xref: /openbmc/linux/security/selinux/ss/hashtab.c (revision a89aa749ece9c6fee7932163472d2ee0efd6ddd3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Implementation of the hash table type.
4  *
5  * Author : Stephen Smalley, <sds@tycho.nsa.gov>
6  */
7 #include <linux/kernel.h>
8 #include <linux/slab.h>
9 #include <linux/errno.h>
10 #include <linux/sched.h>
11 #include "hashtab.h"
12 
13 static struct kmem_cache *hashtab_node_cachep;
14 
15 /*
16  * Here we simply round the number of elements up to the nearest power of two.
17  * I tried also other options like rouding down or rounding to the closest
18  * power of two (up or down based on which is closer), but I was unable to
19  * find any significant difference in lookup/insert performance that would
20  * justify switching to a different (less intuitive) formula. It could be that
21  * a different formula is actually more optimal, but any future changes here
22  * should be supported with performance/memory usage data.
23  *
24  * The total memory used by the htable arrays (only) with Fedora policy loaded
25  * is approximately 163 KB at the time of writing.
26  */
27 static u32 hashtab_compute_size(u32 nel)
28 {
29 	return nel == 0 ? 0 : roundup_pow_of_two(nel);
30 }
31 
32 struct hashtab *hashtab_create(u32 (*hash_value)(struct hashtab *h, const void *key),
33 			       int (*keycmp)(struct hashtab *h, const void *key1, const void *key2),
34 			       u32 nel_hint)
35 {
36 	struct hashtab *p;
37 	u32 i, size = hashtab_compute_size(nel_hint);
38 
39 	p = kzalloc(sizeof(*p), GFP_KERNEL);
40 	if (!p)
41 		return p;
42 
43 	p->size = size;
44 	p->nel = 0;
45 	p->hash_value = hash_value;
46 	p->keycmp = keycmp;
47 	if (!size)
48 		return p;
49 
50 	p->htable = kmalloc_array(size, sizeof(*p->htable), GFP_KERNEL);
51 	if (!p->htable) {
52 		kfree(p);
53 		return NULL;
54 	}
55 
56 	for (i = 0; i < size; i++)
57 		p->htable[i] = NULL;
58 
59 	return p;
60 }
61 
62 int hashtab_insert(struct hashtab *h, void *key, void *datum)
63 {
64 	u32 hvalue;
65 	struct hashtab_node *prev, *cur, *newnode;
66 
67 	cond_resched();
68 
69 	if (!h || !h->size || h->nel == HASHTAB_MAX_NODES)
70 		return -EINVAL;
71 
72 	hvalue = h->hash_value(h, key);
73 	prev = NULL;
74 	cur = h->htable[hvalue];
75 	while (cur && h->keycmp(h, key, cur->key) > 0) {
76 		prev = cur;
77 		cur = cur->next;
78 	}
79 
80 	if (cur && (h->keycmp(h, key, cur->key) == 0))
81 		return -EEXIST;
82 
83 	newnode = kmem_cache_zalloc(hashtab_node_cachep, GFP_KERNEL);
84 	if (!newnode)
85 		return -ENOMEM;
86 	newnode->key = key;
87 	newnode->datum = datum;
88 	if (prev) {
89 		newnode->next = prev->next;
90 		prev->next = newnode;
91 	} else {
92 		newnode->next = h->htable[hvalue];
93 		h->htable[hvalue] = newnode;
94 	}
95 
96 	h->nel++;
97 	return 0;
98 }
99 
100 void *hashtab_search(struct hashtab *h, const void *key)
101 {
102 	u32 hvalue;
103 	struct hashtab_node *cur;
104 
105 	if (!h || !h->size)
106 		return NULL;
107 
108 	hvalue = h->hash_value(h, key);
109 	cur = h->htable[hvalue];
110 	while (cur && h->keycmp(h, key, cur->key) > 0)
111 		cur = cur->next;
112 
113 	if (!cur || (h->keycmp(h, key, cur->key) != 0))
114 		return NULL;
115 
116 	return cur->datum;
117 }
118 
119 void hashtab_destroy(struct hashtab *h)
120 {
121 	u32 i;
122 	struct hashtab_node *cur, *temp;
123 
124 	if (!h)
125 		return;
126 
127 	for (i = 0; i < h->size; i++) {
128 		cur = h->htable[i];
129 		while (cur) {
130 			temp = cur;
131 			cur = cur->next;
132 			kmem_cache_free(hashtab_node_cachep, temp);
133 		}
134 		h->htable[i] = NULL;
135 	}
136 
137 	kfree(h->htable);
138 	h->htable = NULL;
139 
140 	kfree(h);
141 }
142 
143 int hashtab_map(struct hashtab *h,
144 		int (*apply)(void *k, void *d, void *args),
145 		void *args)
146 {
147 	u32 i;
148 	int ret;
149 	struct hashtab_node *cur;
150 
151 	if (!h)
152 		return 0;
153 
154 	for (i = 0; i < h->size; i++) {
155 		cur = h->htable[i];
156 		while (cur) {
157 			ret = apply(cur->key, cur->datum, args);
158 			if (ret)
159 				return ret;
160 			cur = cur->next;
161 		}
162 	}
163 	return 0;
164 }
165 
166 
167 void hashtab_stat(struct hashtab *h, struct hashtab_info *info)
168 {
169 	u32 i, chain_len, slots_used, max_chain_len;
170 	struct hashtab_node *cur;
171 
172 	slots_used = 0;
173 	max_chain_len = 0;
174 	for (i = 0; i < h->size; i++) {
175 		cur = h->htable[i];
176 		if (cur) {
177 			slots_used++;
178 			chain_len = 0;
179 			while (cur) {
180 				chain_len++;
181 				cur = cur->next;
182 			}
183 
184 			if (chain_len > max_chain_len)
185 				max_chain_len = chain_len;
186 		}
187 	}
188 
189 	info->slots_used = slots_used;
190 	info->max_chain_len = max_chain_len;
191 }
192 
193 void __init hashtab_cache_init(void)
194 {
195 		hashtab_node_cachep = kmem_cache_create("hashtab_node",
196 			sizeof(struct hashtab_node),
197 			0, SLAB_PANIC, NULL);
198 }
199