1 /* Authors: Karl MacMillan <kmacmillan@tresys.com>
2  *	    Frank Mayer <mayerf@tresys.com>
3  *
4  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
5  *	This program is free software; you can redistribute it and/or modify
6  *	it under the terms of the GNU General Public License as published by
7  *	the Free Software Foundation, version 2.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/string.h>
13 #include <linux/spinlock.h>
14 #include <linux/slab.h>
15 
16 #include "security.h"
17 #include "conditional.h"
18 #include "services.h"
19 
20 /*
21  * cond_evaluate_expr evaluates a conditional expr
22  * in reverse polish notation. It returns true (1), false (0),
23  * or undefined (-1). Undefined occurs when the expression
24  * exceeds the stack depth of COND_EXPR_MAXDEPTH.
25  */
26 static int cond_evaluate_expr(struct policydb *p, struct cond_expr *expr)
27 {
28 
29 	struct cond_expr *cur;
30 	int s[COND_EXPR_MAXDEPTH];
31 	int sp = -1;
32 
33 	for (cur = expr; cur; cur = cur->next) {
34 		switch (cur->expr_type) {
35 		case COND_BOOL:
36 			if (sp == (COND_EXPR_MAXDEPTH - 1))
37 				return -1;
38 			sp++;
39 			s[sp] = p->bool_val_to_struct[cur->bool - 1]->state;
40 			break;
41 		case COND_NOT:
42 			if (sp < 0)
43 				return -1;
44 			s[sp] = !s[sp];
45 			break;
46 		case COND_OR:
47 			if (sp < 1)
48 				return -1;
49 			sp--;
50 			s[sp] |= s[sp + 1];
51 			break;
52 		case COND_AND:
53 			if (sp < 1)
54 				return -1;
55 			sp--;
56 			s[sp] &= s[sp + 1];
57 			break;
58 		case COND_XOR:
59 			if (sp < 1)
60 				return -1;
61 			sp--;
62 			s[sp] ^= s[sp + 1];
63 			break;
64 		case COND_EQ:
65 			if (sp < 1)
66 				return -1;
67 			sp--;
68 			s[sp] = (s[sp] == s[sp + 1]);
69 			break;
70 		case COND_NEQ:
71 			if (sp < 1)
72 				return -1;
73 			sp--;
74 			s[sp] = (s[sp] != s[sp + 1]);
75 			break;
76 		default:
77 			return -1;
78 		}
79 	}
80 	return s[0];
81 }
82 
83 /*
84  * evaluate_cond_node evaluates the conditional stored in
85  * a struct cond_node and if the result is different than the
86  * current state of the node it sets the rules in the true/false
87  * list appropriately. If the result of the expression is undefined
88  * all of the rules are disabled for safety.
89  */
90 int evaluate_cond_node(struct policydb *p, struct cond_node *node)
91 {
92 	int new_state;
93 	struct cond_av_list *cur;
94 
95 	new_state = cond_evaluate_expr(p, node->expr);
96 	if (new_state != node->cur_state) {
97 		node->cur_state = new_state;
98 		if (new_state == -1)
99 			printk(KERN_ERR "SELinux: expression result was undefined - disabling all rules.\n");
100 		/* turn the rules on or off */
101 		for (cur = node->true_list; cur; cur = cur->next) {
102 			if (new_state <= 0)
103 				cur->node->key.specified &= ~AVTAB_ENABLED;
104 			else
105 				cur->node->key.specified |= AVTAB_ENABLED;
106 		}
107 
108 		for (cur = node->false_list; cur; cur = cur->next) {
109 			/* -1 or 1 */
110 			if (new_state)
111 				cur->node->key.specified &= ~AVTAB_ENABLED;
112 			else
113 				cur->node->key.specified |= AVTAB_ENABLED;
114 		}
115 	}
116 	return 0;
117 }
118 
119 int cond_policydb_init(struct policydb *p)
120 {
121 	int rc;
122 
123 	p->bool_val_to_struct = NULL;
124 	p->cond_list = NULL;
125 
126 	rc = avtab_init(&p->te_cond_avtab);
127 	if (rc)
128 		return rc;
129 
130 	return 0;
131 }
132 
133 static void cond_av_list_destroy(struct cond_av_list *list)
134 {
135 	struct cond_av_list *cur, *next;
136 	for (cur = list; cur; cur = next) {
137 		next = cur->next;
138 		/* the avtab_ptr_t node is destroy by the avtab */
139 		kfree(cur);
140 	}
141 }
142 
143 static void cond_node_destroy(struct cond_node *node)
144 {
145 	struct cond_expr *cur_expr, *next_expr;
146 
147 	for (cur_expr = node->expr; cur_expr; cur_expr = next_expr) {
148 		next_expr = cur_expr->next;
149 		kfree(cur_expr);
150 	}
151 	cond_av_list_destroy(node->true_list);
152 	cond_av_list_destroy(node->false_list);
153 	kfree(node);
154 }
155 
156 static void cond_list_destroy(struct cond_node *list)
157 {
158 	struct cond_node *next, *cur;
159 
160 	if (list == NULL)
161 		return;
162 
163 	for (cur = list; cur; cur = next) {
164 		next = cur->next;
165 		cond_node_destroy(cur);
166 	}
167 }
168 
169 void cond_policydb_destroy(struct policydb *p)
170 {
171 	kfree(p->bool_val_to_struct);
172 	avtab_destroy(&p->te_cond_avtab);
173 	cond_list_destroy(p->cond_list);
174 }
175 
176 int cond_init_bool_indexes(struct policydb *p)
177 {
178 	kfree(p->bool_val_to_struct);
179 	p->bool_val_to_struct =
180 		kmalloc(p->p_bools.nprim * sizeof(struct cond_bool_datum *), GFP_KERNEL);
181 	if (!p->bool_val_to_struct)
182 		return -ENOMEM;
183 	return 0;
184 }
185 
186 int cond_destroy_bool(void *key, void *datum, void *p)
187 {
188 	kfree(key);
189 	kfree(datum);
190 	return 0;
191 }
192 
193 int cond_index_bool(void *key, void *datum, void *datap)
194 {
195 	struct policydb *p;
196 	struct cond_bool_datum *booldatum;
197 	struct flex_array *fa;
198 
199 	booldatum = datum;
200 	p = datap;
201 
202 	if (!booldatum->value || booldatum->value > p->p_bools.nprim)
203 		return -EINVAL;
204 
205 	fa = p->sym_val_to_name[SYM_BOOLS];
206 	if (flex_array_put_ptr(fa, booldatum->value - 1, key,
207 			       GFP_KERNEL | __GFP_ZERO))
208 		BUG();
209 	p->bool_val_to_struct[booldatum->value - 1] = booldatum;
210 
211 	return 0;
212 }
213 
214 static int bool_isvalid(struct cond_bool_datum *b)
215 {
216 	if (!(b->state == 0 || b->state == 1))
217 		return 0;
218 	return 1;
219 }
220 
221 int cond_read_bool(struct policydb *p, struct hashtab *h, void *fp)
222 {
223 	char *key = NULL;
224 	struct cond_bool_datum *booldatum;
225 	__le32 buf[3];
226 	u32 len;
227 	int rc;
228 
229 	booldatum = kzalloc(sizeof(struct cond_bool_datum), GFP_KERNEL);
230 	if (!booldatum)
231 		return -ENOMEM;
232 
233 	rc = next_entry(buf, fp, sizeof buf);
234 	if (rc)
235 		goto err;
236 
237 	booldatum->value = le32_to_cpu(buf[0]);
238 	booldatum->state = le32_to_cpu(buf[1]);
239 
240 	rc = -EINVAL;
241 	if (!bool_isvalid(booldatum))
242 		goto err;
243 
244 	len = le32_to_cpu(buf[2]);
245 
246 	rc = -ENOMEM;
247 	key = kmalloc(len + 1, GFP_KERNEL);
248 	if (!key)
249 		goto err;
250 	rc = next_entry(key, fp, len);
251 	if (rc)
252 		goto err;
253 	key[len] = '\0';
254 	rc = hashtab_insert(h, key, booldatum);
255 	if (rc)
256 		goto err;
257 
258 	return 0;
259 err:
260 	cond_destroy_bool(key, booldatum, NULL);
261 	return rc;
262 }
263 
264 struct cond_insertf_data {
265 	struct policydb *p;
266 	struct cond_av_list *other;
267 	struct cond_av_list *head;
268 	struct cond_av_list *tail;
269 };
270 
271 static int cond_insertf(struct avtab *a, struct avtab_key *k, struct avtab_datum *d, void *ptr)
272 {
273 	struct cond_insertf_data *data = ptr;
274 	struct policydb *p = data->p;
275 	struct cond_av_list *other = data->other, *list, *cur;
276 	struct avtab_node *node_ptr;
277 	u8 found;
278 	int rc = -EINVAL;
279 
280 	/*
281 	 * For type rules we have to make certain there aren't any
282 	 * conflicting rules by searching the te_avtab and the
283 	 * cond_te_avtab.
284 	 */
285 	if (k->specified & AVTAB_TYPE) {
286 		if (avtab_search(&p->te_avtab, k)) {
287 			printk(KERN_ERR "SELinux: type rule already exists outside of a conditional.\n");
288 			goto err;
289 		}
290 		/*
291 		 * If we are reading the false list other will be a pointer to
292 		 * the true list. We can have duplicate entries if there is only
293 		 * 1 other entry and it is in our true list.
294 		 *
295 		 * If we are reading the true list (other == NULL) there shouldn't
296 		 * be any other entries.
297 		 */
298 		if (other) {
299 			node_ptr = avtab_search_node(&p->te_cond_avtab, k);
300 			if (node_ptr) {
301 				if (avtab_search_node_next(node_ptr, k->specified)) {
302 					printk(KERN_ERR "SELinux: too many conflicting type rules.\n");
303 					goto err;
304 				}
305 				found = 0;
306 				for (cur = other; cur; cur = cur->next) {
307 					if (cur->node == node_ptr) {
308 						found = 1;
309 						break;
310 					}
311 				}
312 				if (!found) {
313 					printk(KERN_ERR "SELinux: conflicting type rules.\n");
314 					goto err;
315 				}
316 			}
317 		} else {
318 			if (avtab_search(&p->te_cond_avtab, k)) {
319 				printk(KERN_ERR "SELinux: conflicting type rules when adding type rule for true.\n");
320 				goto err;
321 			}
322 		}
323 	}
324 
325 	node_ptr = avtab_insert_nonunique(&p->te_cond_avtab, k, d);
326 	if (!node_ptr) {
327 		printk(KERN_ERR "SELinux: could not insert rule.\n");
328 		rc = -ENOMEM;
329 		goto err;
330 	}
331 
332 	list = kzalloc(sizeof(struct cond_av_list), GFP_KERNEL);
333 	if (!list) {
334 		rc = -ENOMEM;
335 		goto err;
336 	}
337 
338 	list->node = node_ptr;
339 	if (!data->head)
340 		data->head = list;
341 	else
342 		data->tail->next = list;
343 	data->tail = list;
344 	return 0;
345 
346 err:
347 	cond_av_list_destroy(data->head);
348 	data->head = NULL;
349 	return rc;
350 }
351 
352 static int cond_read_av_list(struct policydb *p, void *fp, struct cond_av_list **ret_list, struct cond_av_list *other)
353 {
354 	int i, rc;
355 	__le32 buf[1];
356 	u32 len;
357 	struct cond_insertf_data data;
358 
359 	*ret_list = NULL;
360 
361 	len = 0;
362 	rc = next_entry(buf, fp, sizeof(u32));
363 	if (rc)
364 		return rc;
365 
366 	len = le32_to_cpu(buf[0]);
367 	if (len == 0)
368 		return 0;
369 
370 	data.p = p;
371 	data.other = other;
372 	data.head = NULL;
373 	data.tail = NULL;
374 	for (i = 0; i < len; i++) {
375 		rc = avtab_read_item(&p->te_cond_avtab, fp, p, cond_insertf,
376 				     &data);
377 		if (rc)
378 			return rc;
379 	}
380 
381 	*ret_list = data.head;
382 	return 0;
383 }
384 
385 static int expr_isvalid(struct policydb *p, struct cond_expr *expr)
386 {
387 	if (expr->expr_type <= 0 || expr->expr_type > COND_LAST) {
388 		printk(KERN_ERR "SELinux: conditional expressions uses unknown operator.\n");
389 		return 0;
390 	}
391 
392 	if (expr->bool > p->p_bools.nprim) {
393 		printk(KERN_ERR "SELinux: conditional expressions uses unknown bool.\n");
394 		return 0;
395 	}
396 	return 1;
397 }
398 
399 static int cond_read_node(struct policydb *p, struct cond_node *node, void *fp)
400 {
401 	__le32 buf[2];
402 	u32 len, i;
403 	int rc;
404 	struct cond_expr *expr = NULL, *last = NULL;
405 
406 	rc = next_entry(buf, fp, sizeof(u32) * 2);
407 	if (rc)
408 		goto err;
409 
410 	node->cur_state = le32_to_cpu(buf[0]);
411 
412 	/* expr */
413 	len = le32_to_cpu(buf[1]);
414 
415 	for (i = 0; i < len; i++) {
416 		rc = next_entry(buf, fp, sizeof(u32) * 2);
417 		if (rc)
418 			goto err;
419 
420 		rc = -ENOMEM;
421 		expr = kzalloc(sizeof(struct cond_expr), GFP_KERNEL);
422 		if (!expr)
423 			goto err;
424 
425 		expr->expr_type = le32_to_cpu(buf[0]);
426 		expr->bool = le32_to_cpu(buf[1]);
427 
428 		if (!expr_isvalid(p, expr)) {
429 			rc = -EINVAL;
430 			kfree(expr);
431 			goto err;
432 		}
433 
434 		if (i == 0)
435 			node->expr = expr;
436 		else
437 			last->next = expr;
438 		last = expr;
439 	}
440 
441 	rc = cond_read_av_list(p, fp, &node->true_list, NULL);
442 	if (rc)
443 		goto err;
444 	rc = cond_read_av_list(p, fp, &node->false_list, node->true_list);
445 	if (rc)
446 		goto err;
447 	return 0;
448 err:
449 	cond_node_destroy(node);
450 	return rc;
451 }
452 
453 int cond_read_list(struct policydb *p, void *fp)
454 {
455 	struct cond_node *node, *last = NULL;
456 	__le32 buf[1];
457 	u32 i, len;
458 	int rc;
459 
460 	rc = next_entry(buf, fp, sizeof buf);
461 	if (rc)
462 		return rc;
463 
464 	len = le32_to_cpu(buf[0]);
465 
466 	rc = avtab_alloc(&(p->te_cond_avtab), p->te_avtab.nel);
467 	if (rc)
468 		goto err;
469 
470 	for (i = 0; i < len; i++) {
471 		rc = -ENOMEM;
472 		node = kzalloc(sizeof(struct cond_node), GFP_KERNEL);
473 		if (!node)
474 			goto err;
475 
476 		rc = cond_read_node(p, node, fp);
477 		if (rc)
478 			goto err;
479 
480 		if (i == 0)
481 			p->cond_list = node;
482 		else
483 			last->next = node;
484 		last = node;
485 	}
486 	return 0;
487 err:
488 	cond_list_destroy(p->cond_list);
489 	p->cond_list = NULL;
490 	return rc;
491 }
492 
493 int cond_write_bool(void *vkey, void *datum, void *ptr)
494 {
495 	char *key = vkey;
496 	struct cond_bool_datum *booldatum = datum;
497 	struct policy_data *pd = ptr;
498 	void *fp = pd->fp;
499 	__le32 buf[3];
500 	u32 len;
501 	int rc;
502 
503 	len = strlen(key);
504 	buf[0] = cpu_to_le32(booldatum->value);
505 	buf[1] = cpu_to_le32(booldatum->state);
506 	buf[2] = cpu_to_le32(len);
507 	rc = put_entry(buf, sizeof(u32), 3, fp);
508 	if (rc)
509 		return rc;
510 	rc = put_entry(key, 1, len, fp);
511 	if (rc)
512 		return rc;
513 	return 0;
514 }
515 
516 /*
517  * cond_write_cond_av_list doesn't write out the av_list nodes.
518  * Instead it writes out the key/value pairs from the avtab. This
519  * is necessary because there is no way to uniquely identifying rules
520  * in the avtab so it is not possible to associate individual rules
521  * in the avtab with a conditional without saving them as part of
522  * the conditional. This means that the avtab with the conditional
523  * rules will not be saved but will be rebuilt on policy load.
524  */
525 static int cond_write_av_list(struct policydb *p,
526 			      struct cond_av_list *list, struct policy_file *fp)
527 {
528 	__le32 buf[1];
529 	struct cond_av_list *cur_list;
530 	u32 len;
531 	int rc;
532 
533 	len = 0;
534 	for (cur_list = list; cur_list != NULL; cur_list = cur_list->next)
535 		len++;
536 
537 	buf[0] = cpu_to_le32(len);
538 	rc = put_entry(buf, sizeof(u32), 1, fp);
539 	if (rc)
540 		return rc;
541 
542 	if (len == 0)
543 		return 0;
544 
545 	for (cur_list = list; cur_list != NULL; cur_list = cur_list->next) {
546 		rc = avtab_write_item(p, cur_list->node, fp);
547 		if (rc)
548 			return rc;
549 	}
550 
551 	return 0;
552 }
553 
554 static int cond_write_node(struct policydb *p, struct cond_node *node,
555 		    struct policy_file *fp)
556 {
557 	struct cond_expr *cur_expr;
558 	__le32 buf[2];
559 	int rc;
560 	u32 len = 0;
561 
562 	buf[0] = cpu_to_le32(node->cur_state);
563 	rc = put_entry(buf, sizeof(u32), 1, fp);
564 	if (rc)
565 		return rc;
566 
567 	for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next)
568 		len++;
569 
570 	buf[0] = cpu_to_le32(len);
571 	rc = put_entry(buf, sizeof(u32), 1, fp);
572 	if (rc)
573 		return rc;
574 
575 	for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next) {
576 		buf[0] = cpu_to_le32(cur_expr->expr_type);
577 		buf[1] = cpu_to_le32(cur_expr->bool);
578 		rc = put_entry(buf, sizeof(u32), 2, fp);
579 		if (rc)
580 			return rc;
581 	}
582 
583 	rc = cond_write_av_list(p, node->true_list, fp);
584 	if (rc)
585 		return rc;
586 	rc = cond_write_av_list(p, node->false_list, fp);
587 	if (rc)
588 		return rc;
589 
590 	return 0;
591 }
592 
593 int cond_write_list(struct policydb *p, struct cond_node *list, void *fp)
594 {
595 	struct cond_node *cur;
596 	u32 len;
597 	__le32 buf[1];
598 	int rc;
599 
600 	len = 0;
601 	for (cur = list; cur != NULL; cur = cur->next)
602 		len++;
603 	buf[0] = cpu_to_le32(len);
604 	rc = put_entry(buf, sizeof(u32), 1, fp);
605 	if (rc)
606 		return rc;
607 
608 	for (cur = list; cur != NULL; cur = cur->next) {
609 		rc = cond_write_node(p, cur, fp);
610 		if (rc)
611 			return rc;
612 	}
613 
614 	return 0;
615 }
616 
617 void cond_compute_xperms(struct avtab *ctab, struct avtab_key *key,
618 		struct extended_perms_decision *xpermd)
619 {
620 	struct avtab_node *node;
621 
622 	if (!ctab || !key || !xpermd)
623 		return;
624 
625 	for (node = avtab_search_node(ctab, key); node;
626 			node = avtab_search_node_next(node, key->specified)) {
627 		if (node->key.specified & AVTAB_ENABLED)
628 			services_compute_xperms_decision(xpermd, node);
629 	}
630 	return;
631 
632 }
633 /* Determine whether additional permissions are granted by the conditional
634  * av table, and if so, add them to the result
635  */
636 void cond_compute_av(struct avtab *ctab, struct avtab_key *key,
637 		struct av_decision *avd, struct extended_perms *xperms)
638 {
639 	struct avtab_node *node;
640 
641 	if (!ctab || !key || !avd || !xperms)
642 		return;
643 
644 	for (node = avtab_search_node(ctab, key); node;
645 				node = avtab_search_node_next(node, key->specified)) {
646 		if ((u16)(AVTAB_ALLOWED|AVTAB_ENABLED) ==
647 		    (node->key.specified & (AVTAB_ALLOWED|AVTAB_ENABLED)))
648 			avd->allowed |= node->datum.u.data;
649 		if ((u16)(AVTAB_AUDITDENY|AVTAB_ENABLED) ==
650 		    (node->key.specified & (AVTAB_AUDITDENY|AVTAB_ENABLED)))
651 			/* Since a '0' in an auditdeny mask represents a
652 			 * permission we do NOT want to audit (dontaudit), we use
653 			 * the '&' operand to ensure that all '0's in the mask
654 			 * are retained (much unlike the allow and auditallow cases).
655 			 */
656 			avd->auditdeny &= node->datum.u.data;
657 		if ((u16)(AVTAB_AUDITALLOW|AVTAB_ENABLED) ==
658 		    (node->key.specified & (AVTAB_AUDITALLOW|AVTAB_ENABLED)))
659 			avd->auditallow |= node->datum.u.data;
660 		if ((node->key.specified & AVTAB_ENABLED) &&
661 				(node->key.specified & AVTAB_XPERMS))
662 			services_compute_xperms_drivers(xperms, node);
663 	}
664 	return;
665 }
666