xref: /openbmc/linux/security/selinux/ss/policydb.c (revision 1da177e4)
1 /*
2  * Implementation of the policy database.
3  *
4  * Author : Stephen Smalley, <sds@epoch.ncsc.mil>
5  */
6 
7 /*
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *	Support for enhanced MLS infrastructure.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  * 	Added conditional policy language extensions
15  *
16  * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
17  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
18  *	This program is free software; you can redistribute it and/or modify
19  *  	it under the terms of the GNU General Public License as published by
20  *	the Free Software Foundation, version 2.
21  */
22 
23 #include <linux/kernel.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/errno.h>
27 #include "security.h"
28 
29 #include "policydb.h"
30 #include "conditional.h"
31 #include "mls.h"
32 
33 #define _DEBUG_HASHES
34 
35 #ifdef DEBUG_HASHES
36 static char *symtab_name[SYM_NUM] = {
37 	"common prefixes",
38 	"classes",
39 	"roles",
40 	"types",
41 	"users",
42 	"bools",
43 	"levels",
44 	"categories",
45 };
46 #endif
47 
48 int selinux_mls_enabled = 0;
49 
50 static unsigned int symtab_sizes[SYM_NUM] = {
51 	2,
52 	32,
53 	16,
54 	512,
55 	128,
56 	16,
57 	16,
58 	16,
59 };
60 
61 struct policydb_compat_info {
62 	int version;
63 	int sym_num;
64 	int ocon_num;
65 };
66 
67 /* These need to be updated if SYM_NUM or OCON_NUM changes */
68 static struct policydb_compat_info policydb_compat[] = {
69 	{
70 		.version        = POLICYDB_VERSION_BASE,
71 		.sym_num        = SYM_NUM - 3,
72 		.ocon_num       = OCON_NUM - 1,
73 	},
74 	{
75 		.version        = POLICYDB_VERSION_BOOL,
76 		.sym_num        = SYM_NUM - 2,
77 		.ocon_num       = OCON_NUM - 1,
78 	},
79 	{
80 		.version        = POLICYDB_VERSION_IPV6,
81 		.sym_num        = SYM_NUM - 2,
82 		.ocon_num       = OCON_NUM,
83 	},
84 	{
85 		.version        = POLICYDB_VERSION_NLCLASS,
86 		.sym_num        = SYM_NUM - 2,
87 		.ocon_num       = OCON_NUM,
88 	},
89 	{
90 		.version        = POLICYDB_VERSION_MLS,
91 		.sym_num        = SYM_NUM,
92 		.ocon_num       = OCON_NUM,
93 	},
94 };
95 
96 static struct policydb_compat_info *policydb_lookup_compat(int version)
97 {
98 	int i;
99 	struct policydb_compat_info *info = NULL;
100 
101 	for (i = 0; i < sizeof(policydb_compat)/sizeof(*info); i++) {
102 		if (policydb_compat[i].version == version) {
103 			info = &policydb_compat[i];
104 			break;
105 		}
106 	}
107 	return info;
108 }
109 
110 /*
111  * Initialize the role table.
112  */
113 static int roles_init(struct policydb *p)
114 {
115 	char *key = NULL;
116 	int rc;
117 	struct role_datum *role;
118 
119 	role = kmalloc(sizeof(*role), GFP_KERNEL);
120 	if (!role) {
121 		rc = -ENOMEM;
122 		goto out;
123 	}
124 	memset(role, 0, sizeof(*role));
125 	role->value = ++p->p_roles.nprim;
126 	if (role->value != OBJECT_R_VAL) {
127 		rc = -EINVAL;
128 		goto out_free_role;
129 	}
130 	key = kmalloc(strlen(OBJECT_R)+1,GFP_KERNEL);
131 	if (!key) {
132 		rc = -ENOMEM;
133 		goto out_free_role;
134 	}
135 	strcpy(key, OBJECT_R);
136 	rc = hashtab_insert(p->p_roles.table, key, role);
137 	if (rc)
138 		goto out_free_key;
139 out:
140 	return rc;
141 
142 out_free_key:
143 	kfree(key);
144 out_free_role:
145 	kfree(role);
146 	goto out;
147 }
148 
149 /*
150  * Initialize a policy database structure.
151  */
152 static int policydb_init(struct policydb *p)
153 {
154 	int i, rc;
155 
156 	memset(p, 0, sizeof(*p));
157 
158 	for (i = 0; i < SYM_NUM; i++) {
159 		rc = symtab_init(&p->symtab[i], symtab_sizes[i]);
160 		if (rc)
161 			goto out_free_symtab;
162 	}
163 
164 	rc = avtab_init(&p->te_avtab);
165 	if (rc)
166 		goto out_free_symtab;
167 
168 	rc = roles_init(p);
169 	if (rc)
170 		goto out_free_avtab;
171 
172 	rc = cond_policydb_init(p);
173 	if (rc)
174 		goto out_free_avtab;
175 
176 out:
177 	return rc;
178 
179 out_free_avtab:
180 	avtab_destroy(&p->te_avtab);
181 
182 out_free_symtab:
183 	for (i = 0; i < SYM_NUM; i++)
184 		hashtab_destroy(p->symtab[i].table);
185 	goto out;
186 }
187 
188 /*
189  * The following *_index functions are used to
190  * define the val_to_name and val_to_struct arrays
191  * in a policy database structure.  The val_to_name
192  * arrays are used when converting security context
193  * structures into string representations.  The
194  * val_to_struct arrays are used when the attributes
195  * of a class, role, or user are needed.
196  */
197 
198 static int common_index(void *key, void *datum, void *datap)
199 {
200 	struct policydb *p;
201 	struct common_datum *comdatum;
202 
203 	comdatum = datum;
204 	p = datap;
205 	if (!comdatum->value || comdatum->value > p->p_commons.nprim)
206 		return -EINVAL;
207 	p->p_common_val_to_name[comdatum->value - 1] = key;
208 	return 0;
209 }
210 
211 static int class_index(void *key, void *datum, void *datap)
212 {
213 	struct policydb *p;
214 	struct class_datum *cladatum;
215 
216 	cladatum = datum;
217 	p = datap;
218 	if (!cladatum->value || cladatum->value > p->p_classes.nprim)
219 		return -EINVAL;
220 	p->p_class_val_to_name[cladatum->value - 1] = key;
221 	p->class_val_to_struct[cladatum->value - 1] = cladatum;
222 	return 0;
223 }
224 
225 static int role_index(void *key, void *datum, void *datap)
226 {
227 	struct policydb *p;
228 	struct role_datum *role;
229 
230 	role = datum;
231 	p = datap;
232 	if (!role->value || role->value > p->p_roles.nprim)
233 		return -EINVAL;
234 	p->p_role_val_to_name[role->value - 1] = key;
235 	p->role_val_to_struct[role->value - 1] = role;
236 	return 0;
237 }
238 
239 static int type_index(void *key, void *datum, void *datap)
240 {
241 	struct policydb *p;
242 	struct type_datum *typdatum;
243 
244 	typdatum = datum;
245 	p = datap;
246 
247 	if (typdatum->primary) {
248 		if (!typdatum->value || typdatum->value > p->p_types.nprim)
249 			return -EINVAL;
250 		p->p_type_val_to_name[typdatum->value - 1] = key;
251 	}
252 
253 	return 0;
254 }
255 
256 static int user_index(void *key, void *datum, void *datap)
257 {
258 	struct policydb *p;
259 	struct user_datum *usrdatum;
260 
261 	usrdatum = datum;
262 	p = datap;
263 	if (!usrdatum->value || usrdatum->value > p->p_users.nprim)
264 		return -EINVAL;
265 	p->p_user_val_to_name[usrdatum->value - 1] = key;
266 	p->user_val_to_struct[usrdatum->value - 1] = usrdatum;
267 	return 0;
268 }
269 
270 static int sens_index(void *key, void *datum, void *datap)
271 {
272 	struct policydb *p;
273 	struct level_datum *levdatum;
274 
275 	levdatum = datum;
276 	p = datap;
277 
278 	if (!levdatum->isalias) {
279 		if (!levdatum->level->sens ||
280 		    levdatum->level->sens > p->p_levels.nprim)
281 			return -EINVAL;
282 		p->p_sens_val_to_name[levdatum->level->sens - 1] = key;
283 	}
284 
285 	return 0;
286 }
287 
288 static int cat_index(void *key, void *datum, void *datap)
289 {
290 	struct policydb *p;
291 	struct cat_datum *catdatum;
292 
293 	catdatum = datum;
294 	p = datap;
295 
296 	if (!catdatum->isalias) {
297 		if (!catdatum->value || catdatum->value > p->p_cats.nprim)
298 			return -EINVAL;
299 		p->p_cat_val_to_name[catdatum->value - 1] = key;
300 	}
301 
302 	return 0;
303 }
304 
305 static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) =
306 {
307 	common_index,
308 	class_index,
309 	role_index,
310 	type_index,
311 	user_index,
312 	cond_index_bool,
313 	sens_index,
314 	cat_index,
315 };
316 
317 /*
318  * Define the common val_to_name array and the class
319  * val_to_name and val_to_struct arrays in a policy
320  * database structure.
321  *
322  * Caller must clean up upon failure.
323  */
324 static int policydb_index_classes(struct policydb *p)
325 {
326 	int rc;
327 
328 	p->p_common_val_to_name =
329 		kmalloc(p->p_commons.nprim * sizeof(char *), GFP_KERNEL);
330 	if (!p->p_common_val_to_name) {
331 		rc = -ENOMEM;
332 		goto out;
333 	}
334 
335 	rc = hashtab_map(p->p_commons.table, common_index, p);
336 	if (rc)
337 		goto out;
338 
339 	p->class_val_to_struct =
340 		kmalloc(p->p_classes.nprim * sizeof(*(p->class_val_to_struct)), GFP_KERNEL);
341 	if (!p->class_val_to_struct) {
342 		rc = -ENOMEM;
343 		goto out;
344 	}
345 
346 	p->p_class_val_to_name =
347 		kmalloc(p->p_classes.nprim * sizeof(char *), GFP_KERNEL);
348 	if (!p->p_class_val_to_name) {
349 		rc = -ENOMEM;
350 		goto out;
351 	}
352 
353 	rc = hashtab_map(p->p_classes.table, class_index, p);
354 out:
355 	return rc;
356 }
357 
358 #ifdef DEBUG_HASHES
359 static void symtab_hash_eval(struct symtab *s)
360 {
361 	int i;
362 
363 	for (i = 0; i < SYM_NUM; i++) {
364 		struct hashtab *h = s[i].table;
365 		struct hashtab_info info;
366 
367 		hashtab_stat(h, &info);
368 		printk(KERN_INFO "%s:  %d entries and %d/%d buckets used, "
369 		       "longest chain length %d\n", symtab_name[i], h->nel,
370 		       info.slots_used, h->size, info.max_chain_len);
371 	}
372 }
373 #endif
374 
375 /*
376  * Define the other val_to_name and val_to_struct arrays
377  * in a policy database structure.
378  *
379  * Caller must clean up on failure.
380  */
381 static int policydb_index_others(struct policydb *p)
382 {
383 	int i, rc = 0;
384 
385 	printk(KERN_INFO "security:  %d users, %d roles, %d types, %d bools",
386 	       p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim);
387 	if (selinux_mls_enabled)
388 		printk(", %d sens, %d cats", p->p_levels.nprim,
389 		       p->p_cats.nprim);
390 	printk("\n");
391 
392 	printk(KERN_INFO "security:  %d classes, %d rules\n",
393 	       p->p_classes.nprim, p->te_avtab.nel);
394 
395 #ifdef DEBUG_HASHES
396 	avtab_hash_eval(&p->te_avtab, "rules");
397 	symtab_hash_eval(p->symtab);
398 #endif
399 
400 	p->role_val_to_struct =
401 		kmalloc(p->p_roles.nprim * sizeof(*(p->role_val_to_struct)),
402 		        GFP_KERNEL);
403 	if (!p->role_val_to_struct) {
404 		rc = -ENOMEM;
405 		goto out;
406 	}
407 
408 	p->user_val_to_struct =
409 		kmalloc(p->p_users.nprim * sizeof(*(p->user_val_to_struct)),
410 		        GFP_KERNEL);
411 	if (!p->user_val_to_struct) {
412 		rc = -ENOMEM;
413 		goto out;
414 	}
415 
416 	if (cond_init_bool_indexes(p)) {
417 		rc = -ENOMEM;
418 		goto out;
419 	}
420 
421 	for (i = SYM_ROLES; i < SYM_NUM; i++) {
422 		p->sym_val_to_name[i] =
423 			kmalloc(p->symtab[i].nprim * sizeof(char *), GFP_KERNEL);
424 		if (!p->sym_val_to_name[i]) {
425 			rc = -ENOMEM;
426 			goto out;
427 		}
428 		rc = hashtab_map(p->symtab[i].table, index_f[i], p);
429 		if (rc)
430 			goto out;
431 	}
432 
433 out:
434 	return rc;
435 }
436 
437 /*
438  * The following *_destroy functions are used to
439  * free any memory allocated for each kind of
440  * symbol data in the policy database.
441  */
442 
443 static int perm_destroy(void *key, void *datum, void *p)
444 {
445 	kfree(key);
446 	kfree(datum);
447 	return 0;
448 }
449 
450 static int common_destroy(void *key, void *datum, void *p)
451 {
452 	struct common_datum *comdatum;
453 
454 	kfree(key);
455 	comdatum = datum;
456 	hashtab_map(comdatum->permissions.table, perm_destroy, NULL);
457 	hashtab_destroy(comdatum->permissions.table);
458 	kfree(datum);
459 	return 0;
460 }
461 
462 static int class_destroy(void *key, void *datum, void *p)
463 {
464 	struct class_datum *cladatum;
465 	struct constraint_node *constraint, *ctemp;
466 	struct constraint_expr *e, *etmp;
467 
468 	kfree(key);
469 	cladatum = datum;
470 	hashtab_map(cladatum->permissions.table, perm_destroy, NULL);
471 	hashtab_destroy(cladatum->permissions.table);
472 	constraint = cladatum->constraints;
473 	while (constraint) {
474 		e = constraint->expr;
475 		while (e) {
476 			ebitmap_destroy(&e->names);
477 			etmp = e;
478 			e = e->next;
479 			kfree(etmp);
480 		}
481 		ctemp = constraint;
482 		constraint = constraint->next;
483 		kfree(ctemp);
484 	}
485 
486 	constraint = cladatum->validatetrans;
487 	while (constraint) {
488 		e = constraint->expr;
489 		while (e) {
490 			ebitmap_destroy(&e->names);
491 			etmp = e;
492 			e = e->next;
493 			kfree(etmp);
494 		}
495 		ctemp = constraint;
496 		constraint = constraint->next;
497 		kfree(ctemp);
498 	}
499 
500 	kfree(cladatum->comkey);
501 	kfree(datum);
502 	return 0;
503 }
504 
505 static int role_destroy(void *key, void *datum, void *p)
506 {
507 	struct role_datum *role;
508 
509 	kfree(key);
510 	role = datum;
511 	ebitmap_destroy(&role->dominates);
512 	ebitmap_destroy(&role->types);
513 	kfree(datum);
514 	return 0;
515 }
516 
517 static int type_destroy(void *key, void *datum, void *p)
518 {
519 	kfree(key);
520 	kfree(datum);
521 	return 0;
522 }
523 
524 static int user_destroy(void *key, void *datum, void *p)
525 {
526 	struct user_datum *usrdatum;
527 
528 	kfree(key);
529 	usrdatum = datum;
530 	ebitmap_destroy(&usrdatum->roles);
531 	ebitmap_destroy(&usrdatum->range.level[0].cat);
532 	ebitmap_destroy(&usrdatum->range.level[1].cat);
533 	ebitmap_destroy(&usrdatum->dfltlevel.cat);
534 	kfree(datum);
535 	return 0;
536 }
537 
538 static int sens_destroy(void *key, void *datum, void *p)
539 {
540 	struct level_datum *levdatum;
541 
542 	kfree(key);
543 	levdatum = datum;
544 	ebitmap_destroy(&levdatum->level->cat);
545 	kfree(levdatum->level);
546 	kfree(datum);
547 	return 0;
548 }
549 
550 static int cat_destroy(void *key, void *datum, void *p)
551 {
552 	kfree(key);
553 	kfree(datum);
554 	return 0;
555 }
556 
557 static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) =
558 {
559 	common_destroy,
560 	class_destroy,
561 	role_destroy,
562 	type_destroy,
563 	user_destroy,
564 	cond_destroy_bool,
565 	sens_destroy,
566 	cat_destroy,
567 };
568 
569 static void ocontext_destroy(struct ocontext *c, int i)
570 {
571 	context_destroy(&c->context[0]);
572 	context_destroy(&c->context[1]);
573 	if (i == OCON_ISID || i == OCON_FS ||
574 	    i == OCON_NETIF || i == OCON_FSUSE)
575 		kfree(c->u.name);
576 	kfree(c);
577 }
578 
579 /*
580  * Free any memory allocated by a policy database structure.
581  */
582 void policydb_destroy(struct policydb *p)
583 {
584 	struct ocontext *c, *ctmp;
585 	struct genfs *g, *gtmp;
586 	int i;
587 
588 	for (i = 0; i < SYM_NUM; i++) {
589 		hashtab_map(p->symtab[i].table, destroy_f[i], NULL);
590 		hashtab_destroy(p->symtab[i].table);
591 	}
592 
593 	for (i = 0; i < SYM_NUM; i++) {
594 		if (p->sym_val_to_name[i])
595 			kfree(p->sym_val_to_name[i]);
596 	}
597 
598 	if (p->class_val_to_struct)
599 		kfree(p->class_val_to_struct);
600 	if (p->role_val_to_struct)
601 		kfree(p->role_val_to_struct);
602 	if (p->user_val_to_struct)
603 		kfree(p->user_val_to_struct);
604 
605 	avtab_destroy(&p->te_avtab);
606 
607 	for (i = 0; i < OCON_NUM; i++) {
608 		c = p->ocontexts[i];
609 		while (c) {
610 			ctmp = c;
611 			c = c->next;
612 			ocontext_destroy(ctmp,i);
613 		}
614 	}
615 
616 	g = p->genfs;
617 	while (g) {
618 		kfree(g->fstype);
619 		c = g->head;
620 		while (c) {
621 			ctmp = c;
622 			c = c->next;
623 			ocontext_destroy(ctmp,OCON_FSUSE);
624 		}
625 		gtmp = g;
626 		g = g->next;
627 		kfree(gtmp);
628 	}
629 
630 	cond_policydb_destroy(p);
631 
632 	return;
633 }
634 
635 /*
636  * Load the initial SIDs specified in a policy database
637  * structure into a SID table.
638  */
639 int policydb_load_isids(struct policydb *p, struct sidtab *s)
640 {
641 	struct ocontext *head, *c;
642 	int rc;
643 
644 	rc = sidtab_init(s);
645 	if (rc) {
646 		printk(KERN_ERR "security:  out of memory on SID table init\n");
647 		goto out;
648 	}
649 
650 	head = p->ocontexts[OCON_ISID];
651 	for (c = head; c; c = c->next) {
652 		if (!c->context[0].user) {
653 			printk(KERN_ERR "security:  SID %s was never "
654 			       "defined.\n", c->u.name);
655 			rc = -EINVAL;
656 			goto out;
657 		}
658 		if (sidtab_insert(s, c->sid[0], &c->context[0])) {
659 			printk(KERN_ERR "security:  unable to load initial "
660 			       "SID %s.\n", c->u.name);
661 			rc = -EINVAL;
662 			goto out;
663 		}
664 	}
665 out:
666 	return rc;
667 }
668 
669 /*
670  * Return 1 if the fields in the security context
671  * structure `c' are valid.  Return 0 otherwise.
672  */
673 int policydb_context_isvalid(struct policydb *p, struct context *c)
674 {
675 	struct role_datum *role;
676 	struct user_datum *usrdatum;
677 
678 	if (!c->role || c->role > p->p_roles.nprim)
679 		return 0;
680 
681 	if (!c->user || c->user > p->p_users.nprim)
682 		return 0;
683 
684 	if (!c->type || c->type > p->p_types.nprim)
685 		return 0;
686 
687 	if (c->role != OBJECT_R_VAL) {
688 		/*
689 		 * Role must be authorized for the type.
690 		 */
691 		role = p->role_val_to_struct[c->role - 1];
692 		if (!ebitmap_get_bit(&role->types,
693 				     c->type - 1))
694 			/* role may not be associated with type */
695 			return 0;
696 
697 		/*
698 		 * User must be authorized for the role.
699 		 */
700 		usrdatum = p->user_val_to_struct[c->user - 1];
701 		if (!usrdatum)
702 			return 0;
703 
704 		if (!ebitmap_get_bit(&usrdatum->roles,
705 				     c->role - 1))
706 			/* user may not be associated with role */
707 			return 0;
708 	}
709 
710 	if (!mls_context_isvalid(p, c))
711 		return 0;
712 
713 	return 1;
714 }
715 
716 /*
717  * Read a MLS range structure from a policydb binary
718  * representation file.
719  */
720 static int mls_read_range_helper(struct mls_range *r, void *fp)
721 {
722 	u32 buf[2], items;
723 	int rc;
724 
725 	rc = next_entry(buf, fp, sizeof(u32));
726 	if (rc < 0)
727 		goto out;
728 
729 	items = le32_to_cpu(buf[0]);
730 	if (items > ARRAY_SIZE(buf)) {
731 		printk(KERN_ERR "security: mls:  range overflow\n");
732 		rc = -EINVAL;
733 		goto out;
734 	}
735 	rc = next_entry(buf, fp, sizeof(u32) * items);
736 	if (rc < 0) {
737 		printk(KERN_ERR "security: mls:  truncated range\n");
738 		goto out;
739 	}
740 	r->level[0].sens = le32_to_cpu(buf[0]);
741 	if (items > 1)
742 		r->level[1].sens = le32_to_cpu(buf[1]);
743 	else
744 		r->level[1].sens = r->level[0].sens;
745 
746 	rc = ebitmap_read(&r->level[0].cat, fp);
747 	if (rc) {
748 		printk(KERN_ERR "security: mls:  error reading low "
749 		       "categories\n");
750 		goto out;
751 	}
752 	if (items > 1) {
753 		rc = ebitmap_read(&r->level[1].cat, fp);
754 		if (rc) {
755 			printk(KERN_ERR "security: mls:  error reading high "
756 			       "categories\n");
757 			goto bad_high;
758 		}
759 	} else {
760 		rc = ebitmap_cpy(&r->level[1].cat, &r->level[0].cat);
761 		if (rc) {
762 			printk(KERN_ERR "security: mls:  out of memory\n");
763 			goto bad_high;
764 		}
765 	}
766 
767 	rc = 0;
768 out:
769 	return rc;
770 bad_high:
771 	ebitmap_destroy(&r->level[0].cat);
772 	goto out;
773 }
774 
775 /*
776  * Read and validate a security context structure
777  * from a policydb binary representation file.
778  */
779 static int context_read_and_validate(struct context *c,
780 				     struct policydb *p,
781 				     void *fp)
782 {
783 	u32 buf[3];
784 	int rc;
785 
786 	rc = next_entry(buf, fp, sizeof buf);
787 	if (rc < 0) {
788 		printk(KERN_ERR "security: context truncated\n");
789 		goto out;
790 	}
791 	c->user = le32_to_cpu(buf[0]);
792 	c->role = le32_to_cpu(buf[1]);
793 	c->type = le32_to_cpu(buf[2]);
794 	if (p->policyvers >= POLICYDB_VERSION_MLS) {
795 		if (mls_read_range_helper(&c->range, fp)) {
796 			printk(KERN_ERR "security: error reading MLS range of "
797 			       "context\n");
798 			rc = -EINVAL;
799 			goto out;
800 		}
801 	}
802 
803 	if (!policydb_context_isvalid(p, c)) {
804 		printk(KERN_ERR "security:  invalid security context\n");
805 		context_destroy(c);
806 		rc = -EINVAL;
807 	}
808 out:
809 	return rc;
810 }
811 
812 /*
813  * The following *_read functions are used to
814  * read the symbol data from a policy database
815  * binary representation file.
816  */
817 
818 static int perm_read(struct policydb *p, struct hashtab *h, void *fp)
819 {
820 	char *key = NULL;
821 	struct perm_datum *perdatum;
822 	int rc;
823 	u32 buf[2], len;
824 
825 	perdatum = kmalloc(sizeof(*perdatum), GFP_KERNEL);
826 	if (!perdatum) {
827 		rc = -ENOMEM;
828 		goto out;
829 	}
830 	memset(perdatum, 0, sizeof(*perdatum));
831 
832 	rc = next_entry(buf, fp, sizeof buf);
833 	if (rc < 0)
834 		goto bad;
835 
836 	len = le32_to_cpu(buf[0]);
837 	perdatum->value = le32_to_cpu(buf[1]);
838 
839 	key = kmalloc(len + 1,GFP_KERNEL);
840 	if (!key) {
841 		rc = -ENOMEM;
842 		goto bad;
843 	}
844 	rc = next_entry(key, fp, len);
845 	if (rc < 0)
846 		goto bad;
847 	key[len] = 0;
848 
849 	rc = hashtab_insert(h, key, perdatum);
850 	if (rc)
851 		goto bad;
852 out:
853 	return rc;
854 bad:
855 	perm_destroy(key, perdatum, NULL);
856 	goto out;
857 }
858 
859 static int common_read(struct policydb *p, struct hashtab *h, void *fp)
860 {
861 	char *key = NULL;
862 	struct common_datum *comdatum;
863 	u32 buf[4], len, nel;
864 	int i, rc;
865 
866 	comdatum = kmalloc(sizeof(*comdatum), GFP_KERNEL);
867 	if (!comdatum) {
868 		rc = -ENOMEM;
869 		goto out;
870 	}
871 	memset(comdatum, 0, sizeof(*comdatum));
872 
873 	rc = next_entry(buf, fp, sizeof buf);
874 	if (rc < 0)
875 		goto bad;
876 
877 	len = le32_to_cpu(buf[0]);
878 	comdatum->value = le32_to_cpu(buf[1]);
879 
880 	rc = symtab_init(&comdatum->permissions, PERM_SYMTAB_SIZE);
881 	if (rc)
882 		goto bad;
883 	comdatum->permissions.nprim = le32_to_cpu(buf[2]);
884 	nel = le32_to_cpu(buf[3]);
885 
886 	key = kmalloc(len + 1,GFP_KERNEL);
887 	if (!key) {
888 		rc = -ENOMEM;
889 		goto bad;
890 	}
891 	rc = next_entry(key, fp, len);
892 	if (rc < 0)
893 		goto bad;
894 	key[len] = 0;
895 
896 	for (i = 0; i < nel; i++) {
897 		rc = perm_read(p, comdatum->permissions.table, fp);
898 		if (rc)
899 			goto bad;
900 	}
901 
902 	rc = hashtab_insert(h, key, comdatum);
903 	if (rc)
904 		goto bad;
905 out:
906 	return rc;
907 bad:
908 	common_destroy(key, comdatum, NULL);
909 	goto out;
910 }
911 
912 static int read_cons_helper(struct constraint_node **nodep, int ncons,
913                             int allowxtarget, void *fp)
914 {
915 	struct constraint_node *c, *lc;
916 	struct constraint_expr *e, *le;
917 	u32 buf[3], nexpr;
918 	int rc, i, j, depth;
919 
920 	lc = NULL;
921 	for (i = 0; i < ncons; i++) {
922 		c = kmalloc(sizeof(*c), GFP_KERNEL);
923 		if (!c)
924 			return -ENOMEM;
925 		memset(c, 0, sizeof(*c));
926 
927 		if (lc) {
928 			lc->next = c;
929 		} else {
930 			*nodep = c;
931 		}
932 
933 		rc = next_entry(buf, fp, (sizeof(u32) * 2));
934 		if (rc < 0)
935 			return rc;
936 		c->permissions = le32_to_cpu(buf[0]);
937 		nexpr = le32_to_cpu(buf[1]);
938 		le = NULL;
939 		depth = -1;
940 		for (j = 0; j < nexpr; j++) {
941 			e = kmalloc(sizeof(*e), GFP_KERNEL);
942 			if (!e)
943 				return -ENOMEM;
944 			memset(e, 0, sizeof(*e));
945 
946 			if (le) {
947 				le->next = e;
948 			} else {
949 				c->expr = e;
950 			}
951 
952 			rc = next_entry(buf, fp, (sizeof(u32) * 3));
953 			if (rc < 0)
954 				return rc;
955 			e->expr_type = le32_to_cpu(buf[0]);
956 			e->attr = le32_to_cpu(buf[1]);
957 			e->op = le32_to_cpu(buf[2]);
958 
959 			switch (e->expr_type) {
960 			case CEXPR_NOT:
961 				if (depth < 0)
962 					return -EINVAL;
963 				break;
964 			case CEXPR_AND:
965 			case CEXPR_OR:
966 				if (depth < 1)
967 					return -EINVAL;
968 				depth--;
969 				break;
970 			case CEXPR_ATTR:
971 				if (depth == (CEXPR_MAXDEPTH - 1))
972 					return -EINVAL;
973 				depth++;
974 				break;
975 			case CEXPR_NAMES:
976 				if (!allowxtarget && (e->attr & CEXPR_XTARGET))
977 					return -EINVAL;
978 				if (depth == (CEXPR_MAXDEPTH - 1))
979 					return -EINVAL;
980 				depth++;
981 				if (ebitmap_read(&e->names, fp))
982 					return -EINVAL;
983 				break;
984 			default:
985 				return -EINVAL;
986 			}
987 			le = e;
988 		}
989 		if (depth != 0)
990 			return -EINVAL;
991 		lc = c;
992 	}
993 
994 	return 0;
995 }
996 
997 static int class_read(struct policydb *p, struct hashtab *h, void *fp)
998 {
999 	char *key = NULL;
1000 	struct class_datum *cladatum;
1001 	u32 buf[6], len, len2, ncons, nel;
1002 	int i, rc;
1003 
1004 	cladatum = kmalloc(sizeof(*cladatum), GFP_KERNEL);
1005 	if (!cladatum) {
1006 		rc = -ENOMEM;
1007 		goto out;
1008 	}
1009 	memset(cladatum, 0, sizeof(*cladatum));
1010 
1011 	rc = next_entry(buf, fp, sizeof(u32)*6);
1012 	if (rc < 0)
1013 		goto bad;
1014 
1015 	len = le32_to_cpu(buf[0]);
1016 	len2 = le32_to_cpu(buf[1]);
1017 	cladatum->value = le32_to_cpu(buf[2]);
1018 
1019 	rc = symtab_init(&cladatum->permissions, PERM_SYMTAB_SIZE);
1020 	if (rc)
1021 		goto bad;
1022 	cladatum->permissions.nprim = le32_to_cpu(buf[3]);
1023 	nel = le32_to_cpu(buf[4]);
1024 
1025 	ncons = le32_to_cpu(buf[5]);
1026 
1027 	key = kmalloc(len + 1,GFP_KERNEL);
1028 	if (!key) {
1029 		rc = -ENOMEM;
1030 		goto bad;
1031 	}
1032 	rc = next_entry(key, fp, len);
1033 	if (rc < 0)
1034 		goto bad;
1035 	key[len] = 0;
1036 
1037 	if (len2) {
1038 		cladatum->comkey = kmalloc(len2 + 1,GFP_KERNEL);
1039 		if (!cladatum->comkey) {
1040 			rc = -ENOMEM;
1041 			goto bad;
1042 		}
1043 		rc = next_entry(cladatum->comkey, fp, len2);
1044 		if (rc < 0)
1045 			goto bad;
1046 		cladatum->comkey[len2] = 0;
1047 
1048 		cladatum->comdatum = hashtab_search(p->p_commons.table,
1049 						    cladatum->comkey);
1050 		if (!cladatum->comdatum) {
1051 			printk(KERN_ERR "security:  unknown common %s\n",
1052 			       cladatum->comkey);
1053 			rc = -EINVAL;
1054 			goto bad;
1055 		}
1056 	}
1057 	for (i = 0; i < nel; i++) {
1058 		rc = perm_read(p, cladatum->permissions.table, fp);
1059 		if (rc)
1060 			goto bad;
1061 	}
1062 
1063 	rc = read_cons_helper(&cladatum->constraints, ncons, 0, fp);
1064 	if (rc)
1065 		goto bad;
1066 
1067 	if (p->policyvers >= POLICYDB_VERSION_VALIDATETRANS) {
1068 		/* grab the validatetrans rules */
1069 		rc = next_entry(buf, fp, sizeof(u32));
1070 		if (rc < 0)
1071 			goto bad;
1072 		ncons = le32_to_cpu(buf[0]);
1073 		rc = read_cons_helper(&cladatum->validatetrans, ncons, 1, fp);
1074 		if (rc)
1075 			goto bad;
1076 	}
1077 
1078 	rc = hashtab_insert(h, key, cladatum);
1079 	if (rc)
1080 		goto bad;
1081 
1082 	rc = 0;
1083 out:
1084 	return rc;
1085 bad:
1086 	class_destroy(key, cladatum, NULL);
1087 	goto out;
1088 }
1089 
1090 static int role_read(struct policydb *p, struct hashtab *h, void *fp)
1091 {
1092 	char *key = NULL;
1093 	struct role_datum *role;
1094 	int rc;
1095 	u32 buf[2], len;
1096 
1097 	role = kmalloc(sizeof(*role), GFP_KERNEL);
1098 	if (!role) {
1099 		rc = -ENOMEM;
1100 		goto out;
1101 	}
1102 	memset(role, 0, sizeof(*role));
1103 
1104 	rc = next_entry(buf, fp, sizeof buf);
1105 	if (rc < 0)
1106 		goto bad;
1107 
1108 	len = le32_to_cpu(buf[0]);
1109 	role->value = le32_to_cpu(buf[1]);
1110 
1111 	key = kmalloc(len + 1,GFP_KERNEL);
1112 	if (!key) {
1113 		rc = -ENOMEM;
1114 		goto bad;
1115 	}
1116 	rc = next_entry(key, fp, len);
1117 	if (rc < 0)
1118 		goto bad;
1119 	key[len] = 0;
1120 
1121 	rc = ebitmap_read(&role->dominates, fp);
1122 	if (rc)
1123 		goto bad;
1124 
1125 	rc = ebitmap_read(&role->types, fp);
1126 	if (rc)
1127 		goto bad;
1128 
1129 	if (strcmp(key, OBJECT_R) == 0) {
1130 		if (role->value != OBJECT_R_VAL) {
1131 			printk(KERN_ERR "Role %s has wrong value %d\n",
1132 			       OBJECT_R, role->value);
1133 			rc = -EINVAL;
1134 			goto bad;
1135 		}
1136 		rc = 0;
1137 		goto bad;
1138 	}
1139 
1140 	rc = hashtab_insert(h, key, role);
1141 	if (rc)
1142 		goto bad;
1143 out:
1144 	return rc;
1145 bad:
1146 	role_destroy(key, role, NULL);
1147 	goto out;
1148 }
1149 
1150 static int type_read(struct policydb *p, struct hashtab *h, void *fp)
1151 {
1152 	char *key = NULL;
1153 	struct type_datum *typdatum;
1154 	int rc;
1155 	u32 buf[3], len;
1156 
1157 	typdatum = kmalloc(sizeof(*typdatum),GFP_KERNEL);
1158 	if (!typdatum) {
1159 		rc = -ENOMEM;
1160 		return rc;
1161 	}
1162 	memset(typdatum, 0, sizeof(*typdatum));
1163 
1164 	rc = next_entry(buf, fp, sizeof buf);
1165 	if (rc < 0)
1166 		goto bad;
1167 
1168 	len = le32_to_cpu(buf[0]);
1169 	typdatum->value = le32_to_cpu(buf[1]);
1170 	typdatum->primary = le32_to_cpu(buf[2]);
1171 
1172 	key = kmalloc(len + 1,GFP_KERNEL);
1173 	if (!key) {
1174 		rc = -ENOMEM;
1175 		goto bad;
1176 	}
1177 	rc = next_entry(key, fp, len);
1178 	if (rc < 0)
1179 		goto bad;
1180 	key[len] = 0;
1181 
1182 	rc = hashtab_insert(h, key, typdatum);
1183 	if (rc)
1184 		goto bad;
1185 out:
1186 	return rc;
1187 bad:
1188 	type_destroy(key, typdatum, NULL);
1189 	goto out;
1190 }
1191 
1192 
1193 /*
1194  * Read a MLS level structure from a policydb binary
1195  * representation file.
1196  */
1197 static int mls_read_level(struct mls_level *lp, void *fp)
1198 {
1199 	u32 buf[1];
1200 	int rc;
1201 
1202 	memset(lp, 0, sizeof(*lp));
1203 
1204 	rc = next_entry(buf, fp, sizeof buf);
1205 	if (rc < 0) {
1206 		printk(KERN_ERR "security: mls: truncated level\n");
1207 		goto bad;
1208 	}
1209 	lp->sens = le32_to_cpu(buf[0]);
1210 
1211 	if (ebitmap_read(&lp->cat, fp)) {
1212 		printk(KERN_ERR "security: mls:  error reading level "
1213 		       "categories\n");
1214 		goto bad;
1215 	}
1216 	return 0;
1217 
1218 bad:
1219 	return -EINVAL;
1220 }
1221 
1222 static int user_read(struct policydb *p, struct hashtab *h, void *fp)
1223 {
1224 	char *key = NULL;
1225 	struct user_datum *usrdatum;
1226 	int rc;
1227 	u32 buf[2], len;
1228 
1229 	usrdatum = kmalloc(sizeof(*usrdatum), GFP_KERNEL);
1230 	if (!usrdatum) {
1231 		rc = -ENOMEM;
1232 		goto out;
1233 	}
1234 	memset(usrdatum, 0, sizeof(*usrdatum));
1235 
1236 	rc = next_entry(buf, fp, sizeof buf);
1237 	if (rc < 0)
1238 		goto bad;
1239 
1240 	len = le32_to_cpu(buf[0]);
1241 	usrdatum->value = le32_to_cpu(buf[1]);
1242 
1243 	key = kmalloc(len + 1,GFP_KERNEL);
1244 	if (!key) {
1245 		rc = -ENOMEM;
1246 		goto bad;
1247 	}
1248 	rc = next_entry(key, fp, len);
1249 	if (rc < 0)
1250 		goto bad;
1251 	key[len] = 0;
1252 
1253 	rc = ebitmap_read(&usrdatum->roles, fp);
1254 	if (rc)
1255 		goto bad;
1256 
1257 	if (p->policyvers >= POLICYDB_VERSION_MLS) {
1258 		rc = mls_read_range_helper(&usrdatum->range, fp);
1259 		if (rc)
1260 			goto bad;
1261 		rc = mls_read_level(&usrdatum->dfltlevel, fp);
1262 		if (rc)
1263 			goto bad;
1264 	}
1265 
1266 	rc = hashtab_insert(h, key, usrdatum);
1267 	if (rc)
1268 		goto bad;
1269 out:
1270 	return rc;
1271 bad:
1272 	user_destroy(key, usrdatum, NULL);
1273 	goto out;
1274 }
1275 
1276 static int sens_read(struct policydb *p, struct hashtab *h, void *fp)
1277 {
1278 	char *key = NULL;
1279 	struct level_datum *levdatum;
1280 	int rc;
1281 	u32 buf[2], len;
1282 
1283 	levdatum = kmalloc(sizeof(*levdatum), GFP_ATOMIC);
1284 	if (!levdatum) {
1285 		rc = -ENOMEM;
1286 		goto out;
1287 	}
1288 	memset(levdatum, 0, sizeof(*levdatum));
1289 
1290 	rc = next_entry(buf, fp, sizeof buf);
1291 	if (rc < 0)
1292 		goto bad;
1293 
1294 	len = le32_to_cpu(buf[0]);
1295 	levdatum->isalias = le32_to_cpu(buf[1]);
1296 
1297 	key = kmalloc(len + 1,GFP_ATOMIC);
1298 	if (!key) {
1299 		rc = -ENOMEM;
1300 		goto bad;
1301 	}
1302 	rc = next_entry(key, fp, len);
1303 	if (rc < 0)
1304 		goto bad;
1305 	key[len] = 0;
1306 
1307 	levdatum->level = kmalloc(sizeof(struct mls_level), GFP_ATOMIC);
1308 	if (!levdatum->level) {
1309 		rc = -ENOMEM;
1310 		goto bad;
1311 	}
1312 	if (mls_read_level(levdatum->level, fp)) {
1313 		rc = -EINVAL;
1314 		goto bad;
1315 	}
1316 
1317 	rc = hashtab_insert(h, key, levdatum);
1318 	if (rc)
1319 		goto bad;
1320 out:
1321 	return rc;
1322 bad:
1323 	sens_destroy(key, levdatum, NULL);
1324 	goto out;
1325 }
1326 
1327 static int cat_read(struct policydb *p, struct hashtab *h, void *fp)
1328 {
1329 	char *key = NULL;
1330 	struct cat_datum *catdatum;
1331 	int rc;
1332 	u32 buf[3], len;
1333 
1334 	catdatum = kmalloc(sizeof(*catdatum), GFP_ATOMIC);
1335 	if (!catdatum) {
1336 		rc = -ENOMEM;
1337 		goto out;
1338 	}
1339 	memset(catdatum, 0, sizeof(*catdatum));
1340 
1341 	rc = next_entry(buf, fp, sizeof buf);
1342 	if (rc < 0)
1343 		goto bad;
1344 
1345 	len = le32_to_cpu(buf[0]);
1346 	catdatum->value = le32_to_cpu(buf[1]);
1347 	catdatum->isalias = le32_to_cpu(buf[2]);
1348 
1349 	key = kmalloc(len + 1,GFP_ATOMIC);
1350 	if (!key) {
1351 		rc = -ENOMEM;
1352 		goto bad;
1353 	}
1354 	rc = next_entry(key, fp, len);
1355 	if (rc < 0)
1356 		goto bad;
1357 	key[len] = 0;
1358 
1359 	rc = hashtab_insert(h, key, catdatum);
1360 	if (rc)
1361 		goto bad;
1362 out:
1363 	return rc;
1364 
1365 bad:
1366 	cat_destroy(key, catdatum, NULL);
1367 	goto out;
1368 }
1369 
1370 static int (*read_f[SYM_NUM]) (struct policydb *p, struct hashtab *h, void *fp) =
1371 {
1372 	common_read,
1373 	class_read,
1374 	role_read,
1375 	type_read,
1376 	user_read,
1377 	cond_read_bool,
1378 	sens_read,
1379 	cat_read,
1380 };
1381 
1382 extern int ss_initialized;
1383 
1384 /*
1385  * Read the configuration data from a policy database binary
1386  * representation file into a policy database structure.
1387  */
1388 int policydb_read(struct policydb *p, void *fp)
1389 {
1390 	struct role_allow *ra, *lra;
1391 	struct role_trans *tr, *ltr;
1392 	struct ocontext *l, *c, *newc;
1393 	struct genfs *genfs_p, *genfs, *newgenfs;
1394 	int i, j, rc;
1395 	u32 buf[8], len, len2, config, nprim, nel, nel2;
1396 	char *policydb_str;
1397 	struct policydb_compat_info *info;
1398 	struct range_trans *rt, *lrt;
1399 
1400 	config = 0;
1401 
1402 	rc = policydb_init(p);
1403 	if (rc)
1404 		goto out;
1405 
1406 	/* Read the magic number and string length. */
1407 	rc = next_entry(buf, fp, sizeof(u32)* 2);
1408 	if (rc < 0)
1409 		goto bad;
1410 
1411 	for (i = 0; i < 2; i++)
1412 		buf[i] = le32_to_cpu(buf[i]);
1413 
1414 	if (buf[0] != POLICYDB_MAGIC) {
1415 		printk(KERN_ERR "security:  policydb magic number 0x%x does "
1416 		       "not match expected magic number 0x%x\n",
1417 		       buf[0], POLICYDB_MAGIC);
1418 		goto bad;
1419 	}
1420 
1421 	len = buf[1];
1422 	if (len != strlen(POLICYDB_STRING)) {
1423 		printk(KERN_ERR "security:  policydb string length %d does not "
1424 		       "match expected length %Zu\n",
1425 		       len, strlen(POLICYDB_STRING));
1426 		goto bad;
1427 	}
1428 	policydb_str = kmalloc(len + 1,GFP_KERNEL);
1429 	if (!policydb_str) {
1430 		printk(KERN_ERR "security:  unable to allocate memory for policydb "
1431 		       "string of length %d\n", len);
1432 		rc = -ENOMEM;
1433 		goto bad;
1434 	}
1435 	rc = next_entry(policydb_str, fp, len);
1436 	if (rc < 0) {
1437 		printk(KERN_ERR "security:  truncated policydb string identifier\n");
1438 		kfree(policydb_str);
1439 		goto bad;
1440 	}
1441 	policydb_str[len] = 0;
1442 	if (strcmp(policydb_str, POLICYDB_STRING)) {
1443 		printk(KERN_ERR "security:  policydb string %s does not match "
1444 		       "my string %s\n", policydb_str, POLICYDB_STRING);
1445 		kfree(policydb_str);
1446 		goto bad;
1447 	}
1448 	/* Done with policydb_str. */
1449 	kfree(policydb_str);
1450 	policydb_str = NULL;
1451 
1452 	/* Read the version, config, and table sizes. */
1453 	rc = next_entry(buf, fp, sizeof(u32)*4);
1454 	if (rc < 0)
1455 		goto bad;
1456 	for (i = 0; i < 4; i++)
1457 		buf[i] = le32_to_cpu(buf[i]);
1458 
1459 	p->policyvers = buf[0];
1460 	if (p->policyvers < POLICYDB_VERSION_MIN ||
1461 	    p->policyvers > POLICYDB_VERSION_MAX) {
1462 	    	printk(KERN_ERR "security:  policydb version %d does not match "
1463 	    	       "my version range %d-%d\n",
1464 	    	       buf[0], POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX);
1465 	    	goto bad;
1466 	}
1467 
1468 	if ((buf[1] & POLICYDB_CONFIG_MLS)) {
1469 		if (ss_initialized && !selinux_mls_enabled) {
1470 			printk(KERN_ERR "Cannot switch between non-MLS and MLS "
1471 			       "policies\n");
1472 			goto bad;
1473 		}
1474 		selinux_mls_enabled = 1;
1475 		config |= POLICYDB_CONFIG_MLS;
1476 
1477 		if (p->policyvers < POLICYDB_VERSION_MLS) {
1478 			printk(KERN_ERR "security policydb version %d (MLS) "
1479 			       "not backwards compatible\n", p->policyvers);
1480 			goto bad;
1481 		}
1482 	} else {
1483 		if (ss_initialized && selinux_mls_enabled) {
1484 			printk(KERN_ERR "Cannot switch between MLS and non-MLS "
1485 			       "policies\n");
1486 			goto bad;
1487 		}
1488 	}
1489 
1490 	info = policydb_lookup_compat(p->policyvers);
1491 	if (!info) {
1492 		printk(KERN_ERR "security:  unable to find policy compat info "
1493 		       "for version %d\n", p->policyvers);
1494 		goto bad;
1495 	}
1496 
1497 	if (buf[2] != info->sym_num || buf[3] != info->ocon_num) {
1498 		printk(KERN_ERR "security:  policydb table sizes (%d,%d) do "
1499 		       "not match mine (%d,%d)\n", buf[2], buf[3],
1500 		       info->sym_num, info->ocon_num);
1501 		goto bad;
1502 	}
1503 
1504 	for (i = 0; i < info->sym_num; i++) {
1505 		rc = next_entry(buf, fp, sizeof(u32)*2);
1506 		if (rc < 0)
1507 			goto bad;
1508 		nprim = le32_to_cpu(buf[0]);
1509 		nel = le32_to_cpu(buf[1]);
1510 		for (j = 0; j < nel; j++) {
1511 			rc = read_f[i](p, p->symtab[i].table, fp);
1512 			if (rc)
1513 				goto bad;
1514 		}
1515 
1516 		p->symtab[i].nprim = nprim;
1517 	}
1518 
1519 	rc = avtab_read(&p->te_avtab, fp, config);
1520 	if (rc)
1521 		goto bad;
1522 
1523 	if (p->policyvers >= POLICYDB_VERSION_BOOL) {
1524 		rc = cond_read_list(p, fp);
1525 		if (rc)
1526 			goto bad;
1527 	}
1528 
1529 	rc = next_entry(buf, fp, sizeof(u32));
1530 	if (rc < 0)
1531 		goto bad;
1532 	nel = le32_to_cpu(buf[0]);
1533 	ltr = NULL;
1534 	for (i = 0; i < nel; i++) {
1535 		tr = kmalloc(sizeof(*tr), GFP_KERNEL);
1536 		if (!tr) {
1537 			rc = -ENOMEM;
1538 			goto bad;
1539 		}
1540 		memset(tr, 0, sizeof(*tr));
1541 		if (ltr) {
1542 			ltr->next = tr;
1543 		} else {
1544 			p->role_tr = tr;
1545 		}
1546 		rc = next_entry(buf, fp, sizeof(u32)*3);
1547 		if (rc < 0)
1548 			goto bad;
1549 		tr->role = le32_to_cpu(buf[0]);
1550 		tr->type = le32_to_cpu(buf[1]);
1551 		tr->new_role = le32_to_cpu(buf[2]);
1552 		ltr = tr;
1553 	}
1554 
1555 	rc = next_entry(buf, fp, sizeof(u32));
1556 	if (rc < 0)
1557 		goto bad;
1558 	nel = le32_to_cpu(buf[0]);
1559 	lra = NULL;
1560 	for (i = 0; i < nel; i++) {
1561 		ra = kmalloc(sizeof(*ra), GFP_KERNEL);
1562 		if (!ra) {
1563 			rc = -ENOMEM;
1564 			goto bad;
1565 		}
1566 		memset(ra, 0, sizeof(*ra));
1567 		if (lra) {
1568 			lra->next = ra;
1569 		} else {
1570 			p->role_allow = ra;
1571 		}
1572 		rc = next_entry(buf, fp, sizeof(u32)*2);
1573 		if (rc < 0)
1574 			goto bad;
1575 		ra->role = le32_to_cpu(buf[0]);
1576 		ra->new_role = le32_to_cpu(buf[1]);
1577 		lra = ra;
1578 	}
1579 
1580 	rc = policydb_index_classes(p);
1581 	if (rc)
1582 		goto bad;
1583 
1584 	rc = policydb_index_others(p);
1585 	if (rc)
1586 		goto bad;
1587 
1588 	for (i = 0; i < info->ocon_num; i++) {
1589 		rc = next_entry(buf, fp, sizeof(u32));
1590 		if (rc < 0)
1591 			goto bad;
1592 		nel = le32_to_cpu(buf[0]);
1593 		l = NULL;
1594 		for (j = 0; j < nel; j++) {
1595 			c = kmalloc(sizeof(*c), GFP_KERNEL);
1596 			if (!c) {
1597 				rc = -ENOMEM;
1598 				goto bad;
1599 			}
1600 			memset(c, 0, sizeof(*c));
1601 			if (l) {
1602 				l->next = c;
1603 			} else {
1604 				p->ocontexts[i] = c;
1605 			}
1606 			l = c;
1607 			rc = -EINVAL;
1608 			switch (i) {
1609 			case OCON_ISID:
1610 				rc = next_entry(buf, fp, sizeof(u32));
1611 				if (rc < 0)
1612 					goto bad;
1613 				c->sid[0] = le32_to_cpu(buf[0]);
1614 				rc = context_read_and_validate(&c->context[0], p, fp);
1615 				if (rc)
1616 					goto bad;
1617 				break;
1618 			case OCON_FS:
1619 			case OCON_NETIF:
1620 				rc = next_entry(buf, fp, sizeof(u32));
1621 				if (rc < 0)
1622 					goto bad;
1623 				len = le32_to_cpu(buf[0]);
1624 				c->u.name = kmalloc(len + 1,GFP_KERNEL);
1625 				if (!c->u.name) {
1626 					rc = -ENOMEM;
1627 					goto bad;
1628 				}
1629 				rc = next_entry(c->u.name, fp, len);
1630 				if (rc < 0)
1631 					goto bad;
1632 				c->u.name[len] = 0;
1633 				rc = context_read_and_validate(&c->context[0], p, fp);
1634 				if (rc)
1635 					goto bad;
1636 				rc = context_read_and_validate(&c->context[1], p, fp);
1637 				if (rc)
1638 					goto bad;
1639 				break;
1640 			case OCON_PORT:
1641 				rc = next_entry(buf, fp, sizeof(u32)*3);
1642 				if (rc < 0)
1643 					goto bad;
1644 				c->u.port.protocol = le32_to_cpu(buf[0]);
1645 				c->u.port.low_port = le32_to_cpu(buf[1]);
1646 				c->u.port.high_port = le32_to_cpu(buf[2]);
1647 				rc = context_read_and_validate(&c->context[0], p, fp);
1648 				if (rc)
1649 					goto bad;
1650 				break;
1651 			case OCON_NODE:
1652 				rc = next_entry(buf, fp, sizeof(u32)* 2);
1653 				if (rc < 0)
1654 					goto bad;
1655 				c->u.node.addr = le32_to_cpu(buf[0]);
1656 				c->u.node.mask = le32_to_cpu(buf[1]);
1657 				rc = context_read_and_validate(&c->context[0], p, fp);
1658 				if (rc)
1659 					goto bad;
1660 				break;
1661 			case OCON_FSUSE:
1662 				rc = next_entry(buf, fp, sizeof(u32)*2);
1663 				if (rc < 0)
1664 					goto bad;
1665 				c->v.behavior = le32_to_cpu(buf[0]);
1666 				if (c->v.behavior > SECURITY_FS_USE_NONE)
1667 					goto bad;
1668 				len = le32_to_cpu(buf[1]);
1669 				c->u.name = kmalloc(len + 1,GFP_KERNEL);
1670 				if (!c->u.name) {
1671 					rc = -ENOMEM;
1672 					goto bad;
1673 				}
1674 				rc = next_entry(c->u.name, fp, len);
1675 				if (rc < 0)
1676 					goto bad;
1677 				c->u.name[len] = 0;
1678 				rc = context_read_and_validate(&c->context[0], p, fp);
1679 				if (rc)
1680 					goto bad;
1681 				break;
1682 			case OCON_NODE6: {
1683 				int k;
1684 
1685 				rc = next_entry(buf, fp, sizeof(u32) * 8);
1686 				if (rc < 0)
1687 					goto bad;
1688 				for (k = 0; k < 4; k++)
1689 					c->u.node6.addr[k] = le32_to_cpu(buf[k]);
1690 				for (k = 0; k < 4; k++)
1691 					c->u.node6.mask[k] = le32_to_cpu(buf[k+4]);
1692 				if (context_read_and_validate(&c->context[0], p, fp))
1693 					goto bad;
1694 				break;
1695 			}
1696 			}
1697 		}
1698 	}
1699 
1700 	rc = next_entry(buf, fp, sizeof(u32));
1701 	if (rc < 0)
1702 		goto bad;
1703 	nel = le32_to_cpu(buf[0]);
1704 	genfs_p = NULL;
1705 	rc = -EINVAL;
1706 	for (i = 0; i < nel; i++) {
1707 		rc = next_entry(buf, fp, sizeof(u32));
1708 		if (rc < 0)
1709 			goto bad;
1710 		len = le32_to_cpu(buf[0]);
1711 		newgenfs = kmalloc(sizeof(*newgenfs), GFP_KERNEL);
1712 		if (!newgenfs) {
1713 			rc = -ENOMEM;
1714 			goto bad;
1715 		}
1716 		memset(newgenfs, 0, sizeof(*newgenfs));
1717 
1718 		newgenfs->fstype = kmalloc(len + 1,GFP_KERNEL);
1719 		if (!newgenfs->fstype) {
1720 			rc = -ENOMEM;
1721 			kfree(newgenfs);
1722 			goto bad;
1723 		}
1724 		rc = next_entry(newgenfs->fstype, fp, len);
1725 		if (rc < 0) {
1726 			kfree(newgenfs->fstype);
1727 			kfree(newgenfs);
1728 			goto bad;
1729 		}
1730 		newgenfs->fstype[len] = 0;
1731 		for (genfs_p = NULL, genfs = p->genfs; genfs;
1732 		     genfs_p = genfs, genfs = genfs->next) {
1733 			if (strcmp(newgenfs->fstype, genfs->fstype) == 0) {
1734 				printk(KERN_ERR "security:  dup genfs "
1735 				       "fstype %s\n", newgenfs->fstype);
1736 				kfree(newgenfs->fstype);
1737 				kfree(newgenfs);
1738 				goto bad;
1739 			}
1740 			if (strcmp(newgenfs->fstype, genfs->fstype) < 0)
1741 				break;
1742 		}
1743 		newgenfs->next = genfs;
1744 		if (genfs_p)
1745 			genfs_p->next = newgenfs;
1746 		else
1747 			p->genfs = newgenfs;
1748 		rc = next_entry(buf, fp, sizeof(u32));
1749 		if (rc < 0)
1750 			goto bad;
1751 		nel2 = le32_to_cpu(buf[0]);
1752 		for (j = 0; j < nel2; j++) {
1753 			rc = next_entry(buf, fp, sizeof(u32));
1754 			if (rc < 0)
1755 				goto bad;
1756 			len = le32_to_cpu(buf[0]);
1757 
1758 			newc = kmalloc(sizeof(*newc), GFP_KERNEL);
1759 			if (!newc) {
1760 				rc = -ENOMEM;
1761 				goto bad;
1762 			}
1763 			memset(newc, 0, sizeof(*newc));
1764 
1765 			newc->u.name = kmalloc(len + 1,GFP_KERNEL);
1766 			if (!newc->u.name) {
1767 				rc = -ENOMEM;
1768 				goto bad_newc;
1769 			}
1770 			rc = next_entry(newc->u.name, fp, len);
1771 			if (rc < 0)
1772 				goto bad_newc;
1773 			newc->u.name[len] = 0;
1774 			rc = next_entry(buf, fp, sizeof(u32));
1775 			if (rc < 0)
1776 				goto bad_newc;
1777 			newc->v.sclass = le32_to_cpu(buf[0]);
1778 			if (context_read_and_validate(&newc->context[0], p, fp))
1779 				goto bad_newc;
1780 			for (l = NULL, c = newgenfs->head; c;
1781 			     l = c, c = c->next) {
1782 				if (!strcmp(newc->u.name, c->u.name) &&
1783 				    (!c->v.sclass || !newc->v.sclass ||
1784 				     newc->v.sclass == c->v.sclass)) {
1785 					printk(KERN_ERR "security:  dup genfs "
1786 					       "entry (%s,%s)\n",
1787 					       newgenfs->fstype, c->u.name);
1788 					goto bad_newc;
1789 				}
1790 				len = strlen(newc->u.name);
1791 				len2 = strlen(c->u.name);
1792 				if (len > len2)
1793 					break;
1794 			}
1795 
1796 			newc->next = c;
1797 			if (l)
1798 				l->next = newc;
1799 			else
1800 				newgenfs->head = newc;
1801 		}
1802 	}
1803 
1804 	if (p->policyvers >= POLICYDB_VERSION_MLS) {
1805 		rc = next_entry(buf, fp, sizeof(u32));
1806 		if (rc < 0)
1807 			goto bad;
1808 		nel = le32_to_cpu(buf[0]);
1809 		lrt = NULL;
1810 		for (i = 0; i < nel; i++) {
1811 			rt = kmalloc(sizeof(*rt), GFP_KERNEL);
1812 			if (!rt) {
1813 				rc = -ENOMEM;
1814 				goto bad;
1815 			}
1816 			memset(rt, 0, sizeof(*rt));
1817 			if (lrt)
1818 				lrt->next = rt;
1819 			else
1820 				p->range_tr = rt;
1821 			rc = next_entry(buf, fp, (sizeof(u32) * 2));
1822 			if (rc < 0)
1823 				goto bad;
1824 			rt->dom = le32_to_cpu(buf[0]);
1825 			rt->type = le32_to_cpu(buf[1]);
1826 			rc = mls_read_range_helper(&rt->range, fp);
1827 			if (rc)
1828 				goto bad;
1829 			lrt = rt;
1830 		}
1831 	}
1832 
1833 	rc = 0;
1834 out:
1835 	return rc;
1836 bad_newc:
1837 	ocontext_destroy(newc,OCON_FSUSE);
1838 bad:
1839 	if (!rc)
1840 		rc = -EINVAL;
1841 	policydb_destroy(p);
1842 	goto out;
1843 }
1844