfs *g, *gtmp; 800 int i; 801 struct role_allow *ra, *lra = NULL; 802 struct role_trans *tr, *ltr = NULL; 803 804 for (i = 0; i < SYM_NUM; i++) { 805 cond_resched(); 806 hashtab_map(p->symtab[i].table, destroy_f[i], NULL); 807 hashtab_destroy(p->symtab[i].table); 808 } 809 810 for (i = 0; i < SYM_NUM; i++) { 811 if (p->sym_val_to_name[i]) 812 flex_array_free(p->sym_val_to_name[i]); 813 } 814 815 kfree(p->class_val_to_struct); 816 kfree(p->role_val_to_struct); 817 kfree(p->user_val_to_struct); 818 if (p->type_val_to_struct_array) 819 flex_array_free(p->type_val_to_struct_array); 820 821 avtab_destroy(&p->te_avtab); 822 823 for (i = 0; i < OCON_NUM; i++) { 824 cond_resched(); 825 c = p->ocontexts[i]; 826 while (c) { 827 ctmp = c; 828 c = c->next; 829 ocontext_destroy(ctmp, i); 830 } 831 p->ocontexts[i] = NULL; 832 } 833 834 g = p->genfs; 835 while (g) { 836 cond_resched(); 837 kfree(g->fstype); 838 c = g->head; 839 while (c) { 840 ctmp = c; 841 c = c->next; 842 ocontext_destroy(ctmp, OCON_FSUSE); 843 } 844 gtmp = g; 845 g = g->next; 846 kfree(gtmp); 847 } 848 p->genfs = NULL; 849 850 cond_policydb_destroy(p); 851 852 for (tr = p->role_tr; tr; tr = tr->next) { 853 cond_resched(); 854 kfree(ltr); 855 ltr = tr; 856 } 857 kfree(ltr); 858 859 for (ra = p->role_allow; ra; ra = ra->next) { 860 cond_resched(); 861 kfree(lra); 862 lra = ra; 863 } 864 kfree(lra); 865 866 hashtab_map(p->filename_trans, filenametr_destroy, NULL); 867 hashtab_destroy(p->filename_trans); 868 869 hashtab_map(p->range_tr, range_tr_destroy, NULL); 870 hashtab_destroy(p->range_tr); 871 872 if (p->type_attr_map_array) { 873 for (i = 0; i < p->p_types.nprim; i++) { 874 struct ebitmap *e; 875 876 e = flex_array_get(p->type_attr_map_array, i); 877 if (!e) 878 continue; 879 ebitmap_destroy(e); 880 } 881 flex_array_free(p->type_attr_map_array); 882 } 883 884 ebitmap_destroy(&p->filename_trans_ttypes); 885 ebitmap_destroy(&p->policycaps); 886 ebitmap_destroy(&p->permissive_map); 887 } 888 889 /* 890 * Load the initial SIDs specified in a policy database 891 * structure into a SID table. 892 */ 893 int policydb_load_isids(struct policydb *p, struct sidtab *s) 894 { 895 struct ocontext *head, *c; 896 int rc; 897 898 rc = sidtab_init(s); 899 if (rc) { 900 printk(KERN_ERR "SELinux: out of memory on SID table init\n"); 901 goto out; 902 } 903 904 head = p->ocontexts[OCON_ISID]; 905 for (c = head; c; c = c->next) { 906 rc = -EINVAL; 907 if (!c->context[0].user) { 908 printk(KERN_ERR "SELinux: SID %s was never defined.\n", 909 c->u.name); 910 goto out; 911 } 912 913 rc = sidtab_insert(s, c->sid[0], &c->context[0]); 914 if (rc) { 915 printk(KERN_ERR "SELinux: unable to load initial SID %s.\n", 916 c->u.name); 917 goto out; 918 } 919 } 920 rc = 0; 921 out: 922 return rc; 923 } 924 925 int policydb_class_isvalid(struct policydb *p, unsigned int class) 926 { 927 if (!class || class > p->p_classes.nprim) 928 return 0; 929 return 1; 930 } 931 932 int policydb_role_isvalid(struct policydb *p, unsigned int role) 933 { 934 if (!role || role > p->p_roles.nprim) 935 return 0; 936 return 1; 937 } 938 939 int policydb_type_isvalid(struct policydb *p, unsigned int type) 940 { 941 if (!type || type > p->p_types.nprim) 942 return 0; 943 return 1; 944 } 945 946 /* 947 * Return 1 if the fields in the security context 948 * structure `c' are valid. Return 0 otherwise. 949 */ 950 int policydb_context_isvalid(struct policydb *p, struct context *c) 951 { 952 struct role_datum *role; 953 struct user_datum *usrdatum; 954 955 if (!c->role || c->role > p->p_roles.nprim) 956 return 0; 957 958 if (!c->user || c->user > p->p_users.nprim) 959 return 0; 960 961 if (!c->type || c->type > p->p_types.nprim) 962 return 0; 963 964 if (c->role != OBJECT_R_VAL) { 965 /* 966 * Role must be authorized for the type. 967 */ 968 role = p->role_val_to_struct[c->role - 1]; 969 if (!role || !ebitmap_get_bit(&role->types, c->type - 1)) 970 /* role may not be associated with type */ 971 return 0; 972 973 /* 974 * User must be authorized for the role. 975 */ 976 usrdatum = p->user_val_to_struct[c->user - 1]; 977 if (!usrdatum) 978 return 0; 979 980 if (!ebitmap_get_bit(&usrdatum->roles, c->role - 1)) 981 /* user may not be associated with role */ 982 return 0; 983 } 984 985 if (!mls_context_isvalid(p, c)) 986 return 0; 987 988 return 1; 989 } 990 991 /* 992 * Read a MLS range structure from a policydb binary 993 * representation file. 994 */ 995 static int mls_read_range_helper(struct mls_range *r, void *fp) 996 { 997 __le32 buf[2]; 998 u32 items; 999 int rc; 1000 1001 rc = next_entry(buf, fp, sizeof(u32)); 1002 if (rc) 1003 goto out; 1004 1005 rc = -EINVAL; 1006 items = le32_to_cpu(buf[0]); 1007 if (items > ARRAY_SIZE(buf)) { 1008 printk(KERN_ERR "SELinux: mls: range overflow\n"); 1009 goto out; 1010 } 1011 1012 rc = next_entry(buf, fp, sizeof(u32) * items); 1013 if (rc) { 1014 printk(KERN_ERR "SELinux: mls: truncated range\n"); 1015 goto out; 1016 } 1017 1018 r->level[0].sens = le32_to_cpu(buf[0]); 1019 if (items > 1) 1020 r->level[1].sens = le32_to_cpu(buf[1]); 1021 else 1022 r->level[1].sens = r->level[0].sens; 1023 1024 rc = ebitmap_read(&r->level[0].cat, fp); 1025 if (rc) { 1026 printk(KERN_ERR "SELinux: mls: error reading low categories\n"); 1027 goto out; 1028 } 1029 if (items > 1) { 1030 rc = ebitmap_read(&r->level[1].cat, fp); 1031 if (rc) { 1032 printk(KERN_ERR "SELinux: mls: error reading high categories\n"); 1033 goto bad_high; 1034 } 1035 } else { 1036 rc = ebitmap_cpy(&r->level[1].cat, &r->level[0].cat); 1037 if (rc) { 1038 printk(KERN_ERR "SELinux: mls: out of memory\n"); 1039 goto bad_high; 1040 } 1041 } 1042 1043 return 0; 1044 bad_high: 1045 ebitmap_destroy(&r->level[0].cat); 1046 out: 1047 return rc; 1048 } 1049 1050 /* 1051 * Read and validate a security context structure 1052 * from a policydb binary representation file. 1053 */ 1054 static int context_read_and_validate(struct context *c, 1055 struct policydb *p, 1056 void *fp) 1057 { 1058 __le32 buf[3]; 1059 int rc; 1060 1061 rc = next_entry(buf, fp, sizeof buf); 1062 if (rc) { 1063 printk(KERN_ERR "SELinux: context truncated\n"); 1064 goto out; 1065 } 1066 c->user = le32_to_cpu(buf[0]); 1067 c->role = le32_to_cpu(buf[1]); 1068 c->type = le32_to_cpu(buf[2]); 1069 if (p->policyvers >= POLICYDB_VERSION_MLS) { 1070 rc = mls_read_range_helper(&c->range, fp); 1071 if (rc) { 1072 printk(KERN_ERR "SELinux: error reading MLS range of context\n"); 1073 goto out; 1074 } 1075 } 1076 1077 rc = -EINVAL; 1078 if (!policydb_context_isvalid(p, c)) { 1079 printk(KERN_ERR "SELinux: invalid security context\n"); 1080 context_destroy(c); 1081 goto out; 1082 } 1083 rc = 0; 1084 out: 1085 return rc; 1086 } 1087 1088 /* 1089 * The following *_read functions are used to 1090 * read the symbol data from a policy database 1091 * binary representation file. 1092 */ 1093 1094 static int str_read(char **strp, gfp_t flags, void *fp, u32 len) 1095 { 1096 int rc; 1097 char *str; 1098 1099 if ((len == 0) || (len == (u32)-1)) 1100 return -EINVAL; 1101 1102 str = kmalloc(len + 1, flags); 1103 if (!str) 1104 return -ENOMEM; 1105 1106 /* it's expected the caller should free the str */ 1107 *strp = str; 1108 1109 rc = next_entry(str, fp, len); 1110 if (rc) 1111 return rc; 1112 1113 str[len] = '\0'; 1114 return 0; 1115 } 1116 1117 static int perm_read(struct policydb *p, struct hashtab *h, void *fp) 1118 { 1119 char *key = NULL; 1120 struct perm_datum *perdatum; 1121 int rc; 1122 __le32 buf[2]; 1123 u32 len; 1124 1125 perdatum = kzalloc(sizeof(*perdatum), GFP_KERNEL); 1126 if (!perdatum) 1127 return -ENOMEM; 1128 1129 rc = next_entry(buf, fp, sizeof buf); 1130 if (rc) 1131 goto bad; 1132 1133 len = le32_to_cpu(buf[0]); 1134 perdatum->value = le32_to_cpu(buf[1]); 1135 1136 rc = str_read(&key, GFP_KERNEL, fp, len); 1137 if (rc) 1138 goto bad; 1139 1140 rc = hashtab_insert(h, key, perdatum); 1141 if (rc) 1142 goto bad; 1143 1144 return 0; 1145 bad: 1146 perm_destroy(key, perdatum, NULL); 1147 return rc; 1148 } 1149 1150 static int common_read(struct policydb *p, struct hashtab *h, void *fp) 1151 { 1152 char *key = NULL; 1153 struct common_datum *comdatum; 1154 __le32 buf[4]; 1155 u32 len, nel; 1156 int i, rc; 1157 1158 comdatum = kzalloc(sizeof(*comdatum), GFP_KERNEL); 1159 if (!comdatum) 1160 return -ENOMEM; 1161 1162 rc = next_entry(buf, fp, sizeof buf); 1163 if (rc) 1164 goto bad; 1165 1166 len = le32_to_cpu(buf[0]); 1167 comdatum->value = le32_to_cpu(buf[1]); 1168 1169 rc = symtab_init(&comdatum->permissions, PERM_SYMTAB_SIZE); 1170 if (rc) 1171 goto bad; 1172 comdatum->permissions.nprim = le32_to_cpu(buf[2]); 1173 nel = le32_to_cpu(buf[3]); 1174 1175 rc = str_read(&key, GFP_KERNEL, fp, len); 1176 if (rc) 1177 goto bad; 1178 1179 for (i = 0; i < nel; i++) { 1180 rc = perm_read(p, comdatum->permissions.table, fp); 1181 if (rc) 1182 goto bad; 1183 } 1184 1185 rc = hashtab_insert(h, key, comdatum); 1186 if (rc) 1187 goto bad; 1188 return 0; 1189 bad: 1190 common_destroy(key, comdatum, NULL); 1191 return rc; 1192 } 1193 1194 static void type_set_init(struct type_set *t) 1195 { 1196 ebitmap_init(&t->types); 1197 ebitmap_init(&t->negset); 1198 } 1199 1200 static int type_set_read(struct type_set *t, void *fp) 1201 { 1202 __le32 buf[1]; 1203 int rc; 1204 1205 if (ebitmap_read(&t->types, fp)) 1206 return -EINVAL; 1207 if (ebitmap_read(&t->negset, fp)) 1208 return -EINVAL; 1209 1210 rc = next_entry(buf, fp, sizeof(u32)); 1211 if (rc < 0) 1212 return -EINVAL; 1213 t->flags = le32_to_cpu(buf[0]); 1214 1215 return 0; 1216 } 1217 1218 1219 static int read_cons_helper(struct policydb *p, 1220 struct constraint_node **nodep, 1221 int ncons, int allowxtarget, void *fp) 1222 { 1223 struct constraint_node *c, *lc; 1224 struct constraint_expr *e, *le; 1225 __le32 buf[3]; 1226 u32 nexpr; 1227 int rc, i, j, depth; 1228 1229 lc = NULL; 1230 for (i = 0; i < ncons; i++) { 1231 c = kzalloc(sizeof(*c), GFP_KERNEL); 1232 if (!c) 1233 return -ENOMEM; 1234 1235 if (lc) 1236 lc->next = c; 1237 else 1238 *nodep = c; 1239 1240 rc = next_entry(buf, fp, (sizeof(u32) * 2)); 1241 if (rc) 1242 return rc; 1243 c->permissions = le32_to_cpu(buf[0]); 1244 nexpr = le32_to_cpu(buf[1]); 1245 le = NULL; 1246 depth = -1; 1247 for (j = 0; j < nexpr; j++) { 1248 e = kzalloc(sizeof(*e), GFP_KERNEL); 1249 if (!e) 1250 return -ENOMEM; 1251 1252 if (le) 1253 le->next = e; 1254 else 1255 c->expr = e; 1256 1257 rc = next_entry(buf, fp, (sizeof(u32) * 3)); 1258 if (rc) 1259 return rc; 1260 e->expr_type = le32_to_cpu(buf[0]); 1261 e->attr = le32_to_cpu(buf[1]); 1262 e->op = le32_to_cpu(buf[2]); 1263 1264 switch (e->expr_type) { 1265 case CEXPR_NOT: 1266 if (depth < 0) 1267 return -EINVAL; 1268 break; 1269 case CEXPR_AND: 1270 case CEXPR_OR: 1271 if (depth < 1) 1272 return -EINVAL; 1273 depth--; 1274 break; 1275 case CEXPR_ATTR: 1276 if (depth == (CEXPR_MAXDEPTH - 1)) 1277 return -EINVAL; 1278 depth++; 1279 break; 1280 case CEXPR_NAMES: 1281 if (!allowxtarget && (e->attr & CEXPR_XTARGET)) 1282 return -EINVAL; 1283 if (depth == (CEXPR_MAXDEPTH - 1)) 1284 return -EINVAL; 1285 depth++; 1286 rc = ebitmap_read(&e->names, fp); 1287 if (rc) 1288 return rc; 1289 if (p->policyvers >= 1290 POLICYDB_VERSION_CONSTRAINT_NAMES) { 1291 e->type_names = kzalloc(sizeof 1292 (*e->type_names), 1293 GFP_KERNEL); 1294 if (!e->type_names) 1295 return -ENOMEM; 1296 type_set_init(e->type_names); 1297 rc = type_set_read(e->type_names, fp); 1298 if (rc) 1299 return rc; 1300 } 1301 break; 1302 default: 1303 return -EINVAL; 1304 } 1305 le = e; 1306 } 1307 if (depth != 0) 1308 return -EINVAL; 1309 lc = c; 1310 } 1311 1312 return 0; 1313 } 1314 1315 static int class_read(struct policydb *p, struct hashtab *h, void *fp) 1316 { 1317 char *key = NULL; 1318 struct class_datum *cladatum; 1319 __le32 buf[6]; 1320 u32 len, len2, ncons, nel; 1321 int i, rc; 1322 1323 cladatum = kzalloc(sizeof(*cladatum), GFP_KERNEL); 1324 if (!cladatum) 1325 return -ENOMEM; 1326 1327 rc = next_entry(buf, fp, sizeof(u32)*6); 1328 if (rc) 1329 goto bad; 1330 1331 len = le32_to_cpu(buf[0]); 1332 len2 = le32_to_cpu(buf[1]); 1333 cladatum->value = le32_to_cpu(buf[2]); 1334 1335 rc = symtab_init(&cladatum->permissions, PERM_SYMTAB_SIZE); 1336 if (rc) 1337 goto bad; 1338 cladatum->permissions.nprim = le32_to_cpu(buf[3]); 1339 nel = le32_to_cpu(buf[4]); 1340 1341 ncons = le32_to_cpu(buf[5]); 1342 1343 rc = str_read(&key, GFP_KERNEL, fp, len); 1344 if (rc) 1345 goto bad; 1346 1347 if (len2) { 1348 rc = str_read(&cladatum->comkey, GFP_KERNEL, fp, len2); 1349 if (rc) 1350 goto bad; 1351 1352 rc = -EINVAL; 1353 cladatum->comdatum = hashtab_search(p->p_commons.table, cladatum->comkey); 1354 if (!cladatum->comdatum) { 1355 printk(KERN_ERR "SELinux: unknown common %s\n", cladatum->comkey); 1356 goto bad; 1357 } 1358 } 1359 for (i = 0; i < nel; i++) { 1360 rc = perm_read(p, cladatum->permissions.table, fp); 1361 if (rc) 1362 goto bad; 1363 } 1364 1365 rc = read_cons_helper(p, &cladatum->constraints, ncons, 0, fp); 1366 if (rc) 1367 goto bad; 1368 1369 if (p->policyvers >= POLICYDB_VERSION_VALIDATETRANS) { 1370 /* grab the validatetrans rules */ 1371 rc = next_entry(buf, fp, sizeof(u32)); 1372 if (rc) 1373 goto bad; 1374 ncons = le32_to_cpu(buf[0]); 1375 rc = read_cons_helper(p, &cladatum->validatetrans, 1376 ncons, 1, fp); 1377 if (rc) 1378 goto bad; 1379 } 1380 1381 if (p->policyvers >= POLICYDB_VERSION_NEW_OBJECT_DEFAULTS) { 1382 rc = next_entry(buf, fp, sizeof(u32) * 3); 1383 if (rc) 1384 goto bad; 1385 1386 cladatum->default_user = le32_to_cpu(buf[0]); 1387 cladatum->default_role = le32_to_cpu(buf[1]); 1388 cladatum->default_range = le32_to_cpu(buf[2]); 1389 } 1390 1391 if (p->policyvers >= POLICYDB_VERSION_DEFAULT_TYPE) { 1392 rc = next_entry(buf, fp, sizeof(u32) * 1); 1393 if (rc) 1394 goto bad; 1395 cladatum->default_type = le32_to_cpu(buf[0]); 1396 } 1397 1398 rc = hashtab_insert(h, key, cladatum); 1399 if (rc) 1400 goto bad; 1401 1402 return 0; 1403 bad: 1404 cls_destroy(key, cladatum, NULL); 1405 return rc; 1406 } 1407 1408 static int role_read(struct policydb *p, struct hashtab *h, void *fp) 1409 { 1410 char *key = NULL; 1411 struct role_datum *role; 1412 int rc, to_read = 2; 1413 __le32 buf[3]; 1414 u32 len; 1415 1416 role = kzalloc(sizeof(*role), GFP_KERNEL); 1417 if (!role) 1418 return -ENOMEM; 1419 1420 if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) 1421 to_read = 3; 1422 1423 rc = next_entry(buf, fp, sizeof(buf[0]) * to_read); 1424 if (rc) 1425 goto bad; 1426 1427 len = le32_to_cpu(buf[0]); 1428 role->value = le32_to_cpu(buf[1]); 1429 if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) 1430 role->bounds = le32_to_cpu(buf[2]); 1431 1432 rc = str_read(&key, GFP_KERNEL, fp, len); 1433 if (rc) 1434 goto bad; 1435 1436 rc = ebitmap_read(&role->dominates, fp); 1437 if (rc) 1438 goto bad; 1439 1440 rc = ebitmap_read(&role->types, fp); 1441 if (rc) 1442 goto bad; 1443 1444 if (strcmp(key, OBJECT_R) == 0) { 1445 rc = -EINVAL; 1446 if (role->value != OBJECT_R_VAL) { 1447 printk(KERN_ERR "SELinux: Role %s has wrong value %d\n", 1448 OBJECT_R, role->value); 1449 goto bad; 1450 } 1451 rc = 0; 1452 goto bad; 1453 } 1454 1455 rc = hashtab_insert(h, key, role); 1456 if (rc) 1457 goto bad; 1458 return 0; 1459 bad: 1460 role_destroy(key, role, NULL); 1461 return rc; 1462 } 1463 1464 static int type_read(struct policydb *p, struct hashtab *h, void *fp) 1465 { 1466 char *key = NULL; 1467 struct type_datum *typdatum; 1468 int rc, to_read = 3; 1469 __le32 buf[4]; 1470 u32 len; 1471 1472 typdatum = kzalloc(sizeof(*typdatum), GFP_KERNEL); 1473 if (!typdatum) 1474 return -ENOMEM; 1475 1476 if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) 1477 to_read = 4; 1478 1479 rc = next_entry(buf, fp, sizeof(buf[0]) * to_read); 1480 if (rc) 1481 goto bad; 1482 1483 len = le32_to_cpu(buf[0]); 1484 typdatum->value = le32_to_cpu(buf[1]); 1485 if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) { 1486 u32 prop = le32_to_cpu(buf[2]); 1487 1488 if (prop & TYPEDATUM_PROPERTY_PRIMARY) 1489 typdatum->primary = 1; 1490 if (prop & TYPEDATUM_PROPERTY_ATTRIBUTE) 1491 typdatum->attribute = 1; 1492 1493 typdatum->bounds = le32_to_cpu(buf[3]); 1494 } else { 1495 typdatum->primary = le32_to_cpu(buf[2]); 1496 } 1497 1498 rc = str_read(&key, GFP_KERNEL, fp, len); 1499 if (rc) 1500 goto bad; 1501 1502 rc = hashtab_insert(h, key, typdatum); 1503 if (rc) 1504 goto bad; 1505 return 0; 1506 bad: 1507 type_destroy(key, typdatum, NULL); 1508 return rc; 1509 } 1510 1511 1512 /* 1513 * Read a MLS level structure from a policydb binary 1514 * representation file. 1515 */ 1516 static int mls_read_level(struct mls_level *lp, void *fp) 1517 { 1518 __le32 buf[1]; 1519 int rc; 1520 1521 memset(lp, 0, sizeof(*lp)); 1522 1523 rc = next_entry(buf, fp, sizeof buf); 1524 if (rc) { 1525 printk(KERN_ERR "SELinux: mls: truncated level\n"); 1526 return rc; 1527 } 1528 lp->sens = le32_to_cpu(buf[0]); 1529 1530 rc = ebitmap_read(&lp->cat, fp); 1531 if (rc) { 1532 printk(KERN_ERR "SELinux: mls: error reading level categories\n"); 1533 return rc; 1534 } 1535 return 0; 1536 } 1537 1538 static int user_read(struct policydb *p, struct hashtab *h, void *fp) 1539 { 1540 char *key = NULL; 1541 struct user_datum *usrdatum; 1542 int rc, to_read = 2; 1543 __le32 buf[3]; 1544 u32 len; 1545 1546 usrdatum = kzalloc(sizeof(*usrdatum), GFP_KERNEL); 1547 if (!usrdatum) 1548 return -ENOMEM; 1549 1550 if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) 1551 to_read = 3; 1552 1553 rc = next_entry(buf, fp, sizeof(buf[0]) * to_read); 1554 if (rc) 1555 goto bad; 1556 1557 len = le32_to_cpu(buf[0]); 1558 usrdatum->value = le32_to_cpu(buf[1]); 1559 if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) 1560 usrdatum->bounds = le32_to_cpu(buf[2]); 1561 1562 rc = str_read(&key, GFP_KERNEL, fp, len); 1563 if (rc) 1564 goto bad; 1565 1566 rc = ebitmap_read(&usrdatum->roles, fp); 1567 if (rc) 1568 goto bad; 1569 1570 if (p->policyvers >= POLICYDB_VERSION_MLS) { 1571 rc = mls_read_range_helper(&usrdatum->range, fp); 1572 if (rc) 1573 goto bad; 1574 rc = mls_read_level(&usrdatum->dfltlevel, fp); 1575 if (rc) 1576 goto bad; 1577 } 1578 1579 rc = hashtab_insert(h, key, usrdatum); 1580 if (rc) 1581 goto bad; 1582 return 0; 1583 bad: 1584 user_destroy(key, usrdatum, NULL); 1585 return rc; 1586 } 1587 1588 static int sens_read(struct policydb *p, struct hashtab *h, void *fp) 1589 { 1590 char *key = NULL; 1591 struct level_datum *levdatum; 1592 int rc; 1593 __le32 buf[2]; 1594 u32 len; 1595 1596 levdatum = kzalloc(sizeof(*levdatum), GFP_ATOMIC); 1597 if (!levdatum) 1598 return -ENOMEM; 1599 1600 rc = next_entry(buf, fp, sizeof buf); 1601 if (rc) 1602 goto bad; 1603 1604 len = le32_to_cpu(buf[0]); 1605 levdatum->isalias = le32_to_cpu(buf[1]); 1606 1607 rc = str_read(&key, GFP_ATOMIC, fp, len); 1608 if (rc) 1609 goto bad; 1610 1611 rc = -ENOMEM; 1612 levdatum->level = kmalloc(sizeof(*levdatum->level), GFP_ATOMIC); 1613 if (!levdatum->level) 1614 goto bad; 1615 1616 rc = mls_read_level(levdatum->level, fp); 1617 if (rc) 1618 goto bad; 1619 1620 rc = hashtab_insert(h, key, levdatum); 1621 if (rc) 1622 goto bad; 1623 return 0; 1624 bad: 1625 sens_destroy(key, levdatum, NULL); 1626 return rc; 1627 } 1628 1629 static int cat_read(struct policydb *p, struct hashtab *h, void *fp) 1630 { 1631 char *key = NULL; 1632 struct cat_datum *catdatum; 1633 int rc; 1634 __le32 buf[3]; 1635 u32 len; 1636 1637 catdatum = kzalloc(sizeof(*catdatum), GFP_ATOMIC); 1638 if (!catdatum) 1639 return -ENOMEM; 1640 1641 rc = next_entry(buf, fp, sizeof buf); 1642 if (rc) 1643 goto bad; 1644 1645 len = le32_to_cpu(buf[0]); 1646 catdatum->value = le32_to_cpu(buf[1]); 1647 catdatum->isalias = le32_to_cpu(buf[2]); 1648 1649 rc = str_read(&key, GFP_ATOMIC, fp, len); 1650 if (rc) 1651 goto bad; 1652 1653 rc = hashtab_insert(h, key, catdatum); 1654 if (rc) 1655 goto bad; 1656 return 0; 1657 bad: 1658 cat_destroy(key, catdatum, NULL); 1659 return rc; 1660 } 1661 1662 static int (*read_f[SYM_NUM]) (struct policydb *p, struct hashtab *h, void *fp) = 1663 { 1664 common_read, 1665 class_read, 1666 role_read, 1667 type_read, 1668 user_read, 1669 cond_read_bool, 1670 sens_read, 1671 cat_read, 1672 }; 1673 1674 static int user_bounds_sanity_check(void *key, void *datum, void *datap) 1675 { 1676 struct user_datum *upper, *user; 1677 struct policydb *p = datap; 1678 int depth = 0; 1679 1680 upper = user = datum; 1681 while (upper->bounds) { 1682 struct ebitmap_node *node; 1683 unsigned long bit; 1684 1685 if (++depth == POLICYDB_BOUNDS_MAXDEPTH) { 1686 printk(KERN_ERR "SELinux: user %s: " 1687 "too deep or looped boundary", 1688 (char *) key); 1689 return -EINVAL; 1690 } 1691 1692 upper = p->user_val_to_struct[upper->bounds - 1]; 1693 ebitmap_for_each_positive_bit(&user->roles, node, bit) { 1694 if (ebitmap_get_bit(&upper->roles, bit)) 1695 continue; 1696 1697 printk(KERN_ERR 1698 "SELinux: boundary violated policy: " 1699 "user=%s role=%s bounds=%s\n", 1700 sym_name(p, SYM_USERS, user->value - 1), 1701 sym_name(p, SYM_ROLES, bit), 1702 sym_name(p, SYM_USERS, upper->value - 1)); 1703 1704 return -EINVAL; 1705 } 1706 } 1707 1708 return 0; 1709 } 1710 1711 static int role_bounds_sanity_check(void *key, void *datum, void *datap) 1712 { 1713 struct role_datum *upper, *role; 1714 struct policydb *p = datap; 1715 int depth = 0; 1716 1717 upper = role = datum; 1718 while (upper->bounds) { 1719 struct ebitmap_node *node; 1720 unsigned long bit; 1721 1722 if (++depth == POLICYDB_BOUNDS_MAXDEPTH) { 1723 printk(KERN_ERR "SELinux: role %s: " 1724 "too deep or looped bounds\n", 1725 (char *) key); 1726 return -EINVAL; 1727 } 1728 1729 upper = p->role_val_to_struct[upper->bounds - 1]; 1730 ebitmap_for_each_positive_bit(&role->types, node, bit) { 1731 if (ebitmap_get_bit(&upper->types, bit)) 1732 continue; 1733 1734 printk(KERN_ERR 1735 "SELinux: boundary violated policy: " 1736 "role=%s type=%s bounds=%s\n", 1737 sym_name(p, SYM_ROLES, role->value - 1), 1738 sym_name(p, SYM_TYPES, bit), 1739 sym_name(p, SYM_ROLES, upper->value - 1)); 1740 1741 return -EINVAL; 1742 } 1743 } 1744 1745 return 0; 1746 } 1747 1748 static int type_bounds_sanity_check(void *key, void *datum, void *datap) 1749 { 1750 struct type_datum *upper; 1751 struct policydb *p = datap; 1752 int depth = 0; 1753 1754 upper = datum; 1755 while (upper->bounds) { 1756 if (++depth == POLICYDB_BOUNDS_MAXDEPTH) { 1757 printk(KERN_ERR "SELinux: type %s: " 1758 "too deep or looped boundary\n", 1759 (char *) key); 1760 return -EINVAL; 1761 } 1762 1763 upper = flex_array_get_ptr(p->type_val_to_struct_array, 1764 upper->bounds - 1); 1765 BUG_ON(!upper); 1766 1767 if (upper->attribute) { 1768 printk(KERN_ERR "SELinux: type %s: " 1769 "bounded by attribute %s", 1770 (char *) key, 1771 sym_name(p, SYM_TYPES, upper->value - 1)); 1772 return -EINVAL; 1773 } 1774 } 1775 1776 return 0; 1777 } 1778 1779 static int policydb_bounds_sanity_check(struct policydb *p) 1780 { 1781 int rc; 1782 1783 if (p->policyvers < POLICYDB_VERSION_BOUNDARY) 1784 return 0; 1785 1786 rc = hashtab_map(p->p_users.table, 1787 user_bounds_sanity_check, p); 1788 if (rc) 1789 return rc; 1790 1791 rc = hashtab_map(p->p_roles.table, 1792 role_bounds_sanity_check, p); 1793 if (rc) 1794 return rc; 1795 1796 rc = hashtab_map(p->p_types.table, 1797 type_bounds_sanity_check, p); 1798 if (rc) 1799 return rc; 1800 1801 return 0; 1802 } 1803 1804 u16 string_to_security_class(struct policydb *p, const char *name) 1805 { 1806 struct class_datum *cladatum; 1807 1808 cladatum = hashtab_search(p->p_classes.table, name); 1809 if (!cladatum) 1810 return 0; 1811 1812 return cladatum->value; 1813 } 1814 1815 u32 string_to_av_perm(struct policydb *p, u16 tclass, const char *name) 1816 { 1817 struct class_datum *cladatum; 1818 struct perm_datum *perdatum = NULL; 1819 struct common_datum *comdatum; 1820 1821 if (!tclass || tclass > p->p_classes.nprim) 1822 return 0; 1823 1824 cladatum = p->class_val_to_struct[tclass-1]; 1825 comdatum = cladatum->comdatum; 1826 if (comdatum) 1827 perdatum = hashtab_search(comdatum->permissions.table, 1828 name); 1829 if (!perdatum) 1830 perdatum = hashtab_search(cladatum->permissions.table, 1831 name); 1832 if (!perdatum) 1833 return 0; 1834 1835 return 1U << (perdatum->value-1); 1836 } 1837 1838 static int range_read(struct policydb *p, void *fp) 1839 { 1840 struct range_trans *rt = NULL; 1841 struct mls_range *r = NULL; 1842 int i, rc; 1843 __le32 buf[2]; 1844 u32 nel; 1845 1846 if (p->policyvers < POLICYDB_VERSION_MLS) 1847 return 0; 1848 1849 rc = next_entry(buf, fp, sizeof(u32)); 1850 if (rc) 1851 return rc; 1852 1853 nel = le32_to_cpu(buf[0]); 1854 for (i = 0; i < nel; i++) { 1855 rc = -ENOMEM; 1856 rt = kzalloc(sizeof(*rt), GFP_KERNEL); 1857 if (!rt) 1858 goto out; 1859 1860 rc = next_entry(buf, fp, (sizeof(u32) * 2)); 1861 if (rc) 1862 goto out; 1863 1864 rt->source_type = le32_to_cpu(buf[0]); 1865 rt->target_type = le32_to_cpu(buf[1]); 1866 if (p->policyvers >= POLICYDB_VERSION_RANGETRANS) { 1867 rc = next_entry(buf, fp, sizeof(u32)); 1868 if (rc) 1869 goto out; 1870 rt->target_class = le32_to_cpu(buf[0]); 1871 } else 1872 rt->target_class = p->process_class; 1873 1874 rc = -EINVAL; 1875 if (!policydb_type_isvalid(p, rt->source_type) || 1876 !policydb_type_isvalid(p, rt->target_type) || 1877 !policydb_class_isvalid(p, rt->target_class)) 1878 goto out; 1879 1880 rc = -ENOMEM; 1881 r = kzalloc(sizeof(*r), GFP_KERNEL); 1882 if (!r) 1883 goto out; 1884 1885 rc = mls_read_range_helper(r, fp); 1886 if (rc) 1887 goto out; 1888 1889 rc = -EINVAL; 1890 if (!mls_range_isvalid(p, r)) { 1891 printk(KERN_WARNING "SELinux: rangetrans: invalid range\n"); 1892 goto out; 1893 } 1894 1895 rc = hashtab_insert(p->range_tr, rt, r); 1896 if (rc) 1897 goto out; 1898 1899 rt = NULL; 1900 r = NULL; 1901 } 1902 hash_eval(p->range_tr, "rangetr"); 1903 rc = 0; 1904 out: 1905 kfree(rt); 1906 kfree(r); 1907 return rc; 1908 } 1909 1910 static int filename_trans_read(struct policydb *p, void *fp) 1911 { 1912 struct filename_trans *ft; 1913 struct filename_trans_datum *otype; 1914 char *name; 1915 u32 nel, len; 1916 __le32 buf[4]; 1917 int rc, i; 1918 1919 if (p->policyvers < POLICYDB_VERSION_FILENAME_TRANS) 1920 return 0; 1921 1922 rc = next_entry(buf, fp, sizeof(u32)); 1923 if (rc) 1924 return rc; 1925 nel = le32_to_cpu(buf[0]); 1926 1927 for (i = 0; i < nel; i++) { 1928 otype = NULL; 1929 name = NULL; 1930 1931 rc = -ENOMEM; 1932 ft = kzalloc(sizeof(*ft), GFP_KERNEL); 1933 if (!ft) 1934 goto out; 1935 1936 rc = -ENOMEM; 1937 otype = kmalloc(sizeof(*otype), GFP_KERNEL); 1938 if (!otype) 1939 goto out; 1940 1941 /* length of the path component string */ 1942 rc = next_entry(buf, fp, sizeof(u32)); 1943 if (rc) 1944 goto out; 1945 len = le32_to_cpu(buf[0]); 1946 1947 /* path component string */ 1948 rc = str_read(&name, GFP_KERNEL, fp, len); 1949 if (rc) 1950 goto out; 1951 1952 ft->name = name; 1953 1954 rc = next_entry(buf, fp, sizeof(u32) * 4); 1955 if (rc) 1956 goto out; 1957 1958 ft->stype = le32_to_cpu(buf[0]); 1959 ft->ttype = le32_to_cpu(buf[1]); 1960 ft->tclass = le32_to_cpu(buf[2]); 1961 1962 otype->otype = le32_to_cpu(buf[3]); 1963 1964 rc = ebitmap_set_bit(&p->filename_trans_ttypes, ft->ttype, 1); 1965 if (rc) 1966 goto out; 1967 1968 rc = hashtab_insert(p->filename_trans, ft, otype); 1969 if (rc) { 1970 /* 1971 * Do not return -EEXIST to the caller, or the system 1972 * will not boot. 1973 */ 1974 if (rc != -EEXIST) 1975 goto out; 1976 /* But free memory to avoid memory leak. */ 1977 kfree(ft); 1978 kfree(name); 1979 kfree(otype); 1980 } 1981 } 1982 hash_eval(p->filename_trans, "filenametr"); 1983 return 0; 1984 out: 1985 kfree(ft); 1986 kfree(name); 1987 kfree(otype); 1988 1989 return rc; 1990 } 1991 1992 static int genfs_read(struct policydb *p, void *fp) 1993 { 1994 int i, j, rc; 1995 u32 nel, nel2, len, len2; 1996 __le32 buf[1]; 1997 struct ocontext *l, *c; 1998 struct ocontext *newc = NULL; 1999 struct genfs *genfs_p, *genfs; 2000 struct genfs *newgenfs = NULL; 2001 2002 rc = next_entry(buf, fp, sizeof(u32)); 2003 if (rc) 2004 return rc; 2005 nel = le32_to_cpu(buf[0]); 2006 2007 for (i = 0; i < nel; i++) { 2008 rc = next_entry(buf, fp, sizeof(u32)); 2009 if (rc) 2010 goto out; 2011 len = le32_to_cpu(buf[0]); 2012 2013 rc = -ENOMEM; 2014 newgenfs = kzalloc(sizeof(*newgenfs), GFP_KERNEL); 2015 if (!newgenfs) 2016 goto out; 2017 2018 rc = str_read(&newgenfs->fstype, GFP_KERNEL, fp, len); 2019 if (rc) 2020 goto out; 2021 2022 for (genfs_p = NULL, genfs = p->genfs; genfs; 2023 genfs_p = genfs, genfs = genfs->next) { 2024 rc = -EINVAL; 2025 if (strcmp(newgenfs->fstype, genfs->fstype) == 0) { 2026 printk(KERN_ERR "SELinux: dup genfs fstype %s\n", 2027 newgenfs->fstype); 2028 goto out; 2029 } 2030 if (strcmp(newgenfs->fstype, genfs->fstype) < 0) 2031 break; 2032 } 2033 newgenfs->next = genfs; 2034 if (genfs_p) 2035 genfs_p->next = newgenfs; 2036 else 2037 p->genfs = newgenfs; 2038 genfs = newgenfs; 2039 newgenfs = NULL; 2040 2041 rc = next_entry(buf, fp, sizeof(u32)); 2042 if (rc) 2043 goto out; 2044 2045 nel2 = le32_to_cpu(buf[0]); 2046 for (j = 0; j < nel2; j++) { 2047 rc = next_entry(buf, fp, sizeof(u32)); 2048 if (rc) 2049 goto out; 2050 len = le32_to_cpu(buf[0]); 2051 2052 rc = -ENOMEM; 2053 newc = kzalloc(sizeof(*newc), GFP_KERNEL); 2054 if (!newc) 2055 goto out; 2056 2057 rc = str_read(&newc->u.name, GFP_KERNEL, fp, len); 2058 if (rc) 2059 goto out; 2060 2061 rc = next_entry(buf, fp, sizeof(u32)); 2062 if (rc) 2063 goto out; 2064 2065 newc->v.sclass = le32_to_cpu(buf[0]); 2066 rc = context_read_and_validate(&newc->context[0], p, fp); 2067 if (rc) 2068 goto out; 2069 2070 for (l = NULL, c = genfs->head; c; 2071 l = c, c = c->next) { 2072 rc = -EINVAL; 2073 if (!strcmp(newc->u.name, c->u.name) && 2074 (!c->v.sclass || !newc->v.sclass || 2075 newc->v.sclass == c->v.sclass)) { 2076 printk(KERN_ERR "SELinux: dup genfs entry (%s,%s)\n", 2077 genfs->fstype, c->u.name); 2078 goto out; 2079 } 2080 len = strlen(newc->u.name); 2081 len2 = strlen(c->u.name); 2082 if (len > len2) 2083 break; 2084 } 2085 2086 newc->next = c; 2087 if (l) 2088 l->next = newc; 2089 else 2090 genfs->head = newc; 2091 newc = NULL; 2092 } 2093 } 2094 rc = 0; 2095 out: 2096 if (newgenfs) { 2097 kfree(newgenfs->fstype); 2098 kfree(newgenfs); 2099 } 2100 ocontext_destroy(newc, OCON_FSUSE); 2101 2102 return rc; 2103 } 2104 2105 static int ocontext_read(struct policydb *p, struct policydb_compat_info *info, 2106 void *fp) 2107 { 2108 int i, j, rc; 2109 u32 nel, len; 2110 __le32 buf[3]; 2111 struct ocontext *l, *c; 2112 u32 nodebuf[8]; 2113 2114 for (i = 0; i < info->ocon_num; i++) { 2115 rc = next_entry(buf, fp, sizeof(u32)); 2116 if (rc) 2117 goto out; 2118 nel = le32_to_cpu(buf[0]); 2119 2120 l = NULL; 2121 for (j = 0; j < nel; j++) { 2122 rc = -ENOMEM; 2123 c = kzalloc(sizeof(*c), GFP_KERNEL); 2124 if (!c) 2125 goto out; 2126 if (l) 2127 l->next = c; 2128 else 2129 p->ocontexts[i] = c; 2130 l = c; 2131 2132 switch (i) { 2133 case OCON_ISID: 2134 rc = next_entry(buf, fp, sizeof(u32)); 2135 if (rc) 2136 goto out; 2137 2138 c->sid[0] = le32_to_cpu(buf[0]); 2139 rc = context_read_and_validate(&c->context[0], p, fp); 2140 if (rc) 2141 goto out; 2142 break; 2143 case OCON_FS: 2144 case OCON_NETIF: 2145 rc = next_entry(buf, fp, sizeof(u32)); 2146 if (rc) 2147 goto out; 2148 len = le32_to_cpu(buf[0]); 2149 2150 rc = str_read(&c->u.name, GFP_KERNEL, fp, len); 2151 if (rc) 2152 goto out; 2153 2154 rc = context_read_and_validate(&c->context[0], p, fp); 2155 if (rc) 2156 goto out; 2157 rc = context_read_and_validate(&c->context[1], p, fp); 2158 if (rc) 2159 goto out; 2160 break; 2161 case OCON_PORT: 2162 rc = next_entry(buf, fp, sizeof(u32)*3); 2163 if (rc) 2164 goto out; 2165 c->u.port.protocol = le32_to_cpu(buf[0]); 2166 c->u.port.low_port = le32_to_cpu(buf[1]); 2167 c->u.port.high_port = le32_to_cpu(buf[2]); 2168 rc = context_read_and_validate(&c->context[0], p, fp); 2169 if (rc) 2170 goto out; 2171 break; 2172 case OCON_NODE: 2173 rc = next_entry(nodebuf, fp, sizeof(u32) * 2); 2174 if (rc) 2175 goto out; 2176 c->u.node.addr = nodebuf[0]; /* network order */ 2177 c->u.node.mask = nodebuf[1]; /* network order */ 2178 rc = context_read_and_validate(&c->context[0], p, fp); 2179 if (rc) 2180 goto out; 2181 break; 2182 case OCON_FSUSE: 2183 rc = next_entry(buf, fp, sizeof(u32)*2); 2184 if (rc) 2185 goto out; 2186 2187 rc = -EINVAL; 2188 c->v.behavior = le32_to_cpu(buf[0]); 2189 /* Determined at runtime, not in policy DB. */ 2190 if (c->v.behavior == SECURITY_FS_USE_MNTPOINT) 2191 goto out; 2192 if (c->v.behavior > SECURITY_FS_USE_MAX) 2193 goto out; 2194 2195 len = le32_to_cpu(buf[1]); 2196 rc = str_read(&c->u.name, GFP_KERNEL, fp, len); 2197 if (rc) 2198 goto out; 2199 2200 rc = context_read_and_validate(&c->context[0], p, fp); 2201 if (rc) 2202 goto out; 2203 break; 2204 case OCON_NODE6: { 2205 int k; 2206 2207 rc = next_entry(nodebuf, fp, sizeof(u32) * 8); 2208 if (rc) 2209 goto out; 2210 for (k = 0; k < 4; k++) 2211 c->u.node6.addr[k] = nodebuf[k]; 2212 for (k = 0; k < 4; k++) 2213 c->u.node6.mask[k] = nodebuf[k+4]; 2214 rc = context_read_and_validate(&c->context[0], p, fp); 2215 if (rc) 2216 goto out; 2217 break; 2218 } 2219 case OCON_IBPKEY: 2220 rc = next_entry(nodebuf, fp, sizeof(u32) * 4); 2221 if (rc) 2222 goto out; 2223 2224 c->u.ibpkey.subnet_prefix = be64_to_cpu(*((__be64 *)nodebuf)); 2225 2226 if (nodebuf[2] > 0xffff || 2227 nodebuf[3] > 0xffff) { 2228 rc = -EINVAL; 2229 goto out; 2230 } 2231 2232 c->u.ibpkey.low_pkey = le32_to_cpu(nodebuf[2]); 2233 c->u.ibpkey.high_pkey = le32_to_cpu(nodebuf[3]); 2234 2235 rc = context_read_and_validate(&c->context[0], 2236 p, 2237 fp); 2238 if (rc) 2239 goto out; 2240 break; 2241 case OCON_IBENDPORT: 2242 rc = next_entry(buf, fp, sizeof(u32) * 2); 2243 if (rc) 2244 goto out; 2245 len = le32_to_cpu(buf[0]); 2246 2247 rc = str_read(&c->u.ibendport.dev_name, GFP_KERNEL, fp, len); 2248 if (rc) 2249 goto out; 2250 2251 if (buf[1] > 0xff || buf[1] == 0) { 2252 rc = -EINVAL; 2253 goto out; 2254 } 2255 2256 c->u.ibendport.port = le32_to_cpu(buf[1]); 2257 2258 rc = context_read_and_validate(&c->context[0], 2259 p, 2260 fp); 2261 if (rc) 2262 goto out; 2263 break; 2264 } 2265 } 2266 } 2267 rc = 0; 2268 out: 2269 return rc; 2270 } 2271 2272 /* 2273 * Read the configuration data from a policy database binary 2274 * representation file into a policy database structure. 2275 */ 2276 int policydb_read(struct policydb *p, void *fp) 2277 { 2278 struct role_allow *ra, *lra; 2279 struct role_trans *tr, *ltr; 2280 int i, j, rc; 2281 __le32 buf[4]; 2282 u32 len, nprim, nel; 2283 2284 char *policydb_str; 2285 struct policydb_compat_info *info; 2286 2287 rc = policydb_init(p); 2288 if (rc) 2289 return rc; 2290 2291 /* Read the magic number and string length. */ 2292 rc = next_entry(buf, fp, sizeof(u32) * 2); 2293 if (rc) 2294 goto bad; 2295 2296 rc = -EINVAL; 2297 if (le32_to_cpu(buf[0]) != POLICYDB_MAGIC) { 2298 printk(KERN_ERR "SELinux: policydb magic number 0x%x does " 2299 "not match expected magic number 0x%x\n", 2300 le32_to_cpu(buf[0]), POLICYDB_MAGIC); 2301 goto bad; 2302 } 2303 2304 rc = -EINVAL; 2305 len = le32_to_cpu(buf[1]); 2306 if (len != strlen(POLICYDB_STRING)) { 2307 printk(KERN_ERR "SELinux: policydb string length %d does not " 2308 "match expected length %zu\n", 2309 len, strlen(POLICYDB_STRING)); 2310 goto bad; 2311 } 2312 2313 rc = -ENOMEM; 2314 policydb_str = kmalloc(len + 1, GFP_KERNEL); 2315 if (!policydb_str) { 2316 printk(KERN_ERR "SELinux: unable to allocate memory for policydb " 2317 "string of length %d\n", len); 2318 goto bad; 2319 } 2320 2321 rc = next_entry(policydb_str, fp, len); 2322 if (rc) { 2323 printk(KERN_ERR "SELinux: truncated policydb string identifier\n"); 2324 kfree(policydb_str); 2325 goto bad; 2326 } 2327 2328 rc = -EINVAL; 2329 policydb_str[len] = '\0'; 2330 if (strcmp(policydb_str, POLICYDB_STRING)) { 2331 printk(KERN_ERR "SELinux: policydb string %s does not match " 2332 "my string %s\n", policydb_str, POLICYDB_STRING); 2333 kfree(policydb_str); 2334 goto bad; 2335 } 2336 /* Done with policydb_str. */ 2337 kfree(policydb_str); 2338 policydb_str = NULL; 2339 2340 /* Read the version and table sizes. */ 2341 rc = next_entry(buf, fp, sizeof(u32)*4); 2342 if (rc) 2343 goto bad; 2344 2345 rc = -EINVAL; 2346 p->policyvers = le32_to_cpu(buf[0]); 2347 if (p->policyvers < POLICYDB_VERSION_MIN || 2348 p->policyvers > POLICYDB_VERSION_MAX) { 2349 printk(KERN_ERR "SELinux: policydb version %d does not match " 2350 "my version range %d-%d\n", 2351 le32_to_cpu(buf[0]), POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX); 2352 goto bad; 2353 } 2354 2355 if ((le32_to_cpu(buf[1]) & POLICYDB_CONFIG_MLS)) { 2356 p->mls_enabled = 1; 2357 2358 rc = -EINVAL; 2359 if (p->policyvers < POLICYDB_VERSION_MLS) { 2360 printk(KERN_ERR "SELinux: security policydb version %d " 2361 "(MLS) not backwards compatible\n", 2362 p->policyvers); 2363 goto bad; 2364 } 2365 } 2366 p->reject_unknown = !!(le32_to_cpu(buf[1]) & REJECT_UNKNOWN); 2367 p->allow_unknown = !!(le32_to_cpu(buf[1]) & ALLOW_UNKNOWN); 2368 2369 if (p->policyvers >= POLICYDB_VERSION_POLCAP) { 2370 rc = ebitmap_read(&p->policycaps, fp); 2371 if (rc) 2372 goto bad; 2373 } 2374 2375 if (p->policyvers >= POLICYDB_VERSION_PERMISSIVE) { 2376 rc = ebitmap_read(&p->permissive_map, fp); 2377 if (rc) 2378 goto bad; 2379 } 2380 2381 rc = -EINVAL; 2382 info = policydb_lookup_compat(p->policyvers); 2383 if (!info) { 2384 printk(KERN_ERR "SELinux: unable to find policy compat info " 2385 "for version %d\n", p->policyvers); 2386 goto bad; 2387 } 2388 2389 rc = -EINVAL; 2390 if (le32_to_cpu(buf[2]) != info->sym_num || 2391 le32_to_cpu(buf[3]) != info->ocon_num) { 2392 printk(KERN_ERR "SELinux: policydb table sizes (%d,%d) do " 2393 "not match mine (%d,%d)\n", le32_to_cpu(buf[2]), 2394 le32_to_cpu(buf[3]), 2395 info->sym_num, info->ocon_num); 2396 goto bad; 2397 } 2398 2399 for (i = 0; i < info->sym_num; i++) { 2400 rc = next_entry(buf, fp, sizeof(u32)*2); 2401 if (rc) 2402 goto bad; 2403 nprim = le32_to_cpu(buf[0]); 2404 nel = le32_to_cpu(buf[1]); 2405 for (j = 0; j < nel; j++) { 2406 rc = read_f[i](p, p->symtab[i].table, fp); 2407 if (rc) 2408 goto bad; 2409 } 2410 2411 p->symtab[i].nprim = nprim; 2412 } 2413 2414 rc = -EINVAL; 2415 p->process_class = string_to_security_class(p, "process"); 2416 if (!p->process_class) 2417 goto bad; 2418 2419 rc = avtab_read(&p->te_avtab, fp, p); 2420 if (rc) 2421 goto bad; 2422 2423 if (p->policyvers >= POLICYDB_VERSION_BOOL) { 2424 rc = cond_read_list(p, fp); 2425 if (rc) 2426 goto bad; 2427 } 2428 2429 rc = next_entry(buf, fp, sizeof(u32)); 2430 if (rc) 2431 goto bad; 2432 nel = le32_to_cpu(buf[0]); 2433 ltr = NULL; 2434 for (i = 0; i < nel; i++) { 2435 rc = -ENOMEM; 2436 tr = kzalloc(sizeof(*tr), GFP_KERNEL); 2437 if (!tr) 2438 goto bad; 2439 if (ltr) 2440 ltr->next = tr; 2441 else 2442 p->role_tr = tr; 2443 rc = next_entry(buf, fp, sizeof(u32)*3); 2444 if (rc) 2445 goto bad; 2446 2447 rc = -EINVAL; 2448 tr->role = le32_to_cpu(buf[0]); 2449 tr->type = le32_to_cpu(buf[1]); 2450 tr->new_role = le32_to_cpu(buf[2]); 2451 if (p->policyvers >= POLICYDB_VERSION_ROLETRANS) { 2452 rc = next_entry(buf, fp, sizeof(u32)); 2453 if (rc) 2454 goto bad; 2455 tr->tclass = le32_to_cpu(buf[0]); 2456 } else 2457 tr->tclass = p->process_class; 2458 2459 rc = -EINVAL; 2460 if (!policydb_role_isvalid(p, tr->role) || 2461 !policydb_type_isvalid(p, tr->type) || 2462 !policydb_class_isvalid(p, tr->tclass) || 2463 !policydb_role_isvalid(p, tr->new_role)) 2464 goto bad; 2465 ltr = tr; 2466 } 2467 2468 rc = next_entry(buf, fp, sizeof(u32)); 2469 if (rc) 2470 goto bad; 2471 nel = le32_to_cpu(buf[0]); 2472 lra = NULL; 2473 for (i = 0; i < nel; i++) { 2474 rc = -ENOMEM; 2475 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 2476 if (!ra) 2477 goto bad; 2478 if (lra) 2479 lra->next = ra; 2480 else 2481 p->role_allow = ra; 2482 rc = next_entry(buf, fp, sizeof(u32)*2); 2483 if (rc) 2484 goto bad; 2485 2486 rc = -EINVAL; 2487 ra->role = le32_to_cpu(buf[0]); 2488 ra->new_role = le32_to_cpu(buf[1]); 2489 if (!policydb_role_isvalid(p, ra->role) || 2490 !policydb_role_isvalid(p, ra->new_role)) 2491 goto bad; 2492 lra = ra; 2493 } 2494 2495 rc = filename_trans_read(p, fp); 2496 if (rc) 2497 goto bad; 2498 2499 rc = policydb_index(p); 2500 if (rc) 2501 goto bad; 2502 2503 rc = -EINVAL; 2504 p->process_trans_perms = string_to_av_perm(p, p->process_class, "transition"); 2505 p->process_trans_perms |= string_to_av_perm(p, p->process_class, "dyntransition"); 2506 if (!p->process_trans_perms) 2507 goto bad; 2508 2509 rc = ocontext_read(p, info, fp); 2510 if (rc) 2511 goto bad; 2512 2513 rc = genfs_read(p, fp); 2514 if (rc) 2515 goto bad; 2516 2517 rc = range_read(p, fp); 2518 if (rc) 2519 goto bad; 2520 2521 rc = -ENOMEM; 2522 p->type_attr_map_array = flex_array_alloc(sizeof(struct ebitmap), 2523 p->p_types.nprim, 2524 GFP_KERNEL | __GFP_ZERO); 2525 if (!p->type_attr_map_array) 2526 goto bad; 2527 2528 /* preallocate so we don't have to worry about the put ever failing */ 2529 rc = flex_array_prealloc(p->type_attr_map_array, 0, p->p_types.nprim, 2530 GFP_KERNEL | __GFP_ZERO); 2531 if (rc) 2532 goto bad; 2533 2534 for (i = 0; i < p->p_types.nprim; i++) { 2535 struct ebitmap *e = flex_array_get(p->type_attr_map_array, i); 2536 2537 BUG_ON(!e); 2538 ebitmap_init(e); 2539 if (p->policyvers >= POLICYDB_VERSION_AVTAB) { 2540 rc = ebitmap_read(e, fp); 2541 if (rc) 2542 goto bad; 2543 } 2544 /* add the type itself as the degenerate case */ 2545 rc = ebitmap_set_bit(e, i, 1); 2546 if (rc) 2547 goto bad; 2548 } 2549 2550 rc = policydb_bounds_sanity_check(p); 2551 if (rc) 2552 goto bad; 2553 2554 rc = 0; 2555 out: 2556 return rc; 2557 bad: 2558 policydb_destroy(p); 2559 goto out; 2560 } 2561 2562 /* 2563 * Write a MLS level structure to a policydb binary 2564 * representation file. 2565 */ 2566 static int mls_write_level(struct mls_level *l, void *fp) 2567 { 2568 __le32 buf[1]; 2569 int rc; 2570 2571 buf[0] = cpu_to_le32(l->sens); 2572 rc = put_entry(buf, sizeof(u32), 1, fp); 2573 if (rc) 2574 return rc; 2575 2576 rc = ebitmap_write(&l->cat, fp); 2577 if (rc) 2578 return rc; 2579 2580 return 0; 2581 } 2582 2583 /* 2584 * Write a MLS range structure to a policydb binary 2585 * representation file. 2586 */ 2587 static int mls_write_range_helper(struct mls_range *r, void *fp) 2588 { 2589 __le32 buf[3]; 2590 size_t items; 2591 int rc, eq; 2592 2593 eq = mls_level_eq(&r->level[1], &r->level[0]); 2594 2595 if (eq) 2596 items = 2; 2597 else 2598 items = 3; 2599 buf[0] = cpu_to_le32(items-1); 2600 buf[1] = cpu_to_le32(r->level[0].sens); 2601 if (!eq) 2602 buf[2] = cpu_to_le32(r->level[1].sens); 2603 2604 BUG_ON(items > ARRAY_SIZE(buf)); 2605 2606 rc = put_entry(buf, sizeof(u32), items, fp); 2607 if (rc) 2608 return rc; 2609 2610 rc = ebitmap_write(&r->level[0].cat, fp); 2611 if (rc) 2612 return rc; 2613 if (!eq) { 2614 rc = ebitmap_write(&r->level[1].cat, fp); 2615 if (rc) 2616 return rc; 2617 } 2618 2619 return 0; 2620 } 2621 2622 static int sens_write(void *vkey, void *datum, void *ptr) 2623 { 2624 char *key = vkey; 2625 struct level_datum *levdatum = datum; 2626 struct policy_data *pd = ptr; 2627 void *fp = pd->fp; 2628 __le32 buf[2]; 2629 size_t len; 2630 int rc; 2631 2632 len = strlen(key); 2633 buf[0] = cpu_to_le32(len); 2634 buf[1] = cpu_to_le32(levdatum->isalias); 2635 rc = put_entry(buf, sizeof(u32), 2, fp); 2636 if (rc) 2637 return rc; 2638 2639 rc = put_entry(key, 1, len, fp); 2640 if (rc) 2641 return rc; 2642 2643 rc = mls_write_level(levdatum->level, fp); 2644 if (rc) 2645 return rc; 2646 2647 return 0; 2648 } 2649 2650 static int cat_write(void *vkey, void *datum, void *ptr) 2651 { 2652 char *key = vkey; 2653 struct cat_datum *catdatum = datum; 2654 struct policy_data *pd = ptr; 2655 void *fp = pd->fp; 2656 __le32 buf[3]; 2657 size_t len; 2658 int rc; 2659 2660 len = strlen(key); 2661 buf[0] = cpu_to_le32(len); 2662 buf[1] = cpu_to_le32(catdatum->value); 2663 buf[2] = cpu_to_le32(catdatum->isalias); 2664 rc = put_entry(buf, sizeof(u32), 3, fp); 2665 if (rc) 2666 return rc; 2667 2668 rc = put_entry(key, 1, len, fp); 2669 if (rc) 2670 return rc; 2671 2672 return 0; 2673 } 2674 2675 static int role_trans_write(struct policydb *p, void *fp) 2676 { 2677 struct role_trans *r = p->role_tr; 2678 struct role_trans *tr; 2679 u32 buf[3]; 2680 size_t nel; 2681 int rc; 2682 2683 nel = 0; 2684 for (tr = r; tr; tr = tr->next) 2685 nel++; 2686 buf[0] = cpu_to_le32(nel); 2687 rc = put_entry(buf, sizeof(u32), 1, fp); 2688 if (rc) 2689 return rc; 2690 for (tr = r; tr; tr = tr->next) { 2691 buf[0] = cpu_to_le32(tr->role); 2692 buf[1] = cpu_to_le32(tr->type); 2693 buf[2] = cpu_to_le32(tr->new_role); 2694 rc = put_entry(buf, sizeof(u32), 3, fp); 2695 if (rc) 2696 return rc; 2697 if (p->policyvers >= POLICYDB_VERSION_ROLETRANS) { 2698 buf[0] = cpu_to_le32(tr->tclass); 2699 rc = put_entry(buf, sizeof(u32), 1, fp); 2700 if (rc) 2701 return rc; 2702 } 2703 } 2704 2705 return 0; 2706 } 2707 2708 static int role_allow_write(struct role_allow *r, void *fp) 2709 { 2710 struct role_allow *ra; 2711 u32 buf[2]; 2712 size_t nel; 2713 int rc; 2714 2715 nel = 0; 2716 for (ra = r; ra; ra = ra->next) 2717 nel++; 2718 buf[0] = cpu_to_le32(nel); 2719 rc = put_entry(buf, sizeof(u32), 1, fp); 2720 if (rc) 2721 return rc; 2722 for (ra = r; ra; ra = ra->next) { 2723 buf[0] = cpu_to_le32(ra->role); 2724 buf[1] = cpu_to_le32(ra->new_role); 2725 rc = put_entry(buf, sizeof(u32), 2, fp); 2726 if (rc) 2727 return rc; 2728 } 2729 return 0; 2730 } 2731 2732 /* 2733 * Write a security context structure 2734 * to a policydb binary representation file. 2735 */ 2736 static int context_write(struct policydb *p, struct context *c, 2737 void *fp) 2738 { 2739 int rc; 2740 __le32 buf[3]; 2741 2742 buf[0] = cpu_to_le32(c->user); 2743 buf[1] = cpu_to_le32(c->role); 2744 buf[2] = cpu_to_le32(c->type); 2745 2746 rc = put_entry(buf, sizeof(u32), 3, fp); 2747 if (rc) 2748 return rc; 2749 2750 rc = mls_write_range_helper(&c->range, fp); 2751 if (rc) 2752 return rc; 2753 2754 return 0; 2755 } 2756 2757 /* 2758 * The following *_write functions are used to 2759 * write the symbol data to a policy database 2760 * binary representation file. 2761 */ 2762 2763 static int perm_write(void *vkey, void *datum, void *fp) 2764 { 2765 char *key = vkey; 2766 struct perm_datum *perdatum = datum; 2767 __le32 buf[2]; 2768 size_t len; 2769 int rc; 2770 2771 len = strlen(key); 2772 buf[0] = cpu_to_le32(len); 2773 buf[1] = cpu_to_le32(perdatum->value); 2774 rc = put_entry(buf, sizeof(u32), 2, fp); 2775 if (rc) 2776 return rc; 2777 2778 rc = put_entry(key, 1, len, fp); 2779 if (rc) 2780 return rc; 2781 2782 return 0; 2783 } 2784 2785 static int common_write(void *vkey, void *datum, void *ptr) 2786 { 2787 char *key = vkey; 2788 struct common_datum *comdatum = datum; 2789 struct policy_data *pd = ptr; 2790 void *fp = pd->fp; 2791 __le32 buf[4]; 2792 size_t len; 2793 int rc; 2794 2795 len = strlen(key); 2796 buf[0] = cpu_to_le32(len); 2797 buf[1] = cpu_to_le32(comdatum->value); 2798 buf[2] = cpu_to_le32(comdatum->permissions.nprim); 2799 buf[3] = cpu_to_le32(comdatum->permissions.table->nel); 2800 rc = put_entry(buf, sizeof(u32), 4, fp); 2801 if (rc) 2802 return rc; 2803 2804 rc = put_entry(key, 1, len, fp); 2805 if (rc) 2806 return rc; 2807 2808 rc = hashtab_map(comdatum->permissions.table, perm_write, fp); 2809 if (rc) 2810 return rc; 2811 2812 return 0; 2813 } 2814 2815 static int type_set_write(struct type_set *t, void *fp) 2816 { 2817 int rc; 2818 __le32 buf[1]; 2819 2820 if (ebitmap_write(&t->types, fp)) 2821 return -EINVAL; 2822 if (ebitmap_write(&t->negset, fp)) 2823 return -EINVAL; 2824 2825 buf[0] = cpu_to_le32(t->flags); 2826 rc = put_entry(buf, sizeof(u32), 1, fp); 2827 if (rc) 2828 return -EINVAL; 2829 2830 return 0; 2831 } 2832 2833 static int write_cons_helper(struct policydb *p, struct constraint_node *node, 2834 void *fp) 2835 { 2836 struct constraint_node *c; 2837 struct constraint_expr *e; 2838 __le32 buf[3]; 2839 u32 nel; 2840 int rc; 2841 2842 for (c = node; c; c = c->next) { 2843 nel = 0; 2844 for (e = c->expr; e; e = e->next) 2845 nel++; 2846 buf[0] = cpu_to_le32(c->permissions); 2847 buf[1] = cpu_to_le32(nel); 2848 rc = put_entry(buf, sizeof(u32), 2, fp); 2849 if (rc) 2850 return rc; 2851 for (e = c->expr; e; e = e->next) { 2852 buf[0] = cpu_to_le32(e->expr_type); 2853 buf[1] = cpu_to_le32(e->attr); 2854 buf[2] = cpu_to_le32(e->op); 2855 rc = put_entry(buf, sizeof(u32), 3, fp); 2856 if (rc) 2857 return rc; 2858 2859 switch (e->expr_type) { 2860 case CEXPR_NAMES: 2861 rc = ebitmap_write(&e->names, fp); 2862 if (rc) 2863 return rc; 2864 if (p->policyvers >= 2865 POLICYDB_VERSION_CONSTRAINT_NAMES) { 2866 rc = type_set_write(e->type_names, fp); 2867 if (rc) 2868 return rc; 2869 } 2870 break; 2871 default: 2872 break; 2873 } 2874 } 2875 } 2876 2877 return 0; 2878 } 2879 2880 static int class_write(void *vkey, void *datum, void *ptr) 2881 { 2882 char *key = vkey; 2883 struct class_datum *cladatum = datum; 2884 struct policy_data *pd = ptr; 2885 void *fp = pd->fp; 2886 struct policydb *p = pd->p; 2887 struct constraint_node *c; 2888 __le32 buf[6]; 2889 u32 ncons; 2890 size_t len, len2; 2891 int rc; 2892 2893 len = strlen(key); 2894 if (cladatum->comkey) 2895 len2 = strlen(cladatum->comkey); 2896 else 2897 len2 = 0; 2898 2899 ncons = 0; 2900 for (c = cladatum->constraints; c; c = c->next) 2901 ncons++; 2902 2903 buf[0] = cpu_to_le32(len); 2904 buf[1] = cpu_to_le32(len2); 2905 buf[2] = cpu_to_le32(cladatum->value); 2906 buf[3] = cpu_to_le32(cladatum->permissions.nprim); 2907 if (cladatum->permissions.table) 2908 buf[4] = cpu_to_le32(cladatum->permissions.table->nel); 2909 else 2910 buf[4] = 0; 2911 buf[5] = cpu_to_le32(ncons); 2912 rc = put_entry(buf, sizeof(u32), 6, fp); 2913 if (rc) 2914 return rc; 2915 2916 rc = put_entry(key, 1, len, fp); 2917 if (rc) 2918 return rc; 2919 2920 if (cladatum->comkey) { 2921 rc = put_entry(cladatum->comkey, 1, len2, fp); 2922 if (rc) 2923 return rc; 2924 } 2925 2926 rc = hashtab_map(cladatum->permissions.table, perm_write, fp); 2927 if (rc) 2928 return rc; 2929 2930 rc = write_cons_helper(p, cladatum->constraints, fp); 2931 if (rc) 2932 return rc; 2933 2934 /* write out the validatetrans rule */ 2935 ncons = 0; 2936 for (c = cladatum->validatetrans; c; c = c->next) 2937 ncons++; 2938 2939 buf[0] = cpu_to_le32(ncons); 2940 rc = put_entry(buf, sizeof(u32), 1, fp); 2941 if (rc) 2942 return rc; 2943 2944 rc = write_cons_helper(p, cladatum->validatetrans, fp); 2945 if (rc) 2946 return rc; 2947 2948 if (p->policyvers >= POLICYDB_VERSION_NEW_OBJECT_DEFAULTS) { 2949 buf[0] = cpu_to_le32(cladatum->default_user); 2950 buf[1] = cpu_to_le32(cladatum->default_role); 2951 buf[2] = cpu_to_le32(cladatum->default_range); 2952 2953 rc = put_entry(buf, sizeof(uint32_t), 3, fp); 2954 if (rc) 2955 return rc; 2956 } 2957 2958 if (p->policyvers >= POLICYDB_VERSION_DEFAULT_TYPE) { 2959 buf[0] = cpu_to_le32(cladatum->default_type); 2960 rc = put_entry(buf, sizeof(uint32_t), 1, fp); 2961 if (rc) 2962 return rc; 2963 } 2964 2965 return 0; 2966 } 2967 2968 static int role_write(void *vkey, void *datum, void *ptr) 2969 { 2970 char *key = vkey; 2971 struct role_datum *role = datum; 2972 struct policy_data *pd = ptr; 2973 void *fp = pd->fp; 2974 struct policydb *p = pd->p; 2975 __le32 buf[3]; 2976 size_t items, len; 2977 int rc; 2978 2979 len = strlen(key); 2980 items = 0; 2981 buf[items++] = cpu_to_le32(len); 2982 buf[items++] = cpu_to_le32(role->value); 2983 if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) 2984 buf[items++] = cpu_to_le32(role->bounds); 2985 2986 BUG_ON(items > ARRAY_SIZE(buf)); 2987 2988 rc = put_entry(buf, sizeof(u32), items, fp); 2989 if (rc) 2990 return rc; 2991 2992 rc = put_entry(key, 1, len, fp); 2993 if (rc) 2994 return rc; 2995 2996 rc = ebitmap_write(&role->dominates, fp); 2997 if (rc) 2998 return rc; 2999 3000 rc = ebitmap_write(&role->types, fp); 3001 if (rc) 3002 return rc; 3003 3004 return 0; 3005 } 3006 3007 static int type_write(void *vkey, void *datum, void *ptr) 3008 { 3009 char *key = vkey; 3010 struct type_datum *typdatum = datum; 3011 struct policy_data *pd = ptr; 3012 struct policydb *p = pd->p; 3013 void *fp = pd->fp; 3014 __le32 buf[4]; 3015 int rc; 3016 size_t items, len; 3017 3018 len = strlen(key); 3019 items = 0; 3020 buf[items++] = cpu_to_le32(len); 3021 buf[items++] = cpu_to_le32(typdatum->value); 3022 if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) { 3023 u32 properties = 0; 3024 3025 if (typdatum->primary) 3026 properties |= TYPEDATUM_PROPERTY_PRIMARY; 3027 3028 if (typdatum->attribute) 3029 properties |= TYPEDATUM_PROPERTY_ATTRIBUTE; 3030 3031 buf[items++] = cpu_to_le32(properties); 3032 buf[items++] = cpu_to_le32(typdatum->bounds); 3033 } else { 3034 buf[items++] = cpu_to_le32(typdatum->primary); 3035 } 3036 BUG_ON(items > ARRAY_SIZE(buf)); 3037 rc = put_entry(buf, sizeof(u32), items, fp); 3038 if (rc) 3039 return rc; 3040 3041 rc = put_entry(key, 1, len, fp); 3042 if (rc) 3043 return rc; 3044 3045 return 0; 3046 } 3047 3048 static int user_write(void *vkey, void *datum, void *ptr) 3049 { 3050 char *key = vkey; 3051 struct user_datum *usrdatum = datum; 3052 struct policy_data *pd = ptr; 3053 struct policydb *p = pd->p; 3054 void *fp = pd->fp; 3055 __le32 buf[3]; 3056 size_t items, len; 3057 int rc; 3058 3059 len = strlen(key); 3060 items = 0; 3061 buf[items++] = cpu_to_le32(len); 3062 buf[items++] = cpu_to_le32(usrdatum->value); 3063 if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) 3064 buf[items++] = cpu_to_le32(usrdatum->bounds); 3065 BUG_ON(items > ARRAY_SIZE(buf)); 3066 rc = put_entry(buf, sizeof(u32), items, fp); 3067 if (rc) 3068 return rc; 3069 3070 rc = put_entry(key, 1, len, fp); 3071 if (rc) 3072 return rc; 3073 3074 rc = ebitmap_write(&usrdatum->roles, fp); 3075 if (rc) 3076 return rc; 3077 3078 rc = mls_write_range_helper(&usrdatum->range, fp); 3079 if (rc) 3080 return rc; 3081 3082 rc = mls_write_level(&usrdatum->dfltlevel, fp); 3083 if (rc) 3084 return rc; 3085 3086 return 0; 3087 } 3088 3089 static int (*write_f[SYM_NUM]) (void *key, void *datum, 3090 void *datap) = 3091 { 3092 common_write, 3093 class_write, 3094 role_write, 3095 type_write, 3096 user_write, 3097 cond_write_bool, 3098 sens_write, 3099 cat_write, 3100 }; 3101 3102 static int ocontext_write(struct policydb *p, struct policydb_compat_info *info, 3103 void *fp) 3104 { 3105 unsigned int i, j, rc; 3106 size_t nel, len; 3107 __le32 buf[3]; 3108 u32 nodebuf[8]; 3109 struct ocontext *c; 3110 for (i = 0; i < info->ocon_num; i++) { 3111 nel = 0; 3112 for (c = p->ocontexts[i]; c; c = c->next) 3113 nel++; 3114 buf[0] = cpu_to_le32(nel); 3115 rc = put_entry(buf, sizeof(u32), 1, fp); 3116 if (rc) 3117 return rc; 3118 for (c = p->ocontexts[i]; c; c = c->next) { 3119 switch (i) { 3120 case OCON_ISID: 3121 buf[0] = cpu_to_le32(c->sid[0]); 3122 rc = put_entry(buf, sizeof(u32), 1, fp); 3123 if (rc) 3124 return rc; 3125 rc = context_write(p, &c->context[0], fp); 3126 if (rc) 3127 return rc; 3128 break; 3129 case OCON_FS: 3130 case OCON_NETIF: 3131 len = strlen(c->u.name); 3132 buf[0] = cpu_to_le32(len); 3133 rc = put_entry(buf, sizeof(u32), 1, fp); 3134 if (rc) 3135 return rc; 3136 rc = put_entry(c->u.name, 1, len, fp); 3137 if (rc) 3138 return rc; 3139 rc = context_write(p, &c->context[0], fp); 3140 if (rc) 3141 return rc; 3142 rc = context_write(p, &c->context[1], fp); 3143 if (rc) 3144 return rc; 3145 break; 3146 case OCON_PORT: 3147 buf[0] = cpu_to_le32(c->u.port.protocol); 3148 buf[1] = cpu_to_le32(c->u.port.low_port); 3149 buf[2] = cpu_to_le32(c->u.port.high_port); 3150 rc = put_entry(buf, sizeof(u32), 3, fp); 3151 if (rc) 3152 return rc; 3153 rc = context_write(p, &c->context[0], fp); 3154 if (rc) 3155 return rc; 3156 break; 3157 case OCON_NODE: 3158 nodebuf[0] = c->u.node.addr; /* network order */ 3159 nodebuf[1] = c->u.node.mask; /* network order */ 3160 rc = put_entry(nodebuf, sizeof(u32), 2, fp); 3161 if (rc) 3162 return rc; 3163 rc = context_write(p, &c->context[0], fp); 3164 if (rc) 3165 return rc; 3166 break; 3167 case OCON_FSUSE: 3168 buf[0] = cpu_to_le32(c->v.behavior); 3169 len = strlen(c->u.name); 3170 buf[1] = cpu_to_le32(len); 3171 rc = put_entry(buf, sizeof(u32), 2, fp); 3172 if (rc) 3173 return rc; 3174 rc = put_entry(c->u.name, 1, len, fp); 3175 if (rc) 3176 return rc; 3177 rc = context_write(p, &c->context[0], fp); 3178 if (rc) 3179 return rc; 3180 break; 3181 case OCON_NODE6: 3182 for (j = 0; j < 4; j++) 3183 nodebuf[j] = c->u.node6.addr[j]; /* network order */ 3184 for (j = 0; j < 4; j++) 3185 nodebuf[j + 4] = c->u.node6.mask[j]; /* network order */ 3186 rc = put_entry(nodebuf, sizeof(u32), 8, fp); 3187 if (rc) 3188 return rc; 3189 rc = context_write(p, &c->context[0], fp); 3190 if (rc) 3191 return rc; 3192 break; 3193 case OCON_IBPKEY: 3194 *((__be64 *)nodebuf) = cpu_to_be64(c->u.ibpkey.subnet_prefix); 3195 3196 nodebuf[2] = cpu_to_le32(c->u.ibpkey.low_pkey); 3197 nodebuf[3] = cpu_to_le32(c->u.ibpkey.high_pkey); 3198 3199 rc = put_entry(nodebuf, sizeof(u32), 4, fp); 3200 if (rc) 3201 return rc; 3202 rc = context_write(p, &c->context[0], fp); 3203 if (rc) 3204 return rc; 3205 break; 3206 case OCON_IBENDPORT: 3207 len = strlen(c->u.ibendport.dev_name); 3208 buf[0] = cpu_to_le32(len); 3209 buf[1] = cpu_to_le32(c->u.ibendport.port); 3210 rc = put_entry(buf, sizeof(u32), 2, fp); 3211 if (rc) 3212 return rc; 3213 rc = put_entry(c->u.ibendport.dev_name, 1, len, fp); 3214 if (rc) 3215 return rc; 3216 rc = context_write(p, &c->context[0], fp); 3217 if (rc) 3218 return rc; 3219 break; 3220 } 3221 } 3222 } 3223 return 0; 3224 } 3225 3226 static int genfs_write(struct policydb *p, void *fp) 3227 { 3228 struct genfs *genfs; 3229 struct ocontext *c; 3230 size_t len; 3231 __le32 buf[1]; 3232 int rc; 3233 3234 len = 0; 3235 for (genfs = p->genfs; genfs; genfs = genfs->next) 3236 len++; 3237 buf[0] = cpu_to_le32(len); 3238 rc = put_entry(buf, sizeof(u32), 1, fp); 3239 if (rc) 3240 return rc; 3241 for (genfs = p->genfs; genfs; genfs = genfs->next) { 3242 len = strlen(genfs->fstype); 3243 buf[0] = cpu_to_le32(len); 3244 rc = put_entry(buf, sizeof(u32), 1, fp); 3245 if (rc) 3246 return rc; 3247 rc = put_entry(genfs->fstype, 1, len, fp); 3248 if (rc) 3249 return rc; 3250 len = 0; 3251 for (c = genfs->head; c; c = c->next) 3252 len++; 3253 buf[0] = cpu_to_le32(len); 3254 rc = put_entry(buf, sizeof(u32), 1, fp); 3255 if (rc) 3256 return rc; 3257 for (c = genfs->head; c; c = c->next) { 3258 len = strlen(c->u.name); 3259 buf[0] = cpu_to_le32(len); 3260 rc = put_entry(buf, sizeof(u32), 1, fp); 3261 if (rc) 3262 return rc; 3263 rc = put_entry(c->u.name, 1, len, fp); 3264 if (rc) 3265 return rc; 3266 buf[0] = cpu_to_le32(c->v.sclass); 3267 rc = put_entry(buf, sizeof(u32), 1, fp); 3268 if (rc) 3269 return rc; 3270 rc = context_write(p, &c->context[0], fp); 3271 if (rc) 3272 return rc; 3273 } 3274 } 3275 return 0; 3276 } 3277 3278 static int hashtab_cnt(void *key, void *data, void *ptr) 3279 { 3280 int *cnt = ptr; 3281 *cnt = *cnt + 1; 3282 3283 return 0; 3284 } 3285 3286 static int range_write_helper(void *key, void *data, void *ptr) 3287 { 3288 __le32 buf[2]; 3289 struct range_trans *rt = key; 3290 struct mls_range *r = data; 3291 struct policy_data *pd = ptr; 3292 void *fp = pd->fp; 3293 struct policydb *p = pd->p; 3294 int rc; 3295 3296 buf[0] = cpu_to_le32(rt->source_type); 3297 buf[1] = cpu_to_le32(rt->target_type); 3298 rc = put_entry(buf, sizeof(u32), 2, fp); 3299 if (rc) 3300 return rc; 3301 if (p->policyvers >= POLICYDB_VERSION_RANGETRANS) { 3302 buf[0] = cpu_to_le32(rt->target_class); 3303 rc = put_entry(buf, sizeof(u32), 1, fp); 3304 if (rc) 3305 return rc; 3306 } 3307 rc = mls_write_range_helper(r, fp); 3308 if (rc) 3309 return rc; 3310 3311 return 0; 3312 } 3313 3314 static int range_write(struct policydb *p, void *fp) 3315 { 3316 __le32 buf[1]; 3317 int rc, nel; 3318 struct policy_data pd; 3319 3320 pd.p = p; 3321 pd.fp = fp; 3322 3323 /* count the number of entries in the hashtab */ 3324 nel = 0; 3325 rc = hashtab_map(p->range_tr, hashtab_cnt, &nel); 3326 if (rc) 3327 return rc; 3328 3329 buf[0] = cpu_to_le32(nel); 3330 rc = put_entry(buf, sizeof(u32), 1, fp); 3331 if (rc) 3332 return rc; 3333 3334 /* actually write all of the entries */ 3335 rc = hashtab_map(p->range_tr, range_write_helper, &pd); 3336 if (rc) 3337 return rc; 3338 3339 return 0; 3340 } 3341 3342 static int filename_write_helper(void *key, void *data, void *ptr) 3343 { 3344 __le32 buf[4]; 3345 struct filename_trans *ft = key; 3346 struct filename_trans_datum *otype = data; 3347 void *fp = ptr; 3348 int rc; 3349 u32 len; 3350 3351 len = strlen(ft->name); 3352 buf[0] = cpu_to_le32(len); 3353 rc = put_entry(buf, sizeof(u32), 1, fp); 3354 if (rc) 3355 return rc; 3356 3357 rc = put_entry(ft->name, sizeof(char), len, fp); 3358 if (rc) 3359 return rc; 3360 3361 buf[0] = cpu_to_le32(ft->stype); 3362 buf[1] = cpu_to_le32(ft->ttype); 3363 buf[2] = cpu_to_le32(ft->tclass); 3364 buf[3] = cpu_to_le32(otype->otype); 3365 3366 rc = put_entry(buf, sizeof(u32), 4, fp); 3367 if (rc) 3368 return rc; 3369 3370 return 0; 3371 } 3372 3373 static int filename_trans_write(struct policydb *p, void *fp) 3374 { 3375 u32 nel; 3376 __le32 buf[1]; 3377 int rc; 3378 3379 if (p->policyvers < POLICYDB_VERSION_FILENAME_TRANS) 3380 return 0; 3381 3382 nel = 0; 3383 rc = hashtab_map(p->filename_trans, hashtab_cnt, &nel); 3384 if (rc) 3385 return rc; 3386 3387 buf[0] = cpu_to_le32(nel); 3388 rc = put_entry(buf, sizeof(u32), 1, fp); 3389 if (rc) 3390 return rc; 3391 3392 rc = hashtab_map(p->filename_trans, filename_write_helper, fp); 3393 if (rc) 3394 return rc; 3395 3396 return 0; 3397 } 3398 3399 /* 3400 * Write the configuration data in a policy database 3401 * structure to a policy database binary representation 3402 * file. 3403 */ 3404 int policydb_write(struct policydb *p, void *fp) 3405 { 3406 unsigned int i, num_syms; 3407 int rc; 3408 __le32 buf[4]; 3409 u32 config; 3410 size_t len; 3411 struct policydb_compat_info *info; 3412 3413 /* 3414 * refuse to write policy older than compressed avtab 3415 * to simplify the writer. There are other tests dropped 3416 * since we assume this throughout the writer code. Be 3417 * careful if you ever try to remove this restriction 3418 */ 3419 if (p->policyvers < POLICYDB_VERSION_AVTAB) { 3420 printk(KERN_ERR "SELinux: refusing to write policy version %d." 3421 " Because it is less than version %d\n", p->policyvers, 3422 POLICYDB_VERSION_AVTAB); 3423 return -EINVAL; 3424 } 3425 3426 config = 0; 3427 if (p->mls_enabled) 3428 config |= POLICYDB_CONFIG_MLS; 3429 3430 if (p->reject_unknown) 3431 config |= REJECT_UNKNOWN; 3432 if (p->allow_unknown) 3433 config |= ALLOW_UNKNOWN; 3434 3435 /* Write the magic number and string identifiers. */ 3436 buf[0] = cpu_to_le32(POLICYDB_MAGIC); 3437 len = strlen(POLICYDB_STRING); 3438 buf[1] = cpu_to_le32(len); 3439 rc = put_entry(buf, sizeof(u32), 2, fp); 3440 if (rc) 3441 return rc; 3442 rc = put_entry(POLICYDB_STRING, 1, len, fp); 3443 if (rc) 3444 return rc; 3445 3446 /* Write the version, config, and table sizes. */ 3447 info = policydb_lookup_compat(p->policyvers); 3448 if (!info) { 3449 printk(KERN_ERR "SELinux: compatibility lookup failed for policy " 3450 "version %d", p->policyvers); 3451 return -EINVAL; 3452 } 3453 3454 buf[0] = cpu_to_le32(p->policyvers); 3455 buf[1] = cpu_to_le32(config); 3456 buf[2] = cpu_to_le32(info->sym_num); 3457 buf[3] = cpu_to_le32(info->ocon_num); 3458 3459 rc = put_entry(buf, sizeof(u32), 4, fp); 3460 if (rc) 3461 return rc; 3462 3463 if (p->policyvers >= POLICYDB_VERSION_POLCAP) { 3464 rc = ebitmap_write(&p->policycaps, fp); 3465 if (rc) 3466 return rc; 3467 } 3468 3469 if (p->policyvers >= POLICYDB_VERSION_PERMISSIVE) { 3470 rc = ebitmap_write(&p->permissive_map, fp); 3471 if (rc) 3472 return rc; 3473 } 3474 3475 num_syms = info->sym_num; 3476 for (i = 0; i < num_syms; i++) { 3477 struct policy_data pd; 3478 3479 pd.fp = fp; 3480 pd.p = p; 3481 3482 buf[0] = cpu_to_le32(p->symtab[i].nprim); 3483 buf[1] = cpu_to_le32(p->symtab[i].table->nel); 3484 3485 rc = put_entry(buf, sizeof(u32), 2, fp); 3486 if (rc) 3487 return rc; 3488 rc = hashtab_map(p->symtab[i].table, write_f[i], &pd); 3489 if (rc) 3490 return rc; 3491 } 3492 3493 rc = avtab_write(p, &p->te_avtab, fp); 3494 if (rc) 3495 return rc; 3496 3497 rc = cond_write_list(p, p->cond_list, fp); 3498 if (rc) 3499 return rc; 3500 3501 rc = role_trans_write(p, fp); 3502 if (rc) 3503 return rc; 3504 3505 rc = role_allow_write(p->role_allow, fp); 3506 if (rc) 3507 return rc; 3508 3509 rc = filename_trans_write(p, fp); 3510 if (rc) 3511 return rc; 3512 3513 rc = ocontext_write(p, info, fp); 3514 if (rc) 3515 return rc; 3516 3517 rc = genfs_write(p, fp); 3518 if (rc) 3519 return rc; 3520 3521 rc = range_write(p, fp); 3522 if (rc) 3523 return rc; 3524 3525 for (i = 0; i < p->p_types.nprim; i++) { 3526 struct ebitmap *e = flex_array_get(p->type_attr_map_array, i); 3527 3528 BUG_ON(!e); 3529 rc = ebitmap_write(e, fp); 3530 if (rc) 3531 return rc; 3532 } 3533 3534 return 0; 3535 } 3536