xref: /openbmc/linux/security/selinux/ss/conditional.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /* Authors: Karl MacMillan <kmacmillan@tresys.com>
2  *	    Frank Mayer <mayerf@tresys.com>
3  *
4  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
5  *	This program is free software; you can redistribute it and/or modify
6  *	it under the terms of the GNU General Public License as published by
7  *	the Free Software Foundation, version 2.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/string.h>
13 #include <linux/spinlock.h>
14 #include <linux/slab.h>
15 
16 #include "security.h"
17 #include "conditional.h"
18 
19 /*
20  * cond_evaluate_expr evaluates a conditional expr
21  * in reverse polish notation. It returns true (1), false (0),
22  * or undefined (-1). Undefined occurs when the expression
23  * exceeds the stack depth of COND_EXPR_MAXDEPTH.
24  */
25 static int cond_evaluate_expr(struct policydb *p, struct cond_expr *expr)
26 {
27 
28 	struct cond_expr *cur;
29 	int s[COND_EXPR_MAXDEPTH];
30 	int sp = -1;
31 
32 	for (cur = expr; cur; cur = cur->next) {
33 		switch (cur->expr_type) {
34 		case COND_BOOL:
35 			if (sp == (COND_EXPR_MAXDEPTH - 1))
36 				return -1;
37 			sp++;
38 			s[sp] = p->bool_val_to_struct[cur->bool - 1]->state;
39 			break;
40 		case COND_NOT:
41 			if (sp < 0)
42 				return -1;
43 			s[sp] = !s[sp];
44 			break;
45 		case COND_OR:
46 			if (sp < 1)
47 				return -1;
48 			sp--;
49 			s[sp] |= s[sp + 1];
50 			break;
51 		case COND_AND:
52 			if (sp < 1)
53 				return -1;
54 			sp--;
55 			s[sp] &= s[sp + 1];
56 			break;
57 		case COND_XOR:
58 			if (sp < 1)
59 				return -1;
60 			sp--;
61 			s[sp] ^= s[sp + 1];
62 			break;
63 		case COND_EQ:
64 			if (sp < 1)
65 				return -1;
66 			sp--;
67 			s[sp] = (s[sp] == s[sp + 1]);
68 			break;
69 		case COND_NEQ:
70 			if (sp < 1)
71 				return -1;
72 			sp--;
73 			s[sp] = (s[sp] != s[sp + 1]);
74 			break;
75 		default:
76 			return -1;
77 		}
78 	}
79 	return s[0];
80 }
81 
82 /*
83  * evaluate_cond_node evaluates the conditional stored in
84  * a struct cond_node and if the result is different than the
85  * current state of the node it sets the rules in the true/false
86  * list appropriately. If the result of the expression is undefined
87  * all of the rules are disabled for safety.
88  */
89 int evaluate_cond_node(struct policydb *p, struct cond_node *node)
90 {
91 	int new_state;
92 	struct cond_av_list *cur;
93 
94 	new_state = cond_evaluate_expr(p, node->expr);
95 	if (new_state != node->cur_state) {
96 		node->cur_state = new_state;
97 		if (new_state == -1)
98 			printk(KERN_ERR "SELinux: expression result was undefined - disabling all rules.\n");
99 		/* turn the rules on or off */
100 		for (cur = node->true_list; cur; cur = cur->next) {
101 			if (new_state <= 0)
102 				cur->node->key.specified &= ~AVTAB_ENABLED;
103 			else
104 				cur->node->key.specified |= AVTAB_ENABLED;
105 		}
106 
107 		for (cur = node->false_list; cur; cur = cur->next) {
108 			/* -1 or 1 */
109 			if (new_state)
110 				cur->node->key.specified &= ~AVTAB_ENABLED;
111 			else
112 				cur->node->key.specified |= AVTAB_ENABLED;
113 		}
114 	}
115 	return 0;
116 }
117 
118 int cond_policydb_init(struct policydb *p)
119 {
120 	int rc;
121 
122 	p->bool_val_to_struct = NULL;
123 	p->cond_list = NULL;
124 
125 	rc = avtab_init(&p->te_cond_avtab);
126 	if (rc)
127 		return rc;
128 
129 	return 0;
130 }
131 
132 static void cond_av_list_destroy(struct cond_av_list *list)
133 {
134 	struct cond_av_list *cur, *next;
135 	for (cur = list; cur; cur = next) {
136 		next = cur->next;
137 		/* the avtab_ptr_t node is destroy by the avtab */
138 		kfree(cur);
139 	}
140 }
141 
142 static void cond_node_destroy(struct cond_node *node)
143 {
144 	struct cond_expr *cur_expr, *next_expr;
145 
146 	for (cur_expr = node->expr; cur_expr; cur_expr = next_expr) {
147 		next_expr = cur_expr->next;
148 		kfree(cur_expr);
149 	}
150 	cond_av_list_destroy(node->true_list);
151 	cond_av_list_destroy(node->false_list);
152 	kfree(node);
153 }
154 
155 static void cond_list_destroy(struct cond_node *list)
156 {
157 	struct cond_node *next, *cur;
158 
159 	if (list == NULL)
160 		return;
161 
162 	for (cur = list; cur; cur = next) {
163 		next = cur->next;
164 		cond_node_destroy(cur);
165 	}
166 }
167 
168 void cond_policydb_destroy(struct policydb *p)
169 {
170 	kfree(p->bool_val_to_struct);
171 	avtab_destroy(&p->te_cond_avtab);
172 	cond_list_destroy(p->cond_list);
173 }
174 
175 int cond_init_bool_indexes(struct policydb *p)
176 {
177 	kfree(p->bool_val_to_struct);
178 	p->bool_val_to_struct = (struct cond_bool_datum **)
179 		kmalloc(p->p_bools.nprim * sizeof(struct cond_bool_datum *), GFP_KERNEL);
180 	if (!p->bool_val_to_struct)
181 		return -1;
182 	return 0;
183 }
184 
185 int cond_destroy_bool(void *key, void *datum, void *p)
186 {
187 	kfree(key);
188 	kfree(datum);
189 	return 0;
190 }
191 
192 int cond_index_bool(void *key, void *datum, void *datap)
193 {
194 	struct policydb *p;
195 	struct cond_bool_datum *booldatum;
196 
197 	booldatum = datum;
198 	p = datap;
199 
200 	if (!booldatum->value || booldatum->value > p->p_bools.nprim)
201 		return -EINVAL;
202 
203 	p->p_bool_val_to_name[booldatum->value - 1] = key;
204 	p->bool_val_to_struct[booldatum->value - 1] = booldatum;
205 
206 	return 0;
207 }
208 
209 static int bool_isvalid(struct cond_bool_datum *b)
210 {
211 	if (!(b->state == 0 || b->state == 1))
212 		return 0;
213 	return 1;
214 }
215 
216 int cond_read_bool(struct policydb *p, struct hashtab *h, void *fp)
217 {
218 	char *key = NULL;
219 	struct cond_bool_datum *booldatum;
220 	__le32 buf[3];
221 	u32 len;
222 	int rc;
223 
224 	booldatum = kzalloc(sizeof(struct cond_bool_datum), GFP_KERNEL);
225 	if (!booldatum)
226 		return -ENOMEM;
227 
228 	rc = next_entry(buf, fp, sizeof buf);
229 	if (rc)
230 		goto err;
231 
232 	booldatum->value = le32_to_cpu(buf[0]);
233 	booldatum->state = le32_to_cpu(buf[1]);
234 
235 	rc = -EINVAL;
236 	if (!bool_isvalid(booldatum))
237 		goto err;
238 
239 	len = le32_to_cpu(buf[2]);
240 
241 	rc = -ENOMEM;
242 	key = kmalloc(len + 1, GFP_KERNEL);
243 	if (!key)
244 		goto err;
245 	rc = next_entry(key, fp, len);
246 	if (rc)
247 		goto err;
248 	key[len] = '\0';
249 	rc = hashtab_insert(h, key, booldatum);
250 	if (rc)
251 		goto err;
252 
253 	return 0;
254 err:
255 	cond_destroy_bool(key, booldatum, NULL);
256 	return rc;
257 }
258 
259 struct cond_insertf_data {
260 	struct policydb *p;
261 	struct cond_av_list *other;
262 	struct cond_av_list *head;
263 	struct cond_av_list *tail;
264 };
265 
266 static int cond_insertf(struct avtab *a, struct avtab_key *k, struct avtab_datum *d, void *ptr)
267 {
268 	struct cond_insertf_data *data = ptr;
269 	struct policydb *p = data->p;
270 	struct cond_av_list *other = data->other, *list, *cur;
271 	struct avtab_node *node_ptr;
272 	u8 found;
273 	int rc = -EINVAL;
274 
275 	/*
276 	 * For type rules we have to make certain there aren't any
277 	 * conflicting rules by searching the te_avtab and the
278 	 * cond_te_avtab.
279 	 */
280 	if (k->specified & AVTAB_TYPE) {
281 		if (avtab_search(&p->te_avtab, k)) {
282 			printk(KERN_ERR "SELinux: type rule already exists outside of a conditional.\n");
283 			goto err;
284 		}
285 		/*
286 		 * If we are reading the false list other will be a pointer to
287 		 * the true list. We can have duplicate entries if there is only
288 		 * 1 other entry and it is in our true list.
289 		 *
290 		 * If we are reading the true list (other == NULL) there shouldn't
291 		 * be any other entries.
292 		 */
293 		if (other) {
294 			node_ptr = avtab_search_node(&p->te_cond_avtab, k);
295 			if (node_ptr) {
296 				if (avtab_search_node_next(node_ptr, k->specified)) {
297 					printk(KERN_ERR "SELinux: too many conflicting type rules.\n");
298 					goto err;
299 				}
300 				found = 0;
301 				for (cur = other; cur; cur = cur->next) {
302 					if (cur->node == node_ptr) {
303 						found = 1;
304 						break;
305 					}
306 				}
307 				if (!found) {
308 					printk(KERN_ERR "SELinux: conflicting type rules.\n");
309 					goto err;
310 				}
311 			}
312 		} else {
313 			if (avtab_search(&p->te_cond_avtab, k)) {
314 				printk(KERN_ERR "SELinux: conflicting type rules when adding type rule for true.\n");
315 				goto err;
316 			}
317 		}
318 	}
319 
320 	node_ptr = avtab_insert_nonunique(&p->te_cond_avtab, k, d);
321 	if (!node_ptr) {
322 		printk(KERN_ERR "SELinux: could not insert rule.\n");
323 		rc = -ENOMEM;
324 		goto err;
325 	}
326 
327 	list = kzalloc(sizeof(struct cond_av_list), GFP_KERNEL);
328 	if (!list) {
329 		rc = -ENOMEM;
330 		goto err;
331 	}
332 
333 	list->node = node_ptr;
334 	if (!data->head)
335 		data->head = list;
336 	else
337 		data->tail->next = list;
338 	data->tail = list;
339 	return 0;
340 
341 err:
342 	cond_av_list_destroy(data->head);
343 	data->head = NULL;
344 	return rc;
345 }
346 
347 static int cond_read_av_list(struct policydb *p, void *fp, struct cond_av_list **ret_list, struct cond_av_list *other)
348 {
349 	int i, rc;
350 	__le32 buf[1];
351 	u32 len;
352 	struct cond_insertf_data data;
353 
354 	*ret_list = NULL;
355 
356 	len = 0;
357 	rc = next_entry(buf, fp, sizeof(u32));
358 	if (rc)
359 		return rc;
360 
361 	len = le32_to_cpu(buf[0]);
362 	if (len == 0)
363 		return 0;
364 
365 	data.p = p;
366 	data.other = other;
367 	data.head = NULL;
368 	data.tail = NULL;
369 	for (i = 0; i < len; i++) {
370 		rc = avtab_read_item(&p->te_cond_avtab, fp, p, cond_insertf,
371 				     &data);
372 		if (rc)
373 			return rc;
374 	}
375 
376 	*ret_list = data.head;
377 	return 0;
378 }
379 
380 static int expr_isvalid(struct policydb *p, struct cond_expr *expr)
381 {
382 	if (expr->expr_type <= 0 || expr->expr_type > COND_LAST) {
383 		printk(KERN_ERR "SELinux: conditional expressions uses unknown operator.\n");
384 		return 0;
385 	}
386 
387 	if (expr->bool > p->p_bools.nprim) {
388 		printk(KERN_ERR "SELinux: conditional expressions uses unknown bool.\n");
389 		return 0;
390 	}
391 	return 1;
392 }
393 
394 static int cond_read_node(struct policydb *p, struct cond_node *node, void *fp)
395 {
396 	__le32 buf[2];
397 	u32 len, i;
398 	int rc;
399 	struct cond_expr *expr = NULL, *last = NULL;
400 
401 	rc = next_entry(buf, fp, sizeof(u32));
402 	if (rc)
403 		return rc;
404 
405 	node->cur_state = le32_to_cpu(buf[0]);
406 
407 	len = 0;
408 	rc = next_entry(buf, fp, sizeof(u32));
409 	if (rc)
410 		return rc;
411 
412 	/* expr */
413 	len = le32_to_cpu(buf[0]);
414 
415 	for (i = 0; i < len; i++) {
416 		rc = next_entry(buf, fp, sizeof(u32) * 2);
417 		if (rc)
418 			goto err;
419 
420 		rc = -ENOMEM;
421 		expr = kzalloc(sizeof(struct cond_expr), GFP_KERNEL);
422 		if (!expr)
423 			goto err;
424 
425 		expr->expr_type = le32_to_cpu(buf[0]);
426 		expr->bool = le32_to_cpu(buf[1]);
427 
428 		if (!expr_isvalid(p, expr)) {
429 			rc = -EINVAL;
430 			kfree(expr);
431 			goto err;
432 		}
433 
434 		if (i == 0)
435 			node->expr = expr;
436 		else
437 			last->next = expr;
438 		last = expr;
439 	}
440 
441 	rc = cond_read_av_list(p, fp, &node->true_list, NULL);
442 	if (rc)
443 		goto err;
444 	rc = cond_read_av_list(p, fp, &node->false_list, node->true_list);
445 	if (rc)
446 		goto err;
447 	return 0;
448 err:
449 	cond_node_destroy(node);
450 	return rc;
451 }
452 
453 int cond_read_list(struct policydb *p, void *fp)
454 {
455 	struct cond_node *node, *last = NULL;
456 	__le32 buf[1];
457 	u32 i, len;
458 	int rc;
459 
460 	rc = next_entry(buf, fp, sizeof buf);
461 	if (rc)
462 		return rc;
463 
464 	len = le32_to_cpu(buf[0]);
465 
466 	rc = avtab_alloc(&(p->te_cond_avtab), p->te_avtab.nel);
467 	if (rc)
468 		goto err;
469 
470 	for (i = 0; i < len; i++) {
471 		rc = -ENOMEM;
472 		node = kzalloc(sizeof(struct cond_node), GFP_KERNEL);
473 		if (!node)
474 			goto err;
475 
476 		rc = cond_read_node(p, node, fp);
477 		if (rc)
478 			goto err;
479 
480 		if (i == 0)
481 			p->cond_list = node;
482 		else
483 			last->next = node;
484 		last = node;
485 	}
486 	return 0;
487 err:
488 	cond_list_destroy(p->cond_list);
489 	p->cond_list = NULL;
490 	return rc;
491 }
492 
493 int cond_write_bool(void *vkey, void *datum, void *ptr)
494 {
495 	char *key = vkey;
496 	struct cond_bool_datum *booldatum = datum;
497 	struct policy_data *pd = ptr;
498 	void *fp = pd->fp;
499 	__le32 buf[3];
500 	u32 len;
501 	int rc;
502 
503 	len = strlen(key);
504 	buf[0] = cpu_to_le32(booldatum->value);
505 	buf[1] = cpu_to_le32(booldatum->state);
506 	buf[2] = cpu_to_le32(len);
507 	rc = put_entry(buf, sizeof(u32), 3, fp);
508 	if (rc)
509 		return rc;
510 	rc = put_entry(key, 1, len, fp);
511 	if (rc)
512 		return rc;
513 	return 0;
514 }
515 
516 /*
517  * cond_write_cond_av_list doesn't write out the av_list nodes.
518  * Instead it writes out the key/value pairs from the avtab. This
519  * is necessary because there is no way to uniquely identifying rules
520  * in the avtab so it is not possible to associate individual rules
521  * in the avtab with a conditional without saving them as part of
522  * the conditional. This means that the avtab with the conditional
523  * rules will not be saved but will be rebuilt on policy load.
524  */
525 static int cond_write_av_list(struct policydb *p,
526 			      struct cond_av_list *list, struct policy_file *fp)
527 {
528 	__le32 buf[1];
529 	struct cond_av_list *cur_list;
530 	u32 len;
531 	int rc;
532 
533 	len = 0;
534 	for (cur_list = list; cur_list != NULL; cur_list = cur_list->next)
535 		len++;
536 
537 	buf[0] = cpu_to_le32(len);
538 	rc = put_entry(buf, sizeof(u32), 1, fp);
539 	if (rc)
540 		return rc;
541 
542 	if (len == 0)
543 		return 0;
544 
545 	for (cur_list = list; cur_list != NULL; cur_list = cur_list->next) {
546 		rc = avtab_write_item(p, cur_list->node, fp);
547 		if (rc)
548 			return rc;
549 	}
550 
551 	return 0;
552 }
553 
554 int cond_write_node(struct policydb *p, struct cond_node *node,
555 		    struct policy_file *fp)
556 {
557 	struct cond_expr *cur_expr;
558 	__le32 buf[2];
559 	int rc;
560 	u32 len = 0;
561 
562 	buf[0] = cpu_to_le32(node->cur_state);
563 	rc = put_entry(buf, sizeof(u32), 1, fp);
564 	if (rc)
565 		return rc;
566 
567 	for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next)
568 		len++;
569 
570 	buf[0] = cpu_to_le32(len);
571 	rc = put_entry(buf, sizeof(u32), 1, fp);
572 	if (rc)
573 		return rc;
574 
575 	for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next) {
576 		buf[0] = cpu_to_le32(cur_expr->expr_type);
577 		buf[1] = cpu_to_le32(cur_expr->bool);
578 		rc = put_entry(buf, sizeof(u32), 2, fp);
579 		if (rc)
580 			return rc;
581 	}
582 
583 	rc = cond_write_av_list(p, node->true_list, fp);
584 	if (rc)
585 		return rc;
586 	rc = cond_write_av_list(p, node->false_list, fp);
587 	if (rc)
588 		return rc;
589 
590 	return 0;
591 }
592 
593 int cond_write_list(struct policydb *p, struct cond_node *list, void *fp)
594 {
595 	struct cond_node *cur;
596 	u32 len;
597 	__le32 buf[1];
598 	int rc;
599 
600 	len = 0;
601 	for (cur = list; cur != NULL; cur = cur->next)
602 		len++;
603 	buf[0] = cpu_to_le32(len);
604 	rc = put_entry(buf, sizeof(u32), 1, fp);
605 	if (rc)
606 		return rc;
607 
608 	for (cur = list; cur != NULL; cur = cur->next) {
609 		rc = cond_write_node(p, cur, fp);
610 		if (rc)
611 			return rc;
612 	}
613 
614 	return 0;
615 }
616 /* Determine whether additional permissions are granted by the conditional
617  * av table, and if so, add them to the result
618  */
619 void cond_compute_av(struct avtab *ctab, struct avtab_key *key, struct av_decision *avd)
620 {
621 	struct avtab_node *node;
622 
623 	if (!ctab || !key || !avd)
624 		return;
625 
626 	for (node = avtab_search_node(ctab, key); node;
627 				node = avtab_search_node_next(node, key->specified)) {
628 		if ((u16)(AVTAB_ALLOWED|AVTAB_ENABLED) ==
629 		    (node->key.specified & (AVTAB_ALLOWED|AVTAB_ENABLED)))
630 			avd->allowed |= node->datum.data;
631 		if ((u16)(AVTAB_AUDITDENY|AVTAB_ENABLED) ==
632 		    (node->key.specified & (AVTAB_AUDITDENY|AVTAB_ENABLED)))
633 			/* Since a '0' in an auditdeny mask represents a
634 			 * permission we do NOT want to audit (dontaudit), we use
635 			 * the '&' operand to ensure that all '0's in the mask
636 			 * are retained (much unlike the allow and auditallow cases).
637 			 */
638 			avd->auditdeny &= node->datum.data;
639 		if ((u16)(AVTAB_AUDITALLOW|AVTAB_ENABLED) ==
640 		    (node->key.specified & (AVTAB_AUDITALLOW|AVTAB_ENABLED)))
641 			avd->auditallow |= node->datum.data;
642 	}
643 	return;
644 }
645