1 /* 2 * NSA Security-Enhanced Linux (SELinux) security module 3 * 4 * This file contains the SELinux hook function implementations. 5 * 6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil> 7 * Chris Vance, <cvance@nai.com> 8 * Wayne Salamon, <wsalamon@nai.com> 9 * James Morris <jmorris@redhat.com> 10 * 11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com> 13 * Eric Paris <eparis@redhat.com> 14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 15 * <dgoeddel@trustedcs.com> 16 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P. 17 * Paul Moore <paul.moore@hp.com> 18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. 19 * Yuichi Nakamura <ynakam@hitachisoft.jp> 20 * 21 * This program is free software; you can redistribute it and/or modify 22 * it under the terms of the GNU General Public License version 2, 23 * as published by the Free Software Foundation. 24 */ 25 26 #include <linux/init.h> 27 #include <linux/kernel.h> 28 #include <linux/tracehook.h> 29 #include <linux/errno.h> 30 #include <linux/sched.h> 31 #include <linux/security.h> 32 #include <linux/xattr.h> 33 #include <linux/capability.h> 34 #include <linux/unistd.h> 35 #include <linux/mm.h> 36 #include <linux/mman.h> 37 #include <linux/slab.h> 38 #include <linux/pagemap.h> 39 #include <linux/swap.h> 40 #include <linux/spinlock.h> 41 #include <linux/syscalls.h> 42 #include <linux/file.h> 43 #include <linux/fdtable.h> 44 #include <linux/namei.h> 45 #include <linux/mount.h> 46 #include <linux/proc_fs.h> 47 #include <linux/netfilter_ipv4.h> 48 #include <linux/netfilter_ipv6.h> 49 #include <linux/tty.h> 50 #include <net/icmp.h> 51 #include <net/ip.h> /* for local_port_range[] */ 52 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 53 #include <net/net_namespace.h> 54 #include <net/netlabel.h> 55 #include <linux/uaccess.h> 56 #include <asm/ioctls.h> 57 #include <asm/atomic.h> 58 #include <linux/bitops.h> 59 #include <linux/interrupt.h> 60 #include <linux/netdevice.h> /* for network interface checks */ 61 #include <linux/netlink.h> 62 #include <linux/tcp.h> 63 #include <linux/udp.h> 64 #include <linux/dccp.h> 65 #include <linux/quota.h> 66 #include <linux/un.h> /* for Unix socket types */ 67 #include <net/af_unix.h> /* for Unix socket types */ 68 #include <linux/parser.h> 69 #include <linux/nfs_mount.h> 70 #include <net/ipv6.h> 71 #include <linux/hugetlb.h> 72 #include <linux/personality.h> 73 #include <linux/sysctl.h> 74 #include <linux/audit.h> 75 #include <linux/string.h> 76 #include <linux/selinux.h> 77 #include <linux/mutex.h> 78 79 #include "avc.h" 80 #include "objsec.h" 81 #include "netif.h" 82 #include "netnode.h" 83 #include "netport.h" 84 #include "xfrm.h" 85 #include "netlabel.h" 86 #include "audit.h" 87 88 #define XATTR_SELINUX_SUFFIX "selinux" 89 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX 90 91 #define NUM_SEL_MNT_OPTS 4 92 93 extern unsigned int policydb_loaded_version; 94 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm); 95 extern int selinux_compat_net; 96 extern struct security_operations *security_ops; 97 98 /* SECMARK reference count */ 99 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0); 100 101 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 102 int selinux_enforcing; 103 104 static int __init enforcing_setup(char *str) 105 { 106 unsigned long enforcing; 107 if (!strict_strtoul(str, 0, &enforcing)) 108 selinux_enforcing = enforcing ? 1 : 0; 109 return 1; 110 } 111 __setup("enforcing=", enforcing_setup); 112 #endif 113 114 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 115 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE; 116 117 static int __init selinux_enabled_setup(char *str) 118 { 119 unsigned long enabled; 120 if (!strict_strtoul(str, 0, &enabled)) 121 selinux_enabled = enabled ? 1 : 0; 122 return 1; 123 } 124 __setup("selinux=", selinux_enabled_setup); 125 #else 126 int selinux_enabled = 1; 127 #endif 128 129 130 /* 131 * Minimal support for a secondary security module, 132 * just to allow the use of the capability module. 133 */ 134 static struct security_operations *secondary_ops; 135 136 /* Lists of inode and superblock security structures initialized 137 before the policy was loaded. */ 138 static LIST_HEAD(superblock_security_head); 139 static DEFINE_SPINLOCK(sb_security_lock); 140 141 static struct kmem_cache *sel_inode_cache; 142 143 /** 144 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled 145 * 146 * Description: 147 * This function checks the SECMARK reference counter to see if any SECMARK 148 * targets are currently configured, if the reference counter is greater than 149 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is 150 * enabled, false (0) if SECMARK is disabled. 151 * 152 */ 153 static int selinux_secmark_enabled(void) 154 { 155 return (atomic_read(&selinux_secmark_refcount) > 0); 156 } 157 158 /* Allocate and free functions for each kind of security blob. */ 159 160 static int task_alloc_security(struct task_struct *task) 161 { 162 struct task_security_struct *tsec; 163 164 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL); 165 if (!tsec) 166 return -ENOMEM; 167 168 tsec->osid = tsec->sid = SECINITSID_UNLABELED; 169 task->security = tsec; 170 171 return 0; 172 } 173 174 static void task_free_security(struct task_struct *task) 175 { 176 struct task_security_struct *tsec = task->security; 177 task->security = NULL; 178 kfree(tsec); 179 } 180 181 static int inode_alloc_security(struct inode *inode) 182 { 183 struct task_security_struct *tsec = current->security; 184 struct inode_security_struct *isec; 185 186 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS); 187 if (!isec) 188 return -ENOMEM; 189 190 mutex_init(&isec->lock); 191 INIT_LIST_HEAD(&isec->list); 192 isec->inode = inode; 193 isec->sid = SECINITSID_UNLABELED; 194 isec->sclass = SECCLASS_FILE; 195 isec->task_sid = tsec->sid; 196 inode->i_security = isec; 197 198 return 0; 199 } 200 201 static void inode_free_security(struct inode *inode) 202 { 203 struct inode_security_struct *isec = inode->i_security; 204 struct superblock_security_struct *sbsec = inode->i_sb->s_security; 205 206 spin_lock(&sbsec->isec_lock); 207 if (!list_empty(&isec->list)) 208 list_del_init(&isec->list); 209 spin_unlock(&sbsec->isec_lock); 210 211 inode->i_security = NULL; 212 kmem_cache_free(sel_inode_cache, isec); 213 } 214 215 static int file_alloc_security(struct file *file) 216 { 217 struct task_security_struct *tsec = current->security; 218 struct file_security_struct *fsec; 219 220 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL); 221 if (!fsec) 222 return -ENOMEM; 223 224 fsec->sid = tsec->sid; 225 fsec->fown_sid = tsec->sid; 226 file->f_security = fsec; 227 228 return 0; 229 } 230 231 static void file_free_security(struct file *file) 232 { 233 struct file_security_struct *fsec = file->f_security; 234 file->f_security = NULL; 235 kfree(fsec); 236 } 237 238 static int superblock_alloc_security(struct super_block *sb) 239 { 240 struct superblock_security_struct *sbsec; 241 242 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL); 243 if (!sbsec) 244 return -ENOMEM; 245 246 mutex_init(&sbsec->lock); 247 INIT_LIST_HEAD(&sbsec->list); 248 INIT_LIST_HEAD(&sbsec->isec_head); 249 spin_lock_init(&sbsec->isec_lock); 250 sbsec->sb = sb; 251 sbsec->sid = SECINITSID_UNLABELED; 252 sbsec->def_sid = SECINITSID_FILE; 253 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 254 sb->s_security = sbsec; 255 256 return 0; 257 } 258 259 static void superblock_free_security(struct super_block *sb) 260 { 261 struct superblock_security_struct *sbsec = sb->s_security; 262 263 spin_lock(&sb_security_lock); 264 if (!list_empty(&sbsec->list)) 265 list_del_init(&sbsec->list); 266 spin_unlock(&sb_security_lock); 267 268 sb->s_security = NULL; 269 kfree(sbsec); 270 } 271 272 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority) 273 { 274 struct sk_security_struct *ssec; 275 276 ssec = kzalloc(sizeof(*ssec), priority); 277 if (!ssec) 278 return -ENOMEM; 279 280 ssec->peer_sid = SECINITSID_UNLABELED; 281 ssec->sid = SECINITSID_UNLABELED; 282 sk->sk_security = ssec; 283 284 selinux_netlbl_sk_security_reset(ssec, family); 285 286 return 0; 287 } 288 289 static void sk_free_security(struct sock *sk) 290 { 291 struct sk_security_struct *ssec = sk->sk_security; 292 293 sk->sk_security = NULL; 294 kfree(ssec); 295 } 296 297 /* The security server must be initialized before 298 any labeling or access decisions can be provided. */ 299 extern int ss_initialized; 300 301 /* The file system's label must be initialized prior to use. */ 302 303 static char *labeling_behaviors[6] = { 304 "uses xattr", 305 "uses transition SIDs", 306 "uses task SIDs", 307 "uses genfs_contexts", 308 "not configured for labeling", 309 "uses mountpoint labeling", 310 }; 311 312 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 313 314 static inline int inode_doinit(struct inode *inode) 315 { 316 return inode_doinit_with_dentry(inode, NULL); 317 } 318 319 enum { 320 Opt_error = -1, 321 Opt_context = 1, 322 Opt_fscontext = 2, 323 Opt_defcontext = 3, 324 Opt_rootcontext = 4, 325 }; 326 327 static match_table_t tokens = { 328 {Opt_context, CONTEXT_STR "%s"}, 329 {Opt_fscontext, FSCONTEXT_STR "%s"}, 330 {Opt_defcontext, DEFCONTEXT_STR "%s"}, 331 {Opt_rootcontext, ROOTCONTEXT_STR "%s"}, 332 {Opt_error, NULL}, 333 }; 334 335 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 336 337 static int may_context_mount_sb_relabel(u32 sid, 338 struct superblock_security_struct *sbsec, 339 struct task_security_struct *tsec) 340 { 341 int rc; 342 343 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 344 FILESYSTEM__RELABELFROM, NULL); 345 if (rc) 346 return rc; 347 348 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM, 349 FILESYSTEM__RELABELTO, NULL); 350 return rc; 351 } 352 353 static int may_context_mount_inode_relabel(u32 sid, 354 struct superblock_security_struct *sbsec, 355 struct task_security_struct *tsec) 356 { 357 int rc; 358 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 359 FILESYSTEM__RELABELFROM, NULL); 360 if (rc) 361 return rc; 362 363 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, 364 FILESYSTEM__ASSOCIATE, NULL); 365 return rc; 366 } 367 368 static int sb_finish_set_opts(struct super_block *sb) 369 { 370 struct superblock_security_struct *sbsec = sb->s_security; 371 struct dentry *root = sb->s_root; 372 struct inode *root_inode = root->d_inode; 373 int rc = 0; 374 375 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 376 /* Make sure that the xattr handler exists and that no 377 error other than -ENODATA is returned by getxattr on 378 the root directory. -ENODATA is ok, as this may be 379 the first boot of the SELinux kernel before we have 380 assigned xattr values to the filesystem. */ 381 if (!root_inode->i_op->getxattr) { 382 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no " 383 "xattr support\n", sb->s_id, sb->s_type->name); 384 rc = -EOPNOTSUPP; 385 goto out; 386 } 387 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0); 388 if (rc < 0 && rc != -ENODATA) { 389 if (rc == -EOPNOTSUPP) 390 printk(KERN_WARNING "SELinux: (dev %s, type " 391 "%s) has no security xattr handler\n", 392 sb->s_id, sb->s_type->name); 393 else 394 printk(KERN_WARNING "SELinux: (dev %s, type " 395 "%s) getxattr errno %d\n", sb->s_id, 396 sb->s_type->name, -rc); 397 goto out; 398 } 399 } 400 401 sbsec->initialized = 1; 402 403 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) 404 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n", 405 sb->s_id, sb->s_type->name); 406 else 407 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n", 408 sb->s_id, sb->s_type->name, 409 labeling_behaviors[sbsec->behavior-1]); 410 411 /* Initialize the root inode. */ 412 rc = inode_doinit_with_dentry(root_inode, root); 413 414 /* Initialize any other inodes associated with the superblock, e.g. 415 inodes created prior to initial policy load or inodes created 416 during get_sb by a pseudo filesystem that directly 417 populates itself. */ 418 spin_lock(&sbsec->isec_lock); 419 next_inode: 420 if (!list_empty(&sbsec->isec_head)) { 421 struct inode_security_struct *isec = 422 list_entry(sbsec->isec_head.next, 423 struct inode_security_struct, list); 424 struct inode *inode = isec->inode; 425 spin_unlock(&sbsec->isec_lock); 426 inode = igrab(inode); 427 if (inode) { 428 if (!IS_PRIVATE(inode)) 429 inode_doinit(inode); 430 iput(inode); 431 } 432 spin_lock(&sbsec->isec_lock); 433 list_del_init(&isec->list); 434 goto next_inode; 435 } 436 spin_unlock(&sbsec->isec_lock); 437 out: 438 return rc; 439 } 440 441 /* 442 * This function should allow an FS to ask what it's mount security 443 * options were so it can use those later for submounts, displaying 444 * mount options, or whatever. 445 */ 446 static int selinux_get_mnt_opts(const struct super_block *sb, 447 struct security_mnt_opts *opts) 448 { 449 int rc = 0, i; 450 struct superblock_security_struct *sbsec = sb->s_security; 451 char *context = NULL; 452 u32 len; 453 char tmp; 454 455 security_init_mnt_opts(opts); 456 457 if (!sbsec->initialized) 458 return -EINVAL; 459 460 if (!ss_initialized) 461 return -EINVAL; 462 463 /* 464 * if we ever use sbsec flags for anything other than tracking mount 465 * settings this is going to need a mask 466 */ 467 tmp = sbsec->flags; 468 /* count the number of mount options for this sb */ 469 for (i = 0; i < 8; i++) { 470 if (tmp & 0x01) 471 opts->num_mnt_opts++; 472 tmp >>= 1; 473 } 474 475 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC); 476 if (!opts->mnt_opts) { 477 rc = -ENOMEM; 478 goto out_free; 479 } 480 481 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC); 482 if (!opts->mnt_opts_flags) { 483 rc = -ENOMEM; 484 goto out_free; 485 } 486 487 i = 0; 488 if (sbsec->flags & FSCONTEXT_MNT) { 489 rc = security_sid_to_context(sbsec->sid, &context, &len); 490 if (rc) 491 goto out_free; 492 opts->mnt_opts[i] = context; 493 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT; 494 } 495 if (sbsec->flags & CONTEXT_MNT) { 496 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len); 497 if (rc) 498 goto out_free; 499 opts->mnt_opts[i] = context; 500 opts->mnt_opts_flags[i++] = CONTEXT_MNT; 501 } 502 if (sbsec->flags & DEFCONTEXT_MNT) { 503 rc = security_sid_to_context(sbsec->def_sid, &context, &len); 504 if (rc) 505 goto out_free; 506 opts->mnt_opts[i] = context; 507 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT; 508 } 509 if (sbsec->flags & ROOTCONTEXT_MNT) { 510 struct inode *root = sbsec->sb->s_root->d_inode; 511 struct inode_security_struct *isec = root->i_security; 512 513 rc = security_sid_to_context(isec->sid, &context, &len); 514 if (rc) 515 goto out_free; 516 opts->mnt_opts[i] = context; 517 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT; 518 } 519 520 BUG_ON(i != opts->num_mnt_opts); 521 522 return 0; 523 524 out_free: 525 security_free_mnt_opts(opts); 526 return rc; 527 } 528 529 static int bad_option(struct superblock_security_struct *sbsec, char flag, 530 u32 old_sid, u32 new_sid) 531 { 532 /* check if the old mount command had the same options */ 533 if (sbsec->initialized) 534 if (!(sbsec->flags & flag) || 535 (old_sid != new_sid)) 536 return 1; 537 538 /* check if we were passed the same options twice, 539 * aka someone passed context=a,context=b 540 */ 541 if (!sbsec->initialized) 542 if (sbsec->flags & flag) 543 return 1; 544 return 0; 545 } 546 547 /* 548 * Allow filesystems with binary mount data to explicitly set mount point 549 * labeling information. 550 */ 551 static int selinux_set_mnt_opts(struct super_block *sb, 552 struct security_mnt_opts *opts) 553 { 554 int rc = 0, i; 555 struct task_security_struct *tsec = current->security; 556 struct superblock_security_struct *sbsec = sb->s_security; 557 const char *name = sb->s_type->name; 558 struct inode *inode = sbsec->sb->s_root->d_inode; 559 struct inode_security_struct *root_isec = inode->i_security; 560 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; 561 u32 defcontext_sid = 0; 562 char **mount_options = opts->mnt_opts; 563 int *flags = opts->mnt_opts_flags; 564 int num_opts = opts->num_mnt_opts; 565 566 mutex_lock(&sbsec->lock); 567 568 if (!ss_initialized) { 569 if (!num_opts) { 570 /* Defer initialization until selinux_complete_init, 571 after the initial policy is loaded and the security 572 server is ready to handle calls. */ 573 spin_lock(&sb_security_lock); 574 if (list_empty(&sbsec->list)) 575 list_add(&sbsec->list, &superblock_security_head); 576 spin_unlock(&sb_security_lock); 577 goto out; 578 } 579 rc = -EINVAL; 580 printk(KERN_WARNING "SELinux: Unable to set superblock options " 581 "before the security server is initialized\n"); 582 goto out; 583 } 584 585 /* 586 * Binary mount data FS will come through this function twice. Once 587 * from an explicit call and once from the generic calls from the vfs. 588 * Since the generic VFS calls will not contain any security mount data 589 * we need to skip the double mount verification. 590 * 591 * This does open a hole in which we will not notice if the first 592 * mount using this sb set explict options and a second mount using 593 * this sb does not set any security options. (The first options 594 * will be used for both mounts) 595 */ 596 if (sbsec->initialized && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 597 && (num_opts == 0)) 598 goto out; 599 600 /* 601 * parse the mount options, check if they are valid sids. 602 * also check if someone is trying to mount the same sb more 603 * than once with different security options. 604 */ 605 for (i = 0; i < num_opts; i++) { 606 u32 sid; 607 rc = security_context_to_sid(mount_options[i], 608 strlen(mount_options[i]), &sid); 609 if (rc) { 610 printk(KERN_WARNING "SELinux: security_context_to_sid" 611 "(%s) failed for (dev %s, type %s) errno=%d\n", 612 mount_options[i], sb->s_id, name, rc); 613 goto out; 614 } 615 switch (flags[i]) { 616 case FSCONTEXT_MNT: 617 fscontext_sid = sid; 618 619 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 620 fscontext_sid)) 621 goto out_double_mount; 622 623 sbsec->flags |= FSCONTEXT_MNT; 624 break; 625 case CONTEXT_MNT: 626 context_sid = sid; 627 628 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 629 context_sid)) 630 goto out_double_mount; 631 632 sbsec->flags |= CONTEXT_MNT; 633 break; 634 case ROOTCONTEXT_MNT: 635 rootcontext_sid = sid; 636 637 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 638 rootcontext_sid)) 639 goto out_double_mount; 640 641 sbsec->flags |= ROOTCONTEXT_MNT; 642 643 break; 644 case DEFCONTEXT_MNT: 645 defcontext_sid = sid; 646 647 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 648 defcontext_sid)) 649 goto out_double_mount; 650 651 sbsec->flags |= DEFCONTEXT_MNT; 652 653 break; 654 default: 655 rc = -EINVAL; 656 goto out; 657 } 658 } 659 660 if (sbsec->initialized) { 661 /* previously mounted with options, but not on this attempt? */ 662 if (sbsec->flags && !num_opts) 663 goto out_double_mount; 664 rc = 0; 665 goto out; 666 } 667 668 if (strcmp(sb->s_type->name, "proc") == 0) 669 sbsec->proc = 1; 670 671 /* Determine the labeling behavior to use for this filesystem type. */ 672 rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid); 673 if (rc) { 674 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n", 675 __func__, sb->s_type->name, rc); 676 goto out; 677 } 678 679 /* sets the context of the superblock for the fs being mounted. */ 680 if (fscontext_sid) { 681 682 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, tsec); 683 if (rc) 684 goto out; 685 686 sbsec->sid = fscontext_sid; 687 } 688 689 /* 690 * Switch to using mount point labeling behavior. 691 * sets the label used on all file below the mountpoint, and will set 692 * the superblock context if not already set. 693 */ 694 if (context_sid) { 695 if (!fscontext_sid) { 696 rc = may_context_mount_sb_relabel(context_sid, sbsec, tsec); 697 if (rc) 698 goto out; 699 sbsec->sid = context_sid; 700 } else { 701 rc = may_context_mount_inode_relabel(context_sid, sbsec, tsec); 702 if (rc) 703 goto out; 704 } 705 if (!rootcontext_sid) 706 rootcontext_sid = context_sid; 707 708 sbsec->mntpoint_sid = context_sid; 709 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 710 } 711 712 if (rootcontext_sid) { 713 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, tsec); 714 if (rc) 715 goto out; 716 717 root_isec->sid = rootcontext_sid; 718 root_isec->initialized = 1; 719 } 720 721 if (defcontext_sid) { 722 if (sbsec->behavior != SECURITY_FS_USE_XATTR) { 723 rc = -EINVAL; 724 printk(KERN_WARNING "SELinux: defcontext option is " 725 "invalid for this filesystem type\n"); 726 goto out; 727 } 728 729 if (defcontext_sid != sbsec->def_sid) { 730 rc = may_context_mount_inode_relabel(defcontext_sid, 731 sbsec, tsec); 732 if (rc) 733 goto out; 734 } 735 736 sbsec->def_sid = defcontext_sid; 737 } 738 739 rc = sb_finish_set_opts(sb); 740 out: 741 mutex_unlock(&sbsec->lock); 742 return rc; 743 out_double_mount: 744 rc = -EINVAL; 745 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different " 746 "security settings for (dev %s, type %s)\n", sb->s_id, name); 747 goto out; 748 } 749 750 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb, 751 struct super_block *newsb) 752 { 753 const struct superblock_security_struct *oldsbsec = oldsb->s_security; 754 struct superblock_security_struct *newsbsec = newsb->s_security; 755 756 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); 757 int set_context = (oldsbsec->flags & CONTEXT_MNT); 758 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); 759 760 /* 761 * if the parent was able to be mounted it clearly had no special lsm 762 * mount options. thus we can safely put this sb on the list and deal 763 * with it later 764 */ 765 if (!ss_initialized) { 766 spin_lock(&sb_security_lock); 767 if (list_empty(&newsbsec->list)) 768 list_add(&newsbsec->list, &superblock_security_head); 769 spin_unlock(&sb_security_lock); 770 return; 771 } 772 773 /* how can we clone if the old one wasn't set up?? */ 774 BUG_ON(!oldsbsec->initialized); 775 776 /* if fs is reusing a sb, just let its options stand... */ 777 if (newsbsec->initialized) 778 return; 779 780 mutex_lock(&newsbsec->lock); 781 782 newsbsec->flags = oldsbsec->flags; 783 784 newsbsec->sid = oldsbsec->sid; 785 newsbsec->def_sid = oldsbsec->def_sid; 786 newsbsec->behavior = oldsbsec->behavior; 787 788 if (set_context) { 789 u32 sid = oldsbsec->mntpoint_sid; 790 791 if (!set_fscontext) 792 newsbsec->sid = sid; 793 if (!set_rootcontext) { 794 struct inode *newinode = newsb->s_root->d_inode; 795 struct inode_security_struct *newisec = newinode->i_security; 796 newisec->sid = sid; 797 } 798 newsbsec->mntpoint_sid = sid; 799 } 800 if (set_rootcontext) { 801 const struct inode *oldinode = oldsb->s_root->d_inode; 802 const struct inode_security_struct *oldisec = oldinode->i_security; 803 struct inode *newinode = newsb->s_root->d_inode; 804 struct inode_security_struct *newisec = newinode->i_security; 805 806 newisec->sid = oldisec->sid; 807 } 808 809 sb_finish_set_opts(newsb); 810 mutex_unlock(&newsbsec->lock); 811 } 812 813 static int selinux_parse_opts_str(char *options, 814 struct security_mnt_opts *opts) 815 { 816 char *p; 817 char *context = NULL, *defcontext = NULL; 818 char *fscontext = NULL, *rootcontext = NULL; 819 int rc, num_mnt_opts = 0; 820 821 opts->num_mnt_opts = 0; 822 823 /* Standard string-based options. */ 824 while ((p = strsep(&options, "|")) != NULL) { 825 int token; 826 substring_t args[MAX_OPT_ARGS]; 827 828 if (!*p) 829 continue; 830 831 token = match_token(p, tokens, args); 832 833 switch (token) { 834 case Opt_context: 835 if (context || defcontext) { 836 rc = -EINVAL; 837 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 838 goto out_err; 839 } 840 context = match_strdup(&args[0]); 841 if (!context) { 842 rc = -ENOMEM; 843 goto out_err; 844 } 845 break; 846 847 case Opt_fscontext: 848 if (fscontext) { 849 rc = -EINVAL; 850 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 851 goto out_err; 852 } 853 fscontext = match_strdup(&args[0]); 854 if (!fscontext) { 855 rc = -ENOMEM; 856 goto out_err; 857 } 858 break; 859 860 case Opt_rootcontext: 861 if (rootcontext) { 862 rc = -EINVAL; 863 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 864 goto out_err; 865 } 866 rootcontext = match_strdup(&args[0]); 867 if (!rootcontext) { 868 rc = -ENOMEM; 869 goto out_err; 870 } 871 break; 872 873 case Opt_defcontext: 874 if (context || defcontext) { 875 rc = -EINVAL; 876 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 877 goto out_err; 878 } 879 defcontext = match_strdup(&args[0]); 880 if (!defcontext) { 881 rc = -ENOMEM; 882 goto out_err; 883 } 884 break; 885 886 default: 887 rc = -EINVAL; 888 printk(KERN_WARNING "SELinux: unknown mount option\n"); 889 goto out_err; 890 891 } 892 } 893 894 rc = -ENOMEM; 895 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC); 896 if (!opts->mnt_opts) 897 goto out_err; 898 899 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC); 900 if (!opts->mnt_opts_flags) { 901 kfree(opts->mnt_opts); 902 goto out_err; 903 } 904 905 if (fscontext) { 906 opts->mnt_opts[num_mnt_opts] = fscontext; 907 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT; 908 } 909 if (context) { 910 opts->mnt_opts[num_mnt_opts] = context; 911 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT; 912 } 913 if (rootcontext) { 914 opts->mnt_opts[num_mnt_opts] = rootcontext; 915 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT; 916 } 917 if (defcontext) { 918 opts->mnt_opts[num_mnt_opts] = defcontext; 919 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT; 920 } 921 922 opts->num_mnt_opts = num_mnt_opts; 923 return 0; 924 925 out_err: 926 kfree(context); 927 kfree(defcontext); 928 kfree(fscontext); 929 kfree(rootcontext); 930 return rc; 931 } 932 /* 933 * string mount options parsing and call set the sbsec 934 */ 935 static int superblock_doinit(struct super_block *sb, void *data) 936 { 937 int rc = 0; 938 char *options = data; 939 struct security_mnt_opts opts; 940 941 security_init_mnt_opts(&opts); 942 943 if (!data) 944 goto out; 945 946 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA); 947 948 rc = selinux_parse_opts_str(options, &opts); 949 if (rc) 950 goto out_err; 951 952 out: 953 rc = selinux_set_mnt_opts(sb, &opts); 954 955 out_err: 956 security_free_mnt_opts(&opts); 957 return rc; 958 } 959 960 void selinux_write_opts(struct seq_file *m, struct security_mnt_opts *opts) 961 { 962 int i; 963 char *prefix; 964 965 for (i = 0; i < opts->num_mnt_opts; i++) { 966 char *has_comma = strchr(opts->mnt_opts[i], ','); 967 968 switch (opts->mnt_opts_flags[i]) { 969 case CONTEXT_MNT: 970 prefix = CONTEXT_STR; 971 break; 972 case FSCONTEXT_MNT: 973 prefix = FSCONTEXT_STR; 974 break; 975 case ROOTCONTEXT_MNT: 976 prefix = ROOTCONTEXT_STR; 977 break; 978 case DEFCONTEXT_MNT: 979 prefix = DEFCONTEXT_STR; 980 break; 981 default: 982 BUG(); 983 }; 984 /* we need a comma before each option */ 985 seq_putc(m, ','); 986 seq_puts(m, prefix); 987 if (has_comma) 988 seq_putc(m, '\"'); 989 seq_puts(m, opts->mnt_opts[i]); 990 if (has_comma) 991 seq_putc(m, '\"'); 992 } 993 } 994 995 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb) 996 { 997 struct security_mnt_opts opts; 998 int rc; 999 1000 rc = selinux_get_mnt_opts(sb, &opts); 1001 if (rc) 1002 return rc; 1003 1004 selinux_write_opts(m, &opts); 1005 1006 security_free_mnt_opts(&opts); 1007 1008 return rc; 1009 } 1010 1011 static inline u16 inode_mode_to_security_class(umode_t mode) 1012 { 1013 switch (mode & S_IFMT) { 1014 case S_IFSOCK: 1015 return SECCLASS_SOCK_FILE; 1016 case S_IFLNK: 1017 return SECCLASS_LNK_FILE; 1018 case S_IFREG: 1019 return SECCLASS_FILE; 1020 case S_IFBLK: 1021 return SECCLASS_BLK_FILE; 1022 case S_IFDIR: 1023 return SECCLASS_DIR; 1024 case S_IFCHR: 1025 return SECCLASS_CHR_FILE; 1026 case S_IFIFO: 1027 return SECCLASS_FIFO_FILE; 1028 1029 } 1030 1031 return SECCLASS_FILE; 1032 } 1033 1034 static inline int default_protocol_stream(int protocol) 1035 { 1036 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP); 1037 } 1038 1039 static inline int default_protocol_dgram(int protocol) 1040 { 1041 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 1042 } 1043 1044 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 1045 { 1046 switch (family) { 1047 case PF_UNIX: 1048 switch (type) { 1049 case SOCK_STREAM: 1050 case SOCK_SEQPACKET: 1051 return SECCLASS_UNIX_STREAM_SOCKET; 1052 case SOCK_DGRAM: 1053 return SECCLASS_UNIX_DGRAM_SOCKET; 1054 } 1055 break; 1056 case PF_INET: 1057 case PF_INET6: 1058 switch (type) { 1059 case SOCK_STREAM: 1060 if (default_protocol_stream(protocol)) 1061 return SECCLASS_TCP_SOCKET; 1062 else 1063 return SECCLASS_RAWIP_SOCKET; 1064 case SOCK_DGRAM: 1065 if (default_protocol_dgram(protocol)) 1066 return SECCLASS_UDP_SOCKET; 1067 else 1068 return SECCLASS_RAWIP_SOCKET; 1069 case SOCK_DCCP: 1070 return SECCLASS_DCCP_SOCKET; 1071 default: 1072 return SECCLASS_RAWIP_SOCKET; 1073 } 1074 break; 1075 case PF_NETLINK: 1076 switch (protocol) { 1077 case NETLINK_ROUTE: 1078 return SECCLASS_NETLINK_ROUTE_SOCKET; 1079 case NETLINK_FIREWALL: 1080 return SECCLASS_NETLINK_FIREWALL_SOCKET; 1081 case NETLINK_INET_DIAG: 1082 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 1083 case NETLINK_NFLOG: 1084 return SECCLASS_NETLINK_NFLOG_SOCKET; 1085 case NETLINK_XFRM: 1086 return SECCLASS_NETLINK_XFRM_SOCKET; 1087 case NETLINK_SELINUX: 1088 return SECCLASS_NETLINK_SELINUX_SOCKET; 1089 case NETLINK_AUDIT: 1090 return SECCLASS_NETLINK_AUDIT_SOCKET; 1091 case NETLINK_IP6_FW: 1092 return SECCLASS_NETLINK_IP6FW_SOCKET; 1093 case NETLINK_DNRTMSG: 1094 return SECCLASS_NETLINK_DNRT_SOCKET; 1095 case NETLINK_KOBJECT_UEVENT: 1096 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 1097 default: 1098 return SECCLASS_NETLINK_SOCKET; 1099 } 1100 case PF_PACKET: 1101 return SECCLASS_PACKET_SOCKET; 1102 case PF_KEY: 1103 return SECCLASS_KEY_SOCKET; 1104 case PF_APPLETALK: 1105 return SECCLASS_APPLETALK_SOCKET; 1106 } 1107 1108 return SECCLASS_SOCKET; 1109 } 1110 1111 #ifdef CONFIG_PROC_FS 1112 static int selinux_proc_get_sid(struct proc_dir_entry *de, 1113 u16 tclass, 1114 u32 *sid) 1115 { 1116 int buflen, rc; 1117 char *buffer, *path, *end; 1118 1119 buffer = (char *)__get_free_page(GFP_KERNEL); 1120 if (!buffer) 1121 return -ENOMEM; 1122 1123 buflen = PAGE_SIZE; 1124 end = buffer+buflen; 1125 *--end = '\0'; 1126 buflen--; 1127 path = end-1; 1128 *path = '/'; 1129 while (de && de != de->parent) { 1130 buflen -= de->namelen + 1; 1131 if (buflen < 0) 1132 break; 1133 end -= de->namelen; 1134 memcpy(end, de->name, de->namelen); 1135 *--end = '/'; 1136 path = end; 1137 de = de->parent; 1138 } 1139 rc = security_genfs_sid("proc", path, tclass, sid); 1140 free_page((unsigned long)buffer); 1141 return rc; 1142 } 1143 #else 1144 static int selinux_proc_get_sid(struct proc_dir_entry *de, 1145 u16 tclass, 1146 u32 *sid) 1147 { 1148 return -EINVAL; 1149 } 1150 #endif 1151 1152 /* The inode's security attributes must be initialized before first use. */ 1153 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 1154 { 1155 struct superblock_security_struct *sbsec = NULL; 1156 struct inode_security_struct *isec = inode->i_security; 1157 u32 sid; 1158 struct dentry *dentry; 1159 #define INITCONTEXTLEN 255 1160 char *context = NULL; 1161 unsigned len = 0; 1162 int rc = 0; 1163 1164 if (isec->initialized) 1165 goto out; 1166 1167 mutex_lock(&isec->lock); 1168 if (isec->initialized) 1169 goto out_unlock; 1170 1171 sbsec = inode->i_sb->s_security; 1172 if (!sbsec->initialized) { 1173 /* Defer initialization until selinux_complete_init, 1174 after the initial policy is loaded and the security 1175 server is ready to handle calls. */ 1176 spin_lock(&sbsec->isec_lock); 1177 if (list_empty(&isec->list)) 1178 list_add(&isec->list, &sbsec->isec_head); 1179 spin_unlock(&sbsec->isec_lock); 1180 goto out_unlock; 1181 } 1182 1183 switch (sbsec->behavior) { 1184 case SECURITY_FS_USE_XATTR: 1185 if (!inode->i_op->getxattr) { 1186 isec->sid = sbsec->def_sid; 1187 break; 1188 } 1189 1190 /* Need a dentry, since the xattr API requires one. 1191 Life would be simpler if we could just pass the inode. */ 1192 if (opt_dentry) { 1193 /* Called from d_instantiate or d_splice_alias. */ 1194 dentry = dget(opt_dentry); 1195 } else { 1196 /* Called from selinux_complete_init, try to find a dentry. */ 1197 dentry = d_find_alias(inode); 1198 } 1199 if (!dentry) { 1200 printk(KERN_WARNING "SELinux: %s: no dentry for dev=%s " 1201 "ino=%ld\n", __func__, inode->i_sb->s_id, 1202 inode->i_ino); 1203 goto out_unlock; 1204 } 1205 1206 len = INITCONTEXTLEN; 1207 context = kmalloc(len, GFP_NOFS); 1208 if (!context) { 1209 rc = -ENOMEM; 1210 dput(dentry); 1211 goto out_unlock; 1212 } 1213 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1214 context, len); 1215 if (rc == -ERANGE) { 1216 /* Need a larger buffer. Query for the right size. */ 1217 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1218 NULL, 0); 1219 if (rc < 0) { 1220 dput(dentry); 1221 goto out_unlock; 1222 } 1223 kfree(context); 1224 len = rc; 1225 context = kmalloc(len, GFP_NOFS); 1226 if (!context) { 1227 rc = -ENOMEM; 1228 dput(dentry); 1229 goto out_unlock; 1230 } 1231 rc = inode->i_op->getxattr(dentry, 1232 XATTR_NAME_SELINUX, 1233 context, len); 1234 } 1235 dput(dentry); 1236 if (rc < 0) { 1237 if (rc != -ENODATA) { 1238 printk(KERN_WARNING "SELinux: %s: getxattr returned " 1239 "%d for dev=%s ino=%ld\n", __func__, 1240 -rc, inode->i_sb->s_id, inode->i_ino); 1241 kfree(context); 1242 goto out_unlock; 1243 } 1244 /* Map ENODATA to the default file SID */ 1245 sid = sbsec->def_sid; 1246 rc = 0; 1247 } else { 1248 rc = security_context_to_sid_default(context, rc, &sid, 1249 sbsec->def_sid, 1250 GFP_NOFS); 1251 if (rc) { 1252 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) " 1253 "returned %d for dev=%s ino=%ld\n", 1254 __func__, context, -rc, 1255 inode->i_sb->s_id, inode->i_ino); 1256 kfree(context); 1257 /* Leave with the unlabeled SID */ 1258 rc = 0; 1259 break; 1260 } 1261 } 1262 kfree(context); 1263 isec->sid = sid; 1264 break; 1265 case SECURITY_FS_USE_TASK: 1266 isec->sid = isec->task_sid; 1267 break; 1268 case SECURITY_FS_USE_TRANS: 1269 /* Default to the fs SID. */ 1270 isec->sid = sbsec->sid; 1271 1272 /* Try to obtain a transition SID. */ 1273 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1274 rc = security_transition_sid(isec->task_sid, 1275 sbsec->sid, 1276 isec->sclass, 1277 &sid); 1278 if (rc) 1279 goto out_unlock; 1280 isec->sid = sid; 1281 break; 1282 case SECURITY_FS_USE_MNTPOINT: 1283 isec->sid = sbsec->mntpoint_sid; 1284 break; 1285 default: 1286 /* Default to the fs superblock SID. */ 1287 isec->sid = sbsec->sid; 1288 1289 if (sbsec->proc) { 1290 struct proc_inode *proci = PROC_I(inode); 1291 if (proci->pde) { 1292 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1293 rc = selinux_proc_get_sid(proci->pde, 1294 isec->sclass, 1295 &sid); 1296 if (rc) 1297 goto out_unlock; 1298 isec->sid = sid; 1299 } 1300 } 1301 break; 1302 } 1303 1304 isec->initialized = 1; 1305 1306 out_unlock: 1307 mutex_unlock(&isec->lock); 1308 out: 1309 if (isec->sclass == SECCLASS_FILE) 1310 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1311 return rc; 1312 } 1313 1314 /* Convert a Linux signal to an access vector. */ 1315 static inline u32 signal_to_av(int sig) 1316 { 1317 u32 perm = 0; 1318 1319 switch (sig) { 1320 case SIGCHLD: 1321 /* Commonly granted from child to parent. */ 1322 perm = PROCESS__SIGCHLD; 1323 break; 1324 case SIGKILL: 1325 /* Cannot be caught or ignored */ 1326 perm = PROCESS__SIGKILL; 1327 break; 1328 case SIGSTOP: 1329 /* Cannot be caught or ignored */ 1330 perm = PROCESS__SIGSTOP; 1331 break; 1332 default: 1333 /* All other signals. */ 1334 perm = PROCESS__SIGNAL; 1335 break; 1336 } 1337 1338 return perm; 1339 } 1340 1341 /* Check permission betweeen a pair of tasks, e.g. signal checks, 1342 fork check, ptrace check, etc. */ 1343 static int task_has_perm(struct task_struct *tsk1, 1344 struct task_struct *tsk2, 1345 u32 perms) 1346 { 1347 struct task_security_struct *tsec1, *tsec2; 1348 1349 tsec1 = tsk1->security; 1350 tsec2 = tsk2->security; 1351 return avc_has_perm(tsec1->sid, tsec2->sid, 1352 SECCLASS_PROCESS, perms, NULL); 1353 } 1354 1355 #if CAP_LAST_CAP > 63 1356 #error Fix SELinux to handle capabilities > 63. 1357 #endif 1358 1359 /* Check whether a task is allowed to use a capability. */ 1360 static int task_has_capability(struct task_struct *tsk, 1361 int cap) 1362 { 1363 struct task_security_struct *tsec; 1364 struct avc_audit_data ad; 1365 u16 sclass; 1366 u32 av = CAP_TO_MASK(cap); 1367 1368 tsec = tsk->security; 1369 1370 AVC_AUDIT_DATA_INIT(&ad, CAP); 1371 ad.tsk = tsk; 1372 ad.u.cap = cap; 1373 1374 switch (CAP_TO_INDEX(cap)) { 1375 case 0: 1376 sclass = SECCLASS_CAPABILITY; 1377 break; 1378 case 1: 1379 sclass = SECCLASS_CAPABILITY2; 1380 break; 1381 default: 1382 printk(KERN_ERR 1383 "SELinux: out of range capability %d\n", cap); 1384 BUG(); 1385 } 1386 return avc_has_perm(tsec->sid, tsec->sid, sclass, av, &ad); 1387 } 1388 1389 /* Check whether a task is allowed to use a system operation. */ 1390 static int task_has_system(struct task_struct *tsk, 1391 u32 perms) 1392 { 1393 struct task_security_struct *tsec; 1394 1395 tsec = tsk->security; 1396 1397 return avc_has_perm(tsec->sid, SECINITSID_KERNEL, 1398 SECCLASS_SYSTEM, perms, NULL); 1399 } 1400 1401 /* Check whether a task has a particular permission to an inode. 1402 The 'adp' parameter is optional and allows other audit 1403 data to be passed (e.g. the dentry). */ 1404 static int inode_has_perm(struct task_struct *tsk, 1405 struct inode *inode, 1406 u32 perms, 1407 struct avc_audit_data *adp) 1408 { 1409 struct task_security_struct *tsec; 1410 struct inode_security_struct *isec; 1411 struct avc_audit_data ad; 1412 1413 if (unlikely(IS_PRIVATE(inode))) 1414 return 0; 1415 1416 tsec = tsk->security; 1417 isec = inode->i_security; 1418 1419 if (!adp) { 1420 adp = &ad; 1421 AVC_AUDIT_DATA_INIT(&ad, FS); 1422 ad.u.fs.inode = inode; 1423 } 1424 1425 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp); 1426 } 1427 1428 /* Same as inode_has_perm, but pass explicit audit data containing 1429 the dentry to help the auditing code to more easily generate the 1430 pathname if needed. */ 1431 static inline int dentry_has_perm(struct task_struct *tsk, 1432 struct vfsmount *mnt, 1433 struct dentry *dentry, 1434 u32 av) 1435 { 1436 struct inode *inode = dentry->d_inode; 1437 struct avc_audit_data ad; 1438 AVC_AUDIT_DATA_INIT(&ad, FS); 1439 ad.u.fs.path.mnt = mnt; 1440 ad.u.fs.path.dentry = dentry; 1441 return inode_has_perm(tsk, inode, av, &ad); 1442 } 1443 1444 /* Check whether a task can use an open file descriptor to 1445 access an inode in a given way. Check access to the 1446 descriptor itself, and then use dentry_has_perm to 1447 check a particular permission to the file. 1448 Access to the descriptor is implicitly granted if it 1449 has the same SID as the process. If av is zero, then 1450 access to the file is not checked, e.g. for cases 1451 where only the descriptor is affected like seek. */ 1452 static int file_has_perm(struct task_struct *tsk, 1453 struct file *file, 1454 u32 av) 1455 { 1456 struct task_security_struct *tsec = tsk->security; 1457 struct file_security_struct *fsec = file->f_security; 1458 struct inode *inode = file->f_path.dentry->d_inode; 1459 struct avc_audit_data ad; 1460 int rc; 1461 1462 AVC_AUDIT_DATA_INIT(&ad, FS); 1463 ad.u.fs.path = file->f_path; 1464 1465 if (tsec->sid != fsec->sid) { 1466 rc = avc_has_perm(tsec->sid, fsec->sid, 1467 SECCLASS_FD, 1468 FD__USE, 1469 &ad); 1470 if (rc) 1471 return rc; 1472 } 1473 1474 /* av is zero if only checking access to the descriptor. */ 1475 if (av) 1476 return inode_has_perm(tsk, inode, av, &ad); 1477 1478 return 0; 1479 } 1480 1481 /* Check whether a task can create a file. */ 1482 static int may_create(struct inode *dir, 1483 struct dentry *dentry, 1484 u16 tclass) 1485 { 1486 struct task_security_struct *tsec; 1487 struct inode_security_struct *dsec; 1488 struct superblock_security_struct *sbsec; 1489 u32 newsid; 1490 struct avc_audit_data ad; 1491 int rc; 1492 1493 tsec = current->security; 1494 dsec = dir->i_security; 1495 sbsec = dir->i_sb->s_security; 1496 1497 AVC_AUDIT_DATA_INIT(&ad, FS); 1498 ad.u.fs.path.dentry = dentry; 1499 1500 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, 1501 DIR__ADD_NAME | DIR__SEARCH, 1502 &ad); 1503 if (rc) 1504 return rc; 1505 1506 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) { 1507 newsid = tsec->create_sid; 1508 } else { 1509 rc = security_transition_sid(tsec->sid, dsec->sid, tclass, 1510 &newsid); 1511 if (rc) 1512 return rc; 1513 } 1514 1515 rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad); 1516 if (rc) 1517 return rc; 1518 1519 return avc_has_perm(newsid, sbsec->sid, 1520 SECCLASS_FILESYSTEM, 1521 FILESYSTEM__ASSOCIATE, &ad); 1522 } 1523 1524 /* Check whether a task can create a key. */ 1525 static int may_create_key(u32 ksid, 1526 struct task_struct *ctx) 1527 { 1528 struct task_security_struct *tsec; 1529 1530 tsec = ctx->security; 1531 1532 return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL); 1533 } 1534 1535 #define MAY_LINK 0 1536 #define MAY_UNLINK 1 1537 #define MAY_RMDIR 2 1538 1539 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1540 static int may_link(struct inode *dir, 1541 struct dentry *dentry, 1542 int kind) 1543 1544 { 1545 struct task_security_struct *tsec; 1546 struct inode_security_struct *dsec, *isec; 1547 struct avc_audit_data ad; 1548 u32 av; 1549 int rc; 1550 1551 tsec = current->security; 1552 dsec = dir->i_security; 1553 isec = dentry->d_inode->i_security; 1554 1555 AVC_AUDIT_DATA_INIT(&ad, FS); 1556 ad.u.fs.path.dentry = dentry; 1557 1558 av = DIR__SEARCH; 1559 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1560 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad); 1561 if (rc) 1562 return rc; 1563 1564 switch (kind) { 1565 case MAY_LINK: 1566 av = FILE__LINK; 1567 break; 1568 case MAY_UNLINK: 1569 av = FILE__UNLINK; 1570 break; 1571 case MAY_RMDIR: 1572 av = DIR__RMDIR; 1573 break; 1574 default: 1575 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n", 1576 __func__, kind); 1577 return 0; 1578 } 1579 1580 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad); 1581 return rc; 1582 } 1583 1584 static inline int may_rename(struct inode *old_dir, 1585 struct dentry *old_dentry, 1586 struct inode *new_dir, 1587 struct dentry *new_dentry) 1588 { 1589 struct task_security_struct *tsec; 1590 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1591 struct avc_audit_data ad; 1592 u32 av; 1593 int old_is_dir, new_is_dir; 1594 int rc; 1595 1596 tsec = current->security; 1597 old_dsec = old_dir->i_security; 1598 old_isec = old_dentry->d_inode->i_security; 1599 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 1600 new_dsec = new_dir->i_security; 1601 1602 AVC_AUDIT_DATA_INIT(&ad, FS); 1603 1604 ad.u.fs.path.dentry = old_dentry; 1605 rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR, 1606 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1607 if (rc) 1608 return rc; 1609 rc = avc_has_perm(tsec->sid, old_isec->sid, 1610 old_isec->sclass, FILE__RENAME, &ad); 1611 if (rc) 1612 return rc; 1613 if (old_is_dir && new_dir != old_dir) { 1614 rc = avc_has_perm(tsec->sid, old_isec->sid, 1615 old_isec->sclass, DIR__REPARENT, &ad); 1616 if (rc) 1617 return rc; 1618 } 1619 1620 ad.u.fs.path.dentry = new_dentry; 1621 av = DIR__ADD_NAME | DIR__SEARCH; 1622 if (new_dentry->d_inode) 1623 av |= DIR__REMOVE_NAME; 1624 rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1625 if (rc) 1626 return rc; 1627 if (new_dentry->d_inode) { 1628 new_isec = new_dentry->d_inode->i_security; 1629 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode); 1630 rc = avc_has_perm(tsec->sid, new_isec->sid, 1631 new_isec->sclass, 1632 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1633 if (rc) 1634 return rc; 1635 } 1636 1637 return 0; 1638 } 1639 1640 /* Check whether a task can perform a filesystem operation. */ 1641 static int superblock_has_perm(struct task_struct *tsk, 1642 struct super_block *sb, 1643 u32 perms, 1644 struct avc_audit_data *ad) 1645 { 1646 struct task_security_struct *tsec; 1647 struct superblock_security_struct *sbsec; 1648 1649 tsec = tsk->security; 1650 sbsec = sb->s_security; 1651 return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 1652 perms, ad); 1653 } 1654 1655 /* Convert a Linux mode and permission mask to an access vector. */ 1656 static inline u32 file_mask_to_av(int mode, int mask) 1657 { 1658 u32 av = 0; 1659 1660 if ((mode & S_IFMT) != S_IFDIR) { 1661 if (mask & MAY_EXEC) 1662 av |= FILE__EXECUTE; 1663 if (mask & MAY_READ) 1664 av |= FILE__READ; 1665 1666 if (mask & MAY_APPEND) 1667 av |= FILE__APPEND; 1668 else if (mask & MAY_WRITE) 1669 av |= FILE__WRITE; 1670 1671 } else { 1672 if (mask & MAY_EXEC) 1673 av |= DIR__SEARCH; 1674 if (mask & MAY_WRITE) 1675 av |= DIR__WRITE; 1676 if (mask & MAY_READ) 1677 av |= DIR__READ; 1678 } 1679 1680 return av; 1681 } 1682 1683 /* 1684 * Convert a file mask to an access vector and include the correct open 1685 * open permission. 1686 */ 1687 static inline u32 open_file_mask_to_av(int mode, int mask) 1688 { 1689 u32 av = file_mask_to_av(mode, mask); 1690 1691 if (selinux_policycap_openperm) { 1692 /* 1693 * lnk files and socks do not really have an 'open' 1694 */ 1695 if (S_ISREG(mode)) 1696 av |= FILE__OPEN; 1697 else if (S_ISCHR(mode)) 1698 av |= CHR_FILE__OPEN; 1699 else if (S_ISBLK(mode)) 1700 av |= BLK_FILE__OPEN; 1701 else if (S_ISFIFO(mode)) 1702 av |= FIFO_FILE__OPEN; 1703 else if (S_ISDIR(mode)) 1704 av |= DIR__OPEN; 1705 else 1706 printk(KERN_ERR "SELinux: WARNING: inside %s with " 1707 "unknown mode:%x\n", __func__, mode); 1708 } 1709 return av; 1710 } 1711 1712 /* Convert a Linux file to an access vector. */ 1713 static inline u32 file_to_av(struct file *file) 1714 { 1715 u32 av = 0; 1716 1717 if (file->f_mode & FMODE_READ) 1718 av |= FILE__READ; 1719 if (file->f_mode & FMODE_WRITE) { 1720 if (file->f_flags & O_APPEND) 1721 av |= FILE__APPEND; 1722 else 1723 av |= FILE__WRITE; 1724 } 1725 if (!av) { 1726 /* 1727 * Special file opened with flags 3 for ioctl-only use. 1728 */ 1729 av = FILE__IOCTL; 1730 } 1731 1732 return av; 1733 } 1734 1735 /* Hook functions begin here. */ 1736 1737 static int selinux_ptrace(struct task_struct *parent, 1738 struct task_struct *child, 1739 unsigned int mode) 1740 { 1741 int rc; 1742 1743 rc = secondary_ops->ptrace(parent, child, mode); 1744 if (rc) 1745 return rc; 1746 1747 if (mode == PTRACE_MODE_READ) { 1748 struct task_security_struct *tsec = parent->security; 1749 struct task_security_struct *csec = child->security; 1750 return avc_has_perm(tsec->sid, csec->sid, 1751 SECCLASS_FILE, FILE__READ, NULL); 1752 } 1753 1754 return task_has_perm(parent, child, PROCESS__PTRACE); 1755 } 1756 1757 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective, 1758 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1759 { 1760 int error; 1761 1762 error = task_has_perm(current, target, PROCESS__GETCAP); 1763 if (error) 1764 return error; 1765 1766 return secondary_ops->capget(target, effective, inheritable, permitted); 1767 } 1768 1769 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective, 1770 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1771 { 1772 int error; 1773 1774 error = secondary_ops->capset_check(target, effective, inheritable, permitted); 1775 if (error) 1776 return error; 1777 1778 return task_has_perm(current, target, PROCESS__SETCAP); 1779 } 1780 1781 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective, 1782 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1783 { 1784 secondary_ops->capset_set(target, effective, inheritable, permitted); 1785 } 1786 1787 static int selinux_capable(struct task_struct *tsk, int cap) 1788 { 1789 int rc; 1790 1791 rc = secondary_ops->capable(tsk, cap); 1792 if (rc) 1793 return rc; 1794 1795 return task_has_capability(tsk, cap); 1796 } 1797 1798 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid) 1799 { 1800 int buflen, rc; 1801 char *buffer, *path, *end; 1802 1803 rc = -ENOMEM; 1804 buffer = (char *)__get_free_page(GFP_KERNEL); 1805 if (!buffer) 1806 goto out; 1807 1808 buflen = PAGE_SIZE; 1809 end = buffer+buflen; 1810 *--end = '\0'; 1811 buflen--; 1812 path = end-1; 1813 *path = '/'; 1814 while (table) { 1815 const char *name = table->procname; 1816 size_t namelen = strlen(name); 1817 buflen -= namelen + 1; 1818 if (buflen < 0) 1819 goto out_free; 1820 end -= namelen; 1821 memcpy(end, name, namelen); 1822 *--end = '/'; 1823 path = end; 1824 table = table->parent; 1825 } 1826 buflen -= 4; 1827 if (buflen < 0) 1828 goto out_free; 1829 end -= 4; 1830 memcpy(end, "/sys", 4); 1831 path = end; 1832 rc = security_genfs_sid("proc", path, tclass, sid); 1833 out_free: 1834 free_page((unsigned long)buffer); 1835 out: 1836 return rc; 1837 } 1838 1839 static int selinux_sysctl(ctl_table *table, int op) 1840 { 1841 int error = 0; 1842 u32 av; 1843 struct task_security_struct *tsec; 1844 u32 tsid; 1845 int rc; 1846 1847 rc = secondary_ops->sysctl(table, op); 1848 if (rc) 1849 return rc; 1850 1851 tsec = current->security; 1852 1853 rc = selinux_sysctl_get_sid(table, (op == 0001) ? 1854 SECCLASS_DIR : SECCLASS_FILE, &tsid); 1855 if (rc) { 1856 /* Default to the well-defined sysctl SID. */ 1857 tsid = SECINITSID_SYSCTL; 1858 } 1859 1860 /* The op values are "defined" in sysctl.c, thereby creating 1861 * a bad coupling between this module and sysctl.c */ 1862 if (op == 001) { 1863 error = avc_has_perm(tsec->sid, tsid, 1864 SECCLASS_DIR, DIR__SEARCH, NULL); 1865 } else { 1866 av = 0; 1867 if (op & 004) 1868 av |= FILE__READ; 1869 if (op & 002) 1870 av |= FILE__WRITE; 1871 if (av) 1872 error = avc_has_perm(tsec->sid, tsid, 1873 SECCLASS_FILE, av, NULL); 1874 } 1875 1876 return error; 1877 } 1878 1879 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) 1880 { 1881 int rc = 0; 1882 1883 if (!sb) 1884 return 0; 1885 1886 switch (cmds) { 1887 case Q_SYNC: 1888 case Q_QUOTAON: 1889 case Q_QUOTAOFF: 1890 case Q_SETINFO: 1891 case Q_SETQUOTA: 1892 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAMOD, 1893 NULL); 1894 break; 1895 case Q_GETFMT: 1896 case Q_GETINFO: 1897 case Q_GETQUOTA: 1898 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAGET, 1899 NULL); 1900 break; 1901 default: 1902 rc = 0; /* let the kernel handle invalid cmds */ 1903 break; 1904 } 1905 return rc; 1906 } 1907 1908 static int selinux_quota_on(struct dentry *dentry) 1909 { 1910 return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON); 1911 } 1912 1913 static int selinux_syslog(int type) 1914 { 1915 int rc; 1916 1917 rc = secondary_ops->syslog(type); 1918 if (rc) 1919 return rc; 1920 1921 switch (type) { 1922 case 3: /* Read last kernel messages */ 1923 case 10: /* Return size of the log buffer */ 1924 rc = task_has_system(current, SYSTEM__SYSLOG_READ); 1925 break; 1926 case 6: /* Disable logging to console */ 1927 case 7: /* Enable logging to console */ 1928 case 8: /* Set level of messages printed to console */ 1929 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE); 1930 break; 1931 case 0: /* Close log */ 1932 case 1: /* Open log */ 1933 case 2: /* Read from log */ 1934 case 4: /* Read/clear last kernel messages */ 1935 case 5: /* Clear ring buffer */ 1936 default: 1937 rc = task_has_system(current, SYSTEM__SYSLOG_MOD); 1938 break; 1939 } 1940 return rc; 1941 } 1942 1943 /* 1944 * Check that a process has enough memory to allocate a new virtual 1945 * mapping. 0 means there is enough memory for the allocation to 1946 * succeed and -ENOMEM implies there is not. 1947 * 1948 * Note that secondary_ops->capable and task_has_perm_noaudit return 0 1949 * if the capability is granted, but __vm_enough_memory requires 1 if 1950 * the capability is granted. 1951 * 1952 * Do not audit the selinux permission check, as this is applied to all 1953 * processes that allocate mappings. 1954 */ 1955 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) 1956 { 1957 int rc, cap_sys_admin = 0; 1958 struct task_security_struct *tsec = current->security; 1959 1960 rc = secondary_ops->capable(current, CAP_SYS_ADMIN); 1961 if (rc == 0) 1962 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid, 1963 SECCLASS_CAPABILITY, 1964 CAP_TO_MASK(CAP_SYS_ADMIN), 1965 0, 1966 NULL); 1967 1968 if (rc == 0) 1969 cap_sys_admin = 1; 1970 1971 return __vm_enough_memory(mm, pages, cap_sys_admin); 1972 } 1973 1974 /* binprm security operations */ 1975 1976 static int selinux_bprm_alloc_security(struct linux_binprm *bprm) 1977 { 1978 struct bprm_security_struct *bsec; 1979 1980 bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL); 1981 if (!bsec) 1982 return -ENOMEM; 1983 1984 bsec->sid = SECINITSID_UNLABELED; 1985 bsec->set = 0; 1986 1987 bprm->security = bsec; 1988 return 0; 1989 } 1990 1991 static int selinux_bprm_set_security(struct linux_binprm *bprm) 1992 { 1993 struct task_security_struct *tsec; 1994 struct inode *inode = bprm->file->f_path.dentry->d_inode; 1995 struct inode_security_struct *isec; 1996 struct bprm_security_struct *bsec; 1997 u32 newsid; 1998 struct avc_audit_data ad; 1999 int rc; 2000 2001 rc = secondary_ops->bprm_set_security(bprm); 2002 if (rc) 2003 return rc; 2004 2005 bsec = bprm->security; 2006 2007 if (bsec->set) 2008 return 0; 2009 2010 tsec = current->security; 2011 isec = inode->i_security; 2012 2013 /* Default to the current task SID. */ 2014 bsec->sid = tsec->sid; 2015 2016 /* Reset fs, key, and sock SIDs on execve. */ 2017 tsec->create_sid = 0; 2018 tsec->keycreate_sid = 0; 2019 tsec->sockcreate_sid = 0; 2020 2021 if (tsec->exec_sid) { 2022 newsid = tsec->exec_sid; 2023 /* Reset exec SID on execve. */ 2024 tsec->exec_sid = 0; 2025 } else { 2026 /* Check for a default transition on this program. */ 2027 rc = security_transition_sid(tsec->sid, isec->sid, 2028 SECCLASS_PROCESS, &newsid); 2029 if (rc) 2030 return rc; 2031 } 2032 2033 AVC_AUDIT_DATA_INIT(&ad, FS); 2034 ad.u.fs.path = bprm->file->f_path; 2035 2036 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) 2037 newsid = tsec->sid; 2038 2039 if (tsec->sid == newsid) { 2040 rc = avc_has_perm(tsec->sid, isec->sid, 2041 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 2042 if (rc) 2043 return rc; 2044 } else { 2045 /* Check permissions for the transition. */ 2046 rc = avc_has_perm(tsec->sid, newsid, 2047 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 2048 if (rc) 2049 return rc; 2050 2051 rc = avc_has_perm(newsid, isec->sid, 2052 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 2053 if (rc) 2054 return rc; 2055 2056 /* Clear any possibly unsafe personality bits on exec: */ 2057 current->personality &= ~PER_CLEAR_ON_SETID; 2058 2059 /* Set the security field to the new SID. */ 2060 bsec->sid = newsid; 2061 } 2062 2063 bsec->set = 1; 2064 return 0; 2065 } 2066 2067 static int selinux_bprm_check_security(struct linux_binprm *bprm) 2068 { 2069 return secondary_ops->bprm_check_security(bprm); 2070 } 2071 2072 2073 static int selinux_bprm_secureexec(struct linux_binprm *bprm) 2074 { 2075 struct task_security_struct *tsec = current->security; 2076 int atsecure = 0; 2077 2078 if (tsec->osid != tsec->sid) { 2079 /* Enable secure mode for SIDs transitions unless 2080 the noatsecure permission is granted between 2081 the two SIDs, i.e. ahp returns 0. */ 2082 atsecure = avc_has_perm(tsec->osid, tsec->sid, 2083 SECCLASS_PROCESS, 2084 PROCESS__NOATSECURE, NULL); 2085 } 2086 2087 return (atsecure || secondary_ops->bprm_secureexec(bprm)); 2088 } 2089 2090 static void selinux_bprm_free_security(struct linux_binprm *bprm) 2091 { 2092 kfree(bprm->security); 2093 bprm->security = NULL; 2094 } 2095 2096 extern struct vfsmount *selinuxfs_mount; 2097 extern struct dentry *selinux_null; 2098 2099 /* Derived from fs/exec.c:flush_old_files. */ 2100 static inline void flush_unauthorized_files(struct files_struct *files) 2101 { 2102 struct avc_audit_data ad; 2103 struct file *file, *devnull = NULL; 2104 struct tty_struct *tty; 2105 struct fdtable *fdt; 2106 long j = -1; 2107 int drop_tty = 0; 2108 2109 mutex_lock(&tty_mutex); 2110 tty = get_current_tty(); 2111 if (tty) { 2112 file_list_lock(); 2113 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list); 2114 if (file) { 2115 /* Revalidate access to controlling tty. 2116 Use inode_has_perm on the tty inode directly rather 2117 than using file_has_perm, as this particular open 2118 file may belong to another process and we are only 2119 interested in the inode-based check here. */ 2120 struct inode *inode = file->f_path.dentry->d_inode; 2121 if (inode_has_perm(current, inode, 2122 FILE__READ | FILE__WRITE, NULL)) { 2123 drop_tty = 1; 2124 } 2125 } 2126 file_list_unlock(); 2127 } 2128 mutex_unlock(&tty_mutex); 2129 /* Reset controlling tty. */ 2130 if (drop_tty) 2131 no_tty(); 2132 2133 /* Revalidate access to inherited open files. */ 2134 2135 AVC_AUDIT_DATA_INIT(&ad, FS); 2136 2137 spin_lock(&files->file_lock); 2138 for (;;) { 2139 unsigned long set, i; 2140 int fd; 2141 2142 j++; 2143 i = j * __NFDBITS; 2144 fdt = files_fdtable(files); 2145 if (i >= fdt->max_fds) 2146 break; 2147 set = fdt->open_fds->fds_bits[j]; 2148 if (!set) 2149 continue; 2150 spin_unlock(&files->file_lock); 2151 for ( ; set ; i++, set >>= 1) { 2152 if (set & 1) { 2153 file = fget(i); 2154 if (!file) 2155 continue; 2156 if (file_has_perm(current, 2157 file, 2158 file_to_av(file))) { 2159 sys_close(i); 2160 fd = get_unused_fd(); 2161 if (fd != i) { 2162 if (fd >= 0) 2163 put_unused_fd(fd); 2164 fput(file); 2165 continue; 2166 } 2167 if (devnull) { 2168 get_file(devnull); 2169 } else { 2170 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR); 2171 if (IS_ERR(devnull)) { 2172 devnull = NULL; 2173 put_unused_fd(fd); 2174 fput(file); 2175 continue; 2176 } 2177 } 2178 fd_install(fd, devnull); 2179 } 2180 fput(file); 2181 } 2182 } 2183 spin_lock(&files->file_lock); 2184 2185 } 2186 spin_unlock(&files->file_lock); 2187 } 2188 2189 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe) 2190 { 2191 struct task_security_struct *tsec; 2192 struct bprm_security_struct *bsec; 2193 u32 sid; 2194 int rc; 2195 2196 secondary_ops->bprm_apply_creds(bprm, unsafe); 2197 2198 tsec = current->security; 2199 2200 bsec = bprm->security; 2201 sid = bsec->sid; 2202 2203 tsec->osid = tsec->sid; 2204 bsec->unsafe = 0; 2205 if (tsec->sid != sid) { 2206 /* Check for shared state. If not ok, leave SID 2207 unchanged and kill. */ 2208 if (unsafe & LSM_UNSAFE_SHARE) { 2209 rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 2210 PROCESS__SHARE, NULL); 2211 if (rc) { 2212 bsec->unsafe = 1; 2213 return; 2214 } 2215 } 2216 2217 /* Check for ptracing, and update the task SID if ok. 2218 Otherwise, leave SID unchanged and kill. */ 2219 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) { 2220 struct task_struct *tracer; 2221 struct task_security_struct *sec; 2222 u32 ptsid = 0; 2223 2224 rcu_read_lock(); 2225 tracer = tracehook_tracer_task(current); 2226 if (likely(tracer != NULL)) { 2227 sec = tracer->security; 2228 ptsid = sec->sid; 2229 } 2230 rcu_read_unlock(); 2231 2232 if (ptsid != 0) { 2233 rc = avc_has_perm(ptsid, sid, SECCLASS_PROCESS, 2234 PROCESS__PTRACE, NULL); 2235 if (rc) { 2236 bsec->unsafe = 1; 2237 return; 2238 } 2239 } 2240 } 2241 tsec->sid = sid; 2242 } 2243 } 2244 2245 /* 2246 * called after apply_creds without the task lock held 2247 */ 2248 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm) 2249 { 2250 struct task_security_struct *tsec; 2251 struct rlimit *rlim, *initrlim; 2252 struct itimerval itimer; 2253 struct bprm_security_struct *bsec; 2254 int rc, i; 2255 2256 tsec = current->security; 2257 bsec = bprm->security; 2258 2259 if (bsec->unsafe) { 2260 force_sig_specific(SIGKILL, current); 2261 return; 2262 } 2263 if (tsec->osid == tsec->sid) 2264 return; 2265 2266 /* Close files for which the new task SID is not authorized. */ 2267 flush_unauthorized_files(current->files); 2268 2269 /* Check whether the new SID can inherit signal state 2270 from the old SID. If not, clear itimers to avoid 2271 subsequent signal generation and flush and unblock 2272 signals. This must occur _after_ the task SID has 2273 been updated so that any kill done after the flush 2274 will be checked against the new SID. */ 2275 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS, 2276 PROCESS__SIGINH, NULL); 2277 if (rc) { 2278 memset(&itimer, 0, sizeof itimer); 2279 for (i = 0; i < 3; i++) 2280 do_setitimer(i, &itimer, NULL); 2281 flush_signals(current); 2282 spin_lock_irq(¤t->sighand->siglock); 2283 flush_signal_handlers(current, 1); 2284 sigemptyset(¤t->blocked); 2285 recalc_sigpending(); 2286 spin_unlock_irq(¤t->sighand->siglock); 2287 } 2288 2289 /* Always clear parent death signal on SID transitions. */ 2290 current->pdeath_signal = 0; 2291 2292 /* Check whether the new SID can inherit resource limits 2293 from the old SID. If not, reset all soft limits to 2294 the lower of the current task's hard limit and the init 2295 task's soft limit. Note that the setting of hard limits 2296 (even to lower them) can be controlled by the setrlimit 2297 check. The inclusion of the init task's soft limit into 2298 the computation is to avoid resetting soft limits higher 2299 than the default soft limit for cases where the default 2300 is lower than the hard limit, e.g. RLIMIT_CORE or 2301 RLIMIT_STACK.*/ 2302 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS, 2303 PROCESS__RLIMITINH, NULL); 2304 if (rc) { 2305 for (i = 0; i < RLIM_NLIMITS; i++) { 2306 rlim = current->signal->rlim + i; 2307 initrlim = init_task.signal->rlim+i; 2308 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur); 2309 } 2310 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { 2311 /* 2312 * This will cause RLIMIT_CPU calculations 2313 * to be refigured. 2314 */ 2315 current->it_prof_expires = jiffies_to_cputime(1); 2316 } 2317 } 2318 2319 /* Wake up the parent if it is waiting so that it can 2320 recheck wait permission to the new task SID. */ 2321 wake_up_interruptible(¤t->parent->signal->wait_chldexit); 2322 } 2323 2324 /* superblock security operations */ 2325 2326 static int selinux_sb_alloc_security(struct super_block *sb) 2327 { 2328 return superblock_alloc_security(sb); 2329 } 2330 2331 static void selinux_sb_free_security(struct super_block *sb) 2332 { 2333 superblock_free_security(sb); 2334 } 2335 2336 static inline int match_prefix(char *prefix, int plen, char *option, int olen) 2337 { 2338 if (plen > olen) 2339 return 0; 2340 2341 return !memcmp(prefix, option, plen); 2342 } 2343 2344 static inline int selinux_option(char *option, int len) 2345 { 2346 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) || 2347 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) || 2348 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) || 2349 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len)); 2350 } 2351 2352 static inline void take_option(char **to, char *from, int *first, int len) 2353 { 2354 if (!*first) { 2355 **to = ','; 2356 *to += 1; 2357 } else 2358 *first = 0; 2359 memcpy(*to, from, len); 2360 *to += len; 2361 } 2362 2363 static inline void take_selinux_option(char **to, char *from, int *first, 2364 int len) 2365 { 2366 int current_size = 0; 2367 2368 if (!*first) { 2369 **to = '|'; 2370 *to += 1; 2371 } else 2372 *first = 0; 2373 2374 while (current_size < len) { 2375 if (*from != '"') { 2376 **to = *from; 2377 *to += 1; 2378 } 2379 from += 1; 2380 current_size += 1; 2381 } 2382 } 2383 2384 static int selinux_sb_copy_data(char *orig, char *copy) 2385 { 2386 int fnosec, fsec, rc = 0; 2387 char *in_save, *in_curr, *in_end; 2388 char *sec_curr, *nosec_save, *nosec; 2389 int open_quote = 0; 2390 2391 in_curr = orig; 2392 sec_curr = copy; 2393 2394 nosec = (char *)get_zeroed_page(GFP_KERNEL); 2395 if (!nosec) { 2396 rc = -ENOMEM; 2397 goto out; 2398 } 2399 2400 nosec_save = nosec; 2401 fnosec = fsec = 1; 2402 in_save = in_end = orig; 2403 2404 do { 2405 if (*in_end == '"') 2406 open_quote = !open_quote; 2407 if ((*in_end == ',' && open_quote == 0) || 2408 *in_end == '\0') { 2409 int len = in_end - in_curr; 2410 2411 if (selinux_option(in_curr, len)) 2412 take_selinux_option(&sec_curr, in_curr, &fsec, len); 2413 else 2414 take_option(&nosec, in_curr, &fnosec, len); 2415 2416 in_curr = in_end + 1; 2417 } 2418 } while (*in_end++); 2419 2420 strcpy(in_save, nosec_save); 2421 free_page((unsigned long)nosec_save); 2422 out: 2423 return rc; 2424 } 2425 2426 static int selinux_sb_kern_mount(struct super_block *sb, void *data) 2427 { 2428 struct avc_audit_data ad; 2429 int rc; 2430 2431 rc = superblock_doinit(sb, data); 2432 if (rc) 2433 return rc; 2434 2435 AVC_AUDIT_DATA_INIT(&ad, FS); 2436 ad.u.fs.path.dentry = sb->s_root; 2437 return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad); 2438 } 2439 2440 static int selinux_sb_statfs(struct dentry *dentry) 2441 { 2442 struct avc_audit_data ad; 2443 2444 AVC_AUDIT_DATA_INIT(&ad, FS); 2445 ad.u.fs.path.dentry = dentry->d_sb->s_root; 2446 return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2447 } 2448 2449 static int selinux_mount(char *dev_name, 2450 struct path *path, 2451 char *type, 2452 unsigned long flags, 2453 void *data) 2454 { 2455 int rc; 2456 2457 rc = secondary_ops->sb_mount(dev_name, path, type, flags, data); 2458 if (rc) 2459 return rc; 2460 2461 if (flags & MS_REMOUNT) 2462 return superblock_has_perm(current, path->mnt->mnt_sb, 2463 FILESYSTEM__REMOUNT, NULL); 2464 else 2465 return dentry_has_perm(current, path->mnt, path->dentry, 2466 FILE__MOUNTON); 2467 } 2468 2469 static int selinux_umount(struct vfsmount *mnt, int flags) 2470 { 2471 int rc; 2472 2473 rc = secondary_ops->sb_umount(mnt, flags); 2474 if (rc) 2475 return rc; 2476 2477 return superblock_has_perm(current, mnt->mnt_sb, 2478 FILESYSTEM__UNMOUNT, NULL); 2479 } 2480 2481 /* inode security operations */ 2482 2483 static int selinux_inode_alloc_security(struct inode *inode) 2484 { 2485 return inode_alloc_security(inode); 2486 } 2487 2488 static void selinux_inode_free_security(struct inode *inode) 2489 { 2490 inode_free_security(inode); 2491 } 2492 2493 static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 2494 char **name, void **value, 2495 size_t *len) 2496 { 2497 struct task_security_struct *tsec; 2498 struct inode_security_struct *dsec; 2499 struct superblock_security_struct *sbsec; 2500 u32 newsid, clen; 2501 int rc; 2502 char *namep = NULL, *context; 2503 2504 tsec = current->security; 2505 dsec = dir->i_security; 2506 sbsec = dir->i_sb->s_security; 2507 2508 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) { 2509 newsid = tsec->create_sid; 2510 } else { 2511 rc = security_transition_sid(tsec->sid, dsec->sid, 2512 inode_mode_to_security_class(inode->i_mode), 2513 &newsid); 2514 if (rc) { 2515 printk(KERN_WARNING "%s: " 2516 "security_transition_sid failed, rc=%d (dev=%s " 2517 "ino=%ld)\n", 2518 __func__, 2519 -rc, inode->i_sb->s_id, inode->i_ino); 2520 return rc; 2521 } 2522 } 2523 2524 /* Possibly defer initialization to selinux_complete_init. */ 2525 if (sbsec->initialized) { 2526 struct inode_security_struct *isec = inode->i_security; 2527 isec->sclass = inode_mode_to_security_class(inode->i_mode); 2528 isec->sid = newsid; 2529 isec->initialized = 1; 2530 } 2531 2532 if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT) 2533 return -EOPNOTSUPP; 2534 2535 if (name) { 2536 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS); 2537 if (!namep) 2538 return -ENOMEM; 2539 *name = namep; 2540 } 2541 2542 if (value && len) { 2543 rc = security_sid_to_context_force(newsid, &context, &clen); 2544 if (rc) { 2545 kfree(namep); 2546 return rc; 2547 } 2548 *value = context; 2549 *len = clen; 2550 } 2551 2552 return 0; 2553 } 2554 2555 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask) 2556 { 2557 return may_create(dir, dentry, SECCLASS_FILE); 2558 } 2559 2560 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2561 { 2562 int rc; 2563 2564 rc = secondary_ops->inode_link(old_dentry, dir, new_dentry); 2565 if (rc) 2566 return rc; 2567 return may_link(dir, old_dentry, MAY_LINK); 2568 } 2569 2570 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 2571 { 2572 int rc; 2573 2574 rc = secondary_ops->inode_unlink(dir, dentry); 2575 if (rc) 2576 return rc; 2577 return may_link(dir, dentry, MAY_UNLINK); 2578 } 2579 2580 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 2581 { 2582 return may_create(dir, dentry, SECCLASS_LNK_FILE); 2583 } 2584 2585 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask) 2586 { 2587 return may_create(dir, dentry, SECCLASS_DIR); 2588 } 2589 2590 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 2591 { 2592 return may_link(dir, dentry, MAY_RMDIR); 2593 } 2594 2595 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 2596 { 2597 int rc; 2598 2599 rc = secondary_ops->inode_mknod(dir, dentry, mode, dev); 2600 if (rc) 2601 return rc; 2602 2603 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 2604 } 2605 2606 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 2607 struct inode *new_inode, struct dentry *new_dentry) 2608 { 2609 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 2610 } 2611 2612 static int selinux_inode_readlink(struct dentry *dentry) 2613 { 2614 return dentry_has_perm(current, NULL, dentry, FILE__READ); 2615 } 2616 2617 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata) 2618 { 2619 int rc; 2620 2621 rc = secondary_ops->inode_follow_link(dentry, nameidata); 2622 if (rc) 2623 return rc; 2624 return dentry_has_perm(current, NULL, dentry, FILE__READ); 2625 } 2626 2627 static int selinux_inode_permission(struct inode *inode, int mask) 2628 { 2629 int rc; 2630 2631 rc = secondary_ops->inode_permission(inode, mask); 2632 if (rc) 2633 return rc; 2634 2635 if (!mask) { 2636 /* No permission to check. Existence test. */ 2637 return 0; 2638 } 2639 2640 return inode_has_perm(current, inode, 2641 open_file_mask_to_av(inode->i_mode, mask), NULL); 2642 } 2643 2644 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) 2645 { 2646 int rc; 2647 2648 rc = secondary_ops->inode_setattr(dentry, iattr); 2649 if (rc) 2650 return rc; 2651 2652 if (iattr->ia_valid & ATTR_FORCE) 2653 return 0; 2654 2655 if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 2656 ATTR_ATIME_SET | ATTR_MTIME_SET)) 2657 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR); 2658 2659 return dentry_has_perm(current, NULL, dentry, FILE__WRITE); 2660 } 2661 2662 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 2663 { 2664 return dentry_has_perm(current, mnt, dentry, FILE__GETATTR); 2665 } 2666 2667 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name) 2668 { 2669 if (!strncmp(name, XATTR_SECURITY_PREFIX, 2670 sizeof XATTR_SECURITY_PREFIX - 1)) { 2671 if (!strcmp(name, XATTR_NAME_CAPS)) { 2672 if (!capable(CAP_SETFCAP)) 2673 return -EPERM; 2674 } else if (!capable(CAP_SYS_ADMIN)) { 2675 /* A different attribute in the security namespace. 2676 Restrict to administrator. */ 2677 return -EPERM; 2678 } 2679 } 2680 2681 /* Not an attribute we recognize, so just check the 2682 ordinary setattr permission. */ 2683 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR); 2684 } 2685 2686 static int selinux_inode_setxattr(struct dentry *dentry, const char *name, 2687 const void *value, size_t size, int flags) 2688 { 2689 struct task_security_struct *tsec = current->security; 2690 struct inode *inode = dentry->d_inode; 2691 struct inode_security_struct *isec = inode->i_security; 2692 struct superblock_security_struct *sbsec; 2693 struct avc_audit_data ad; 2694 u32 newsid; 2695 int rc = 0; 2696 2697 if (strcmp(name, XATTR_NAME_SELINUX)) 2698 return selinux_inode_setotherxattr(dentry, name); 2699 2700 sbsec = inode->i_sb->s_security; 2701 if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT) 2702 return -EOPNOTSUPP; 2703 2704 if (!is_owner_or_cap(inode)) 2705 return -EPERM; 2706 2707 AVC_AUDIT_DATA_INIT(&ad, FS); 2708 ad.u.fs.path.dentry = dentry; 2709 2710 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, 2711 FILE__RELABELFROM, &ad); 2712 if (rc) 2713 return rc; 2714 2715 rc = security_context_to_sid(value, size, &newsid); 2716 if (rc == -EINVAL) { 2717 if (!capable(CAP_MAC_ADMIN)) 2718 return rc; 2719 rc = security_context_to_sid_force(value, size, &newsid); 2720 } 2721 if (rc) 2722 return rc; 2723 2724 rc = avc_has_perm(tsec->sid, newsid, isec->sclass, 2725 FILE__RELABELTO, &ad); 2726 if (rc) 2727 return rc; 2728 2729 rc = security_validate_transition(isec->sid, newsid, tsec->sid, 2730 isec->sclass); 2731 if (rc) 2732 return rc; 2733 2734 return avc_has_perm(newsid, 2735 sbsec->sid, 2736 SECCLASS_FILESYSTEM, 2737 FILESYSTEM__ASSOCIATE, 2738 &ad); 2739 } 2740 2741 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name, 2742 const void *value, size_t size, 2743 int flags) 2744 { 2745 struct inode *inode = dentry->d_inode; 2746 struct inode_security_struct *isec = inode->i_security; 2747 u32 newsid; 2748 int rc; 2749 2750 if (strcmp(name, XATTR_NAME_SELINUX)) { 2751 /* Not an attribute we recognize, so nothing to do. */ 2752 return; 2753 } 2754 2755 rc = security_context_to_sid_force(value, size, &newsid); 2756 if (rc) { 2757 printk(KERN_ERR "SELinux: unable to map context to SID" 2758 "for (%s, %lu), rc=%d\n", 2759 inode->i_sb->s_id, inode->i_ino, -rc); 2760 return; 2761 } 2762 2763 isec->sid = newsid; 2764 return; 2765 } 2766 2767 static int selinux_inode_getxattr(struct dentry *dentry, const char *name) 2768 { 2769 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR); 2770 } 2771 2772 static int selinux_inode_listxattr(struct dentry *dentry) 2773 { 2774 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR); 2775 } 2776 2777 static int selinux_inode_removexattr(struct dentry *dentry, const char *name) 2778 { 2779 if (strcmp(name, XATTR_NAME_SELINUX)) 2780 return selinux_inode_setotherxattr(dentry, name); 2781 2782 /* No one is allowed to remove a SELinux security label. 2783 You can change the label, but all data must be labeled. */ 2784 return -EACCES; 2785 } 2786 2787 /* 2788 * Copy the inode security context value to the user. 2789 * 2790 * Permission check is handled by selinux_inode_getxattr hook. 2791 */ 2792 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 2793 { 2794 u32 size; 2795 int error; 2796 char *context = NULL; 2797 struct task_security_struct *tsec = current->security; 2798 struct inode_security_struct *isec = inode->i_security; 2799 2800 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 2801 return -EOPNOTSUPP; 2802 2803 /* 2804 * If the caller has CAP_MAC_ADMIN, then get the raw context 2805 * value even if it is not defined by current policy; otherwise, 2806 * use the in-core value under current policy. 2807 * Use the non-auditing forms of the permission checks since 2808 * getxattr may be called by unprivileged processes commonly 2809 * and lack of permission just means that we fall back to the 2810 * in-core context value, not a denial. 2811 */ 2812 error = secondary_ops->capable(current, CAP_MAC_ADMIN); 2813 if (!error) 2814 error = avc_has_perm_noaudit(tsec->sid, tsec->sid, 2815 SECCLASS_CAPABILITY2, 2816 CAPABILITY2__MAC_ADMIN, 2817 0, 2818 NULL); 2819 if (!error) 2820 error = security_sid_to_context_force(isec->sid, &context, 2821 &size); 2822 else 2823 error = security_sid_to_context(isec->sid, &context, &size); 2824 if (error) 2825 return error; 2826 error = size; 2827 if (alloc) { 2828 *buffer = context; 2829 goto out_nofree; 2830 } 2831 kfree(context); 2832 out_nofree: 2833 return error; 2834 } 2835 2836 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 2837 const void *value, size_t size, int flags) 2838 { 2839 struct inode_security_struct *isec = inode->i_security; 2840 u32 newsid; 2841 int rc; 2842 2843 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 2844 return -EOPNOTSUPP; 2845 2846 if (!value || !size) 2847 return -EACCES; 2848 2849 rc = security_context_to_sid((void *)value, size, &newsid); 2850 if (rc) 2851 return rc; 2852 2853 isec->sid = newsid; 2854 return 0; 2855 } 2856 2857 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 2858 { 2859 const int len = sizeof(XATTR_NAME_SELINUX); 2860 if (buffer && len <= buffer_size) 2861 memcpy(buffer, XATTR_NAME_SELINUX, len); 2862 return len; 2863 } 2864 2865 static int selinux_inode_need_killpriv(struct dentry *dentry) 2866 { 2867 return secondary_ops->inode_need_killpriv(dentry); 2868 } 2869 2870 static int selinux_inode_killpriv(struct dentry *dentry) 2871 { 2872 return secondary_ops->inode_killpriv(dentry); 2873 } 2874 2875 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid) 2876 { 2877 struct inode_security_struct *isec = inode->i_security; 2878 *secid = isec->sid; 2879 } 2880 2881 /* file security operations */ 2882 2883 static int selinux_revalidate_file_permission(struct file *file, int mask) 2884 { 2885 int rc; 2886 struct inode *inode = file->f_path.dentry->d_inode; 2887 2888 if (!mask) { 2889 /* No permission to check. Existence test. */ 2890 return 0; 2891 } 2892 2893 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 2894 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 2895 mask |= MAY_APPEND; 2896 2897 rc = file_has_perm(current, file, 2898 file_mask_to_av(inode->i_mode, mask)); 2899 if (rc) 2900 return rc; 2901 2902 return selinux_netlbl_inode_permission(inode, mask); 2903 } 2904 2905 static int selinux_file_permission(struct file *file, int mask) 2906 { 2907 struct inode *inode = file->f_path.dentry->d_inode; 2908 struct task_security_struct *tsec = current->security; 2909 struct file_security_struct *fsec = file->f_security; 2910 struct inode_security_struct *isec = inode->i_security; 2911 2912 if (!mask) { 2913 /* No permission to check. Existence test. */ 2914 return 0; 2915 } 2916 2917 if (tsec->sid == fsec->sid && fsec->isid == isec->sid 2918 && fsec->pseqno == avc_policy_seqno()) 2919 return selinux_netlbl_inode_permission(inode, mask); 2920 2921 return selinux_revalidate_file_permission(file, mask); 2922 } 2923 2924 static int selinux_file_alloc_security(struct file *file) 2925 { 2926 return file_alloc_security(file); 2927 } 2928 2929 static void selinux_file_free_security(struct file *file) 2930 { 2931 file_free_security(file); 2932 } 2933 2934 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 2935 unsigned long arg) 2936 { 2937 u32 av = 0; 2938 2939 if (_IOC_DIR(cmd) & _IOC_WRITE) 2940 av |= FILE__WRITE; 2941 if (_IOC_DIR(cmd) & _IOC_READ) 2942 av |= FILE__READ; 2943 if (!av) 2944 av = FILE__IOCTL; 2945 2946 return file_has_perm(current, file, av); 2947 } 2948 2949 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 2950 { 2951 #ifndef CONFIG_PPC32 2952 if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) { 2953 /* 2954 * We are making executable an anonymous mapping or a 2955 * private file mapping that will also be writable. 2956 * This has an additional check. 2957 */ 2958 int rc = task_has_perm(current, current, PROCESS__EXECMEM); 2959 if (rc) 2960 return rc; 2961 } 2962 #endif 2963 2964 if (file) { 2965 /* read access is always possible with a mapping */ 2966 u32 av = FILE__READ; 2967 2968 /* write access only matters if the mapping is shared */ 2969 if (shared && (prot & PROT_WRITE)) 2970 av |= FILE__WRITE; 2971 2972 if (prot & PROT_EXEC) 2973 av |= FILE__EXECUTE; 2974 2975 return file_has_perm(current, file, av); 2976 } 2977 return 0; 2978 } 2979 2980 static int selinux_file_mmap(struct file *file, unsigned long reqprot, 2981 unsigned long prot, unsigned long flags, 2982 unsigned long addr, unsigned long addr_only) 2983 { 2984 int rc = 0; 2985 u32 sid = ((struct task_security_struct *)(current->security))->sid; 2986 2987 if (addr < mmap_min_addr) 2988 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT, 2989 MEMPROTECT__MMAP_ZERO, NULL); 2990 if (rc || addr_only) 2991 return rc; 2992 2993 if (selinux_checkreqprot) 2994 prot = reqprot; 2995 2996 return file_map_prot_check(file, prot, 2997 (flags & MAP_TYPE) == MAP_SHARED); 2998 } 2999 3000 static int selinux_file_mprotect(struct vm_area_struct *vma, 3001 unsigned long reqprot, 3002 unsigned long prot) 3003 { 3004 int rc; 3005 3006 rc = secondary_ops->file_mprotect(vma, reqprot, prot); 3007 if (rc) 3008 return rc; 3009 3010 if (selinux_checkreqprot) 3011 prot = reqprot; 3012 3013 #ifndef CONFIG_PPC32 3014 if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 3015 rc = 0; 3016 if (vma->vm_start >= vma->vm_mm->start_brk && 3017 vma->vm_end <= vma->vm_mm->brk) { 3018 rc = task_has_perm(current, current, 3019 PROCESS__EXECHEAP); 3020 } else if (!vma->vm_file && 3021 vma->vm_start <= vma->vm_mm->start_stack && 3022 vma->vm_end >= vma->vm_mm->start_stack) { 3023 rc = task_has_perm(current, current, PROCESS__EXECSTACK); 3024 } else if (vma->vm_file && vma->anon_vma) { 3025 /* 3026 * We are making executable a file mapping that has 3027 * had some COW done. Since pages might have been 3028 * written, check ability to execute the possibly 3029 * modified content. This typically should only 3030 * occur for text relocations. 3031 */ 3032 rc = file_has_perm(current, vma->vm_file, 3033 FILE__EXECMOD); 3034 } 3035 if (rc) 3036 return rc; 3037 } 3038 #endif 3039 3040 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 3041 } 3042 3043 static int selinux_file_lock(struct file *file, unsigned int cmd) 3044 { 3045 return file_has_perm(current, file, FILE__LOCK); 3046 } 3047 3048 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 3049 unsigned long arg) 3050 { 3051 int err = 0; 3052 3053 switch (cmd) { 3054 case F_SETFL: 3055 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) { 3056 err = -EINVAL; 3057 break; 3058 } 3059 3060 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 3061 err = file_has_perm(current, file, FILE__WRITE); 3062 break; 3063 } 3064 /* fall through */ 3065 case F_SETOWN: 3066 case F_SETSIG: 3067 case F_GETFL: 3068 case F_GETOWN: 3069 case F_GETSIG: 3070 /* Just check FD__USE permission */ 3071 err = file_has_perm(current, file, 0); 3072 break; 3073 case F_GETLK: 3074 case F_SETLK: 3075 case F_SETLKW: 3076 #if BITS_PER_LONG == 32 3077 case F_GETLK64: 3078 case F_SETLK64: 3079 case F_SETLKW64: 3080 #endif 3081 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) { 3082 err = -EINVAL; 3083 break; 3084 } 3085 err = file_has_perm(current, file, FILE__LOCK); 3086 break; 3087 } 3088 3089 return err; 3090 } 3091 3092 static int selinux_file_set_fowner(struct file *file) 3093 { 3094 struct task_security_struct *tsec; 3095 struct file_security_struct *fsec; 3096 3097 tsec = current->security; 3098 fsec = file->f_security; 3099 fsec->fown_sid = tsec->sid; 3100 3101 return 0; 3102 } 3103 3104 static int selinux_file_send_sigiotask(struct task_struct *tsk, 3105 struct fown_struct *fown, int signum) 3106 { 3107 struct file *file; 3108 u32 perm; 3109 struct task_security_struct *tsec; 3110 struct file_security_struct *fsec; 3111 3112 /* struct fown_struct is never outside the context of a struct file */ 3113 file = container_of(fown, struct file, f_owner); 3114 3115 tsec = tsk->security; 3116 fsec = file->f_security; 3117 3118 if (!signum) 3119 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 3120 else 3121 perm = signal_to_av(signum); 3122 3123 return avc_has_perm(fsec->fown_sid, tsec->sid, 3124 SECCLASS_PROCESS, perm, NULL); 3125 } 3126 3127 static int selinux_file_receive(struct file *file) 3128 { 3129 return file_has_perm(current, file, file_to_av(file)); 3130 } 3131 3132 static int selinux_dentry_open(struct file *file) 3133 { 3134 struct file_security_struct *fsec; 3135 struct inode *inode; 3136 struct inode_security_struct *isec; 3137 inode = file->f_path.dentry->d_inode; 3138 fsec = file->f_security; 3139 isec = inode->i_security; 3140 /* 3141 * Save inode label and policy sequence number 3142 * at open-time so that selinux_file_permission 3143 * can determine whether revalidation is necessary. 3144 * Task label is already saved in the file security 3145 * struct as its SID. 3146 */ 3147 fsec->isid = isec->sid; 3148 fsec->pseqno = avc_policy_seqno(); 3149 /* 3150 * Since the inode label or policy seqno may have changed 3151 * between the selinux_inode_permission check and the saving 3152 * of state above, recheck that access is still permitted. 3153 * Otherwise, access might never be revalidated against the 3154 * new inode label or new policy. 3155 * This check is not redundant - do not remove. 3156 */ 3157 return inode_has_perm(current, inode, file_to_av(file), NULL); 3158 } 3159 3160 /* task security operations */ 3161 3162 static int selinux_task_create(unsigned long clone_flags) 3163 { 3164 int rc; 3165 3166 rc = secondary_ops->task_create(clone_flags); 3167 if (rc) 3168 return rc; 3169 3170 return task_has_perm(current, current, PROCESS__FORK); 3171 } 3172 3173 static int selinux_task_alloc_security(struct task_struct *tsk) 3174 { 3175 struct task_security_struct *tsec1, *tsec2; 3176 int rc; 3177 3178 tsec1 = current->security; 3179 3180 rc = task_alloc_security(tsk); 3181 if (rc) 3182 return rc; 3183 tsec2 = tsk->security; 3184 3185 tsec2->osid = tsec1->osid; 3186 tsec2->sid = tsec1->sid; 3187 3188 /* Retain the exec, fs, key, and sock SIDs across fork */ 3189 tsec2->exec_sid = tsec1->exec_sid; 3190 tsec2->create_sid = tsec1->create_sid; 3191 tsec2->keycreate_sid = tsec1->keycreate_sid; 3192 tsec2->sockcreate_sid = tsec1->sockcreate_sid; 3193 3194 return 0; 3195 } 3196 3197 static void selinux_task_free_security(struct task_struct *tsk) 3198 { 3199 task_free_security(tsk); 3200 } 3201 3202 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 3203 { 3204 /* Since setuid only affects the current process, and 3205 since the SELinux controls are not based on the Linux 3206 identity attributes, SELinux does not need to control 3207 this operation. However, SELinux does control the use 3208 of the CAP_SETUID and CAP_SETGID capabilities using the 3209 capable hook. */ 3210 return 0; 3211 } 3212 3213 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 3214 { 3215 return secondary_ops->task_post_setuid(id0, id1, id2, flags); 3216 } 3217 3218 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags) 3219 { 3220 /* See the comment for setuid above. */ 3221 return 0; 3222 } 3223 3224 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 3225 { 3226 return task_has_perm(current, p, PROCESS__SETPGID); 3227 } 3228 3229 static int selinux_task_getpgid(struct task_struct *p) 3230 { 3231 return task_has_perm(current, p, PROCESS__GETPGID); 3232 } 3233 3234 static int selinux_task_getsid(struct task_struct *p) 3235 { 3236 return task_has_perm(current, p, PROCESS__GETSESSION); 3237 } 3238 3239 static void selinux_task_getsecid(struct task_struct *p, u32 *secid) 3240 { 3241 struct task_security_struct *tsec = p->security; 3242 *secid = tsec->sid; 3243 } 3244 3245 static int selinux_task_setgroups(struct group_info *group_info) 3246 { 3247 /* See the comment for setuid above. */ 3248 return 0; 3249 } 3250 3251 static int selinux_task_setnice(struct task_struct *p, int nice) 3252 { 3253 int rc; 3254 3255 rc = secondary_ops->task_setnice(p, nice); 3256 if (rc) 3257 return rc; 3258 3259 return task_has_perm(current, p, PROCESS__SETSCHED); 3260 } 3261 3262 static int selinux_task_setioprio(struct task_struct *p, int ioprio) 3263 { 3264 int rc; 3265 3266 rc = secondary_ops->task_setioprio(p, ioprio); 3267 if (rc) 3268 return rc; 3269 3270 return task_has_perm(current, p, PROCESS__SETSCHED); 3271 } 3272 3273 static int selinux_task_getioprio(struct task_struct *p) 3274 { 3275 return task_has_perm(current, p, PROCESS__GETSCHED); 3276 } 3277 3278 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim) 3279 { 3280 struct rlimit *old_rlim = current->signal->rlim + resource; 3281 int rc; 3282 3283 rc = secondary_ops->task_setrlimit(resource, new_rlim); 3284 if (rc) 3285 return rc; 3286 3287 /* Control the ability to change the hard limit (whether 3288 lowering or raising it), so that the hard limit can 3289 later be used as a safe reset point for the soft limit 3290 upon context transitions. See selinux_bprm_apply_creds. */ 3291 if (old_rlim->rlim_max != new_rlim->rlim_max) 3292 return task_has_perm(current, current, PROCESS__SETRLIMIT); 3293 3294 return 0; 3295 } 3296 3297 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp) 3298 { 3299 int rc; 3300 3301 rc = secondary_ops->task_setscheduler(p, policy, lp); 3302 if (rc) 3303 return rc; 3304 3305 return task_has_perm(current, p, PROCESS__SETSCHED); 3306 } 3307 3308 static int selinux_task_getscheduler(struct task_struct *p) 3309 { 3310 return task_has_perm(current, p, PROCESS__GETSCHED); 3311 } 3312 3313 static int selinux_task_movememory(struct task_struct *p) 3314 { 3315 return task_has_perm(current, p, PROCESS__SETSCHED); 3316 } 3317 3318 static int selinux_task_kill(struct task_struct *p, struct siginfo *info, 3319 int sig, u32 secid) 3320 { 3321 u32 perm; 3322 int rc; 3323 struct task_security_struct *tsec; 3324 3325 rc = secondary_ops->task_kill(p, info, sig, secid); 3326 if (rc) 3327 return rc; 3328 3329 if (!sig) 3330 perm = PROCESS__SIGNULL; /* null signal; existence test */ 3331 else 3332 perm = signal_to_av(sig); 3333 tsec = p->security; 3334 if (secid) 3335 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL); 3336 else 3337 rc = task_has_perm(current, p, perm); 3338 return rc; 3339 } 3340 3341 static int selinux_task_prctl(int option, 3342 unsigned long arg2, 3343 unsigned long arg3, 3344 unsigned long arg4, 3345 unsigned long arg5, 3346 long *rc_p) 3347 { 3348 /* The current prctl operations do not appear to require 3349 any SELinux controls since they merely observe or modify 3350 the state of the current process. */ 3351 return secondary_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p); 3352 } 3353 3354 static int selinux_task_wait(struct task_struct *p) 3355 { 3356 return task_has_perm(p, current, PROCESS__SIGCHLD); 3357 } 3358 3359 static void selinux_task_reparent_to_init(struct task_struct *p) 3360 { 3361 struct task_security_struct *tsec; 3362 3363 secondary_ops->task_reparent_to_init(p); 3364 3365 tsec = p->security; 3366 tsec->osid = tsec->sid; 3367 tsec->sid = SECINITSID_KERNEL; 3368 return; 3369 } 3370 3371 static void selinux_task_to_inode(struct task_struct *p, 3372 struct inode *inode) 3373 { 3374 struct task_security_struct *tsec = p->security; 3375 struct inode_security_struct *isec = inode->i_security; 3376 3377 isec->sid = tsec->sid; 3378 isec->initialized = 1; 3379 return; 3380 } 3381 3382 /* Returns error only if unable to parse addresses */ 3383 static int selinux_parse_skb_ipv4(struct sk_buff *skb, 3384 struct avc_audit_data *ad, u8 *proto) 3385 { 3386 int offset, ihlen, ret = -EINVAL; 3387 struct iphdr _iph, *ih; 3388 3389 offset = skb_network_offset(skb); 3390 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 3391 if (ih == NULL) 3392 goto out; 3393 3394 ihlen = ih->ihl * 4; 3395 if (ihlen < sizeof(_iph)) 3396 goto out; 3397 3398 ad->u.net.v4info.saddr = ih->saddr; 3399 ad->u.net.v4info.daddr = ih->daddr; 3400 ret = 0; 3401 3402 if (proto) 3403 *proto = ih->protocol; 3404 3405 switch (ih->protocol) { 3406 case IPPROTO_TCP: { 3407 struct tcphdr _tcph, *th; 3408 3409 if (ntohs(ih->frag_off) & IP_OFFSET) 3410 break; 3411 3412 offset += ihlen; 3413 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3414 if (th == NULL) 3415 break; 3416 3417 ad->u.net.sport = th->source; 3418 ad->u.net.dport = th->dest; 3419 break; 3420 } 3421 3422 case IPPROTO_UDP: { 3423 struct udphdr _udph, *uh; 3424 3425 if (ntohs(ih->frag_off) & IP_OFFSET) 3426 break; 3427 3428 offset += ihlen; 3429 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3430 if (uh == NULL) 3431 break; 3432 3433 ad->u.net.sport = uh->source; 3434 ad->u.net.dport = uh->dest; 3435 break; 3436 } 3437 3438 case IPPROTO_DCCP: { 3439 struct dccp_hdr _dccph, *dh; 3440 3441 if (ntohs(ih->frag_off) & IP_OFFSET) 3442 break; 3443 3444 offset += ihlen; 3445 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3446 if (dh == NULL) 3447 break; 3448 3449 ad->u.net.sport = dh->dccph_sport; 3450 ad->u.net.dport = dh->dccph_dport; 3451 break; 3452 } 3453 3454 default: 3455 break; 3456 } 3457 out: 3458 return ret; 3459 } 3460 3461 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3462 3463 /* Returns error only if unable to parse addresses */ 3464 static int selinux_parse_skb_ipv6(struct sk_buff *skb, 3465 struct avc_audit_data *ad, u8 *proto) 3466 { 3467 u8 nexthdr; 3468 int ret = -EINVAL, offset; 3469 struct ipv6hdr _ipv6h, *ip6; 3470 3471 offset = skb_network_offset(skb); 3472 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 3473 if (ip6 == NULL) 3474 goto out; 3475 3476 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr); 3477 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr); 3478 ret = 0; 3479 3480 nexthdr = ip6->nexthdr; 3481 offset += sizeof(_ipv6h); 3482 offset = ipv6_skip_exthdr(skb, offset, &nexthdr); 3483 if (offset < 0) 3484 goto out; 3485 3486 if (proto) 3487 *proto = nexthdr; 3488 3489 switch (nexthdr) { 3490 case IPPROTO_TCP: { 3491 struct tcphdr _tcph, *th; 3492 3493 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3494 if (th == NULL) 3495 break; 3496 3497 ad->u.net.sport = th->source; 3498 ad->u.net.dport = th->dest; 3499 break; 3500 } 3501 3502 case IPPROTO_UDP: { 3503 struct udphdr _udph, *uh; 3504 3505 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3506 if (uh == NULL) 3507 break; 3508 3509 ad->u.net.sport = uh->source; 3510 ad->u.net.dport = uh->dest; 3511 break; 3512 } 3513 3514 case IPPROTO_DCCP: { 3515 struct dccp_hdr _dccph, *dh; 3516 3517 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3518 if (dh == NULL) 3519 break; 3520 3521 ad->u.net.sport = dh->dccph_sport; 3522 ad->u.net.dport = dh->dccph_dport; 3523 break; 3524 } 3525 3526 /* includes fragments */ 3527 default: 3528 break; 3529 } 3530 out: 3531 return ret; 3532 } 3533 3534 #endif /* IPV6 */ 3535 3536 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad, 3537 char **addrp, int src, u8 *proto) 3538 { 3539 int ret = 0; 3540 3541 switch (ad->u.net.family) { 3542 case PF_INET: 3543 ret = selinux_parse_skb_ipv4(skb, ad, proto); 3544 if (ret || !addrp) 3545 break; 3546 *addrp = (char *)(src ? &ad->u.net.v4info.saddr : 3547 &ad->u.net.v4info.daddr); 3548 break; 3549 3550 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3551 case PF_INET6: 3552 ret = selinux_parse_skb_ipv6(skb, ad, proto); 3553 if (ret || !addrp) 3554 break; 3555 *addrp = (char *)(src ? &ad->u.net.v6info.saddr : 3556 &ad->u.net.v6info.daddr); 3557 break; 3558 #endif /* IPV6 */ 3559 default: 3560 break; 3561 } 3562 3563 if (unlikely(ret)) 3564 printk(KERN_WARNING 3565 "SELinux: failure in selinux_parse_skb()," 3566 " unable to parse packet\n"); 3567 3568 return ret; 3569 } 3570 3571 /** 3572 * selinux_skb_peerlbl_sid - Determine the peer label of a packet 3573 * @skb: the packet 3574 * @family: protocol family 3575 * @sid: the packet's peer label SID 3576 * 3577 * Description: 3578 * Check the various different forms of network peer labeling and determine 3579 * the peer label/SID for the packet; most of the magic actually occurs in 3580 * the security server function security_net_peersid_cmp(). The function 3581 * returns zero if the value in @sid is valid (although it may be SECSID_NULL) 3582 * or -EACCES if @sid is invalid due to inconsistencies with the different 3583 * peer labels. 3584 * 3585 */ 3586 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid) 3587 { 3588 int err; 3589 u32 xfrm_sid; 3590 u32 nlbl_sid; 3591 u32 nlbl_type; 3592 3593 selinux_skb_xfrm_sid(skb, &xfrm_sid); 3594 selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid); 3595 3596 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid); 3597 if (unlikely(err)) { 3598 printk(KERN_WARNING 3599 "SELinux: failure in selinux_skb_peerlbl_sid()," 3600 " unable to determine packet's peer label\n"); 3601 return -EACCES; 3602 } 3603 3604 return 0; 3605 } 3606 3607 /* socket security operations */ 3608 static int socket_has_perm(struct task_struct *task, struct socket *sock, 3609 u32 perms) 3610 { 3611 struct inode_security_struct *isec; 3612 struct task_security_struct *tsec; 3613 struct avc_audit_data ad; 3614 int err = 0; 3615 3616 tsec = task->security; 3617 isec = SOCK_INODE(sock)->i_security; 3618 3619 if (isec->sid == SECINITSID_KERNEL) 3620 goto out; 3621 3622 AVC_AUDIT_DATA_INIT(&ad, NET); 3623 ad.u.net.sk = sock->sk; 3624 err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad); 3625 3626 out: 3627 return err; 3628 } 3629 3630 static int selinux_socket_create(int family, int type, 3631 int protocol, int kern) 3632 { 3633 int err = 0; 3634 struct task_security_struct *tsec; 3635 u32 newsid; 3636 3637 if (kern) 3638 goto out; 3639 3640 tsec = current->security; 3641 newsid = tsec->sockcreate_sid ? : tsec->sid; 3642 err = avc_has_perm(tsec->sid, newsid, 3643 socket_type_to_security_class(family, type, 3644 protocol), SOCKET__CREATE, NULL); 3645 3646 out: 3647 return err; 3648 } 3649 3650 static int selinux_socket_post_create(struct socket *sock, int family, 3651 int type, int protocol, int kern) 3652 { 3653 int err = 0; 3654 struct inode_security_struct *isec; 3655 struct task_security_struct *tsec; 3656 struct sk_security_struct *sksec; 3657 u32 newsid; 3658 3659 isec = SOCK_INODE(sock)->i_security; 3660 3661 tsec = current->security; 3662 newsid = tsec->sockcreate_sid ? : tsec->sid; 3663 isec->sclass = socket_type_to_security_class(family, type, protocol); 3664 isec->sid = kern ? SECINITSID_KERNEL : newsid; 3665 isec->initialized = 1; 3666 3667 if (sock->sk) { 3668 sksec = sock->sk->sk_security; 3669 sksec->sid = isec->sid; 3670 sksec->sclass = isec->sclass; 3671 err = selinux_netlbl_socket_post_create(sock); 3672 } 3673 3674 return err; 3675 } 3676 3677 /* Range of port numbers used to automatically bind. 3678 Need to determine whether we should perform a name_bind 3679 permission check between the socket and the port number. */ 3680 3681 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 3682 { 3683 u16 family; 3684 int err; 3685 3686 err = socket_has_perm(current, sock, SOCKET__BIND); 3687 if (err) 3688 goto out; 3689 3690 /* 3691 * If PF_INET or PF_INET6, check name_bind permission for the port. 3692 * Multiple address binding for SCTP is not supported yet: we just 3693 * check the first address now. 3694 */ 3695 family = sock->sk->sk_family; 3696 if (family == PF_INET || family == PF_INET6) { 3697 char *addrp; 3698 struct inode_security_struct *isec; 3699 struct task_security_struct *tsec; 3700 struct avc_audit_data ad; 3701 struct sockaddr_in *addr4 = NULL; 3702 struct sockaddr_in6 *addr6 = NULL; 3703 unsigned short snum; 3704 struct sock *sk = sock->sk; 3705 u32 sid, node_perm; 3706 3707 tsec = current->security; 3708 isec = SOCK_INODE(sock)->i_security; 3709 3710 if (family == PF_INET) { 3711 addr4 = (struct sockaddr_in *)address; 3712 snum = ntohs(addr4->sin_port); 3713 addrp = (char *)&addr4->sin_addr.s_addr; 3714 } else { 3715 addr6 = (struct sockaddr_in6 *)address; 3716 snum = ntohs(addr6->sin6_port); 3717 addrp = (char *)&addr6->sin6_addr.s6_addr; 3718 } 3719 3720 if (snum) { 3721 int low, high; 3722 3723 inet_get_local_port_range(&low, &high); 3724 3725 if (snum < max(PROT_SOCK, low) || snum > high) { 3726 err = sel_netport_sid(sk->sk_protocol, 3727 snum, &sid); 3728 if (err) 3729 goto out; 3730 AVC_AUDIT_DATA_INIT(&ad, NET); 3731 ad.u.net.sport = htons(snum); 3732 ad.u.net.family = family; 3733 err = avc_has_perm(isec->sid, sid, 3734 isec->sclass, 3735 SOCKET__NAME_BIND, &ad); 3736 if (err) 3737 goto out; 3738 } 3739 } 3740 3741 switch (isec->sclass) { 3742 case SECCLASS_TCP_SOCKET: 3743 node_perm = TCP_SOCKET__NODE_BIND; 3744 break; 3745 3746 case SECCLASS_UDP_SOCKET: 3747 node_perm = UDP_SOCKET__NODE_BIND; 3748 break; 3749 3750 case SECCLASS_DCCP_SOCKET: 3751 node_perm = DCCP_SOCKET__NODE_BIND; 3752 break; 3753 3754 default: 3755 node_perm = RAWIP_SOCKET__NODE_BIND; 3756 break; 3757 } 3758 3759 err = sel_netnode_sid(addrp, family, &sid); 3760 if (err) 3761 goto out; 3762 3763 AVC_AUDIT_DATA_INIT(&ad, NET); 3764 ad.u.net.sport = htons(snum); 3765 ad.u.net.family = family; 3766 3767 if (family == PF_INET) 3768 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr; 3769 else 3770 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr); 3771 3772 err = avc_has_perm(isec->sid, sid, 3773 isec->sclass, node_perm, &ad); 3774 if (err) 3775 goto out; 3776 } 3777 out: 3778 return err; 3779 } 3780 3781 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 3782 { 3783 struct inode_security_struct *isec; 3784 int err; 3785 3786 err = socket_has_perm(current, sock, SOCKET__CONNECT); 3787 if (err) 3788 return err; 3789 3790 /* 3791 * If a TCP or DCCP socket, check name_connect permission for the port. 3792 */ 3793 isec = SOCK_INODE(sock)->i_security; 3794 if (isec->sclass == SECCLASS_TCP_SOCKET || 3795 isec->sclass == SECCLASS_DCCP_SOCKET) { 3796 struct sock *sk = sock->sk; 3797 struct avc_audit_data ad; 3798 struct sockaddr_in *addr4 = NULL; 3799 struct sockaddr_in6 *addr6 = NULL; 3800 unsigned short snum; 3801 u32 sid, perm; 3802 3803 if (sk->sk_family == PF_INET) { 3804 addr4 = (struct sockaddr_in *)address; 3805 if (addrlen < sizeof(struct sockaddr_in)) 3806 return -EINVAL; 3807 snum = ntohs(addr4->sin_port); 3808 } else { 3809 addr6 = (struct sockaddr_in6 *)address; 3810 if (addrlen < SIN6_LEN_RFC2133) 3811 return -EINVAL; 3812 snum = ntohs(addr6->sin6_port); 3813 } 3814 3815 err = sel_netport_sid(sk->sk_protocol, snum, &sid); 3816 if (err) 3817 goto out; 3818 3819 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ? 3820 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT; 3821 3822 AVC_AUDIT_DATA_INIT(&ad, NET); 3823 ad.u.net.dport = htons(snum); 3824 ad.u.net.family = sk->sk_family; 3825 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad); 3826 if (err) 3827 goto out; 3828 } 3829 3830 out: 3831 return err; 3832 } 3833 3834 static int selinux_socket_listen(struct socket *sock, int backlog) 3835 { 3836 return socket_has_perm(current, sock, SOCKET__LISTEN); 3837 } 3838 3839 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 3840 { 3841 int err; 3842 struct inode_security_struct *isec; 3843 struct inode_security_struct *newisec; 3844 3845 err = socket_has_perm(current, sock, SOCKET__ACCEPT); 3846 if (err) 3847 return err; 3848 3849 newisec = SOCK_INODE(newsock)->i_security; 3850 3851 isec = SOCK_INODE(sock)->i_security; 3852 newisec->sclass = isec->sclass; 3853 newisec->sid = isec->sid; 3854 newisec->initialized = 1; 3855 3856 return 0; 3857 } 3858 3859 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 3860 int size) 3861 { 3862 int rc; 3863 3864 rc = socket_has_perm(current, sock, SOCKET__WRITE); 3865 if (rc) 3866 return rc; 3867 3868 return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE); 3869 } 3870 3871 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 3872 int size, int flags) 3873 { 3874 return socket_has_perm(current, sock, SOCKET__READ); 3875 } 3876 3877 static int selinux_socket_getsockname(struct socket *sock) 3878 { 3879 return socket_has_perm(current, sock, SOCKET__GETATTR); 3880 } 3881 3882 static int selinux_socket_getpeername(struct socket *sock) 3883 { 3884 return socket_has_perm(current, sock, SOCKET__GETATTR); 3885 } 3886 3887 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname) 3888 { 3889 int err; 3890 3891 err = socket_has_perm(current, sock, SOCKET__SETOPT); 3892 if (err) 3893 return err; 3894 3895 return selinux_netlbl_socket_setsockopt(sock, level, optname); 3896 } 3897 3898 static int selinux_socket_getsockopt(struct socket *sock, int level, 3899 int optname) 3900 { 3901 return socket_has_perm(current, sock, SOCKET__GETOPT); 3902 } 3903 3904 static int selinux_socket_shutdown(struct socket *sock, int how) 3905 { 3906 return socket_has_perm(current, sock, SOCKET__SHUTDOWN); 3907 } 3908 3909 static int selinux_socket_unix_stream_connect(struct socket *sock, 3910 struct socket *other, 3911 struct sock *newsk) 3912 { 3913 struct sk_security_struct *ssec; 3914 struct inode_security_struct *isec; 3915 struct inode_security_struct *other_isec; 3916 struct avc_audit_data ad; 3917 int err; 3918 3919 err = secondary_ops->unix_stream_connect(sock, other, newsk); 3920 if (err) 3921 return err; 3922 3923 isec = SOCK_INODE(sock)->i_security; 3924 other_isec = SOCK_INODE(other)->i_security; 3925 3926 AVC_AUDIT_DATA_INIT(&ad, NET); 3927 ad.u.net.sk = other->sk; 3928 3929 err = avc_has_perm(isec->sid, other_isec->sid, 3930 isec->sclass, 3931 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 3932 if (err) 3933 return err; 3934 3935 /* connecting socket */ 3936 ssec = sock->sk->sk_security; 3937 ssec->peer_sid = other_isec->sid; 3938 3939 /* server child socket */ 3940 ssec = newsk->sk_security; 3941 ssec->peer_sid = isec->sid; 3942 err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid); 3943 3944 return err; 3945 } 3946 3947 static int selinux_socket_unix_may_send(struct socket *sock, 3948 struct socket *other) 3949 { 3950 struct inode_security_struct *isec; 3951 struct inode_security_struct *other_isec; 3952 struct avc_audit_data ad; 3953 int err; 3954 3955 isec = SOCK_INODE(sock)->i_security; 3956 other_isec = SOCK_INODE(other)->i_security; 3957 3958 AVC_AUDIT_DATA_INIT(&ad, NET); 3959 ad.u.net.sk = other->sk; 3960 3961 err = avc_has_perm(isec->sid, other_isec->sid, 3962 isec->sclass, SOCKET__SENDTO, &ad); 3963 if (err) 3964 return err; 3965 3966 return 0; 3967 } 3968 3969 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family, 3970 u32 peer_sid, 3971 struct avc_audit_data *ad) 3972 { 3973 int err; 3974 u32 if_sid; 3975 u32 node_sid; 3976 3977 err = sel_netif_sid(ifindex, &if_sid); 3978 if (err) 3979 return err; 3980 err = avc_has_perm(peer_sid, if_sid, 3981 SECCLASS_NETIF, NETIF__INGRESS, ad); 3982 if (err) 3983 return err; 3984 3985 err = sel_netnode_sid(addrp, family, &node_sid); 3986 if (err) 3987 return err; 3988 return avc_has_perm(peer_sid, node_sid, 3989 SECCLASS_NODE, NODE__RECVFROM, ad); 3990 } 3991 3992 static int selinux_sock_rcv_skb_iptables_compat(struct sock *sk, 3993 struct sk_buff *skb, 3994 struct avc_audit_data *ad, 3995 u16 family, 3996 char *addrp) 3997 { 3998 int err; 3999 struct sk_security_struct *sksec = sk->sk_security; 4000 u16 sk_class; 4001 u32 netif_perm, node_perm, recv_perm; 4002 u32 port_sid, node_sid, if_sid, sk_sid; 4003 4004 sk_sid = sksec->sid; 4005 sk_class = sksec->sclass; 4006 4007 switch (sk_class) { 4008 case SECCLASS_UDP_SOCKET: 4009 netif_perm = NETIF__UDP_RECV; 4010 node_perm = NODE__UDP_RECV; 4011 recv_perm = UDP_SOCKET__RECV_MSG; 4012 break; 4013 case SECCLASS_TCP_SOCKET: 4014 netif_perm = NETIF__TCP_RECV; 4015 node_perm = NODE__TCP_RECV; 4016 recv_perm = TCP_SOCKET__RECV_MSG; 4017 break; 4018 case SECCLASS_DCCP_SOCKET: 4019 netif_perm = NETIF__DCCP_RECV; 4020 node_perm = NODE__DCCP_RECV; 4021 recv_perm = DCCP_SOCKET__RECV_MSG; 4022 break; 4023 default: 4024 netif_perm = NETIF__RAWIP_RECV; 4025 node_perm = NODE__RAWIP_RECV; 4026 recv_perm = 0; 4027 break; 4028 } 4029 4030 err = sel_netif_sid(skb->iif, &if_sid); 4031 if (err) 4032 return err; 4033 err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad); 4034 if (err) 4035 return err; 4036 4037 err = sel_netnode_sid(addrp, family, &node_sid); 4038 if (err) 4039 return err; 4040 err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad); 4041 if (err) 4042 return err; 4043 4044 if (!recv_perm) 4045 return 0; 4046 err = sel_netport_sid(sk->sk_protocol, 4047 ntohs(ad->u.net.sport), &port_sid); 4048 if (unlikely(err)) { 4049 printk(KERN_WARNING 4050 "SELinux: failure in" 4051 " selinux_sock_rcv_skb_iptables_compat()," 4052 " network port label not found\n"); 4053 return err; 4054 } 4055 return avc_has_perm(sk_sid, port_sid, sk_class, recv_perm, ad); 4056 } 4057 4058 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 4059 struct avc_audit_data *ad, 4060 u16 family, char *addrp) 4061 { 4062 int err; 4063 struct sk_security_struct *sksec = sk->sk_security; 4064 u32 peer_sid; 4065 u32 sk_sid = sksec->sid; 4066 4067 if (selinux_compat_net) 4068 err = selinux_sock_rcv_skb_iptables_compat(sk, skb, ad, 4069 family, addrp); 4070 else 4071 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4072 PACKET__RECV, ad); 4073 if (err) 4074 return err; 4075 4076 if (selinux_policycap_netpeer) { 4077 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 4078 if (err) 4079 return err; 4080 err = avc_has_perm(sk_sid, peer_sid, 4081 SECCLASS_PEER, PEER__RECV, ad); 4082 } else { 4083 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, ad); 4084 if (err) 4085 return err; 4086 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, ad); 4087 } 4088 4089 return err; 4090 } 4091 4092 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4093 { 4094 int err; 4095 struct sk_security_struct *sksec = sk->sk_security; 4096 u16 family = sk->sk_family; 4097 u32 sk_sid = sksec->sid; 4098 struct avc_audit_data ad; 4099 char *addrp; 4100 4101 if (family != PF_INET && family != PF_INET6) 4102 return 0; 4103 4104 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 4105 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4106 family = PF_INET; 4107 4108 AVC_AUDIT_DATA_INIT(&ad, NET); 4109 ad.u.net.netif = skb->iif; 4110 ad.u.net.family = family; 4111 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4112 if (err) 4113 return err; 4114 4115 /* If any sort of compatibility mode is enabled then handoff processing 4116 * to the selinux_sock_rcv_skb_compat() function to deal with the 4117 * special handling. We do this in an attempt to keep this function 4118 * as fast and as clean as possible. */ 4119 if (selinux_compat_net || !selinux_policycap_netpeer) 4120 return selinux_sock_rcv_skb_compat(sk, skb, &ad, 4121 family, addrp); 4122 4123 if (netlbl_enabled() || selinux_xfrm_enabled()) { 4124 u32 peer_sid; 4125 4126 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 4127 if (err) 4128 return err; 4129 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family, 4130 peer_sid, &ad); 4131 if (err) 4132 return err; 4133 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER, 4134 PEER__RECV, &ad); 4135 } 4136 4137 if (selinux_secmark_enabled()) { 4138 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4139 PACKET__RECV, &ad); 4140 if (err) 4141 return err; 4142 } 4143 4144 return err; 4145 } 4146 4147 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval, 4148 int __user *optlen, unsigned len) 4149 { 4150 int err = 0; 4151 char *scontext; 4152 u32 scontext_len; 4153 struct sk_security_struct *ssec; 4154 struct inode_security_struct *isec; 4155 u32 peer_sid = SECSID_NULL; 4156 4157 isec = SOCK_INODE(sock)->i_security; 4158 4159 if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 4160 isec->sclass == SECCLASS_TCP_SOCKET) { 4161 ssec = sock->sk->sk_security; 4162 peer_sid = ssec->peer_sid; 4163 } 4164 if (peer_sid == SECSID_NULL) { 4165 err = -ENOPROTOOPT; 4166 goto out; 4167 } 4168 4169 err = security_sid_to_context(peer_sid, &scontext, &scontext_len); 4170 4171 if (err) 4172 goto out; 4173 4174 if (scontext_len > len) { 4175 err = -ERANGE; 4176 goto out_len; 4177 } 4178 4179 if (copy_to_user(optval, scontext, scontext_len)) 4180 err = -EFAULT; 4181 4182 out_len: 4183 if (put_user(scontext_len, optlen)) 4184 err = -EFAULT; 4185 4186 kfree(scontext); 4187 out: 4188 return err; 4189 } 4190 4191 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 4192 { 4193 u32 peer_secid = SECSID_NULL; 4194 u16 family; 4195 4196 if (sock) 4197 family = sock->sk->sk_family; 4198 else if (skb && skb->sk) 4199 family = skb->sk->sk_family; 4200 else 4201 goto out; 4202 4203 if (sock && family == PF_UNIX) 4204 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid); 4205 else if (skb) 4206 selinux_skb_peerlbl_sid(skb, family, &peer_secid); 4207 4208 out: 4209 *secid = peer_secid; 4210 if (peer_secid == SECSID_NULL) 4211 return -EINVAL; 4212 return 0; 4213 } 4214 4215 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 4216 { 4217 return sk_alloc_security(sk, family, priority); 4218 } 4219 4220 static void selinux_sk_free_security(struct sock *sk) 4221 { 4222 sk_free_security(sk); 4223 } 4224 4225 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 4226 { 4227 struct sk_security_struct *ssec = sk->sk_security; 4228 struct sk_security_struct *newssec = newsk->sk_security; 4229 4230 newssec->sid = ssec->sid; 4231 newssec->peer_sid = ssec->peer_sid; 4232 newssec->sclass = ssec->sclass; 4233 4234 selinux_netlbl_sk_security_reset(newssec, newsk->sk_family); 4235 } 4236 4237 static void selinux_sk_getsecid(struct sock *sk, u32 *secid) 4238 { 4239 if (!sk) 4240 *secid = SECINITSID_ANY_SOCKET; 4241 else { 4242 struct sk_security_struct *sksec = sk->sk_security; 4243 4244 *secid = sksec->sid; 4245 } 4246 } 4247 4248 static void selinux_sock_graft(struct sock *sk, struct socket *parent) 4249 { 4250 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security; 4251 struct sk_security_struct *sksec = sk->sk_security; 4252 4253 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 4254 sk->sk_family == PF_UNIX) 4255 isec->sid = sksec->sid; 4256 sksec->sclass = isec->sclass; 4257 4258 selinux_netlbl_sock_graft(sk, parent); 4259 } 4260 4261 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb, 4262 struct request_sock *req) 4263 { 4264 struct sk_security_struct *sksec = sk->sk_security; 4265 int err; 4266 u32 newsid; 4267 u32 peersid; 4268 4269 err = selinux_skb_peerlbl_sid(skb, sk->sk_family, &peersid); 4270 if (err) 4271 return err; 4272 if (peersid == SECSID_NULL) { 4273 req->secid = sksec->sid; 4274 req->peer_secid = SECSID_NULL; 4275 return 0; 4276 } 4277 4278 err = security_sid_mls_copy(sksec->sid, peersid, &newsid); 4279 if (err) 4280 return err; 4281 4282 req->secid = newsid; 4283 req->peer_secid = peersid; 4284 return 0; 4285 } 4286 4287 static void selinux_inet_csk_clone(struct sock *newsk, 4288 const struct request_sock *req) 4289 { 4290 struct sk_security_struct *newsksec = newsk->sk_security; 4291 4292 newsksec->sid = req->secid; 4293 newsksec->peer_sid = req->peer_secid; 4294 /* NOTE: Ideally, we should also get the isec->sid for the 4295 new socket in sync, but we don't have the isec available yet. 4296 So we will wait until sock_graft to do it, by which 4297 time it will have been created and available. */ 4298 4299 /* We don't need to take any sort of lock here as we are the only 4300 * thread with access to newsksec */ 4301 selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family); 4302 } 4303 4304 static void selinux_inet_conn_established(struct sock *sk, 4305 struct sk_buff *skb) 4306 { 4307 struct sk_security_struct *sksec = sk->sk_security; 4308 4309 selinux_skb_peerlbl_sid(skb, sk->sk_family, &sksec->peer_sid); 4310 } 4311 4312 static void selinux_req_classify_flow(const struct request_sock *req, 4313 struct flowi *fl) 4314 { 4315 fl->secid = req->secid; 4316 } 4317 4318 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb) 4319 { 4320 int err = 0; 4321 u32 perm; 4322 struct nlmsghdr *nlh; 4323 struct socket *sock = sk->sk_socket; 4324 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security; 4325 4326 if (skb->len < NLMSG_SPACE(0)) { 4327 err = -EINVAL; 4328 goto out; 4329 } 4330 nlh = nlmsg_hdr(skb); 4331 4332 err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm); 4333 if (err) { 4334 if (err == -EINVAL) { 4335 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR, 4336 "SELinux: unrecognized netlink message" 4337 " type=%hu for sclass=%hu\n", 4338 nlh->nlmsg_type, isec->sclass); 4339 if (!selinux_enforcing) 4340 err = 0; 4341 } 4342 4343 /* Ignore */ 4344 if (err == -ENOENT) 4345 err = 0; 4346 goto out; 4347 } 4348 4349 err = socket_has_perm(current, sock, perm); 4350 out: 4351 return err; 4352 } 4353 4354 #ifdef CONFIG_NETFILTER 4355 4356 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex, 4357 u16 family) 4358 { 4359 char *addrp; 4360 u32 peer_sid; 4361 struct avc_audit_data ad; 4362 u8 secmark_active; 4363 u8 peerlbl_active; 4364 4365 if (!selinux_policycap_netpeer) 4366 return NF_ACCEPT; 4367 4368 secmark_active = selinux_secmark_enabled(); 4369 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled(); 4370 if (!secmark_active && !peerlbl_active) 4371 return NF_ACCEPT; 4372 4373 AVC_AUDIT_DATA_INIT(&ad, NET); 4374 ad.u.net.netif = ifindex; 4375 ad.u.net.family = family; 4376 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0) 4377 return NF_DROP; 4378 4379 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0) 4380 return NF_DROP; 4381 4382 if (peerlbl_active) 4383 if (selinux_inet_sys_rcv_skb(ifindex, addrp, family, 4384 peer_sid, &ad) != 0) 4385 return NF_DROP; 4386 4387 if (secmark_active) 4388 if (avc_has_perm(peer_sid, skb->secmark, 4389 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad)) 4390 return NF_DROP; 4391 4392 return NF_ACCEPT; 4393 } 4394 4395 static unsigned int selinux_ipv4_forward(unsigned int hooknum, 4396 struct sk_buff *skb, 4397 const struct net_device *in, 4398 const struct net_device *out, 4399 int (*okfn)(struct sk_buff *)) 4400 { 4401 return selinux_ip_forward(skb, in->ifindex, PF_INET); 4402 } 4403 4404 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4405 static unsigned int selinux_ipv6_forward(unsigned int hooknum, 4406 struct sk_buff *skb, 4407 const struct net_device *in, 4408 const struct net_device *out, 4409 int (*okfn)(struct sk_buff *)) 4410 { 4411 return selinux_ip_forward(skb, in->ifindex, PF_INET6); 4412 } 4413 #endif /* IPV6 */ 4414 4415 static int selinux_ip_postroute_iptables_compat(struct sock *sk, 4416 int ifindex, 4417 struct avc_audit_data *ad, 4418 u16 family, char *addrp) 4419 { 4420 int err; 4421 struct sk_security_struct *sksec = sk->sk_security; 4422 u16 sk_class; 4423 u32 netif_perm, node_perm, send_perm; 4424 u32 port_sid, node_sid, if_sid, sk_sid; 4425 4426 sk_sid = sksec->sid; 4427 sk_class = sksec->sclass; 4428 4429 switch (sk_class) { 4430 case SECCLASS_UDP_SOCKET: 4431 netif_perm = NETIF__UDP_SEND; 4432 node_perm = NODE__UDP_SEND; 4433 send_perm = UDP_SOCKET__SEND_MSG; 4434 break; 4435 case SECCLASS_TCP_SOCKET: 4436 netif_perm = NETIF__TCP_SEND; 4437 node_perm = NODE__TCP_SEND; 4438 send_perm = TCP_SOCKET__SEND_MSG; 4439 break; 4440 case SECCLASS_DCCP_SOCKET: 4441 netif_perm = NETIF__DCCP_SEND; 4442 node_perm = NODE__DCCP_SEND; 4443 send_perm = DCCP_SOCKET__SEND_MSG; 4444 break; 4445 default: 4446 netif_perm = NETIF__RAWIP_SEND; 4447 node_perm = NODE__RAWIP_SEND; 4448 send_perm = 0; 4449 break; 4450 } 4451 4452 err = sel_netif_sid(ifindex, &if_sid); 4453 if (err) 4454 return err; 4455 err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad); 4456 return err; 4457 4458 err = sel_netnode_sid(addrp, family, &node_sid); 4459 if (err) 4460 return err; 4461 err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad); 4462 if (err) 4463 return err; 4464 4465 if (send_perm != 0) 4466 return 0; 4467 4468 err = sel_netport_sid(sk->sk_protocol, 4469 ntohs(ad->u.net.dport), &port_sid); 4470 if (unlikely(err)) { 4471 printk(KERN_WARNING 4472 "SELinux: failure in" 4473 " selinux_ip_postroute_iptables_compat()," 4474 " network port label not found\n"); 4475 return err; 4476 } 4477 return avc_has_perm(sk_sid, port_sid, sk_class, send_perm, ad); 4478 } 4479 4480 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb, 4481 int ifindex, 4482 struct avc_audit_data *ad, 4483 u16 family, 4484 char *addrp, 4485 u8 proto) 4486 { 4487 struct sock *sk = skb->sk; 4488 struct sk_security_struct *sksec; 4489 4490 if (sk == NULL) 4491 return NF_ACCEPT; 4492 sksec = sk->sk_security; 4493 4494 if (selinux_compat_net) { 4495 if (selinux_ip_postroute_iptables_compat(skb->sk, ifindex, 4496 ad, family, addrp)) 4497 return NF_DROP; 4498 } else { 4499 if (avc_has_perm(sksec->sid, skb->secmark, 4500 SECCLASS_PACKET, PACKET__SEND, ad)) 4501 return NF_DROP; 4502 } 4503 4504 if (selinux_policycap_netpeer) 4505 if (selinux_xfrm_postroute_last(sksec->sid, skb, ad, proto)) 4506 return NF_DROP; 4507 4508 return NF_ACCEPT; 4509 } 4510 4511 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex, 4512 u16 family) 4513 { 4514 u32 secmark_perm; 4515 u32 peer_sid; 4516 struct sock *sk; 4517 struct avc_audit_data ad; 4518 char *addrp; 4519 u8 proto; 4520 u8 secmark_active; 4521 u8 peerlbl_active; 4522 4523 AVC_AUDIT_DATA_INIT(&ad, NET); 4524 ad.u.net.netif = ifindex; 4525 ad.u.net.family = family; 4526 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto)) 4527 return NF_DROP; 4528 4529 /* If any sort of compatibility mode is enabled then handoff processing 4530 * to the selinux_ip_postroute_compat() function to deal with the 4531 * special handling. We do this in an attempt to keep this function 4532 * as fast and as clean as possible. */ 4533 if (selinux_compat_net || !selinux_policycap_netpeer) 4534 return selinux_ip_postroute_compat(skb, ifindex, &ad, 4535 family, addrp, proto); 4536 4537 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec 4538 * packet transformation so allow the packet to pass without any checks 4539 * since we'll have another chance to perform access control checks 4540 * when the packet is on it's final way out. 4541 * NOTE: there appear to be some IPv6 multicast cases where skb->dst 4542 * is NULL, in this case go ahead and apply access control. */ 4543 if (skb->dst != NULL && skb->dst->xfrm != NULL) 4544 return NF_ACCEPT; 4545 4546 secmark_active = selinux_secmark_enabled(); 4547 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled(); 4548 if (!secmark_active && !peerlbl_active) 4549 return NF_ACCEPT; 4550 4551 /* if the packet is locally generated (skb->sk != NULL) then use the 4552 * socket's label as the peer label, otherwise the packet is being 4553 * forwarded through this system and we need to fetch the peer label 4554 * directly from the packet */ 4555 sk = skb->sk; 4556 if (sk) { 4557 struct sk_security_struct *sksec = sk->sk_security; 4558 peer_sid = sksec->sid; 4559 secmark_perm = PACKET__SEND; 4560 } else { 4561 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid)) 4562 return NF_DROP; 4563 secmark_perm = PACKET__FORWARD_OUT; 4564 } 4565 4566 if (secmark_active) 4567 if (avc_has_perm(peer_sid, skb->secmark, 4568 SECCLASS_PACKET, secmark_perm, &ad)) 4569 return NF_DROP; 4570 4571 if (peerlbl_active) { 4572 u32 if_sid; 4573 u32 node_sid; 4574 4575 if (sel_netif_sid(ifindex, &if_sid)) 4576 return NF_DROP; 4577 if (avc_has_perm(peer_sid, if_sid, 4578 SECCLASS_NETIF, NETIF__EGRESS, &ad)) 4579 return NF_DROP; 4580 4581 if (sel_netnode_sid(addrp, family, &node_sid)) 4582 return NF_DROP; 4583 if (avc_has_perm(peer_sid, node_sid, 4584 SECCLASS_NODE, NODE__SENDTO, &ad)) 4585 return NF_DROP; 4586 } 4587 4588 return NF_ACCEPT; 4589 } 4590 4591 static unsigned int selinux_ipv4_postroute(unsigned int hooknum, 4592 struct sk_buff *skb, 4593 const struct net_device *in, 4594 const struct net_device *out, 4595 int (*okfn)(struct sk_buff *)) 4596 { 4597 return selinux_ip_postroute(skb, out->ifindex, PF_INET); 4598 } 4599 4600 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4601 static unsigned int selinux_ipv6_postroute(unsigned int hooknum, 4602 struct sk_buff *skb, 4603 const struct net_device *in, 4604 const struct net_device *out, 4605 int (*okfn)(struct sk_buff *)) 4606 { 4607 return selinux_ip_postroute(skb, out->ifindex, PF_INET6); 4608 } 4609 #endif /* IPV6 */ 4610 4611 #endif /* CONFIG_NETFILTER */ 4612 4613 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 4614 { 4615 int err; 4616 4617 err = secondary_ops->netlink_send(sk, skb); 4618 if (err) 4619 return err; 4620 4621 if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS) 4622 err = selinux_nlmsg_perm(sk, skb); 4623 4624 return err; 4625 } 4626 4627 static int selinux_netlink_recv(struct sk_buff *skb, int capability) 4628 { 4629 int err; 4630 struct avc_audit_data ad; 4631 4632 err = secondary_ops->netlink_recv(skb, capability); 4633 if (err) 4634 return err; 4635 4636 AVC_AUDIT_DATA_INIT(&ad, CAP); 4637 ad.u.cap = capability; 4638 4639 return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid, 4640 SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad); 4641 } 4642 4643 static int ipc_alloc_security(struct task_struct *task, 4644 struct kern_ipc_perm *perm, 4645 u16 sclass) 4646 { 4647 struct task_security_struct *tsec = task->security; 4648 struct ipc_security_struct *isec; 4649 4650 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL); 4651 if (!isec) 4652 return -ENOMEM; 4653 4654 isec->sclass = sclass; 4655 isec->sid = tsec->sid; 4656 perm->security = isec; 4657 4658 return 0; 4659 } 4660 4661 static void ipc_free_security(struct kern_ipc_perm *perm) 4662 { 4663 struct ipc_security_struct *isec = perm->security; 4664 perm->security = NULL; 4665 kfree(isec); 4666 } 4667 4668 static int msg_msg_alloc_security(struct msg_msg *msg) 4669 { 4670 struct msg_security_struct *msec; 4671 4672 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL); 4673 if (!msec) 4674 return -ENOMEM; 4675 4676 msec->sid = SECINITSID_UNLABELED; 4677 msg->security = msec; 4678 4679 return 0; 4680 } 4681 4682 static void msg_msg_free_security(struct msg_msg *msg) 4683 { 4684 struct msg_security_struct *msec = msg->security; 4685 4686 msg->security = NULL; 4687 kfree(msec); 4688 } 4689 4690 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 4691 u32 perms) 4692 { 4693 struct task_security_struct *tsec; 4694 struct ipc_security_struct *isec; 4695 struct avc_audit_data ad; 4696 4697 tsec = current->security; 4698 isec = ipc_perms->security; 4699 4700 AVC_AUDIT_DATA_INIT(&ad, IPC); 4701 ad.u.ipc_id = ipc_perms->key; 4702 4703 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad); 4704 } 4705 4706 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 4707 { 4708 return msg_msg_alloc_security(msg); 4709 } 4710 4711 static void selinux_msg_msg_free_security(struct msg_msg *msg) 4712 { 4713 msg_msg_free_security(msg); 4714 } 4715 4716 /* message queue security operations */ 4717 static int selinux_msg_queue_alloc_security(struct msg_queue *msq) 4718 { 4719 struct task_security_struct *tsec; 4720 struct ipc_security_struct *isec; 4721 struct avc_audit_data ad; 4722 int rc; 4723 4724 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ); 4725 if (rc) 4726 return rc; 4727 4728 tsec = current->security; 4729 isec = msq->q_perm.security; 4730 4731 AVC_AUDIT_DATA_INIT(&ad, IPC); 4732 ad.u.ipc_id = msq->q_perm.key; 4733 4734 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ, 4735 MSGQ__CREATE, &ad); 4736 if (rc) { 4737 ipc_free_security(&msq->q_perm); 4738 return rc; 4739 } 4740 return 0; 4741 } 4742 4743 static void selinux_msg_queue_free_security(struct msg_queue *msq) 4744 { 4745 ipc_free_security(&msq->q_perm); 4746 } 4747 4748 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg) 4749 { 4750 struct task_security_struct *tsec; 4751 struct ipc_security_struct *isec; 4752 struct avc_audit_data ad; 4753 4754 tsec = current->security; 4755 isec = msq->q_perm.security; 4756 4757 AVC_AUDIT_DATA_INIT(&ad, IPC); 4758 ad.u.ipc_id = msq->q_perm.key; 4759 4760 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ, 4761 MSGQ__ASSOCIATE, &ad); 4762 } 4763 4764 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd) 4765 { 4766 int err; 4767 int perms; 4768 4769 switch (cmd) { 4770 case IPC_INFO: 4771 case MSG_INFO: 4772 /* No specific object, just general system-wide information. */ 4773 return task_has_system(current, SYSTEM__IPC_INFO); 4774 case IPC_STAT: 4775 case MSG_STAT: 4776 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 4777 break; 4778 case IPC_SET: 4779 perms = MSGQ__SETATTR; 4780 break; 4781 case IPC_RMID: 4782 perms = MSGQ__DESTROY; 4783 break; 4784 default: 4785 return 0; 4786 } 4787 4788 err = ipc_has_perm(&msq->q_perm, perms); 4789 return err; 4790 } 4791 4792 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg) 4793 { 4794 struct task_security_struct *tsec; 4795 struct ipc_security_struct *isec; 4796 struct msg_security_struct *msec; 4797 struct avc_audit_data ad; 4798 int rc; 4799 4800 tsec = current->security; 4801 isec = msq->q_perm.security; 4802 msec = msg->security; 4803 4804 /* 4805 * First time through, need to assign label to the message 4806 */ 4807 if (msec->sid == SECINITSID_UNLABELED) { 4808 /* 4809 * Compute new sid based on current process and 4810 * message queue this message will be stored in 4811 */ 4812 rc = security_transition_sid(tsec->sid, 4813 isec->sid, 4814 SECCLASS_MSG, 4815 &msec->sid); 4816 if (rc) 4817 return rc; 4818 } 4819 4820 AVC_AUDIT_DATA_INIT(&ad, IPC); 4821 ad.u.ipc_id = msq->q_perm.key; 4822 4823 /* Can this process write to the queue? */ 4824 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ, 4825 MSGQ__WRITE, &ad); 4826 if (!rc) 4827 /* Can this process send the message */ 4828 rc = avc_has_perm(tsec->sid, msec->sid, 4829 SECCLASS_MSG, MSG__SEND, &ad); 4830 if (!rc) 4831 /* Can the message be put in the queue? */ 4832 rc = avc_has_perm(msec->sid, isec->sid, 4833 SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad); 4834 4835 return rc; 4836 } 4837 4838 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 4839 struct task_struct *target, 4840 long type, int mode) 4841 { 4842 struct task_security_struct *tsec; 4843 struct ipc_security_struct *isec; 4844 struct msg_security_struct *msec; 4845 struct avc_audit_data ad; 4846 int rc; 4847 4848 tsec = target->security; 4849 isec = msq->q_perm.security; 4850 msec = msg->security; 4851 4852 AVC_AUDIT_DATA_INIT(&ad, IPC); 4853 ad.u.ipc_id = msq->q_perm.key; 4854 4855 rc = avc_has_perm(tsec->sid, isec->sid, 4856 SECCLASS_MSGQ, MSGQ__READ, &ad); 4857 if (!rc) 4858 rc = avc_has_perm(tsec->sid, msec->sid, 4859 SECCLASS_MSG, MSG__RECEIVE, &ad); 4860 return rc; 4861 } 4862 4863 /* Shared Memory security operations */ 4864 static int selinux_shm_alloc_security(struct shmid_kernel *shp) 4865 { 4866 struct task_security_struct *tsec; 4867 struct ipc_security_struct *isec; 4868 struct avc_audit_data ad; 4869 int rc; 4870 4871 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM); 4872 if (rc) 4873 return rc; 4874 4875 tsec = current->security; 4876 isec = shp->shm_perm.security; 4877 4878 AVC_AUDIT_DATA_INIT(&ad, IPC); 4879 ad.u.ipc_id = shp->shm_perm.key; 4880 4881 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM, 4882 SHM__CREATE, &ad); 4883 if (rc) { 4884 ipc_free_security(&shp->shm_perm); 4885 return rc; 4886 } 4887 return 0; 4888 } 4889 4890 static void selinux_shm_free_security(struct shmid_kernel *shp) 4891 { 4892 ipc_free_security(&shp->shm_perm); 4893 } 4894 4895 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg) 4896 { 4897 struct task_security_struct *tsec; 4898 struct ipc_security_struct *isec; 4899 struct avc_audit_data ad; 4900 4901 tsec = current->security; 4902 isec = shp->shm_perm.security; 4903 4904 AVC_AUDIT_DATA_INIT(&ad, IPC); 4905 ad.u.ipc_id = shp->shm_perm.key; 4906 4907 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM, 4908 SHM__ASSOCIATE, &ad); 4909 } 4910 4911 /* Note, at this point, shp is locked down */ 4912 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd) 4913 { 4914 int perms; 4915 int err; 4916 4917 switch (cmd) { 4918 case IPC_INFO: 4919 case SHM_INFO: 4920 /* No specific object, just general system-wide information. */ 4921 return task_has_system(current, SYSTEM__IPC_INFO); 4922 case IPC_STAT: 4923 case SHM_STAT: 4924 perms = SHM__GETATTR | SHM__ASSOCIATE; 4925 break; 4926 case IPC_SET: 4927 perms = SHM__SETATTR; 4928 break; 4929 case SHM_LOCK: 4930 case SHM_UNLOCK: 4931 perms = SHM__LOCK; 4932 break; 4933 case IPC_RMID: 4934 perms = SHM__DESTROY; 4935 break; 4936 default: 4937 return 0; 4938 } 4939 4940 err = ipc_has_perm(&shp->shm_perm, perms); 4941 return err; 4942 } 4943 4944 static int selinux_shm_shmat(struct shmid_kernel *shp, 4945 char __user *shmaddr, int shmflg) 4946 { 4947 u32 perms; 4948 int rc; 4949 4950 rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg); 4951 if (rc) 4952 return rc; 4953 4954 if (shmflg & SHM_RDONLY) 4955 perms = SHM__READ; 4956 else 4957 perms = SHM__READ | SHM__WRITE; 4958 4959 return ipc_has_perm(&shp->shm_perm, perms); 4960 } 4961 4962 /* Semaphore security operations */ 4963 static int selinux_sem_alloc_security(struct sem_array *sma) 4964 { 4965 struct task_security_struct *tsec; 4966 struct ipc_security_struct *isec; 4967 struct avc_audit_data ad; 4968 int rc; 4969 4970 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM); 4971 if (rc) 4972 return rc; 4973 4974 tsec = current->security; 4975 isec = sma->sem_perm.security; 4976 4977 AVC_AUDIT_DATA_INIT(&ad, IPC); 4978 ad.u.ipc_id = sma->sem_perm.key; 4979 4980 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM, 4981 SEM__CREATE, &ad); 4982 if (rc) { 4983 ipc_free_security(&sma->sem_perm); 4984 return rc; 4985 } 4986 return 0; 4987 } 4988 4989 static void selinux_sem_free_security(struct sem_array *sma) 4990 { 4991 ipc_free_security(&sma->sem_perm); 4992 } 4993 4994 static int selinux_sem_associate(struct sem_array *sma, int semflg) 4995 { 4996 struct task_security_struct *tsec; 4997 struct ipc_security_struct *isec; 4998 struct avc_audit_data ad; 4999 5000 tsec = current->security; 5001 isec = sma->sem_perm.security; 5002 5003 AVC_AUDIT_DATA_INIT(&ad, IPC); 5004 ad.u.ipc_id = sma->sem_perm.key; 5005 5006 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM, 5007 SEM__ASSOCIATE, &ad); 5008 } 5009 5010 /* Note, at this point, sma is locked down */ 5011 static int selinux_sem_semctl(struct sem_array *sma, int cmd) 5012 { 5013 int err; 5014 u32 perms; 5015 5016 switch (cmd) { 5017 case IPC_INFO: 5018 case SEM_INFO: 5019 /* No specific object, just general system-wide information. */ 5020 return task_has_system(current, SYSTEM__IPC_INFO); 5021 case GETPID: 5022 case GETNCNT: 5023 case GETZCNT: 5024 perms = SEM__GETATTR; 5025 break; 5026 case GETVAL: 5027 case GETALL: 5028 perms = SEM__READ; 5029 break; 5030 case SETVAL: 5031 case SETALL: 5032 perms = SEM__WRITE; 5033 break; 5034 case IPC_RMID: 5035 perms = SEM__DESTROY; 5036 break; 5037 case IPC_SET: 5038 perms = SEM__SETATTR; 5039 break; 5040 case IPC_STAT: 5041 case SEM_STAT: 5042 perms = SEM__GETATTR | SEM__ASSOCIATE; 5043 break; 5044 default: 5045 return 0; 5046 } 5047 5048 err = ipc_has_perm(&sma->sem_perm, perms); 5049 return err; 5050 } 5051 5052 static int selinux_sem_semop(struct sem_array *sma, 5053 struct sembuf *sops, unsigned nsops, int alter) 5054 { 5055 u32 perms; 5056 5057 if (alter) 5058 perms = SEM__READ | SEM__WRITE; 5059 else 5060 perms = SEM__READ; 5061 5062 return ipc_has_perm(&sma->sem_perm, perms); 5063 } 5064 5065 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 5066 { 5067 u32 av = 0; 5068 5069 av = 0; 5070 if (flag & S_IRUGO) 5071 av |= IPC__UNIX_READ; 5072 if (flag & S_IWUGO) 5073 av |= IPC__UNIX_WRITE; 5074 5075 if (av == 0) 5076 return 0; 5077 5078 return ipc_has_perm(ipcp, av); 5079 } 5080 5081 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 5082 { 5083 struct ipc_security_struct *isec = ipcp->security; 5084 *secid = isec->sid; 5085 } 5086 5087 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode) 5088 { 5089 if (inode) 5090 inode_doinit_with_dentry(inode, dentry); 5091 } 5092 5093 static int selinux_getprocattr(struct task_struct *p, 5094 char *name, char **value) 5095 { 5096 struct task_security_struct *tsec; 5097 u32 sid; 5098 int error; 5099 unsigned len; 5100 5101 if (current != p) { 5102 error = task_has_perm(current, p, PROCESS__GETATTR); 5103 if (error) 5104 return error; 5105 } 5106 5107 tsec = p->security; 5108 5109 if (!strcmp(name, "current")) 5110 sid = tsec->sid; 5111 else if (!strcmp(name, "prev")) 5112 sid = tsec->osid; 5113 else if (!strcmp(name, "exec")) 5114 sid = tsec->exec_sid; 5115 else if (!strcmp(name, "fscreate")) 5116 sid = tsec->create_sid; 5117 else if (!strcmp(name, "keycreate")) 5118 sid = tsec->keycreate_sid; 5119 else if (!strcmp(name, "sockcreate")) 5120 sid = tsec->sockcreate_sid; 5121 else 5122 return -EINVAL; 5123 5124 if (!sid) 5125 return 0; 5126 5127 error = security_sid_to_context(sid, value, &len); 5128 if (error) 5129 return error; 5130 return len; 5131 } 5132 5133 static int selinux_setprocattr(struct task_struct *p, 5134 char *name, void *value, size_t size) 5135 { 5136 struct task_security_struct *tsec; 5137 struct task_struct *tracer; 5138 u32 sid = 0; 5139 int error; 5140 char *str = value; 5141 5142 if (current != p) { 5143 /* SELinux only allows a process to change its own 5144 security attributes. */ 5145 return -EACCES; 5146 } 5147 5148 /* 5149 * Basic control over ability to set these attributes at all. 5150 * current == p, but we'll pass them separately in case the 5151 * above restriction is ever removed. 5152 */ 5153 if (!strcmp(name, "exec")) 5154 error = task_has_perm(current, p, PROCESS__SETEXEC); 5155 else if (!strcmp(name, "fscreate")) 5156 error = task_has_perm(current, p, PROCESS__SETFSCREATE); 5157 else if (!strcmp(name, "keycreate")) 5158 error = task_has_perm(current, p, PROCESS__SETKEYCREATE); 5159 else if (!strcmp(name, "sockcreate")) 5160 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE); 5161 else if (!strcmp(name, "current")) 5162 error = task_has_perm(current, p, PROCESS__SETCURRENT); 5163 else 5164 error = -EINVAL; 5165 if (error) 5166 return error; 5167 5168 /* Obtain a SID for the context, if one was specified. */ 5169 if (size && str[1] && str[1] != '\n') { 5170 if (str[size-1] == '\n') { 5171 str[size-1] = 0; 5172 size--; 5173 } 5174 error = security_context_to_sid(value, size, &sid); 5175 if (error == -EINVAL && !strcmp(name, "fscreate")) { 5176 if (!capable(CAP_MAC_ADMIN)) 5177 return error; 5178 error = security_context_to_sid_force(value, size, 5179 &sid); 5180 } 5181 if (error) 5182 return error; 5183 } 5184 5185 /* Permission checking based on the specified context is 5186 performed during the actual operation (execve, 5187 open/mkdir/...), when we know the full context of the 5188 operation. See selinux_bprm_set_security for the execve 5189 checks and may_create for the file creation checks. The 5190 operation will then fail if the context is not permitted. */ 5191 tsec = p->security; 5192 if (!strcmp(name, "exec")) 5193 tsec->exec_sid = sid; 5194 else if (!strcmp(name, "fscreate")) 5195 tsec->create_sid = sid; 5196 else if (!strcmp(name, "keycreate")) { 5197 error = may_create_key(sid, p); 5198 if (error) 5199 return error; 5200 tsec->keycreate_sid = sid; 5201 } else if (!strcmp(name, "sockcreate")) 5202 tsec->sockcreate_sid = sid; 5203 else if (!strcmp(name, "current")) { 5204 struct av_decision avd; 5205 5206 if (sid == 0) 5207 return -EINVAL; 5208 5209 /* Only allow single threaded processes to change context */ 5210 if (atomic_read(&p->mm->mm_users) != 1) { 5211 struct task_struct *g, *t; 5212 struct mm_struct *mm = p->mm; 5213 read_lock(&tasklist_lock); 5214 do_each_thread(g, t) { 5215 if (t->mm == mm && t != p) { 5216 read_unlock(&tasklist_lock); 5217 return -EPERM; 5218 } 5219 } while_each_thread(g, t); 5220 read_unlock(&tasklist_lock); 5221 } 5222 5223 /* Check permissions for the transition. */ 5224 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 5225 PROCESS__DYNTRANSITION, NULL); 5226 if (error) 5227 return error; 5228 5229 /* Check for ptracing, and update the task SID if ok. 5230 Otherwise, leave SID unchanged and fail. */ 5231 task_lock(p); 5232 rcu_read_lock(); 5233 tracer = tracehook_tracer_task(p); 5234 if (tracer != NULL) { 5235 struct task_security_struct *ptsec = tracer->security; 5236 u32 ptsid = ptsec->sid; 5237 rcu_read_unlock(); 5238 error = avc_has_perm_noaudit(ptsid, sid, 5239 SECCLASS_PROCESS, 5240 PROCESS__PTRACE, 0, &avd); 5241 if (!error) 5242 tsec->sid = sid; 5243 task_unlock(p); 5244 avc_audit(ptsid, sid, SECCLASS_PROCESS, 5245 PROCESS__PTRACE, &avd, error, NULL); 5246 if (error) 5247 return error; 5248 } else { 5249 rcu_read_unlock(); 5250 tsec->sid = sid; 5251 task_unlock(p); 5252 } 5253 } else 5254 return -EINVAL; 5255 5256 return size; 5257 } 5258 5259 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 5260 { 5261 return security_sid_to_context(secid, secdata, seclen); 5262 } 5263 5264 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 5265 { 5266 return security_context_to_sid(secdata, seclen, secid); 5267 } 5268 5269 static void selinux_release_secctx(char *secdata, u32 seclen) 5270 { 5271 kfree(secdata); 5272 } 5273 5274 #ifdef CONFIG_KEYS 5275 5276 static int selinux_key_alloc(struct key *k, struct task_struct *tsk, 5277 unsigned long flags) 5278 { 5279 struct task_security_struct *tsec = tsk->security; 5280 struct key_security_struct *ksec; 5281 5282 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); 5283 if (!ksec) 5284 return -ENOMEM; 5285 5286 if (tsec->keycreate_sid) 5287 ksec->sid = tsec->keycreate_sid; 5288 else 5289 ksec->sid = tsec->sid; 5290 k->security = ksec; 5291 5292 return 0; 5293 } 5294 5295 static void selinux_key_free(struct key *k) 5296 { 5297 struct key_security_struct *ksec = k->security; 5298 5299 k->security = NULL; 5300 kfree(ksec); 5301 } 5302 5303 static int selinux_key_permission(key_ref_t key_ref, 5304 struct task_struct *ctx, 5305 key_perm_t perm) 5306 { 5307 struct key *key; 5308 struct task_security_struct *tsec; 5309 struct key_security_struct *ksec; 5310 5311 key = key_ref_to_ptr(key_ref); 5312 5313 tsec = ctx->security; 5314 ksec = key->security; 5315 5316 /* if no specific permissions are requested, we skip the 5317 permission check. No serious, additional covert channels 5318 appear to be created. */ 5319 if (perm == 0) 5320 return 0; 5321 5322 return avc_has_perm(tsec->sid, ksec->sid, 5323 SECCLASS_KEY, perm, NULL); 5324 } 5325 5326 static int selinux_key_getsecurity(struct key *key, char **_buffer) 5327 { 5328 struct key_security_struct *ksec = key->security; 5329 char *context = NULL; 5330 unsigned len; 5331 int rc; 5332 5333 rc = security_sid_to_context(ksec->sid, &context, &len); 5334 if (!rc) 5335 rc = len; 5336 *_buffer = context; 5337 return rc; 5338 } 5339 5340 #endif 5341 5342 static struct security_operations selinux_ops = { 5343 .name = "selinux", 5344 5345 .ptrace = selinux_ptrace, 5346 .capget = selinux_capget, 5347 .capset_check = selinux_capset_check, 5348 .capset_set = selinux_capset_set, 5349 .sysctl = selinux_sysctl, 5350 .capable = selinux_capable, 5351 .quotactl = selinux_quotactl, 5352 .quota_on = selinux_quota_on, 5353 .syslog = selinux_syslog, 5354 .vm_enough_memory = selinux_vm_enough_memory, 5355 5356 .netlink_send = selinux_netlink_send, 5357 .netlink_recv = selinux_netlink_recv, 5358 5359 .bprm_alloc_security = selinux_bprm_alloc_security, 5360 .bprm_free_security = selinux_bprm_free_security, 5361 .bprm_apply_creds = selinux_bprm_apply_creds, 5362 .bprm_post_apply_creds = selinux_bprm_post_apply_creds, 5363 .bprm_set_security = selinux_bprm_set_security, 5364 .bprm_check_security = selinux_bprm_check_security, 5365 .bprm_secureexec = selinux_bprm_secureexec, 5366 5367 .sb_alloc_security = selinux_sb_alloc_security, 5368 .sb_free_security = selinux_sb_free_security, 5369 .sb_copy_data = selinux_sb_copy_data, 5370 .sb_kern_mount = selinux_sb_kern_mount, 5371 .sb_show_options = selinux_sb_show_options, 5372 .sb_statfs = selinux_sb_statfs, 5373 .sb_mount = selinux_mount, 5374 .sb_umount = selinux_umount, 5375 .sb_set_mnt_opts = selinux_set_mnt_opts, 5376 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts, 5377 .sb_parse_opts_str = selinux_parse_opts_str, 5378 5379 5380 .inode_alloc_security = selinux_inode_alloc_security, 5381 .inode_free_security = selinux_inode_free_security, 5382 .inode_init_security = selinux_inode_init_security, 5383 .inode_create = selinux_inode_create, 5384 .inode_link = selinux_inode_link, 5385 .inode_unlink = selinux_inode_unlink, 5386 .inode_symlink = selinux_inode_symlink, 5387 .inode_mkdir = selinux_inode_mkdir, 5388 .inode_rmdir = selinux_inode_rmdir, 5389 .inode_mknod = selinux_inode_mknod, 5390 .inode_rename = selinux_inode_rename, 5391 .inode_readlink = selinux_inode_readlink, 5392 .inode_follow_link = selinux_inode_follow_link, 5393 .inode_permission = selinux_inode_permission, 5394 .inode_setattr = selinux_inode_setattr, 5395 .inode_getattr = selinux_inode_getattr, 5396 .inode_setxattr = selinux_inode_setxattr, 5397 .inode_post_setxattr = selinux_inode_post_setxattr, 5398 .inode_getxattr = selinux_inode_getxattr, 5399 .inode_listxattr = selinux_inode_listxattr, 5400 .inode_removexattr = selinux_inode_removexattr, 5401 .inode_getsecurity = selinux_inode_getsecurity, 5402 .inode_setsecurity = selinux_inode_setsecurity, 5403 .inode_listsecurity = selinux_inode_listsecurity, 5404 .inode_need_killpriv = selinux_inode_need_killpriv, 5405 .inode_killpriv = selinux_inode_killpriv, 5406 .inode_getsecid = selinux_inode_getsecid, 5407 5408 .file_permission = selinux_file_permission, 5409 .file_alloc_security = selinux_file_alloc_security, 5410 .file_free_security = selinux_file_free_security, 5411 .file_ioctl = selinux_file_ioctl, 5412 .file_mmap = selinux_file_mmap, 5413 .file_mprotect = selinux_file_mprotect, 5414 .file_lock = selinux_file_lock, 5415 .file_fcntl = selinux_file_fcntl, 5416 .file_set_fowner = selinux_file_set_fowner, 5417 .file_send_sigiotask = selinux_file_send_sigiotask, 5418 .file_receive = selinux_file_receive, 5419 5420 .dentry_open = selinux_dentry_open, 5421 5422 .task_create = selinux_task_create, 5423 .task_alloc_security = selinux_task_alloc_security, 5424 .task_free_security = selinux_task_free_security, 5425 .task_setuid = selinux_task_setuid, 5426 .task_post_setuid = selinux_task_post_setuid, 5427 .task_setgid = selinux_task_setgid, 5428 .task_setpgid = selinux_task_setpgid, 5429 .task_getpgid = selinux_task_getpgid, 5430 .task_getsid = selinux_task_getsid, 5431 .task_getsecid = selinux_task_getsecid, 5432 .task_setgroups = selinux_task_setgroups, 5433 .task_setnice = selinux_task_setnice, 5434 .task_setioprio = selinux_task_setioprio, 5435 .task_getioprio = selinux_task_getioprio, 5436 .task_setrlimit = selinux_task_setrlimit, 5437 .task_setscheduler = selinux_task_setscheduler, 5438 .task_getscheduler = selinux_task_getscheduler, 5439 .task_movememory = selinux_task_movememory, 5440 .task_kill = selinux_task_kill, 5441 .task_wait = selinux_task_wait, 5442 .task_prctl = selinux_task_prctl, 5443 .task_reparent_to_init = selinux_task_reparent_to_init, 5444 .task_to_inode = selinux_task_to_inode, 5445 5446 .ipc_permission = selinux_ipc_permission, 5447 .ipc_getsecid = selinux_ipc_getsecid, 5448 5449 .msg_msg_alloc_security = selinux_msg_msg_alloc_security, 5450 .msg_msg_free_security = selinux_msg_msg_free_security, 5451 5452 .msg_queue_alloc_security = selinux_msg_queue_alloc_security, 5453 .msg_queue_free_security = selinux_msg_queue_free_security, 5454 .msg_queue_associate = selinux_msg_queue_associate, 5455 .msg_queue_msgctl = selinux_msg_queue_msgctl, 5456 .msg_queue_msgsnd = selinux_msg_queue_msgsnd, 5457 .msg_queue_msgrcv = selinux_msg_queue_msgrcv, 5458 5459 .shm_alloc_security = selinux_shm_alloc_security, 5460 .shm_free_security = selinux_shm_free_security, 5461 .shm_associate = selinux_shm_associate, 5462 .shm_shmctl = selinux_shm_shmctl, 5463 .shm_shmat = selinux_shm_shmat, 5464 5465 .sem_alloc_security = selinux_sem_alloc_security, 5466 .sem_free_security = selinux_sem_free_security, 5467 .sem_associate = selinux_sem_associate, 5468 .sem_semctl = selinux_sem_semctl, 5469 .sem_semop = selinux_sem_semop, 5470 5471 .d_instantiate = selinux_d_instantiate, 5472 5473 .getprocattr = selinux_getprocattr, 5474 .setprocattr = selinux_setprocattr, 5475 5476 .secid_to_secctx = selinux_secid_to_secctx, 5477 .secctx_to_secid = selinux_secctx_to_secid, 5478 .release_secctx = selinux_release_secctx, 5479 5480 .unix_stream_connect = selinux_socket_unix_stream_connect, 5481 .unix_may_send = selinux_socket_unix_may_send, 5482 5483 .socket_create = selinux_socket_create, 5484 .socket_post_create = selinux_socket_post_create, 5485 .socket_bind = selinux_socket_bind, 5486 .socket_connect = selinux_socket_connect, 5487 .socket_listen = selinux_socket_listen, 5488 .socket_accept = selinux_socket_accept, 5489 .socket_sendmsg = selinux_socket_sendmsg, 5490 .socket_recvmsg = selinux_socket_recvmsg, 5491 .socket_getsockname = selinux_socket_getsockname, 5492 .socket_getpeername = selinux_socket_getpeername, 5493 .socket_getsockopt = selinux_socket_getsockopt, 5494 .socket_setsockopt = selinux_socket_setsockopt, 5495 .socket_shutdown = selinux_socket_shutdown, 5496 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb, 5497 .socket_getpeersec_stream = selinux_socket_getpeersec_stream, 5498 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram, 5499 .sk_alloc_security = selinux_sk_alloc_security, 5500 .sk_free_security = selinux_sk_free_security, 5501 .sk_clone_security = selinux_sk_clone_security, 5502 .sk_getsecid = selinux_sk_getsecid, 5503 .sock_graft = selinux_sock_graft, 5504 .inet_conn_request = selinux_inet_conn_request, 5505 .inet_csk_clone = selinux_inet_csk_clone, 5506 .inet_conn_established = selinux_inet_conn_established, 5507 .req_classify_flow = selinux_req_classify_flow, 5508 5509 #ifdef CONFIG_SECURITY_NETWORK_XFRM 5510 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc, 5511 .xfrm_policy_clone_security = selinux_xfrm_policy_clone, 5512 .xfrm_policy_free_security = selinux_xfrm_policy_free, 5513 .xfrm_policy_delete_security = selinux_xfrm_policy_delete, 5514 .xfrm_state_alloc_security = selinux_xfrm_state_alloc, 5515 .xfrm_state_free_security = selinux_xfrm_state_free, 5516 .xfrm_state_delete_security = selinux_xfrm_state_delete, 5517 .xfrm_policy_lookup = selinux_xfrm_policy_lookup, 5518 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match, 5519 .xfrm_decode_session = selinux_xfrm_decode_session, 5520 #endif 5521 5522 #ifdef CONFIG_KEYS 5523 .key_alloc = selinux_key_alloc, 5524 .key_free = selinux_key_free, 5525 .key_permission = selinux_key_permission, 5526 .key_getsecurity = selinux_key_getsecurity, 5527 #endif 5528 5529 #ifdef CONFIG_AUDIT 5530 .audit_rule_init = selinux_audit_rule_init, 5531 .audit_rule_known = selinux_audit_rule_known, 5532 .audit_rule_match = selinux_audit_rule_match, 5533 .audit_rule_free = selinux_audit_rule_free, 5534 #endif 5535 }; 5536 5537 static __init int selinux_init(void) 5538 { 5539 struct task_security_struct *tsec; 5540 5541 if (!security_module_enable(&selinux_ops)) { 5542 selinux_enabled = 0; 5543 return 0; 5544 } 5545 5546 if (!selinux_enabled) { 5547 printk(KERN_INFO "SELinux: Disabled at boot.\n"); 5548 return 0; 5549 } 5550 5551 printk(KERN_INFO "SELinux: Initializing.\n"); 5552 5553 /* Set the security state for the initial task. */ 5554 if (task_alloc_security(current)) 5555 panic("SELinux: Failed to initialize initial task.\n"); 5556 tsec = current->security; 5557 tsec->osid = tsec->sid = SECINITSID_KERNEL; 5558 5559 sel_inode_cache = kmem_cache_create("selinux_inode_security", 5560 sizeof(struct inode_security_struct), 5561 0, SLAB_PANIC, NULL); 5562 avc_init(); 5563 5564 secondary_ops = security_ops; 5565 if (!secondary_ops) 5566 panic("SELinux: No initial security operations\n"); 5567 if (register_security(&selinux_ops)) 5568 panic("SELinux: Unable to register with kernel.\n"); 5569 5570 if (selinux_enforcing) 5571 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n"); 5572 else 5573 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n"); 5574 5575 return 0; 5576 } 5577 5578 void selinux_complete_init(void) 5579 { 5580 printk(KERN_DEBUG "SELinux: Completing initialization.\n"); 5581 5582 /* Set up any superblocks initialized prior to the policy load. */ 5583 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n"); 5584 spin_lock(&sb_lock); 5585 spin_lock(&sb_security_lock); 5586 next_sb: 5587 if (!list_empty(&superblock_security_head)) { 5588 struct superblock_security_struct *sbsec = 5589 list_entry(superblock_security_head.next, 5590 struct superblock_security_struct, 5591 list); 5592 struct super_block *sb = sbsec->sb; 5593 sb->s_count++; 5594 spin_unlock(&sb_security_lock); 5595 spin_unlock(&sb_lock); 5596 down_read(&sb->s_umount); 5597 if (sb->s_root) 5598 superblock_doinit(sb, NULL); 5599 drop_super(sb); 5600 spin_lock(&sb_lock); 5601 spin_lock(&sb_security_lock); 5602 list_del_init(&sbsec->list); 5603 goto next_sb; 5604 } 5605 spin_unlock(&sb_security_lock); 5606 spin_unlock(&sb_lock); 5607 } 5608 5609 /* SELinux requires early initialization in order to label 5610 all processes and objects when they are created. */ 5611 security_initcall(selinux_init); 5612 5613 #if defined(CONFIG_NETFILTER) 5614 5615 static struct nf_hook_ops selinux_ipv4_ops[] = { 5616 { 5617 .hook = selinux_ipv4_postroute, 5618 .owner = THIS_MODULE, 5619 .pf = PF_INET, 5620 .hooknum = NF_INET_POST_ROUTING, 5621 .priority = NF_IP_PRI_SELINUX_LAST, 5622 }, 5623 { 5624 .hook = selinux_ipv4_forward, 5625 .owner = THIS_MODULE, 5626 .pf = PF_INET, 5627 .hooknum = NF_INET_FORWARD, 5628 .priority = NF_IP_PRI_SELINUX_FIRST, 5629 } 5630 }; 5631 5632 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5633 5634 static struct nf_hook_ops selinux_ipv6_ops[] = { 5635 { 5636 .hook = selinux_ipv6_postroute, 5637 .owner = THIS_MODULE, 5638 .pf = PF_INET6, 5639 .hooknum = NF_INET_POST_ROUTING, 5640 .priority = NF_IP6_PRI_SELINUX_LAST, 5641 }, 5642 { 5643 .hook = selinux_ipv6_forward, 5644 .owner = THIS_MODULE, 5645 .pf = PF_INET6, 5646 .hooknum = NF_INET_FORWARD, 5647 .priority = NF_IP6_PRI_SELINUX_FIRST, 5648 } 5649 }; 5650 5651 #endif /* IPV6 */ 5652 5653 static int __init selinux_nf_ip_init(void) 5654 { 5655 int err = 0; 5656 5657 if (!selinux_enabled) 5658 goto out; 5659 5660 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n"); 5661 5662 err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops)); 5663 if (err) 5664 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err); 5665 5666 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5667 err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops)); 5668 if (err) 5669 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err); 5670 #endif /* IPV6 */ 5671 5672 out: 5673 return err; 5674 } 5675 5676 __initcall(selinux_nf_ip_init); 5677 5678 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5679 static void selinux_nf_ip_exit(void) 5680 { 5681 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n"); 5682 5683 nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops)); 5684 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5685 nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops)); 5686 #endif /* IPV6 */ 5687 } 5688 #endif 5689 5690 #else /* CONFIG_NETFILTER */ 5691 5692 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5693 #define selinux_nf_ip_exit() 5694 #endif 5695 5696 #endif /* CONFIG_NETFILTER */ 5697 5698 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5699 static int selinux_disabled; 5700 5701 int selinux_disable(void) 5702 { 5703 extern void exit_sel_fs(void); 5704 5705 if (ss_initialized) { 5706 /* Not permitted after initial policy load. */ 5707 return -EINVAL; 5708 } 5709 5710 if (selinux_disabled) { 5711 /* Only do this once. */ 5712 return -EINVAL; 5713 } 5714 5715 printk(KERN_INFO "SELinux: Disabled at runtime.\n"); 5716 5717 selinux_disabled = 1; 5718 selinux_enabled = 0; 5719 5720 /* Reset security_ops to the secondary module, dummy or capability. */ 5721 security_ops = secondary_ops; 5722 5723 /* Unregister netfilter hooks. */ 5724 selinux_nf_ip_exit(); 5725 5726 /* Unregister selinuxfs. */ 5727 exit_sel_fs(); 5728 5729 return 0; 5730 } 5731 #endif 5732