1 /* 2 * NSA Security-Enhanced Linux (SELinux) security module 3 * 4 * This file contains the SELinux hook function implementations. 5 * 6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil> 7 * Chris Vance, <cvance@nai.com> 8 * Wayne Salamon, <wsalamon@nai.com> 9 * James Morris <jmorris@redhat.com> 10 * 11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com> 13 * Eric Paris <eparis@redhat.com> 14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 15 * <dgoeddel@trustedcs.com> 16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P. 17 * Paul Moore <paul.moore@hp.com> 18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. 19 * Yuichi Nakamura <ynakam@hitachisoft.jp> 20 * 21 * This program is free software; you can redistribute it and/or modify 22 * it under the terms of the GNU General Public License version 2, 23 * as published by the Free Software Foundation. 24 */ 25 26 #include <linux/init.h> 27 #include <linux/kernel.h> 28 #include <linux/tracehook.h> 29 #include <linux/errno.h> 30 #include <linux/sched.h> 31 #include <linux/security.h> 32 #include <linux/xattr.h> 33 #include <linux/capability.h> 34 #include <linux/unistd.h> 35 #include <linux/mm.h> 36 #include <linux/mman.h> 37 #include <linux/slab.h> 38 #include <linux/pagemap.h> 39 #include <linux/swap.h> 40 #include <linux/spinlock.h> 41 #include <linux/syscalls.h> 42 #include <linux/file.h> 43 #include <linux/fdtable.h> 44 #include <linux/namei.h> 45 #include <linux/mount.h> 46 #include <linux/proc_fs.h> 47 #include <linux/netfilter_ipv4.h> 48 #include <linux/netfilter_ipv6.h> 49 #include <linux/tty.h> 50 #include <net/icmp.h> 51 #include <net/ip.h> /* for local_port_range[] */ 52 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 53 #include <net/net_namespace.h> 54 #include <net/netlabel.h> 55 #include <linux/uaccess.h> 56 #include <asm/ioctls.h> 57 #include <asm/atomic.h> 58 #include <linux/bitops.h> 59 #include <linux/interrupt.h> 60 #include <linux/netdevice.h> /* for network interface checks */ 61 #include <linux/netlink.h> 62 #include <linux/tcp.h> 63 #include <linux/udp.h> 64 #include <linux/dccp.h> 65 #include <linux/quota.h> 66 #include <linux/un.h> /* for Unix socket types */ 67 #include <net/af_unix.h> /* for Unix socket types */ 68 #include <linux/parser.h> 69 #include <linux/nfs_mount.h> 70 #include <net/ipv6.h> 71 #include <linux/hugetlb.h> 72 #include <linux/personality.h> 73 #include <linux/sysctl.h> 74 #include <linux/audit.h> 75 #include <linux/string.h> 76 #include <linux/selinux.h> 77 #include <linux/mutex.h> 78 #include <linux/posix-timers.h> 79 80 #include "avc.h" 81 #include "objsec.h" 82 #include "netif.h" 83 #include "netnode.h" 84 #include "netport.h" 85 #include "xfrm.h" 86 #include "netlabel.h" 87 #include "audit.h" 88 89 #define XATTR_SELINUX_SUFFIX "selinux" 90 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX 91 92 #define NUM_SEL_MNT_OPTS 5 93 94 extern unsigned int policydb_loaded_version; 95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm); 96 extern struct security_operations *security_ops; 97 98 /* SECMARK reference count */ 99 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0); 100 101 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 102 int selinux_enforcing; 103 104 static int __init enforcing_setup(char *str) 105 { 106 unsigned long enforcing; 107 if (!strict_strtoul(str, 0, &enforcing)) 108 selinux_enforcing = enforcing ? 1 : 0; 109 return 1; 110 } 111 __setup("enforcing=", enforcing_setup); 112 #endif 113 114 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 115 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE; 116 117 static int __init selinux_enabled_setup(char *str) 118 { 119 unsigned long enabled; 120 if (!strict_strtoul(str, 0, &enabled)) 121 selinux_enabled = enabled ? 1 : 0; 122 return 1; 123 } 124 __setup("selinux=", selinux_enabled_setup); 125 #else 126 int selinux_enabled = 1; 127 #endif 128 129 130 /* 131 * Minimal support for a secondary security module, 132 * just to allow the use of the capability module. 133 */ 134 static struct security_operations *secondary_ops; 135 136 /* Lists of inode and superblock security structures initialized 137 before the policy was loaded. */ 138 static LIST_HEAD(superblock_security_head); 139 static DEFINE_SPINLOCK(sb_security_lock); 140 141 static struct kmem_cache *sel_inode_cache; 142 143 /** 144 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled 145 * 146 * Description: 147 * This function checks the SECMARK reference counter to see if any SECMARK 148 * targets are currently configured, if the reference counter is greater than 149 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is 150 * enabled, false (0) if SECMARK is disabled. 151 * 152 */ 153 static int selinux_secmark_enabled(void) 154 { 155 return (atomic_read(&selinux_secmark_refcount) > 0); 156 } 157 158 /* 159 * initialise the security for the init task 160 */ 161 static void cred_init_security(void) 162 { 163 struct cred *cred = (struct cred *) current->real_cred; 164 struct task_security_struct *tsec; 165 166 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL); 167 if (!tsec) 168 panic("SELinux: Failed to initialize initial task.\n"); 169 170 tsec->osid = tsec->sid = SECINITSID_KERNEL; 171 cred->security = tsec; 172 } 173 174 /* 175 * get the security ID of a set of credentials 176 */ 177 static inline u32 cred_sid(const struct cred *cred) 178 { 179 const struct task_security_struct *tsec; 180 181 tsec = cred->security; 182 return tsec->sid; 183 } 184 185 /* 186 * get the objective security ID of a task 187 */ 188 static inline u32 task_sid(const struct task_struct *task) 189 { 190 u32 sid; 191 192 rcu_read_lock(); 193 sid = cred_sid(__task_cred(task)); 194 rcu_read_unlock(); 195 return sid; 196 } 197 198 /* 199 * get the subjective security ID of the current task 200 */ 201 static inline u32 current_sid(void) 202 { 203 const struct task_security_struct *tsec = current_cred()->security; 204 205 return tsec->sid; 206 } 207 208 /* Allocate and free functions for each kind of security blob. */ 209 210 static int inode_alloc_security(struct inode *inode) 211 { 212 struct inode_security_struct *isec; 213 u32 sid = current_sid(); 214 215 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS); 216 if (!isec) 217 return -ENOMEM; 218 219 mutex_init(&isec->lock); 220 INIT_LIST_HEAD(&isec->list); 221 isec->inode = inode; 222 isec->sid = SECINITSID_UNLABELED; 223 isec->sclass = SECCLASS_FILE; 224 isec->task_sid = sid; 225 inode->i_security = isec; 226 227 return 0; 228 } 229 230 static void inode_free_security(struct inode *inode) 231 { 232 struct inode_security_struct *isec = inode->i_security; 233 struct superblock_security_struct *sbsec = inode->i_sb->s_security; 234 235 spin_lock(&sbsec->isec_lock); 236 if (!list_empty(&isec->list)) 237 list_del_init(&isec->list); 238 spin_unlock(&sbsec->isec_lock); 239 240 inode->i_security = NULL; 241 kmem_cache_free(sel_inode_cache, isec); 242 } 243 244 static int file_alloc_security(struct file *file) 245 { 246 struct file_security_struct *fsec; 247 u32 sid = current_sid(); 248 249 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL); 250 if (!fsec) 251 return -ENOMEM; 252 253 fsec->sid = sid; 254 fsec->fown_sid = sid; 255 file->f_security = fsec; 256 257 return 0; 258 } 259 260 static void file_free_security(struct file *file) 261 { 262 struct file_security_struct *fsec = file->f_security; 263 file->f_security = NULL; 264 kfree(fsec); 265 } 266 267 static int superblock_alloc_security(struct super_block *sb) 268 { 269 struct superblock_security_struct *sbsec; 270 271 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL); 272 if (!sbsec) 273 return -ENOMEM; 274 275 mutex_init(&sbsec->lock); 276 INIT_LIST_HEAD(&sbsec->list); 277 INIT_LIST_HEAD(&sbsec->isec_head); 278 spin_lock_init(&sbsec->isec_lock); 279 sbsec->sb = sb; 280 sbsec->sid = SECINITSID_UNLABELED; 281 sbsec->def_sid = SECINITSID_FILE; 282 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 283 sb->s_security = sbsec; 284 285 return 0; 286 } 287 288 static void superblock_free_security(struct super_block *sb) 289 { 290 struct superblock_security_struct *sbsec = sb->s_security; 291 292 spin_lock(&sb_security_lock); 293 if (!list_empty(&sbsec->list)) 294 list_del_init(&sbsec->list); 295 spin_unlock(&sb_security_lock); 296 297 sb->s_security = NULL; 298 kfree(sbsec); 299 } 300 301 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority) 302 { 303 struct sk_security_struct *ssec; 304 305 ssec = kzalloc(sizeof(*ssec), priority); 306 if (!ssec) 307 return -ENOMEM; 308 309 ssec->peer_sid = SECINITSID_UNLABELED; 310 ssec->sid = SECINITSID_UNLABELED; 311 sk->sk_security = ssec; 312 313 selinux_netlbl_sk_security_reset(ssec); 314 315 return 0; 316 } 317 318 static void sk_free_security(struct sock *sk) 319 { 320 struct sk_security_struct *ssec = sk->sk_security; 321 322 sk->sk_security = NULL; 323 selinux_netlbl_sk_security_free(ssec); 324 kfree(ssec); 325 } 326 327 /* The security server must be initialized before 328 any labeling or access decisions can be provided. */ 329 extern int ss_initialized; 330 331 /* The file system's label must be initialized prior to use. */ 332 333 static char *labeling_behaviors[6] = { 334 "uses xattr", 335 "uses transition SIDs", 336 "uses task SIDs", 337 "uses genfs_contexts", 338 "not configured for labeling", 339 "uses mountpoint labeling", 340 }; 341 342 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 343 344 static inline int inode_doinit(struct inode *inode) 345 { 346 return inode_doinit_with_dentry(inode, NULL); 347 } 348 349 enum { 350 Opt_error = -1, 351 Opt_context = 1, 352 Opt_fscontext = 2, 353 Opt_defcontext = 3, 354 Opt_rootcontext = 4, 355 Opt_labelsupport = 5, 356 }; 357 358 static const match_table_t tokens = { 359 {Opt_context, CONTEXT_STR "%s"}, 360 {Opt_fscontext, FSCONTEXT_STR "%s"}, 361 {Opt_defcontext, DEFCONTEXT_STR "%s"}, 362 {Opt_rootcontext, ROOTCONTEXT_STR "%s"}, 363 {Opt_labelsupport, LABELSUPP_STR}, 364 {Opt_error, NULL}, 365 }; 366 367 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 368 369 static int may_context_mount_sb_relabel(u32 sid, 370 struct superblock_security_struct *sbsec, 371 const struct cred *cred) 372 { 373 const struct task_security_struct *tsec = cred->security; 374 int rc; 375 376 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 377 FILESYSTEM__RELABELFROM, NULL); 378 if (rc) 379 return rc; 380 381 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM, 382 FILESYSTEM__RELABELTO, NULL); 383 return rc; 384 } 385 386 static int may_context_mount_inode_relabel(u32 sid, 387 struct superblock_security_struct *sbsec, 388 const struct cred *cred) 389 { 390 const struct task_security_struct *tsec = cred->security; 391 int rc; 392 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 393 FILESYSTEM__RELABELFROM, NULL); 394 if (rc) 395 return rc; 396 397 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, 398 FILESYSTEM__ASSOCIATE, NULL); 399 return rc; 400 } 401 402 static int sb_finish_set_opts(struct super_block *sb) 403 { 404 struct superblock_security_struct *sbsec = sb->s_security; 405 struct dentry *root = sb->s_root; 406 struct inode *root_inode = root->d_inode; 407 int rc = 0; 408 409 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 410 /* Make sure that the xattr handler exists and that no 411 error other than -ENODATA is returned by getxattr on 412 the root directory. -ENODATA is ok, as this may be 413 the first boot of the SELinux kernel before we have 414 assigned xattr values to the filesystem. */ 415 if (!root_inode->i_op->getxattr) { 416 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no " 417 "xattr support\n", sb->s_id, sb->s_type->name); 418 rc = -EOPNOTSUPP; 419 goto out; 420 } 421 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0); 422 if (rc < 0 && rc != -ENODATA) { 423 if (rc == -EOPNOTSUPP) 424 printk(KERN_WARNING "SELinux: (dev %s, type " 425 "%s) has no security xattr handler\n", 426 sb->s_id, sb->s_type->name); 427 else 428 printk(KERN_WARNING "SELinux: (dev %s, type " 429 "%s) getxattr errno %d\n", sb->s_id, 430 sb->s_type->name, -rc); 431 goto out; 432 } 433 } 434 435 sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP); 436 437 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) 438 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n", 439 sb->s_id, sb->s_type->name); 440 else 441 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n", 442 sb->s_id, sb->s_type->name, 443 labeling_behaviors[sbsec->behavior-1]); 444 445 if (sbsec->behavior == SECURITY_FS_USE_GENFS || 446 sbsec->behavior == SECURITY_FS_USE_MNTPOINT || 447 sbsec->behavior == SECURITY_FS_USE_NONE || 448 sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) 449 sbsec->flags &= ~SE_SBLABELSUPP; 450 451 /* Special handling for sysfs. Is genfs but also has setxattr handler*/ 452 if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0) 453 sbsec->flags |= SE_SBLABELSUPP; 454 455 /* Initialize the root inode. */ 456 rc = inode_doinit_with_dentry(root_inode, root); 457 458 /* Initialize any other inodes associated with the superblock, e.g. 459 inodes created prior to initial policy load or inodes created 460 during get_sb by a pseudo filesystem that directly 461 populates itself. */ 462 spin_lock(&sbsec->isec_lock); 463 next_inode: 464 if (!list_empty(&sbsec->isec_head)) { 465 struct inode_security_struct *isec = 466 list_entry(sbsec->isec_head.next, 467 struct inode_security_struct, list); 468 struct inode *inode = isec->inode; 469 spin_unlock(&sbsec->isec_lock); 470 inode = igrab(inode); 471 if (inode) { 472 if (!IS_PRIVATE(inode)) 473 inode_doinit(inode); 474 iput(inode); 475 } 476 spin_lock(&sbsec->isec_lock); 477 list_del_init(&isec->list); 478 goto next_inode; 479 } 480 spin_unlock(&sbsec->isec_lock); 481 out: 482 return rc; 483 } 484 485 /* 486 * This function should allow an FS to ask what it's mount security 487 * options were so it can use those later for submounts, displaying 488 * mount options, or whatever. 489 */ 490 static int selinux_get_mnt_opts(const struct super_block *sb, 491 struct security_mnt_opts *opts) 492 { 493 int rc = 0, i; 494 struct superblock_security_struct *sbsec = sb->s_security; 495 char *context = NULL; 496 u32 len; 497 char tmp; 498 499 security_init_mnt_opts(opts); 500 501 if (!(sbsec->flags & SE_SBINITIALIZED)) 502 return -EINVAL; 503 504 if (!ss_initialized) 505 return -EINVAL; 506 507 tmp = sbsec->flags & SE_MNTMASK; 508 /* count the number of mount options for this sb */ 509 for (i = 0; i < 8; i++) { 510 if (tmp & 0x01) 511 opts->num_mnt_opts++; 512 tmp >>= 1; 513 } 514 /* Check if the Label support flag is set */ 515 if (sbsec->flags & SE_SBLABELSUPP) 516 opts->num_mnt_opts++; 517 518 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC); 519 if (!opts->mnt_opts) { 520 rc = -ENOMEM; 521 goto out_free; 522 } 523 524 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC); 525 if (!opts->mnt_opts_flags) { 526 rc = -ENOMEM; 527 goto out_free; 528 } 529 530 i = 0; 531 if (sbsec->flags & FSCONTEXT_MNT) { 532 rc = security_sid_to_context(sbsec->sid, &context, &len); 533 if (rc) 534 goto out_free; 535 opts->mnt_opts[i] = context; 536 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT; 537 } 538 if (sbsec->flags & CONTEXT_MNT) { 539 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len); 540 if (rc) 541 goto out_free; 542 opts->mnt_opts[i] = context; 543 opts->mnt_opts_flags[i++] = CONTEXT_MNT; 544 } 545 if (sbsec->flags & DEFCONTEXT_MNT) { 546 rc = security_sid_to_context(sbsec->def_sid, &context, &len); 547 if (rc) 548 goto out_free; 549 opts->mnt_opts[i] = context; 550 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT; 551 } 552 if (sbsec->flags & ROOTCONTEXT_MNT) { 553 struct inode *root = sbsec->sb->s_root->d_inode; 554 struct inode_security_struct *isec = root->i_security; 555 556 rc = security_sid_to_context(isec->sid, &context, &len); 557 if (rc) 558 goto out_free; 559 opts->mnt_opts[i] = context; 560 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT; 561 } 562 if (sbsec->flags & SE_SBLABELSUPP) { 563 opts->mnt_opts[i] = NULL; 564 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP; 565 } 566 567 BUG_ON(i != opts->num_mnt_opts); 568 569 return 0; 570 571 out_free: 572 security_free_mnt_opts(opts); 573 return rc; 574 } 575 576 static int bad_option(struct superblock_security_struct *sbsec, char flag, 577 u32 old_sid, u32 new_sid) 578 { 579 char mnt_flags = sbsec->flags & SE_MNTMASK; 580 581 /* check if the old mount command had the same options */ 582 if (sbsec->flags & SE_SBINITIALIZED) 583 if (!(sbsec->flags & flag) || 584 (old_sid != new_sid)) 585 return 1; 586 587 /* check if we were passed the same options twice, 588 * aka someone passed context=a,context=b 589 */ 590 if (!(sbsec->flags & SE_SBINITIALIZED)) 591 if (mnt_flags & flag) 592 return 1; 593 return 0; 594 } 595 596 /* 597 * Allow filesystems with binary mount data to explicitly set mount point 598 * labeling information. 599 */ 600 static int selinux_set_mnt_opts(struct super_block *sb, 601 struct security_mnt_opts *opts) 602 { 603 const struct cred *cred = current_cred(); 604 int rc = 0, i; 605 struct superblock_security_struct *sbsec = sb->s_security; 606 const char *name = sb->s_type->name; 607 struct inode *inode = sbsec->sb->s_root->d_inode; 608 struct inode_security_struct *root_isec = inode->i_security; 609 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; 610 u32 defcontext_sid = 0; 611 char **mount_options = opts->mnt_opts; 612 int *flags = opts->mnt_opts_flags; 613 int num_opts = opts->num_mnt_opts; 614 615 mutex_lock(&sbsec->lock); 616 617 if (!ss_initialized) { 618 if (!num_opts) { 619 /* Defer initialization until selinux_complete_init, 620 after the initial policy is loaded and the security 621 server is ready to handle calls. */ 622 spin_lock(&sb_security_lock); 623 if (list_empty(&sbsec->list)) 624 list_add(&sbsec->list, &superblock_security_head); 625 spin_unlock(&sb_security_lock); 626 goto out; 627 } 628 rc = -EINVAL; 629 printk(KERN_WARNING "SELinux: Unable to set superblock options " 630 "before the security server is initialized\n"); 631 goto out; 632 } 633 634 /* 635 * Binary mount data FS will come through this function twice. Once 636 * from an explicit call and once from the generic calls from the vfs. 637 * Since the generic VFS calls will not contain any security mount data 638 * we need to skip the double mount verification. 639 * 640 * This does open a hole in which we will not notice if the first 641 * mount using this sb set explict options and a second mount using 642 * this sb does not set any security options. (The first options 643 * will be used for both mounts) 644 */ 645 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 646 && (num_opts == 0)) 647 goto out; 648 649 /* 650 * parse the mount options, check if they are valid sids. 651 * also check if someone is trying to mount the same sb more 652 * than once with different security options. 653 */ 654 for (i = 0; i < num_opts; i++) { 655 u32 sid; 656 657 if (flags[i] == SE_SBLABELSUPP) 658 continue; 659 rc = security_context_to_sid(mount_options[i], 660 strlen(mount_options[i]), &sid); 661 if (rc) { 662 printk(KERN_WARNING "SELinux: security_context_to_sid" 663 "(%s) failed for (dev %s, type %s) errno=%d\n", 664 mount_options[i], sb->s_id, name, rc); 665 goto out; 666 } 667 switch (flags[i]) { 668 case FSCONTEXT_MNT: 669 fscontext_sid = sid; 670 671 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 672 fscontext_sid)) 673 goto out_double_mount; 674 675 sbsec->flags |= FSCONTEXT_MNT; 676 break; 677 case CONTEXT_MNT: 678 context_sid = sid; 679 680 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 681 context_sid)) 682 goto out_double_mount; 683 684 sbsec->flags |= CONTEXT_MNT; 685 break; 686 case ROOTCONTEXT_MNT: 687 rootcontext_sid = sid; 688 689 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 690 rootcontext_sid)) 691 goto out_double_mount; 692 693 sbsec->flags |= ROOTCONTEXT_MNT; 694 695 break; 696 case DEFCONTEXT_MNT: 697 defcontext_sid = sid; 698 699 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 700 defcontext_sid)) 701 goto out_double_mount; 702 703 sbsec->flags |= DEFCONTEXT_MNT; 704 705 break; 706 default: 707 rc = -EINVAL; 708 goto out; 709 } 710 } 711 712 if (sbsec->flags & SE_SBINITIALIZED) { 713 /* previously mounted with options, but not on this attempt? */ 714 if ((sbsec->flags & SE_MNTMASK) && !num_opts) 715 goto out_double_mount; 716 rc = 0; 717 goto out; 718 } 719 720 if (strcmp(sb->s_type->name, "proc") == 0) 721 sbsec->flags |= SE_SBPROC; 722 723 /* Determine the labeling behavior to use for this filesystem type. */ 724 rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid); 725 if (rc) { 726 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n", 727 __func__, sb->s_type->name, rc); 728 goto out; 729 } 730 731 /* sets the context of the superblock for the fs being mounted. */ 732 if (fscontext_sid) { 733 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred); 734 if (rc) 735 goto out; 736 737 sbsec->sid = fscontext_sid; 738 } 739 740 /* 741 * Switch to using mount point labeling behavior. 742 * sets the label used on all file below the mountpoint, and will set 743 * the superblock context if not already set. 744 */ 745 if (context_sid) { 746 if (!fscontext_sid) { 747 rc = may_context_mount_sb_relabel(context_sid, sbsec, 748 cred); 749 if (rc) 750 goto out; 751 sbsec->sid = context_sid; 752 } else { 753 rc = may_context_mount_inode_relabel(context_sid, sbsec, 754 cred); 755 if (rc) 756 goto out; 757 } 758 if (!rootcontext_sid) 759 rootcontext_sid = context_sid; 760 761 sbsec->mntpoint_sid = context_sid; 762 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 763 } 764 765 if (rootcontext_sid) { 766 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, 767 cred); 768 if (rc) 769 goto out; 770 771 root_isec->sid = rootcontext_sid; 772 root_isec->initialized = 1; 773 } 774 775 if (defcontext_sid) { 776 if (sbsec->behavior != SECURITY_FS_USE_XATTR) { 777 rc = -EINVAL; 778 printk(KERN_WARNING "SELinux: defcontext option is " 779 "invalid for this filesystem type\n"); 780 goto out; 781 } 782 783 if (defcontext_sid != sbsec->def_sid) { 784 rc = may_context_mount_inode_relabel(defcontext_sid, 785 sbsec, cred); 786 if (rc) 787 goto out; 788 } 789 790 sbsec->def_sid = defcontext_sid; 791 } 792 793 rc = sb_finish_set_opts(sb); 794 out: 795 mutex_unlock(&sbsec->lock); 796 return rc; 797 out_double_mount: 798 rc = -EINVAL; 799 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different " 800 "security settings for (dev %s, type %s)\n", sb->s_id, name); 801 goto out; 802 } 803 804 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb, 805 struct super_block *newsb) 806 { 807 const struct superblock_security_struct *oldsbsec = oldsb->s_security; 808 struct superblock_security_struct *newsbsec = newsb->s_security; 809 810 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); 811 int set_context = (oldsbsec->flags & CONTEXT_MNT); 812 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); 813 814 /* 815 * if the parent was able to be mounted it clearly had no special lsm 816 * mount options. thus we can safely put this sb on the list and deal 817 * with it later 818 */ 819 if (!ss_initialized) { 820 spin_lock(&sb_security_lock); 821 if (list_empty(&newsbsec->list)) 822 list_add(&newsbsec->list, &superblock_security_head); 823 spin_unlock(&sb_security_lock); 824 return; 825 } 826 827 /* how can we clone if the old one wasn't set up?? */ 828 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED)); 829 830 /* if fs is reusing a sb, just let its options stand... */ 831 if (newsbsec->flags & SE_SBINITIALIZED) 832 return; 833 834 mutex_lock(&newsbsec->lock); 835 836 newsbsec->flags = oldsbsec->flags; 837 838 newsbsec->sid = oldsbsec->sid; 839 newsbsec->def_sid = oldsbsec->def_sid; 840 newsbsec->behavior = oldsbsec->behavior; 841 842 if (set_context) { 843 u32 sid = oldsbsec->mntpoint_sid; 844 845 if (!set_fscontext) 846 newsbsec->sid = sid; 847 if (!set_rootcontext) { 848 struct inode *newinode = newsb->s_root->d_inode; 849 struct inode_security_struct *newisec = newinode->i_security; 850 newisec->sid = sid; 851 } 852 newsbsec->mntpoint_sid = sid; 853 } 854 if (set_rootcontext) { 855 const struct inode *oldinode = oldsb->s_root->d_inode; 856 const struct inode_security_struct *oldisec = oldinode->i_security; 857 struct inode *newinode = newsb->s_root->d_inode; 858 struct inode_security_struct *newisec = newinode->i_security; 859 860 newisec->sid = oldisec->sid; 861 } 862 863 sb_finish_set_opts(newsb); 864 mutex_unlock(&newsbsec->lock); 865 } 866 867 static int selinux_parse_opts_str(char *options, 868 struct security_mnt_opts *opts) 869 { 870 char *p; 871 char *context = NULL, *defcontext = NULL; 872 char *fscontext = NULL, *rootcontext = NULL; 873 int rc, num_mnt_opts = 0; 874 875 opts->num_mnt_opts = 0; 876 877 /* Standard string-based options. */ 878 while ((p = strsep(&options, "|")) != NULL) { 879 int token; 880 substring_t args[MAX_OPT_ARGS]; 881 882 if (!*p) 883 continue; 884 885 token = match_token(p, tokens, args); 886 887 switch (token) { 888 case Opt_context: 889 if (context || defcontext) { 890 rc = -EINVAL; 891 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 892 goto out_err; 893 } 894 context = match_strdup(&args[0]); 895 if (!context) { 896 rc = -ENOMEM; 897 goto out_err; 898 } 899 break; 900 901 case Opt_fscontext: 902 if (fscontext) { 903 rc = -EINVAL; 904 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 905 goto out_err; 906 } 907 fscontext = match_strdup(&args[0]); 908 if (!fscontext) { 909 rc = -ENOMEM; 910 goto out_err; 911 } 912 break; 913 914 case Opt_rootcontext: 915 if (rootcontext) { 916 rc = -EINVAL; 917 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 918 goto out_err; 919 } 920 rootcontext = match_strdup(&args[0]); 921 if (!rootcontext) { 922 rc = -ENOMEM; 923 goto out_err; 924 } 925 break; 926 927 case Opt_defcontext: 928 if (context || defcontext) { 929 rc = -EINVAL; 930 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 931 goto out_err; 932 } 933 defcontext = match_strdup(&args[0]); 934 if (!defcontext) { 935 rc = -ENOMEM; 936 goto out_err; 937 } 938 break; 939 case Opt_labelsupport: 940 break; 941 default: 942 rc = -EINVAL; 943 printk(KERN_WARNING "SELinux: unknown mount option\n"); 944 goto out_err; 945 946 } 947 } 948 949 rc = -ENOMEM; 950 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC); 951 if (!opts->mnt_opts) 952 goto out_err; 953 954 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC); 955 if (!opts->mnt_opts_flags) { 956 kfree(opts->mnt_opts); 957 goto out_err; 958 } 959 960 if (fscontext) { 961 opts->mnt_opts[num_mnt_opts] = fscontext; 962 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT; 963 } 964 if (context) { 965 opts->mnt_opts[num_mnt_opts] = context; 966 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT; 967 } 968 if (rootcontext) { 969 opts->mnt_opts[num_mnt_opts] = rootcontext; 970 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT; 971 } 972 if (defcontext) { 973 opts->mnt_opts[num_mnt_opts] = defcontext; 974 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT; 975 } 976 977 opts->num_mnt_opts = num_mnt_opts; 978 return 0; 979 980 out_err: 981 kfree(context); 982 kfree(defcontext); 983 kfree(fscontext); 984 kfree(rootcontext); 985 return rc; 986 } 987 /* 988 * string mount options parsing and call set the sbsec 989 */ 990 static int superblock_doinit(struct super_block *sb, void *data) 991 { 992 int rc = 0; 993 char *options = data; 994 struct security_mnt_opts opts; 995 996 security_init_mnt_opts(&opts); 997 998 if (!data) 999 goto out; 1000 1001 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA); 1002 1003 rc = selinux_parse_opts_str(options, &opts); 1004 if (rc) 1005 goto out_err; 1006 1007 out: 1008 rc = selinux_set_mnt_opts(sb, &opts); 1009 1010 out_err: 1011 security_free_mnt_opts(&opts); 1012 return rc; 1013 } 1014 1015 static void selinux_write_opts(struct seq_file *m, 1016 struct security_mnt_opts *opts) 1017 { 1018 int i; 1019 char *prefix; 1020 1021 for (i = 0; i < opts->num_mnt_opts; i++) { 1022 char *has_comma; 1023 1024 if (opts->mnt_opts[i]) 1025 has_comma = strchr(opts->mnt_opts[i], ','); 1026 else 1027 has_comma = NULL; 1028 1029 switch (opts->mnt_opts_flags[i]) { 1030 case CONTEXT_MNT: 1031 prefix = CONTEXT_STR; 1032 break; 1033 case FSCONTEXT_MNT: 1034 prefix = FSCONTEXT_STR; 1035 break; 1036 case ROOTCONTEXT_MNT: 1037 prefix = ROOTCONTEXT_STR; 1038 break; 1039 case DEFCONTEXT_MNT: 1040 prefix = DEFCONTEXT_STR; 1041 break; 1042 case SE_SBLABELSUPP: 1043 seq_putc(m, ','); 1044 seq_puts(m, LABELSUPP_STR); 1045 continue; 1046 default: 1047 BUG(); 1048 }; 1049 /* we need a comma before each option */ 1050 seq_putc(m, ','); 1051 seq_puts(m, prefix); 1052 if (has_comma) 1053 seq_putc(m, '\"'); 1054 seq_puts(m, opts->mnt_opts[i]); 1055 if (has_comma) 1056 seq_putc(m, '\"'); 1057 } 1058 } 1059 1060 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb) 1061 { 1062 struct security_mnt_opts opts; 1063 int rc; 1064 1065 rc = selinux_get_mnt_opts(sb, &opts); 1066 if (rc) { 1067 /* before policy load we may get EINVAL, don't show anything */ 1068 if (rc == -EINVAL) 1069 rc = 0; 1070 return rc; 1071 } 1072 1073 selinux_write_opts(m, &opts); 1074 1075 security_free_mnt_opts(&opts); 1076 1077 return rc; 1078 } 1079 1080 static inline u16 inode_mode_to_security_class(umode_t mode) 1081 { 1082 switch (mode & S_IFMT) { 1083 case S_IFSOCK: 1084 return SECCLASS_SOCK_FILE; 1085 case S_IFLNK: 1086 return SECCLASS_LNK_FILE; 1087 case S_IFREG: 1088 return SECCLASS_FILE; 1089 case S_IFBLK: 1090 return SECCLASS_BLK_FILE; 1091 case S_IFDIR: 1092 return SECCLASS_DIR; 1093 case S_IFCHR: 1094 return SECCLASS_CHR_FILE; 1095 case S_IFIFO: 1096 return SECCLASS_FIFO_FILE; 1097 1098 } 1099 1100 return SECCLASS_FILE; 1101 } 1102 1103 static inline int default_protocol_stream(int protocol) 1104 { 1105 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP); 1106 } 1107 1108 static inline int default_protocol_dgram(int protocol) 1109 { 1110 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 1111 } 1112 1113 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 1114 { 1115 switch (family) { 1116 case PF_UNIX: 1117 switch (type) { 1118 case SOCK_STREAM: 1119 case SOCK_SEQPACKET: 1120 return SECCLASS_UNIX_STREAM_SOCKET; 1121 case SOCK_DGRAM: 1122 return SECCLASS_UNIX_DGRAM_SOCKET; 1123 } 1124 break; 1125 case PF_INET: 1126 case PF_INET6: 1127 switch (type) { 1128 case SOCK_STREAM: 1129 if (default_protocol_stream(protocol)) 1130 return SECCLASS_TCP_SOCKET; 1131 else 1132 return SECCLASS_RAWIP_SOCKET; 1133 case SOCK_DGRAM: 1134 if (default_protocol_dgram(protocol)) 1135 return SECCLASS_UDP_SOCKET; 1136 else 1137 return SECCLASS_RAWIP_SOCKET; 1138 case SOCK_DCCP: 1139 return SECCLASS_DCCP_SOCKET; 1140 default: 1141 return SECCLASS_RAWIP_SOCKET; 1142 } 1143 break; 1144 case PF_NETLINK: 1145 switch (protocol) { 1146 case NETLINK_ROUTE: 1147 return SECCLASS_NETLINK_ROUTE_SOCKET; 1148 case NETLINK_FIREWALL: 1149 return SECCLASS_NETLINK_FIREWALL_SOCKET; 1150 case NETLINK_INET_DIAG: 1151 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 1152 case NETLINK_NFLOG: 1153 return SECCLASS_NETLINK_NFLOG_SOCKET; 1154 case NETLINK_XFRM: 1155 return SECCLASS_NETLINK_XFRM_SOCKET; 1156 case NETLINK_SELINUX: 1157 return SECCLASS_NETLINK_SELINUX_SOCKET; 1158 case NETLINK_AUDIT: 1159 return SECCLASS_NETLINK_AUDIT_SOCKET; 1160 case NETLINK_IP6_FW: 1161 return SECCLASS_NETLINK_IP6FW_SOCKET; 1162 case NETLINK_DNRTMSG: 1163 return SECCLASS_NETLINK_DNRT_SOCKET; 1164 case NETLINK_KOBJECT_UEVENT: 1165 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 1166 default: 1167 return SECCLASS_NETLINK_SOCKET; 1168 } 1169 case PF_PACKET: 1170 return SECCLASS_PACKET_SOCKET; 1171 case PF_KEY: 1172 return SECCLASS_KEY_SOCKET; 1173 case PF_APPLETALK: 1174 return SECCLASS_APPLETALK_SOCKET; 1175 } 1176 1177 return SECCLASS_SOCKET; 1178 } 1179 1180 #ifdef CONFIG_PROC_FS 1181 static int selinux_proc_get_sid(struct proc_dir_entry *de, 1182 u16 tclass, 1183 u32 *sid) 1184 { 1185 int buflen, rc; 1186 char *buffer, *path, *end; 1187 1188 buffer = (char *)__get_free_page(GFP_KERNEL); 1189 if (!buffer) 1190 return -ENOMEM; 1191 1192 buflen = PAGE_SIZE; 1193 end = buffer+buflen; 1194 *--end = '\0'; 1195 buflen--; 1196 path = end-1; 1197 *path = '/'; 1198 while (de && de != de->parent) { 1199 buflen -= de->namelen + 1; 1200 if (buflen < 0) 1201 break; 1202 end -= de->namelen; 1203 memcpy(end, de->name, de->namelen); 1204 *--end = '/'; 1205 path = end; 1206 de = de->parent; 1207 } 1208 rc = security_genfs_sid("proc", path, tclass, sid); 1209 free_page((unsigned long)buffer); 1210 return rc; 1211 } 1212 #else 1213 static int selinux_proc_get_sid(struct proc_dir_entry *de, 1214 u16 tclass, 1215 u32 *sid) 1216 { 1217 return -EINVAL; 1218 } 1219 #endif 1220 1221 /* The inode's security attributes must be initialized before first use. */ 1222 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 1223 { 1224 struct superblock_security_struct *sbsec = NULL; 1225 struct inode_security_struct *isec = inode->i_security; 1226 u32 sid; 1227 struct dentry *dentry; 1228 #define INITCONTEXTLEN 255 1229 char *context = NULL; 1230 unsigned len = 0; 1231 int rc = 0; 1232 1233 if (isec->initialized) 1234 goto out; 1235 1236 mutex_lock(&isec->lock); 1237 if (isec->initialized) 1238 goto out_unlock; 1239 1240 sbsec = inode->i_sb->s_security; 1241 if (!(sbsec->flags & SE_SBINITIALIZED)) { 1242 /* Defer initialization until selinux_complete_init, 1243 after the initial policy is loaded and the security 1244 server is ready to handle calls. */ 1245 spin_lock(&sbsec->isec_lock); 1246 if (list_empty(&isec->list)) 1247 list_add(&isec->list, &sbsec->isec_head); 1248 spin_unlock(&sbsec->isec_lock); 1249 goto out_unlock; 1250 } 1251 1252 switch (sbsec->behavior) { 1253 case SECURITY_FS_USE_XATTR: 1254 if (!inode->i_op->getxattr) { 1255 isec->sid = sbsec->def_sid; 1256 break; 1257 } 1258 1259 /* Need a dentry, since the xattr API requires one. 1260 Life would be simpler if we could just pass the inode. */ 1261 if (opt_dentry) { 1262 /* Called from d_instantiate or d_splice_alias. */ 1263 dentry = dget(opt_dentry); 1264 } else { 1265 /* Called from selinux_complete_init, try to find a dentry. */ 1266 dentry = d_find_alias(inode); 1267 } 1268 if (!dentry) { 1269 /* 1270 * this is can be hit on boot when a file is accessed 1271 * before the policy is loaded. When we load policy we 1272 * may find inodes that have no dentry on the 1273 * sbsec->isec_head list. No reason to complain as these 1274 * will get fixed up the next time we go through 1275 * inode_doinit with a dentry, before these inodes could 1276 * be used again by userspace. 1277 */ 1278 goto out_unlock; 1279 } 1280 1281 len = INITCONTEXTLEN; 1282 context = kmalloc(len+1, GFP_NOFS); 1283 if (!context) { 1284 rc = -ENOMEM; 1285 dput(dentry); 1286 goto out_unlock; 1287 } 1288 context[len] = '\0'; 1289 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1290 context, len); 1291 if (rc == -ERANGE) { 1292 kfree(context); 1293 1294 /* Need a larger buffer. Query for the right size. */ 1295 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1296 NULL, 0); 1297 if (rc < 0) { 1298 dput(dentry); 1299 goto out_unlock; 1300 } 1301 len = rc; 1302 context = kmalloc(len+1, GFP_NOFS); 1303 if (!context) { 1304 rc = -ENOMEM; 1305 dput(dentry); 1306 goto out_unlock; 1307 } 1308 context[len] = '\0'; 1309 rc = inode->i_op->getxattr(dentry, 1310 XATTR_NAME_SELINUX, 1311 context, len); 1312 } 1313 dput(dentry); 1314 if (rc < 0) { 1315 if (rc != -ENODATA) { 1316 printk(KERN_WARNING "SELinux: %s: getxattr returned " 1317 "%d for dev=%s ino=%ld\n", __func__, 1318 -rc, inode->i_sb->s_id, inode->i_ino); 1319 kfree(context); 1320 goto out_unlock; 1321 } 1322 /* Map ENODATA to the default file SID */ 1323 sid = sbsec->def_sid; 1324 rc = 0; 1325 } else { 1326 rc = security_context_to_sid_default(context, rc, &sid, 1327 sbsec->def_sid, 1328 GFP_NOFS); 1329 if (rc) { 1330 char *dev = inode->i_sb->s_id; 1331 unsigned long ino = inode->i_ino; 1332 1333 if (rc == -EINVAL) { 1334 if (printk_ratelimit()) 1335 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid " 1336 "context=%s. This indicates you may need to relabel the inode or the " 1337 "filesystem in question.\n", ino, dev, context); 1338 } else { 1339 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) " 1340 "returned %d for dev=%s ino=%ld\n", 1341 __func__, context, -rc, dev, ino); 1342 } 1343 kfree(context); 1344 /* Leave with the unlabeled SID */ 1345 rc = 0; 1346 break; 1347 } 1348 } 1349 kfree(context); 1350 isec->sid = sid; 1351 break; 1352 case SECURITY_FS_USE_TASK: 1353 isec->sid = isec->task_sid; 1354 break; 1355 case SECURITY_FS_USE_TRANS: 1356 /* Default to the fs SID. */ 1357 isec->sid = sbsec->sid; 1358 1359 /* Try to obtain a transition SID. */ 1360 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1361 rc = security_transition_sid(isec->task_sid, 1362 sbsec->sid, 1363 isec->sclass, 1364 &sid); 1365 if (rc) 1366 goto out_unlock; 1367 isec->sid = sid; 1368 break; 1369 case SECURITY_FS_USE_MNTPOINT: 1370 isec->sid = sbsec->mntpoint_sid; 1371 break; 1372 default: 1373 /* Default to the fs superblock SID. */ 1374 isec->sid = sbsec->sid; 1375 1376 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) { 1377 struct proc_inode *proci = PROC_I(inode); 1378 if (proci->pde) { 1379 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1380 rc = selinux_proc_get_sid(proci->pde, 1381 isec->sclass, 1382 &sid); 1383 if (rc) 1384 goto out_unlock; 1385 isec->sid = sid; 1386 } 1387 } 1388 break; 1389 } 1390 1391 isec->initialized = 1; 1392 1393 out_unlock: 1394 mutex_unlock(&isec->lock); 1395 out: 1396 if (isec->sclass == SECCLASS_FILE) 1397 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1398 return rc; 1399 } 1400 1401 /* Convert a Linux signal to an access vector. */ 1402 static inline u32 signal_to_av(int sig) 1403 { 1404 u32 perm = 0; 1405 1406 switch (sig) { 1407 case SIGCHLD: 1408 /* Commonly granted from child to parent. */ 1409 perm = PROCESS__SIGCHLD; 1410 break; 1411 case SIGKILL: 1412 /* Cannot be caught or ignored */ 1413 perm = PROCESS__SIGKILL; 1414 break; 1415 case SIGSTOP: 1416 /* Cannot be caught or ignored */ 1417 perm = PROCESS__SIGSTOP; 1418 break; 1419 default: 1420 /* All other signals. */ 1421 perm = PROCESS__SIGNAL; 1422 break; 1423 } 1424 1425 return perm; 1426 } 1427 1428 /* 1429 * Check permission between a pair of credentials 1430 * fork check, ptrace check, etc. 1431 */ 1432 static int cred_has_perm(const struct cred *actor, 1433 const struct cred *target, 1434 u32 perms) 1435 { 1436 u32 asid = cred_sid(actor), tsid = cred_sid(target); 1437 1438 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL); 1439 } 1440 1441 /* 1442 * Check permission between a pair of tasks, e.g. signal checks, 1443 * fork check, ptrace check, etc. 1444 * tsk1 is the actor and tsk2 is the target 1445 * - this uses the default subjective creds of tsk1 1446 */ 1447 static int task_has_perm(const struct task_struct *tsk1, 1448 const struct task_struct *tsk2, 1449 u32 perms) 1450 { 1451 const struct task_security_struct *__tsec1, *__tsec2; 1452 u32 sid1, sid2; 1453 1454 rcu_read_lock(); 1455 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid; 1456 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid; 1457 rcu_read_unlock(); 1458 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL); 1459 } 1460 1461 /* 1462 * Check permission between current and another task, e.g. signal checks, 1463 * fork check, ptrace check, etc. 1464 * current is the actor and tsk2 is the target 1465 * - this uses current's subjective creds 1466 */ 1467 static int current_has_perm(const struct task_struct *tsk, 1468 u32 perms) 1469 { 1470 u32 sid, tsid; 1471 1472 sid = current_sid(); 1473 tsid = task_sid(tsk); 1474 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL); 1475 } 1476 1477 #if CAP_LAST_CAP > 63 1478 #error Fix SELinux to handle capabilities > 63. 1479 #endif 1480 1481 /* Check whether a task is allowed to use a capability. */ 1482 static int task_has_capability(struct task_struct *tsk, 1483 const struct cred *cred, 1484 int cap, int audit) 1485 { 1486 struct common_audit_data ad; 1487 struct av_decision avd; 1488 u16 sclass; 1489 u32 sid = cred_sid(cred); 1490 u32 av = CAP_TO_MASK(cap); 1491 int rc; 1492 1493 COMMON_AUDIT_DATA_INIT(&ad, CAP); 1494 ad.tsk = tsk; 1495 ad.u.cap = cap; 1496 1497 switch (CAP_TO_INDEX(cap)) { 1498 case 0: 1499 sclass = SECCLASS_CAPABILITY; 1500 break; 1501 case 1: 1502 sclass = SECCLASS_CAPABILITY2; 1503 break; 1504 default: 1505 printk(KERN_ERR 1506 "SELinux: out of range capability %d\n", cap); 1507 BUG(); 1508 } 1509 1510 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd); 1511 if (audit == SECURITY_CAP_AUDIT) 1512 avc_audit(sid, sid, sclass, av, &avd, rc, &ad); 1513 return rc; 1514 } 1515 1516 /* Check whether a task is allowed to use a system operation. */ 1517 static int task_has_system(struct task_struct *tsk, 1518 u32 perms) 1519 { 1520 u32 sid = task_sid(tsk); 1521 1522 return avc_has_perm(sid, SECINITSID_KERNEL, 1523 SECCLASS_SYSTEM, perms, NULL); 1524 } 1525 1526 /* Check whether a task has a particular permission to an inode. 1527 The 'adp' parameter is optional and allows other audit 1528 data to be passed (e.g. the dentry). */ 1529 static int inode_has_perm(const struct cred *cred, 1530 struct inode *inode, 1531 u32 perms, 1532 struct common_audit_data *adp) 1533 { 1534 struct inode_security_struct *isec; 1535 struct common_audit_data ad; 1536 u32 sid; 1537 1538 validate_creds(cred); 1539 1540 if (unlikely(IS_PRIVATE(inode))) 1541 return 0; 1542 1543 sid = cred_sid(cred); 1544 isec = inode->i_security; 1545 1546 if (!adp) { 1547 adp = &ad; 1548 COMMON_AUDIT_DATA_INIT(&ad, FS); 1549 ad.u.fs.inode = inode; 1550 } 1551 1552 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp); 1553 } 1554 1555 /* Same as inode_has_perm, but pass explicit audit data containing 1556 the dentry to help the auditing code to more easily generate the 1557 pathname if needed. */ 1558 static inline int dentry_has_perm(const struct cred *cred, 1559 struct vfsmount *mnt, 1560 struct dentry *dentry, 1561 u32 av) 1562 { 1563 struct inode *inode = dentry->d_inode; 1564 struct common_audit_data ad; 1565 1566 COMMON_AUDIT_DATA_INIT(&ad, FS); 1567 ad.u.fs.path.mnt = mnt; 1568 ad.u.fs.path.dentry = dentry; 1569 return inode_has_perm(cred, inode, av, &ad); 1570 } 1571 1572 /* Check whether a task can use an open file descriptor to 1573 access an inode in a given way. Check access to the 1574 descriptor itself, and then use dentry_has_perm to 1575 check a particular permission to the file. 1576 Access to the descriptor is implicitly granted if it 1577 has the same SID as the process. If av is zero, then 1578 access to the file is not checked, e.g. for cases 1579 where only the descriptor is affected like seek. */ 1580 static int file_has_perm(const struct cred *cred, 1581 struct file *file, 1582 u32 av) 1583 { 1584 struct file_security_struct *fsec = file->f_security; 1585 struct inode *inode = file->f_path.dentry->d_inode; 1586 struct common_audit_data ad; 1587 u32 sid = cred_sid(cred); 1588 int rc; 1589 1590 COMMON_AUDIT_DATA_INIT(&ad, FS); 1591 ad.u.fs.path = file->f_path; 1592 1593 if (sid != fsec->sid) { 1594 rc = avc_has_perm(sid, fsec->sid, 1595 SECCLASS_FD, 1596 FD__USE, 1597 &ad); 1598 if (rc) 1599 goto out; 1600 } 1601 1602 /* av is zero if only checking access to the descriptor. */ 1603 rc = 0; 1604 if (av) 1605 rc = inode_has_perm(cred, inode, av, &ad); 1606 1607 out: 1608 return rc; 1609 } 1610 1611 /* Check whether a task can create a file. */ 1612 static int may_create(struct inode *dir, 1613 struct dentry *dentry, 1614 u16 tclass) 1615 { 1616 const struct cred *cred = current_cred(); 1617 const struct task_security_struct *tsec = cred->security; 1618 struct inode_security_struct *dsec; 1619 struct superblock_security_struct *sbsec; 1620 u32 sid, newsid; 1621 struct common_audit_data ad; 1622 int rc; 1623 1624 dsec = dir->i_security; 1625 sbsec = dir->i_sb->s_security; 1626 1627 sid = tsec->sid; 1628 newsid = tsec->create_sid; 1629 1630 COMMON_AUDIT_DATA_INIT(&ad, FS); 1631 ad.u.fs.path.dentry = dentry; 1632 1633 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, 1634 DIR__ADD_NAME | DIR__SEARCH, 1635 &ad); 1636 if (rc) 1637 return rc; 1638 1639 if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) { 1640 rc = security_transition_sid(sid, dsec->sid, tclass, &newsid); 1641 if (rc) 1642 return rc; 1643 } 1644 1645 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad); 1646 if (rc) 1647 return rc; 1648 1649 return avc_has_perm(newsid, sbsec->sid, 1650 SECCLASS_FILESYSTEM, 1651 FILESYSTEM__ASSOCIATE, &ad); 1652 } 1653 1654 /* Check whether a task can create a key. */ 1655 static int may_create_key(u32 ksid, 1656 struct task_struct *ctx) 1657 { 1658 u32 sid = task_sid(ctx); 1659 1660 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL); 1661 } 1662 1663 #define MAY_LINK 0 1664 #define MAY_UNLINK 1 1665 #define MAY_RMDIR 2 1666 1667 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1668 static int may_link(struct inode *dir, 1669 struct dentry *dentry, 1670 int kind) 1671 1672 { 1673 struct inode_security_struct *dsec, *isec; 1674 struct common_audit_data ad; 1675 u32 sid = current_sid(); 1676 u32 av; 1677 int rc; 1678 1679 dsec = dir->i_security; 1680 isec = dentry->d_inode->i_security; 1681 1682 COMMON_AUDIT_DATA_INIT(&ad, FS); 1683 ad.u.fs.path.dentry = dentry; 1684 1685 av = DIR__SEARCH; 1686 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1687 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad); 1688 if (rc) 1689 return rc; 1690 1691 switch (kind) { 1692 case MAY_LINK: 1693 av = FILE__LINK; 1694 break; 1695 case MAY_UNLINK: 1696 av = FILE__UNLINK; 1697 break; 1698 case MAY_RMDIR: 1699 av = DIR__RMDIR; 1700 break; 1701 default: 1702 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n", 1703 __func__, kind); 1704 return 0; 1705 } 1706 1707 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad); 1708 return rc; 1709 } 1710 1711 static inline int may_rename(struct inode *old_dir, 1712 struct dentry *old_dentry, 1713 struct inode *new_dir, 1714 struct dentry *new_dentry) 1715 { 1716 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1717 struct common_audit_data ad; 1718 u32 sid = current_sid(); 1719 u32 av; 1720 int old_is_dir, new_is_dir; 1721 int rc; 1722 1723 old_dsec = old_dir->i_security; 1724 old_isec = old_dentry->d_inode->i_security; 1725 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 1726 new_dsec = new_dir->i_security; 1727 1728 COMMON_AUDIT_DATA_INIT(&ad, FS); 1729 1730 ad.u.fs.path.dentry = old_dentry; 1731 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR, 1732 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1733 if (rc) 1734 return rc; 1735 rc = avc_has_perm(sid, old_isec->sid, 1736 old_isec->sclass, FILE__RENAME, &ad); 1737 if (rc) 1738 return rc; 1739 if (old_is_dir && new_dir != old_dir) { 1740 rc = avc_has_perm(sid, old_isec->sid, 1741 old_isec->sclass, DIR__REPARENT, &ad); 1742 if (rc) 1743 return rc; 1744 } 1745 1746 ad.u.fs.path.dentry = new_dentry; 1747 av = DIR__ADD_NAME | DIR__SEARCH; 1748 if (new_dentry->d_inode) 1749 av |= DIR__REMOVE_NAME; 1750 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1751 if (rc) 1752 return rc; 1753 if (new_dentry->d_inode) { 1754 new_isec = new_dentry->d_inode->i_security; 1755 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode); 1756 rc = avc_has_perm(sid, new_isec->sid, 1757 new_isec->sclass, 1758 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1759 if (rc) 1760 return rc; 1761 } 1762 1763 return 0; 1764 } 1765 1766 /* Check whether a task can perform a filesystem operation. */ 1767 static int superblock_has_perm(const struct cred *cred, 1768 struct super_block *sb, 1769 u32 perms, 1770 struct common_audit_data *ad) 1771 { 1772 struct superblock_security_struct *sbsec; 1773 u32 sid = cred_sid(cred); 1774 1775 sbsec = sb->s_security; 1776 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad); 1777 } 1778 1779 /* Convert a Linux mode and permission mask to an access vector. */ 1780 static inline u32 file_mask_to_av(int mode, int mask) 1781 { 1782 u32 av = 0; 1783 1784 if ((mode & S_IFMT) != S_IFDIR) { 1785 if (mask & MAY_EXEC) 1786 av |= FILE__EXECUTE; 1787 if (mask & MAY_READ) 1788 av |= FILE__READ; 1789 1790 if (mask & MAY_APPEND) 1791 av |= FILE__APPEND; 1792 else if (mask & MAY_WRITE) 1793 av |= FILE__WRITE; 1794 1795 } else { 1796 if (mask & MAY_EXEC) 1797 av |= DIR__SEARCH; 1798 if (mask & MAY_WRITE) 1799 av |= DIR__WRITE; 1800 if (mask & MAY_READ) 1801 av |= DIR__READ; 1802 } 1803 1804 return av; 1805 } 1806 1807 /* Convert a Linux file to an access vector. */ 1808 static inline u32 file_to_av(struct file *file) 1809 { 1810 u32 av = 0; 1811 1812 if (file->f_mode & FMODE_READ) 1813 av |= FILE__READ; 1814 if (file->f_mode & FMODE_WRITE) { 1815 if (file->f_flags & O_APPEND) 1816 av |= FILE__APPEND; 1817 else 1818 av |= FILE__WRITE; 1819 } 1820 if (!av) { 1821 /* 1822 * Special file opened with flags 3 for ioctl-only use. 1823 */ 1824 av = FILE__IOCTL; 1825 } 1826 1827 return av; 1828 } 1829 1830 /* 1831 * Convert a file to an access vector and include the correct open 1832 * open permission. 1833 */ 1834 static inline u32 open_file_to_av(struct file *file) 1835 { 1836 u32 av = file_to_av(file); 1837 1838 if (selinux_policycap_openperm) { 1839 mode_t mode = file->f_path.dentry->d_inode->i_mode; 1840 /* 1841 * lnk files and socks do not really have an 'open' 1842 */ 1843 if (S_ISREG(mode)) 1844 av |= FILE__OPEN; 1845 else if (S_ISCHR(mode)) 1846 av |= CHR_FILE__OPEN; 1847 else if (S_ISBLK(mode)) 1848 av |= BLK_FILE__OPEN; 1849 else if (S_ISFIFO(mode)) 1850 av |= FIFO_FILE__OPEN; 1851 else if (S_ISDIR(mode)) 1852 av |= DIR__OPEN; 1853 else if (S_ISSOCK(mode)) 1854 av |= SOCK_FILE__OPEN; 1855 else 1856 printk(KERN_ERR "SELinux: WARNING: inside %s with " 1857 "unknown mode:%o\n", __func__, mode); 1858 } 1859 return av; 1860 } 1861 1862 /* Hook functions begin here. */ 1863 1864 static int selinux_ptrace_access_check(struct task_struct *child, 1865 unsigned int mode) 1866 { 1867 int rc; 1868 1869 rc = cap_ptrace_access_check(child, mode); 1870 if (rc) 1871 return rc; 1872 1873 if (mode == PTRACE_MODE_READ) { 1874 u32 sid = current_sid(); 1875 u32 csid = task_sid(child); 1876 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL); 1877 } 1878 1879 return current_has_perm(child, PROCESS__PTRACE); 1880 } 1881 1882 static int selinux_ptrace_traceme(struct task_struct *parent) 1883 { 1884 int rc; 1885 1886 rc = cap_ptrace_traceme(parent); 1887 if (rc) 1888 return rc; 1889 1890 return task_has_perm(parent, current, PROCESS__PTRACE); 1891 } 1892 1893 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective, 1894 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1895 { 1896 int error; 1897 1898 error = current_has_perm(target, PROCESS__GETCAP); 1899 if (error) 1900 return error; 1901 1902 return cap_capget(target, effective, inheritable, permitted); 1903 } 1904 1905 static int selinux_capset(struct cred *new, const struct cred *old, 1906 const kernel_cap_t *effective, 1907 const kernel_cap_t *inheritable, 1908 const kernel_cap_t *permitted) 1909 { 1910 int error; 1911 1912 error = cap_capset(new, old, 1913 effective, inheritable, permitted); 1914 if (error) 1915 return error; 1916 1917 return cred_has_perm(old, new, PROCESS__SETCAP); 1918 } 1919 1920 /* 1921 * (This comment used to live with the selinux_task_setuid hook, 1922 * which was removed). 1923 * 1924 * Since setuid only affects the current process, and since the SELinux 1925 * controls are not based on the Linux identity attributes, SELinux does not 1926 * need to control this operation. However, SELinux does control the use of 1927 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook. 1928 */ 1929 1930 static int selinux_capable(struct task_struct *tsk, const struct cred *cred, 1931 int cap, int audit) 1932 { 1933 int rc; 1934 1935 rc = cap_capable(tsk, cred, cap, audit); 1936 if (rc) 1937 return rc; 1938 1939 return task_has_capability(tsk, cred, cap, audit); 1940 } 1941 1942 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid) 1943 { 1944 int buflen, rc; 1945 char *buffer, *path, *end; 1946 1947 rc = -ENOMEM; 1948 buffer = (char *)__get_free_page(GFP_KERNEL); 1949 if (!buffer) 1950 goto out; 1951 1952 buflen = PAGE_SIZE; 1953 end = buffer+buflen; 1954 *--end = '\0'; 1955 buflen--; 1956 path = end-1; 1957 *path = '/'; 1958 while (table) { 1959 const char *name = table->procname; 1960 size_t namelen = strlen(name); 1961 buflen -= namelen + 1; 1962 if (buflen < 0) 1963 goto out_free; 1964 end -= namelen; 1965 memcpy(end, name, namelen); 1966 *--end = '/'; 1967 path = end; 1968 table = table->parent; 1969 } 1970 buflen -= 4; 1971 if (buflen < 0) 1972 goto out_free; 1973 end -= 4; 1974 memcpy(end, "/sys", 4); 1975 path = end; 1976 rc = security_genfs_sid("proc", path, tclass, sid); 1977 out_free: 1978 free_page((unsigned long)buffer); 1979 out: 1980 return rc; 1981 } 1982 1983 static int selinux_sysctl(ctl_table *table, int op) 1984 { 1985 int error = 0; 1986 u32 av; 1987 u32 tsid, sid; 1988 int rc; 1989 1990 sid = current_sid(); 1991 1992 rc = selinux_sysctl_get_sid(table, (op == 0001) ? 1993 SECCLASS_DIR : SECCLASS_FILE, &tsid); 1994 if (rc) { 1995 /* Default to the well-defined sysctl SID. */ 1996 tsid = SECINITSID_SYSCTL; 1997 } 1998 1999 /* The op values are "defined" in sysctl.c, thereby creating 2000 * a bad coupling between this module and sysctl.c */ 2001 if (op == 001) { 2002 error = avc_has_perm(sid, tsid, 2003 SECCLASS_DIR, DIR__SEARCH, NULL); 2004 } else { 2005 av = 0; 2006 if (op & 004) 2007 av |= FILE__READ; 2008 if (op & 002) 2009 av |= FILE__WRITE; 2010 if (av) 2011 error = avc_has_perm(sid, tsid, 2012 SECCLASS_FILE, av, NULL); 2013 } 2014 2015 return error; 2016 } 2017 2018 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) 2019 { 2020 const struct cred *cred = current_cred(); 2021 int rc = 0; 2022 2023 if (!sb) 2024 return 0; 2025 2026 switch (cmds) { 2027 case Q_SYNC: 2028 case Q_QUOTAON: 2029 case Q_QUOTAOFF: 2030 case Q_SETINFO: 2031 case Q_SETQUOTA: 2032 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL); 2033 break; 2034 case Q_GETFMT: 2035 case Q_GETINFO: 2036 case Q_GETQUOTA: 2037 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL); 2038 break; 2039 default: 2040 rc = 0; /* let the kernel handle invalid cmds */ 2041 break; 2042 } 2043 return rc; 2044 } 2045 2046 static int selinux_quota_on(struct dentry *dentry) 2047 { 2048 const struct cred *cred = current_cred(); 2049 2050 return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON); 2051 } 2052 2053 static int selinux_syslog(int type) 2054 { 2055 int rc; 2056 2057 rc = cap_syslog(type); 2058 if (rc) 2059 return rc; 2060 2061 switch (type) { 2062 case 3: /* Read last kernel messages */ 2063 case 10: /* Return size of the log buffer */ 2064 rc = task_has_system(current, SYSTEM__SYSLOG_READ); 2065 break; 2066 case 6: /* Disable logging to console */ 2067 case 7: /* Enable logging to console */ 2068 case 8: /* Set level of messages printed to console */ 2069 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE); 2070 break; 2071 case 0: /* Close log */ 2072 case 1: /* Open log */ 2073 case 2: /* Read from log */ 2074 case 4: /* Read/clear last kernel messages */ 2075 case 5: /* Clear ring buffer */ 2076 default: 2077 rc = task_has_system(current, SYSTEM__SYSLOG_MOD); 2078 break; 2079 } 2080 return rc; 2081 } 2082 2083 /* 2084 * Check that a process has enough memory to allocate a new virtual 2085 * mapping. 0 means there is enough memory for the allocation to 2086 * succeed and -ENOMEM implies there is not. 2087 * 2088 * Do not audit the selinux permission check, as this is applied to all 2089 * processes that allocate mappings. 2090 */ 2091 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) 2092 { 2093 int rc, cap_sys_admin = 0; 2094 2095 rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN, 2096 SECURITY_CAP_NOAUDIT); 2097 if (rc == 0) 2098 cap_sys_admin = 1; 2099 2100 return __vm_enough_memory(mm, pages, cap_sys_admin); 2101 } 2102 2103 /* binprm security operations */ 2104 2105 static int selinux_bprm_set_creds(struct linux_binprm *bprm) 2106 { 2107 const struct task_security_struct *old_tsec; 2108 struct task_security_struct *new_tsec; 2109 struct inode_security_struct *isec; 2110 struct common_audit_data ad; 2111 struct inode *inode = bprm->file->f_path.dentry->d_inode; 2112 int rc; 2113 2114 rc = cap_bprm_set_creds(bprm); 2115 if (rc) 2116 return rc; 2117 2118 /* SELinux context only depends on initial program or script and not 2119 * the script interpreter */ 2120 if (bprm->cred_prepared) 2121 return 0; 2122 2123 old_tsec = current_security(); 2124 new_tsec = bprm->cred->security; 2125 isec = inode->i_security; 2126 2127 /* Default to the current task SID. */ 2128 new_tsec->sid = old_tsec->sid; 2129 new_tsec->osid = old_tsec->sid; 2130 2131 /* Reset fs, key, and sock SIDs on execve. */ 2132 new_tsec->create_sid = 0; 2133 new_tsec->keycreate_sid = 0; 2134 new_tsec->sockcreate_sid = 0; 2135 2136 if (old_tsec->exec_sid) { 2137 new_tsec->sid = old_tsec->exec_sid; 2138 /* Reset exec SID on execve. */ 2139 new_tsec->exec_sid = 0; 2140 } else { 2141 /* Check for a default transition on this program. */ 2142 rc = security_transition_sid(old_tsec->sid, isec->sid, 2143 SECCLASS_PROCESS, &new_tsec->sid); 2144 if (rc) 2145 return rc; 2146 } 2147 2148 COMMON_AUDIT_DATA_INIT(&ad, FS); 2149 ad.u.fs.path = bprm->file->f_path; 2150 2151 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) 2152 new_tsec->sid = old_tsec->sid; 2153 2154 if (new_tsec->sid == old_tsec->sid) { 2155 rc = avc_has_perm(old_tsec->sid, isec->sid, 2156 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 2157 if (rc) 2158 return rc; 2159 } else { 2160 /* Check permissions for the transition. */ 2161 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2162 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 2163 if (rc) 2164 return rc; 2165 2166 rc = avc_has_perm(new_tsec->sid, isec->sid, 2167 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 2168 if (rc) 2169 return rc; 2170 2171 /* Check for shared state */ 2172 if (bprm->unsafe & LSM_UNSAFE_SHARE) { 2173 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2174 SECCLASS_PROCESS, PROCESS__SHARE, 2175 NULL); 2176 if (rc) 2177 return -EPERM; 2178 } 2179 2180 /* Make sure that anyone attempting to ptrace over a task that 2181 * changes its SID has the appropriate permit */ 2182 if (bprm->unsafe & 2183 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) { 2184 struct task_struct *tracer; 2185 struct task_security_struct *sec; 2186 u32 ptsid = 0; 2187 2188 rcu_read_lock(); 2189 tracer = tracehook_tracer_task(current); 2190 if (likely(tracer != NULL)) { 2191 sec = __task_cred(tracer)->security; 2192 ptsid = sec->sid; 2193 } 2194 rcu_read_unlock(); 2195 2196 if (ptsid != 0) { 2197 rc = avc_has_perm(ptsid, new_tsec->sid, 2198 SECCLASS_PROCESS, 2199 PROCESS__PTRACE, NULL); 2200 if (rc) 2201 return -EPERM; 2202 } 2203 } 2204 2205 /* Clear any possibly unsafe personality bits on exec: */ 2206 bprm->per_clear |= PER_CLEAR_ON_SETID; 2207 } 2208 2209 return 0; 2210 } 2211 2212 static int selinux_bprm_secureexec(struct linux_binprm *bprm) 2213 { 2214 const struct cred *cred = current_cred(); 2215 const struct task_security_struct *tsec = cred->security; 2216 u32 sid, osid; 2217 int atsecure = 0; 2218 2219 sid = tsec->sid; 2220 osid = tsec->osid; 2221 2222 if (osid != sid) { 2223 /* Enable secure mode for SIDs transitions unless 2224 the noatsecure permission is granted between 2225 the two SIDs, i.e. ahp returns 0. */ 2226 atsecure = avc_has_perm(osid, sid, 2227 SECCLASS_PROCESS, 2228 PROCESS__NOATSECURE, NULL); 2229 } 2230 2231 return (atsecure || cap_bprm_secureexec(bprm)); 2232 } 2233 2234 extern struct vfsmount *selinuxfs_mount; 2235 extern struct dentry *selinux_null; 2236 2237 /* Derived from fs/exec.c:flush_old_files. */ 2238 static inline void flush_unauthorized_files(const struct cred *cred, 2239 struct files_struct *files) 2240 { 2241 struct common_audit_data ad; 2242 struct file *file, *devnull = NULL; 2243 struct tty_struct *tty; 2244 struct fdtable *fdt; 2245 long j = -1; 2246 int drop_tty = 0; 2247 2248 tty = get_current_tty(); 2249 if (tty) { 2250 file_list_lock(); 2251 if (!list_empty(&tty->tty_files)) { 2252 struct inode *inode; 2253 2254 /* Revalidate access to controlling tty. 2255 Use inode_has_perm on the tty inode directly rather 2256 than using file_has_perm, as this particular open 2257 file may belong to another process and we are only 2258 interested in the inode-based check here. */ 2259 file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list); 2260 inode = file->f_path.dentry->d_inode; 2261 if (inode_has_perm(cred, inode, 2262 FILE__READ | FILE__WRITE, NULL)) { 2263 drop_tty = 1; 2264 } 2265 } 2266 file_list_unlock(); 2267 tty_kref_put(tty); 2268 } 2269 /* Reset controlling tty. */ 2270 if (drop_tty) 2271 no_tty(); 2272 2273 /* Revalidate access to inherited open files. */ 2274 2275 COMMON_AUDIT_DATA_INIT(&ad, FS); 2276 2277 spin_lock(&files->file_lock); 2278 for (;;) { 2279 unsigned long set, i; 2280 int fd; 2281 2282 j++; 2283 i = j * __NFDBITS; 2284 fdt = files_fdtable(files); 2285 if (i >= fdt->max_fds) 2286 break; 2287 set = fdt->open_fds->fds_bits[j]; 2288 if (!set) 2289 continue; 2290 spin_unlock(&files->file_lock); 2291 for ( ; set ; i++, set >>= 1) { 2292 if (set & 1) { 2293 file = fget(i); 2294 if (!file) 2295 continue; 2296 if (file_has_perm(cred, 2297 file, 2298 file_to_av(file))) { 2299 sys_close(i); 2300 fd = get_unused_fd(); 2301 if (fd != i) { 2302 if (fd >= 0) 2303 put_unused_fd(fd); 2304 fput(file); 2305 continue; 2306 } 2307 if (devnull) { 2308 get_file(devnull); 2309 } else { 2310 devnull = dentry_open( 2311 dget(selinux_null), 2312 mntget(selinuxfs_mount), 2313 O_RDWR, cred); 2314 if (IS_ERR(devnull)) { 2315 devnull = NULL; 2316 put_unused_fd(fd); 2317 fput(file); 2318 continue; 2319 } 2320 } 2321 fd_install(fd, devnull); 2322 } 2323 fput(file); 2324 } 2325 } 2326 spin_lock(&files->file_lock); 2327 2328 } 2329 spin_unlock(&files->file_lock); 2330 } 2331 2332 /* 2333 * Prepare a process for imminent new credential changes due to exec 2334 */ 2335 static void selinux_bprm_committing_creds(struct linux_binprm *bprm) 2336 { 2337 struct task_security_struct *new_tsec; 2338 struct rlimit *rlim, *initrlim; 2339 int rc, i; 2340 2341 new_tsec = bprm->cred->security; 2342 if (new_tsec->sid == new_tsec->osid) 2343 return; 2344 2345 /* Close files for which the new task SID is not authorized. */ 2346 flush_unauthorized_files(bprm->cred, current->files); 2347 2348 /* Always clear parent death signal on SID transitions. */ 2349 current->pdeath_signal = 0; 2350 2351 /* Check whether the new SID can inherit resource limits from the old 2352 * SID. If not, reset all soft limits to the lower of the current 2353 * task's hard limit and the init task's soft limit. 2354 * 2355 * Note that the setting of hard limits (even to lower them) can be 2356 * controlled by the setrlimit check. The inclusion of the init task's 2357 * soft limit into the computation is to avoid resetting soft limits 2358 * higher than the default soft limit for cases where the default is 2359 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK. 2360 */ 2361 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS, 2362 PROCESS__RLIMITINH, NULL); 2363 if (rc) { 2364 for (i = 0; i < RLIM_NLIMITS; i++) { 2365 rlim = current->signal->rlim + i; 2366 initrlim = init_task.signal->rlim + i; 2367 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur); 2368 } 2369 update_rlimit_cpu(rlim->rlim_cur); 2370 } 2371 } 2372 2373 /* 2374 * Clean up the process immediately after the installation of new credentials 2375 * due to exec 2376 */ 2377 static void selinux_bprm_committed_creds(struct linux_binprm *bprm) 2378 { 2379 const struct task_security_struct *tsec = current_security(); 2380 struct itimerval itimer; 2381 u32 osid, sid; 2382 int rc, i; 2383 2384 osid = tsec->osid; 2385 sid = tsec->sid; 2386 2387 if (sid == osid) 2388 return; 2389 2390 /* Check whether the new SID can inherit signal state from the old SID. 2391 * If not, clear itimers to avoid subsequent signal generation and 2392 * flush and unblock signals. 2393 * 2394 * This must occur _after_ the task SID has been updated so that any 2395 * kill done after the flush will be checked against the new SID. 2396 */ 2397 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL); 2398 if (rc) { 2399 memset(&itimer, 0, sizeof itimer); 2400 for (i = 0; i < 3; i++) 2401 do_setitimer(i, &itimer, NULL); 2402 spin_lock_irq(¤t->sighand->siglock); 2403 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) { 2404 __flush_signals(current); 2405 flush_signal_handlers(current, 1); 2406 sigemptyset(¤t->blocked); 2407 } 2408 spin_unlock_irq(¤t->sighand->siglock); 2409 } 2410 2411 /* Wake up the parent if it is waiting so that it can recheck 2412 * wait permission to the new task SID. */ 2413 read_lock(&tasklist_lock); 2414 wake_up_interruptible(¤t->real_parent->signal->wait_chldexit); 2415 read_unlock(&tasklist_lock); 2416 } 2417 2418 /* superblock security operations */ 2419 2420 static int selinux_sb_alloc_security(struct super_block *sb) 2421 { 2422 return superblock_alloc_security(sb); 2423 } 2424 2425 static void selinux_sb_free_security(struct super_block *sb) 2426 { 2427 superblock_free_security(sb); 2428 } 2429 2430 static inline int match_prefix(char *prefix, int plen, char *option, int olen) 2431 { 2432 if (plen > olen) 2433 return 0; 2434 2435 return !memcmp(prefix, option, plen); 2436 } 2437 2438 static inline int selinux_option(char *option, int len) 2439 { 2440 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) || 2441 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) || 2442 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) || 2443 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) || 2444 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len)); 2445 } 2446 2447 static inline void take_option(char **to, char *from, int *first, int len) 2448 { 2449 if (!*first) { 2450 **to = ','; 2451 *to += 1; 2452 } else 2453 *first = 0; 2454 memcpy(*to, from, len); 2455 *to += len; 2456 } 2457 2458 static inline void take_selinux_option(char **to, char *from, int *first, 2459 int len) 2460 { 2461 int current_size = 0; 2462 2463 if (!*first) { 2464 **to = '|'; 2465 *to += 1; 2466 } else 2467 *first = 0; 2468 2469 while (current_size < len) { 2470 if (*from != '"') { 2471 **to = *from; 2472 *to += 1; 2473 } 2474 from += 1; 2475 current_size += 1; 2476 } 2477 } 2478 2479 static int selinux_sb_copy_data(char *orig, char *copy) 2480 { 2481 int fnosec, fsec, rc = 0; 2482 char *in_save, *in_curr, *in_end; 2483 char *sec_curr, *nosec_save, *nosec; 2484 int open_quote = 0; 2485 2486 in_curr = orig; 2487 sec_curr = copy; 2488 2489 nosec = (char *)get_zeroed_page(GFP_KERNEL); 2490 if (!nosec) { 2491 rc = -ENOMEM; 2492 goto out; 2493 } 2494 2495 nosec_save = nosec; 2496 fnosec = fsec = 1; 2497 in_save = in_end = orig; 2498 2499 do { 2500 if (*in_end == '"') 2501 open_quote = !open_quote; 2502 if ((*in_end == ',' && open_quote == 0) || 2503 *in_end == '\0') { 2504 int len = in_end - in_curr; 2505 2506 if (selinux_option(in_curr, len)) 2507 take_selinux_option(&sec_curr, in_curr, &fsec, len); 2508 else 2509 take_option(&nosec, in_curr, &fnosec, len); 2510 2511 in_curr = in_end + 1; 2512 } 2513 } while (*in_end++); 2514 2515 strcpy(in_save, nosec_save); 2516 free_page((unsigned long)nosec_save); 2517 out: 2518 return rc; 2519 } 2520 2521 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data) 2522 { 2523 const struct cred *cred = current_cred(); 2524 struct common_audit_data ad; 2525 int rc; 2526 2527 rc = superblock_doinit(sb, data); 2528 if (rc) 2529 return rc; 2530 2531 /* Allow all mounts performed by the kernel */ 2532 if (flags & MS_KERNMOUNT) 2533 return 0; 2534 2535 COMMON_AUDIT_DATA_INIT(&ad, FS); 2536 ad.u.fs.path.dentry = sb->s_root; 2537 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad); 2538 } 2539 2540 static int selinux_sb_statfs(struct dentry *dentry) 2541 { 2542 const struct cred *cred = current_cred(); 2543 struct common_audit_data ad; 2544 2545 COMMON_AUDIT_DATA_INIT(&ad, FS); 2546 ad.u.fs.path.dentry = dentry->d_sb->s_root; 2547 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2548 } 2549 2550 static int selinux_mount(char *dev_name, 2551 struct path *path, 2552 char *type, 2553 unsigned long flags, 2554 void *data) 2555 { 2556 const struct cred *cred = current_cred(); 2557 2558 if (flags & MS_REMOUNT) 2559 return superblock_has_perm(cred, path->mnt->mnt_sb, 2560 FILESYSTEM__REMOUNT, NULL); 2561 else 2562 return dentry_has_perm(cred, path->mnt, path->dentry, 2563 FILE__MOUNTON); 2564 } 2565 2566 static int selinux_umount(struct vfsmount *mnt, int flags) 2567 { 2568 const struct cred *cred = current_cred(); 2569 2570 return superblock_has_perm(cred, mnt->mnt_sb, 2571 FILESYSTEM__UNMOUNT, NULL); 2572 } 2573 2574 /* inode security operations */ 2575 2576 static int selinux_inode_alloc_security(struct inode *inode) 2577 { 2578 return inode_alloc_security(inode); 2579 } 2580 2581 static void selinux_inode_free_security(struct inode *inode) 2582 { 2583 inode_free_security(inode); 2584 } 2585 2586 static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 2587 char **name, void **value, 2588 size_t *len) 2589 { 2590 const struct cred *cred = current_cred(); 2591 const struct task_security_struct *tsec = cred->security; 2592 struct inode_security_struct *dsec; 2593 struct superblock_security_struct *sbsec; 2594 u32 sid, newsid, clen; 2595 int rc; 2596 char *namep = NULL, *context; 2597 2598 dsec = dir->i_security; 2599 sbsec = dir->i_sb->s_security; 2600 2601 sid = tsec->sid; 2602 newsid = tsec->create_sid; 2603 2604 if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) { 2605 rc = security_transition_sid(sid, dsec->sid, 2606 inode_mode_to_security_class(inode->i_mode), 2607 &newsid); 2608 if (rc) { 2609 printk(KERN_WARNING "%s: " 2610 "security_transition_sid failed, rc=%d (dev=%s " 2611 "ino=%ld)\n", 2612 __func__, 2613 -rc, inode->i_sb->s_id, inode->i_ino); 2614 return rc; 2615 } 2616 } 2617 2618 /* Possibly defer initialization to selinux_complete_init. */ 2619 if (sbsec->flags & SE_SBINITIALIZED) { 2620 struct inode_security_struct *isec = inode->i_security; 2621 isec->sclass = inode_mode_to_security_class(inode->i_mode); 2622 isec->sid = newsid; 2623 isec->initialized = 1; 2624 } 2625 2626 if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP)) 2627 return -EOPNOTSUPP; 2628 2629 if (name) { 2630 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS); 2631 if (!namep) 2632 return -ENOMEM; 2633 *name = namep; 2634 } 2635 2636 if (value && len) { 2637 rc = security_sid_to_context_force(newsid, &context, &clen); 2638 if (rc) { 2639 kfree(namep); 2640 return rc; 2641 } 2642 *value = context; 2643 *len = clen; 2644 } 2645 2646 return 0; 2647 } 2648 2649 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask) 2650 { 2651 return may_create(dir, dentry, SECCLASS_FILE); 2652 } 2653 2654 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2655 { 2656 return may_link(dir, old_dentry, MAY_LINK); 2657 } 2658 2659 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 2660 { 2661 return may_link(dir, dentry, MAY_UNLINK); 2662 } 2663 2664 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 2665 { 2666 return may_create(dir, dentry, SECCLASS_LNK_FILE); 2667 } 2668 2669 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask) 2670 { 2671 return may_create(dir, dentry, SECCLASS_DIR); 2672 } 2673 2674 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 2675 { 2676 return may_link(dir, dentry, MAY_RMDIR); 2677 } 2678 2679 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 2680 { 2681 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 2682 } 2683 2684 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 2685 struct inode *new_inode, struct dentry *new_dentry) 2686 { 2687 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 2688 } 2689 2690 static int selinux_inode_readlink(struct dentry *dentry) 2691 { 2692 const struct cred *cred = current_cred(); 2693 2694 return dentry_has_perm(cred, NULL, dentry, FILE__READ); 2695 } 2696 2697 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata) 2698 { 2699 const struct cred *cred = current_cred(); 2700 2701 return dentry_has_perm(cred, NULL, dentry, FILE__READ); 2702 } 2703 2704 static int selinux_inode_permission(struct inode *inode, int mask) 2705 { 2706 const struct cred *cred = current_cred(); 2707 2708 if (!mask) { 2709 /* No permission to check. Existence test. */ 2710 return 0; 2711 } 2712 2713 return inode_has_perm(cred, inode, 2714 file_mask_to_av(inode->i_mode, mask), NULL); 2715 } 2716 2717 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) 2718 { 2719 const struct cred *cred = current_cred(); 2720 unsigned int ia_valid = iattr->ia_valid; 2721 2722 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */ 2723 if (ia_valid & ATTR_FORCE) { 2724 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE | 2725 ATTR_FORCE); 2726 if (!ia_valid) 2727 return 0; 2728 } 2729 2730 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 2731 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET)) 2732 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR); 2733 2734 return dentry_has_perm(cred, NULL, dentry, FILE__WRITE); 2735 } 2736 2737 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 2738 { 2739 const struct cred *cred = current_cred(); 2740 2741 return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR); 2742 } 2743 2744 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name) 2745 { 2746 const struct cred *cred = current_cred(); 2747 2748 if (!strncmp(name, XATTR_SECURITY_PREFIX, 2749 sizeof XATTR_SECURITY_PREFIX - 1)) { 2750 if (!strcmp(name, XATTR_NAME_CAPS)) { 2751 if (!capable(CAP_SETFCAP)) 2752 return -EPERM; 2753 } else if (!capable(CAP_SYS_ADMIN)) { 2754 /* A different attribute in the security namespace. 2755 Restrict to administrator. */ 2756 return -EPERM; 2757 } 2758 } 2759 2760 /* Not an attribute we recognize, so just check the 2761 ordinary setattr permission. */ 2762 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR); 2763 } 2764 2765 static int selinux_inode_setxattr(struct dentry *dentry, const char *name, 2766 const void *value, size_t size, int flags) 2767 { 2768 struct inode *inode = dentry->d_inode; 2769 struct inode_security_struct *isec = inode->i_security; 2770 struct superblock_security_struct *sbsec; 2771 struct common_audit_data ad; 2772 u32 newsid, sid = current_sid(); 2773 int rc = 0; 2774 2775 if (strcmp(name, XATTR_NAME_SELINUX)) 2776 return selinux_inode_setotherxattr(dentry, name); 2777 2778 sbsec = inode->i_sb->s_security; 2779 if (!(sbsec->flags & SE_SBLABELSUPP)) 2780 return -EOPNOTSUPP; 2781 2782 if (!is_owner_or_cap(inode)) 2783 return -EPERM; 2784 2785 COMMON_AUDIT_DATA_INIT(&ad, FS); 2786 ad.u.fs.path.dentry = dentry; 2787 2788 rc = avc_has_perm(sid, isec->sid, isec->sclass, 2789 FILE__RELABELFROM, &ad); 2790 if (rc) 2791 return rc; 2792 2793 rc = security_context_to_sid(value, size, &newsid); 2794 if (rc == -EINVAL) { 2795 if (!capable(CAP_MAC_ADMIN)) 2796 return rc; 2797 rc = security_context_to_sid_force(value, size, &newsid); 2798 } 2799 if (rc) 2800 return rc; 2801 2802 rc = avc_has_perm(sid, newsid, isec->sclass, 2803 FILE__RELABELTO, &ad); 2804 if (rc) 2805 return rc; 2806 2807 rc = security_validate_transition(isec->sid, newsid, sid, 2808 isec->sclass); 2809 if (rc) 2810 return rc; 2811 2812 return avc_has_perm(newsid, 2813 sbsec->sid, 2814 SECCLASS_FILESYSTEM, 2815 FILESYSTEM__ASSOCIATE, 2816 &ad); 2817 } 2818 2819 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name, 2820 const void *value, size_t size, 2821 int flags) 2822 { 2823 struct inode *inode = dentry->d_inode; 2824 struct inode_security_struct *isec = inode->i_security; 2825 u32 newsid; 2826 int rc; 2827 2828 if (strcmp(name, XATTR_NAME_SELINUX)) { 2829 /* Not an attribute we recognize, so nothing to do. */ 2830 return; 2831 } 2832 2833 rc = security_context_to_sid_force(value, size, &newsid); 2834 if (rc) { 2835 printk(KERN_ERR "SELinux: unable to map context to SID" 2836 "for (%s, %lu), rc=%d\n", 2837 inode->i_sb->s_id, inode->i_ino, -rc); 2838 return; 2839 } 2840 2841 isec->sid = newsid; 2842 return; 2843 } 2844 2845 static int selinux_inode_getxattr(struct dentry *dentry, const char *name) 2846 { 2847 const struct cred *cred = current_cred(); 2848 2849 return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR); 2850 } 2851 2852 static int selinux_inode_listxattr(struct dentry *dentry) 2853 { 2854 const struct cred *cred = current_cred(); 2855 2856 return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR); 2857 } 2858 2859 static int selinux_inode_removexattr(struct dentry *dentry, const char *name) 2860 { 2861 if (strcmp(name, XATTR_NAME_SELINUX)) 2862 return selinux_inode_setotherxattr(dentry, name); 2863 2864 /* No one is allowed to remove a SELinux security label. 2865 You can change the label, but all data must be labeled. */ 2866 return -EACCES; 2867 } 2868 2869 /* 2870 * Copy the inode security context value to the user. 2871 * 2872 * Permission check is handled by selinux_inode_getxattr hook. 2873 */ 2874 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 2875 { 2876 u32 size; 2877 int error; 2878 char *context = NULL; 2879 struct inode_security_struct *isec = inode->i_security; 2880 2881 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 2882 return -EOPNOTSUPP; 2883 2884 /* 2885 * If the caller has CAP_MAC_ADMIN, then get the raw context 2886 * value even if it is not defined by current policy; otherwise, 2887 * use the in-core value under current policy. 2888 * Use the non-auditing forms of the permission checks since 2889 * getxattr may be called by unprivileged processes commonly 2890 * and lack of permission just means that we fall back to the 2891 * in-core context value, not a denial. 2892 */ 2893 error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN, 2894 SECURITY_CAP_NOAUDIT); 2895 if (!error) 2896 error = security_sid_to_context_force(isec->sid, &context, 2897 &size); 2898 else 2899 error = security_sid_to_context(isec->sid, &context, &size); 2900 if (error) 2901 return error; 2902 error = size; 2903 if (alloc) { 2904 *buffer = context; 2905 goto out_nofree; 2906 } 2907 kfree(context); 2908 out_nofree: 2909 return error; 2910 } 2911 2912 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 2913 const void *value, size_t size, int flags) 2914 { 2915 struct inode_security_struct *isec = inode->i_security; 2916 u32 newsid; 2917 int rc; 2918 2919 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 2920 return -EOPNOTSUPP; 2921 2922 if (!value || !size) 2923 return -EACCES; 2924 2925 rc = security_context_to_sid((void *)value, size, &newsid); 2926 if (rc) 2927 return rc; 2928 2929 isec->sid = newsid; 2930 isec->initialized = 1; 2931 return 0; 2932 } 2933 2934 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 2935 { 2936 const int len = sizeof(XATTR_NAME_SELINUX); 2937 if (buffer && len <= buffer_size) 2938 memcpy(buffer, XATTR_NAME_SELINUX, len); 2939 return len; 2940 } 2941 2942 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid) 2943 { 2944 struct inode_security_struct *isec = inode->i_security; 2945 *secid = isec->sid; 2946 } 2947 2948 /* file security operations */ 2949 2950 static int selinux_revalidate_file_permission(struct file *file, int mask) 2951 { 2952 const struct cred *cred = current_cred(); 2953 struct inode *inode = file->f_path.dentry->d_inode; 2954 2955 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 2956 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 2957 mask |= MAY_APPEND; 2958 2959 return file_has_perm(cred, file, 2960 file_mask_to_av(inode->i_mode, mask)); 2961 } 2962 2963 static int selinux_file_permission(struct file *file, int mask) 2964 { 2965 struct inode *inode = file->f_path.dentry->d_inode; 2966 struct file_security_struct *fsec = file->f_security; 2967 struct inode_security_struct *isec = inode->i_security; 2968 u32 sid = current_sid(); 2969 2970 if (!mask) 2971 /* No permission to check. Existence test. */ 2972 return 0; 2973 2974 if (sid == fsec->sid && fsec->isid == isec->sid && 2975 fsec->pseqno == avc_policy_seqno()) 2976 /* No change since dentry_open check. */ 2977 return 0; 2978 2979 return selinux_revalidate_file_permission(file, mask); 2980 } 2981 2982 static int selinux_file_alloc_security(struct file *file) 2983 { 2984 return file_alloc_security(file); 2985 } 2986 2987 static void selinux_file_free_security(struct file *file) 2988 { 2989 file_free_security(file); 2990 } 2991 2992 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 2993 unsigned long arg) 2994 { 2995 const struct cred *cred = current_cred(); 2996 u32 av = 0; 2997 2998 if (_IOC_DIR(cmd) & _IOC_WRITE) 2999 av |= FILE__WRITE; 3000 if (_IOC_DIR(cmd) & _IOC_READ) 3001 av |= FILE__READ; 3002 if (!av) 3003 av = FILE__IOCTL; 3004 3005 return file_has_perm(cred, file, av); 3006 } 3007 3008 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 3009 { 3010 const struct cred *cred = current_cred(); 3011 int rc = 0; 3012 3013 #ifndef CONFIG_PPC32 3014 if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) { 3015 /* 3016 * We are making executable an anonymous mapping or a 3017 * private file mapping that will also be writable. 3018 * This has an additional check. 3019 */ 3020 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM); 3021 if (rc) 3022 goto error; 3023 } 3024 #endif 3025 3026 if (file) { 3027 /* read access is always possible with a mapping */ 3028 u32 av = FILE__READ; 3029 3030 /* write access only matters if the mapping is shared */ 3031 if (shared && (prot & PROT_WRITE)) 3032 av |= FILE__WRITE; 3033 3034 if (prot & PROT_EXEC) 3035 av |= FILE__EXECUTE; 3036 3037 return file_has_perm(cred, file, av); 3038 } 3039 3040 error: 3041 return rc; 3042 } 3043 3044 static int selinux_file_mmap(struct file *file, unsigned long reqprot, 3045 unsigned long prot, unsigned long flags, 3046 unsigned long addr, unsigned long addr_only) 3047 { 3048 int rc = 0; 3049 u32 sid = current_sid(); 3050 3051 /* 3052 * notice that we are intentionally putting the SELinux check before 3053 * the secondary cap_file_mmap check. This is such a likely attempt 3054 * at bad behaviour/exploit that we always want to get the AVC, even 3055 * if DAC would have also denied the operation. 3056 */ 3057 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) { 3058 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT, 3059 MEMPROTECT__MMAP_ZERO, NULL); 3060 if (rc) 3061 return rc; 3062 } 3063 3064 /* do DAC check on address space usage */ 3065 rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only); 3066 if (rc || addr_only) 3067 return rc; 3068 3069 if (selinux_checkreqprot) 3070 prot = reqprot; 3071 3072 return file_map_prot_check(file, prot, 3073 (flags & MAP_TYPE) == MAP_SHARED); 3074 } 3075 3076 static int selinux_file_mprotect(struct vm_area_struct *vma, 3077 unsigned long reqprot, 3078 unsigned long prot) 3079 { 3080 const struct cred *cred = current_cred(); 3081 3082 if (selinux_checkreqprot) 3083 prot = reqprot; 3084 3085 #ifndef CONFIG_PPC32 3086 if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 3087 int rc = 0; 3088 if (vma->vm_start >= vma->vm_mm->start_brk && 3089 vma->vm_end <= vma->vm_mm->brk) { 3090 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP); 3091 } else if (!vma->vm_file && 3092 vma->vm_start <= vma->vm_mm->start_stack && 3093 vma->vm_end >= vma->vm_mm->start_stack) { 3094 rc = current_has_perm(current, PROCESS__EXECSTACK); 3095 } else if (vma->vm_file && vma->anon_vma) { 3096 /* 3097 * We are making executable a file mapping that has 3098 * had some COW done. Since pages might have been 3099 * written, check ability to execute the possibly 3100 * modified content. This typically should only 3101 * occur for text relocations. 3102 */ 3103 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD); 3104 } 3105 if (rc) 3106 return rc; 3107 } 3108 #endif 3109 3110 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 3111 } 3112 3113 static int selinux_file_lock(struct file *file, unsigned int cmd) 3114 { 3115 const struct cred *cred = current_cred(); 3116 3117 return file_has_perm(cred, file, FILE__LOCK); 3118 } 3119 3120 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 3121 unsigned long arg) 3122 { 3123 const struct cred *cred = current_cred(); 3124 int err = 0; 3125 3126 switch (cmd) { 3127 case F_SETFL: 3128 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) { 3129 err = -EINVAL; 3130 break; 3131 } 3132 3133 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 3134 err = file_has_perm(cred, file, FILE__WRITE); 3135 break; 3136 } 3137 /* fall through */ 3138 case F_SETOWN: 3139 case F_SETSIG: 3140 case F_GETFL: 3141 case F_GETOWN: 3142 case F_GETSIG: 3143 /* Just check FD__USE permission */ 3144 err = file_has_perm(cred, file, 0); 3145 break; 3146 case F_GETLK: 3147 case F_SETLK: 3148 case F_SETLKW: 3149 #if BITS_PER_LONG == 32 3150 case F_GETLK64: 3151 case F_SETLK64: 3152 case F_SETLKW64: 3153 #endif 3154 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) { 3155 err = -EINVAL; 3156 break; 3157 } 3158 err = file_has_perm(cred, file, FILE__LOCK); 3159 break; 3160 } 3161 3162 return err; 3163 } 3164 3165 static int selinux_file_set_fowner(struct file *file) 3166 { 3167 struct file_security_struct *fsec; 3168 3169 fsec = file->f_security; 3170 fsec->fown_sid = current_sid(); 3171 3172 return 0; 3173 } 3174 3175 static int selinux_file_send_sigiotask(struct task_struct *tsk, 3176 struct fown_struct *fown, int signum) 3177 { 3178 struct file *file; 3179 u32 sid = task_sid(tsk); 3180 u32 perm; 3181 struct file_security_struct *fsec; 3182 3183 /* struct fown_struct is never outside the context of a struct file */ 3184 file = container_of(fown, struct file, f_owner); 3185 3186 fsec = file->f_security; 3187 3188 if (!signum) 3189 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 3190 else 3191 perm = signal_to_av(signum); 3192 3193 return avc_has_perm(fsec->fown_sid, sid, 3194 SECCLASS_PROCESS, perm, NULL); 3195 } 3196 3197 static int selinux_file_receive(struct file *file) 3198 { 3199 const struct cred *cred = current_cred(); 3200 3201 return file_has_perm(cred, file, file_to_av(file)); 3202 } 3203 3204 static int selinux_dentry_open(struct file *file, const struct cred *cred) 3205 { 3206 struct file_security_struct *fsec; 3207 struct inode *inode; 3208 struct inode_security_struct *isec; 3209 3210 inode = file->f_path.dentry->d_inode; 3211 fsec = file->f_security; 3212 isec = inode->i_security; 3213 /* 3214 * Save inode label and policy sequence number 3215 * at open-time so that selinux_file_permission 3216 * can determine whether revalidation is necessary. 3217 * Task label is already saved in the file security 3218 * struct as its SID. 3219 */ 3220 fsec->isid = isec->sid; 3221 fsec->pseqno = avc_policy_seqno(); 3222 /* 3223 * Since the inode label or policy seqno may have changed 3224 * between the selinux_inode_permission check and the saving 3225 * of state above, recheck that access is still permitted. 3226 * Otherwise, access might never be revalidated against the 3227 * new inode label or new policy. 3228 * This check is not redundant - do not remove. 3229 */ 3230 return inode_has_perm(cred, inode, open_file_to_av(file), NULL); 3231 } 3232 3233 /* task security operations */ 3234 3235 static int selinux_task_create(unsigned long clone_flags) 3236 { 3237 return current_has_perm(current, PROCESS__FORK); 3238 } 3239 3240 /* 3241 * allocate the SELinux part of blank credentials 3242 */ 3243 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp) 3244 { 3245 struct task_security_struct *tsec; 3246 3247 tsec = kzalloc(sizeof(struct task_security_struct), gfp); 3248 if (!tsec) 3249 return -ENOMEM; 3250 3251 cred->security = tsec; 3252 return 0; 3253 } 3254 3255 /* 3256 * detach and free the LSM part of a set of credentials 3257 */ 3258 static void selinux_cred_free(struct cred *cred) 3259 { 3260 struct task_security_struct *tsec = cred->security; 3261 3262 BUG_ON((unsigned long) cred->security < PAGE_SIZE); 3263 cred->security = (void *) 0x7UL; 3264 kfree(tsec); 3265 } 3266 3267 /* 3268 * prepare a new set of credentials for modification 3269 */ 3270 static int selinux_cred_prepare(struct cred *new, const struct cred *old, 3271 gfp_t gfp) 3272 { 3273 const struct task_security_struct *old_tsec; 3274 struct task_security_struct *tsec; 3275 3276 old_tsec = old->security; 3277 3278 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp); 3279 if (!tsec) 3280 return -ENOMEM; 3281 3282 new->security = tsec; 3283 return 0; 3284 } 3285 3286 /* 3287 * transfer the SELinux data to a blank set of creds 3288 */ 3289 static void selinux_cred_transfer(struct cred *new, const struct cred *old) 3290 { 3291 const struct task_security_struct *old_tsec = old->security; 3292 struct task_security_struct *tsec = new->security; 3293 3294 *tsec = *old_tsec; 3295 } 3296 3297 /* 3298 * set the security data for a kernel service 3299 * - all the creation contexts are set to unlabelled 3300 */ 3301 static int selinux_kernel_act_as(struct cred *new, u32 secid) 3302 { 3303 struct task_security_struct *tsec = new->security; 3304 u32 sid = current_sid(); 3305 int ret; 3306 3307 ret = avc_has_perm(sid, secid, 3308 SECCLASS_KERNEL_SERVICE, 3309 KERNEL_SERVICE__USE_AS_OVERRIDE, 3310 NULL); 3311 if (ret == 0) { 3312 tsec->sid = secid; 3313 tsec->create_sid = 0; 3314 tsec->keycreate_sid = 0; 3315 tsec->sockcreate_sid = 0; 3316 } 3317 return ret; 3318 } 3319 3320 /* 3321 * set the file creation context in a security record to the same as the 3322 * objective context of the specified inode 3323 */ 3324 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode) 3325 { 3326 struct inode_security_struct *isec = inode->i_security; 3327 struct task_security_struct *tsec = new->security; 3328 u32 sid = current_sid(); 3329 int ret; 3330 3331 ret = avc_has_perm(sid, isec->sid, 3332 SECCLASS_KERNEL_SERVICE, 3333 KERNEL_SERVICE__CREATE_FILES_AS, 3334 NULL); 3335 3336 if (ret == 0) 3337 tsec->create_sid = isec->sid; 3338 return 0; 3339 } 3340 3341 static int selinux_kernel_module_request(void) 3342 { 3343 return task_has_system(current, SYSTEM__MODULE_REQUEST); 3344 } 3345 3346 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 3347 { 3348 return current_has_perm(p, PROCESS__SETPGID); 3349 } 3350 3351 static int selinux_task_getpgid(struct task_struct *p) 3352 { 3353 return current_has_perm(p, PROCESS__GETPGID); 3354 } 3355 3356 static int selinux_task_getsid(struct task_struct *p) 3357 { 3358 return current_has_perm(p, PROCESS__GETSESSION); 3359 } 3360 3361 static void selinux_task_getsecid(struct task_struct *p, u32 *secid) 3362 { 3363 *secid = task_sid(p); 3364 } 3365 3366 static int selinux_task_setnice(struct task_struct *p, int nice) 3367 { 3368 int rc; 3369 3370 rc = cap_task_setnice(p, nice); 3371 if (rc) 3372 return rc; 3373 3374 return current_has_perm(p, PROCESS__SETSCHED); 3375 } 3376 3377 static int selinux_task_setioprio(struct task_struct *p, int ioprio) 3378 { 3379 int rc; 3380 3381 rc = cap_task_setioprio(p, ioprio); 3382 if (rc) 3383 return rc; 3384 3385 return current_has_perm(p, PROCESS__SETSCHED); 3386 } 3387 3388 static int selinux_task_getioprio(struct task_struct *p) 3389 { 3390 return current_has_perm(p, PROCESS__GETSCHED); 3391 } 3392 3393 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim) 3394 { 3395 struct rlimit *old_rlim = current->signal->rlim + resource; 3396 3397 /* Control the ability to change the hard limit (whether 3398 lowering or raising it), so that the hard limit can 3399 later be used as a safe reset point for the soft limit 3400 upon context transitions. See selinux_bprm_committing_creds. */ 3401 if (old_rlim->rlim_max != new_rlim->rlim_max) 3402 return current_has_perm(current, PROCESS__SETRLIMIT); 3403 3404 return 0; 3405 } 3406 3407 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp) 3408 { 3409 int rc; 3410 3411 rc = cap_task_setscheduler(p, policy, lp); 3412 if (rc) 3413 return rc; 3414 3415 return current_has_perm(p, PROCESS__SETSCHED); 3416 } 3417 3418 static int selinux_task_getscheduler(struct task_struct *p) 3419 { 3420 return current_has_perm(p, PROCESS__GETSCHED); 3421 } 3422 3423 static int selinux_task_movememory(struct task_struct *p) 3424 { 3425 return current_has_perm(p, PROCESS__SETSCHED); 3426 } 3427 3428 static int selinux_task_kill(struct task_struct *p, struct siginfo *info, 3429 int sig, u32 secid) 3430 { 3431 u32 perm; 3432 int rc; 3433 3434 if (!sig) 3435 perm = PROCESS__SIGNULL; /* null signal; existence test */ 3436 else 3437 perm = signal_to_av(sig); 3438 if (secid) 3439 rc = avc_has_perm(secid, task_sid(p), 3440 SECCLASS_PROCESS, perm, NULL); 3441 else 3442 rc = current_has_perm(p, perm); 3443 return rc; 3444 } 3445 3446 static int selinux_task_wait(struct task_struct *p) 3447 { 3448 return task_has_perm(p, current, PROCESS__SIGCHLD); 3449 } 3450 3451 static void selinux_task_to_inode(struct task_struct *p, 3452 struct inode *inode) 3453 { 3454 struct inode_security_struct *isec = inode->i_security; 3455 u32 sid = task_sid(p); 3456 3457 isec->sid = sid; 3458 isec->initialized = 1; 3459 } 3460 3461 /* Returns error only if unable to parse addresses */ 3462 static int selinux_parse_skb_ipv4(struct sk_buff *skb, 3463 struct common_audit_data *ad, u8 *proto) 3464 { 3465 int offset, ihlen, ret = -EINVAL; 3466 struct iphdr _iph, *ih; 3467 3468 offset = skb_network_offset(skb); 3469 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 3470 if (ih == NULL) 3471 goto out; 3472 3473 ihlen = ih->ihl * 4; 3474 if (ihlen < sizeof(_iph)) 3475 goto out; 3476 3477 ad->u.net.v4info.saddr = ih->saddr; 3478 ad->u.net.v4info.daddr = ih->daddr; 3479 ret = 0; 3480 3481 if (proto) 3482 *proto = ih->protocol; 3483 3484 switch (ih->protocol) { 3485 case IPPROTO_TCP: { 3486 struct tcphdr _tcph, *th; 3487 3488 if (ntohs(ih->frag_off) & IP_OFFSET) 3489 break; 3490 3491 offset += ihlen; 3492 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3493 if (th == NULL) 3494 break; 3495 3496 ad->u.net.sport = th->source; 3497 ad->u.net.dport = th->dest; 3498 break; 3499 } 3500 3501 case IPPROTO_UDP: { 3502 struct udphdr _udph, *uh; 3503 3504 if (ntohs(ih->frag_off) & IP_OFFSET) 3505 break; 3506 3507 offset += ihlen; 3508 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3509 if (uh == NULL) 3510 break; 3511 3512 ad->u.net.sport = uh->source; 3513 ad->u.net.dport = uh->dest; 3514 break; 3515 } 3516 3517 case IPPROTO_DCCP: { 3518 struct dccp_hdr _dccph, *dh; 3519 3520 if (ntohs(ih->frag_off) & IP_OFFSET) 3521 break; 3522 3523 offset += ihlen; 3524 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3525 if (dh == NULL) 3526 break; 3527 3528 ad->u.net.sport = dh->dccph_sport; 3529 ad->u.net.dport = dh->dccph_dport; 3530 break; 3531 } 3532 3533 default: 3534 break; 3535 } 3536 out: 3537 return ret; 3538 } 3539 3540 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3541 3542 /* Returns error only if unable to parse addresses */ 3543 static int selinux_parse_skb_ipv6(struct sk_buff *skb, 3544 struct common_audit_data *ad, u8 *proto) 3545 { 3546 u8 nexthdr; 3547 int ret = -EINVAL, offset; 3548 struct ipv6hdr _ipv6h, *ip6; 3549 3550 offset = skb_network_offset(skb); 3551 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 3552 if (ip6 == NULL) 3553 goto out; 3554 3555 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr); 3556 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr); 3557 ret = 0; 3558 3559 nexthdr = ip6->nexthdr; 3560 offset += sizeof(_ipv6h); 3561 offset = ipv6_skip_exthdr(skb, offset, &nexthdr); 3562 if (offset < 0) 3563 goto out; 3564 3565 if (proto) 3566 *proto = nexthdr; 3567 3568 switch (nexthdr) { 3569 case IPPROTO_TCP: { 3570 struct tcphdr _tcph, *th; 3571 3572 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3573 if (th == NULL) 3574 break; 3575 3576 ad->u.net.sport = th->source; 3577 ad->u.net.dport = th->dest; 3578 break; 3579 } 3580 3581 case IPPROTO_UDP: { 3582 struct udphdr _udph, *uh; 3583 3584 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3585 if (uh == NULL) 3586 break; 3587 3588 ad->u.net.sport = uh->source; 3589 ad->u.net.dport = uh->dest; 3590 break; 3591 } 3592 3593 case IPPROTO_DCCP: { 3594 struct dccp_hdr _dccph, *dh; 3595 3596 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3597 if (dh == NULL) 3598 break; 3599 3600 ad->u.net.sport = dh->dccph_sport; 3601 ad->u.net.dport = dh->dccph_dport; 3602 break; 3603 } 3604 3605 /* includes fragments */ 3606 default: 3607 break; 3608 } 3609 out: 3610 return ret; 3611 } 3612 3613 #endif /* IPV6 */ 3614 3615 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad, 3616 char **_addrp, int src, u8 *proto) 3617 { 3618 char *addrp; 3619 int ret; 3620 3621 switch (ad->u.net.family) { 3622 case PF_INET: 3623 ret = selinux_parse_skb_ipv4(skb, ad, proto); 3624 if (ret) 3625 goto parse_error; 3626 addrp = (char *)(src ? &ad->u.net.v4info.saddr : 3627 &ad->u.net.v4info.daddr); 3628 goto okay; 3629 3630 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3631 case PF_INET6: 3632 ret = selinux_parse_skb_ipv6(skb, ad, proto); 3633 if (ret) 3634 goto parse_error; 3635 addrp = (char *)(src ? &ad->u.net.v6info.saddr : 3636 &ad->u.net.v6info.daddr); 3637 goto okay; 3638 #endif /* IPV6 */ 3639 default: 3640 addrp = NULL; 3641 goto okay; 3642 } 3643 3644 parse_error: 3645 printk(KERN_WARNING 3646 "SELinux: failure in selinux_parse_skb()," 3647 " unable to parse packet\n"); 3648 return ret; 3649 3650 okay: 3651 if (_addrp) 3652 *_addrp = addrp; 3653 return 0; 3654 } 3655 3656 /** 3657 * selinux_skb_peerlbl_sid - Determine the peer label of a packet 3658 * @skb: the packet 3659 * @family: protocol family 3660 * @sid: the packet's peer label SID 3661 * 3662 * Description: 3663 * Check the various different forms of network peer labeling and determine 3664 * the peer label/SID for the packet; most of the magic actually occurs in 3665 * the security server function security_net_peersid_cmp(). The function 3666 * returns zero if the value in @sid is valid (although it may be SECSID_NULL) 3667 * or -EACCES if @sid is invalid due to inconsistencies with the different 3668 * peer labels. 3669 * 3670 */ 3671 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid) 3672 { 3673 int err; 3674 u32 xfrm_sid; 3675 u32 nlbl_sid; 3676 u32 nlbl_type; 3677 3678 selinux_skb_xfrm_sid(skb, &xfrm_sid); 3679 selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid); 3680 3681 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid); 3682 if (unlikely(err)) { 3683 printk(KERN_WARNING 3684 "SELinux: failure in selinux_skb_peerlbl_sid()," 3685 " unable to determine packet's peer label\n"); 3686 return -EACCES; 3687 } 3688 3689 return 0; 3690 } 3691 3692 /* socket security operations */ 3693 static int socket_has_perm(struct task_struct *task, struct socket *sock, 3694 u32 perms) 3695 { 3696 struct inode_security_struct *isec; 3697 struct common_audit_data ad; 3698 u32 sid; 3699 int err = 0; 3700 3701 isec = SOCK_INODE(sock)->i_security; 3702 3703 if (isec->sid == SECINITSID_KERNEL) 3704 goto out; 3705 sid = task_sid(task); 3706 3707 COMMON_AUDIT_DATA_INIT(&ad, NET); 3708 ad.u.net.sk = sock->sk; 3709 err = avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad); 3710 3711 out: 3712 return err; 3713 } 3714 3715 static int selinux_socket_create(int family, int type, 3716 int protocol, int kern) 3717 { 3718 const struct cred *cred = current_cred(); 3719 const struct task_security_struct *tsec = cred->security; 3720 u32 sid, newsid; 3721 u16 secclass; 3722 int err = 0; 3723 3724 if (kern) 3725 goto out; 3726 3727 sid = tsec->sid; 3728 newsid = tsec->sockcreate_sid ?: sid; 3729 3730 secclass = socket_type_to_security_class(family, type, protocol); 3731 err = avc_has_perm(sid, newsid, secclass, SOCKET__CREATE, NULL); 3732 3733 out: 3734 return err; 3735 } 3736 3737 static int selinux_socket_post_create(struct socket *sock, int family, 3738 int type, int protocol, int kern) 3739 { 3740 const struct cred *cred = current_cred(); 3741 const struct task_security_struct *tsec = cred->security; 3742 struct inode_security_struct *isec; 3743 struct sk_security_struct *sksec; 3744 u32 sid, newsid; 3745 int err = 0; 3746 3747 sid = tsec->sid; 3748 newsid = tsec->sockcreate_sid; 3749 3750 isec = SOCK_INODE(sock)->i_security; 3751 3752 if (kern) 3753 isec->sid = SECINITSID_KERNEL; 3754 else if (newsid) 3755 isec->sid = newsid; 3756 else 3757 isec->sid = sid; 3758 3759 isec->sclass = socket_type_to_security_class(family, type, protocol); 3760 isec->initialized = 1; 3761 3762 if (sock->sk) { 3763 sksec = sock->sk->sk_security; 3764 sksec->sid = isec->sid; 3765 sksec->sclass = isec->sclass; 3766 err = selinux_netlbl_socket_post_create(sock->sk, family); 3767 } 3768 3769 return err; 3770 } 3771 3772 /* Range of port numbers used to automatically bind. 3773 Need to determine whether we should perform a name_bind 3774 permission check between the socket and the port number. */ 3775 3776 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 3777 { 3778 u16 family; 3779 int err; 3780 3781 err = socket_has_perm(current, sock, SOCKET__BIND); 3782 if (err) 3783 goto out; 3784 3785 /* 3786 * If PF_INET or PF_INET6, check name_bind permission for the port. 3787 * Multiple address binding for SCTP is not supported yet: we just 3788 * check the first address now. 3789 */ 3790 family = sock->sk->sk_family; 3791 if (family == PF_INET || family == PF_INET6) { 3792 char *addrp; 3793 struct inode_security_struct *isec; 3794 struct common_audit_data ad; 3795 struct sockaddr_in *addr4 = NULL; 3796 struct sockaddr_in6 *addr6 = NULL; 3797 unsigned short snum; 3798 struct sock *sk = sock->sk; 3799 u32 sid, node_perm; 3800 3801 isec = SOCK_INODE(sock)->i_security; 3802 3803 if (family == PF_INET) { 3804 addr4 = (struct sockaddr_in *)address; 3805 snum = ntohs(addr4->sin_port); 3806 addrp = (char *)&addr4->sin_addr.s_addr; 3807 } else { 3808 addr6 = (struct sockaddr_in6 *)address; 3809 snum = ntohs(addr6->sin6_port); 3810 addrp = (char *)&addr6->sin6_addr.s6_addr; 3811 } 3812 3813 if (snum) { 3814 int low, high; 3815 3816 inet_get_local_port_range(&low, &high); 3817 3818 if (snum < max(PROT_SOCK, low) || snum > high) { 3819 err = sel_netport_sid(sk->sk_protocol, 3820 snum, &sid); 3821 if (err) 3822 goto out; 3823 COMMON_AUDIT_DATA_INIT(&ad, NET); 3824 ad.u.net.sport = htons(snum); 3825 ad.u.net.family = family; 3826 err = avc_has_perm(isec->sid, sid, 3827 isec->sclass, 3828 SOCKET__NAME_BIND, &ad); 3829 if (err) 3830 goto out; 3831 } 3832 } 3833 3834 switch (isec->sclass) { 3835 case SECCLASS_TCP_SOCKET: 3836 node_perm = TCP_SOCKET__NODE_BIND; 3837 break; 3838 3839 case SECCLASS_UDP_SOCKET: 3840 node_perm = UDP_SOCKET__NODE_BIND; 3841 break; 3842 3843 case SECCLASS_DCCP_SOCKET: 3844 node_perm = DCCP_SOCKET__NODE_BIND; 3845 break; 3846 3847 default: 3848 node_perm = RAWIP_SOCKET__NODE_BIND; 3849 break; 3850 } 3851 3852 err = sel_netnode_sid(addrp, family, &sid); 3853 if (err) 3854 goto out; 3855 3856 COMMON_AUDIT_DATA_INIT(&ad, NET); 3857 ad.u.net.sport = htons(snum); 3858 ad.u.net.family = family; 3859 3860 if (family == PF_INET) 3861 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr; 3862 else 3863 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr); 3864 3865 err = avc_has_perm(isec->sid, sid, 3866 isec->sclass, node_perm, &ad); 3867 if (err) 3868 goto out; 3869 } 3870 out: 3871 return err; 3872 } 3873 3874 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 3875 { 3876 struct sock *sk = sock->sk; 3877 struct inode_security_struct *isec; 3878 int err; 3879 3880 err = socket_has_perm(current, sock, SOCKET__CONNECT); 3881 if (err) 3882 return err; 3883 3884 /* 3885 * If a TCP or DCCP socket, check name_connect permission for the port. 3886 */ 3887 isec = SOCK_INODE(sock)->i_security; 3888 if (isec->sclass == SECCLASS_TCP_SOCKET || 3889 isec->sclass == SECCLASS_DCCP_SOCKET) { 3890 struct common_audit_data ad; 3891 struct sockaddr_in *addr4 = NULL; 3892 struct sockaddr_in6 *addr6 = NULL; 3893 unsigned short snum; 3894 u32 sid, perm; 3895 3896 if (sk->sk_family == PF_INET) { 3897 addr4 = (struct sockaddr_in *)address; 3898 if (addrlen < sizeof(struct sockaddr_in)) 3899 return -EINVAL; 3900 snum = ntohs(addr4->sin_port); 3901 } else { 3902 addr6 = (struct sockaddr_in6 *)address; 3903 if (addrlen < SIN6_LEN_RFC2133) 3904 return -EINVAL; 3905 snum = ntohs(addr6->sin6_port); 3906 } 3907 3908 err = sel_netport_sid(sk->sk_protocol, snum, &sid); 3909 if (err) 3910 goto out; 3911 3912 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ? 3913 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT; 3914 3915 COMMON_AUDIT_DATA_INIT(&ad, NET); 3916 ad.u.net.dport = htons(snum); 3917 ad.u.net.family = sk->sk_family; 3918 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad); 3919 if (err) 3920 goto out; 3921 } 3922 3923 err = selinux_netlbl_socket_connect(sk, address); 3924 3925 out: 3926 return err; 3927 } 3928 3929 static int selinux_socket_listen(struct socket *sock, int backlog) 3930 { 3931 return socket_has_perm(current, sock, SOCKET__LISTEN); 3932 } 3933 3934 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 3935 { 3936 int err; 3937 struct inode_security_struct *isec; 3938 struct inode_security_struct *newisec; 3939 3940 err = socket_has_perm(current, sock, SOCKET__ACCEPT); 3941 if (err) 3942 return err; 3943 3944 newisec = SOCK_INODE(newsock)->i_security; 3945 3946 isec = SOCK_INODE(sock)->i_security; 3947 newisec->sclass = isec->sclass; 3948 newisec->sid = isec->sid; 3949 newisec->initialized = 1; 3950 3951 return 0; 3952 } 3953 3954 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 3955 int size) 3956 { 3957 return socket_has_perm(current, sock, SOCKET__WRITE); 3958 } 3959 3960 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 3961 int size, int flags) 3962 { 3963 return socket_has_perm(current, sock, SOCKET__READ); 3964 } 3965 3966 static int selinux_socket_getsockname(struct socket *sock) 3967 { 3968 return socket_has_perm(current, sock, SOCKET__GETATTR); 3969 } 3970 3971 static int selinux_socket_getpeername(struct socket *sock) 3972 { 3973 return socket_has_perm(current, sock, SOCKET__GETATTR); 3974 } 3975 3976 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname) 3977 { 3978 int err; 3979 3980 err = socket_has_perm(current, sock, SOCKET__SETOPT); 3981 if (err) 3982 return err; 3983 3984 return selinux_netlbl_socket_setsockopt(sock, level, optname); 3985 } 3986 3987 static int selinux_socket_getsockopt(struct socket *sock, int level, 3988 int optname) 3989 { 3990 return socket_has_perm(current, sock, SOCKET__GETOPT); 3991 } 3992 3993 static int selinux_socket_shutdown(struct socket *sock, int how) 3994 { 3995 return socket_has_perm(current, sock, SOCKET__SHUTDOWN); 3996 } 3997 3998 static int selinux_socket_unix_stream_connect(struct socket *sock, 3999 struct socket *other, 4000 struct sock *newsk) 4001 { 4002 struct sk_security_struct *ssec; 4003 struct inode_security_struct *isec; 4004 struct inode_security_struct *other_isec; 4005 struct common_audit_data ad; 4006 int err; 4007 4008 isec = SOCK_INODE(sock)->i_security; 4009 other_isec = SOCK_INODE(other)->i_security; 4010 4011 COMMON_AUDIT_DATA_INIT(&ad, NET); 4012 ad.u.net.sk = other->sk; 4013 4014 err = avc_has_perm(isec->sid, other_isec->sid, 4015 isec->sclass, 4016 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 4017 if (err) 4018 return err; 4019 4020 /* connecting socket */ 4021 ssec = sock->sk->sk_security; 4022 ssec->peer_sid = other_isec->sid; 4023 4024 /* server child socket */ 4025 ssec = newsk->sk_security; 4026 ssec->peer_sid = isec->sid; 4027 err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid); 4028 4029 return err; 4030 } 4031 4032 static int selinux_socket_unix_may_send(struct socket *sock, 4033 struct socket *other) 4034 { 4035 struct inode_security_struct *isec; 4036 struct inode_security_struct *other_isec; 4037 struct common_audit_data ad; 4038 int err; 4039 4040 isec = SOCK_INODE(sock)->i_security; 4041 other_isec = SOCK_INODE(other)->i_security; 4042 4043 COMMON_AUDIT_DATA_INIT(&ad, NET); 4044 ad.u.net.sk = other->sk; 4045 4046 err = avc_has_perm(isec->sid, other_isec->sid, 4047 isec->sclass, SOCKET__SENDTO, &ad); 4048 if (err) 4049 return err; 4050 4051 return 0; 4052 } 4053 4054 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family, 4055 u32 peer_sid, 4056 struct common_audit_data *ad) 4057 { 4058 int err; 4059 u32 if_sid; 4060 u32 node_sid; 4061 4062 err = sel_netif_sid(ifindex, &if_sid); 4063 if (err) 4064 return err; 4065 err = avc_has_perm(peer_sid, if_sid, 4066 SECCLASS_NETIF, NETIF__INGRESS, ad); 4067 if (err) 4068 return err; 4069 4070 err = sel_netnode_sid(addrp, family, &node_sid); 4071 if (err) 4072 return err; 4073 return avc_has_perm(peer_sid, node_sid, 4074 SECCLASS_NODE, NODE__RECVFROM, ad); 4075 } 4076 4077 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 4078 u16 family) 4079 { 4080 int err = 0; 4081 struct sk_security_struct *sksec = sk->sk_security; 4082 u32 peer_sid; 4083 u32 sk_sid = sksec->sid; 4084 struct common_audit_data ad; 4085 char *addrp; 4086 4087 COMMON_AUDIT_DATA_INIT(&ad, NET); 4088 ad.u.net.netif = skb->iif; 4089 ad.u.net.family = family; 4090 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4091 if (err) 4092 return err; 4093 4094 if (selinux_secmark_enabled()) { 4095 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4096 PACKET__RECV, &ad); 4097 if (err) 4098 return err; 4099 } 4100 4101 if (selinux_policycap_netpeer) { 4102 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 4103 if (err) 4104 return err; 4105 err = avc_has_perm(sk_sid, peer_sid, 4106 SECCLASS_PEER, PEER__RECV, &ad); 4107 if (err) 4108 selinux_netlbl_err(skb, err, 0); 4109 } else { 4110 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad); 4111 if (err) 4112 return err; 4113 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad); 4114 } 4115 4116 return err; 4117 } 4118 4119 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4120 { 4121 int err; 4122 struct sk_security_struct *sksec = sk->sk_security; 4123 u16 family = sk->sk_family; 4124 u32 sk_sid = sksec->sid; 4125 struct common_audit_data ad; 4126 char *addrp; 4127 u8 secmark_active; 4128 u8 peerlbl_active; 4129 4130 if (family != PF_INET && family != PF_INET6) 4131 return 0; 4132 4133 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 4134 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4135 family = PF_INET; 4136 4137 /* If any sort of compatibility mode is enabled then handoff processing 4138 * to the selinux_sock_rcv_skb_compat() function to deal with the 4139 * special handling. We do this in an attempt to keep this function 4140 * as fast and as clean as possible. */ 4141 if (!selinux_policycap_netpeer) 4142 return selinux_sock_rcv_skb_compat(sk, skb, family); 4143 4144 secmark_active = selinux_secmark_enabled(); 4145 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled(); 4146 if (!secmark_active && !peerlbl_active) 4147 return 0; 4148 4149 COMMON_AUDIT_DATA_INIT(&ad, NET); 4150 ad.u.net.netif = skb->iif; 4151 ad.u.net.family = family; 4152 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4153 if (err) 4154 return err; 4155 4156 if (peerlbl_active) { 4157 u32 peer_sid; 4158 4159 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 4160 if (err) 4161 return err; 4162 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family, 4163 peer_sid, &ad); 4164 if (err) { 4165 selinux_netlbl_err(skb, err, 0); 4166 return err; 4167 } 4168 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER, 4169 PEER__RECV, &ad); 4170 if (err) 4171 selinux_netlbl_err(skb, err, 0); 4172 } 4173 4174 if (secmark_active) { 4175 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4176 PACKET__RECV, &ad); 4177 if (err) 4178 return err; 4179 } 4180 4181 return err; 4182 } 4183 4184 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval, 4185 int __user *optlen, unsigned len) 4186 { 4187 int err = 0; 4188 char *scontext; 4189 u32 scontext_len; 4190 struct sk_security_struct *ssec; 4191 struct inode_security_struct *isec; 4192 u32 peer_sid = SECSID_NULL; 4193 4194 isec = SOCK_INODE(sock)->i_security; 4195 4196 if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 4197 isec->sclass == SECCLASS_TCP_SOCKET) { 4198 ssec = sock->sk->sk_security; 4199 peer_sid = ssec->peer_sid; 4200 } 4201 if (peer_sid == SECSID_NULL) { 4202 err = -ENOPROTOOPT; 4203 goto out; 4204 } 4205 4206 err = security_sid_to_context(peer_sid, &scontext, &scontext_len); 4207 4208 if (err) 4209 goto out; 4210 4211 if (scontext_len > len) { 4212 err = -ERANGE; 4213 goto out_len; 4214 } 4215 4216 if (copy_to_user(optval, scontext, scontext_len)) 4217 err = -EFAULT; 4218 4219 out_len: 4220 if (put_user(scontext_len, optlen)) 4221 err = -EFAULT; 4222 4223 kfree(scontext); 4224 out: 4225 return err; 4226 } 4227 4228 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 4229 { 4230 u32 peer_secid = SECSID_NULL; 4231 u16 family; 4232 4233 if (skb && skb->protocol == htons(ETH_P_IP)) 4234 family = PF_INET; 4235 else if (skb && skb->protocol == htons(ETH_P_IPV6)) 4236 family = PF_INET6; 4237 else if (sock) 4238 family = sock->sk->sk_family; 4239 else 4240 goto out; 4241 4242 if (sock && family == PF_UNIX) 4243 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid); 4244 else if (skb) 4245 selinux_skb_peerlbl_sid(skb, family, &peer_secid); 4246 4247 out: 4248 *secid = peer_secid; 4249 if (peer_secid == SECSID_NULL) 4250 return -EINVAL; 4251 return 0; 4252 } 4253 4254 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 4255 { 4256 return sk_alloc_security(sk, family, priority); 4257 } 4258 4259 static void selinux_sk_free_security(struct sock *sk) 4260 { 4261 sk_free_security(sk); 4262 } 4263 4264 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 4265 { 4266 struct sk_security_struct *ssec = sk->sk_security; 4267 struct sk_security_struct *newssec = newsk->sk_security; 4268 4269 newssec->sid = ssec->sid; 4270 newssec->peer_sid = ssec->peer_sid; 4271 newssec->sclass = ssec->sclass; 4272 4273 selinux_netlbl_sk_security_reset(newssec); 4274 } 4275 4276 static void selinux_sk_getsecid(struct sock *sk, u32 *secid) 4277 { 4278 if (!sk) 4279 *secid = SECINITSID_ANY_SOCKET; 4280 else { 4281 struct sk_security_struct *sksec = sk->sk_security; 4282 4283 *secid = sksec->sid; 4284 } 4285 } 4286 4287 static void selinux_sock_graft(struct sock *sk, struct socket *parent) 4288 { 4289 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security; 4290 struct sk_security_struct *sksec = sk->sk_security; 4291 4292 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 4293 sk->sk_family == PF_UNIX) 4294 isec->sid = sksec->sid; 4295 sksec->sclass = isec->sclass; 4296 } 4297 4298 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb, 4299 struct request_sock *req) 4300 { 4301 struct sk_security_struct *sksec = sk->sk_security; 4302 int err; 4303 u16 family = sk->sk_family; 4304 u32 newsid; 4305 u32 peersid; 4306 4307 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 4308 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4309 family = PF_INET; 4310 4311 err = selinux_skb_peerlbl_sid(skb, family, &peersid); 4312 if (err) 4313 return err; 4314 if (peersid == SECSID_NULL) { 4315 req->secid = sksec->sid; 4316 req->peer_secid = SECSID_NULL; 4317 } else { 4318 err = security_sid_mls_copy(sksec->sid, peersid, &newsid); 4319 if (err) 4320 return err; 4321 req->secid = newsid; 4322 req->peer_secid = peersid; 4323 } 4324 4325 return selinux_netlbl_inet_conn_request(req, family); 4326 } 4327 4328 static void selinux_inet_csk_clone(struct sock *newsk, 4329 const struct request_sock *req) 4330 { 4331 struct sk_security_struct *newsksec = newsk->sk_security; 4332 4333 newsksec->sid = req->secid; 4334 newsksec->peer_sid = req->peer_secid; 4335 /* NOTE: Ideally, we should also get the isec->sid for the 4336 new socket in sync, but we don't have the isec available yet. 4337 So we will wait until sock_graft to do it, by which 4338 time it will have been created and available. */ 4339 4340 /* We don't need to take any sort of lock here as we are the only 4341 * thread with access to newsksec */ 4342 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family); 4343 } 4344 4345 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb) 4346 { 4347 u16 family = sk->sk_family; 4348 struct sk_security_struct *sksec = sk->sk_security; 4349 4350 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 4351 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4352 family = PF_INET; 4353 4354 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid); 4355 } 4356 4357 static void selinux_req_classify_flow(const struct request_sock *req, 4358 struct flowi *fl) 4359 { 4360 fl->secid = req->secid; 4361 } 4362 4363 static int selinux_tun_dev_create(void) 4364 { 4365 u32 sid = current_sid(); 4366 4367 /* we aren't taking into account the "sockcreate" SID since the socket 4368 * that is being created here is not a socket in the traditional sense, 4369 * instead it is a private sock, accessible only to the kernel, and 4370 * representing a wide range of network traffic spanning multiple 4371 * connections unlike traditional sockets - check the TUN driver to 4372 * get a better understanding of why this socket is special */ 4373 4374 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE, 4375 NULL); 4376 } 4377 4378 static void selinux_tun_dev_post_create(struct sock *sk) 4379 { 4380 struct sk_security_struct *sksec = sk->sk_security; 4381 4382 /* we don't currently perform any NetLabel based labeling here and it 4383 * isn't clear that we would want to do so anyway; while we could apply 4384 * labeling without the support of the TUN user the resulting labeled 4385 * traffic from the other end of the connection would almost certainly 4386 * cause confusion to the TUN user that had no idea network labeling 4387 * protocols were being used */ 4388 4389 /* see the comments in selinux_tun_dev_create() about why we don't use 4390 * the sockcreate SID here */ 4391 4392 sksec->sid = current_sid(); 4393 sksec->sclass = SECCLASS_TUN_SOCKET; 4394 } 4395 4396 static int selinux_tun_dev_attach(struct sock *sk) 4397 { 4398 struct sk_security_struct *sksec = sk->sk_security; 4399 u32 sid = current_sid(); 4400 int err; 4401 4402 err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET, 4403 TUN_SOCKET__RELABELFROM, NULL); 4404 if (err) 4405 return err; 4406 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, 4407 TUN_SOCKET__RELABELTO, NULL); 4408 if (err) 4409 return err; 4410 4411 sksec->sid = sid; 4412 4413 return 0; 4414 } 4415 4416 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb) 4417 { 4418 int err = 0; 4419 u32 perm; 4420 struct nlmsghdr *nlh; 4421 struct socket *sock = sk->sk_socket; 4422 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security; 4423 4424 if (skb->len < NLMSG_SPACE(0)) { 4425 err = -EINVAL; 4426 goto out; 4427 } 4428 nlh = nlmsg_hdr(skb); 4429 4430 err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm); 4431 if (err) { 4432 if (err == -EINVAL) { 4433 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR, 4434 "SELinux: unrecognized netlink message" 4435 " type=%hu for sclass=%hu\n", 4436 nlh->nlmsg_type, isec->sclass); 4437 if (!selinux_enforcing || security_get_allow_unknown()) 4438 err = 0; 4439 } 4440 4441 /* Ignore */ 4442 if (err == -ENOENT) 4443 err = 0; 4444 goto out; 4445 } 4446 4447 err = socket_has_perm(current, sock, perm); 4448 out: 4449 return err; 4450 } 4451 4452 #ifdef CONFIG_NETFILTER 4453 4454 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex, 4455 u16 family) 4456 { 4457 int err; 4458 char *addrp; 4459 u32 peer_sid; 4460 struct common_audit_data ad; 4461 u8 secmark_active; 4462 u8 netlbl_active; 4463 u8 peerlbl_active; 4464 4465 if (!selinux_policycap_netpeer) 4466 return NF_ACCEPT; 4467 4468 secmark_active = selinux_secmark_enabled(); 4469 netlbl_active = netlbl_enabled(); 4470 peerlbl_active = netlbl_active || selinux_xfrm_enabled(); 4471 if (!secmark_active && !peerlbl_active) 4472 return NF_ACCEPT; 4473 4474 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0) 4475 return NF_DROP; 4476 4477 COMMON_AUDIT_DATA_INIT(&ad, NET); 4478 ad.u.net.netif = ifindex; 4479 ad.u.net.family = family; 4480 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0) 4481 return NF_DROP; 4482 4483 if (peerlbl_active) { 4484 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family, 4485 peer_sid, &ad); 4486 if (err) { 4487 selinux_netlbl_err(skb, err, 1); 4488 return NF_DROP; 4489 } 4490 } 4491 4492 if (secmark_active) 4493 if (avc_has_perm(peer_sid, skb->secmark, 4494 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad)) 4495 return NF_DROP; 4496 4497 if (netlbl_active) 4498 /* we do this in the FORWARD path and not the POST_ROUTING 4499 * path because we want to make sure we apply the necessary 4500 * labeling before IPsec is applied so we can leverage AH 4501 * protection */ 4502 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0) 4503 return NF_DROP; 4504 4505 return NF_ACCEPT; 4506 } 4507 4508 static unsigned int selinux_ipv4_forward(unsigned int hooknum, 4509 struct sk_buff *skb, 4510 const struct net_device *in, 4511 const struct net_device *out, 4512 int (*okfn)(struct sk_buff *)) 4513 { 4514 return selinux_ip_forward(skb, in->ifindex, PF_INET); 4515 } 4516 4517 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4518 static unsigned int selinux_ipv6_forward(unsigned int hooknum, 4519 struct sk_buff *skb, 4520 const struct net_device *in, 4521 const struct net_device *out, 4522 int (*okfn)(struct sk_buff *)) 4523 { 4524 return selinux_ip_forward(skb, in->ifindex, PF_INET6); 4525 } 4526 #endif /* IPV6 */ 4527 4528 static unsigned int selinux_ip_output(struct sk_buff *skb, 4529 u16 family) 4530 { 4531 u32 sid; 4532 4533 if (!netlbl_enabled()) 4534 return NF_ACCEPT; 4535 4536 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path 4537 * because we want to make sure we apply the necessary labeling 4538 * before IPsec is applied so we can leverage AH protection */ 4539 if (skb->sk) { 4540 struct sk_security_struct *sksec = skb->sk->sk_security; 4541 sid = sksec->sid; 4542 } else 4543 sid = SECINITSID_KERNEL; 4544 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0) 4545 return NF_DROP; 4546 4547 return NF_ACCEPT; 4548 } 4549 4550 static unsigned int selinux_ipv4_output(unsigned int hooknum, 4551 struct sk_buff *skb, 4552 const struct net_device *in, 4553 const struct net_device *out, 4554 int (*okfn)(struct sk_buff *)) 4555 { 4556 return selinux_ip_output(skb, PF_INET); 4557 } 4558 4559 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb, 4560 int ifindex, 4561 u16 family) 4562 { 4563 struct sock *sk = skb->sk; 4564 struct sk_security_struct *sksec; 4565 struct common_audit_data ad; 4566 char *addrp; 4567 u8 proto; 4568 4569 if (sk == NULL) 4570 return NF_ACCEPT; 4571 sksec = sk->sk_security; 4572 4573 COMMON_AUDIT_DATA_INIT(&ad, NET); 4574 ad.u.net.netif = ifindex; 4575 ad.u.net.family = family; 4576 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto)) 4577 return NF_DROP; 4578 4579 if (selinux_secmark_enabled()) 4580 if (avc_has_perm(sksec->sid, skb->secmark, 4581 SECCLASS_PACKET, PACKET__SEND, &ad)) 4582 return NF_DROP; 4583 4584 if (selinux_policycap_netpeer) 4585 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto)) 4586 return NF_DROP; 4587 4588 return NF_ACCEPT; 4589 } 4590 4591 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex, 4592 u16 family) 4593 { 4594 u32 secmark_perm; 4595 u32 peer_sid; 4596 struct sock *sk; 4597 struct common_audit_data ad; 4598 char *addrp; 4599 u8 secmark_active; 4600 u8 peerlbl_active; 4601 4602 /* If any sort of compatibility mode is enabled then handoff processing 4603 * to the selinux_ip_postroute_compat() function to deal with the 4604 * special handling. We do this in an attempt to keep this function 4605 * as fast and as clean as possible. */ 4606 if (!selinux_policycap_netpeer) 4607 return selinux_ip_postroute_compat(skb, ifindex, family); 4608 #ifdef CONFIG_XFRM 4609 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec 4610 * packet transformation so allow the packet to pass without any checks 4611 * since we'll have another chance to perform access control checks 4612 * when the packet is on it's final way out. 4613 * NOTE: there appear to be some IPv6 multicast cases where skb->dst 4614 * is NULL, in this case go ahead and apply access control. */ 4615 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL) 4616 return NF_ACCEPT; 4617 #endif 4618 secmark_active = selinux_secmark_enabled(); 4619 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled(); 4620 if (!secmark_active && !peerlbl_active) 4621 return NF_ACCEPT; 4622 4623 /* if the packet is being forwarded then get the peer label from the 4624 * packet itself; otherwise check to see if it is from a local 4625 * application or the kernel, if from an application get the peer label 4626 * from the sending socket, otherwise use the kernel's sid */ 4627 sk = skb->sk; 4628 if (sk == NULL) { 4629 switch (family) { 4630 case PF_INET: 4631 if (IPCB(skb)->flags & IPSKB_FORWARDED) 4632 secmark_perm = PACKET__FORWARD_OUT; 4633 else 4634 secmark_perm = PACKET__SEND; 4635 break; 4636 case PF_INET6: 4637 if (IP6CB(skb)->flags & IP6SKB_FORWARDED) 4638 secmark_perm = PACKET__FORWARD_OUT; 4639 else 4640 secmark_perm = PACKET__SEND; 4641 break; 4642 default: 4643 return NF_DROP; 4644 } 4645 if (secmark_perm == PACKET__FORWARD_OUT) { 4646 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid)) 4647 return NF_DROP; 4648 } else 4649 peer_sid = SECINITSID_KERNEL; 4650 } else { 4651 struct sk_security_struct *sksec = sk->sk_security; 4652 peer_sid = sksec->sid; 4653 secmark_perm = PACKET__SEND; 4654 } 4655 4656 COMMON_AUDIT_DATA_INIT(&ad, NET); 4657 ad.u.net.netif = ifindex; 4658 ad.u.net.family = family; 4659 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL)) 4660 return NF_DROP; 4661 4662 if (secmark_active) 4663 if (avc_has_perm(peer_sid, skb->secmark, 4664 SECCLASS_PACKET, secmark_perm, &ad)) 4665 return NF_DROP; 4666 4667 if (peerlbl_active) { 4668 u32 if_sid; 4669 u32 node_sid; 4670 4671 if (sel_netif_sid(ifindex, &if_sid)) 4672 return NF_DROP; 4673 if (avc_has_perm(peer_sid, if_sid, 4674 SECCLASS_NETIF, NETIF__EGRESS, &ad)) 4675 return NF_DROP; 4676 4677 if (sel_netnode_sid(addrp, family, &node_sid)) 4678 return NF_DROP; 4679 if (avc_has_perm(peer_sid, node_sid, 4680 SECCLASS_NODE, NODE__SENDTO, &ad)) 4681 return NF_DROP; 4682 } 4683 4684 return NF_ACCEPT; 4685 } 4686 4687 static unsigned int selinux_ipv4_postroute(unsigned int hooknum, 4688 struct sk_buff *skb, 4689 const struct net_device *in, 4690 const struct net_device *out, 4691 int (*okfn)(struct sk_buff *)) 4692 { 4693 return selinux_ip_postroute(skb, out->ifindex, PF_INET); 4694 } 4695 4696 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4697 static unsigned int selinux_ipv6_postroute(unsigned int hooknum, 4698 struct sk_buff *skb, 4699 const struct net_device *in, 4700 const struct net_device *out, 4701 int (*okfn)(struct sk_buff *)) 4702 { 4703 return selinux_ip_postroute(skb, out->ifindex, PF_INET6); 4704 } 4705 #endif /* IPV6 */ 4706 4707 #endif /* CONFIG_NETFILTER */ 4708 4709 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 4710 { 4711 int err; 4712 4713 err = cap_netlink_send(sk, skb); 4714 if (err) 4715 return err; 4716 4717 if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS) 4718 err = selinux_nlmsg_perm(sk, skb); 4719 4720 return err; 4721 } 4722 4723 static int selinux_netlink_recv(struct sk_buff *skb, int capability) 4724 { 4725 int err; 4726 struct common_audit_data ad; 4727 4728 err = cap_netlink_recv(skb, capability); 4729 if (err) 4730 return err; 4731 4732 COMMON_AUDIT_DATA_INIT(&ad, CAP); 4733 ad.u.cap = capability; 4734 4735 return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid, 4736 SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad); 4737 } 4738 4739 static int ipc_alloc_security(struct task_struct *task, 4740 struct kern_ipc_perm *perm, 4741 u16 sclass) 4742 { 4743 struct ipc_security_struct *isec; 4744 u32 sid; 4745 4746 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL); 4747 if (!isec) 4748 return -ENOMEM; 4749 4750 sid = task_sid(task); 4751 isec->sclass = sclass; 4752 isec->sid = sid; 4753 perm->security = isec; 4754 4755 return 0; 4756 } 4757 4758 static void ipc_free_security(struct kern_ipc_perm *perm) 4759 { 4760 struct ipc_security_struct *isec = perm->security; 4761 perm->security = NULL; 4762 kfree(isec); 4763 } 4764 4765 static int msg_msg_alloc_security(struct msg_msg *msg) 4766 { 4767 struct msg_security_struct *msec; 4768 4769 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL); 4770 if (!msec) 4771 return -ENOMEM; 4772 4773 msec->sid = SECINITSID_UNLABELED; 4774 msg->security = msec; 4775 4776 return 0; 4777 } 4778 4779 static void msg_msg_free_security(struct msg_msg *msg) 4780 { 4781 struct msg_security_struct *msec = msg->security; 4782 4783 msg->security = NULL; 4784 kfree(msec); 4785 } 4786 4787 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 4788 u32 perms) 4789 { 4790 struct ipc_security_struct *isec; 4791 struct common_audit_data ad; 4792 u32 sid = current_sid(); 4793 4794 isec = ipc_perms->security; 4795 4796 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4797 ad.u.ipc_id = ipc_perms->key; 4798 4799 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad); 4800 } 4801 4802 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 4803 { 4804 return msg_msg_alloc_security(msg); 4805 } 4806 4807 static void selinux_msg_msg_free_security(struct msg_msg *msg) 4808 { 4809 msg_msg_free_security(msg); 4810 } 4811 4812 /* message queue security operations */ 4813 static int selinux_msg_queue_alloc_security(struct msg_queue *msq) 4814 { 4815 struct ipc_security_struct *isec; 4816 struct common_audit_data ad; 4817 u32 sid = current_sid(); 4818 int rc; 4819 4820 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ); 4821 if (rc) 4822 return rc; 4823 4824 isec = msq->q_perm.security; 4825 4826 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4827 ad.u.ipc_id = msq->q_perm.key; 4828 4829 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 4830 MSGQ__CREATE, &ad); 4831 if (rc) { 4832 ipc_free_security(&msq->q_perm); 4833 return rc; 4834 } 4835 return 0; 4836 } 4837 4838 static void selinux_msg_queue_free_security(struct msg_queue *msq) 4839 { 4840 ipc_free_security(&msq->q_perm); 4841 } 4842 4843 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg) 4844 { 4845 struct ipc_security_struct *isec; 4846 struct common_audit_data ad; 4847 u32 sid = current_sid(); 4848 4849 isec = msq->q_perm.security; 4850 4851 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4852 ad.u.ipc_id = msq->q_perm.key; 4853 4854 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 4855 MSGQ__ASSOCIATE, &ad); 4856 } 4857 4858 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd) 4859 { 4860 int err; 4861 int perms; 4862 4863 switch (cmd) { 4864 case IPC_INFO: 4865 case MSG_INFO: 4866 /* No specific object, just general system-wide information. */ 4867 return task_has_system(current, SYSTEM__IPC_INFO); 4868 case IPC_STAT: 4869 case MSG_STAT: 4870 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 4871 break; 4872 case IPC_SET: 4873 perms = MSGQ__SETATTR; 4874 break; 4875 case IPC_RMID: 4876 perms = MSGQ__DESTROY; 4877 break; 4878 default: 4879 return 0; 4880 } 4881 4882 err = ipc_has_perm(&msq->q_perm, perms); 4883 return err; 4884 } 4885 4886 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg) 4887 { 4888 struct ipc_security_struct *isec; 4889 struct msg_security_struct *msec; 4890 struct common_audit_data ad; 4891 u32 sid = current_sid(); 4892 int rc; 4893 4894 isec = msq->q_perm.security; 4895 msec = msg->security; 4896 4897 /* 4898 * First time through, need to assign label to the message 4899 */ 4900 if (msec->sid == SECINITSID_UNLABELED) { 4901 /* 4902 * Compute new sid based on current process and 4903 * message queue this message will be stored in 4904 */ 4905 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG, 4906 &msec->sid); 4907 if (rc) 4908 return rc; 4909 } 4910 4911 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4912 ad.u.ipc_id = msq->q_perm.key; 4913 4914 /* Can this process write to the queue? */ 4915 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 4916 MSGQ__WRITE, &ad); 4917 if (!rc) 4918 /* Can this process send the message */ 4919 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG, 4920 MSG__SEND, &ad); 4921 if (!rc) 4922 /* Can the message be put in the queue? */ 4923 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ, 4924 MSGQ__ENQUEUE, &ad); 4925 4926 return rc; 4927 } 4928 4929 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 4930 struct task_struct *target, 4931 long type, int mode) 4932 { 4933 struct ipc_security_struct *isec; 4934 struct msg_security_struct *msec; 4935 struct common_audit_data ad; 4936 u32 sid = task_sid(target); 4937 int rc; 4938 4939 isec = msq->q_perm.security; 4940 msec = msg->security; 4941 4942 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4943 ad.u.ipc_id = msq->q_perm.key; 4944 4945 rc = avc_has_perm(sid, isec->sid, 4946 SECCLASS_MSGQ, MSGQ__READ, &ad); 4947 if (!rc) 4948 rc = avc_has_perm(sid, msec->sid, 4949 SECCLASS_MSG, MSG__RECEIVE, &ad); 4950 return rc; 4951 } 4952 4953 /* Shared Memory security operations */ 4954 static int selinux_shm_alloc_security(struct shmid_kernel *shp) 4955 { 4956 struct ipc_security_struct *isec; 4957 struct common_audit_data ad; 4958 u32 sid = current_sid(); 4959 int rc; 4960 4961 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM); 4962 if (rc) 4963 return rc; 4964 4965 isec = shp->shm_perm.security; 4966 4967 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4968 ad.u.ipc_id = shp->shm_perm.key; 4969 4970 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM, 4971 SHM__CREATE, &ad); 4972 if (rc) { 4973 ipc_free_security(&shp->shm_perm); 4974 return rc; 4975 } 4976 return 0; 4977 } 4978 4979 static void selinux_shm_free_security(struct shmid_kernel *shp) 4980 { 4981 ipc_free_security(&shp->shm_perm); 4982 } 4983 4984 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg) 4985 { 4986 struct ipc_security_struct *isec; 4987 struct common_audit_data ad; 4988 u32 sid = current_sid(); 4989 4990 isec = shp->shm_perm.security; 4991 4992 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4993 ad.u.ipc_id = shp->shm_perm.key; 4994 4995 return avc_has_perm(sid, isec->sid, SECCLASS_SHM, 4996 SHM__ASSOCIATE, &ad); 4997 } 4998 4999 /* Note, at this point, shp is locked down */ 5000 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd) 5001 { 5002 int perms; 5003 int err; 5004 5005 switch (cmd) { 5006 case IPC_INFO: 5007 case SHM_INFO: 5008 /* No specific object, just general system-wide information. */ 5009 return task_has_system(current, SYSTEM__IPC_INFO); 5010 case IPC_STAT: 5011 case SHM_STAT: 5012 perms = SHM__GETATTR | SHM__ASSOCIATE; 5013 break; 5014 case IPC_SET: 5015 perms = SHM__SETATTR; 5016 break; 5017 case SHM_LOCK: 5018 case SHM_UNLOCK: 5019 perms = SHM__LOCK; 5020 break; 5021 case IPC_RMID: 5022 perms = SHM__DESTROY; 5023 break; 5024 default: 5025 return 0; 5026 } 5027 5028 err = ipc_has_perm(&shp->shm_perm, perms); 5029 return err; 5030 } 5031 5032 static int selinux_shm_shmat(struct shmid_kernel *shp, 5033 char __user *shmaddr, int shmflg) 5034 { 5035 u32 perms; 5036 5037 if (shmflg & SHM_RDONLY) 5038 perms = SHM__READ; 5039 else 5040 perms = SHM__READ | SHM__WRITE; 5041 5042 return ipc_has_perm(&shp->shm_perm, perms); 5043 } 5044 5045 /* Semaphore security operations */ 5046 static int selinux_sem_alloc_security(struct sem_array *sma) 5047 { 5048 struct ipc_security_struct *isec; 5049 struct common_audit_data ad; 5050 u32 sid = current_sid(); 5051 int rc; 5052 5053 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM); 5054 if (rc) 5055 return rc; 5056 5057 isec = sma->sem_perm.security; 5058 5059 COMMON_AUDIT_DATA_INIT(&ad, IPC); 5060 ad.u.ipc_id = sma->sem_perm.key; 5061 5062 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM, 5063 SEM__CREATE, &ad); 5064 if (rc) { 5065 ipc_free_security(&sma->sem_perm); 5066 return rc; 5067 } 5068 return 0; 5069 } 5070 5071 static void selinux_sem_free_security(struct sem_array *sma) 5072 { 5073 ipc_free_security(&sma->sem_perm); 5074 } 5075 5076 static int selinux_sem_associate(struct sem_array *sma, int semflg) 5077 { 5078 struct ipc_security_struct *isec; 5079 struct common_audit_data ad; 5080 u32 sid = current_sid(); 5081 5082 isec = sma->sem_perm.security; 5083 5084 COMMON_AUDIT_DATA_INIT(&ad, IPC); 5085 ad.u.ipc_id = sma->sem_perm.key; 5086 5087 return avc_has_perm(sid, isec->sid, SECCLASS_SEM, 5088 SEM__ASSOCIATE, &ad); 5089 } 5090 5091 /* Note, at this point, sma is locked down */ 5092 static int selinux_sem_semctl(struct sem_array *sma, int cmd) 5093 { 5094 int err; 5095 u32 perms; 5096 5097 switch (cmd) { 5098 case IPC_INFO: 5099 case SEM_INFO: 5100 /* No specific object, just general system-wide information. */ 5101 return task_has_system(current, SYSTEM__IPC_INFO); 5102 case GETPID: 5103 case GETNCNT: 5104 case GETZCNT: 5105 perms = SEM__GETATTR; 5106 break; 5107 case GETVAL: 5108 case GETALL: 5109 perms = SEM__READ; 5110 break; 5111 case SETVAL: 5112 case SETALL: 5113 perms = SEM__WRITE; 5114 break; 5115 case IPC_RMID: 5116 perms = SEM__DESTROY; 5117 break; 5118 case IPC_SET: 5119 perms = SEM__SETATTR; 5120 break; 5121 case IPC_STAT: 5122 case SEM_STAT: 5123 perms = SEM__GETATTR | SEM__ASSOCIATE; 5124 break; 5125 default: 5126 return 0; 5127 } 5128 5129 err = ipc_has_perm(&sma->sem_perm, perms); 5130 return err; 5131 } 5132 5133 static int selinux_sem_semop(struct sem_array *sma, 5134 struct sembuf *sops, unsigned nsops, int alter) 5135 { 5136 u32 perms; 5137 5138 if (alter) 5139 perms = SEM__READ | SEM__WRITE; 5140 else 5141 perms = SEM__READ; 5142 5143 return ipc_has_perm(&sma->sem_perm, perms); 5144 } 5145 5146 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 5147 { 5148 u32 av = 0; 5149 5150 av = 0; 5151 if (flag & S_IRUGO) 5152 av |= IPC__UNIX_READ; 5153 if (flag & S_IWUGO) 5154 av |= IPC__UNIX_WRITE; 5155 5156 if (av == 0) 5157 return 0; 5158 5159 return ipc_has_perm(ipcp, av); 5160 } 5161 5162 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 5163 { 5164 struct ipc_security_struct *isec = ipcp->security; 5165 *secid = isec->sid; 5166 } 5167 5168 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode) 5169 { 5170 if (inode) 5171 inode_doinit_with_dentry(inode, dentry); 5172 } 5173 5174 static int selinux_getprocattr(struct task_struct *p, 5175 char *name, char **value) 5176 { 5177 const struct task_security_struct *__tsec; 5178 u32 sid; 5179 int error; 5180 unsigned len; 5181 5182 if (current != p) { 5183 error = current_has_perm(p, PROCESS__GETATTR); 5184 if (error) 5185 return error; 5186 } 5187 5188 rcu_read_lock(); 5189 __tsec = __task_cred(p)->security; 5190 5191 if (!strcmp(name, "current")) 5192 sid = __tsec->sid; 5193 else if (!strcmp(name, "prev")) 5194 sid = __tsec->osid; 5195 else if (!strcmp(name, "exec")) 5196 sid = __tsec->exec_sid; 5197 else if (!strcmp(name, "fscreate")) 5198 sid = __tsec->create_sid; 5199 else if (!strcmp(name, "keycreate")) 5200 sid = __tsec->keycreate_sid; 5201 else if (!strcmp(name, "sockcreate")) 5202 sid = __tsec->sockcreate_sid; 5203 else 5204 goto invalid; 5205 rcu_read_unlock(); 5206 5207 if (!sid) 5208 return 0; 5209 5210 error = security_sid_to_context(sid, value, &len); 5211 if (error) 5212 return error; 5213 return len; 5214 5215 invalid: 5216 rcu_read_unlock(); 5217 return -EINVAL; 5218 } 5219 5220 static int selinux_setprocattr(struct task_struct *p, 5221 char *name, void *value, size_t size) 5222 { 5223 struct task_security_struct *tsec; 5224 struct task_struct *tracer; 5225 struct cred *new; 5226 u32 sid = 0, ptsid; 5227 int error; 5228 char *str = value; 5229 5230 if (current != p) { 5231 /* SELinux only allows a process to change its own 5232 security attributes. */ 5233 return -EACCES; 5234 } 5235 5236 /* 5237 * Basic control over ability to set these attributes at all. 5238 * current == p, but we'll pass them separately in case the 5239 * above restriction is ever removed. 5240 */ 5241 if (!strcmp(name, "exec")) 5242 error = current_has_perm(p, PROCESS__SETEXEC); 5243 else if (!strcmp(name, "fscreate")) 5244 error = current_has_perm(p, PROCESS__SETFSCREATE); 5245 else if (!strcmp(name, "keycreate")) 5246 error = current_has_perm(p, PROCESS__SETKEYCREATE); 5247 else if (!strcmp(name, "sockcreate")) 5248 error = current_has_perm(p, PROCESS__SETSOCKCREATE); 5249 else if (!strcmp(name, "current")) 5250 error = current_has_perm(p, PROCESS__SETCURRENT); 5251 else 5252 error = -EINVAL; 5253 if (error) 5254 return error; 5255 5256 /* Obtain a SID for the context, if one was specified. */ 5257 if (size && str[1] && str[1] != '\n') { 5258 if (str[size-1] == '\n') { 5259 str[size-1] = 0; 5260 size--; 5261 } 5262 error = security_context_to_sid(value, size, &sid); 5263 if (error == -EINVAL && !strcmp(name, "fscreate")) { 5264 if (!capable(CAP_MAC_ADMIN)) 5265 return error; 5266 error = security_context_to_sid_force(value, size, 5267 &sid); 5268 } 5269 if (error) 5270 return error; 5271 } 5272 5273 new = prepare_creds(); 5274 if (!new) 5275 return -ENOMEM; 5276 5277 /* Permission checking based on the specified context is 5278 performed during the actual operation (execve, 5279 open/mkdir/...), when we know the full context of the 5280 operation. See selinux_bprm_set_creds for the execve 5281 checks and may_create for the file creation checks. The 5282 operation will then fail if the context is not permitted. */ 5283 tsec = new->security; 5284 if (!strcmp(name, "exec")) { 5285 tsec->exec_sid = sid; 5286 } else if (!strcmp(name, "fscreate")) { 5287 tsec->create_sid = sid; 5288 } else if (!strcmp(name, "keycreate")) { 5289 error = may_create_key(sid, p); 5290 if (error) 5291 goto abort_change; 5292 tsec->keycreate_sid = sid; 5293 } else if (!strcmp(name, "sockcreate")) { 5294 tsec->sockcreate_sid = sid; 5295 } else if (!strcmp(name, "current")) { 5296 error = -EINVAL; 5297 if (sid == 0) 5298 goto abort_change; 5299 5300 /* Only allow single threaded processes to change context */ 5301 error = -EPERM; 5302 if (!current_is_single_threaded()) { 5303 error = security_bounded_transition(tsec->sid, sid); 5304 if (error) 5305 goto abort_change; 5306 } 5307 5308 /* Check permissions for the transition. */ 5309 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 5310 PROCESS__DYNTRANSITION, NULL); 5311 if (error) 5312 goto abort_change; 5313 5314 /* Check for ptracing, and update the task SID if ok. 5315 Otherwise, leave SID unchanged and fail. */ 5316 ptsid = 0; 5317 task_lock(p); 5318 tracer = tracehook_tracer_task(p); 5319 if (tracer) 5320 ptsid = task_sid(tracer); 5321 task_unlock(p); 5322 5323 if (tracer) { 5324 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS, 5325 PROCESS__PTRACE, NULL); 5326 if (error) 5327 goto abort_change; 5328 } 5329 5330 tsec->sid = sid; 5331 } else { 5332 error = -EINVAL; 5333 goto abort_change; 5334 } 5335 5336 commit_creds(new); 5337 return size; 5338 5339 abort_change: 5340 abort_creds(new); 5341 return error; 5342 } 5343 5344 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 5345 { 5346 return security_sid_to_context(secid, secdata, seclen); 5347 } 5348 5349 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 5350 { 5351 return security_context_to_sid(secdata, seclen, secid); 5352 } 5353 5354 static void selinux_release_secctx(char *secdata, u32 seclen) 5355 { 5356 kfree(secdata); 5357 } 5358 5359 /* 5360 * called with inode->i_mutex locked 5361 */ 5362 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 5363 { 5364 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0); 5365 } 5366 5367 /* 5368 * called with inode->i_mutex locked 5369 */ 5370 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 5371 { 5372 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0); 5373 } 5374 5375 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 5376 { 5377 int len = 0; 5378 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX, 5379 ctx, true); 5380 if (len < 0) 5381 return len; 5382 *ctxlen = len; 5383 return 0; 5384 } 5385 #ifdef CONFIG_KEYS 5386 5387 static int selinux_key_alloc(struct key *k, const struct cred *cred, 5388 unsigned long flags) 5389 { 5390 const struct task_security_struct *tsec; 5391 struct key_security_struct *ksec; 5392 5393 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); 5394 if (!ksec) 5395 return -ENOMEM; 5396 5397 tsec = cred->security; 5398 if (tsec->keycreate_sid) 5399 ksec->sid = tsec->keycreate_sid; 5400 else 5401 ksec->sid = tsec->sid; 5402 5403 k->security = ksec; 5404 return 0; 5405 } 5406 5407 static void selinux_key_free(struct key *k) 5408 { 5409 struct key_security_struct *ksec = k->security; 5410 5411 k->security = NULL; 5412 kfree(ksec); 5413 } 5414 5415 static int selinux_key_permission(key_ref_t key_ref, 5416 const struct cred *cred, 5417 key_perm_t perm) 5418 { 5419 struct key *key; 5420 struct key_security_struct *ksec; 5421 u32 sid; 5422 5423 /* if no specific permissions are requested, we skip the 5424 permission check. No serious, additional covert channels 5425 appear to be created. */ 5426 if (perm == 0) 5427 return 0; 5428 5429 sid = cred_sid(cred); 5430 5431 key = key_ref_to_ptr(key_ref); 5432 ksec = key->security; 5433 5434 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL); 5435 } 5436 5437 static int selinux_key_getsecurity(struct key *key, char **_buffer) 5438 { 5439 struct key_security_struct *ksec = key->security; 5440 char *context = NULL; 5441 unsigned len; 5442 int rc; 5443 5444 rc = security_sid_to_context(ksec->sid, &context, &len); 5445 if (!rc) 5446 rc = len; 5447 *_buffer = context; 5448 return rc; 5449 } 5450 5451 #endif 5452 5453 static struct security_operations selinux_ops = { 5454 .name = "selinux", 5455 5456 .ptrace_access_check = selinux_ptrace_access_check, 5457 .ptrace_traceme = selinux_ptrace_traceme, 5458 .capget = selinux_capget, 5459 .capset = selinux_capset, 5460 .sysctl = selinux_sysctl, 5461 .capable = selinux_capable, 5462 .quotactl = selinux_quotactl, 5463 .quota_on = selinux_quota_on, 5464 .syslog = selinux_syslog, 5465 .vm_enough_memory = selinux_vm_enough_memory, 5466 5467 .netlink_send = selinux_netlink_send, 5468 .netlink_recv = selinux_netlink_recv, 5469 5470 .bprm_set_creds = selinux_bprm_set_creds, 5471 .bprm_committing_creds = selinux_bprm_committing_creds, 5472 .bprm_committed_creds = selinux_bprm_committed_creds, 5473 .bprm_secureexec = selinux_bprm_secureexec, 5474 5475 .sb_alloc_security = selinux_sb_alloc_security, 5476 .sb_free_security = selinux_sb_free_security, 5477 .sb_copy_data = selinux_sb_copy_data, 5478 .sb_kern_mount = selinux_sb_kern_mount, 5479 .sb_show_options = selinux_sb_show_options, 5480 .sb_statfs = selinux_sb_statfs, 5481 .sb_mount = selinux_mount, 5482 .sb_umount = selinux_umount, 5483 .sb_set_mnt_opts = selinux_set_mnt_opts, 5484 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts, 5485 .sb_parse_opts_str = selinux_parse_opts_str, 5486 5487 5488 .inode_alloc_security = selinux_inode_alloc_security, 5489 .inode_free_security = selinux_inode_free_security, 5490 .inode_init_security = selinux_inode_init_security, 5491 .inode_create = selinux_inode_create, 5492 .inode_link = selinux_inode_link, 5493 .inode_unlink = selinux_inode_unlink, 5494 .inode_symlink = selinux_inode_symlink, 5495 .inode_mkdir = selinux_inode_mkdir, 5496 .inode_rmdir = selinux_inode_rmdir, 5497 .inode_mknod = selinux_inode_mknod, 5498 .inode_rename = selinux_inode_rename, 5499 .inode_readlink = selinux_inode_readlink, 5500 .inode_follow_link = selinux_inode_follow_link, 5501 .inode_permission = selinux_inode_permission, 5502 .inode_setattr = selinux_inode_setattr, 5503 .inode_getattr = selinux_inode_getattr, 5504 .inode_setxattr = selinux_inode_setxattr, 5505 .inode_post_setxattr = selinux_inode_post_setxattr, 5506 .inode_getxattr = selinux_inode_getxattr, 5507 .inode_listxattr = selinux_inode_listxattr, 5508 .inode_removexattr = selinux_inode_removexattr, 5509 .inode_getsecurity = selinux_inode_getsecurity, 5510 .inode_setsecurity = selinux_inode_setsecurity, 5511 .inode_listsecurity = selinux_inode_listsecurity, 5512 .inode_getsecid = selinux_inode_getsecid, 5513 5514 .file_permission = selinux_file_permission, 5515 .file_alloc_security = selinux_file_alloc_security, 5516 .file_free_security = selinux_file_free_security, 5517 .file_ioctl = selinux_file_ioctl, 5518 .file_mmap = selinux_file_mmap, 5519 .file_mprotect = selinux_file_mprotect, 5520 .file_lock = selinux_file_lock, 5521 .file_fcntl = selinux_file_fcntl, 5522 .file_set_fowner = selinux_file_set_fowner, 5523 .file_send_sigiotask = selinux_file_send_sigiotask, 5524 .file_receive = selinux_file_receive, 5525 5526 .dentry_open = selinux_dentry_open, 5527 5528 .task_create = selinux_task_create, 5529 .cred_alloc_blank = selinux_cred_alloc_blank, 5530 .cred_free = selinux_cred_free, 5531 .cred_prepare = selinux_cred_prepare, 5532 .cred_transfer = selinux_cred_transfer, 5533 .kernel_act_as = selinux_kernel_act_as, 5534 .kernel_create_files_as = selinux_kernel_create_files_as, 5535 .kernel_module_request = selinux_kernel_module_request, 5536 .task_setpgid = selinux_task_setpgid, 5537 .task_getpgid = selinux_task_getpgid, 5538 .task_getsid = selinux_task_getsid, 5539 .task_getsecid = selinux_task_getsecid, 5540 .task_setnice = selinux_task_setnice, 5541 .task_setioprio = selinux_task_setioprio, 5542 .task_getioprio = selinux_task_getioprio, 5543 .task_setrlimit = selinux_task_setrlimit, 5544 .task_setscheduler = selinux_task_setscheduler, 5545 .task_getscheduler = selinux_task_getscheduler, 5546 .task_movememory = selinux_task_movememory, 5547 .task_kill = selinux_task_kill, 5548 .task_wait = selinux_task_wait, 5549 .task_to_inode = selinux_task_to_inode, 5550 5551 .ipc_permission = selinux_ipc_permission, 5552 .ipc_getsecid = selinux_ipc_getsecid, 5553 5554 .msg_msg_alloc_security = selinux_msg_msg_alloc_security, 5555 .msg_msg_free_security = selinux_msg_msg_free_security, 5556 5557 .msg_queue_alloc_security = selinux_msg_queue_alloc_security, 5558 .msg_queue_free_security = selinux_msg_queue_free_security, 5559 .msg_queue_associate = selinux_msg_queue_associate, 5560 .msg_queue_msgctl = selinux_msg_queue_msgctl, 5561 .msg_queue_msgsnd = selinux_msg_queue_msgsnd, 5562 .msg_queue_msgrcv = selinux_msg_queue_msgrcv, 5563 5564 .shm_alloc_security = selinux_shm_alloc_security, 5565 .shm_free_security = selinux_shm_free_security, 5566 .shm_associate = selinux_shm_associate, 5567 .shm_shmctl = selinux_shm_shmctl, 5568 .shm_shmat = selinux_shm_shmat, 5569 5570 .sem_alloc_security = selinux_sem_alloc_security, 5571 .sem_free_security = selinux_sem_free_security, 5572 .sem_associate = selinux_sem_associate, 5573 .sem_semctl = selinux_sem_semctl, 5574 .sem_semop = selinux_sem_semop, 5575 5576 .d_instantiate = selinux_d_instantiate, 5577 5578 .getprocattr = selinux_getprocattr, 5579 .setprocattr = selinux_setprocattr, 5580 5581 .secid_to_secctx = selinux_secid_to_secctx, 5582 .secctx_to_secid = selinux_secctx_to_secid, 5583 .release_secctx = selinux_release_secctx, 5584 .inode_notifysecctx = selinux_inode_notifysecctx, 5585 .inode_setsecctx = selinux_inode_setsecctx, 5586 .inode_getsecctx = selinux_inode_getsecctx, 5587 5588 .unix_stream_connect = selinux_socket_unix_stream_connect, 5589 .unix_may_send = selinux_socket_unix_may_send, 5590 5591 .socket_create = selinux_socket_create, 5592 .socket_post_create = selinux_socket_post_create, 5593 .socket_bind = selinux_socket_bind, 5594 .socket_connect = selinux_socket_connect, 5595 .socket_listen = selinux_socket_listen, 5596 .socket_accept = selinux_socket_accept, 5597 .socket_sendmsg = selinux_socket_sendmsg, 5598 .socket_recvmsg = selinux_socket_recvmsg, 5599 .socket_getsockname = selinux_socket_getsockname, 5600 .socket_getpeername = selinux_socket_getpeername, 5601 .socket_getsockopt = selinux_socket_getsockopt, 5602 .socket_setsockopt = selinux_socket_setsockopt, 5603 .socket_shutdown = selinux_socket_shutdown, 5604 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb, 5605 .socket_getpeersec_stream = selinux_socket_getpeersec_stream, 5606 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram, 5607 .sk_alloc_security = selinux_sk_alloc_security, 5608 .sk_free_security = selinux_sk_free_security, 5609 .sk_clone_security = selinux_sk_clone_security, 5610 .sk_getsecid = selinux_sk_getsecid, 5611 .sock_graft = selinux_sock_graft, 5612 .inet_conn_request = selinux_inet_conn_request, 5613 .inet_csk_clone = selinux_inet_csk_clone, 5614 .inet_conn_established = selinux_inet_conn_established, 5615 .req_classify_flow = selinux_req_classify_flow, 5616 .tun_dev_create = selinux_tun_dev_create, 5617 .tun_dev_post_create = selinux_tun_dev_post_create, 5618 .tun_dev_attach = selinux_tun_dev_attach, 5619 5620 #ifdef CONFIG_SECURITY_NETWORK_XFRM 5621 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc, 5622 .xfrm_policy_clone_security = selinux_xfrm_policy_clone, 5623 .xfrm_policy_free_security = selinux_xfrm_policy_free, 5624 .xfrm_policy_delete_security = selinux_xfrm_policy_delete, 5625 .xfrm_state_alloc_security = selinux_xfrm_state_alloc, 5626 .xfrm_state_free_security = selinux_xfrm_state_free, 5627 .xfrm_state_delete_security = selinux_xfrm_state_delete, 5628 .xfrm_policy_lookup = selinux_xfrm_policy_lookup, 5629 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match, 5630 .xfrm_decode_session = selinux_xfrm_decode_session, 5631 #endif 5632 5633 #ifdef CONFIG_KEYS 5634 .key_alloc = selinux_key_alloc, 5635 .key_free = selinux_key_free, 5636 .key_permission = selinux_key_permission, 5637 .key_getsecurity = selinux_key_getsecurity, 5638 #endif 5639 5640 #ifdef CONFIG_AUDIT 5641 .audit_rule_init = selinux_audit_rule_init, 5642 .audit_rule_known = selinux_audit_rule_known, 5643 .audit_rule_match = selinux_audit_rule_match, 5644 .audit_rule_free = selinux_audit_rule_free, 5645 #endif 5646 }; 5647 5648 static __init int selinux_init(void) 5649 { 5650 if (!security_module_enable(&selinux_ops)) { 5651 selinux_enabled = 0; 5652 return 0; 5653 } 5654 5655 if (!selinux_enabled) { 5656 printk(KERN_INFO "SELinux: Disabled at boot.\n"); 5657 return 0; 5658 } 5659 5660 printk(KERN_INFO "SELinux: Initializing.\n"); 5661 5662 /* Set the security state for the initial task. */ 5663 cred_init_security(); 5664 5665 sel_inode_cache = kmem_cache_create("selinux_inode_security", 5666 sizeof(struct inode_security_struct), 5667 0, SLAB_PANIC, NULL); 5668 avc_init(); 5669 5670 secondary_ops = security_ops; 5671 if (!secondary_ops) 5672 panic("SELinux: No initial security operations\n"); 5673 if (register_security(&selinux_ops)) 5674 panic("SELinux: Unable to register with kernel.\n"); 5675 5676 if (selinux_enforcing) 5677 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n"); 5678 else 5679 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n"); 5680 5681 return 0; 5682 } 5683 5684 void selinux_complete_init(void) 5685 { 5686 printk(KERN_DEBUG "SELinux: Completing initialization.\n"); 5687 5688 /* Set up any superblocks initialized prior to the policy load. */ 5689 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n"); 5690 spin_lock(&sb_lock); 5691 spin_lock(&sb_security_lock); 5692 next_sb: 5693 if (!list_empty(&superblock_security_head)) { 5694 struct superblock_security_struct *sbsec = 5695 list_entry(superblock_security_head.next, 5696 struct superblock_security_struct, 5697 list); 5698 struct super_block *sb = sbsec->sb; 5699 sb->s_count++; 5700 spin_unlock(&sb_security_lock); 5701 spin_unlock(&sb_lock); 5702 down_read(&sb->s_umount); 5703 if (sb->s_root) 5704 superblock_doinit(sb, NULL); 5705 drop_super(sb); 5706 spin_lock(&sb_lock); 5707 spin_lock(&sb_security_lock); 5708 list_del_init(&sbsec->list); 5709 goto next_sb; 5710 } 5711 spin_unlock(&sb_security_lock); 5712 spin_unlock(&sb_lock); 5713 } 5714 5715 /* SELinux requires early initialization in order to label 5716 all processes and objects when they are created. */ 5717 security_initcall(selinux_init); 5718 5719 #if defined(CONFIG_NETFILTER) 5720 5721 static struct nf_hook_ops selinux_ipv4_ops[] = { 5722 { 5723 .hook = selinux_ipv4_postroute, 5724 .owner = THIS_MODULE, 5725 .pf = PF_INET, 5726 .hooknum = NF_INET_POST_ROUTING, 5727 .priority = NF_IP_PRI_SELINUX_LAST, 5728 }, 5729 { 5730 .hook = selinux_ipv4_forward, 5731 .owner = THIS_MODULE, 5732 .pf = PF_INET, 5733 .hooknum = NF_INET_FORWARD, 5734 .priority = NF_IP_PRI_SELINUX_FIRST, 5735 }, 5736 { 5737 .hook = selinux_ipv4_output, 5738 .owner = THIS_MODULE, 5739 .pf = PF_INET, 5740 .hooknum = NF_INET_LOCAL_OUT, 5741 .priority = NF_IP_PRI_SELINUX_FIRST, 5742 } 5743 }; 5744 5745 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5746 5747 static struct nf_hook_ops selinux_ipv6_ops[] = { 5748 { 5749 .hook = selinux_ipv6_postroute, 5750 .owner = THIS_MODULE, 5751 .pf = PF_INET6, 5752 .hooknum = NF_INET_POST_ROUTING, 5753 .priority = NF_IP6_PRI_SELINUX_LAST, 5754 }, 5755 { 5756 .hook = selinux_ipv6_forward, 5757 .owner = THIS_MODULE, 5758 .pf = PF_INET6, 5759 .hooknum = NF_INET_FORWARD, 5760 .priority = NF_IP6_PRI_SELINUX_FIRST, 5761 } 5762 }; 5763 5764 #endif /* IPV6 */ 5765 5766 static int __init selinux_nf_ip_init(void) 5767 { 5768 int err = 0; 5769 5770 if (!selinux_enabled) 5771 goto out; 5772 5773 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n"); 5774 5775 err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops)); 5776 if (err) 5777 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err); 5778 5779 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5780 err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops)); 5781 if (err) 5782 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err); 5783 #endif /* IPV6 */ 5784 5785 out: 5786 return err; 5787 } 5788 5789 __initcall(selinux_nf_ip_init); 5790 5791 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5792 static void selinux_nf_ip_exit(void) 5793 { 5794 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n"); 5795 5796 nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops)); 5797 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5798 nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops)); 5799 #endif /* IPV6 */ 5800 } 5801 #endif 5802 5803 #else /* CONFIG_NETFILTER */ 5804 5805 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5806 #define selinux_nf_ip_exit() 5807 #endif 5808 5809 #endif /* CONFIG_NETFILTER */ 5810 5811 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5812 static int selinux_disabled; 5813 5814 int selinux_disable(void) 5815 { 5816 extern void exit_sel_fs(void); 5817 5818 if (ss_initialized) { 5819 /* Not permitted after initial policy load. */ 5820 return -EINVAL; 5821 } 5822 5823 if (selinux_disabled) { 5824 /* Only do this once. */ 5825 return -EINVAL; 5826 } 5827 5828 printk(KERN_INFO "SELinux: Disabled at runtime.\n"); 5829 5830 selinux_disabled = 1; 5831 selinux_enabled = 0; 5832 5833 /* Try to destroy the avc node cache */ 5834 avc_disable(); 5835 5836 /* Reset security_ops to the secondary module, dummy or capability. */ 5837 security_ops = secondary_ops; 5838 5839 /* Unregister netfilter hooks. */ 5840 selinux_nf_ip_exit(); 5841 5842 /* Unregister selinuxfs. */ 5843 exit_sel_fs(); 5844 5845 return 0; 5846 } 5847 #endif 5848