xref: /openbmc/linux/security/selinux/netnode.c (revision b830f94f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Network node table
4  *
5  * SELinux must keep a mapping of network nodes to labels/SIDs.  This
6  * mapping is maintained as part of the normal policy but a fast cache is
7  * needed to reduce the lookup overhead since most of these queries happen on
8  * a per-packet basis.
9  *
10  * Author: Paul Moore <paul@paul-moore.com>
11  *
12  * This code is heavily based on the "netif" concept originally developed by
13  * James Morris <jmorris@redhat.com>
14  *   (see security/selinux/netif.c for more information)
15  */
16 
17 /*
18  * (c) Copyright Hewlett-Packard Development Company, L.P., 2007
19  */
20 
21 #include <linux/types.h>
22 #include <linux/rcupdate.h>
23 #include <linux/list.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26 #include <linux/in.h>
27 #include <linux/in6.h>
28 #include <linux/ip.h>
29 #include <linux/ipv6.h>
30 #include <net/ip.h>
31 #include <net/ipv6.h>
32 
33 #include "netnode.h"
34 #include "objsec.h"
35 
36 #define SEL_NETNODE_HASH_SIZE       256
37 #define SEL_NETNODE_HASH_BKT_LIMIT   16
38 
39 struct sel_netnode_bkt {
40 	unsigned int size;
41 	struct list_head list;
42 };
43 
44 struct sel_netnode {
45 	struct netnode_security_struct nsec;
46 
47 	struct list_head list;
48 	struct rcu_head rcu;
49 };
50 
51 /* NOTE: we are using a combined hash table for both IPv4 and IPv6, the reason
52  * for this is that I suspect most users will not make heavy use of both
53  * address families at the same time so one table will usually end up wasted,
54  * if this becomes a problem we can always add a hash table for each address
55  * family later */
56 
57 static LIST_HEAD(sel_netnode_list);
58 static DEFINE_SPINLOCK(sel_netnode_lock);
59 static struct sel_netnode_bkt sel_netnode_hash[SEL_NETNODE_HASH_SIZE];
60 
61 /**
62  * sel_netnode_hashfn_ipv4 - IPv4 hashing function for the node table
63  * @addr: IPv4 address
64  *
65  * Description:
66  * This is the IPv4 hashing function for the node interface table, it returns
67  * the bucket number for the given IP address.
68  *
69  */
70 static unsigned int sel_netnode_hashfn_ipv4(__be32 addr)
71 {
72 	/* at some point we should determine if the mismatch in byte order
73 	 * affects the hash function dramatically */
74 	return (addr & (SEL_NETNODE_HASH_SIZE - 1));
75 }
76 
77 /**
78  * sel_netnode_hashfn_ipv6 - IPv6 hashing function for the node table
79  * @addr: IPv6 address
80  *
81  * Description:
82  * This is the IPv6 hashing function for the node interface table, it returns
83  * the bucket number for the given IP address.
84  *
85  */
86 static unsigned int sel_netnode_hashfn_ipv6(const struct in6_addr *addr)
87 {
88 	/* just hash the least significant 32 bits to keep things fast (they
89 	 * are the most likely to be different anyway), we can revisit this
90 	 * later if needed */
91 	return (addr->s6_addr32[3] & (SEL_NETNODE_HASH_SIZE - 1));
92 }
93 
94 /**
95  * sel_netnode_find - Search for a node record
96  * @addr: IP address
97  * @family: address family
98  *
99  * Description:
100  * Search the network node table and return the record matching @addr.  If an
101  * entry can not be found in the table return NULL.
102  *
103  */
104 static struct sel_netnode *sel_netnode_find(const void *addr, u16 family)
105 {
106 	unsigned int idx;
107 	struct sel_netnode *node;
108 
109 	switch (family) {
110 	case PF_INET:
111 		idx = sel_netnode_hashfn_ipv4(*(__be32 *)addr);
112 		break;
113 	case PF_INET6:
114 		idx = sel_netnode_hashfn_ipv6(addr);
115 		break;
116 	default:
117 		BUG();
118 		return NULL;
119 	}
120 
121 	list_for_each_entry_rcu(node, &sel_netnode_hash[idx].list, list)
122 		if (node->nsec.family == family)
123 			switch (family) {
124 			case PF_INET:
125 				if (node->nsec.addr.ipv4 == *(__be32 *)addr)
126 					return node;
127 				break;
128 			case PF_INET6:
129 				if (ipv6_addr_equal(&node->nsec.addr.ipv6,
130 						    addr))
131 					return node;
132 				break;
133 			}
134 
135 	return NULL;
136 }
137 
138 /**
139  * sel_netnode_insert - Insert a new node into the table
140  * @node: the new node record
141  *
142  * Description:
143  * Add a new node record to the network address hash table.
144  *
145  */
146 static void sel_netnode_insert(struct sel_netnode *node)
147 {
148 	unsigned int idx;
149 
150 	switch (node->nsec.family) {
151 	case PF_INET:
152 		idx = sel_netnode_hashfn_ipv4(node->nsec.addr.ipv4);
153 		break;
154 	case PF_INET6:
155 		idx = sel_netnode_hashfn_ipv6(&node->nsec.addr.ipv6);
156 		break;
157 	default:
158 		BUG();
159 		return;
160 	}
161 
162 	/* we need to impose a limit on the growth of the hash table so check
163 	 * this bucket to make sure it is within the specified bounds */
164 	list_add_rcu(&node->list, &sel_netnode_hash[idx].list);
165 	if (sel_netnode_hash[idx].size == SEL_NETNODE_HASH_BKT_LIMIT) {
166 		struct sel_netnode *tail;
167 		tail = list_entry(
168 			rcu_dereference_protected(sel_netnode_hash[idx].list.prev,
169 						  lockdep_is_held(&sel_netnode_lock)),
170 			struct sel_netnode, list);
171 		list_del_rcu(&tail->list);
172 		kfree_rcu(tail, rcu);
173 	} else
174 		sel_netnode_hash[idx].size++;
175 }
176 
177 /**
178  * sel_netnode_sid_slow - Lookup the SID of a network address using the policy
179  * @addr: the IP address
180  * @family: the address family
181  * @sid: node SID
182  *
183  * Description:
184  * This function determines the SID of a network address by quering the
185  * security policy.  The result is added to the network address table to
186  * speedup future queries.  Returns zero on success, negative values on
187  * failure.
188  *
189  */
190 static int sel_netnode_sid_slow(void *addr, u16 family, u32 *sid)
191 {
192 	int ret = -ENOMEM;
193 	struct sel_netnode *node;
194 	struct sel_netnode *new = NULL;
195 
196 	spin_lock_bh(&sel_netnode_lock);
197 	node = sel_netnode_find(addr, family);
198 	if (node != NULL) {
199 		*sid = node->nsec.sid;
200 		spin_unlock_bh(&sel_netnode_lock);
201 		return 0;
202 	}
203 	new = kzalloc(sizeof(*new), GFP_ATOMIC);
204 	if (new == NULL)
205 		goto out;
206 	switch (family) {
207 	case PF_INET:
208 		ret = security_node_sid(&selinux_state, PF_INET,
209 					addr, sizeof(struct in_addr), sid);
210 		new->nsec.addr.ipv4 = *(__be32 *)addr;
211 		break;
212 	case PF_INET6:
213 		ret = security_node_sid(&selinux_state, PF_INET6,
214 					addr, sizeof(struct in6_addr), sid);
215 		new->nsec.addr.ipv6 = *(struct in6_addr *)addr;
216 		break;
217 	default:
218 		BUG();
219 		ret = -EINVAL;
220 	}
221 	if (ret != 0)
222 		goto out;
223 
224 	new->nsec.family = family;
225 	new->nsec.sid = *sid;
226 	sel_netnode_insert(new);
227 
228 out:
229 	spin_unlock_bh(&sel_netnode_lock);
230 	if (unlikely(ret)) {
231 		pr_warn("SELinux: failure in %s(), unable to determine network node label\n",
232 			__func__);
233 		kfree(new);
234 	}
235 	return ret;
236 }
237 
238 /**
239  * sel_netnode_sid - Lookup the SID of a network address
240  * @addr: the IP address
241  * @family: the address family
242  * @sid: node SID
243  *
244  * Description:
245  * This function determines the SID of a network address using the fastest
246  * method possible.  First the address table is queried, but if an entry
247  * can't be found then the policy is queried and the result is added to the
248  * table to speedup future queries.  Returns zero on success, negative values
249  * on failure.
250  *
251  */
252 int sel_netnode_sid(void *addr, u16 family, u32 *sid)
253 {
254 	struct sel_netnode *node;
255 
256 	rcu_read_lock();
257 	node = sel_netnode_find(addr, family);
258 	if (node != NULL) {
259 		*sid = node->nsec.sid;
260 		rcu_read_unlock();
261 		return 0;
262 	}
263 	rcu_read_unlock();
264 
265 	return sel_netnode_sid_slow(addr, family, sid);
266 }
267 
268 /**
269  * sel_netnode_flush - Flush the entire network address table
270  *
271  * Description:
272  * Remove all entries from the network address table.
273  *
274  */
275 void sel_netnode_flush(void)
276 {
277 	unsigned int idx;
278 	struct sel_netnode *node, *node_tmp;
279 
280 	spin_lock_bh(&sel_netnode_lock);
281 	for (idx = 0; idx < SEL_NETNODE_HASH_SIZE; idx++) {
282 		list_for_each_entry_safe(node, node_tmp,
283 					 &sel_netnode_hash[idx].list, list) {
284 				list_del_rcu(&node->list);
285 				kfree_rcu(node, rcu);
286 		}
287 		sel_netnode_hash[idx].size = 0;
288 	}
289 	spin_unlock_bh(&sel_netnode_lock);
290 }
291 
292 static __init int sel_netnode_init(void)
293 {
294 	int iter;
295 
296 	if (!selinux_enabled)
297 		return 0;
298 
299 	for (iter = 0; iter < SEL_NETNODE_HASH_SIZE; iter++) {
300 		INIT_LIST_HEAD(&sel_netnode_hash[iter].list);
301 		sel_netnode_hash[iter].size = 0;
302 	}
303 
304 	return 0;
305 }
306 
307 __initcall(sel_netnode_init);
308