xref: /openbmc/linux/security/selinux/ss/policydb.c (revision 545e4006)
1 /*
2  * Implementation of the policy database.
3  *
4  * Author : Stephen Smalley, <sds@epoch.ncsc.mil>
5  */
6 
7 /*
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *	Support for enhanced MLS infrastructure.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *	Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul.moore@hp.com>
17  *
18  *      Added support for the policy capability bitmap
19  *
20  * Copyright (C) 2007 Hewlett-Packard Development Company, L.P.
21  * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
22  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
23  *	This program is free software; you can redistribute it and/or modify
24  *	it under the terms of the GNU General Public License as published by
25  *	the Free Software Foundation, version 2.
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/string.h>
32 #include <linux/errno.h>
33 #include "security.h"
34 
35 #include "policydb.h"
36 #include "conditional.h"
37 #include "mls.h"
38 
39 #define _DEBUG_HASHES
40 
41 #ifdef DEBUG_HASHES
42 static char *symtab_name[SYM_NUM] = {
43 	"common prefixes",
44 	"classes",
45 	"roles",
46 	"types",
47 	"users",
48 	"bools",
49 	"levels",
50 	"categories",
51 };
52 #endif
53 
54 int selinux_mls_enabled;
55 
56 static unsigned int symtab_sizes[SYM_NUM] = {
57 	2,
58 	32,
59 	16,
60 	512,
61 	128,
62 	16,
63 	16,
64 	16,
65 };
66 
67 struct policydb_compat_info {
68 	int version;
69 	int sym_num;
70 	int ocon_num;
71 };
72 
73 /* These need to be updated if SYM_NUM or OCON_NUM changes */
74 static struct policydb_compat_info policydb_compat[] = {
75 	{
76 		.version	= POLICYDB_VERSION_BASE,
77 		.sym_num	= SYM_NUM - 3,
78 		.ocon_num	= OCON_NUM - 1,
79 	},
80 	{
81 		.version	= POLICYDB_VERSION_BOOL,
82 		.sym_num	= SYM_NUM - 2,
83 		.ocon_num	= OCON_NUM - 1,
84 	},
85 	{
86 		.version	= POLICYDB_VERSION_IPV6,
87 		.sym_num	= SYM_NUM - 2,
88 		.ocon_num	= OCON_NUM,
89 	},
90 	{
91 		.version	= POLICYDB_VERSION_NLCLASS,
92 		.sym_num	= SYM_NUM - 2,
93 		.ocon_num	= OCON_NUM,
94 	},
95 	{
96 		.version	= POLICYDB_VERSION_MLS,
97 		.sym_num	= SYM_NUM,
98 		.ocon_num	= OCON_NUM,
99 	},
100 	{
101 		.version	= POLICYDB_VERSION_AVTAB,
102 		.sym_num	= SYM_NUM,
103 		.ocon_num	= OCON_NUM,
104 	},
105 	{
106 		.version	= POLICYDB_VERSION_RANGETRANS,
107 		.sym_num	= SYM_NUM,
108 		.ocon_num	= OCON_NUM,
109 	},
110 	{
111 		.version	= POLICYDB_VERSION_POLCAP,
112 		.sym_num	= SYM_NUM,
113 		.ocon_num	= OCON_NUM,
114 	},
115 	{
116 		.version	= POLICYDB_VERSION_PERMISSIVE,
117 		.sym_num	= SYM_NUM,
118 		.ocon_num	= OCON_NUM,
119 	}
120 };
121 
122 static struct policydb_compat_info *policydb_lookup_compat(int version)
123 {
124 	int i;
125 	struct policydb_compat_info *info = NULL;
126 
127 	for (i = 0; i < ARRAY_SIZE(policydb_compat); i++) {
128 		if (policydb_compat[i].version == version) {
129 			info = &policydb_compat[i];
130 			break;
131 		}
132 	}
133 	return info;
134 }
135 
136 /*
137  * Initialize the role table.
138  */
139 static int roles_init(struct policydb *p)
140 {
141 	char *key = NULL;
142 	int rc;
143 	struct role_datum *role;
144 
145 	role = kzalloc(sizeof(*role), GFP_KERNEL);
146 	if (!role) {
147 		rc = -ENOMEM;
148 		goto out;
149 	}
150 	role->value = ++p->p_roles.nprim;
151 	if (role->value != OBJECT_R_VAL) {
152 		rc = -EINVAL;
153 		goto out_free_role;
154 	}
155 	key = kmalloc(strlen(OBJECT_R)+1, GFP_KERNEL);
156 	if (!key) {
157 		rc = -ENOMEM;
158 		goto out_free_role;
159 	}
160 	strcpy(key, OBJECT_R);
161 	rc = hashtab_insert(p->p_roles.table, key, role);
162 	if (rc)
163 		goto out_free_key;
164 out:
165 	return rc;
166 
167 out_free_key:
168 	kfree(key);
169 out_free_role:
170 	kfree(role);
171 	goto out;
172 }
173 
174 /*
175  * Initialize a policy database structure.
176  */
177 static int policydb_init(struct policydb *p)
178 {
179 	int i, rc;
180 
181 	memset(p, 0, sizeof(*p));
182 
183 	for (i = 0; i < SYM_NUM; i++) {
184 		rc = symtab_init(&p->symtab[i], symtab_sizes[i]);
185 		if (rc)
186 			goto out_free_symtab;
187 	}
188 
189 	rc = avtab_init(&p->te_avtab);
190 	if (rc)
191 		goto out_free_symtab;
192 
193 	rc = roles_init(p);
194 	if (rc)
195 		goto out_free_symtab;
196 
197 	rc = cond_policydb_init(p);
198 	if (rc)
199 		goto out_free_symtab;
200 
201 	ebitmap_init(&p->policycaps);
202 	ebitmap_init(&p->permissive_map);
203 
204 out:
205 	return rc;
206 
207 out_free_symtab:
208 	for (i = 0; i < SYM_NUM; i++)
209 		hashtab_destroy(p->symtab[i].table);
210 	goto out;
211 }
212 
213 /*
214  * The following *_index functions are used to
215  * define the val_to_name and val_to_struct arrays
216  * in a policy database structure.  The val_to_name
217  * arrays are used when converting security context
218  * structures into string representations.  The
219  * val_to_struct arrays are used when the attributes
220  * of a class, role, or user are needed.
221  */
222 
223 static int common_index(void *key, void *datum, void *datap)
224 {
225 	struct policydb *p;
226 	struct common_datum *comdatum;
227 
228 	comdatum = datum;
229 	p = datap;
230 	if (!comdatum->value || comdatum->value > p->p_commons.nprim)
231 		return -EINVAL;
232 	p->p_common_val_to_name[comdatum->value - 1] = key;
233 	return 0;
234 }
235 
236 static int class_index(void *key, void *datum, void *datap)
237 {
238 	struct policydb *p;
239 	struct class_datum *cladatum;
240 
241 	cladatum = datum;
242 	p = datap;
243 	if (!cladatum->value || cladatum->value > p->p_classes.nprim)
244 		return -EINVAL;
245 	p->p_class_val_to_name[cladatum->value - 1] = key;
246 	p->class_val_to_struct[cladatum->value - 1] = cladatum;
247 	return 0;
248 }
249 
250 static int role_index(void *key, void *datum, void *datap)
251 {
252 	struct policydb *p;
253 	struct role_datum *role;
254 
255 	role = datum;
256 	p = datap;
257 	if (!role->value || role->value > p->p_roles.nprim)
258 		return -EINVAL;
259 	p->p_role_val_to_name[role->value - 1] = key;
260 	p->role_val_to_struct[role->value - 1] = role;
261 	return 0;
262 }
263 
264 static int type_index(void *key, void *datum, void *datap)
265 {
266 	struct policydb *p;
267 	struct type_datum *typdatum;
268 
269 	typdatum = datum;
270 	p = datap;
271 
272 	if (typdatum->primary) {
273 		if (!typdatum->value || typdatum->value > p->p_types.nprim)
274 			return -EINVAL;
275 		p->p_type_val_to_name[typdatum->value - 1] = key;
276 	}
277 
278 	return 0;
279 }
280 
281 static int user_index(void *key, void *datum, void *datap)
282 {
283 	struct policydb *p;
284 	struct user_datum *usrdatum;
285 
286 	usrdatum = datum;
287 	p = datap;
288 	if (!usrdatum->value || usrdatum->value > p->p_users.nprim)
289 		return -EINVAL;
290 	p->p_user_val_to_name[usrdatum->value - 1] = key;
291 	p->user_val_to_struct[usrdatum->value - 1] = usrdatum;
292 	return 0;
293 }
294 
295 static int sens_index(void *key, void *datum, void *datap)
296 {
297 	struct policydb *p;
298 	struct level_datum *levdatum;
299 
300 	levdatum = datum;
301 	p = datap;
302 
303 	if (!levdatum->isalias) {
304 		if (!levdatum->level->sens ||
305 		    levdatum->level->sens > p->p_levels.nprim)
306 			return -EINVAL;
307 		p->p_sens_val_to_name[levdatum->level->sens - 1] = key;
308 	}
309 
310 	return 0;
311 }
312 
313 static int cat_index(void *key, void *datum, void *datap)
314 {
315 	struct policydb *p;
316 	struct cat_datum *catdatum;
317 
318 	catdatum = datum;
319 	p = datap;
320 
321 	if (!catdatum->isalias) {
322 		if (!catdatum->value || catdatum->value > p->p_cats.nprim)
323 			return -EINVAL;
324 		p->p_cat_val_to_name[catdatum->value - 1] = key;
325 	}
326 
327 	return 0;
328 }
329 
330 static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) =
331 {
332 	common_index,
333 	class_index,
334 	role_index,
335 	type_index,
336 	user_index,
337 	cond_index_bool,
338 	sens_index,
339 	cat_index,
340 };
341 
342 /*
343  * Define the common val_to_name array and the class
344  * val_to_name and val_to_struct arrays in a policy
345  * database structure.
346  *
347  * Caller must clean up upon failure.
348  */
349 static int policydb_index_classes(struct policydb *p)
350 {
351 	int rc;
352 
353 	p->p_common_val_to_name =
354 		kmalloc(p->p_commons.nprim * sizeof(char *), GFP_KERNEL);
355 	if (!p->p_common_val_to_name) {
356 		rc = -ENOMEM;
357 		goto out;
358 	}
359 
360 	rc = hashtab_map(p->p_commons.table, common_index, p);
361 	if (rc)
362 		goto out;
363 
364 	p->class_val_to_struct =
365 		kmalloc(p->p_classes.nprim * sizeof(*(p->class_val_to_struct)), GFP_KERNEL);
366 	if (!p->class_val_to_struct) {
367 		rc = -ENOMEM;
368 		goto out;
369 	}
370 
371 	p->p_class_val_to_name =
372 		kmalloc(p->p_classes.nprim * sizeof(char *), GFP_KERNEL);
373 	if (!p->p_class_val_to_name) {
374 		rc = -ENOMEM;
375 		goto out;
376 	}
377 
378 	rc = hashtab_map(p->p_classes.table, class_index, p);
379 out:
380 	return rc;
381 }
382 
383 #ifdef DEBUG_HASHES
384 static void symtab_hash_eval(struct symtab *s)
385 {
386 	int i;
387 
388 	for (i = 0; i < SYM_NUM; i++) {
389 		struct hashtab *h = s[i].table;
390 		struct hashtab_info info;
391 
392 		hashtab_stat(h, &info);
393 		printk(KERN_DEBUG "SELinux: %s:  %d entries and %d/%d buckets used, "
394 		       "longest chain length %d\n", symtab_name[i], h->nel,
395 		       info.slots_used, h->size, info.max_chain_len);
396 	}
397 }
398 #endif
399 
400 /*
401  * Define the other val_to_name and val_to_struct arrays
402  * in a policy database structure.
403  *
404  * Caller must clean up on failure.
405  */
406 static int policydb_index_others(struct policydb *p)
407 {
408 	int i, rc = 0;
409 
410 	printk(KERN_DEBUG "SELinux:  %d users, %d roles, %d types, %d bools",
411 	       p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim);
412 	if (selinux_mls_enabled)
413 		printk(", %d sens, %d cats", p->p_levels.nprim,
414 		       p->p_cats.nprim);
415 	printk("\n");
416 
417 	printk(KERN_DEBUG "SELinux:  %d classes, %d rules\n",
418 	       p->p_classes.nprim, p->te_avtab.nel);
419 
420 #ifdef DEBUG_HASHES
421 	avtab_hash_eval(&p->te_avtab, "rules");
422 	symtab_hash_eval(p->symtab);
423 #endif
424 
425 	p->role_val_to_struct =
426 		kmalloc(p->p_roles.nprim * sizeof(*(p->role_val_to_struct)),
427 			GFP_KERNEL);
428 	if (!p->role_val_to_struct) {
429 		rc = -ENOMEM;
430 		goto out;
431 	}
432 
433 	p->user_val_to_struct =
434 		kmalloc(p->p_users.nprim * sizeof(*(p->user_val_to_struct)),
435 			GFP_KERNEL);
436 	if (!p->user_val_to_struct) {
437 		rc = -ENOMEM;
438 		goto out;
439 	}
440 
441 	if (cond_init_bool_indexes(p)) {
442 		rc = -ENOMEM;
443 		goto out;
444 	}
445 
446 	for (i = SYM_ROLES; i < SYM_NUM; i++) {
447 		p->sym_val_to_name[i] =
448 			kmalloc(p->symtab[i].nprim * sizeof(char *), GFP_KERNEL);
449 		if (!p->sym_val_to_name[i]) {
450 			rc = -ENOMEM;
451 			goto out;
452 		}
453 		rc = hashtab_map(p->symtab[i].table, index_f[i], p);
454 		if (rc)
455 			goto out;
456 	}
457 
458 out:
459 	return rc;
460 }
461 
462 /*
463  * The following *_destroy functions are used to
464  * free any memory allocated for each kind of
465  * symbol data in the policy database.
466  */
467 
468 static int perm_destroy(void *key, void *datum, void *p)
469 {
470 	kfree(key);
471 	kfree(datum);
472 	return 0;
473 }
474 
475 static int common_destroy(void *key, void *datum, void *p)
476 {
477 	struct common_datum *comdatum;
478 
479 	kfree(key);
480 	comdatum = datum;
481 	hashtab_map(comdatum->permissions.table, perm_destroy, NULL);
482 	hashtab_destroy(comdatum->permissions.table);
483 	kfree(datum);
484 	return 0;
485 }
486 
487 static int cls_destroy(void *key, void *datum, void *p)
488 {
489 	struct class_datum *cladatum;
490 	struct constraint_node *constraint, *ctemp;
491 	struct constraint_expr *e, *etmp;
492 
493 	kfree(key);
494 	cladatum = datum;
495 	hashtab_map(cladatum->permissions.table, perm_destroy, NULL);
496 	hashtab_destroy(cladatum->permissions.table);
497 	constraint = cladatum->constraints;
498 	while (constraint) {
499 		e = constraint->expr;
500 		while (e) {
501 			ebitmap_destroy(&e->names);
502 			etmp = e;
503 			e = e->next;
504 			kfree(etmp);
505 		}
506 		ctemp = constraint;
507 		constraint = constraint->next;
508 		kfree(ctemp);
509 	}
510 
511 	constraint = cladatum->validatetrans;
512 	while (constraint) {
513 		e = constraint->expr;
514 		while (e) {
515 			ebitmap_destroy(&e->names);
516 			etmp = e;
517 			e = e->next;
518 			kfree(etmp);
519 		}
520 		ctemp = constraint;
521 		constraint = constraint->next;
522 		kfree(ctemp);
523 	}
524 
525 	kfree(cladatum->comkey);
526 	kfree(datum);
527 	return 0;
528 }
529 
530 static int role_destroy(void *key, void *datum, void *p)
531 {
532 	struct role_datum *role;
533 
534 	kfree(key);
535 	role = datum;
536 	ebitmap_destroy(&role->dominates);
537 	ebitmap_destroy(&role->types);
538 	kfree(datum);
539 	return 0;
540 }
541 
542 static int type_destroy(void *key, void *datum, void *p)
543 {
544 	kfree(key);
545 	kfree(datum);
546 	return 0;
547 }
548 
549 static int user_destroy(void *key, void *datum, void *p)
550 {
551 	struct user_datum *usrdatum;
552 
553 	kfree(key);
554 	usrdatum = datum;
555 	ebitmap_destroy(&usrdatum->roles);
556 	ebitmap_destroy(&usrdatum->range.level[0].cat);
557 	ebitmap_destroy(&usrdatum->range.level[1].cat);
558 	ebitmap_destroy(&usrdatum->dfltlevel.cat);
559 	kfree(datum);
560 	return 0;
561 }
562 
563 static int sens_destroy(void *key, void *datum, void *p)
564 {
565 	struct level_datum *levdatum;
566 
567 	kfree(key);
568 	levdatum = datum;
569 	ebitmap_destroy(&levdatum->level->cat);
570 	kfree(levdatum->level);
571 	kfree(datum);
572 	return 0;
573 }
574 
575 static int cat_destroy(void *key, void *datum, void *p)
576 {
577 	kfree(key);
578 	kfree(datum);
579 	return 0;
580 }
581 
582 static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) =
583 {
584 	common_destroy,
585 	cls_destroy,
586 	role_destroy,
587 	type_destroy,
588 	user_destroy,
589 	cond_destroy_bool,
590 	sens_destroy,
591 	cat_destroy,
592 };
593 
594 static void ocontext_destroy(struct ocontext *c, int i)
595 {
596 	context_destroy(&c->context[0]);
597 	context_destroy(&c->context[1]);
598 	if (i == OCON_ISID || i == OCON_FS ||
599 	    i == OCON_NETIF || i == OCON_FSUSE)
600 		kfree(c->u.name);
601 	kfree(c);
602 }
603 
604 /*
605  * Free any memory allocated by a policy database structure.
606  */
607 void policydb_destroy(struct policydb *p)
608 {
609 	struct ocontext *c, *ctmp;
610 	struct genfs *g, *gtmp;
611 	int i;
612 	struct role_allow *ra, *lra = NULL;
613 	struct role_trans *tr, *ltr = NULL;
614 	struct range_trans *rt, *lrt = NULL;
615 
616 	for (i = 0; i < SYM_NUM; i++) {
617 		cond_resched();
618 		hashtab_map(p->symtab[i].table, destroy_f[i], NULL);
619 		hashtab_destroy(p->symtab[i].table);
620 	}
621 
622 	for (i = 0; i < SYM_NUM; i++)
623 		kfree(p->sym_val_to_name[i]);
624 
625 	kfree(p->class_val_to_struct);
626 	kfree(p->role_val_to_struct);
627 	kfree(p->user_val_to_struct);
628 
629 	avtab_destroy(&p->te_avtab);
630 
631 	for (i = 0; i < OCON_NUM; i++) {
632 		cond_resched();
633 		c = p->ocontexts[i];
634 		while (c) {
635 			ctmp = c;
636 			c = c->next;
637 			ocontext_destroy(ctmp, i);
638 		}
639 		p->ocontexts[i] = NULL;
640 	}
641 
642 	g = p->genfs;
643 	while (g) {
644 		cond_resched();
645 		kfree(g->fstype);
646 		c = g->head;
647 		while (c) {
648 			ctmp = c;
649 			c = c->next;
650 			ocontext_destroy(ctmp, OCON_FSUSE);
651 		}
652 		gtmp = g;
653 		g = g->next;
654 		kfree(gtmp);
655 	}
656 	p->genfs = NULL;
657 
658 	cond_policydb_destroy(p);
659 
660 	for (tr = p->role_tr; tr; tr = tr->next) {
661 		cond_resched();
662 		kfree(ltr);
663 		ltr = tr;
664 	}
665 	kfree(ltr);
666 
667 	for (ra = p->role_allow; ra; ra = ra->next) {
668 		cond_resched();
669 		kfree(lra);
670 		lra = ra;
671 	}
672 	kfree(lra);
673 
674 	for (rt = p->range_tr; rt; rt = rt->next) {
675 		cond_resched();
676 		if (lrt) {
677 			ebitmap_destroy(&lrt->target_range.level[0].cat);
678 			ebitmap_destroy(&lrt->target_range.level[1].cat);
679 			kfree(lrt);
680 		}
681 		lrt = rt;
682 	}
683 	if (lrt) {
684 		ebitmap_destroy(&lrt->target_range.level[0].cat);
685 		ebitmap_destroy(&lrt->target_range.level[1].cat);
686 		kfree(lrt);
687 	}
688 
689 	if (p->type_attr_map) {
690 		for (i = 0; i < p->p_types.nprim; i++)
691 			ebitmap_destroy(&p->type_attr_map[i]);
692 	}
693 	kfree(p->type_attr_map);
694 	kfree(p->undefined_perms);
695 	ebitmap_destroy(&p->policycaps);
696 	ebitmap_destroy(&p->permissive_map);
697 
698 	return;
699 }
700 
701 /*
702  * Load the initial SIDs specified in a policy database
703  * structure into a SID table.
704  */
705 int policydb_load_isids(struct policydb *p, struct sidtab *s)
706 {
707 	struct ocontext *head, *c;
708 	int rc;
709 
710 	rc = sidtab_init(s);
711 	if (rc) {
712 		printk(KERN_ERR "SELinux:  out of memory on SID table init\n");
713 		goto out;
714 	}
715 
716 	head = p->ocontexts[OCON_ISID];
717 	for (c = head; c; c = c->next) {
718 		if (!c->context[0].user) {
719 			printk(KERN_ERR "SELinux:  SID %s was never "
720 			       "defined.\n", c->u.name);
721 			rc = -EINVAL;
722 			goto out;
723 		}
724 		if (sidtab_insert(s, c->sid[0], &c->context[0])) {
725 			printk(KERN_ERR "SELinux:  unable to load initial "
726 			       "SID %s.\n", c->u.name);
727 			rc = -EINVAL;
728 			goto out;
729 		}
730 	}
731 out:
732 	return rc;
733 }
734 
735 int policydb_class_isvalid(struct policydb *p, unsigned int class)
736 {
737 	if (!class || class > p->p_classes.nprim)
738 		return 0;
739 	return 1;
740 }
741 
742 int policydb_role_isvalid(struct policydb *p, unsigned int role)
743 {
744 	if (!role || role > p->p_roles.nprim)
745 		return 0;
746 	return 1;
747 }
748 
749 int policydb_type_isvalid(struct policydb *p, unsigned int type)
750 {
751 	if (!type || type > p->p_types.nprim)
752 		return 0;
753 	return 1;
754 }
755 
756 /*
757  * Return 1 if the fields in the security context
758  * structure `c' are valid.  Return 0 otherwise.
759  */
760 int policydb_context_isvalid(struct policydb *p, struct context *c)
761 {
762 	struct role_datum *role;
763 	struct user_datum *usrdatum;
764 
765 	if (!c->role || c->role > p->p_roles.nprim)
766 		return 0;
767 
768 	if (!c->user || c->user > p->p_users.nprim)
769 		return 0;
770 
771 	if (!c->type || c->type > p->p_types.nprim)
772 		return 0;
773 
774 	if (c->role != OBJECT_R_VAL) {
775 		/*
776 		 * Role must be authorized for the type.
777 		 */
778 		role = p->role_val_to_struct[c->role - 1];
779 		if (!ebitmap_get_bit(&role->types,
780 				     c->type - 1))
781 			/* role may not be associated with type */
782 			return 0;
783 
784 		/*
785 		 * User must be authorized for the role.
786 		 */
787 		usrdatum = p->user_val_to_struct[c->user - 1];
788 		if (!usrdatum)
789 			return 0;
790 
791 		if (!ebitmap_get_bit(&usrdatum->roles,
792 				     c->role - 1))
793 			/* user may not be associated with role */
794 			return 0;
795 	}
796 
797 	if (!mls_context_isvalid(p, c))
798 		return 0;
799 
800 	return 1;
801 }
802 
803 /*
804  * Read a MLS range structure from a policydb binary
805  * representation file.
806  */
807 static int mls_read_range_helper(struct mls_range *r, void *fp)
808 {
809 	__le32 buf[2];
810 	u32 items;
811 	int rc;
812 
813 	rc = next_entry(buf, fp, sizeof(u32));
814 	if (rc < 0)
815 		goto out;
816 
817 	items = le32_to_cpu(buf[0]);
818 	if (items > ARRAY_SIZE(buf)) {
819 		printk(KERN_ERR "SELinux: mls:  range overflow\n");
820 		rc = -EINVAL;
821 		goto out;
822 	}
823 	rc = next_entry(buf, fp, sizeof(u32) * items);
824 	if (rc < 0) {
825 		printk(KERN_ERR "SELinux: mls:  truncated range\n");
826 		goto out;
827 	}
828 	r->level[0].sens = le32_to_cpu(buf[0]);
829 	if (items > 1)
830 		r->level[1].sens = le32_to_cpu(buf[1]);
831 	else
832 		r->level[1].sens = r->level[0].sens;
833 
834 	rc = ebitmap_read(&r->level[0].cat, fp);
835 	if (rc) {
836 		printk(KERN_ERR "SELinux: mls:  error reading low "
837 		       "categories\n");
838 		goto out;
839 	}
840 	if (items > 1) {
841 		rc = ebitmap_read(&r->level[1].cat, fp);
842 		if (rc) {
843 			printk(KERN_ERR "SELinux: mls:  error reading high "
844 			       "categories\n");
845 			goto bad_high;
846 		}
847 	} else {
848 		rc = ebitmap_cpy(&r->level[1].cat, &r->level[0].cat);
849 		if (rc) {
850 			printk(KERN_ERR "SELinux: mls:  out of memory\n");
851 			goto bad_high;
852 		}
853 	}
854 
855 	rc = 0;
856 out:
857 	return rc;
858 bad_high:
859 	ebitmap_destroy(&r->level[0].cat);
860 	goto out;
861 }
862 
863 /*
864  * Read and validate a security context structure
865  * from a policydb binary representation file.
866  */
867 static int context_read_and_validate(struct context *c,
868 				     struct policydb *p,
869 				     void *fp)
870 {
871 	__le32 buf[3];
872 	int rc;
873 
874 	rc = next_entry(buf, fp, sizeof buf);
875 	if (rc < 0) {
876 		printk(KERN_ERR "SELinux: context truncated\n");
877 		goto out;
878 	}
879 	c->user = le32_to_cpu(buf[0]);
880 	c->role = le32_to_cpu(buf[1]);
881 	c->type = le32_to_cpu(buf[2]);
882 	if (p->policyvers >= POLICYDB_VERSION_MLS) {
883 		if (mls_read_range_helper(&c->range, fp)) {
884 			printk(KERN_ERR "SELinux: error reading MLS range of "
885 			       "context\n");
886 			rc = -EINVAL;
887 			goto out;
888 		}
889 	}
890 
891 	if (!policydb_context_isvalid(p, c)) {
892 		printk(KERN_ERR "SELinux:  invalid security context\n");
893 		context_destroy(c);
894 		rc = -EINVAL;
895 	}
896 out:
897 	return rc;
898 }
899 
900 /*
901  * The following *_read functions are used to
902  * read the symbol data from a policy database
903  * binary representation file.
904  */
905 
906 static int perm_read(struct policydb *p, struct hashtab *h, void *fp)
907 {
908 	char *key = NULL;
909 	struct perm_datum *perdatum;
910 	int rc;
911 	__le32 buf[2];
912 	u32 len;
913 
914 	perdatum = kzalloc(sizeof(*perdatum), GFP_KERNEL);
915 	if (!perdatum) {
916 		rc = -ENOMEM;
917 		goto out;
918 	}
919 
920 	rc = next_entry(buf, fp, sizeof buf);
921 	if (rc < 0)
922 		goto bad;
923 
924 	len = le32_to_cpu(buf[0]);
925 	perdatum->value = le32_to_cpu(buf[1]);
926 
927 	key = kmalloc(len + 1, GFP_KERNEL);
928 	if (!key) {
929 		rc = -ENOMEM;
930 		goto bad;
931 	}
932 	rc = next_entry(key, fp, len);
933 	if (rc < 0)
934 		goto bad;
935 	key[len] = 0;
936 
937 	rc = hashtab_insert(h, key, perdatum);
938 	if (rc)
939 		goto bad;
940 out:
941 	return rc;
942 bad:
943 	perm_destroy(key, perdatum, NULL);
944 	goto out;
945 }
946 
947 static int common_read(struct policydb *p, struct hashtab *h, void *fp)
948 {
949 	char *key = NULL;
950 	struct common_datum *comdatum;
951 	__le32 buf[4];
952 	u32 len, nel;
953 	int i, rc;
954 
955 	comdatum = kzalloc(sizeof(*comdatum), GFP_KERNEL);
956 	if (!comdatum) {
957 		rc = -ENOMEM;
958 		goto out;
959 	}
960 
961 	rc = next_entry(buf, fp, sizeof buf);
962 	if (rc < 0)
963 		goto bad;
964 
965 	len = le32_to_cpu(buf[0]);
966 	comdatum->value = le32_to_cpu(buf[1]);
967 
968 	rc = symtab_init(&comdatum->permissions, PERM_SYMTAB_SIZE);
969 	if (rc)
970 		goto bad;
971 	comdatum->permissions.nprim = le32_to_cpu(buf[2]);
972 	nel = le32_to_cpu(buf[3]);
973 
974 	key = kmalloc(len + 1, GFP_KERNEL);
975 	if (!key) {
976 		rc = -ENOMEM;
977 		goto bad;
978 	}
979 	rc = next_entry(key, fp, len);
980 	if (rc < 0)
981 		goto bad;
982 	key[len] = 0;
983 
984 	for (i = 0; i < nel; i++) {
985 		rc = perm_read(p, comdatum->permissions.table, fp);
986 		if (rc)
987 			goto bad;
988 	}
989 
990 	rc = hashtab_insert(h, key, comdatum);
991 	if (rc)
992 		goto bad;
993 out:
994 	return rc;
995 bad:
996 	common_destroy(key, comdatum, NULL);
997 	goto out;
998 }
999 
1000 static int read_cons_helper(struct constraint_node **nodep, int ncons,
1001 			    int allowxtarget, void *fp)
1002 {
1003 	struct constraint_node *c, *lc;
1004 	struct constraint_expr *e, *le;
1005 	__le32 buf[3];
1006 	u32 nexpr;
1007 	int rc, i, j, depth;
1008 
1009 	lc = NULL;
1010 	for (i = 0; i < ncons; i++) {
1011 		c = kzalloc(sizeof(*c), GFP_KERNEL);
1012 		if (!c)
1013 			return -ENOMEM;
1014 
1015 		if (lc)
1016 			lc->next = c;
1017 		else
1018 			*nodep = c;
1019 
1020 		rc = next_entry(buf, fp, (sizeof(u32) * 2));
1021 		if (rc < 0)
1022 			return rc;
1023 		c->permissions = le32_to_cpu(buf[0]);
1024 		nexpr = le32_to_cpu(buf[1]);
1025 		le = NULL;
1026 		depth = -1;
1027 		for (j = 0; j < nexpr; j++) {
1028 			e = kzalloc(sizeof(*e), GFP_KERNEL);
1029 			if (!e)
1030 				return -ENOMEM;
1031 
1032 			if (le)
1033 				le->next = e;
1034 			else
1035 				c->expr = e;
1036 
1037 			rc = next_entry(buf, fp, (sizeof(u32) * 3));
1038 			if (rc < 0)
1039 				return rc;
1040 			e->expr_type = le32_to_cpu(buf[0]);
1041 			e->attr = le32_to_cpu(buf[1]);
1042 			e->op = le32_to_cpu(buf[2]);
1043 
1044 			switch (e->expr_type) {
1045 			case CEXPR_NOT:
1046 				if (depth < 0)
1047 					return -EINVAL;
1048 				break;
1049 			case CEXPR_AND:
1050 			case CEXPR_OR:
1051 				if (depth < 1)
1052 					return -EINVAL;
1053 				depth--;
1054 				break;
1055 			case CEXPR_ATTR:
1056 				if (depth == (CEXPR_MAXDEPTH - 1))
1057 					return -EINVAL;
1058 				depth++;
1059 				break;
1060 			case CEXPR_NAMES:
1061 				if (!allowxtarget && (e->attr & CEXPR_XTARGET))
1062 					return -EINVAL;
1063 				if (depth == (CEXPR_MAXDEPTH - 1))
1064 					return -EINVAL;
1065 				depth++;
1066 				if (ebitmap_read(&e->names, fp))
1067 					return -EINVAL;
1068 				break;
1069 			default:
1070 				return -EINVAL;
1071 			}
1072 			le = e;
1073 		}
1074 		if (depth != 0)
1075 			return -EINVAL;
1076 		lc = c;
1077 	}
1078 
1079 	return 0;
1080 }
1081 
1082 static int class_read(struct policydb *p, struct hashtab *h, void *fp)
1083 {
1084 	char *key = NULL;
1085 	struct class_datum *cladatum;
1086 	__le32 buf[6];
1087 	u32 len, len2, ncons, nel;
1088 	int i, rc;
1089 
1090 	cladatum = kzalloc(sizeof(*cladatum), GFP_KERNEL);
1091 	if (!cladatum) {
1092 		rc = -ENOMEM;
1093 		goto out;
1094 	}
1095 
1096 	rc = next_entry(buf, fp, sizeof(u32)*6);
1097 	if (rc < 0)
1098 		goto bad;
1099 
1100 	len = le32_to_cpu(buf[0]);
1101 	len2 = le32_to_cpu(buf[1]);
1102 	cladatum->value = le32_to_cpu(buf[2]);
1103 
1104 	rc = symtab_init(&cladatum->permissions, PERM_SYMTAB_SIZE);
1105 	if (rc)
1106 		goto bad;
1107 	cladatum->permissions.nprim = le32_to_cpu(buf[3]);
1108 	nel = le32_to_cpu(buf[4]);
1109 
1110 	ncons = le32_to_cpu(buf[5]);
1111 
1112 	key = kmalloc(len + 1, GFP_KERNEL);
1113 	if (!key) {
1114 		rc = -ENOMEM;
1115 		goto bad;
1116 	}
1117 	rc = next_entry(key, fp, len);
1118 	if (rc < 0)
1119 		goto bad;
1120 	key[len] = 0;
1121 
1122 	if (len2) {
1123 		cladatum->comkey = kmalloc(len2 + 1, GFP_KERNEL);
1124 		if (!cladatum->comkey) {
1125 			rc = -ENOMEM;
1126 			goto bad;
1127 		}
1128 		rc = next_entry(cladatum->comkey, fp, len2);
1129 		if (rc < 0)
1130 			goto bad;
1131 		cladatum->comkey[len2] = 0;
1132 
1133 		cladatum->comdatum = hashtab_search(p->p_commons.table,
1134 						    cladatum->comkey);
1135 		if (!cladatum->comdatum) {
1136 			printk(KERN_ERR "SELinux:  unknown common %s\n",
1137 			       cladatum->comkey);
1138 			rc = -EINVAL;
1139 			goto bad;
1140 		}
1141 	}
1142 	for (i = 0; i < nel; i++) {
1143 		rc = perm_read(p, cladatum->permissions.table, fp);
1144 		if (rc)
1145 			goto bad;
1146 	}
1147 
1148 	rc = read_cons_helper(&cladatum->constraints, ncons, 0, fp);
1149 	if (rc)
1150 		goto bad;
1151 
1152 	if (p->policyvers >= POLICYDB_VERSION_VALIDATETRANS) {
1153 		/* grab the validatetrans rules */
1154 		rc = next_entry(buf, fp, sizeof(u32));
1155 		if (rc < 0)
1156 			goto bad;
1157 		ncons = le32_to_cpu(buf[0]);
1158 		rc = read_cons_helper(&cladatum->validatetrans, ncons, 1, fp);
1159 		if (rc)
1160 			goto bad;
1161 	}
1162 
1163 	rc = hashtab_insert(h, key, cladatum);
1164 	if (rc)
1165 		goto bad;
1166 
1167 	rc = 0;
1168 out:
1169 	return rc;
1170 bad:
1171 	cls_destroy(key, cladatum, NULL);
1172 	goto out;
1173 }
1174 
1175 static int role_read(struct policydb *p, struct hashtab *h, void *fp)
1176 {
1177 	char *key = NULL;
1178 	struct role_datum *role;
1179 	int rc;
1180 	__le32 buf[2];
1181 	u32 len;
1182 
1183 	role = kzalloc(sizeof(*role), GFP_KERNEL);
1184 	if (!role) {
1185 		rc = -ENOMEM;
1186 		goto out;
1187 	}
1188 
1189 	rc = next_entry(buf, fp, sizeof buf);
1190 	if (rc < 0)
1191 		goto bad;
1192 
1193 	len = le32_to_cpu(buf[0]);
1194 	role->value = le32_to_cpu(buf[1]);
1195 
1196 	key = kmalloc(len + 1, GFP_KERNEL);
1197 	if (!key) {
1198 		rc = -ENOMEM;
1199 		goto bad;
1200 	}
1201 	rc = next_entry(key, fp, len);
1202 	if (rc < 0)
1203 		goto bad;
1204 	key[len] = 0;
1205 
1206 	rc = ebitmap_read(&role->dominates, fp);
1207 	if (rc)
1208 		goto bad;
1209 
1210 	rc = ebitmap_read(&role->types, fp);
1211 	if (rc)
1212 		goto bad;
1213 
1214 	if (strcmp(key, OBJECT_R) == 0) {
1215 		if (role->value != OBJECT_R_VAL) {
1216 			printk(KERN_ERR "SELinux: Role %s has wrong value %d\n",
1217 			       OBJECT_R, role->value);
1218 			rc = -EINVAL;
1219 			goto bad;
1220 		}
1221 		rc = 0;
1222 		goto bad;
1223 	}
1224 
1225 	rc = hashtab_insert(h, key, role);
1226 	if (rc)
1227 		goto bad;
1228 out:
1229 	return rc;
1230 bad:
1231 	role_destroy(key, role, NULL);
1232 	goto out;
1233 }
1234 
1235 static int type_read(struct policydb *p, struct hashtab *h, void *fp)
1236 {
1237 	char *key = NULL;
1238 	struct type_datum *typdatum;
1239 	int rc;
1240 	__le32 buf[3];
1241 	u32 len;
1242 
1243 	typdatum = kzalloc(sizeof(*typdatum), GFP_KERNEL);
1244 	if (!typdatum) {
1245 		rc = -ENOMEM;
1246 		return rc;
1247 	}
1248 
1249 	rc = next_entry(buf, fp, sizeof buf);
1250 	if (rc < 0)
1251 		goto bad;
1252 
1253 	len = le32_to_cpu(buf[0]);
1254 	typdatum->value = le32_to_cpu(buf[1]);
1255 	typdatum->primary = le32_to_cpu(buf[2]);
1256 
1257 	key = kmalloc(len + 1, GFP_KERNEL);
1258 	if (!key) {
1259 		rc = -ENOMEM;
1260 		goto bad;
1261 	}
1262 	rc = next_entry(key, fp, len);
1263 	if (rc < 0)
1264 		goto bad;
1265 	key[len] = 0;
1266 
1267 	rc = hashtab_insert(h, key, typdatum);
1268 	if (rc)
1269 		goto bad;
1270 out:
1271 	return rc;
1272 bad:
1273 	type_destroy(key, typdatum, NULL);
1274 	goto out;
1275 }
1276 
1277 
1278 /*
1279  * Read a MLS level structure from a policydb binary
1280  * representation file.
1281  */
1282 static int mls_read_level(struct mls_level *lp, void *fp)
1283 {
1284 	__le32 buf[1];
1285 	int rc;
1286 
1287 	memset(lp, 0, sizeof(*lp));
1288 
1289 	rc = next_entry(buf, fp, sizeof buf);
1290 	if (rc < 0) {
1291 		printk(KERN_ERR "SELinux: mls: truncated level\n");
1292 		goto bad;
1293 	}
1294 	lp->sens = le32_to_cpu(buf[0]);
1295 
1296 	if (ebitmap_read(&lp->cat, fp)) {
1297 		printk(KERN_ERR "SELinux: mls:  error reading level "
1298 		       "categories\n");
1299 		goto bad;
1300 	}
1301 
1302 	return 0;
1303 
1304 bad:
1305 	return -EINVAL;
1306 }
1307 
1308 static int user_read(struct policydb *p, struct hashtab *h, void *fp)
1309 {
1310 	char *key = NULL;
1311 	struct user_datum *usrdatum;
1312 	int rc;
1313 	__le32 buf[2];
1314 	u32 len;
1315 
1316 	usrdatum = kzalloc(sizeof(*usrdatum), GFP_KERNEL);
1317 	if (!usrdatum) {
1318 		rc = -ENOMEM;
1319 		goto out;
1320 	}
1321 
1322 	rc = next_entry(buf, fp, sizeof buf);
1323 	if (rc < 0)
1324 		goto bad;
1325 
1326 	len = le32_to_cpu(buf[0]);
1327 	usrdatum->value = le32_to_cpu(buf[1]);
1328 
1329 	key = kmalloc(len + 1, GFP_KERNEL);
1330 	if (!key) {
1331 		rc = -ENOMEM;
1332 		goto bad;
1333 	}
1334 	rc = next_entry(key, fp, len);
1335 	if (rc < 0)
1336 		goto bad;
1337 	key[len] = 0;
1338 
1339 	rc = ebitmap_read(&usrdatum->roles, fp);
1340 	if (rc)
1341 		goto bad;
1342 
1343 	if (p->policyvers >= POLICYDB_VERSION_MLS) {
1344 		rc = mls_read_range_helper(&usrdatum->range, fp);
1345 		if (rc)
1346 			goto bad;
1347 		rc = mls_read_level(&usrdatum->dfltlevel, fp);
1348 		if (rc)
1349 			goto bad;
1350 	}
1351 
1352 	rc = hashtab_insert(h, key, usrdatum);
1353 	if (rc)
1354 		goto bad;
1355 out:
1356 	return rc;
1357 bad:
1358 	user_destroy(key, usrdatum, NULL);
1359 	goto out;
1360 }
1361 
1362 static int sens_read(struct policydb *p, struct hashtab *h, void *fp)
1363 {
1364 	char *key = NULL;
1365 	struct level_datum *levdatum;
1366 	int rc;
1367 	__le32 buf[2];
1368 	u32 len;
1369 
1370 	levdatum = kzalloc(sizeof(*levdatum), GFP_ATOMIC);
1371 	if (!levdatum) {
1372 		rc = -ENOMEM;
1373 		goto out;
1374 	}
1375 
1376 	rc = next_entry(buf, fp, sizeof buf);
1377 	if (rc < 0)
1378 		goto bad;
1379 
1380 	len = le32_to_cpu(buf[0]);
1381 	levdatum->isalias = le32_to_cpu(buf[1]);
1382 
1383 	key = kmalloc(len + 1, GFP_ATOMIC);
1384 	if (!key) {
1385 		rc = -ENOMEM;
1386 		goto bad;
1387 	}
1388 	rc = next_entry(key, fp, len);
1389 	if (rc < 0)
1390 		goto bad;
1391 	key[len] = 0;
1392 
1393 	levdatum->level = kmalloc(sizeof(struct mls_level), GFP_ATOMIC);
1394 	if (!levdatum->level) {
1395 		rc = -ENOMEM;
1396 		goto bad;
1397 	}
1398 	if (mls_read_level(levdatum->level, fp)) {
1399 		rc = -EINVAL;
1400 		goto bad;
1401 	}
1402 
1403 	rc = hashtab_insert(h, key, levdatum);
1404 	if (rc)
1405 		goto bad;
1406 out:
1407 	return rc;
1408 bad:
1409 	sens_destroy(key, levdatum, NULL);
1410 	goto out;
1411 }
1412 
1413 static int cat_read(struct policydb *p, struct hashtab *h, void *fp)
1414 {
1415 	char *key = NULL;
1416 	struct cat_datum *catdatum;
1417 	int rc;
1418 	__le32 buf[3];
1419 	u32 len;
1420 
1421 	catdatum = kzalloc(sizeof(*catdatum), GFP_ATOMIC);
1422 	if (!catdatum) {
1423 		rc = -ENOMEM;
1424 		goto out;
1425 	}
1426 
1427 	rc = next_entry(buf, fp, sizeof buf);
1428 	if (rc < 0)
1429 		goto bad;
1430 
1431 	len = le32_to_cpu(buf[0]);
1432 	catdatum->value = le32_to_cpu(buf[1]);
1433 	catdatum->isalias = le32_to_cpu(buf[2]);
1434 
1435 	key = kmalloc(len + 1, GFP_ATOMIC);
1436 	if (!key) {
1437 		rc = -ENOMEM;
1438 		goto bad;
1439 	}
1440 	rc = next_entry(key, fp, len);
1441 	if (rc < 0)
1442 		goto bad;
1443 	key[len] = 0;
1444 
1445 	rc = hashtab_insert(h, key, catdatum);
1446 	if (rc)
1447 		goto bad;
1448 out:
1449 	return rc;
1450 
1451 bad:
1452 	cat_destroy(key, catdatum, NULL);
1453 	goto out;
1454 }
1455 
1456 static int (*read_f[SYM_NUM]) (struct policydb *p, struct hashtab *h, void *fp) =
1457 {
1458 	common_read,
1459 	class_read,
1460 	role_read,
1461 	type_read,
1462 	user_read,
1463 	cond_read_bool,
1464 	sens_read,
1465 	cat_read,
1466 };
1467 
1468 extern int ss_initialized;
1469 
1470 /*
1471  * Read the configuration data from a policy database binary
1472  * representation file into a policy database structure.
1473  */
1474 int policydb_read(struct policydb *p, void *fp)
1475 {
1476 	struct role_allow *ra, *lra;
1477 	struct role_trans *tr, *ltr;
1478 	struct ocontext *l, *c, *newc;
1479 	struct genfs *genfs_p, *genfs, *newgenfs;
1480 	int i, j, rc;
1481 	__le32 buf[4];
1482 	u32 nodebuf[8];
1483 	u32 len, len2, config, nprim, nel, nel2;
1484 	char *policydb_str;
1485 	struct policydb_compat_info *info;
1486 	struct range_trans *rt, *lrt;
1487 
1488 	config = 0;
1489 
1490 	rc = policydb_init(p);
1491 	if (rc)
1492 		goto out;
1493 
1494 	/* Read the magic number and string length. */
1495 	rc = next_entry(buf, fp, sizeof(u32) * 2);
1496 	if (rc < 0)
1497 		goto bad;
1498 
1499 	if (le32_to_cpu(buf[0]) != POLICYDB_MAGIC) {
1500 		printk(KERN_ERR "SELinux:  policydb magic number 0x%x does "
1501 		       "not match expected magic number 0x%x\n",
1502 		       le32_to_cpu(buf[0]), POLICYDB_MAGIC);
1503 		goto bad;
1504 	}
1505 
1506 	len = le32_to_cpu(buf[1]);
1507 	if (len != strlen(POLICYDB_STRING)) {
1508 		printk(KERN_ERR "SELinux:  policydb string length %d does not "
1509 		       "match expected length %Zu\n",
1510 		       len, strlen(POLICYDB_STRING));
1511 		goto bad;
1512 	}
1513 	policydb_str = kmalloc(len + 1, GFP_KERNEL);
1514 	if (!policydb_str) {
1515 		printk(KERN_ERR "SELinux:  unable to allocate memory for policydb "
1516 		       "string of length %d\n", len);
1517 		rc = -ENOMEM;
1518 		goto bad;
1519 	}
1520 	rc = next_entry(policydb_str, fp, len);
1521 	if (rc < 0) {
1522 		printk(KERN_ERR "SELinux:  truncated policydb string identifier\n");
1523 		kfree(policydb_str);
1524 		goto bad;
1525 	}
1526 	policydb_str[len] = 0;
1527 	if (strcmp(policydb_str, POLICYDB_STRING)) {
1528 		printk(KERN_ERR "SELinux:  policydb string %s does not match "
1529 		       "my string %s\n", policydb_str, POLICYDB_STRING);
1530 		kfree(policydb_str);
1531 		goto bad;
1532 	}
1533 	/* Done with policydb_str. */
1534 	kfree(policydb_str);
1535 	policydb_str = NULL;
1536 
1537 	/* Read the version, config, and table sizes. */
1538 	rc = next_entry(buf, fp, sizeof(u32)*4);
1539 	if (rc < 0)
1540 		goto bad;
1541 
1542 	p->policyvers = le32_to_cpu(buf[0]);
1543 	if (p->policyvers < POLICYDB_VERSION_MIN ||
1544 	    p->policyvers > POLICYDB_VERSION_MAX) {
1545 		printk(KERN_ERR "SELinux:  policydb version %d does not match "
1546 		       "my version range %d-%d\n",
1547 		       le32_to_cpu(buf[0]), POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX);
1548 		goto bad;
1549 	}
1550 
1551 	if ((le32_to_cpu(buf[1]) & POLICYDB_CONFIG_MLS)) {
1552 		if (ss_initialized && !selinux_mls_enabled) {
1553 			printk(KERN_ERR "SELinux: Cannot switch between non-MLS"
1554 				" and MLS policies\n");
1555 			goto bad;
1556 		}
1557 		selinux_mls_enabled = 1;
1558 		config |= POLICYDB_CONFIG_MLS;
1559 
1560 		if (p->policyvers < POLICYDB_VERSION_MLS) {
1561 			printk(KERN_ERR "SELinux: security policydb version %d "
1562 				"(MLS) not backwards compatible\n",
1563 				p->policyvers);
1564 			goto bad;
1565 		}
1566 	} else {
1567 		if (ss_initialized && selinux_mls_enabled) {
1568 			printk(KERN_ERR "SELinux: Cannot switch between MLS and"
1569 				" non-MLS policies\n");
1570 			goto bad;
1571 		}
1572 	}
1573 	p->reject_unknown = !!(le32_to_cpu(buf[1]) & REJECT_UNKNOWN);
1574 	p->allow_unknown = !!(le32_to_cpu(buf[1]) & ALLOW_UNKNOWN);
1575 
1576 	if (p->policyvers >= POLICYDB_VERSION_POLCAP &&
1577 	    ebitmap_read(&p->policycaps, fp) != 0)
1578 		goto bad;
1579 
1580 	if (p->policyvers >= POLICYDB_VERSION_PERMISSIVE &&
1581 	    ebitmap_read(&p->permissive_map, fp) != 0)
1582 		goto bad;
1583 
1584 	info = policydb_lookup_compat(p->policyvers);
1585 	if (!info) {
1586 		printk(KERN_ERR "SELinux:  unable to find policy compat info "
1587 		       "for version %d\n", p->policyvers);
1588 		goto bad;
1589 	}
1590 
1591 	if (le32_to_cpu(buf[2]) != info->sym_num ||
1592 		le32_to_cpu(buf[3]) != info->ocon_num) {
1593 		printk(KERN_ERR "SELinux:  policydb table sizes (%d,%d) do "
1594 		       "not match mine (%d,%d)\n", le32_to_cpu(buf[2]),
1595 			le32_to_cpu(buf[3]),
1596 		       info->sym_num, info->ocon_num);
1597 		goto bad;
1598 	}
1599 
1600 	for (i = 0; i < info->sym_num; i++) {
1601 		rc = next_entry(buf, fp, sizeof(u32)*2);
1602 		if (rc < 0)
1603 			goto bad;
1604 		nprim = le32_to_cpu(buf[0]);
1605 		nel = le32_to_cpu(buf[1]);
1606 		for (j = 0; j < nel; j++) {
1607 			rc = read_f[i](p, p->symtab[i].table, fp);
1608 			if (rc)
1609 				goto bad;
1610 		}
1611 
1612 		p->symtab[i].nprim = nprim;
1613 	}
1614 
1615 	rc = avtab_read(&p->te_avtab, fp, p);
1616 	if (rc)
1617 		goto bad;
1618 
1619 	if (p->policyvers >= POLICYDB_VERSION_BOOL) {
1620 		rc = cond_read_list(p, fp);
1621 		if (rc)
1622 			goto bad;
1623 	}
1624 
1625 	rc = next_entry(buf, fp, sizeof(u32));
1626 	if (rc < 0)
1627 		goto bad;
1628 	nel = le32_to_cpu(buf[0]);
1629 	ltr = NULL;
1630 	for (i = 0; i < nel; i++) {
1631 		tr = kzalloc(sizeof(*tr), GFP_KERNEL);
1632 		if (!tr) {
1633 			rc = -ENOMEM;
1634 			goto bad;
1635 		}
1636 		if (ltr)
1637 			ltr->next = tr;
1638 		else
1639 			p->role_tr = tr;
1640 		rc = next_entry(buf, fp, sizeof(u32)*3);
1641 		if (rc < 0)
1642 			goto bad;
1643 		tr->role = le32_to_cpu(buf[0]);
1644 		tr->type = le32_to_cpu(buf[1]);
1645 		tr->new_role = le32_to_cpu(buf[2]);
1646 		if (!policydb_role_isvalid(p, tr->role) ||
1647 		    !policydb_type_isvalid(p, tr->type) ||
1648 		    !policydb_role_isvalid(p, tr->new_role)) {
1649 			rc = -EINVAL;
1650 			goto bad;
1651 		}
1652 		ltr = tr;
1653 	}
1654 
1655 	rc = next_entry(buf, fp, sizeof(u32));
1656 	if (rc < 0)
1657 		goto bad;
1658 	nel = le32_to_cpu(buf[0]);
1659 	lra = NULL;
1660 	for (i = 0; i < nel; i++) {
1661 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1662 		if (!ra) {
1663 			rc = -ENOMEM;
1664 			goto bad;
1665 		}
1666 		if (lra)
1667 			lra->next = ra;
1668 		else
1669 			p->role_allow = ra;
1670 		rc = next_entry(buf, fp, sizeof(u32)*2);
1671 		if (rc < 0)
1672 			goto bad;
1673 		ra->role = le32_to_cpu(buf[0]);
1674 		ra->new_role = le32_to_cpu(buf[1]);
1675 		if (!policydb_role_isvalid(p, ra->role) ||
1676 		    !policydb_role_isvalid(p, ra->new_role)) {
1677 			rc = -EINVAL;
1678 			goto bad;
1679 		}
1680 		lra = ra;
1681 	}
1682 
1683 	rc = policydb_index_classes(p);
1684 	if (rc)
1685 		goto bad;
1686 
1687 	rc = policydb_index_others(p);
1688 	if (rc)
1689 		goto bad;
1690 
1691 	for (i = 0; i < info->ocon_num; i++) {
1692 		rc = next_entry(buf, fp, sizeof(u32));
1693 		if (rc < 0)
1694 			goto bad;
1695 		nel = le32_to_cpu(buf[0]);
1696 		l = NULL;
1697 		for (j = 0; j < nel; j++) {
1698 			c = kzalloc(sizeof(*c), GFP_KERNEL);
1699 			if (!c) {
1700 				rc = -ENOMEM;
1701 				goto bad;
1702 			}
1703 			if (l)
1704 				l->next = c;
1705 			else
1706 				p->ocontexts[i] = c;
1707 			l = c;
1708 			rc = -EINVAL;
1709 			switch (i) {
1710 			case OCON_ISID:
1711 				rc = next_entry(buf, fp, sizeof(u32));
1712 				if (rc < 0)
1713 					goto bad;
1714 				c->sid[0] = le32_to_cpu(buf[0]);
1715 				rc = context_read_and_validate(&c->context[0], p, fp);
1716 				if (rc)
1717 					goto bad;
1718 				break;
1719 			case OCON_FS:
1720 			case OCON_NETIF:
1721 				rc = next_entry(buf, fp, sizeof(u32));
1722 				if (rc < 0)
1723 					goto bad;
1724 				len = le32_to_cpu(buf[0]);
1725 				c->u.name = kmalloc(len + 1, GFP_KERNEL);
1726 				if (!c->u.name) {
1727 					rc = -ENOMEM;
1728 					goto bad;
1729 				}
1730 				rc = next_entry(c->u.name, fp, len);
1731 				if (rc < 0)
1732 					goto bad;
1733 				c->u.name[len] = 0;
1734 				rc = context_read_and_validate(&c->context[0], p, fp);
1735 				if (rc)
1736 					goto bad;
1737 				rc = context_read_and_validate(&c->context[1], p, fp);
1738 				if (rc)
1739 					goto bad;
1740 				break;
1741 			case OCON_PORT:
1742 				rc = next_entry(buf, fp, sizeof(u32)*3);
1743 				if (rc < 0)
1744 					goto bad;
1745 				c->u.port.protocol = le32_to_cpu(buf[0]);
1746 				c->u.port.low_port = le32_to_cpu(buf[1]);
1747 				c->u.port.high_port = le32_to_cpu(buf[2]);
1748 				rc = context_read_and_validate(&c->context[0], p, fp);
1749 				if (rc)
1750 					goto bad;
1751 				break;
1752 			case OCON_NODE:
1753 				rc = next_entry(nodebuf, fp, sizeof(u32) * 2);
1754 				if (rc < 0)
1755 					goto bad;
1756 				c->u.node.addr = nodebuf[0]; /* network order */
1757 				c->u.node.mask = nodebuf[1]; /* network order */
1758 				rc = context_read_and_validate(&c->context[0], p, fp);
1759 				if (rc)
1760 					goto bad;
1761 				break;
1762 			case OCON_FSUSE:
1763 				rc = next_entry(buf, fp, sizeof(u32)*2);
1764 				if (rc < 0)
1765 					goto bad;
1766 				c->v.behavior = le32_to_cpu(buf[0]);
1767 				if (c->v.behavior > SECURITY_FS_USE_NONE)
1768 					goto bad;
1769 				len = le32_to_cpu(buf[1]);
1770 				c->u.name = kmalloc(len + 1, GFP_KERNEL);
1771 				if (!c->u.name) {
1772 					rc = -ENOMEM;
1773 					goto bad;
1774 				}
1775 				rc = next_entry(c->u.name, fp, len);
1776 				if (rc < 0)
1777 					goto bad;
1778 				c->u.name[len] = 0;
1779 				rc = context_read_and_validate(&c->context[0], p, fp);
1780 				if (rc)
1781 					goto bad;
1782 				break;
1783 			case OCON_NODE6: {
1784 				int k;
1785 
1786 				rc = next_entry(nodebuf, fp, sizeof(u32) * 8);
1787 				if (rc < 0)
1788 					goto bad;
1789 				for (k = 0; k < 4; k++)
1790 					c->u.node6.addr[k] = nodebuf[k];
1791 				for (k = 0; k < 4; k++)
1792 					c->u.node6.mask[k] = nodebuf[k+4];
1793 				if (context_read_and_validate(&c->context[0], p, fp))
1794 					goto bad;
1795 				break;
1796 			}
1797 			}
1798 		}
1799 	}
1800 
1801 	rc = next_entry(buf, fp, sizeof(u32));
1802 	if (rc < 0)
1803 		goto bad;
1804 	nel = le32_to_cpu(buf[0]);
1805 	genfs_p = NULL;
1806 	rc = -EINVAL;
1807 	for (i = 0; i < nel; i++) {
1808 		rc = next_entry(buf, fp, sizeof(u32));
1809 		if (rc < 0)
1810 			goto bad;
1811 		len = le32_to_cpu(buf[0]);
1812 		newgenfs = kzalloc(sizeof(*newgenfs), GFP_KERNEL);
1813 		if (!newgenfs) {
1814 			rc = -ENOMEM;
1815 			goto bad;
1816 		}
1817 
1818 		newgenfs->fstype = kmalloc(len + 1, GFP_KERNEL);
1819 		if (!newgenfs->fstype) {
1820 			rc = -ENOMEM;
1821 			kfree(newgenfs);
1822 			goto bad;
1823 		}
1824 		rc = next_entry(newgenfs->fstype, fp, len);
1825 		if (rc < 0) {
1826 			kfree(newgenfs->fstype);
1827 			kfree(newgenfs);
1828 			goto bad;
1829 		}
1830 		newgenfs->fstype[len] = 0;
1831 		for (genfs_p = NULL, genfs = p->genfs; genfs;
1832 		     genfs_p = genfs, genfs = genfs->next) {
1833 			if (strcmp(newgenfs->fstype, genfs->fstype) == 0) {
1834 				printk(KERN_ERR "SELinux:  dup genfs "
1835 				       "fstype %s\n", newgenfs->fstype);
1836 				kfree(newgenfs->fstype);
1837 				kfree(newgenfs);
1838 				goto bad;
1839 			}
1840 			if (strcmp(newgenfs->fstype, genfs->fstype) < 0)
1841 				break;
1842 		}
1843 		newgenfs->next = genfs;
1844 		if (genfs_p)
1845 			genfs_p->next = newgenfs;
1846 		else
1847 			p->genfs = newgenfs;
1848 		rc = next_entry(buf, fp, sizeof(u32));
1849 		if (rc < 0)
1850 			goto bad;
1851 		nel2 = le32_to_cpu(buf[0]);
1852 		for (j = 0; j < nel2; j++) {
1853 			rc = next_entry(buf, fp, sizeof(u32));
1854 			if (rc < 0)
1855 				goto bad;
1856 			len = le32_to_cpu(buf[0]);
1857 
1858 			newc = kzalloc(sizeof(*newc), GFP_KERNEL);
1859 			if (!newc) {
1860 				rc = -ENOMEM;
1861 				goto bad;
1862 			}
1863 
1864 			newc->u.name = kmalloc(len + 1, GFP_KERNEL);
1865 			if (!newc->u.name) {
1866 				rc = -ENOMEM;
1867 				goto bad_newc;
1868 			}
1869 			rc = next_entry(newc->u.name, fp, len);
1870 			if (rc < 0)
1871 				goto bad_newc;
1872 			newc->u.name[len] = 0;
1873 			rc = next_entry(buf, fp, sizeof(u32));
1874 			if (rc < 0)
1875 				goto bad_newc;
1876 			newc->v.sclass = le32_to_cpu(buf[0]);
1877 			if (context_read_and_validate(&newc->context[0], p, fp))
1878 				goto bad_newc;
1879 			for (l = NULL, c = newgenfs->head; c;
1880 			     l = c, c = c->next) {
1881 				if (!strcmp(newc->u.name, c->u.name) &&
1882 				    (!c->v.sclass || !newc->v.sclass ||
1883 				     newc->v.sclass == c->v.sclass)) {
1884 					printk(KERN_ERR "SELinux:  dup genfs "
1885 					       "entry (%s,%s)\n",
1886 					       newgenfs->fstype, c->u.name);
1887 					goto bad_newc;
1888 				}
1889 				len = strlen(newc->u.name);
1890 				len2 = strlen(c->u.name);
1891 				if (len > len2)
1892 					break;
1893 			}
1894 
1895 			newc->next = c;
1896 			if (l)
1897 				l->next = newc;
1898 			else
1899 				newgenfs->head = newc;
1900 		}
1901 	}
1902 
1903 	if (p->policyvers >= POLICYDB_VERSION_MLS) {
1904 		int new_rangetr = p->policyvers >= POLICYDB_VERSION_RANGETRANS;
1905 		rc = next_entry(buf, fp, sizeof(u32));
1906 		if (rc < 0)
1907 			goto bad;
1908 		nel = le32_to_cpu(buf[0]);
1909 		lrt = NULL;
1910 		for (i = 0; i < nel; i++) {
1911 			rt = kzalloc(sizeof(*rt), GFP_KERNEL);
1912 			if (!rt) {
1913 				rc = -ENOMEM;
1914 				goto bad;
1915 			}
1916 			if (lrt)
1917 				lrt->next = rt;
1918 			else
1919 				p->range_tr = rt;
1920 			rc = next_entry(buf, fp, (sizeof(u32) * 2));
1921 			if (rc < 0)
1922 				goto bad;
1923 			rt->source_type = le32_to_cpu(buf[0]);
1924 			rt->target_type = le32_to_cpu(buf[1]);
1925 			if (new_rangetr) {
1926 				rc = next_entry(buf, fp, sizeof(u32));
1927 				if (rc < 0)
1928 					goto bad;
1929 				rt->target_class = le32_to_cpu(buf[0]);
1930 			} else
1931 				rt->target_class = SECCLASS_PROCESS;
1932 			if (!policydb_type_isvalid(p, rt->source_type) ||
1933 			    !policydb_type_isvalid(p, rt->target_type) ||
1934 			    !policydb_class_isvalid(p, rt->target_class)) {
1935 				rc = -EINVAL;
1936 				goto bad;
1937 			}
1938 			rc = mls_read_range_helper(&rt->target_range, fp);
1939 			if (rc)
1940 				goto bad;
1941 			if (!mls_range_isvalid(p, &rt->target_range)) {
1942 				printk(KERN_WARNING "SELinux:  rangetrans:  invalid range\n");
1943 				goto bad;
1944 			}
1945 			lrt = rt;
1946 		}
1947 	}
1948 
1949 	p->type_attr_map = kmalloc(p->p_types.nprim*sizeof(struct ebitmap), GFP_KERNEL);
1950 	if (!p->type_attr_map)
1951 		goto bad;
1952 
1953 	for (i = 0; i < p->p_types.nprim; i++) {
1954 		ebitmap_init(&p->type_attr_map[i]);
1955 		if (p->policyvers >= POLICYDB_VERSION_AVTAB) {
1956 			if (ebitmap_read(&p->type_attr_map[i], fp))
1957 				goto bad;
1958 		}
1959 		/* add the type itself as the degenerate case */
1960 		if (ebitmap_set_bit(&p->type_attr_map[i], i, 1))
1961 				goto bad;
1962 	}
1963 
1964 	rc = 0;
1965 out:
1966 	return rc;
1967 bad_newc:
1968 	ocontext_destroy(newc, OCON_FSUSE);
1969 bad:
1970 	if (!rc)
1971 		rc = -EINVAL;
1972 	policydb_destroy(p);
1973 	goto out;
1974 }
1975