1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Authors: Karl MacMillan <kmacmillan@tresys.com>
3  *	    Frank Mayer <mayerf@tresys.com>
4  *
5  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/errno.h>
10 #include <linux/string.h>
11 #include <linux/spinlock.h>
12 #include <linux/slab.h>
13 
14 #include "security.h"
15 #include "conditional.h"
16 #include "services.h"
17 
18 /*
19  * cond_evaluate_expr evaluates a conditional expr
20  * in reverse polish notation. It returns true (1), false (0),
21  * or undefined (-1). Undefined occurs when the expression
22  * exceeds the stack depth of COND_EXPR_MAXDEPTH.
23  */
24 static int cond_evaluate_expr(struct policydb *p, struct cond_expr *expr)
25 {
26 	u32 i;
27 	int s[COND_EXPR_MAXDEPTH];
28 	int sp = -1;
29 
30 	if (expr->len == 0)
31 		return -1;
32 
33 	for (i = 0; i < expr->len; i++) {
34 		struct cond_expr_node *node = &expr->nodes[i];
35 
36 		switch (node->expr_type) {
37 		case COND_BOOL:
38 			if (sp == (COND_EXPR_MAXDEPTH - 1))
39 				return -1;
40 			sp++;
41 			s[sp] = p->bool_val_to_struct[node->bool - 1]->state;
42 			break;
43 		case COND_NOT:
44 			if (sp < 0)
45 				return -1;
46 			s[sp] = !s[sp];
47 			break;
48 		case COND_OR:
49 			if (sp < 1)
50 				return -1;
51 			sp--;
52 			s[sp] |= s[sp + 1];
53 			break;
54 		case COND_AND:
55 			if (sp < 1)
56 				return -1;
57 			sp--;
58 			s[sp] &= s[sp + 1];
59 			break;
60 		case COND_XOR:
61 			if (sp < 1)
62 				return -1;
63 			sp--;
64 			s[sp] ^= s[sp + 1];
65 			break;
66 		case COND_EQ:
67 			if (sp < 1)
68 				return -1;
69 			sp--;
70 			s[sp] = (s[sp] == s[sp + 1]);
71 			break;
72 		case COND_NEQ:
73 			if (sp < 1)
74 				return -1;
75 			sp--;
76 			s[sp] = (s[sp] != s[sp + 1]);
77 			break;
78 		default:
79 			return -1;
80 		}
81 	}
82 	return s[0];
83 }
84 
85 /*
86  * evaluate_cond_node evaluates the conditional stored in
87  * a struct cond_node and if the result is different than the
88  * current state of the node it sets the rules in the true/false
89  * list appropriately. If the result of the expression is undefined
90  * all of the rules are disabled for safety.
91  */
92 static void evaluate_cond_node(struct policydb *p, struct cond_node *node)
93 {
94 	struct avtab_node *avnode;
95 	int new_state;
96 	u32 i;
97 
98 	new_state = cond_evaluate_expr(p, &node->expr);
99 	if (new_state != node->cur_state) {
100 		node->cur_state = new_state;
101 		if (new_state == -1)
102 			pr_err("SELinux: expression result was undefined - disabling all rules.\n");
103 		/* turn the rules on or off */
104 		for (i = 0; i < node->true_list.len; i++) {
105 			avnode = node->true_list.nodes[i];
106 			if (new_state <= 0)
107 				avnode->key.specified &= ~AVTAB_ENABLED;
108 			else
109 				avnode->key.specified |= AVTAB_ENABLED;
110 		}
111 
112 		for (i = 0; i < node->false_list.len; i++) {
113 			avnode = node->false_list.nodes[i];
114 			/* -1 or 1 */
115 			if (new_state)
116 				avnode->key.specified &= ~AVTAB_ENABLED;
117 			else
118 				avnode->key.specified |= AVTAB_ENABLED;
119 		}
120 	}
121 }
122 
123 void evaluate_cond_nodes(struct policydb *p)
124 {
125 	u32 i;
126 
127 	for (i = 0; i < p->cond_list_len; i++)
128 		evaluate_cond_node(p, &p->cond_list[i]);
129 }
130 
131 void cond_policydb_init(struct policydb *p)
132 {
133 	p->bool_val_to_struct = NULL;
134 	p->cond_list = NULL;
135 	p->cond_list_len = 0;
136 
137 	avtab_init(&p->te_cond_avtab);
138 }
139 
140 static void cond_node_destroy(struct cond_node *node)
141 {
142 	kfree(node->expr.nodes);
143 	/* the avtab_ptr_t nodes are destroyed by the avtab */
144 	kfree(node->true_list.nodes);
145 	kfree(node->false_list.nodes);
146 }
147 
148 static void cond_list_destroy(struct policydb *p)
149 {
150 	u32 i;
151 
152 	for (i = 0; i < p->cond_list_len; i++)
153 		cond_node_destroy(&p->cond_list[i]);
154 	kfree(p->cond_list);
155 }
156 
157 void cond_policydb_destroy(struct policydb *p)
158 {
159 	kfree(p->bool_val_to_struct);
160 	avtab_destroy(&p->te_cond_avtab);
161 	cond_list_destroy(p);
162 }
163 
164 int cond_init_bool_indexes(struct policydb *p)
165 {
166 	kfree(p->bool_val_to_struct);
167 	p->bool_val_to_struct = kmalloc_array(p->p_bools.nprim,
168 					      sizeof(*p->bool_val_to_struct),
169 					      GFP_KERNEL);
170 	if (!p->bool_val_to_struct)
171 		return -ENOMEM;
172 	return 0;
173 }
174 
175 int cond_destroy_bool(void *key, void *datum, void *p)
176 {
177 	kfree(key);
178 	kfree(datum);
179 	return 0;
180 }
181 
182 int cond_index_bool(void *key, void *datum, void *datap)
183 {
184 	struct policydb *p;
185 	struct cond_bool_datum *booldatum;
186 
187 	booldatum = datum;
188 	p = datap;
189 
190 	if (!booldatum->value || booldatum->value > p->p_bools.nprim)
191 		return -EINVAL;
192 
193 	p->sym_val_to_name[SYM_BOOLS][booldatum->value - 1] = key;
194 	p->bool_val_to_struct[booldatum->value - 1] = booldatum;
195 
196 	return 0;
197 }
198 
199 static int bool_isvalid(struct cond_bool_datum *b)
200 {
201 	if (!(b->state == 0 || b->state == 1))
202 		return 0;
203 	return 1;
204 }
205 
206 int cond_read_bool(struct policydb *p, struct hashtab *h, void *fp)
207 {
208 	char *key = NULL;
209 	struct cond_bool_datum *booldatum;
210 	__le32 buf[3];
211 	u32 len;
212 	int rc;
213 
214 	booldatum = kzalloc(sizeof(*booldatum), GFP_KERNEL);
215 	if (!booldatum)
216 		return -ENOMEM;
217 
218 	rc = next_entry(buf, fp, sizeof buf);
219 	if (rc)
220 		goto err;
221 
222 	booldatum->value = le32_to_cpu(buf[0]);
223 	booldatum->state = le32_to_cpu(buf[1]);
224 
225 	rc = -EINVAL;
226 	if (!bool_isvalid(booldatum))
227 		goto err;
228 
229 	len = le32_to_cpu(buf[2]);
230 	if (((len == 0) || (len == (u32)-1)))
231 		goto err;
232 
233 	rc = -ENOMEM;
234 	key = kmalloc(len + 1, GFP_KERNEL);
235 	if (!key)
236 		goto err;
237 	rc = next_entry(key, fp, len);
238 	if (rc)
239 		goto err;
240 	key[len] = '\0';
241 	rc = hashtab_insert(h, key, booldatum);
242 	if (rc)
243 		goto err;
244 
245 	return 0;
246 err:
247 	cond_destroy_bool(key, booldatum, NULL);
248 	return rc;
249 }
250 
251 struct cond_insertf_data {
252 	struct policydb *p;
253 	struct avtab_node **dst;
254 	struct cond_av_list *other;
255 };
256 
257 static int cond_insertf(struct avtab *a, struct avtab_key *k, struct avtab_datum *d, void *ptr)
258 {
259 	struct cond_insertf_data *data = ptr;
260 	struct policydb *p = data->p;
261 	struct cond_av_list *other = data->other;
262 	struct avtab_node *node_ptr;
263 	u32 i;
264 	bool found;
265 
266 	/*
267 	 * For type rules we have to make certain there aren't any
268 	 * conflicting rules by searching the te_avtab and the
269 	 * cond_te_avtab.
270 	 */
271 	if (k->specified & AVTAB_TYPE) {
272 		if (avtab_search(&p->te_avtab, k)) {
273 			pr_err("SELinux: type rule already exists outside of a conditional.\n");
274 			return -EINVAL;
275 		}
276 		/*
277 		 * If we are reading the false list other will be a pointer to
278 		 * the true list. We can have duplicate entries if there is only
279 		 * 1 other entry and it is in our true list.
280 		 *
281 		 * If we are reading the true list (other == NULL) there shouldn't
282 		 * be any other entries.
283 		 */
284 		if (other) {
285 			node_ptr = avtab_search_node(&p->te_cond_avtab, k);
286 			if (node_ptr) {
287 				if (avtab_search_node_next(node_ptr, k->specified)) {
288 					pr_err("SELinux: too many conflicting type rules.\n");
289 					return -EINVAL;
290 				}
291 				found = false;
292 				for (i = 0; i < other->len; i++) {
293 					if (other->nodes[i] == node_ptr) {
294 						found = true;
295 						break;
296 					}
297 				}
298 				if (!found) {
299 					pr_err("SELinux: conflicting type rules.\n");
300 					return -EINVAL;
301 				}
302 			}
303 		} else {
304 			if (avtab_search(&p->te_cond_avtab, k)) {
305 				pr_err("SELinux: conflicting type rules when adding type rule for true.\n");
306 				return -EINVAL;
307 			}
308 		}
309 	}
310 
311 	node_ptr = avtab_insert_nonunique(&p->te_cond_avtab, k, d);
312 	if (!node_ptr) {
313 		pr_err("SELinux: could not insert rule.\n");
314 		return -ENOMEM;
315 	}
316 
317 	*data->dst = node_ptr;
318 	return 0;
319 }
320 
321 static int cond_read_av_list(struct policydb *p, void *fp,
322 			     struct cond_av_list *list,
323 			     struct cond_av_list *other)
324 {
325 	int rc;
326 	__le32 buf[1];
327 	u32 i, len;
328 	struct cond_insertf_data data;
329 
330 	rc = next_entry(buf, fp, sizeof(u32));
331 	if (rc)
332 		return rc;
333 
334 	len = le32_to_cpu(buf[0]);
335 	if (len == 0)
336 		return 0;
337 
338 	list->nodes = kcalloc(len, sizeof(*list->nodes), GFP_KERNEL);
339 	if (!list->nodes)
340 		return -ENOMEM;
341 
342 	data.p = p;
343 	data.other = other;
344 	for (i = 0; i < len; i++) {
345 		data.dst = &list->nodes[i];
346 		rc = avtab_read_item(&p->te_cond_avtab, fp, p, cond_insertf,
347 				     &data);
348 		if (rc) {
349 			kfree(list->nodes);
350 			list->nodes = NULL;
351 			return rc;
352 		}
353 	}
354 
355 	list->len = len;
356 	return 0;
357 }
358 
359 static int expr_node_isvalid(struct policydb *p, struct cond_expr_node *expr)
360 {
361 	if (expr->expr_type <= 0 || expr->expr_type > COND_LAST) {
362 		pr_err("SELinux: conditional expressions uses unknown operator.\n");
363 		return 0;
364 	}
365 
366 	if (expr->bool > p->p_bools.nprim) {
367 		pr_err("SELinux: conditional expressions uses unknown bool.\n");
368 		return 0;
369 	}
370 	return 1;
371 }
372 
373 static int cond_read_node(struct policydb *p, struct cond_node *node, void *fp)
374 {
375 	__le32 buf[2];
376 	u32 i, len;
377 	int rc;
378 
379 	rc = next_entry(buf, fp, sizeof(u32) * 2);
380 	if (rc)
381 		return rc;
382 
383 	node->cur_state = le32_to_cpu(buf[0]);
384 
385 	/* expr */
386 	len = le32_to_cpu(buf[1]);
387 	node->expr.nodes = kcalloc(len, sizeof(*node->expr.nodes), GFP_KERNEL);
388 	if (!node->expr.nodes)
389 		return -ENOMEM;
390 
391 	node->expr.len = len;
392 
393 	for (i = 0; i < len; i++) {
394 		struct cond_expr_node *expr = &node->expr.nodes[i];
395 
396 		rc = next_entry(buf, fp, sizeof(u32) * 2);
397 		if (rc)
398 			return rc;
399 
400 		expr->expr_type = le32_to_cpu(buf[0]);
401 		expr->bool = le32_to_cpu(buf[1]);
402 
403 		if (!expr_node_isvalid(p, expr))
404 			return -EINVAL;
405 	}
406 
407 	rc = cond_read_av_list(p, fp, &node->true_list, NULL);
408 	if (rc)
409 		return rc;
410 	return cond_read_av_list(p, fp, &node->false_list, &node->true_list);
411 }
412 
413 int cond_read_list(struct policydb *p, void *fp)
414 {
415 	__le32 buf[1];
416 	u32 i, len;
417 	int rc;
418 
419 	rc = next_entry(buf, fp, sizeof buf);
420 	if (rc)
421 		return rc;
422 
423 	len = le32_to_cpu(buf[0]);
424 
425 	p->cond_list = kcalloc(len, sizeof(*p->cond_list), GFP_KERNEL);
426 	if (!p->cond_list)
427 		return -ENOMEM;
428 
429 	rc = avtab_alloc(&(p->te_cond_avtab), p->te_avtab.nel);
430 	if (rc)
431 		goto err;
432 
433 	p->cond_list_len = len;
434 
435 	for (i = 0; i < len; i++) {
436 		rc = cond_read_node(p, &p->cond_list[i], fp);
437 		if (rc)
438 			goto err;
439 	}
440 	return 0;
441 err:
442 	cond_list_destroy(p);
443 	p->cond_list = NULL;
444 	return rc;
445 }
446 
447 int cond_write_bool(void *vkey, void *datum, void *ptr)
448 {
449 	char *key = vkey;
450 	struct cond_bool_datum *booldatum = datum;
451 	struct policy_data *pd = ptr;
452 	void *fp = pd->fp;
453 	__le32 buf[3];
454 	u32 len;
455 	int rc;
456 
457 	len = strlen(key);
458 	buf[0] = cpu_to_le32(booldatum->value);
459 	buf[1] = cpu_to_le32(booldatum->state);
460 	buf[2] = cpu_to_le32(len);
461 	rc = put_entry(buf, sizeof(u32), 3, fp);
462 	if (rc)
463 		return rc;
464 	rc = put_entry(key, 1, len, fp);
465 	if (rc)
466 		return rc;
467 	return 0;
468 }
469 
470 /*
471  * cond_write_cond_av_list doesn't write out the av_list nodes.
472  * Instead it writes out the key/value pairs from the avtab. This
473  * is necessary because there is no way to uniquely identifying rules
474  * in the avtab so it is not possible to associate individual rules
475  * in the avtab with a conditional without saving them as part of
476  * the conditional. This means that the avtab with the conditional
477  * rules will not be saved but will be rebuilt on policy load.
478  */
479 static int cond_write_av_list(struct policydb *p,
480 			      struct cond_av_list *list, struct policy_file *fp)
481 {
482 	__le32 buf[1];
483 	u32 i;
484 	int rc;
485 
486 	buf[0] = cpu_to_le32(list->len);
487 	rc = put_entry(buf, sizeof(u32), 1, fp);
488 	if (rc)
489 		return rc;
490 
491 	for (i = 0; i < list->len; i++) {
492 		rc = avtab_write_item(p, list->nodes[i], fp);
493 		if (rc)
494 			return rc;
495 	}
496 
497 	return 0;
498 }
499 
500 static int cond_write_node(struct policydb *p, struct cond_node *node,
501 		    struct policy_file *fp)
502 {
503 	__le32 buf[2];
504 	int rc;
505 	u32 i;
506 
507 	buf[0] = cpu_to_le32(node->cur_state);
508 	rc = put_entry(buf, sizeof(u32), 1, fp);
509 	if (rc)
510 		return rc;
511 
512 	buf[0] = cpu_to_le32(node->expr.len);
513 	rc = put_entry(buf, sizeof(u32), 1, fp);
514 	if (rc)
515 		return rc;
516 
517 	for (i = 0; i < node->expr.len; i++) {
518 		buf[0] = cpu_to_le32(node->expr.nodes[i].expr_type);
519 		buf[1] = cpu_to_le32(node->expr.nodes[i].bool);
520 		rc = put_entry(buf, sizeof(u32), 2, fp);
521 		if (rc)
522 			return rc;
523 	}
524 
525 	rc = cond_write_av_list(p, &node->true_list, fp);
526 	if (rc)
527 		return rc;
528 	rc = cond_write_av_list(p, &node->false_list, fp);
529 	if (rc)
530 		return rc;
531 
532 	return 0;
533 }
534 
535 int cond_write_list(struct policydb *p, void *fp)
536 {
537 	u32 i;
538 	__le32 buf[1];
539 	int rc;
540 
541 	buf[0] = cpu_to_le32(p->cond_list_len);
542 	rc = put_entry(buf, sizeof(u32), 1, fp);
543 	if (rc)
544 		return rc;
545 
546 	for (i = 0; i < p->cond_list_len; i++) {
547 		rc = cond_write_node(p, &p->cond_list[i], fp);
548 		if (rc)
549 			return rc;
550 	}
551 
552 	return 0;
553 }
554 
555 void cond_compute_xperms(struct avtab *ctab, struct avtab_key *key,
556 		struct extended_perms_decision *xpermd)
557 {
558 	struct avtab_node *node;
559 
560 	if (!ctab || !key || !xpermd)
561 		return;
562 
563 	for (node = avtab_search_node(ctab, key); node;
564 			node = avtab_search_node_next(node, key->specified)) {
565 		if (node->key.specified & AVTAB_ENABLED)
566 			services_compute_xperms_decision(xpermd, node);
567 	}
568 	return;
569 
570 }
571 /* Determine whether additional permissions are granted by the conditional
572  * av table, and if so, add them to the result
573  */
574 void cond_compute_av(struct avtab *ctab, struct avtab_key *key,
575 		struct av_decision *avd, struct extended_perms *xperms)
576 {
577 	struct avtab_node *node;
578 
579 	if (!ctab || !key || !avd)
580 		return;
581 
582 	for (node = avtab_search_node(ctab, key); node;
583 				node = avtab_search_node_next(node, key->specified)) {
584 		if ((u16)(AVTAB_ALLOWED|AVTAB_ENABLED) ==
585 		    (node->key.specified & (AVTAB_ALLOWED|AVTAB_ENABLED)))
586 			avd->allowed |= node->datum.u.data;
587 		if ((u16)(AVTAB_AUDITDENY|AVTAB_ENABLED) ==
588 		    (node->key.specified & (AVTAB_AUDITDENY|AVTAB_ENABLED)))
589 			/* Since a '0' in an auditdeny mask represents a
590 			 * permission we do NOT want to audit (dontaudit), we use
591 			 * the '&' operand to ensure that all '0's in the mask
592 			 * are retained (much unlike the allow and auditallow cases).
593 			 */
594 			avd->auditdeny &= node->datum.u.data;
595 		if ((u16)(AVTAB_AUDITALLOW|AVTAB_ENABLED) ==
596 		    (node->key.specified & (AVTAB_AUDITALLOW|AVTAB_ENABLED)))
597 			avd->auditallow |= node->datum.u.data;
598 		if (xperms && (node->key.specified & AVTAB_ENABLED) &&
599 				(node->key.specified & AVTAB_XPERMS))
600 			services_compute_xperms_drivers(xperms, node);
601 	}
602 }
603