1 /* Authors: Karl MacMillan <kmacmillan@tresys.com>
2  *	    Frank Mayer <mayerf@tresys.com>
3  *
4  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
5  *	This program is free software; you can redistribute it and/or modify
6  *	it under the terms of the GNU General Public License as published by
7  *	the Free Software Foundation, version 2.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/string.h>
13 #include <linux/spinlock.h>
14 #include <linux/slab.h>
15 
16 #include "security.h"
17 #include "conditional.h"
18 #include "services.h"
19 
20 /*
21  * cond_evaluate_expr evaluates a conditional expr
22  * in reverse polish notation. It returns true (1), false (0),
23  * or undefined (-1). Undefined occurs when the expression
24  * exceeds the stack depth of COND_EXPR_MAXDEPTH.
25  */
26 static int cond_evaluate_expr(struct policydb *p, struct cond_expr *expr)
27 {
28 
29 	struct cond_expr *cur;
30 	int s[COND_EXPR_MAXDEPTH];
31 	int sp = -1;
32 
33 	for (cur = expr; cur; cur = cur->next) {
34 		switch (cur->expr_type) {
35 		case COND_BOOL:
36 			if (sp == (COND_EXPR_MAXDEPTH - 1))
37 				return -1;
38 			sp++;
39 			s[sp] = p->bool_val_to_struct[cur->bool - 1]->state;
40 			break;
41 		case COND_NOT:
42 			if (sp < 0)
43 				return -1;
44 			s[sp] = !s[sp];
45 			break;
46 		case COND_OR:
47 			if (sp < 1)
48 				return -1;
49 			sp--;
50 			s[sp] |= s[sp + 1];
51 			break;
52 		case COND_AND:
53 			if (sp < 1)
54 				return -1;
55 			sp--;
56 			s[sp] &= s[sp + 1];
57 			break;
58 		case COND_XOR:
59 			if (sp < 1)
60 				return -1;
61 			sp--;
62 			s[sp] ^= s[sp + 1];
63 			break;
64 		case COND_EQ:
65 			if (sp < 1)
66 				return -1;
67 			sp--;
68 			s[sp] = (s[sp] == s[sp + 1]);
69 			break;
70 		case COND_NEQ:
71 			if (sp < 1)
72 				return -1;
73 			sp--;
74 			s[sp] = (s[sp] != s[sp + 1]);
75 			break;
76 		default:
77 			return -1;
78 		}
79 	}
80 	return s[0];
81 }
82 
83 /*
84  * evaluate_cond_node evaluates the conditional stored in
85  * a struct cond_node and if the result is different than the
86  * current state of the node it sets the rules in the true/false
87  * list appropriately. If the result of the expression is undefined
88  * all of the rules are disabled for safety.
89  */
90 int evaluate_cond_node(struct policydb *p, struct cond_node *node)
91 {
92 	int new_state;
93 	struct cond_av_list *cur;
94 
95 	new_state = cond_evaluate_expr(p, node->expr);
96 	if (new_state != node->cur_state) {
97 		node->cur_state = new_state;
98 		if (new_state == -1)
99 			printk(KERN_ERR "SELinux: expression result was undefined - disabling all rules.\n");
100 		/* turn the rules on or off */
101 		for (cur = node->true_list; cur; cur = cur->next) {
102 			if (new_state <= 0)
103 				cur->node->key.specified &= ~AVTAB_ENABLED;
104 			else
105 				cur->node->key.specified |= AVTAB_ENABLED;
106 		}
107 
108 		for (cur = node->false_list; cur; cur = cur->next) {
109 			/* -1 or 1 */
110 			if (new_state)
111 				cur->node->key.specified &= ~AVTAB_ENABLED;
112 			else
113 				cur->node->key.specified |= AVTAB_ENABLED;
114 		}
115 	}
116 	return 0;
117 }
118 
119 int cond_policydb_init(struct policydb *p)
120 {
121 	int rc;
122 
123 	p->bool_val_to_struct = NULL;
124 	p->cond_list = NULL;
125 
126 	rc = avtab_init(&p->te_cond_avtab);
127 	if (rc)
128 		return rc;
129 
130 	return 0;
131 }
132 
133 static void cond_av_list_destroy(struct cond_av_list *list)
134 {
135 	struct cond_av_list *cur, *next;
136 	for (cur = list; cur; cur = next) {
137 		next = cur->next;
138 		/* the avtab_ptr_t node is destroy by the avtab */
139 		kfree(cur);
140 	}
141 }
142 
143 static void cond_node_destroy(struct cond_node *node)
144 {
145 	struct cond_expr *cur_expr, *next_expr;
146 
147 	for (cur_expr = node->expr; cur_expr; cur_expr = next_expr) {
148 		next_expr = cur_expr->next;
149 		kfree(cur_expr);
150 	}
151 	cond_av_list_destroy(node->true_list);
152 	cond_av_list_destroy(node->false_list);
153 	kfree(node);
154 }
155 
156 static void cond_list_destroy(struct cond_node *list)
157 {
158 	struct cond_node *next, *cur;
159 
160 	if (list == NULL)
161 		return;
162 
163 	for (cur = list; cur; cur = next) {
164 		next = cur->next;
165 		cond_node_destroy(cur);
166 	}
167 }
168 
169 void cond_policydb_destroy(struct policydb *p)
170 {
171 	kfree(p->bool_val_to_struct);
172 	avtab_destroy(&p->te_cond_avtab);
173 	cond_list_destroy(p->cond_list);
174 }
175 
176 int cond_init_bool_indexes(struct policydb *p)
177 {
178 	kfree(p->bool_val_to_struct);
179 	p->bool_val_to_struct = kmalloc_array(p->p_bools.nprim,
180 					      sizeof(*p->bool_val_to_struct),
181 					      GFP_KERNEL);
182 	if (!p->bool_val_to_struct)
183 		return -ENOMEM;
184 	return 0;
185 }
186 
187 int cond_destroy_bool(void *key, void *datum, void *p)
188 {
189 	kfree(key);
190 	kfree(datum);
191 	return 0;
192 }
193 
194 int cond_index_bool(void *key, void *datum, void *datap)
195 {
196 	struct policydb *p;
197 	struct cond_bool_datum *booldatum;
198 	struct flex_array *fa;
199 
200 	booldatum = datum;
201 	p = datap;
202 
203 	if (!booldatum->value || booldatum->value > p->p_bools.nprim)
204 		return -EINVAL;
205 
206 	fa = p->sym_val_to_name[SYM_BOOLS];
207 	if (flex_array_put_ptr(fa, booldatum->value - 1, key,
208 			       GFP_KERNEL | __GFP_ZERO))
209 		BUG();
210 	p->bool_val_to_struct[booldatum->value - 1] = booldatum;
211 
212 	return 0;
213 }
214 
215 static int bool_isvalid(struct cond_bool_datum *b)
216 {
217 	if (!(b->state == 0 || b->state == 1))
218 		return 0;
219 	return 1;
220 }
221 
222 int cond_read_bool(struct policydb *p, struct hashtab *h, void *fp)
223 {
224 	char *key = NULL;
225 	struct cond_bool_datum *booldatum;
226 	__le32 buf[3];
227 	u32 len;
228 	int rc;
229 
230 	booldatum = kzalloc(sizeof(*booldatum), GFP_KERNEL);
231 	if (!booldatum)
232 		return -ENOMEM;
233 
234 	rc = next_entry(buf, fp, sizeof buf);
235 	if (rc)
236 		goto err;
237 
238 	booldatum->value = le32_to_cpu(buf[0]);
239 	booldatum->state = le32_to_cpu(buf[1]);
240 
241 	rc = -EINVAL;
242 	if (!bool_isvalid(booldatum))
243 		goto err;
244 
245 	len = le32_to_cpu(buf[2]);
246 	if (((len == 0) || (len == (u32)-1)))
247 		goto err;
248 
249 	rc = -ENOMEM;
250 	key = kmalloc(len + 1, GFP_KERNEL);
251 	if (!key)
252 		goto err;
253 	rc = next_entry(key, fp, len);
254 	if (rc)
255 		goto err;
256 	key[len] = '\0';
257 	rc = hashtab_insert(h, key, booldatum);
258 	if (rc)
259 		goto err;
260 
261 	return 0;
262 err:
263 	cond_destroy_bool(key, booldatum, NULL);
264 	return rc;
265 }
266 
267 struct cond_insertf_data {
268 	struct policydb *p;
269 	struct cond_av_list *other;
270 	struct cond_av_list *head;
271 	struct cond_av_list *tail;
272 };
273 
274 static int cond_insertf(struct avtab *a, struct avtab_key *k, struct avtab_datum *d, void *ptr)
275 {
276 	struct cond_insertf_data *data = ptr;
277 	struct policydb *p = data->p;
278 	struct cond_av_list *other = data->other, *list, *cur;
279 	struct avtab_node *node_ptr;
280 	u8 found;
281 	int rc = -EINVAL;
282 
283 	/*
284 	 * For type rules we have to make certain there aren't any
285 	 * conflicting rules by searching the te_avtab and the
286 	 * cond_te_avtab.
287 	 */
288 	if (k->specified & AVTAB_TYPE) {
289 		if (avtab_search(&p->te_avtab, k)) {
290 			printk(KERN_ERR "SELinux: type rule already exists outside of a conditional.\n");
291 			goto err;
292 		}
293 		/*
294 		 * If we are reading the false list other will be a pointer to
295 		 * the true list. We can have duplicate entries if there is only
296 		 * 1 other entry and it is in our true list.
297 		 *
298 		 * If we are reading the true list (other == NULL) there shouldn't
299 		 * be any other entries.
300 		 */
301 		if (other) {
302 			node_ptr = avtab_search_node(&p->te_cond_avtab, k);
303 			if (node_ptr) {
304 				if (avtab_search_node_next(node_ptr, k->specified)) {
305 					printk(KERN_ERR "SELinux: too many conflicting type rules.\n");
306 					goto err;
307 				}
308 				found = 0;
309 				for (cur = other; cur; cur = cur->next) {
310 					if (cur->node == node_ptr) {
311 						found = 1;
312 						break;
313 					}
314 				}
315 				if (!found) {
316 					printk(KERN_ERR "SELinux: conflicting type rules.\n");
317 					goto err;
318 				}
319 			}
320 		} else {
321 			if (avtab_search(&p->te_cond_avtab, k)) {
322 				printk(KERN_ERR "SELinux: conflicting type rules when adding type rule for true.\n");
323 				goto err;
324 			}
325 		}
326 	}
327 
328 	node_ptr = avtab_insert_nonunique(&p->te_cond_avtab, k, d);
329 	if (!node_ptr) {
330 		printk(KERN_ERR "SELinux: could not insert rule.\n");
331 		rc = -ENOMEM;
332 		goto err;
333 	}
334 
335 	list = kzalloc(sizeof(*list), GFP_KERNEL);
336 	if (!list) {
337 		rc = -ENOMEM;
338 		goto err;
339 	}
340 
341 	list->node = node_ptr;
342 	if (!data->head)
343 		data->head = list;
344 	else
345 		data->tail->next = list;
346 	data->tail = list;
347 	return 0;
348 
349 err:
350 	cond_av_list_destroy(data->head);
351 	data->head = NULL;
352 	return rc;
353 }
354 
355 static int cond_read_av_list(struct policydb *p, void *fp, struct cond_av_list **ret_list, struct cond_av_list *other)
356 {
357 	int i, rc;
358 	__le32 buf[1];
359 	u32 len;
360 	struct cond_insertf_data data;
361 
362 	*ret_list = NULL;
363 
364 	len = 0;
365 	rc = next_entry(buf, fp, sizeof(u32));
366 	if (rc)
367 		return rc;
368 
369 	len = le32_to_cpu(buf[0]);
370 	if (len == 0)
371 		return 0;
372 
373 	data.p = p;
374 	data.other = other;
375 	data.head = NULL;
376 	data.tail = NULL;
377 	for (i = 0; i < len; i++) {
378 		rc = avtab_read_item(&p->te_cond_avtab, fp, p, cond_insertf,
379 				     &data);
380 		if (rc)
381 			return rc;
382 	}
383 
384 	*ret_list = data.head;
385 	return 0;
386 }
387 
388 static int expr_isvalid(struct policydb *p, struct cond_expr *expr)
389 {
390 	if (expr->expr_type <= 0 || expr->expr_type > COND_LAST) {
391 		printk(KERN_ERR "SELinux: conditional expressions uses unknown operator.\n");
392 		return 0;
393 	}
394 
395 	if (expr->bool > p->p_bools.nprim) {
396 		printk(KERN_ERR "SELinux: conditional expressions uses unknown bool.\n");
397 		return 0;
398 	}
399 	return 1;
400 }
401 
402 static int cond_read_node(struct policydb *p, struct cond_node *node, void *fp)
403 {
404 	__le32 buf[2];
405 	u32 len, i;
406 	int rc;
407 	struct cond_expr *expr = NULL, *last = NULL;
408 
409 	rc = next_entry(buf, fp, sizeof(u32) * 2);
410 	if (rc)
411 		goto err;
412 
413 	node->cur_state = le32_to_cpu(buf[0]);
414 
415 	/* expr */
416 	len = le32_to_cpu(buf[1]);
417 
418 	for (i = 0; i < len; i++) {
419 		rc = next_entry(buf, fp, sizeof(u32) * 2);
420 		if (rc)
421 			goto err;
422 
423 		rc = -ENOMEM;
424 		expr = kzalloc(sizeof(*expr), GFP_KERNEL);
425 		if (!expr)
426 			goto err;
427 
428 		expr->expr_type = le32_to_cpu(buf[0]);
429 		expr->bool = le32_to_cpu(buf[1]);
430 
431 		if (!expr_isvalid(p, expr)) {
432 			rc = -EINVAL;
433 			kfree(expr);
434 			goto err;
435 		}
436 
437 		if (i == 0)
438 			node->expr = expr;
439 		else
440 			last->next = expr;
441 		last = expr;
442 	}
443 
444 	rc = cond_read_av_list(p, fp, &node->true_list, NULL);
445 	if (rc)
446 		goto err;
447 	rc = cond_read_av_list(p, fp, &node->false_list, node->true_list);
448 	if (rc)
449 		goto err;
450 	return 0;
451 err:
452 	cond_node_destroy(node);
453 	return rc;
454 }
455 
456 int cond_read_list(struct policydb *p, void *fp)
457 {
458 	struct cond_node *node, *last = NULL;
459 	__le32 buf[1];
460 	u32 i, len;
461 	int rc;
462 
463 	rc = next_entry(buf, fp, sizeof buf);
464 	if (rc)
465 		return rc;
466 
467 	len = le32_to_cpu(buf[0]);
468 
469 	rc = avtab_alloc(&(p->te_cond_avtab), p->te_avtab.nel);
470 	if (rc)
471 		goto err;
472 
473 	for (i = 0; i < len; i++) {
474 		rc = -ENOMEM;
475 		node = kzalloc(sizeof(*node), GFP_KERNEL);
476 		if (!node)
477 			goto err;
478 
479 		rc = cond_read_node(p, node, fp);
480 		if (rc)
481 			goto err;
482 
483 		if (i == 0)
484 			p->cond_list = node;
485 		else
486 			last->next = node;
487 		last = node;
488 	}
489 	return 0;
490 err:
491 	cond_list_destroy(p->cond_list);
492 	p->cond_list = NULL;
493 	return rc;
494 }
495 
496 int cond_write_bool(void *vkey, void *datum, void *ptr)
497 {
498 	char *key = vkey;
499 	struct cond_bool_datum *booldatum = datum;
500 	struct policy_data *pd = ptr;
501 	void *fp = pd->fp;
502 	__le32 buf[3];
503 	u32 len;
504 	int rc;
505 
506 	len = strlen(key);
507 	buf[0] = cpu_to_le32(booldatum->value);
508 	buf[1] = cpu_to_le32(booldatum->state);
509 	buf[2] = cpu_to_le32(len);
510 	rc = put_entry(buf, sizeof(u32), 3, fp);
511 	if (rc)
512 		return rc;
513 	rc = put_entry(key, 1, len, fp);
514 	if (rc)
515 		return rc;
516 	return 0;
517 }
518 
519 /*
520  * cond_write_cond_av_list doesn't write out the av_list nodes.
521  * Instead it writes out the key/value pairs from the avtab. This
522  * is necessary because there is no way to uniquely identifying rules
523  * in the avtab so it is not possible to associate individual rules
524  * in the avtab with a conditional without saving them as part of
525  * the conditional. This means that the avtab with the conditional
526  * rules will not be saved but will be rebuilt on policy load.
527  */
528 static int cond_write_av_list(struct policydb *p,
529 			      struct cond_av_list *list, struct policy_file *fp)
530 {
531 	__le32 buf[1];
532 	struct cond_av_list *cur_list;
533 	u32 len;
534 	int rc;
535 
536 	len = 0;
537 	for (cur_list = list; cur_list != NULL; cur_list = cur_list->next)
538 		len++;
539 
540 	buf[0] = cpu_to_le32(len);
541 	rc = put_entry(buf, sizeof(u32), 1, fp);
542 	if (rc)
543 		return rc;
544 
545 	if (len == 0)
546 		return 0;
547 
548 	for (cur_list = list; cur_list != NULL; cur_list = cur_list->next) {
549 		rc = avtab_write_item(p, cur_list->node, fp);
550 		if (rc)
551 			return rc;
552 	}
553 
554 	return 0;
555 }
556 
557 static int cond_write_node(struct policydb *p, struct cond_node *node,
558 		    struct policy_file *fp)
559 {
560 	struct cond_expr *cur_expr;
561 	__le32 buf[2];
562 	int rc;
563 	u32 len = 0;
564 
565 	buf[0] = cpu_to_le32(node->cur_state);
566 	rc = put_entry(buf, sizeof(u32), 1, fp);
567 	if (rc)
568 		return rc;
569 
570 	for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next)
571 		len++;
572 
573 	buf[0] = cpu_to_le32(len);
574 	rc = put_entry(buf, sizeof(u32), 1, fp);
575 	if (rc)
576 		return rc;
577 
578 	for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next) {
579 		buf[0] = cpu_to_le32(cur_expr->expr_type);
580 		buf[1] = cpu_to_le32(cur_expr->bool);
581 		rc = put_entry(buf, sizeof(u32), 2, fp);
582 		if (rc)
583 			return rc;
584 	}
585 
586 	rc = cond_write_av_list(p, node->true_list, fp);
587 	if (rc)
588 		return rc;
589 	rc = cond_write_av_list(p, node->false_list, fp);
590 	if (rc)
591 		return rc;
592 
593 	return 0;
594 }
595 
596 int cond_write_list(struct policydb *p, struct cond_node *list, void *fp)
597 {
598 	struct cond_node *cur;
599 	u32 len;
600 	__le32 buf[1];
601 	int rc;
602 
603 	len = 0;
604 	for (cur = list; cur != NULL; cur = cur->next)
605 		len++;
606 	buf[0] = cpu_to_le32(len);
607 	rc = put_entry(buf, sizeof(u32), 1, fp);
608 	if (rc)
609 		return rc;
610 
611 	for (cur = list; cur != NULL; cur = cur->next) {
612 		rc = cond_write_node(p, cur, fp);
613 		if (rc)
614 			return rc;
615 	}
616 
617 	return 0;
618 }
619 
620 void cond_compute_xperms(struct avtab *ctab, struct avtab_key *key,
621 		struct extended_perms_decision *xpermd)
622 {
623 	struct avtab_node *node;
624 
625 	if (!ctab || !key || !xpermd)
626 		return;
627 
628 	for (node = avtab_search_node(ctab, key); node;
629 			node = avtab_search_node_next(node, key->specified)) {
630 		if (node->key.specified & AVTAB_ENABLED)
631 			services_compute_xperms_decision(xpermd, node);
632 	}
633 	return;
634 
635 }
636 /* Determine whether additional permissions are granted by the conditional
637  * av table, and if so, add them to the result
638  */
639 void cond_compute_av(struct avtab *ctab, struct avtab_key *key,
640 		struct av_decision *avd, struct extended_perms *xperms)
641 {
642 	struct avtab_node *node;
643 
644 	if (!ctab || !key || !avd)
645 		return;
646 
647 	for (node = avtab_search_node(ctab, key); node;
648 				node = avtab_search_node_next(node, key->specified)) {
649 		if ((u16)(AVTAB_ALLOWED|AVTAB_ENABLED) ==
650 		    (node->key.specified & (AVTAB_ALLOWED|AVTAB_ENABLED)))
651 			avd->allowed |= node->datum.u.data;
652 		if ((u16)(AVTAB_AUDITDENY|AVTAB_ENABLED) ==
653 		    (node->key.specified & (AVTAB_AUDITDENY|AVTAB_ENABLED)))
654 			/* Since a '0' in an auditdeny mask represents a
655 			 * permission we do NOT want to audit (dontaudit), we use
656 			 * the '&' operand to ensure that all '0's in the mask
657 			 * are retained (much unlike the allow and auditallow cases).
658 			 */
659 			avd->auditdeny &= node->datum.u.data;
660 		if ((u16)(AVTAB_AUDITALLOW|AVTAB_ENABLED) ==
661 		    (node->key.specified & (AVTAB_AUDITALLOW|AVTAB_ENABLED)))
662 			avd->auditallow |= node->datum.u.data;
663 		if (xperms && (node->key.specified & AVTAB_ENABLED) &&
664 				(node->key.specified & AVTAB_XPERMS))
665 			services_compute_xperms_drivers(xperms, node);
666 	}
667 }
668