xref: /openbmc/linux/security/selinux/ss/hashtab.c (revision e0d07278)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Implementation of the hash table type.
4  *
5  * Author : Stephen Smalley, <sds@tycho.nsa.gov>
6  */
7 #include <linux/kernel.h>
8 #include <linux/slab.h>
9 #include <linux/errno.h>
10 #include "hashtab.h"
11 
12 static struct kmem_cache *hashtab_node_cachep;
13 
14 /*
15  * Here we simply round the number of elements up to the nearest power of two.
16  * I tried also other options like rouding down or rounding to the closest
17  * power of two (up or down based on which is closer), but I was unable to
18  * find any significant difference in lookup/insert performance that would
19  * justify switching to a different (less intuitive) formula. It could be that
20  * a different formula is actually more optimal, but any future changes here
21  * should be supported with performance/memory usage data.
22  *
23  * The total memory used by the htable arrays (only) with Fedora policy loaded
24  * is approximately 163 KB at the time of writing.
25  */
26 static u32 hashtab_compute_size(u32 nel)
27 {
28 	return nel == 0 ? 0 : roundup_pow_of_two(nel);
29 }
30 
31 int hashtab_init(struct hashtab *h, u32 nel_hint)
32 {
33 	h->size = hashtab_compute_size(nel_hint);
34 	h->nel = 0;
35 	if (!h->size)
36 		return 0;
37 
38 	h->htable = kcalloc(h->size, sizeof(*h->htable), GFP_KERNEL);
39 	return h->htable ? 0 : -ENOMEM;
40 }
41 
42 int __hashtab_insert(struct hashtab *h, struct hashtab_node **dst,
43 		     void *key, void *datum)
44 {
45 	struct hashtab_node *newnode;
46 
47 	newnode = kmem_cache_zalloc(hashtab_node_cachep, GFP_KERNEL);
48 	if (!newnode)
49 		return -ENOMEM;
50 	newnode->key = key;
51 	newnode->datum = datum;
52 	newnode->next = *dst;
53 	*dst = newnode;
54 
55 	h->nel++;
56 	return 0;
57 }
58 
59 void hashtab_destroy(struct hashtab *h)
60 {
61 	u32 i;
62 	struct hashtab_node *cur, *temp;
63 
64 	for (i = 0; i < h->size; i++) {
65 		cur = h->htable[i];
66 		while (cur) {
67 			temp = cur;
68 			cur = cur->next;
69 			kmem_cache_free(hashtab_node_cachep, temp);
70 		}
71 		h->htable[i] = NULL;
72 	}
73 
74 	kfree(h->htable);
75 	h->htable = NULL;
76 }
77 
78 int hashtab_map(struct hashtab *h,
79 		int (*apply)(void *k, void *d, void *args),
80 		void *args)
81 {
82 	u32 i;
83 	int ret;
84 	struct hashtab_node *cur;
85 
86 	for (i = 0; i < h->size; i++) {
87 		cur = h->htable[i];
88 		while (cur) {
89 			ret = apply(cur->key, cur->datum, args);
90 			if (ret)
91 				return ret;
92 			cur = cur->next;
93 		}
94 	}
95 	return 0;
96 }
97 
98 
99 void hashtab_stat(struct hashtab *h, struct hashtab_info *info)
100 {
101 	u32 i, chain_len, slots_used, max_chain_len;
102 	struct hashtab_node *cur;
103 
104 	slots_used = 0;
105 	max_chain_len = 0;
106 	for (i = 0; i < h->size; i++) {
107 		cur = h->htable[i];
108 		if (cur) {
109 			slots_used++;
110 			chain_len = 0;
111 			while (cur) {
112 				chain_len++;
113 				cur = cur->next;
114 			}
115 
116 			if (chain_len > max_chain_len)
117 				max_chain_len = chain_len;
118 		}
119 	}
120 
121 	info->slots_used = slots_used;
122 	info->max_chain_len = max_chain_len;
123 }
124 
125 void __init hashtab_cache_init(void)
126 {
127 		hashtab_node_cachep = kmem_cache_create("hashtab_node",
128 			sizeof(struct hashtab_node),
129 			0, SLAB_PANIC, NULL);
130 }
131