1 /* 2 * NSA Security-Enhanced Linux (SELinux) security module 3 * 4 * This file contains the SELinux hook function implementations. 5 * 6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil> 7 * Chris Vance, <cvance@nai.com> 8 * Wayne Salamon, <wsalamon@nai.com> 9 * James Morris <jmorris@redhat.com> 10 * 11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com> 13 * Eric Paris <eparis@redhat.com> 14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 15 * <dgoeddel@trustedcs.com> 16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P. 17 * Paul Moore <paul.moore@hp.com> 18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. 19 * Yuichi Nakamura <ynakam@hitachisoft.jp> 20 * 21 * This program is free software; you can redistribute it and/or modify 22 * it under the terms of the GNU General Public License version 2, 23 * as published by the Free Software Foundation. 24 */ 25 26 #include <linux/init.h> 27 #include <linux/kernel.h> 28 #include <linux/tracehook.h> 29 #include <linux/errno.h> 30 #include <linux/sched.h> 31 #include <linux/security.h> 32 #include <linux/xattr.h> 33 #include <linux/capability.h> 34 #include <linux/unistd.h> 35 #include <linux/mm.h> 36 #include <linux/mman.h> 37 #include <linux/slab.h> 38 #include <linux/pagemap.h> 39 #include <linux/swap.h> 40 #include <linux/spinlock.h> 41 #include <linux/syscalls.h> 42 #include <linux/file.h> 43 #include <linux/fdtable.h> 44 #include <linux/namei.h> 45 #include <linux/mount.h> 46 #include <linux/proc_fs.h> 47 #include <linux/netfilter_ipv4.h> 48 #include <linux/netfilter_ipv6.h> 49 #include <linux/tty.h> 50 #include <net/icmp.h> 51 #include <net/ip.h> /* for local_port_range[] */ 52 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 53 #include <net/net_namespace.h> 54 #include <net/netlabel.h> 55 #include <linux/uaccess.h> 56 #include <asm/ioctls.h> 57 #include <asm/atomic.h> 58 #include <linux/bitops.h> 59 #include <linux/interrupt.h> 60 #include <linux/netdevice.h> /* for network interface checks */ 61 #include <linux/netlink.h> 62 #include <linux/tcp.h> 63 #include <linux/udp.h> 64 #include <linux/dccp.h> 65 #include <linux/quota.h> 66 #include <linux/un.h> /* for Unix socket types */ 67 #include <net/af_unix.h> /* for Unix socket types */ 68 #include <linux/parser.h> 69 #include <linux/nfs_mount.h> 70 #include <net/ipv6.h> 71 #include <linux/hugetlb.h> 72 #include <linux/personality.h> 73 #include <linux/sysctl.h> 74 #include <linux/audit.h> 75 #include <linux/string.h> 76 #include <linux/selinux.h> 77 #include <linux/mutex.h> 78 #include <linux/posix-timers.h> 79 #include <linux/syslog.h> 80 81 #include "avc.h" 82 #include "objsec.h" 83 #include "netif.h" 84 #include "netnode.h" 85 #include "netport.h" 86 #include "xfrm.h" 87 #include "netlabel.h" 88 #include "audit.h" 89 90 #define NUM_SEL_MNT_OPTS 5 91 92 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm); 93 extern struct security_operations *security_ops; 94 95 /* SECMARK reference count */ 96 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0); 97 98 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 99 int selinux_enforcing; 100 101 static int __init enforcing_setup(char *str) 102 { 103 unsigned long enforcing; 104 if (!strict_strtoul(str, 0, &enforcing)) 105 selinux_enforcing = enforcing ? 1 : 0; 106 return 1; 107 } 108 __setup("enforcing=", enforcing_setup); 109 #endif 110 111 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 112 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE; 113 114 static int __init selinux_enabled_setup(char *str) 115 { 116 unsigned long enabled; 117 if (!strict_strtoul(str, 0, &enabled)) 118 selinux_enabled = enabled ? 1 : 0; 119 return 1; 120 } 121 __setup("selinux=", selinux_enabled_setup); 122 #else 123 int selinux_enabled = 1; 124 #endif 125 126 static struct kmem_cache *sel_inode_cache; 127 128 /** 129 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled 130 * 131 * Description: 132 * This function checks the SECMARK reference counter to see if any SECMARK 133 * targets are currently configured, if the reference counter is greater than 134 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is 135 * enabled, false (0) if SECMARK is disabled. 136 * 137 */ 138 static int selinux_secmark_enabled(void) 139 { 140 return (atomic_read(&selinux_secmark_refcount) > 0); 141 } 142 143 /* 144 * initialise the security for the init task 145 */ 146 static void cred_init_security(void) 147 { 148 struct cred *cred = (struct cred *) current->real_cred; 149 struct task_security_struct *tsec; 150 151 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL); 152 if (!tsec) 153 panic("SELinux: Failed to initialize initial task.\n"); 154 155 tsec->osid = tsec->sid = SECINITSID_KERNEL; 156 cred->security = tsec; 157 } 158 159 /* 160 * get the security ID of a set of credentials 161 */ 162 static inline u32 cred_sid(const struct cred *cred) 163 { 164 const struct task_security_struct *tsec; 165 166 tsec = cred->security; 167 return tsec->sid; 168 } 169 170 /* 171 * get the objective security ID of a task 172 */ 173 static inline u32 task_sid(const struct task_struct *task) 174 { 175 u32 sid; 176 177 rcu_read_lock(); 178 sid = cred_sid(__task_cred(task)); 179 rcu_read_unlock(); 180 return sid; 181 } 182 183 /* 184 * get the subjective security ID of the current task 185 */ 186 static inline u32 current_sid(void) 187 { 188 const struct task_security_struct *tsec = current_security(); 189 190 return tsec->sid; 191 } 192 193 /* Allocate and free functions for each kind of security blob. */ 194 195 static int inode_alloc_security(struct inode *inode) 196 { 197 struct inode_security_struct *isec; 198 u32 sid = current_sid(); 199 200 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS); 201 if (!isec) 202 return -ENOMEM; 203 204 mutex_init(&isec->lock); 205 INIT_LIST_HEAD(&isec->list); 206 isec->inode = inode; 207 isec->sid = SECINITSID_UNLABELED; 208 isec->sclass = SECCLASS_FILE; 209 isec->task_sid = sid; 210 inode->i_security = isec; 211 212 return 0; 213 } 214 215 static void inode_free_security(struct inode *inode) 216 { 217 struct inode_security_struct *isec = inode->i_security; 218 struct superblock_security_struct *sbsec = inode->i_sb->s_security; 219 220 spin_lock(&sbsec->isec_lock); 221 if (!list_empty(&isec->list)) 222 list_del_init(&isec->list); 223 spin_unlock(&sbsec->isec_lock); 224 225 inode->i_security = NULL; 226 kmem_cache_free(sel_inode_cache, isec); 227 } 228 229 static int file_alloc_security(struct file *file) 230 { 231 struct file_security_struct *fsec; 232 u32 sid = current_sid(); 233 234 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL); 235 if (!fsec) 236 return -ENOMEM; 237 238 fsec->sid = sid; 239 fsec->fown_sid = sid; 240 file->f_security = fsec; 241 242 return 0; 243 } 244 245 static void file_free_security(struct file *file) 246 { 247 struct file_security_struct *fsec = file->f_security; 248 file->f_security = NULL; 249 kfree(fsec); 250 } 251 252 static int superblock_alloc_security(struct super_block *sb) 253 { 254 struct superblock_security_struct *sbsec; 255 256 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL); 257 if (!sbsec) 258 return -ENOMEM; 259 260 mutex_init(&sbsec->lock); 261 INIT_LIST_HEAD(&sbsec->isec_head); 262 spin_lock_init(&sbsec->isec_lock); 263 sbsec->sb = sb; 264 sbsec->sid = SECINITSID_UNLABELED; 265 sbsec->def_sid = SECINITSID_FILE; 266 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 267 sb->s_security = sbsec; 268 269 return 0; 270 } 271 272 static void superblock_free_security(struct super_block *sb) 273 { 274 struct superblock_security_struct *sbsec = sb->s_security; 275 sb->s_security = NULL; 276 kfree(sbsec); 277 } 278 279 /* The security server must be initialized before 280 any labeling or access decisions can be provided. */ 281 extern int ss_initialized; 282 283 /* The file system's label must be initialized prior to use. */ 284 285 static const char *labeling_behaviors[6] = { 286 "uses xattr", 287 "uses transition SIDs", 288 "uses task SIDs", 289 "uses genfs_contexts", 290 "not configured for labeling", 291 "uses mountpoint labeling", 292 }; 293 294 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 295 296 static inline int inode_doinit(struct inode *inode) 297 { 298 return inode_doinit_with_dentry(inode, NULL); 299 } 300 301 enum { 302 Opt_error = -1, 303 Opt_context = 1, 304 Opt_fscontext = 2, 305 Opt_defcontext = 3, 306 Opt_rootcontext = 4, 307 Opt_labelsupport = 5, 308 }; 309 310 static const match_table_t tokens = { 311 {Opt_context, CONTEXT_STR "%s"}, 312 {Opt_fscontext, FSCONTEXT_STR "%s"}, 313 {Opt_defcontext, DEFCONTEXT_STR "%s"}, 314 {Opt_rootcontext, ROOTCONTEXT_STR "%s"}, 315 {Opt_labelsupport, LABELSUPP_STR}, 316 {Opt_error, NULL}, 317 }; 318 319 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 320 321 static int may_context_mount_sb_relabel(u32 sid, 322 struct superblock_security_struct *sbsec, 323 const struct cred *cred) 324 { 325 const struct task_security_struct *tsec = cred->security; 326 int rc; 327 328 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 329 FILESYSTEM__RELABELFROM, NULL); 330 if (rc) 331 return rc; 332 333 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM, 334 FILESYSTEM__RELABELTO, NULL); 335 return rc; 336 } 337 338 static int may_context_mount_inode_relabel(u32 sid, 339 struct superblock_security_struct *sbsec, 340 const struct cred *cred) 341 { 342 const struct task_security_struct *tsec = cred->security; 343 int rc; 344 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 345 FILESYSTEM__RELABELFROM, NULL); 346 if (rc) 347 return rc; 348 349 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, 350 FILESYSTEM__ASSOCIATE, NULL); 351 return rc; 352 } 353 354 static int sb_finish_set_opts(struct super_block *sb) 355 { 356 struct superblock_security_struct *sbsec = sb->s_security; 357 struct dentry *root = sb->s_root; 358 struct inode *root_inode = root->d_inode; 359 int rc = 0; 360 361 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 362 /* Make sure that the xattr handler exists and that no 363 error other than -ENODATA is returned by getxattr on 364 the root directory. -ENODATA is ok, as this may be 365 the first boot of the SELinux kernel before we have 366 assigned xattr values to the filesystem. */ 367 if (!root_inode->i_op->getxattr) { 368 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no " 369 "xattr support\n", sb->s_id, sb->s_type->name); 370 rc = -EOPNOTSUPP; 371 goto out; 372 } 373 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0); 374 if (rc < 0 && rc != -ENODATA) { 375 if (rc == -EOPNOTSUPP) 376 printk(KERN_WARNING "SELinux: (dev %s, type " 377 "%s) has no security xattr handler\n", 378 sb->s_id, sb->s_type->name); 379 else 380 printk(KERN_WARNING "SELinux: (dev %s, type " 381 "%s) getxattr errno %d\n", sb->s_id, 382 sb->s_type->name, -rc); 383 goto out; 384 } 385 } 386 387 sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP); 388 389 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) 390 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n", 391 sb->s_id, sb->s_type->name); 392 else 393 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n", 394 sb->s_id, sb->s_type->name, 395 labeling_behaviors[sbsec->behavior-1]); 396 397 if (sbsec->behavior == SECURITY_FS_USE_GENFS || 398 sbsec->behavior == SECURITY_FS_USE_MNTPOINT || 399 sbsec->behavior == SECURITY_FS_USE_NONE || 400 sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) 401 sbsec->flags &= ~SE_SBLABELSUPP; 402 403 /* Special handling for sysfs. Is genfs but also has setxattr handler*/ 404 if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0) 405 sbsec->flags |= SE_SBLABELSUPP; 406 407 /* Initialize the root inode. */ 408 rc = inode_doinit_with_dentry(root_inode, root); 409 410 /* Initialize any other inodes associated with the superblock, e.g. 411 inodes created prior to initial policy load or inodes created 412 during get_sb by a pseudo filesystem that directly 413 populates itself. */ 414 spin_lock(&sbsec->isec_lock); 415 next_inode: 416 if (!list_empty(&sbsec->isec_head)) { 417 struct inode_security_struct *isec = 418 list_entry(sbsec->isec_head.next, 419 struct inode_security_struct, list); 420 struct inode *inode = isec->inode; 421 spin_unlock(&sbsec->isec_lock); 422 inode = igrab(inode); 423 if (inode) { 424 if (!IS_PRIVATE(inode)) 425 inode_doinit(inode); 426 iput(inode); 427 } 428 spin_lock(&sbsec->isec_lock); 429 list_del_init(&isec->list); 430 goto next_inode; 431 } 432 spin_unlock(&sbsec->isec_lock); 433 out: 434 return rc; 435 } 436 437 /* 438 * This function should allow an FS to ask what it's mount security 439 * options were so it can use those later for submounts, displaying 440 * mount options, or whatever. 441 */ 442 static int selinux_get_mnt_opts(const struct super_block *sb, 443 struct security_mnt_opts *opts) 444 { 445 int rc = 0, i; 446 struct superblock_security_struct *sbsec = sb->s_security; 447 char *context = NULL; 448 u32 len; 449 char tmp; 450 451 security_init_mnt_opts(opts); 452 453 if (!(sbsec->flags & SE_SBINITIALIZED)) 454 return -EINVAL; 455 456 if (!ss_initialized) 457 return -EINVAL; 458 459 tmp = sbsec->flags & SE_MNTMASK; 460 /* count the number of mount options for this sb */ 461 for (i = 0; i < 8; i++) { 462 if (tmp & 0x01) 463 opts->num_mnt_opts++; 464 tmp >>= 1; 465 } 466 /* Check if the Label support flag is set */ 467 if (sbsec->flags & SE_SBLABELSUPP) 468 opts->num_mnt_opts++; 469 470 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC); 471 if (!opts->mnt_opts) { 472 rc = -ENOMEM; 473 goto out_free; 474 } 475 476 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC); 477 if (!opts->mnt_opts_flags) { 478 rc = -ENOMEM; 479 goto out_free; 480 } 481 482 i = 0; 483 if (sbsec->flags & FSCONTEXT_MNT) { 484 rc = security_sid_to_context(sbsec->sid, &context, &len); 485 if (rc) 486 goto out_free; 487 opts->mnt_opts[i] = context; 488 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT; 489 } 490 if (sbsec->flags & CONTEXT_MNT) { 491 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len); 492 if (rc) 493 goto out_free; 494 opts->mnt_opts[i] = context; 495 opts->mnt_opts_flags[i++] = CONTEXT_MNT; 496 } 497 if (sbsec->flags & DEFCONTEXT_MNT) { 498 rc = security_sid_to_context(sbsec->def_sid, &context, &len); 499 if (rc) 500 goto out_free; 501 opts->mnt_opts[i] = context; 502 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT; 503 } 504 if (sbsec->flags & ROOTCONTEXT_MNT) { 505 struct inode *root = sbsec->sb->s_root->d_inode; 506 struct inode_security_struct *isec = root->i_security; 507 508 rc = security_sid_to_context(isec->sid, &context, &len); 509 if (rc) 510 goto out_free; 511 opts->mnt_opts[i] = context; 512 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT; 513 } 514 if (sbsec->flags & SE_SBLABELSUPP) { 515 opts->mnt_opts[i] = NULL; 516 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP; 517 } 518 519 BUG_ON(i != opts->num_mnt_opts); 520 521 return 0; 522 523 out_free: 524 security_free_mnt_opts(opts); 525 return rc; 526 } 527 528 static int bad_option(struct superblock_security_struct *sbsec, char flag, 529 u32 old_sid, u32 new_sid) 530 { 531 char mnt_flags = sbsec->flags & SE_MNTMASK; 532 533 /* check if the old mount command had the same options */ 534 if (sbsec->flags & SE_SBINITIALIZED) 535 if (!(sbsec->flags & flag) || 536 (old_sid != new_sid)) 537 return 1; 538 539 /* check if we were passed the same options twice, 540 * aka someone passed context=a,context=b 541 */ 542 if (!(sbsec->flags & SE_SBINITIALIZED)) 543 if (mnt_flags & flag) 544 return 1; 545 return 0; 546 } 547 548 /* 549 * Allow filesystems with binary mount data to explicitly set mount point 550 * labeling information. 551 */ 552 static int selinux_set_mnt_opts(struct super_block *sb, 553 struct security_mnt_opts *opts) 554 { 555 const struct cred *cred = current_cred(); 556 int rc = 0, i; 557 struct superblock_security_struct *sbsec = sb->s_security; 558 const char *name = sb->s_type->name; 559 struct inode *inode = sbsec->sb->s_root->d_inode; 560 struct inode_security_struct *root_isec = inode->i_security; 561 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; 562 u32 defcontext_sid = 0; 563 char **mount_options = opts->mnt_opts; 564 int *flags = opts->mnt_opts_flags; 565 int num_opts = opts->num_mnt_opts; 566 567 mutex_lock(&sbsec->lock); 568 569 if (!ss_initialized) { 570 if (!num_opts) { 571 /* Defer initialization until selinux_complete_init, 572 after the initial policy is loaded and the security 573 server is ready to handle calls. */ 574 goto out; 575 } 576 rc = -EINVAL; 577 printk(KERN_WARNING "SELinux: Unable to set superblock options " 578 "before the security server is initialized\n"); 579 goto out; 580 } 581 582 /* 583 * Binary mount data FS will come through this function twice. Once 584 * from an explicit call and once from the generic calls from the vfs. 585 * Since the generic VFS calls will not contain any security mount data 586 * we need to skip the double mount verification. 587 * 588 * This does open a hole in which we will not notice if the first 589 * mount using this sb set explict options and a second mount using 590 * this sb does not set any security options. (The first options 591 * will be used for both mounts) 592 */ 593 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 594 && (num_opts == 0)) 595 goto out; 596 597 /* 598 * parse the mount options, check if they are valid sids. 599 * also check if someone is trying to mount the same sb more 600 * than once with different security options. 601 */ 602 for (i = 0; i < num_opts; i++) { 603 u32 sid; 604 605 if (flags[i] == SE_SBLABELSUPP) 606 continue; 607 rc = security_context_to_sid(mount_options[i], 608 strlen(mount_options[i]), &sid); 609 if (rc) { 610 printk(KERN_WARNING "SELinux: security_context_to_sid" 611 "(%s) failed for (dev %s, type %s) errno=%d\n", 612 mount_options[i], sb->s_id, name, rc); 613 goto out; 614 } 615 switch (flags[i]) { 616 case FSCONTEXT_MNT: 617 fscontext_sid = sid; 618 619 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 620 fscontext_sid)) 621 goto out_double_mount; 622 623 sbsec->flags |= FSCONTEXT_MNT; 624 break; 625 case CONTEXT_MNT: 626 context_sid = sid; 627 628 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 629 context_sid)) 630 goto out_double_mount; 631 632 sbsec->flags |= CONTEXT_MNT; 633 break; 634 case ROOTCONTEXT_MNT: 635 rootcontext_sid = sid; 636 637 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 638 rootcontext_sid)) 639 goto out_double_mount; 640 641 sbsec->flags |= ROOTCONTEXT_MNT; 642 643 break; 644 case DEFCONTEXT_MNT: 645 defcontext_sid = sid; 646 647 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 648 defcontext_sid)) 649 goto out_double_mount; 650 651 sbsec->flags |= DEFCONTEXT_MNT; 652 653 break; 654 default: 655 rc = -EINVAL; 656 goto out; 657 } 658 } 659 660 if (sbsec->flags & SE_SBINITIALIZED) { 661 /* previously mounted with options, but not on this attempt? */ 662 if ((sbsec->flags & SE_MNTMASK) && !num_opts) 663 goto out_double_mount; 664 rc = 0; 665 goto out; 666 } 667 668 if (strcmp(sb->s_type->name, "proc") == 0) 669 sbsec->flags |= SE_SBPROC; 670 671 /* Determine the labeling behavior to use for this filesystem type. */ 672 rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid); 673 if (rc) { 674 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n", 675 __func__, sb->s_type->name, rc); 676 goto out; 677 } 678 679 /* sets the context of the superblock for the fs being mounted. */ 680 if (fscontext_sid) { 681 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred); 682 if (rc) 683 goto out; 684 685 sbsec->sid = fscontext_sid; 686 } 687 688 /* 689 * Switch to using mount point labeling behavior. 690 * sets the label used on all file below the mountpoint, and will set 691 * the superblock context if not already set. 692 */ 693 if (context_sid) { 694 if (!fscontext_sid) { 695 rc = may_context_mount_sb_relabel(context_sid, sbsec, 696 cred); 697 if (rc) 698 goto out; 699 sbsec->sid = context_sid; 700 } else { 701 rc = may_context_mount_inode_relabel(context_sid, sbsec, 702 cred); 703 if (rc) 704 goto out; 705 } 706 if (!rootcontext_sid) 707 rootcontext_sid = context_sid; 708 709 sbsec->mntpoint_sid = context_sid; 710 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 711 } 712 713 if (rootcontext_sid) { 714 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, 715 cred); 716 if (rc) 717 goto out; 718 719 root_isec->sid = rootcontext_sid; 720 root_isec->initialized = 1; 721 } 722 723 if (defcontext_sid) { 724 if (sbsec->behavior != SECURITY_FS_USE_XATTR) { 725 rc = -EINVAL; 726 printk(KERN_WARNING "SELinux: defcontext option is " 727 "invalid for this filesystem type\n"); 728 goto out; 729 } 730 731 if (defcontext_sid != sbsec->def_sid) { 732 rc = may_context_mount_inode_relabel(defcontext_sid, 733 sbsec, cred); 734 if (rc) 735 goto out; 736 } 737 738 sbsec->def_sid = defcontext_sid; 739 } 740 741 rc = sb_finish_set_opts(sb); 742 out: 743 mutex_unlock(&sbsec->lock); 744 return rc; 745 out_double_mount: 746 rc = -EINVAL; 747 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different " 748 "security settings for (dev %s, type %s)\n", sb->s_id, name); 749 goto out; 750 } 751 752 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb, 753 struct super_block *newsb) 754 { 755 const struct superblock_security_struct *oldsbsec = oldsb->s_security; 756 struct superblock_security_struct *newsbsec = newsb->s_security; 757 758 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); 759 int set_context = (oldsbsec->flags & CONTEXT_MNT); 760 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); 761 762 /* 763 * if the parent was able to be mounted it clearly had no special lsm 764 * mount options. thus we can safely deal with this superblock later 765 */ 766 if (!ss_initialized) 767 return; 768 769 /* how can we clone if the old one wasn't set up?? */ 770 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED)); 771 772 /* if fs is reusing a sb, just let its options stand... */ 773 if (newsbsec->flags & SE_SBINITIALIZED) 774 return; 775 776 mutex_lock(&newsbsec->lock); 777 778 newsbsec->flags = oldsbsec->flags; 779 780 newsbsec->sid = oldsbsec->sid; 781 newsbsec->def_sid = oldsbsec->def_sid; 782 newsbsec->behavior = oldsbsec->behavior; 783 784 if (set_context) { 785 u32 sid = oldsbsec->mntpoint_sid; 786 787 if (!set_fscontext) 788 newsbsec->sid = sid; 789 if (!set_rootcontext) { 790 struct inode *newinode = newsb->s_root->d_inode; 791 struct inode_security_struct *newisec = newinode->i_security; 792 newisec->sid = sid; 793 } 794 newsbsec->mntpoint_sid = sid; 795 } 796 if (set_rootcontext) { 797 const struct inode *oldinode = oldsb->s_root->d_inode; 798 const struct inode_security_struct *oldisec = oldinode->i_security; 799 struct inode *newinode = newsb->s_root->d_inode; 800 struct inode_security_struct *newisec = newinode->i_security; 801 802 newisec->sid = oldisec->sid; 803 } 804 805 sb_finish_set_opts(newsb); 806 mutex_unlock(&newsbsec->lock); 807 } 808 809 static int selinux_parse_opts_str(char *options, 810 struct security_mnt_opts *opts) 811 { 812 char *p; 813 char *context = NULL, *defcontext = NULL; 814 char *fscontext = NULL, *rootcontext = NULL; 815 int rc, num_mnt_opts = 0; 816 817 opts->num_mnt_opts = 0; 818 819 /* Standard string-based options. */ 820 while ((p = strsep(&options, "|")) != NULL) { 821 int token; 822 substring_t args[MAX_OPT_ARGS]; 823 824 if (!*p) 825 continue; 826 827 token = match_token(p, tokens, args); 828 829 switch (token) { 830 case Opt_context: 831 if (context || defcontext) { 832 rc = -EINVAL; 833 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 834 goto out_err; 835 } 836 context = match_strdup(&args[0]); 837 if (!context) { 838 rc = -ENOMEM; 839 goto out_err; 840 } 841 break; 842 843 case Opt_fscontext: 844 if (fscontext) { 845 rc = -EINVAL; 846 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 847 goto out_err; 848 } 849 fscontext = match_strdup(&args[0]); 850 if (!fscontext) { 851 rc = -ENOMEM; 852 goto out_err; 853 } 854 break; 855 856 case Opt_rootcontext: 857 if (rootcontext) { 858 rc = -EINVAL; 859 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 860 goto out_err; 861 } 862 rootcontext = match_strdup(&args[0]); 863 if (!rootcontext) { 864 rc = -ENOMEM; 865 goto out_err; 866 } 867 break; 868 869 case Opt_defcontext: 870 if (context || defcontext) { 871 rc = -EINVAL; 872 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 873 goto out_err; 874 } 875 defcontext = match_strdup(&args[0]); 876 if (!defcontext) { 877 rc = -ENOMEM; 878 goto out_err; 879 } 880 break; 881 case Opt_labelsupport: 882 break; 883 default: 884 rc = -EINVAL; 885 printk(KERN_WARNING "SELinux: unknown mount option\n"); 886 goto out_err; 887 888 } 889 } 890 891 rc = -ENOMEM; 892 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC); 893 if (!opts->mnt_opts) 894 goto out_err; 895 896 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC); 897 if (!opts->mnt_opts_flags) { 898 kfree(opts->mnt_opts); 899 goto out_err; 900 } 901 902 if (fscontext) { 903 opts->mnt_opts[num_mnt_opts] = fscontext; 904 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT; 905 } 906 if (context) { 907 opts->mnt_opts[num_mnt_opts] = context; 908 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT; 909 } 910 if (rootcontext) { 911 opts->mnt_opts[num_mnt_opts] = rootcontext; 912 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT; 913 } 914 if (defcontext) { 915 opts->mnt_opts[num_mnt_opts] = defcontext; 916 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT; 917 } 918 919 opts->num_mnt_opts = num_mnt_opts; 920 return 0; 921 922 out_err: 923 kfree(context); 924 kfree(defcontext); 925 kfree(fscontext); 926 kfree(rootcontext); 927 return rc; 928 } 929 /* 930 * string mount options parsing and call set the sbsec 931 */ 932 static int superblock_doinit(struct super_block *sb, void *data) 933 { 934 int rc = 0; 935 char *options = data; 936 struct security_mnt_opts opts; 937 938 security_init_mnt_opts(&opts); 939 940 if (!data) 941 goto out; 942 943 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA); 944 945 rc = selinux_parse_opts_str(options, &opts); 946 if (rc) 947 goto out_err; 948 949 out: 950 rc = selinux_set_mnt_opts(sb, &opts); 951 952 out_err: 953 security_free_mnt_opts(&opts); 954 return rc; 955 } 956 957 static void selinux_write_opts(struct seq_file *m, 958 struct security_mnt_opts *opts) 959 { 960 int i; 961 char *prefix; 962 963 for (i = 0; i < opts->num_mnt_opts; i++) { 964 char *has_comma; 965 966 if (opts->mnt_opts[i]) 967 has_comma = strchr(opts->mnt_opts[i], ','); 968 else 969 has_comma = NULL; 970 971 switch (opts->mnt_opts_flags[i]) { 972 case CONTEXT_MNT: 973 prefix = CONTEXT_STR; 974 break; 975 case FSCONTEXT_MNT: 976 prefix = FSCONTEXT_STR; 977 break; 978 case ROOTCONTEXT_MNT: 979 prefix = ROOTCONTEXT_STR; 980 break; 981 case DEFCONTEXT_MNT: 982 prefix = DEFCONTEXT_STR; 983 break; 984 case SE_SBLABELSUPP: 985 seq_putc(m, ','); 986 seq_puts(m, LABELSUPP_STR); 987 continue; 988 default: 989 BUG(); 990 }; 991 /* we need a comma before each option */ 992 seq_putc(m, ','); 993 seq_puts(m, prefix); 994 if (has_comma) 995 seq_putc(m, '\"'); 996 seq_puts(m, opts->mnt_opts[i]); 997 if (has_comma) 998 seq_putc(m, '\"'); 999 } 1000 } 1001 1002 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb) 1003 { 1004 struct security_mnt_opts opts; 1005 int rc; 1006 1007 rc = selinux_get_mnt_opts(sb, &opts); 1008 if (rc) { 1009 /* before policy load we may get EINVAL, don't show anything */ 1010 if (rc == -EINVAL) 1011 rc = 0; 1012 return rc; 1013 } 1014 1015 selinux_write_opts(m, &opts); 1016 1017 security_free_mnt_opts(&opts); 1018 1019 return rc; 1020 } 1021 1022 static inline u16 inode_mode_to_security_class(umode_t mode) 1023 { 1024 switch (mode & S_IFMT) { 1025 case S_IFSOCK: 1026 return SECCLASS_SOCK_FILE; 1027 case S_IFLNK: 1028 return SECCLASS_LNK_FILE; 1029 case S_IFREG: 1030 return SECCLASS_FILE; 1031 case S_IFBLK: 1032 return SECCLASS_BLK_FILE; 1033 case S_IFDIR: 1034 return SECCLASS_DIR; 1035 case S_IFCHR: 1036 return SECCLASS_CHR_FILE; 1037 case S_IFIFO: 1038 return SECCLASS_FIFO_FILE; 1039 1040 } 1041 1042 return SECCLASS_FILE; 1043 } 1044 1045 static inline int default_protocol_stream(int protocol) 1046 { 1047 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP); 1048 } 1049 1050 static inline int default_protocol_dgram(int protocol) 1051 { 1052 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 1053 } 1054 1055 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 1056 { 1057 switch (family) { 1058 case PF_UNIX: 1059 switch (type) { 1060 case SOCK_STREAM: 1061 case SOCK_SEQPACKET: 1062 return SECCLASS_UNIX_STREAM_SOCKET; 1063 case SOCK_DGRAM: 1064 return SECCLASS_UNIX_DGRAM_SOCKET; 1065 } 1066 break; 1067 case PF_INET: 1068 case PF_INET6: 1069 switch (type) { 1070 case SOCK_STREAM: 1071 if (default_protocol_stream(protocol)) 1072 return SECCLASS_TCP_SOCKET; 1073 else 1074 return SECCLASS_RAWIP_SOCKET; 1075 case SOCK_DGRAM: 1076 if (default_protocol_dgram(protocol)) 1077 return SECCLASS_UDP_SOCKET; 1078 else 1079 return SECCLASS_RAWIP_SOCKET; 1080 case SOCK_DCCP: 1081 return SECCLASS_DCCP_SOCKET; 1082 default: 1083 return SECCLASS_RAWIP_SOCKET; 1084 } 1085 break; 1086 case PF_NETLINK: 1087 switch (protocol) { 1088 case NETLINK_ROUTE: 1089 return SECCLASS_NETLINK_ROUTE_SOCKET; 1090 case NETLINK_FIREWALL: 1091 return SECCLASS_NETLINK_FIREWALL_SOCKET; 1092 case NETLINK_INET_DIAG: 1093 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 1094 case NETLINK_NFLOG: 1095 return SECCLASS_NETLINK_NFLOG_SOCKET; 1096 case NETLINK_XFRM: 1097 return SECCLASS_NETLINK_XFRM_SOCKET; 1098 case NETLINK_SELINUX: 1099 return SECCLASS_NETLINK_SELINUX_SOCKET; 1100 case NETLINK_AUDIT: 1101 return SECCLASS_NETLINK_AUDIT_SOCKET; 1102 case NETLINK_IP6_FW: 1103 return SECCLASS_NETLINK_IP6FW_SOCKET; 1104 case NETLINK_DNRTMSG: 1105 return SECCLASS_NETLINK_DNRT_SOCKET; 1106 case NETLINK_KOBJECT_UEVENT: 1107 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 1108 default: 1109 return SECCLASS_NETLINK_SOCKET; 1110 } 1111 case PF_PACKET: 1112 return SECCLASS_PACKET_SOCKET; 1113 case PF_KEY: 1114 return SECCLASS_KEY_SOCKET; 1115 case PF_APPLETALK: 1116 return SECCLASS_APPLETALK_SOCKET; 1117 } 1118 1119 return SECCLASS_SOCKET; 1120 } 1121 1122 #ifdef CONFIG_PROC_FS 1123 static int selinux_proc_get_sid(struct proc_dir_entry *de, 1124 u16 tclass, 1125 u32 *sid) 1126 { 1127 int buflen, rc; 1128 char *buffer, *path, *end; 1129 1130 buffer = (char *)__get_free_page(GFP_KERNEL); 1131 if (!buffer) 1132 return -ENOMEM; 1133 1134 buflen = PAGE_SIZE; 1135 end = buffer+buflen; 1136 *--end = '\0'; 1137 buflen--; 1138 path = end-1; 1139 *path = '/'; 1140 while (de && de != de->parent) { 1141 buflen -= de->namelen + 1; 1142 if (buflen < 0) 1143 break; 1144 end -= de->namelen; 1145 memcpy(end, de->name, de->namelen); 1146 *--end = '/'; 1147 path = end; 1148 de = de->parent; 1149 } 1150 rc = security_genfs_sid("proc", path, tclass, sid); 1151 free_page((unsigned long)buffer); 1152 return rc; 1153 } 1154 #else 1155 static int selinux_proc_get_sid(struct proc_dir_entry *de, 1156 u16 tclass, 1157 u32 *sid) 1158 { 1159 return -EINVAL; 1160 } 1161 #endif 1162 1163 /* The inode's security attributes must be initialized before first use. */ 1164 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 1165 { 1166 struct superblock_security_struct *sbsec = NULL; 1167 struct inode_security_struct *isec = inode->i_security; 1168 u32 sid; 1169 struct dentry *dentry; 1170 #define INITCONTEXTLEN 255 1171 char *context = NULL; 1172 unsigned len = 0; 1173 int rc = 0; 1174 1175 if (isec->initialized) 1176 goto out; 1177 1178 mutex_lock(&isec->lock); 1179 if (isec->initialized) 1180 goto out_unlock; 1181 1182 sbsec = inode->i_sb->s_security; 1183 if (!(sbsec->flags & SE_SBINITIALIZED)) { 1184 /* Defer initialization until selinux_complete_init, 1185 after the initial policy is loaded and the security 1186 server is ready to handle calls. */ 1187 spin_lock(&sbsec->isec_lock); 1188 if (list_empty(&isec->list)) 1189 list_add(&isec->list, &sbsec->isec_head); 1190 spin_unlock(&sbsec->isec_lock); 1191 goto out_unlock; 1192 } 1193 1194 switch (sbsec->behavior) { 1195 case SECURITY_FS_USE_XATTR: 1196 if (!inode->i_op->getxattr) { 1197 isec->sid = sbsec->def_sid; 1198 break; 1199 } 1200 1201 /* Need a dentry, since the xattr API requires one. 1202 Life would be simpler if we could just pass the inode. */ 1203 if (opt_dentry) { 1204 /* Called from d_instantiate or d_splice_alias. */ 1205 dentry = dget(opt_dentry); 1206 } else { 1207 /* Called from selinux_complete_init, try to find a dentry. */ 1208 dentry = d_find_alias(inode); 1209 } 1210 if (!dentry) { 1211 /* 1212 * this is can be hit on boot when a file is accessed 1213 * before the policy is loaded. When we load policy we 1214 * may find inodes that have no dentry on the 1215 * sbsec->isec_head list. No reason to complain as these 1216 * will get fixed up the next time we go through 1217 * inode_doinit with a dentry, before these inodes could 1218 * be used again by userspace. 1219 */ 1220 goto out_unlock; 1221 } 1222 1223 len = INITCONTEXTLEN; 1224 context = kmalloc(len+1, GFP_NOFS); 1225 if (!context) { 1226 rc = -ENOMEM; 1227 dput(dentry); 1228 goto out_unlock; 1229 } 1230 context[len] = '\0'; 1231 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1232 context, len); 1233 if (rc == -ERANGE) { 1234 kfree(context); 1235 1236 /* Need a larger buffer. Query for the right size. */ 1237 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1238 NULL, 0); 1239 if (rc < 0) { 1240 dput(dentry); 1241 goto out_unlock; 1242 } 1243 len = rc; 1244 context = kmalloc(len+1, GFP_NOFS); 1245 if (!context) { 1246 rc = -ENOMEM; 1247 dput(dentry); 1248 goto out_unlock; 1249 } 1250 context[len] = '\0'; 1251 rc = inode->i_op->getxattr(dentry, 1252 XATTR_NAME_SELINUX, 1253 context, len); 1254 } 1255 dput(dentry); 1256 if (rc < 0) { 1257 if (rc != -ENODATA) { 1258 printk(KERN_WARNING "SELinux: %s: getxattr returned " 1259 "%d for dev=%s ino=%ld\n", __func__, 1260 -rc, inode->i_sb->s_id, inode->i_ino); 1261 kfree(context); 1262 goto out_unlock; 1263 } 1264 /* Map ENODATA to the default file SID */ 1265 sid = sbsec->def_sid; 1266 rc = 0; 1267 } else { 1268 rc = security_context_to_sid_default(context, rc, &sid, 1269 sbsec->def_sid, 1270 GFP_NOFS); 1271 if (rc) { 1272 char *dev = inode->i_sb->s_id; 1273 unsigned long ino = inode->i_ino; 1274 1275 if (rc == -EINVAL) { 1276 if (printk_ratelimit()) 1277 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid " 1278 "context=%s. This indicates you may need to relabel the inode or the " 1279 "filesystem in question.\n", ino, dev, context); 1280 } else { 1281 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) " 1282 "returned %d for dev=%s ino=%ld\n", 1283 __func__, context, -rc, dev, ino); 1284 } 1285 kfree(context); 1286 /* Leave with the unlabeled SID */ 1287 rc = 0; 1288 break; 1289 } 1290 } 1291 kfree(context); 1292 isec->sid = sid; 1293 break; 1294 case SECURITY_FS_USE_TASK: 1295 isec->sid = isec->task_sid; 1296 break; 1297 case SECURITY_FS_USE_TRANS: 1298 /* Default to the fs SID. */ 1299 isec->sid = sbsec->sid; 1300 1301 /* Try to obtain a transition SID. */ 1302 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1303 rc = security_transition_sid(isec->task_sid, 1304 sbsec->sid, 1305 isec->sclass, 1306 &sid); 1307 if (rc) 1308 goto out_unlock; 1309 isec->sid = sid; 1310 break; 1311 case SECURITY_FS_USE_MNTPOINT: 1312 isec->sid = sbsec->mntpoint_sid; 1313 break; 1314 default: 1315 /* Default to the fs superblock SID. */ 1316 isec->sid = sbsec->sid; 1317 1318 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) { 1319 struct proc_inode *proci = PROC_I(inode); 1320 if (proci->pde) { 1321 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1322 rc = selinux_proc_get_sid(proci->pde, 1323 isec->sclass, 1324 &sid); 1325 if (rc) 1326 goto out_unlock; 1327 isec->sid = sid; 1328 } 1329 } 1330 break; 1331 } 1332 1333 isec->initialized = 1; 1334 1335 out_unlock: 1336 mutex_unlock(&isec->lock); 1337 out: 1338 if (isec->sclass == SECCLASS_FILE) 1339 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1340 return rc; 1341 } 1342 1343 /* Convert a Linux signal to an access vector. */ 1344 static inline u32 signal_to_av(int sig) 1345 { 1346 u32 perm = 0; 1347 1348 switch (sig) { 1349 case SIGCHLD: 1350 /* Commonly granted from child to parent. */ 1351 perm = PROCESS__SIGCHLD; 1352 break; 1353 case SIGKILL: 1354 /* Cannot be caught or ignored */ 1355 perm = PROCESS__SIGKILL; 1356 break; 1357 case SIGSTOP: 1358 /* Cannot be caught or ignored */ 1359 perm = PROCESS__SIGSTOP; 1360 break; 1361 default: 1362 /* All other signals. */ 1363 perm = PROCESS__SIGNAL; 1364 break; 1365 } 1366 1367 return perm; 1368 } 1369 1370 /* 1371 * Check permission between a pair of credentials 1372 * fork check, ptrace check, etc. 1373 */ 1374 static int cred_has_perm(const struct cred *actor, 1375 const struct cred *target, 1376 u32 perms) 1377 { 1378 u32 asid = cred_sid(actor), tsid = cred_sid(target); 1379 1380 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL); 1381 } 1382 1383 /* 1384 * Check permission between a pair of tasks, e.g. signal checks, 1385 * fork check, ptrace check, etc. 1386 * tsk1 is the actor and tsk2 is the target 1387 * - this uses the default subjective creds of tsk1 1388 */ 1389 static int task_has_perm(const struct task_struct *tsk1, 1390 const struct task_struct *tsk2, 1391 u32 perms) 1392 { 1393 const struct task_security_struct *__tsec1, *__tsec2; 1394 u32 sid1, sid2; 1395 1396 rcu_read_lock(); 1397 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid; 1398 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid; 1399 rcu_read_unlock(); 1400 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL); 1401 } 1402 1403 /* 1404 * Check permission between current and another task, e.g. signal checks, 1405 * fork check, ptrace check, etc. 1406 * current is the actor and tsk2 is the target 1407 * - this uses current's subjective creds 1408 */ 1409 static int current_has_perm(const struct task_struct *tsk, 1410 u32 perms) 1411 { 1412 u32 sid, tsid; 1413 1414 sid = current_sid(); 1415 tsid = task_sid(tsk); 1416 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL); 1417 } 1418 1419 #if CAP_LAST_CAP > 63 1420 #error Fix SELinux to handle capabilities > 63. 1421 #endif 1422 1423 /* Check whether a task is allowed to use a capability. */ 1424 static int task_has_capability(struct task_struct *tsk, 1425 const struct cred *cred, 1426 int cap, int audit) 1427 { 1428 struct common_audit_data ad; 1429 struct av_decision avd; 1430 u16 sclass; 1431 u32 sid = cred_sid(cred); 1432 u32 av = CAP_TO_MASK(cap); 1433 int rc; 1434 1435 COMMON_AUDIT_DATA_INIT(&ad, CAP); 1436 ad.tsk = tsk; 1437 ad.u.cap = cap; 1438 1439 switch (CAP_TO_INDEX(cap)) { 1440 case 0: 1441 sclass = SECCLASS_CAPABILITY; 1442 break; 1443 case 1: 1444 sclass = SECCLASS_CAPABILITY2; 1445 break; 1446 default: 1447 printk(KERN_ERR 1448 "SELinux: out of range capability %d\n", cap); 1449 BUG(); 1450 } 1451 1452 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd); 1453 if (audit == SECURITY_CAP_AUDIT) 1454 avc_audit(sid, sid, sclass, av, &avd, rc, &ad); 1455 return rc; 1456 } 1457 1458 /* Check whether a task is allowed to use a system operation. */ 1459 static int task_has_system(struct task_struct *tsk, 1460 u32 perms) 1461 { 1462 u32 sid = task_sid(tsk); 1463 1464 return avc_has_perm(sid, SECINITSID_KERNEL, 1465 SECCLASS_SYSTEM, perms, NULL); 1466 } 1467 1468 /* Check whether a task has a particular permission to an inode. 1469 The 'adp' parameter is optional and allows other audit 1470 data to be passed (e.g. the dentry). */ 1471 static int inode_has_perm(const struct cred *cred, 1472 struct inode *inode, 1473 u32 perms, 1474 struct common_audit_data *adp) 1475 { 1476 struct inode_security_struct *isec; 1477 struct common_audit_data ad; 1478 u32 sid; 1479 1480 validate_creds(cred); 1481 1482 if (unlikely(IS_PRIVATE(inode))) 1483 return 0; 1484 1485 sid = cred_sid(cred); 1486 isec = inode->i_security; 1487 1488 if (!adp) { 1489 adp = &ad; 1490 COMMON_AUDIT_DATA_INIT(&ad, FS); 1491 ad.u.fs.inode = inode; 1492 } 1493 1494 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp); 1495 } 1496 1497 /* Same as inode_has_perm, but pass explicit audit data containing 1498 the dentry to help the auditing code to more easily generate the 1499 pathname if needed. */ 1500 static inline int dentry_has_perm(const struct cred *cred, 1501 struct vfsmount *mnt, 1502 struct dentry *dentry, 1503 u32 av) 1504 { 1505 struct inode *inode = dentry->d_inode; 1506 struct common_audit_data ad; 1507 1508 COMMON_AUDIT_DATA_INIT(&ad, FS); 1509 ad.u.fs.path.mnt = mnt; 1510 ad.u.fs.path.dentry = dentry; 1511 return inode_has_perm(cred, inode, av, &ad); 1512 } 1513 1514 /* Check whether a task can use an open file descriptor to 1515 access an inode in a given way. Check access to the 1516 descriptor itself, and then use dentry_has_perm to 1517 check a particular permission to the file. 1518 Access to the descriptor is implicitly granted if it 1519 has the same SID as the process. If av is zero, then 1520 access to the file is not checked, e.g. for cases 1521 where only the descriptor is affected like seek. */ 1522 static int file_has_perm(const struct cred *cred, 1523 struct file *file, 1524 u32 av) 1525 { 1526 struct file_security_struct *fsec = file->f_security; 1527 struct inode *inode = file->f_path.dentry->d_inode; 1528 struct common_audit_data ad; 1529 u32 sid = cred_sid(cred); 1530 int rc; 1531 1532 COMMON_AUDIT_DATA_INIT(&ad, FS); 1533 ad.u.fs.path = file->f_path; 1534 1535 if (sid != fsec->sid) { 1536 rc = avc_has_perm(sid, fsec->sid, 1537 SECCLASS_FD, 1538 FD__USE, 1539 &ad); 1540 if (rc) 1541 goto out; 1542 } 1543 1544 /* av is zero if only checking access to the descriptor. */ 1545 rc = 0; 1546 if (av) 1547 rc = inode_has_perm(cred, inode, av, &ad); 1548 1549 out: 1550 return rc; 1551 } 1552 1553 /* Check whether a task can create a file. */ 1554 static int may_create(struct inode *dir, 1555 struct dentry *dentry, 1556 u16 tclass) 1557 { 1558 const struct task_security_struct *tsec = current_security(); 1559 struct inode_security_struct *dsec; 1560 struct superblock_security_struct *sbsec; 1561 u32 sid, newsid; 1562 struct common_audit_data ad; 1563 int rc; 1564 1565 dsec = dir->i_security; 1566 sbsec = dir->i_sb->s_security; 1567 1568 sid = tsec->sid; 1569 newsid = tsec->create_sid; 1570 1571 COMMON_AUDIT_DATA_INIT(&ad, FS); 1572 ad.u.fs.path.dentry = dentry; 1573 1574 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, 1575 DIR__ADD_NAME | DIR__SEARCH, 1576 &ad); 1577 if (rc) 1578 return rc; 1579 1580 if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) { 1581 rc = security_transition_sid(sid, dsec->sid, tclass, &newsid); 1582 if (rc) 1583 return rc; 1584 } 1585 1586 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad); 1587 if (rc) 1588 return rc; 1589 1590 return avc_has_perm(newsid, sbsec->sid, 1591 SECCLASS_FILESYSTEM, 1592 FILESYSTEM__ASSOCIATE, &ad); 1593 } 1594 1595 /* Check whether a task can create a key. */ 1596 static int may_create_key(u32 ksid, 1597 struct task_struct *ctx) 1598 { 1599 u32 sid = task_sid(ctx); 1600 1601 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL); 1602 } 1603 1604 #define MAY_LINK 0 1605 #define MAY_UNLINK 1 1606 #define MAY_RMDIR 2 1607 1608 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1609 static int may_link(struct inode *dir, 1610 struct dentry *dentry, 1611 int kind) 1612 1613 { 1614 struct inode_security_struct *dsec, *isec; 1615 struct common_audit_data ad; 1616 u32 sid = current_sid(); 1617 u32 av; 1618 int rc; 1619 1620 dsec = dir->i_security; 1621 isec = dentry->d_inode->i_security; 1622 1623 COMMON_AUDIT_DATA_INIT(&ad, FS); 1624 ad.u.fs.path.dentry = dentry; 1625 1626 av = DIR__SEARCH; 1627 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1628 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad); 1629 if (rc) 1630 return rc; 1631 1632 switch (kind) { 1633 case MAY_LINK: 1634 av = FILE__LINK; 1635 break; 1636 case MAY_UNLINK: 1637 av = FILE__UNLINK; 1638 break; 1639 case MAY_RMDIR: 1640 av = DIR__RMDIR; 1641 break; 1642 default: 1643 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n", 1644 __func__, kind); 1645 return 0; 1646 } 1647 1648 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad); 1649 return rc; 1650 } 1651 1652 static inline int may_rename(struct inode *old_dir, 1653 struct dentry *old_dentry, 1654 struct inode *new_dir, 1655 struct dentry *new_dentry) 1656 { 1657 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1658 struct common_audit_data ad; 1659 u32 sid = current_sid(); 1660 u32 av; 1661 int old_is_dir, new_is_dir; 1662 int rc; 1663 1664 old_dsec = old_dir->i_security; 1665 old_isec = old_dentry->d_inode->i_security; 1666 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 1667 new_dsec = new_dir->i_security; 1668 1669 COMMON_AUDIT_DATA_INIT(&ad, FS); 1670 1671 ad.u.fs.path.dentry = old_dentry; 1672 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR, 1673 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1674 if (rc) 1675 return rc; 1676 rc = avc_has_perm(sid, old_isec->sid, 1677 old_isec->sclass, FILE__RENAME, &ad); 1678 if (rc) 1679 return rc; 1680 if (old_is_dir && new_dir != old_dir) { 1681 rc = avc_has_perm(sid, old_isec->sid, 1682 old_isec->sclass, DIR__REPARENT, &ad); 1683 if (rc) 1684 return rc; 1685 } 1686 1687 ad.u.fs.path.dentry = new_dentry; 1688 av = DIR__ADD_NAME | DIR__SEARCH; 1689 if (new_dentry->d_inode) 1690 av |= DIR__REMOVE_NAME; 1691 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1692 if (rc) 1693 return rc; 1694 if (new_dentry->d_inode) { 1695 new_isec = new_dentry->d_inode->i_security; 1696 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode); 1697 rc = avc_has_perm(sid, new_isec->sid, 1698 new_isec->sclass, 1699 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1700 if (rc) 1701 return rc; 1702 } 1703 1704 return 0; 1705 } 1706 1707 /* Check whether a task can perform a filesystem operation. */ 1708 static int superblock_has_perm(const struct cred *cred, 1709 struct super_block *sb, 1710 u32 perms, 1711 struct common_audit_data *ad) 1712 { 1713 struct superblock_security_struct *sbsec; 1714 u32 sid = cred_sid(cred); 1715 1716 sbsec = sb->s_security; 1717 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad); 1718 } 1719 1720 /* Convert a Linux mode and permission mask to an access vector. */ 1721 static inline u32 file_mask_to_av(int mode, int mask) 1722 { 1723 u32 av = 0; 1724 1725 if ((mode & S_IFMT) != S_IFDIR) { 1726 if (mask & MAY_EXEC) 1727 av |= FILE__EXECUTE; 1728 if (mask & MAY_READ) 1729 av |= FILE__READ; 1730 1731 if (mask & MAY_APPEND) 1732 av |= FILE__APPEND; 1733 else if (mask & MAY_WRITE) 1734 av |= FILE__WRITE; 1735 1736 } else { 1737 if (mask & MAY_EXEC) 1738 av |= DIR__SEARCH; 1739 if (mask & MAY_WRITE) 1740 av |= DIR__WRITE; 1741 if (mask & MAY_READ) 1742 av |= DIR__READ; 1743 } 1744 1745 return av; 1746 } 1747 1748 /* Convert a Linux file to an access vector. */ 1749 static inline u32 file_to_av(struct file *file) 1750 { 1751 u32 av = 0; 1752 1753 if (file->f_mode & FMODE_READ) 1754 av |= FILE__READ; 1755 if (file->f_mode & FMODE_WRITE) { 1756 if (file->f_flags & O_APPEND) 1757 av |= FILE__APPEND; 1758 else 1759 av |= FILE__WRITE; 1760 } 1761 if (!av) { 1762 /* 1763 * Special file opened with flags 3 for ioctl-only use. 1764 */ 1765 av = FILE__IOCTL; 1766 } 1767 1768 return av; 1769 } 1770 1771 /* 1772 * Convert a file to an access vector and include the correct open 1773 * open permission. 1774 */ 1775 static inline u32 open_file_to_av(struct file *file) 1776 { 1777 u32 av = file_to_av(file); 1778 1779 if (selinux_policycap_openperm) 1780 av |= FILE__OPEN; 1781 1782 return av; 1783 } 1784 1785 /* Hook functions begin here. */ 1786 1787 static int selinux_ptrace_access_check(struct task_struct *child, 1788 unsigned int mode) 1789 { 1790 int rc; 1791 1792 rc = cap_ptrace_access_check(child, mode); 1793 if (rc) 1794 return rc; 1795 1796 if (mode == PTRACE_MODE_READ) { 1797 u32 sid = current_sid(); 1798 u32 csid = task_sid(child); 1799 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL); 1800 } 1801 1802 return current_has_perm(child, PROCESS__PTRACE); 1803 } 1804 1805 static int selinux_ptrace_traceme(struct task_struct *parent) 1806 { 1807 int rc; 1808 1809 rc = cap_ptrace_traceme(parent); 1810 if (rc) 1811 return rc; 1812 1813 return task_has_perm(parent, current, PROCESS__PTRACE); 1814 } 1815 1816 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective, 1817 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1818 { 1819 int error; 1820 1821 error = current_has_perm(target, PROCESS__GETCAP); 1822 if (error) 1823 return error; 1824 1825 return cap_capget(target, effective, inheritable, permitted); 1826 } 1827 1828 static int selinux_capset(struct cred *new, const struct cred *old, 1829 const kernel_cap_t *effective, 1830 const kernel_cap_t *inheritable, 1831 const kernel_cap_t *permitted) 1832 { 1833 int error; 1834 1835 error = cap_capset(new, old, 1836 effective, inheritable, permitted); 1837 if (error) 1838 return error; 1839 1840 return cred_has_perm(old, new, PROCESS__SETCAP); 1841 } 1842 1843 /* 1844 * (This comment used to live with the selinux_task_setuid hook, 1845 * which was removed). 1846 * 1847 * Since setuid only affects the current process, and since the SELinux 1848 * controls are not based on the Linux identity attributes, SELinux does not 1849 * need to control this operation. However, SELinux does control the use of 1850 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook. 1851 */ 1852 1853 static int selinux_capable(struct task_struct *tsk, const struct cred *cred, 1854 int cap, int audit) 1855 { 1856 int rc; 1857 1858 rc = cap_capable(tsk, cred, cap, audit); 1859 if (rc) 1860 return rc; 1861 1862 return task_has_capability(tsk, cred, cap, audit); 1863 } 1864 1865 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid) 1866 { 1867 int buflen, rc; 1868 char *buffer, *path, *end; 1869 1870 rc = -ENOMEM; 1871 buffer = (char *)__get_free_page(GFP_KERNEL); 1872 if (!buffer) 1873 goto out; 1874 1875 buflen = PAGE_SIZE; 1876 end = buffer+buflen; 1877 *--end = '\0'; 1878 buflen--; 1879 path = end-1; 1880 *path = '/'; 1881 while (table) { 1882 const char *name = table->procname; 1883 size_t namelen = strlen(name); 1884 buflen -= namelen + 1; 1885 if (buflen < 0) 1886 goto out_free; 1887 end -= namelen; 1888 memcpy(end, name, namelen); 1889 *--end = '/'; 1890 path = end; 1891 table = table->parent; 1892 } 1893 buflen -= 4; 1894 if (buflen < 0) 1895 goto out_free; 1896 end -= 4; 1897 memcpy(end, "/sys", 4); 1898 path = end; 1899 rc = security_genfs_sid("proc", path, tclass, sid); 1900 out_free: 1901 free_page((unsigned long)buffer); 1902 out: 1903 return rc; 1904 } 1905 1906 static int selinux_sysctl(ctl_table *table, int op) 1907 { 1908 int error = 0; 1909 u32 av; 1910 u32 tsid, sid; 1911 int rc; 1912 1913 sid = current_sid(); 1914 1915 rc = selinux_sysctl_get_sid(table, (op == 0001) ? 1916 SECCLASS_DIR : SECCLASS_FILE, &tsid); 1917 if (rc) { 1918 /* Default to the well-defined sysctl SID. */ 1919 tsid = SECINITSID_SYSCTL; 1920 } 1921 1922 /* The op values are "defined" in sysctl.c, thereby creating 1923 * a bad coupling between this module and sysctl.c */ 1924 if (op == 001) { 1925 error = avc_has_perm(sid, tsid, 1926 SECCLASS_DIR, DIR__SEARCH, NULL); 1927 } else { 1928 av = 0; 1929 if (op & 004) 1930 av |= FILE__READ; 1931 if (op & 002) 1932 av |= FILE__WRITE; 1933 if (av) 1934 error = avc_has_perm(sid, tsid, 1935 SECCLASS_FILE, av, NULL); 1936 } 1937 1938 return error; 1939 } 1940 1941 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) 1942 { 1943 const struct cred *cred = current_cred(); 1944 int rc = 0; 1945 1946 if (!sb) 1947 return 0; 1948 1949 switch (cmds) { 1950 case Q_SYNC: 1951 case Q_QUOTAON: 1952 case Q_QUOTAOFF: 1953 case Q_SETINFO: 1954 case Q_SETQUOTA: 1955 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL); 1956 break; 1957 case Q_GETFMT: 1958 case Q_GETINFO: 1959 case Q_GETQUOTA: 1960 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL); 1961 break; 1962 default: 1963 rc = 0; /* let the kernel handle invalid cmds */ 1964 break; 1965 } 1966 return rc; 1967 } 1968 1969 static int selinux_quota_on(struct dentry *dentry) 1970 { 1971 const struct cred *cred = current_cred(); 1972 1973 return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON); 1974 } 1975 1976 static int selinux_syslog(int type) 1977 { 1978 int rc; 1979 1980 switch (type) { 1981 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */ 1982 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */ 1983 rc = task_has_system(current, SYSTEM__SYSLOG_READ); 1984 break; 1985 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */ 1986 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */ 1987 /* Set level of messages printed to console */ 1988 case SYSLOG_ACTION_CONSOLE_LEVEL: 1989 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE); 1990 break; 1991 case SYSLOG_ACTION_CLOSE: /* Close log */ 1992 case SYSLOG_ACTION_OPEN: /* Open log */ 1993 case SYSLOG_ACTION_READ: /* Read from log */ 1994 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */ 1995 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */ 1996 default: 1997 rc = task_has_system(current, SYSTEM__SYSLOG_MOD); 1998 break; 1999 } 2000 return rc; 2001 } 2002 2003 /* 2004 * Check that a process has enough memory to allocate a new virtual 2005 * mapping. 0 means there is enough memory for the allocation to 2006 * succeed and -ENOMEM implies there is not. 2007 * 2008 * Do not audit the selinux permission check, as this is applied to all 2009 * processes that allocate mappings. 2010 */ 2011 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) 2012 { 2013 int rc, cap_sys_admin = 0; 2014 2015 rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN, 2016 SECURITY_CAP_NOAUDIT); 2017 if (rc == 0) 2018 cap_sys_admin = 1; 2019 2020 return __vm_enough_memory(mm, pages, cap_sys_admin); 2021 } 2022 2023 /* binprm security operations */ 2024 2025 static int selinux_bprm_set_creds(struct linux_binprm *bprm) 2026 { 2027 const struct task_security_struct *old_tsec; 2028 struct task_security_struct *new_tsec; 2029 struct inode_security_struct *isec; 2030 struct common_audit_data ad; 2031 struct inode *inode = bprm->file->f_path.dentry->d_inode; 2032 int rc; 2033 2034 rc = cap_bprm_set_creds(bprm); 2035 if (rc) 2036 return rc; 2037 2038 /* SELinux context only depends on initial program or script and not 2039 * the script interpreter */ 2040 if (bprm->cred_prepared) 2041 return 0; 2042 2043 old_tsec = current_security(); 2044 new_tsec = bprm->cred->security; 2045 isec = inode->i_security; 2046 2047 /* Default to the current task SID. */ 2048 new_tsec->sid = old_tsec->sid; 2049 new_tsec->osid = old_tsec->sid; 2050 2051 /* Reset fs, key, and sock SIDs on execve. */ 2052 new_tsec->create_sid = 0; 2053 new_tsec->keycreate_sid = 0; 2054 new_tsec->sockcreate_sid = 0; 2055 2056 if (old_tsec->exec_sid) { 2057 new_tsec->sid = old_tsec->exec_sid; 2058 /* Reset exec SID on execve. */ 2059 new_tsec->exec_sid = 0; 2060 } else { 2061 /* Check for a default transition on this program. */ 2062 rc = security_transition_sid(old_tsec->sid, isec->sid, 2063 SECCLASS_PROCESS, &new_tsec->sid); 2064 if (rc) 2065 return rc; 2066 } 2067 2068 COMMON_AUDIT_DATA_INIT(&ad, FS); 2069 ad.u.fs.path = bprm->file->f_path; 2070 2071 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) 2072 new_tsec->sid = old_tsec->sid; 2073 2074 if (new_tsec->sid == old_tsec->sid) { 2075 rc = avc_has_perm(old_tsec->sid, isec->sid, 2076 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 2077 if (rc) 2078 return rc; 2079 } else { 2080 /* Check permissions for the transition. */ 2081 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2082 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 2083 if (rc) 2084 return rc; 2085 2086 rc = avc_has_perm(new_tsec->sid, isec->sid, 2087 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 2088 if (rc) 2089 return rc; 2090 2091 /* Check for shared state */ 2092 if (bprm->unsafe & LSM_UNSAFE_SHARE) { 2093 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2094 SECCLASS_PROCESS, PROCESS__SHARE, 2095 NULL); 2096 if (rc) 2097 return -EPERM; 2098 } 2099 2100 /* Make sure that anyone attempting to ptrace over a task that 2101 * changes its SID has the appropriate permit */ 2102 if (bprm->unsafe & 2103 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) { 2104 struct task_struct *tracer; 2105 struct task_security_struct *sec; 2106 u32 ptsid = 0; 2107 2108 rcu_read_lock(); 2109 tracer = tracehook_tracer_task(current); 2110 if (likely(tracer != NULL)) { 2111 sec = __task_cred(tracer)->security; 2112 ptsid = sec->sid; 2113 } 2114 rcu_read_unlock(); 2115 2116 if (ptsid != 0) { 2117 rc = avc_has_perm(ptsid, new_tsec->sid, 2118 SECCLASS_PROCESS, 2119 PROCESS__PTRACE, NULL); 2120 if (rc) 2121 return -EPERM; 2122 } 2123 } 2124 2125 /* Clear any possibly unsafe personality bits on exec: */ 2126 bprm->per_clear |= PER_CLEAR_ON_SETID; 2127 } 2128 2129 return 0; 2130 } 2131 2132 static int selinux_bprm_secureexec(struct linux_binprm *bprm) 2133 { 2134 const struct task_security_struct *tsec = current_security(); 2135 u32 sid, osid; 2136 int atsecure = 0; 2137 2138 sid = tsec->sid; 2139 osid = tsec->osid; 2140 2141 if (osid != sid) { 2142 /* Enable secure mode for SIDs transitions unless 2143 the noatsecure permission is granted between 2144 the two SIDs, i.e. ahp returns 0. */ 2145 atsecure = avc_has_perm(osid, sid, 2146 SECCLASS_PROCESS, 2147 PROCESS__NOATSECURE, NULL); 2148 } 2149 2150 return (atsecure || cap_bprm_secureexec(bprm)); 2151 } 2152 2153 extern struct vfsmount *selinuxfs_mount; 2154 extern struct dentry *selinux_null; 2155 2156 /* Derived from fs/exec.c:flush_old_files. */ 2157 static inline void flush_unauthorized_files(const struct cred *cred, 2158 struct files_struct *files) 2159 { 2160 struct common_audit_data ad; 2161 struct file *file, *devnull = NULL; 2162 struct tty_struct *tty; 2163 struct fdtable *fdt; 2164 long j = -1; 2165 int drop_tty = 0; 2166 2167 tty = get_current_tty(); 2168 if (tty) { 2169 spin_lock(&tty_files_lock); 2170 if (!list_empty(&tty->tty_files)) { 2171 struct tty_file_private *file_priv; 2172 struct inode *inode; 2173 2174 /* Revalidate access to controlling tty. 2175 Use inode_has_perm on the tty inode directly rather 2176 than using file_has_perm, as this particular open 2177 file may belong to another process and we are only 2178 interested in the inode-based check here. */ 2179 file_priv = list_first_entry(&tty->tty_files, 2180 struct tty_file_private, list); 2181 file = file_priv->file; 2182 inode = file->f_path.dentry->d_inode; 2183 if (inode_has_perm(cred, inode, 2184 FILE__READ | FILE__WRITE, NULL)) { 2185 drop_tty = 1; 2186 } 2187 } 2188 spin_unlock(&tty_files_lock); 2189 tty_kref_put(tty); 2190 } 2191 /* Reset controlling tty. */ 2192 if (drop_tty) 2193 no_tty(); 2194 2195 /* Revalidate access to inherited open files. */ 2196 2197 COMMON_AUDIT_DATA_INIT(&ad, FS); 2198 2199 spin_lock(&files->file_lock); 2200 for (;;) { 2201 unsigned long set, i; 2202 int fd; 2203 2204 j++; 2205 i = j * __NFDBITS; 2206 fdt = files_fdtable(files); 2207 if (i >= fdt->max_fds) 2208 break; 2209 set = fdt->open_fds->fds_bits[j]; 2210 if (!set) 2211 continue; 2212 spin_unlock(&files->file_lock); 2213 for ( ; set ; i++, set >>= 1) { 2214 if (set & 1) { 2215 file = fget(i); 2216 if (!file) 2217 continue; 2218 if (file_has_perm(cred, 2219 file, 2220 file_to_av(file))) { 2221 sys_close(i); 2222 fd = get_unused_fd(); 2223 if (fd != i) { 2224 if (fd >= 0) 2225 put_unused_fd(fd); 2226 fput(file); 2227 continue; 2228 } 2229 if (devnull) { 2230 get_file(devnull); 2231 } else { 2232 devnull = dentry_open( 2233 dget(selinux_null), 2234 mntget(selinuxfs_mount), 2235 O_RDWR, cred); 2236 if (IS_ERR(devnull)) { 2237 devnull = NULL; 2238 put_unused_fd(fd); 2239 fput(file); 2240 continue; 2241 } 2242 } 2243 fd_install(fd, devnull); 2244 } 2245 fput(file); 2246 } 2247 } 2248 spin_lock(&files->file_lock); 2249 2250 } 2251 spin_unlock(&files->file_lock); 2252 } 2253 2254 /* 2255 * Prepare a process for imminent new credential changes due to exec 2256 */ 2257 static void selinux_bprm_committing_creds(struct linux_binprm *bprm) 2258 { 2259 struct task_security_struct *new_tsec; 2260 struct rlimit *rlim, *initrlim; 2261 int rc, i; 2262 2263 new_tsec = bprm->cred->security; 2264 if (new_tsec->sid == new_tsec->osid) 2265 return; 2266 2267 /* Close files for which the new task SID is not authorized. */ 2268 flush_unauthorized_files(bprm->cred, current->files); 2269 2270 /* Always clear parent death signal on SID transitions. */ 2271 current->pdeath_signal = 0; 2272 2273 /* Check whether the new SID can inherit resource limits from the old 2274 * SID. If not, reset all soft limits to the lower of the current 2275 * task's hard limit and the init task's soft limit. 2276 * 2277 * Note that the setting of hard limits (even to lower them) can be 2278 * controlled by the setrlimit check. The inclusion of the init task's 2279 * soft limit into the computation is to avoid resetting soft limits 2280 * higher than the default soft limit for cases where the default is 2281 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK. 2282 */ 2283 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS, 2284 PROCESS__RLIMITINH, NULL); 2285 if (rc) { 2286 /* protect against do_prlimit() */ 2287 task_lock(current); 2288 for (i = 0; i < RLIM_NLIMITS; i++) { 2289 rlim = current->signal->rlim + i; 2290 initrlim = init_task.signal->rlim + i; 2291 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur); 2292 } 2293 task_unlock(current); 2294 update_rlimit_cpu(current, rlimit(RLIMIT_CPU)); 2295 } 2296 } 2297 2298 /* 2299 * Clean up the process immediately after the installation of new credentials 2300 * due to exec 2301 */ 2302 static void selinux_bprm_committed_creds(struct linux_binprm *bprm) 2303 { 2304 const struct task_security_struct *tsec = current_security(); 2305 struct itimerval itimer; 2306 u32 osid, sid; 2307 int rc, i; 2308 2309 osid = tsec->osid; 2310 sid = tsec->sid; 2311 2312 if (sid == osid) 2313 return; 2314 2315 /* Check whether the new SID can inherit signal state from the old SID. 2316 * If not, clear itimers to avoid subsequent signal generation and 2317 * flush and unblock signals. 2318 * 2319 * This must occur _after_ the task SID has been updated so that any 2320 * kill done after the flush will be checked against the new SID. 2321 */ 2322 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL); 2323 if (rc) { 2324 memset(&itimer, 0, sizeof itimer); 2325 for (i = 0; i < 3; i++) 2326 do_setitimer(i, &itimer, NULL); 2327 spin_lock_irq(¤t->sighand->siglock); 2328 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) { 2329 __flush_signals(current); 2330 flush_signal_handlers(current, 1); 2331 sigemptyset(¤t->blocked); 2332 } 2333 spin_unlock_irq(¤t->sighand->siglock); 2334 } 2335 2336 /* Wake up the parent if it is waiting so that it can recheck 2337 * wait permission to the new task SID. */ 2338 read_lock(&tasklist_lock); 2339 __wake_up_parent(current, current->real_parent); 2340 read_unlock(&tasklist_lock); 2341 } 2342 2343 /* superblock security operations */ 2344 2345 static int selinux_sb_alloc_security(struct super_block *sb) 2346 { 2347 return superblock_alloc_security(sb); 2348 } 2349 2350 static void selinux_sb_free_security(struct super_block *sb) 2351 { 2352 superblock_free_security(sb); 2353 } 2354 2355 static inline int match_prefix(char *prefix, int plen, char *option, int olen) 2356 { 2357 if (plen > olen) 2358 return 0; 2359 2360 return !memcmp(prefix, option, plen); 2361 } 2362 2363 static inline int selinux_option(char *option, int len) 2364 { 2365 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) || 2366 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) || 2367 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) || 2368 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) || 2369 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len)); 2370 } 2371 2372 static inline void take_option(char **to, char *from, int *first, int len) 2373 { 2374 if (!*first) { 2375 **to = ','; 2376 *to += 1; 2377 } else 2378 *first = 0; 2379 memcpy(*to, from, len); 2380 *to += len; 2381 } 2382 2383 static inline void take_selinux_option(char **to, char *from, int *first, 2384 int len) 2385 { 2386 int current_size = 0; 2387 2388 if (!*first) { 2389 **to = '|'; 2390 *to += 1; 2391 } else 2392 *first = 0; 2393 2394 while (current_size < len) { 2395 if (*from != '"') { 2396 **to = *from; 2397 *to += 1; 2398 } 2399 from += 1; 2400 current_size += 1; 2401 } 2402 } 2403 2404 static int selinux_sb_copy_data(char *orig, char *copy) 2405 { 2406 int fnosec, fsec, rc = 0; 2407 char *in_save, *in_curr, *in_end; 2408 char *sec_curr, *nosec_save, *nosec; 2409 int open_quote = 0; 2410 2411 in_curr = orig; 2412 sec_curr = copy; 2413 2414 nosec = (char *)get_zeroed_page(GFP_KERNEL); 2415 if (!nosec) { 2416 rc = -ENOMEM; 2417 goto out; 2418 } 2419 2420 nosec_save = nosec; 2421 fnosec = fsec = 1; 2422 in_save = in_end = orig; 2423 2424 do { 2425 if (*in_end == '"') 2426 open_quote = !open_quote; 2427 if ((*in_end == ',' && open_quote == 0) || 2428 *in_end == '\0') { 2429 int len = in_end - in_curr; 2430 2431 if (selinux_option(in_curr, len)) 2432 take_selinux_option(&sec_curr, in_curr, &fsec, len); 2433 else 2434 take_option(&nosec, in_curr, &fnosec, len); 2435 2436 in_curr = in_end + 1; 2437 } 2438 } while (*in_end++); 2439 2440 strcpy(in_save, nosec_save); 2441 free_page((unsigned long)nosec_save); 2442 out: 2443 return rc; 2444 } 2445 2446 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data) 2447 { 2448 const struct cred *cred = current_cred(); 2449 struct common_audit_data ad; 2450 int rc; 2451 2452 rc = superblock_doinit(sb, data); 2453 if (rc) 2454 return rc; 2455 2456 /* Allow all mounts performed by the kernel */ 2457 if (flags & MS_KERNMOUNT) 2458 return 0; 2459 2460 COMMON_AUDIT_DATA_INIT(&ad, FS); 2461 ad.u.fs.path.dentry = sb->s_root; 2462 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad); 2463 } 2464 2465 static int selinux_sb_statfs(struct dentry *dentry) 2466 { 2467 const struct cred *cred = current_cred(); 2468 struct common_audit_data ad; 2469 2470 COMMON_AUDIT_DATA_INIT(&ad, FS); 2471 ad.u.fs.path.dentry = dentry->d_sb->s_root; 2472 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2473 } 2474 2475 static int selinux_mount(char *dev_name, 2476 struct path *path, 2477 char *type, 2478 unsigned long flags, 2479 void *data) 2480 { 2481 const struct cred *cred = current_cred(); 2482 2483 if (flags & MS_REMOUNT) 2484 return superblock_has_perm(cred, path->mnt->mnt_sb, 2485 FILESYSTEM__REMOUNT, NULL); 2486 else 2487 return dentry_has_perm(cred, path->mnt, path->dentry, 2488 FILE__MOUNTON); 2489 } 2490 2491 static int selinux_umount(struct vfsmount *mnt, int flags) 2492 { 2493 const struct cred *cred = current_cred(); 2494 2495 return superblock_has_perm(cred, mnt->mnt_sb, 2496 FILESYSTEM__UNMOUNT, NULL); 2497 } 2498 2499 /* inode security operations */ 2500 2501 static int selinux_inode_alloc_security(struct inode *inode) 2502 { 2503 return inode_alloc_security(inode); 2504 } 2505 2506 static void selinux_inode_free_security(struct inode *inode) 2507 { 2508 inode_free_security(inode); 2509 } 2510 2511 static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 2512 char **name, void **value, 2513 size_t *len) 2514 { 2515 const struct task_security_struct *tsec = current_security(); 2516 struct inode_security_struct *dsec; 2517 struct superblock_security_struct *sbsec; 2518 u32 sid, newsid, clen; 2519 int rc; 2520 char *namep = NULL, *context; 2521 2522 dsec = dir->i_security; 2523 sbsec = dir->i_sb->s_security; 2524 2525 sid = tsec->sid; 2526 newsid = tsec->create_sid; 2527 2528 if ((sbsec->flags & SE_SBINITIALIZED) && 2529 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) 2530 newsid = sbsec->mntpoint_sid; 2531 else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) { 2532 rc = security_transition_sid(sid, dsec->sid, 2533 inode_mode_to_security_class(inode->i_mode), 2534 &newsid); 2535 if (rc) { 2536 printk(KERN_WARNING "%s: " 2537 "security_transition_sid failed, rc=%d (dev=%s " 2538 "ino=%ld)\n", 2539 __func__, 2540 -rc, inode->i_sb->s_id, inode->i_ino); 2541 return rc; 2542 } 2543 } 2544 2545 /* Possibly defer initialization to selinux_complete_init. */ 2546 if (sbsec->flags & SE_SBINITIALIZED) { 2547 struct inode_security_struct *isec = inode->i_security; 2548 isec->sclass = inode_mode_to_security_class(inode->i_mode); 2549 isec->sid = newsid; 2550 isec->initialized = 1; 2551 } 2552 2553 if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP)) 2554 return -EOPNOTSUPP; 2555 2556 if (name) { 2557 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS); 2558 if (!namep) 2559 return -ENOMEM; 2560 *name = namep; 2561 } 2562 2563 if (value && len) { 2564 rc = security_sid_to_context_force(newsid, &context, &clen); 2565 if (rc) { 2566 kfree(namep); 2567 return rc; 2568 } 2569 *value = context; 2570 *len = clen; 2571 } 2572 2573 return 0; 2574 } 2575 2576 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask) 2577 { 2578 return may_create(dir, dentry, SECCLASS_FILE); 2579 } 2580 2581 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2582 { 2583 return may_link(dir, old_dentry, MAY_LINK); 2584 } 2585 2586 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 2587 { 2588 return may_link(dir, dentry, MAY_UNLINK); 2589 } 2590 2591 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 2592 { 2593 return may_create(dir, dentry, SECCLASS_LNK_FILE); 2594 } 2595 2596 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask) 2597 { 2598 return may_create(dir, dentry, SECCLASS_DIR); 2599 } 2600 2601 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 2602 { 2603 return may_link(dir, dentry, MAY_RMDIR); 2604 } 2605 2606 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 2607 { 2608 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 2609 } 2610 2611 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 2612 struct inode *new_inode, struct dentry *new_dentry) 2613 { 2614 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 2615 } 2616 2617 static int selinux_inode_readlink(struct dentry *dentry) 2618 { 2619 const struct cred *cred = current_cred(); 2620 2621 return dentry_has_perm(cred, NULL, dentry, FILE__READ); 2622 } 2623 2624 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata) 2625 { 2626 const struct cred *cred = current_cred(); 2627 2628 return dentry_has_perm(cred, NULL, dentry, FILE__READ); 2629 } 2630 2631 static int selinux_inode_permission(struct inode *inode, int mask) 2632 { 2633 const struct cred *cred = current_cred(); 2634 struct common_audit_data ad; 2635 u32 perms; 2636 bool from_access; 2637 2638 from_access = mask & MAY_ACCESS; 2639 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND); 2640 2641 /* No permission to check. Existence test. */ 2642 if (!mask) 2643 return 0; 2644 2645 COMMON_AUDIT_DATA_INIT(&ad, FS); 2646 ad.u.fs.inode = inode; 2647 2648 if (from_access) 2649 ad.selinux_audit_data.auditdeny |= FILE__AUDIT_ACCESS; 2650 2651 perms = file_mask_to_av(inode->i_mode, mask); 2652 2653 return inode_has_perm(cred, inode, perms, &ad); 2654 } 2655 2656 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) 2657 { 2658 const struct cred *cred = current_cred(); 2659 unsigned int ia_valid = iattr->ia_valid; 2660 2661 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */ 2662 if (ia_valid & ATTR_FORCE) { 2663 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE | 2664 ATTR_FORCE); 2665 if (!ia_valid) 2666 return 0; 2667 } 2668 2669 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 2670 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET)) 2671 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR); 2672 2673 return dentry_has_perm(cred, NULL, dentry, FILE__WRITE); 2674 } 2675 2676 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 2677 { 2678 const struct cred *cred = current_cred(); 2679 2680 return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR); 2681 } 2682 2683 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name) 2684 { 2685 const struct cred *cred = current_cred(); 2686 2687 if (!strncmp(name, XATTR_SECURITY_PREFIX, 2688 sizeof XATTR_SECURITY_PREFIX - 1)) { 2689 if (!strcmp(name, XATTR_NAME_CAPS)) { 2690 if (!capable(CAP_SETFCAP)) 2691 return -EPERM; 2692 } else if (!capable(CAP_SYS_ADMIN)) { 2693 /* A different attribute in the security namespace. 2694 Restrict to administrator. */ 2695 return -EPERM; 2696 } 2697 } 2698 2699 /* Not an attribute we recognize, so just check the 2700 ordinary setattr permission. */ 2701 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR); 2702 } 2703 2704 static int selinux_inode_setxattr(struct dentry *dentry, const char *name, 2705 const void *value, size_t size, int flags) 2706 { 2707 struct inode *inode = dentry->d_inode; 2708 struct inode_security_struct *isec = inode->i_security; 2709 struct superblock_security_struct *sbsec; 2710 struct common_audit_data ad; 2711 u32 newsid, sid = current_sid(); 2712 int rc = 0; 2713 2714 if (strcmp(name, XATTR_NAME_SELINUX)) 2715 return selinux_inode_setotherxattr(dentry, name); 2716 2717 sbsec = inode->i_sb->s_security; 2718 if (!(sbsec->flags & SE_SBLABELSUPP)) 2719 return -EOPNOTSUPP; 2720 2721 if (!is_owner_or_cap(inode)) 2722 return -EPERM; 2723 2724 COMMON_AUDIT_DATA_INIT(&ad, FS); 2725 ad.u.fs.path.dentry = dentry; 2726 2727 rc = avc_has_perm(sid, isec->sid, isec->sclass, 2728 FILE__RELABELFROM, &ad); 2729 if (rc) 2730 return rc; 2731 2732 rc = security_context_to_sid(value, size, &newsid); 2733 if (rc == -EINVAL) { 2734 if (!capable(CAP_MAC_ADMIN)) 2735 return rc; 2736 rc = security_context_to_sid_force(value, size, &newsid); 2737 } 2738 if (rc) 2739 return rc; 2740 2741 rc = avc_has_perm(sid, newsid, isec->sclass, 2742 FILE__RELABELTO, &ad); 2743 if (rc) 2744 return rc; 2745 2746 rc = security_validate_transition(isec->sid, newsid, sid, 2747 isec->sclass); 2748 if (rc) 2749 return rc; 2750 2751 return avc_has_perm(newsid, 2752 sbsec->sid, 2753 SECCLASS_FILESYSTEM, 2754 FILESYSTEM__ASSOCIATE, 2755 &ad); 2756 } 2757 2758 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name, 2759 const void *value, size_t size, 2760 int flags) 2761 { 2762 struct inode *inode = dentry->d_inode; 2763 struct inode_security_struct *isec = inode->i_security; 2764 u32 newsid; 2765 int rc; 2766 2767 if (strcmp(name, XATTR_NAME_SELINUX)) { 2768 /* Not an attribute we recognize, so nothing to do. */ 2769 return; 2770 } 2771 2772 rc = security_context_to_sid_force(value, size, &newsid); 2773 if (rc) { 2774 printk(KERN_ERR "SELinux: unable to map context to SID" 2775 "for (%s, %lu), rc=%d\n", 2776 inode->i_sb->s_id, inode->i_ino, -rc); 2777 return; 2778 } 2779 2780 isec->sid = newsid; 2781 return; 2782 } 2783 2784 static int selinux_inode_getxattr(struct dentry *dentry, const char *name) 2785 { 2786 const struct cred *cred = current_cred(); 2787 2788 return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR); 2789 } 2790 2791 static int selinux_inode_listxattr(struct dentry *dentry) 2792 { 2793 const struct cred *cred = current_cred(); 2794 2795 return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR); 2796 } 2797 2798 static int selinux_inode_removexattr(struct dentry *dentry, const char *name) 2799 { 2800 if (strcmp(name, XATTR_NAME_SELINUX)) 2801 return selinux_inode_setotherxattr(dentry, name); 2802 2803 /* No one is allowed to remove a SELinux security label. 2804 You can change the label, but all data must be labeled. */ 2805 return -EACCES; 2806 } 2807 2808 /* 2809 * Copy the inode security context value to the user. 2810 * 2811 * Permission check is handled by selinux_inode_getxattr hook. 2812 */ 2813 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 2814 { 2815 u32 size; 2816 int error; 2817 char *context = NULL; 2818 struct inode_security_struct *isec = inode->i_security; 2819 2820 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 2821 return -EOPNOTSUPP; 2822 2823 /* 2824 * If the caller has CAP_MAC_ADMIN, then get the raw context 2825 * value even if it is not defined by current policy; otherwise, 2826 * use the in-core value under current policy. 2827 * Use the non-auditing forms of the permission checks since 2828 * getxattr may be called by unprivileged processes commonly 2829 * and lack of permission just means that we fall back to the 2830 * in-core context value, not a denial. 2831 */ 2832 error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN, 2833 SECURITY_CAP_NOAUDIT); 2834 if (!error) 2835 error = security_sid_to_context_force(isec->sid, &context, 2836 &size); 2837 else 2838 error = security_sid_to_context(isec->sid, &context, &size); 2839 if (error) 2840 return error; 2841 error = size; 2842 if (alloc) { 2843 *buffer = context; 2844 goto out_nofree; 2845 } 2846 kfree(context); 2847 out_nofree: 2848 return error; 2849 } 2850 2851 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 2852 const void *value, size_t size, int flags) 2853 { 2854 struct inode_security_struct *isec = inode->i_security; 2855 u32 newsid; 2856 int rc; 2857 2858 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 2859 return -EOPNOTSUPP; 2860 2861 if (!value || !size) 2862 return -EACCES; 2863 2864 rc = security_context_to_sid((void *)value, size, &newsid); 2865 if (rc) 2866 return rc; 2867 2868 isec->sid = newsid; 2869 isec->initialized = 1; 2870 return 0; 2871 } 2872 2873 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 2874 { 2875 const int len = sizeof(XATTR_NAME_SELINUX); 2876 if (buffer && len <= buffer_size) 2877 memcpy(buffer, XATTR_NAME_SELINUX, len); 2878 return len; 2879 } 2880 2881 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid) 2882 { 2883 struct inode_security_struct *isec = inode->i_security; 2884 *secid = isec->sid; 2885 } 2886 2887 /* file security operations */ 2888 2889 static int selinux_revalidate_file_permission(struct file *file, int mask) 2890 { 2891 const struct cred *cred = current_cred(); 2892 struct inode *inode = file->f_path.dentry->d_inode; 2893 2894 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 2895 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 2896 mask |= MAY_APPEND; 2897 2898 return file_has_perm(cred, file, 2899 file_mask_to_av(inode->i_mode, mask)); 2900 } 2901 2902 static int selinux_file_permission(struct file *file, int mask) 2903 { 2904 struct inode *inode = file->f_path.dentry->d_inode; 2905 struct file_security_struct *fsec = file->f_security; 2906 struct inode_security_struct *isec = inode->i_security; 2907 u32 sid = current_sid(); 2908 2909 if (!mask) 2910 /* No permission to check. Existence test. */ 2911 return 0; 2912 2913 if (sid == fsec->sid && fsec->isid == isec->sid && 2914 fsec->pseqno == avc_policy_seqno()) 2915 /* No change since dentry_open check. */ 2916 return 0; 2917 2918 return selinux_revalidate_file_permission(file, mask); 2919 } 2920 2921 static int selinux_file_alloc_security(struct file *file) 2922 { 2923 return file_alloc_security(file); 2924 } 2925 2926 static void selinux_file_free_security(struct file *file) 2927 { 2928 file_free_security(file); 2929 } 2930 2931 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 2932 unsigned long arg) 2933 { 2934 const struct cred *cred = current_cred(); 2935 u32 av = 0; 2936 2937 if (_IOC_DIR(cmd) & _IOC_WRITE) 2938 av |= FILE__WRITE; 2939 if (_IOC_DIR(cmd) & _IOC_READ) 2940 av |= FILE__READ; 2941 if (!av) 2942 av = FILE__IOCTL; 2943 2944 return file_has_perm(cred, file, av); 2945 } 2946 2947 static int default_noexec; 2948 2949 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 2950 { 2951 const struct cred *cred = current_cred(); 2952 int rc = 0; 2953 2954 if (default_noexec && 2955 (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) { 2956 /* 2957 * We are making executable an anonymous mapping or a 2958 * private file mapping that will also be writable. 2959 * This has an additional check. 2960 */ 2961 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM); 2962 if (rc) 2963 goto error; 2964 } 2965 2966 if (file) { 2967 /* read access is always possible with a mapping */ 2968 u32 av = FILE__READ; 2969 2970 /* write access only matters if the mapping is shared */ 2971 if (shared && (prot & PROT_WRITE)) 2972 av |= FILE__WRITE; 2973 2974 if (prot & PROT_EXEC) 2975 av |= FILE__EXECUTE; 2976 2977 return file_has_perm(cred, file, av); 2978 } 2979 2980 error: 2981 return rc; 2982 } 2983 2984 static int selinux_file_mmap(struct file *file, unsigned long reqprot, 2985 unsigned long prot, unsigned long flags, 2986 unsigned long addr, unsigned long addr_only) 2987 { 2988 int rc = 0; 2989 u32 sid = current_sid(); 2990 2991 /* 2992 * notice that we are intentionally putting the SELinux check before 2993 * the secondary cap_file_mmap check. This is such a likely attempt 2994 * at bad behaviour/exploit that we always want to get the AVC, even 2995 * if DAC would have also denied the operation. 2996 */ 2997 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) { 2998 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT, 2999 MEMPROTECT__MMAP_ZERO, NULL); 3000 if (rc) 3001 return rc; 3002 } 3003 3004 /* do DAC check on address space usage */ 3005 rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only); 3006 if (rc || addr_only) 3007 return rc; 3008 3009 if (selinux_checkreqprot) 3010 prot = reqprot; 3011 3012 return file_map_prot_check(file, prot, 3013 (flags & MAP_TYPE) == MAP_SHARED); 3014 } 3015 3016 static int selinux_file_mprotect(struct vm_area_struct *vma, 3017 unsigned long reqprot, 3018 unsigned long prot) 3019 { 3020 const struct cred *cred = current_cred(); 3021 3022 if (selinux_checkreqprot) 3023 prot = reqprot; 3024 3025 if (default_noexec && 3026 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 3027 int rc = 0; 3028 if (vma->vm_start >= vma->vm_mm->start_brk && 3029 vma->vm_end <= vma->vm_mm->brk) { 3030 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP); 3031 } else if (!vma->vm_file && 3032 vma->vm_start <= vma->vm_mm->start_stack && 3033 vma->vm_end >= vma->vm_mm->start_stack) { 3034 rc = current_has_perm(current, PROCESS__EXECSTACK); 3035 } else if (vma->vm_file && vma->anon_vma) { 3036 /* 3037 * We are making executable a file mapping that has 3038 * had some COW done. Since pages might have been 3039 * written, check ability to execute the possibly 3040 * modified content. This typically should only 3041 * occur for text relocations. 3042 */ 3043 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD); 3044 } 3045 if (rc) 3046 return rc; 3047 } 3048 3049 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 3050 } 3051 3052 static int selinux_file_lock(struct file *file, unsigned int cmd) 3053 { 3054 const struct cred *cred = current_cred(); 3055 3056 return file_has_perm(cred, file, FILE__LOCK); 3057 } 3058 3059 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 3060 unsigned long arg) 3061 { 3062 const struct cred *cred = current_cred(); 3063 int err = 0; 3064 3065 switch (cmd) { 3066 case F_SETFL: 3067 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) { 3068 err = -EINVAL; 3069 break; 3070 } 3071 3072 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 3073 err = file_has_perm(cred, file, FILE__WRITE); 3074 break; 3075 } 3076 /* fall through */ 3077 case F_SETOWN: 3078 case F_SETSIG: 3079 case F_GETFL: 3080 case F_GETOWN: 3081 case F_GETSIG: 3082 /* Just check FD__USE permission */ 3083 err = file_has_perm(cred, file, 0); 3084 break; 3085 case F_GETLK: 3086 case F_SETLK: 3087 case F_SETLKW: 3088 #if BITS_PER_LONG == 32 3089 case F_GETLK64: 3090 case F_SETLK64: 3091 case F_SETLKW64: 3092 #endif 3093 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) { 3094 err = -EINVAL; 3095 break; 3096 } 3097 err = file_has_perm(cred, file, FILE__LOCK); 3098 break; 3099 } 3100 3101 return err; 3102 } 3103 3104 static int selinux_file_set_fowner(struct file *file) 3105 { 3106 struct file_security_struct *fsec; 3107 3108 fsec = file->f_security; 3109 fsec->fown_sid = current_sid(); 3110 3111 return 0; 3112 } 3113 3114 static int selinux_file_send_sigiotask(struct task_struct *tsk, 3115 struct fown_struct *fown, int signum) 3116 { 3117 struct file *file; 3118 u32 sid = task_sid(tsk); 3119 u32 perm; 3120 struct file_security_struct *fsec; 3121 3122 /* struct fown_struct is never outside the context of a struct file */ 3123 file = container_of(fown, struct file, f_owner); 3124 3125 fsec = file->f_security; 3126 3127 if (!signum) 3128 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 3129 else 3130 perm = signal_to_av(signum); 3131 3132 return avc_has_perm(fsec->fown_sid, sid, 3133 SECCLASS_PROCESS, perm, NULL); 3134 } 3135 3136 static int selinux_file_receive(struct file *file) 3137 { 3138 const struct cred *cred = current_cred(); 3139 3140 return file_has_perm(cred, file, file_to_av(file)); 3141 } 3142 3143 static int selinux_dentry_open(struct file *file, const struct cred *cred) 3144 { 3145 struct file_security_struct *fsec; 3146 struct inode *inode; 3147 struct inode_security_struct *isec; 3148 3149 inode = file->f_path.dentry->d_inode; 3150 fsec = file->f_security; 3151 isec = inode->i_security; 3152 /* 3153 * Save inode label and policy sequence number 3154 * at open-time so that selinux_file_permission 3155 * can determine whether revalidation is necessary. 3156 * Task label is already saved in the file security 3157 * struct as its SID. 3158 */ 3159 fsec->isid = isec->sid; 3160 fsec->pseqno = avc_policy_seqno(); 3161 /* 3162 * Since the inode label or policy seqno may have changed 3163 * between the selinux_inode_permission check and the saving 3164 * of state above, recheck that access is still permitted. 3165 * Otherwise, access might never be revalidated against the 3166 * new inode label or new policy. 3167 * This check is not redundant - do not remove. 3168 */ 3169 return inode_has_perm(cred, inode, open_file_to_av(file), NULL); 3170 } 3171 3172 /* task security operations */ 3173 3174 static int selinux_task_create(unsigned long clone_flags) 3175 { 3176 return current_has_perm(current, PROCESS__FORK); 3177 } 3178 3179 /* 3180 * allocate the SELinux part of blank credentials 3181 */ 3182 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp) 3183 { 3184 struct task_security_struct *tsec; 3185 3186 tsec = kzalloc(sizeof(struct task_security_struct), gfp); 3187 if (!tsec) 3188 return -ENOMEM; 3189 3190 cred->security = tsec; 3191 return 0; 3192 } 3193 3194 /* 3195 * detach and free the LSM part of a set of credentials 3196 */ 3197 static void selinux_cred_free(struct cred *cred) 3198 { 3199 struct task_security_struct *tsec = cred->security; 3200 3201 /* 3202 * cred->security == NULL if security_cred_alloc_blank() or 3203 * security_prepare_creds() returned an error. 3204 */ 3205 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE); 3206 cred->security = (void *) 0x7UL; 3207 kfree(tsec); 3208 } 3209 3210 /* 3211 * prepare a new set of credentials for modification 3212 */ 3213 static int selinux_cred_prepare(struct cred *new, const struct cred *old, 3214 gfp_t gfp) 3215 { 3216 const struct task_security_struct *old_tsec; 3217 struct task_security_struct *tsec; 3218 3219 old_tsec = old->security; 3220 3221 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp); 3222 if (!tsec) 3223 return -ENOMEM; 3224 3225 new->security = tsec; 3226 return 0; 3227 } 3228 3229 /* 3230 * transfer the SELinux data to a blank set of creds 3231 */ 3232 static void selinux_cred_transfer(struct cred *new, const struct cred *old) 3233 { 3234 const struct task_security_struct *old_tsec = old->security; 3235 struct task_security_struct *tsec = new->security; 3236 3237 *tsec = *old_tsec; 3238 } 3239 3240 /* 3241 * set the security data for a kernel service 3242 * - all the creation contexts are set to unlabelled 3243 */ 3244 static int selinux_kernel_act_as(struct cred *new, u32 secid) 3245 { 3246 struct task_security_struct *tsec = new->security; 3247 u32 sid = current_sid(); 3248 int ret; 3249 3250 ret = avc_has_perm(sid, secid, 3251 SECCLASS_KERNEL_SERVICE, 3252 KERNEL_SERVICE__USE_AS_OVERRIDE, 3253 NULL); 3254 if (ret == 0) { 3255 tsec->sid = secid; 3256 tsec->create_sid = 0; 3257 tsec->keycreate_sid = 0; 3258 tsec->sockcreate_sid = 0; 3259 } 3260 return ret; 3261 } 3262 3263 /* 3264 * set the file creation context in a security record to the same as the 3265 * objective context of the specified inode 3266 */ 3267 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode) 3268 { 3269 struct inode_security_struct *isec = inode->i_security; 3270 struct task_security_struct *tsec = new->security; 3271 u32 sid = current_sid(); 3272 int ret; 3273 3274 ret = avc_has_perm(sid, isec->sid, 3275 SECCLASS_KERNEL_SERVICE, 3276 KERNEL_SERVICE__CREATE_FILES_AS, 3277 NULL); 3278 3279 if (ret == 0) 3280 tsec->create_sid = isec->sid; 3281 return ret; 3282 } 3283 3284 static int selinux_kernel_module_request(char *kmod_name) 3285 { 3286 u32 sid; 3287 struct common_audit_data ad; 3288 3289 sid = task_sid(current); 3290 3291 COMMON_AUDIT_DATA_INIT(&ad, KMOD); 3292 ad.u.kmod_name = kmod_name; 3293 3294 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM, 3295 SYSTEM__MODULE_REQUEST, &ad); 3296 } 3297 3298 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 3299 { 3300 return current_has_perm(p, PROCESS__SETPGID); 3301 } 3302 3303 static int selinux_task_getpgid(struct task_struct *p) 3304 { 3305 return current_has_perm(p, PROCESS__GETPGID); 3306 } 3307 3308 static int selinux_task_getsid(struct task_struct *p) 3309 { 3310 return current_has_perm(p, PROCESS__GETSESSION); 3311 } 3312 3313 static void selinux_task_getsecid(struct task_struct *p, u32 *secid) 3314 { 3315 *secid = task_sid(p); 3316 } 3317 3318 static int selinux_task_setnice(struct task_struct *p, int nice) 3319 { 3320 int rc; 3321 3322 rc = cap_task_setnice(p, nice); 3323 if (rc) 3324 return rc; 3325 3326 return current_has_perm(p, PROCESS__SETSCHED); 3327 } 3328 3329 static int selinux_task_setioprio(struct task_struct *p, int ioprio) 3330 { 3331 int rc; 3332 3333 rc = cap_task_setioprio(p, ioprio); 3334 if (rc) 3335 return rc; 3336 3337 return current_has_perm(p, PROCESS__SETSCHED); 3338 } 3339 3340 static int selinux_task_getioprio(struct task_struct *p) 3341 { 3342 return current_has_perm(p, PROCESS__GETSCHED); 3343 } 3344 3345 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource, 3346 struct rlimit *new_rlim) 3347 { 3348 struct rlimit *old_rlim = p->signal->rlim + resource; 3349 3350 /* Control the ability to change the hard limit (whether 3351 lowering or raising it), so that the hard limit can 3352 later be used as a safe reset point for the soft limit 3353 upon context transitions. See selinux_bprm_committing_creds. */ 3354 if (old_rlim->rlim_max != new_rlim->rlim_max) 3355 return current_has_perm(p, PROCESS__SETRLIMIT); 3356 3357 return 0; 3358 } 3359 3360 static int selinux_task_setscheduler(struct task_struct *p) 3361 { 3362 int rc; 3363 3364 rc = cap_task_setscheduler(p); 3365 if (rc) 3366 return rc; 3367 3368 return current_has_perm(p, PROCESS__SETSCHED); 3369 } 3370 3371 static int selinux_task_getscheduler(struct task_struct *p) 3372 { 3373 return current_has_perm(p, PROCESS__GETSCHED); 3374 } 3375 3376 static int selinux_task_movememory(struct task_struct *p) 3377 { 3378 return current_has_perm(p, PROCESS__SETSCHED); 3379 } 3380 3381 static int selinux_task_kill(struct task_struct *p, struct siginfo *info, 3382 int sig, u32 secid) 3383 { 3384 u32 perm; 3385 int rc; 3386 3387 if (!sig) 3388 perm = PROCESS__SIGNULL; /* null signal; existence test */ 3389 else 3390 perm = signal_to_av(sig); 3391 if (secid) 3392 rc = avc_has_perm(secid, task_sid(p), 3393 SECCLASS_PROCESS, perm, NULL); 3394 else 3395 rc = current_has_perm(p, perm); 3396 return rc; 3397 } 3398 3399 static int selinux_task_wait(struct task_struct *p) 3400 { 3401 return task_has_perm(p, current, PROCESS__SIGCHLD); 3402 } 3403 3404 static void selinux_task_to_inode(struct task_struct *p, 3405 struct inode *inode) 3406 { 3407 struct inode_security_struct *isec = inode->i_security; 3408 u32 sid = task_sid(p); 3409 3410 isec->sid = sid; 3411 isec->initialized = 1; 3412 } 3413 3414 /* Returns error only if unable to parse addresses */ 3415 static int selinux_parse_skb_ipv4(struct sk_buff *skb, 3416 struct common_audit_data *ad, u8 *proto) 3417 { 3418 int offset, ihlen, ret = -EINVAL; 3419 struct iphdr _iph, *ih; 3420 3421 offset = skb_network_offset(skb); 3422 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 3423 if (ih == NULL) 3424 goto out; 3425 3426 ihlen = ih->ihl * 4; 3427 if (ihlen < sizeof(_iph)) 3428 goto out; 3429 3430 ad->u.net.v4info.saddr = ih->saddr; 3431 ad->u.net.v4info.daddr = ih->daddr; 3432 ret = 0; 3433 3434 if (proto) 3435 *proto = ih->protocol; 3436 3437 switch (ih->protocol) { 3438 case IPPROTO_TCP: { 3439 struct tcphdr _tcph, *th; 3440 3441 if (ntohs(ih->frag_off) & IP_OFFSET) 3442 break; 3443 3444 offset += ihlen; 3445 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3446 if (th == NULL) 3447 break; 3448 3449 ad->u.net.sport = th->source; 3450 ad->u.net.dport = th->dest; 3451 break; 3452 } 3453 3454 case IPPROTO_UDP: { 3455 struct udphdr _udph, *uh; 3456 3457 if (ntohs(ih->frag_off) & IP_OFFSET) 3458 break; 3459 3460 offset += ihlen; 3461 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3462 if (uh == NULL) 3463 break; 3464 3465 ad->u.net.sport = uh->source; 3466 ad->u.net.dport = uh->dest; 3467 break; 3468 } 3469 3470 case IPPROTO_DCCP: { 3471 struct dccp_hdr _dccph, *dh; 3472 3473 if (ntohs(ih->frag_off) & IP_OFFSET) 3474 break; 3475 3476 offset += ihlen; 3477 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3478 if (dh == NULL) 3479 break; 3480 3481 ad->u.net.sport = dh->dccph_sport; 3482 ad->u.net.dport = dh->dccph_dport; 3483 break; 3484 } 3485 3486 default: 3487 break; 3488 } 3489 out: 3490 return ret; 3491 } 3492 3493 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3494 3495 /* Returns error only if unable to parse addresses */ 3496 static int selinux_parse_skb_ipv6(struct sk_buff *skb, 3497 struct common_audit_data *ad, u8 *proto) 3498 { 3499 u8 nexthdr; 3500 int ret = -EINVAL, offset; 3501 struct ipv6hdr _ipv6h, *ip6; 3502 3503 offset = skb_network_offset(skb); 3504 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 3505 if (ip6 == NULL) 3506 goto out; 3507 3508 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr); 3509 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr); 3510 ret = 0; 3511 3512 nexthdr = ip6->nexthdr; 3513 offset += sizeof(_ipv6h); 3514 offset = ipv6_skip_exthdr(skb, offset, &nexthdr); 3515 if (offset < 0) 3516 goto out; 3517 3518 if (proto) 3519 *proto = nexthdr; 3520 3521 switch (nexthdr) { 3522 case IPPROTO_TCP: { 3523 struct tcphdr _tcph, *th; 3524 3525 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3526 if (th == NULL) 3527 break; 3528 3529 ad->u.net.sport = th->source; 3530 ad->u.net.dport = th->dest; 3531 break; 3532 } 3533 3534 case IPPROTO_UDP: { 3535 struct udphdr _udph, *uh; 3536 3537 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3538 if (uh == NULL) 3539 break; 3540 3541 ad->u.net.sport = uh->source; 3542 ad->u.net.dport = uh->dest; 3543 break; 3544 } 3545 3546 case IPPROTO_DCCP: { 3547 struct dccp_hdr _dccph, *dh; 3548 3549 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3550 if (dh == NULL) 3551 break; 3552 3553 ad->u.net.sport = dh->dccph_sport; 3554 ad->u.net.dport = dh->dccph_dport; 3555 break; 3556 } 3557 3558 /* includes fragments */ 3559 default: 3560 break; 3561 } 3562 out: 3563 return ret; 3564 } 3565 3566 #endif /* IPV6 */ 3567 3568 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad, 3569 char **_addrp, int src, u8 *proto) 3570 { 3571 char *addrp; 3572 int ret; 3573 3574 switch (ad->u.net.family) { 3575 case PF_INET: 3576 ret = selinux_parse_skb_ipv4(skb, ad, proto); 3577 if (ret) 3578 goto parse_error; 3579 addrp = (char *)(src ? &ad->u.net.v4info.saddr : 3580 &ad->u.net.v4info.daddr); 3581 goto okay; 3582 3583 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3584 case PF_INET6: 3585 ret = selinux_parse_skb_ipv6(skb, ad, proto); 3586 if (ret) 3587 goto parse_error; 3588 addrp = (char *)(src ? &ad->u.net.v6info.saddr : 3589 &ad->u.net.v6info.daddr); 3590 goto okay; 3591 #endif /* IPV6 */ 3592 default: 3593 addrp = NULL; 3594 goto okay; 3595 } 3596 3597 parse_error: 3598 printk(KERN_WARNING 3599 "SELinux: failure in selinux_parse_skb()," 3600 " unable to parse packet\n"); 3601 return ret; 3602 3603 okay: 3604 if (_addrp) 3605 *_addrp = addrp; 3606 return 0; 3607 } 3608 3609 /** 3610 * selinux_skb_peerlbl_sid - Determine the peer label of a packet 3611 * @skb: the packet 3612 * @family: protocol family 3613 * @sid: the packet's peer label SID 3614 * 3615 * Description: 3616 * Check the various different forms of network peer labeling and determine 3617 * the peer label/SID for the packet; most of the magic actually occurs in 3618 * the security server function security_net_peersid_cmp(). The function 3619 * returns zero if the value in @sid is valid (although it may be SECSID_NULL) 3620 * or -EACCES if @sid is invalid due to inconsistencies with the different 3621 * peer labels. 3622 * 3623 */ 3624 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid) 3625 { 3626 int err; 3627 u32 xfrm_sid; 3628 u32 nlbl_sid; 3629 u32 nlbl_type; 3630 3631 selinux_skb_xfrm_sid(skb, &xfrm_sid); 3632 selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid); 3633 3634 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid); 3635 if (unlikely(err)) { 3636 printk(KERN_WARNING 3637 "SELinux: failure in selinux_skb_peerlbl_sid()," 3638 " unable to determine packet's peer label\n"); 3639 return -EACCES; 3640 } 3641 3642 return 0; 3643 } 3644 3645 /* socket security operations */ 3646 3647 static u32 socket_sockcreate_sid(const struct task_security_struct *tsec) 3648 { 3649 return tsec->sockcreate_sid ? : tsec->sid; 3650 } 3651 3652 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms) 3653 { 3654 struct sk_security_struct *sksec = sk->sk_security; 3655 struct common_audit_data ad; 3656 u32 tsid = task_sid(task); 3657 3658 if (sksec->sid == SECINITSID_KERNEL) 3659 return 0; 3660 3661 COMMON_AUDIT_DATA_INIT(&ad, NET); 3662 ad.u.net.sk = sk; 3663 3664 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad); 3665 } 3666 3667 static int selinux_socket_create(int family, int type, 3668 int protocol, int kern) 3669 { 3670 const struct task_security_struct *tsec = current_security(); 3671 u32 newsid; 3672 u16 secclass; 3673 3674 if (kern) 3675 return 0; 3676 3677 newsid = socket_sockcreate_sid(tsec); 3678 secclass = socket_type_to_security_class(family, type, protocol); 3679 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL); 3680 } 3681 3682 static int selinux_socket_post_create(struct socket *sock, int family, 3683 int type, int protocol, int kern) 3684 { 3685 const struct task_security_struct *tsec = current_security(); 3686 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security; 3687 struct sk_security_struct *sksec; 3688 int err = 0; 3689 3690 if (kern) 3691 isec->sid = SECINITSID_KERNEL; 3692 else 3693 isec->sid = socket_sockcreate_sid(tsec); 3694 3695 isec->sclass = socket_type_to_security_class(family, type, protocol); 3696 isec->initialized = 1; 3697 3698 if (sock->sk) { 3699 sksec = sock->sk->sk_security; 3700 sksec->sid = isec->sid; 3701 sksec->sclass = isec->sclass; 3702 err = selinux_netlbl_socket_post_create(sock->sk, family); 3703 } 3704 3705 return err; 3706 } 3707 3708 /* Range of port numbers used to automatically bind. 3709 Need to determine whether we should perform a name_bind 3710 permission check between the socket and the port number. */ 3711 3712 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 3713 { 3714 struct sock *sk = sock->sk; 3715 u16 family; 3716 int err; 3717 3718 err = sock_has_perm(current, sk, SOCKET__BIND); 3719 if (err) 3720 goto out; 3721 3722 /* 3723 * If PF_INET or PF_INET6, check name_bind permission for the port. 3724 * Multiple address binding for SCTP is not supported yet: we just 3725 * check the first address now. 3726 */ 3727 family = sk->sk_family; 3728 if (family == PF_INET || family == PF_INET6) { 3729 char *addrp; 3730 struct sk_security_struct *sksec = sk->sk_security; 3731 struct common_audit_data ad; 3732 struct sockaddr_in *addr4 = NULL; 3733 struct sockaddr_in6 *addr6 = NULL; 3734 unsigned short snum; 3735 u32 sid, node_perm; 3736 3737 if (family == PF_INET) { 3738 addr4 = (struct sockaddr_in *)address; 3739 snum = ntohs(addr4->sin_port); 3740 addrp = (char *)&addr4->sin_addr.s_addr; 3741 } else { 3742 addr6 = (struct sockaddr_in6 *)address; 3743 snum = ntohs(addr6->sin6_port); 3744 addrp = (char *)&addr6->sin6_addr.s6_addr; 3745 } 3746 3747 if (snum) { 3748 int low, high; 3749 3750 inet_get_local_port_range(&low, &high); 3751 3752 if (snum < max(PROT_SOCK, low) || snum > high) { 3753 err = sel_netport_sid(sk->sk_protocol, 3754 snum, &sid); 3755 if (err) 3756 goto out; 3757 COMMON_AUDIT_DATA_INIT(&ad, NET); 3758 ad.u.net.sport = htons(snum); 3759 ad.u.net.family = family; 3760 err = avc_has_perm(sksec->sid, sid, 3761 sksec->sclass, 3762 SOCKET__NAME_BIND, &ad); 3763 if (err) 3764 goto out; 3765 } 3766 } 3767 3768 switch (sksec->sclass) { 3769 case SECCLASS_TCP_SOCKET: 3770 node_perm = TCP_SOCKET__NODE_BIND; 3771 break; 3772 3773 case SECCLASS_UDP_SOCKET: 3774 node_perm = UDP_SOCKET__NODE_BIND; 3775 break; 3776 3777 case SECCLASS_DCCP_SOCKET: 3778 node_perm = DCCP_SOCKET__NODE_BIND; 3779 break; 3780 3781 default: 3782 node_perm = RAWIP_SOCKET__NODE_BIND; 3783 break; 3784 } 3785 3786 err = sel_netnode_sid(addrp, family, &sid); 3787 if (err) 3788 goto out; 3789 3790 COMMON_AUDIT_DATA_INIT(&ad, NET); 3791 ad.u.net.sport = htons(snum); 3792 ad.u.net.family = family; 3793 3794 if (family == PF_INET) 3795 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr; 3796 else 3797 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr); 3798 3799 err = avc_has_perm(sksec->sid, sid, 3800 sksec->sclass, node_perm, &ad); 3801 if (err) 3802 goto out; 3803 } 3804 out: 3805 return err; 3806 } 3807 3808 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 3809 { 3810 struct sock *sk = sock->sk; 3811 struct sk_security_struct *sksec = sk->sk_security; 3812 int err; 3813 3814 err = sock_has_perm(current, sk, SOCKET__CONNECT); 3815 if (err) 3816 return err; 3817 3818 /* 3819 * If a TCP or DCCP socket, check name_connect permission for the port. 3820 */ 3821 if (sksec->sclass == SECCLASS_TCP_SOCKET || 3822 sksec->sclass == SECCLASS_DCCP_SOCKET) { 3823 struct common_audit_data ad; 3824 struct sockaddr_in *addr4 = NULL; 3825 struct sockaddr_in6 *addr6 = NULL; 3826 unsigned short snum; 3827 u32 sid, perm; 3828 3829 if (sk->sk_family == PF_INET) { 3830 addr4 = (struct sockaddr_in *)address; 3831 if (addrlen < sizeof(struct sockaddr_in)) 3832 return -EINVAL; 3833 snum = ntohs(addr4->sin_port); 3834 } else { 3835 addr6 = (struct sockaddr_in6 *)address; 3836 if (addrlen < SIN6_LEN_RFC2133) 3837 return -EINVAL; 3838 snum = ntohs(addr6->sin6_port); 3839 } 3840 3841 err = sel_netport_sid(sk->sk_protocol, snum, &sid); 3842 if (err) 3843 goto out; 3844 3845 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ? 3846 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT; 3847 3848 COMMON_AUDIT_DATA_INIT(&ad, NET); 3849 ad.u.net.dport = htons(snum); 3850 ad.u.net.family = sk->sk_family; 3851 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad); 3852 if (err) 3853 goto out; 3854 } 3855 3856 err = selinux_netlbl_socket_connect(sk, address); 3857 3858 out: 3859 return err; 3860 } 3861 3862 static int selinux_socket_listen(struct socket *sock, int backlog) 3863 { 3864 return sock_has_perm(current, sock->sk, SOCKET__LISTEN); 3865 } 3866 3867 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 3868 { 3869 int err; 3870 struct inode_security_struct *isec; 3871 struct inode_security_struct *newisec; 3872 3873 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT); 3874 if (err) 3875 return err; 3876 3877 newisec = SOCK_INODE(newsock)->i_security; 3878 3879 isec = SOCK_INODE(sock)->i_security; 3880 newisec->sclass = isec->sclass; 3881 newisec->sid = isec->sid; 3882 newisec->initialized = 1; 3883 3884 return 0; 3885 } 3886 3887 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 3888 int size) 3889 { 3890 return sock_has_perm(current, sock->sk, SOCKET__WRITE); 3891 } 3892 3893 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 3894 int size, int flags) 3895 { 3896 return sock_has_perm(current, sock->sk, SOCKET__READ); 3897 } 3898 3899 static int selinux_socket_getsockname(struct socket *sock) 3900 { 3901 return sock_has_perm(current, sock->sk, SOCKET__GETATTR); 3902 } 3903 3904 static int selinux_socket_getpeername(struct socket *sock) 3905 { 3906 return sock_has_perm(current, sock->sk, SOCKET__GETATTR); 3907 } 3908 3909 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname) 3910 { 3911 int err; 3912 3913 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT); 3914 if (err) 3915 return err; 3916 3917 return selinux_netlbl_socket_setsockopt(sock, level, optname); 3918 } 3919 3920 static int selinux_socket_getsockopt(struct socket *sock, int level, 3921 int optname) 3922 { 3923 return sock_has_perm(current, sock->sk, SOCKET__GETOPT); 3924 } 3925 3926 static int selinux_socket_shutdown(struct socket *sock, int how) 3927 { 3928 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN); 3929 } 3930 3931 static int selinux_socket_unix_stream_connect(struct sock *sock, 3932 struct sock *other, 3933 struct sock *newsk) 3934 { 3935 struct sk_security_struct *sksec_sock = sock->sk_security; 3936 struct sk_security_struct *sksec_other = other->sk_security; 3937 struct sk_security_struct *sksec_new = newsk->sk_security; 3938 struct common_audit_data ad; 3939 int err; 3940 3941 COMMON_AUDIT_DATA_INIT(&ad, NET); 3942 ad.u.net.sk = other; 3943 3944 err = avc_has_perm(sksec_sock->sid, sksec_other->sid, 3945 sksec_other->sclass, 3946 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 3947 if (err) 3948 return err; 3949 3950 /* server child socket */ 3951 sksec_new->peer_sid = sksec_sock->sid; 3952 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid, 3953 &sksec_new->sid); 3954 if (err) 3955 return err; 3956 3957 /* connecting socket */ 3958 sksec_sock->peer_sid = sksec_new->sid; 3959 3960 return 0; 3961 } 3962 3963 static int selinux_socket_unix_may_send(struct socket *sock, 3964 struct socket *other) 3965 { 3966 struct sk_security_struct *ssec = sock->sk->sk_security; 3967 struct sk_security_struct *osec = other->sk->sk_security; 3968 struct common_audit_data ad; 3969 3970 COMMON_AUDIT_DATA_INIT(&ad, NET); 3971 ad.u.net.sk = other->sk; 3972 3973 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO, 3974 &ad); 3975 } 3976 3977 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family, 3978 u32 peer_sid, 3979 struct common_audit_data *ad) 3980 { 3981 int err; 3982 u32 if_sid; 3983 u32 node_sid; 3984 3985 err = sel_netif_sid(ifindex, &if_sid); 3986 if (err) 3987 return err; 3988 err = avc_has_perm(peer_sid, if_sid, 3989 SECCLASS_NETIF, NETIF__INGRESS, ad); 3990 if (err) 3991 return err; 3992 3993 err = sel_netnode_sid(addrp, family, &node_sid); 3994 if (err) 3995 return err; 3996 return avc_has_perm(peer_sid, node_sid, 3997 SECCLASS_NODE, NODE__RECVFROM, ad); 3998 } 3999 4000 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 4001 u16 family) 4002 { 4003 int err = 0; 4004 struct sk_security_struct *sksec = sk->sk_security; 4005 u32 peer_sid; 4006 u32 sk_sid = sksec->sid; 4007 struct common_audit_data ad; 4008 char *addrp; 4009 4010 COMMON_AUDIT_DATA_INIT(&ad, NET); 4011 ad.u.net.netif = skb->skb_iif; 4012 ad.u.net.family = family; 4013 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4014 if (err) 4015 return err; 4016 4017 if (selinux_secmark_enabled()) { 4018 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4019 PACKET__RECV, &ad); 4020 if (err) 4021 return err; 4022 } 4023 4024 if (selinux_policycap_netpeer) { 4025 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 4026 if (err) 4027 return err; 4028 err = avc_has_perm(sk_sid, peer_sid, 4029 SECCLASS_PEER, PEER__RECV, &ad); 4030 if (err) 4031 selinux_netlbl_err(skb, err, 0); 4032 } else { 4033 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad); 4034 if (err) 4035 return err; 4036 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad); 4037 } 4038 4039 return err; 4040 } 4041 4042 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4043 { 4044 int err; 4045 struct sk_security_struct *sksec = sk->sk_security; 4046 u16 family = sk->sk_family; 4047 u32 sk_sid = sksec->sid; 4048 struct common_audit_data ad; 4049 char *addrp; 4050 u8 secmark_active; 4051 u8 peerlbl_active; 4052 4053 if (family != PF_INET && family != PF_INET6) 4054 return 0; 4055 4056 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 4057 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4058 family = PF_INET; 4059 4060 /* If any sort of compatibility mode is enabled then handoff processing 4061 * to the selinux_sock_rcv_skb_compat() function to deal with the 4062 * special handling. We do this in an attempt to keep this function 4063 * as fast and as clean as possible. */ 4064 if (!selinux_policycap_netpeer) 4065 return selinux_sock_rcv_skb_compat(sk, skb, family); 4066 4067 secmark_active = selinux_secmark_enabled(); 4068 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled(); 4069 if (!secmark_active && !peerlbl_active) 4070 return 0; 4071 4072 COMMON_AUDIT_DATA_INIT(&ad, NET); 4073 ad.u.net.netif = skb->skb_iif; 4074 ad.u.net.family = family; 4075 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4076 if (err) 4077 return err; 4078 4079 if (peerlbl_active) { 4080 u32 peer_sid; 4081 4082 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 4083 if (err) 4084 return err; 4085 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family, 4086 peer_sid, &ad); 4087 if (err) { 4088 selinux_netlbl_err(skb, err, 0); 4089 return err; 4090 } 4091 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER, 4092 PEER__RECV, &ad); 4093 if (err) 4094 selinux_netlbl_err(skb, err, 0); 4095 } 4096 4097 if (secmark_active) { 4098 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4099 PACKET__RECV, &ad); 4100 if (err) 4101 return err; 4102 } 4103 4104 return err; 4105 } 4106 4107 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval, 4108 int __user *optlen, unsigned len) 4109 { 4110 int err = 0; 4111 char *scontext; 4112 u32 scontext_len; 4113 struct sk_security_struct *sksec = sock->sk->sk_security; 4114 u32 peer_sid = SECSID_NULL; 4115 4116 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 4117 sksec->sclass == SECCLASS_TCP_SOCKET) 4118 peer_sid = sksec->peer_sid; 4119 if (peer_sid == SECSID_NULL) 4120 return -ENOPROTOOPT; 4121 4122 err = security_sid_to_context(peer_sid, &scontext, &scontext_len); 4123 if (err) 4124 return err; 4125 4126 if (scontext_len > len) { 4127 err = -ERANGE; 4128 goto out_len; 4129 } 4130 4131 if (copy_to_user(optval, scontext, scontext_len)) 4132 err = -EFAULT; 4133 4134 out_len: 4135 if (put_user(scontext_len, optlen)) 4136 err = -EFAULT; 4137 kfree(scontext); 4138 return err; 4139 } 4140 4141 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 4142 { 4143 u32 peer_secid = SECSID_NULL; 4144 u16 family; 4145 4146 if (skb && skb->protocol == htons(ETH_P_IP)) 4147 family = PF_INET; 4148 else if (skb && skb->protocol == htons(ETH_P_IPV6)) 4149 family = PF_INET6; 4150 else if (sock) 4151 family = sock->sk->sk_family; 4152 else 4153 goto out; 4154 4155 if (sock && family == PF_UNIX) 4156 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid); 4157 else if (skb) 4158 selinux_skb_peerlbl_sid(skb, family, &peer_secid); 4159 4160 out: 4161 *secid = peer_secid; 4162 if (peer_secid == SECSID_NULL) 4163 return -EINVAL; 4164 return 0; 4165 } 4166 4167 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 4168 { 4169 struct sk_security_struct *sksec; 4170 4171 sksec = kzalloc(sizeof(*sksec), priority); 4172 if (!sksec) 4173 return -ENOMEM; 4174 4175 sksec->peer_sid = SECINITSID_UNLABELED; 4176 sksec->sid = SECINITSID_UNLABELED; 4177 selinux_netlbl_sk_security_reset(sksec); 4178 sk->sk_security = sksec; 4179 4180 return 0; 4181 } 4182 4183 static void selinux_sk_free_security(struct sock *sk) 4184 { 4185 struct sk_security_struct *sksec = sk->sk_security; 4186 4187 sk->sk_security = NULL; 4188 selinux_netlbl_sk_security_free(sksec); 4189 kfree(sksec); 4190 } 4191 4192 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 4193 { 4194 struct sk_security_struct *sksec = sk->sk_security; 4195 struct sk_security_struct *newsksec = newsk->sk_security; 4196 4197 newsksec->sid = sksec->sid; 4198 newsksec->peer_sid = sksec->peer_sid; 4199 newsksec->sclass = sksec->sclass; 4200 4201 selinux_netlbl_sk_security_reset(newsksec); 4202 } 4203 4204 static void selinux_sk_getsecid(struct sock *sk, u32 *secid) 4205 { 4206 if (!sk) 4207 *secid = SECINITSID_ANY_SOCKET; 4208 else { 4209 struct sk_security_struct *sksec = sk->sk_security; 4210 4211 *secid = sksec->sid; 4212 } 4213 } 4214 4215 static void selinux_sock_graft(struct sock *sk, struct socket *parent) 4216 { 4217 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security; 4218 struct sk_security_struct *sksec = sk->sk_security; 4219 4220 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 4221 sk->sk_family == PF_UNIX) 4222 isec->sid = sksec->sid; 4223 sksec->sclass = isec->sclass; 4224 } 4225 4226 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb, 4227 struct request_sock *req) 4228 { 4229 struct sk_security_struct *sksec = sk->sk_security; 4230 int err; 4231 u16 family = sk->sk_family; 4232 u32 newsid; 4233 u32 peersid; 4234 4235 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 4236 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4237 family = PF_INET; 4238 4239 err = selinux_skb_peerlbl_sid(skb, family, &peersid); 4240 if (err) 4241 return err; 4242 if (peersid == SECSID_NULL) { 4243 req->secid = sksec->sid; 4244 req->peer_secid = SECSID_NULL; 4245 } else { 4246 err = security_sid_mls_copy(sksec->sid, peersid, &newsid); 4247 if (err) 4248 return err; 4249 req->secid = newsid; 4250 req->peer_secid = peersid; 4251 } 4252 4253 return selinux_netlbl_inet_conn_request(req, family); 4254 } 4255 4256 static void selinux_inet_csk_clone(struct sock *newsk, 4257 const struct request_sock *req) 4258 { 4259 struct sk_security_struct *newsksec = newsk->sk_security; 4260 4261 newsksec->sid = req->secid; 4262 newsksec->peer_sid = req->peer_secid; 4263 /* NOTE: Ideally, we should also get the isec->sid for the 4264 new socket in sync, but we don't have the isec available yet. 4265 So we will wait until sock_graft to do it, by which 4266 time it will have been created and available. */ 4267 4268 /* We don't need to take any sort of lock here as we are the only 4269 * thread with access to newsksec */ 4270 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family); 4271 } 4272 4273 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb) 4274 { 4275 u16 family = sk->sk_family; 4276 struct sk_security_struct *sksec = sk->sk_security; 4277 4278 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 4279 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4280 family = PF_INET; 4281 4282 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid); 4283 } 4284 4285 static int selinux_secmark_relabel_packet(u32 sid) 4286 { 4287 const struct task_security_struct *__tsec; 4288 u32 tsid; 4289 4290 __tsec = current_security(); 4291 tsid = __tsec->sid; 4292 4293 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL); 4294 } 4295 4296 static void selinux_secmark_refcount_inc(void) 4297 { 4298 atomic_inc(&selinux_secmark_refcount); 4299 } 4300 4301 static void selinux_secmark_refcount_dec(void) 4302 { 4303 atomic_dec(&selinux_secmark_refcount); 4304 } 4305 4306 static void selinux_req_classify_flow(const struct request_sock *req, 4307 struct flowi *fl) 4308 { 4309 fl->secid = req->secid; 4310 } 4311 4312 static int selinux_tun_dev_create(void) 4313 { 4314 u32 sid = current_sid(); 4315 4316 /* we aren't taking into account the "sockcreate" SID since the socket 4317 * that is being created here is not a socket in the traditional sense, 4318 * instead it is a private sock, accessible only to the kernel, and 4319 * representing a wide range of network traffic spanning multiple 4320 * connections unlike traditional sockets - check the TUN driver to 4321 * get a better understanding of why this socket is special */ 4322 4323 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE, 4324 NULL); 4325 } 4326 4327 static void selinux_tun_dev_post_create(struct sock *sk) 4328 { 4329 struct sk_security_struct *sksec = sk->sk_security; 4330 4331 /* we don't currently perform any NetLabel based labeling here and it 4332 * isn't clear that we would want to do so anyway; while we could apply 4333 * labeling without the support of the TUN user the resulting labeled 4334 * traffic from the other end of the connection would almost certainly 4335 * cause confusion to the TUN user that had no idea network labeling 4336 * protocols were being used */ 4337 4338 /* see the comments in selinux_tun_dev_create() about why we don't use 4339 * the sockcreate SID here */ 4340 4341 sksec->sid = current_sid(); 4342 sksec->sclass = SECCLASS_TUN_SOCKET; 4343 } 4344 4345 static int selinux_tun_dev_attach(struct sock *sk) 4346 { 4347 struct sk_security_struct *sksec = sk->sk_security; 4348 u32 sid = current_sid(); 4349 int err; 4350 4351 err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET, 4352 TUN_SOCKET__RELABELFROM, NULL); 4353 if (err) 4354 return err; 4355 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, 4356 TUN_SOCKET__RELABELTO, NULL); 4357 if (err) 4358 return err; 4359 4360 sksec->sid = sid; 4361 4362 return 0; 4363 } 4364 4365 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb) 4366 { 4367 int err = 0; 4368 u32 perm; 4369 struct nlmsghdr *nlh; 4370 struct sk_security_struct *sksec = sk->sk_security; 4371 4372 if (skb->len < NLMSG_SPACE(0)) { 4373 err = -EINVAL; 4374 goto out; 4375 } 4376 nlh = nlmsg_hdr(skb); 4377 4378 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm); 4379 if (err) { 4380 if (err == -EINVAL) { 4381 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR, 4382 "SELinux: unrecognized netlink message" 4383 " type=%hu for sclass=%hu\n", 4384 nlh->nlmsg_type, sksec->sclass); 4385 if (!selinux_enforcing || security_get_allow_unknown()) 4386 err = 0; 4387 } 4388 4389 /* Ignore */ 4390 if (err == -ENOENT) 4391 err = 0; 4392 goto out; 4393 } 4394 4395 err = sock_has_perm(current, sk, perm); 4396 out: 4397 return err; 4398 } 4399 4400 #ifdef CONFIG_NETFILTER 4401 4402 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex, 4403 u16 family) 4404 { 4405 int err; 4406 char *addrp; 4407 u32 peer_sid; 4408 struct common_audit_data ad; 4409 u8 secmark_active; 4410 u8 netlbl_active; 4411 u8 peerlbl_active; 4412 4413 if (!selinux_policycap_netpeer) 4414 return NF_ACCEPT; 4415 4416 secmark_active = selinux_secmark_enabled(); 4417 netlbl_active = netlbl_enabled(); 4418 peerlbl_active = netlbl_active || selinux_xfrm_enabled(); 4419 if (!secmark_active && !peerlbl_active) 4420 return NF_ACCEPT; 4421 4422 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0) 4423 return NF_DROP; 4424 4425 COMMON_AUDIT_DATA_INIT(&ad, NET); 4426 ad.u.net.netif = ifindex; 4427 ad.u.net.family = family; 4428 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0) 4429 return NF_DROP; 4430 4431 if (peerlbl_active) { 4432 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family, 4433 peer_sid, &ad); 4434 if (err) { 4435 selinux_netlbl_err(skb, err, 1); 4436 return NF_DROP; 4437 } 4438 } 4439 4440 if (secmark_active) 4441 if (avc_has_perm(peer_sid, skb->secmark, 4442 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad)) 4443 return NF_DROP; 4444 4445 if (netlbl_active) 4446 /* we do this in the FORWARD path and not the POST_ROUTING 4447 * path because we want to make sure we apply the necessary 4448 * labeling before IPsec is applied so we can leverage AH 4449 * protection */ 4450 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0) 4451 return NF_DROP; 4452 4453 return NF_ACCEPT; 4454 } 4455 4456 static unsigned int selinux_ipv4_forward(unsigned int hooknum, 4457 struct sk_buff *skb, 4458 const struct net_device *in, 4459 const struct net_device *out, 4460 int (*okfn)(struct sk_buff *)) 4461 { 4462 return selinux_ip_forward(skb, in->ifindex, PF_INET); 4463 } 4464 4465 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4466 static unsigned int selinux_ipv6_forward(unsigned int hooknum, 4467 struct sk_buff *skb, 4468 const struct net_device *in, 4469 const struct net_device *out, 4470 int (*okfn)(struct sk_buff *)) 4471 { 4472 return selinux_ip_forward(skb, in->ifindex, PF_INET6); 4473 } 4474 #endif /* IPV6 */ 4475 4476 static unsigned int selinux_ip_output(struct sk_buff *skb, 4477 u16 family) 4478 { 4479 u32 sid; 4480 4481 if (!netlbl_enabled()) 4482 return NF_ACCEPT; 4483 4484 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path 4485 * because we want to make sure we apply the necessary labeling 4486 * before IPsec is applied so we can leverage AH protection */ 4487 if (skb->sk) { 4488 struct sk_security_struct *sksec = skb->sk->sk_security; 4489 sid = sksec->sid; 4490 } else 4491 sid = SECINITSID_KERNEL; 4492 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0) 4493 return NF_DROP; 4494 4495 return NF_ACCEPT; 4496 } 4497 4498 static unsigned int selinux_ipv4_output(unsigned int hooknum, 4499 struct sk_buff *skb, 4500 const struct net_device *in, 4501 const struct net_device *out, 4502 int (*okfn)(struct sk_buff *)) 4503 { 4504 return selinux_ip_output(skb, PF_INET); 4505 } 4506 4507 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb, 4508 int ifindex, 4509 u16 family) 4510 { 4511 struct sock *sk = skb->sk; 4512 struct sk_security_struct *sksec; 4513 struct common_audit_data ad; 4514 char *addrp; 4515 u8 proto; 4516 4517 if (sk == NULL) 4518 return NF_ACCEPT; 4519 sksec = sk->sk_security; 4520 4521 COMMON_AUDIT_DATA_INIT(&ad, NET); 4522 ad.u.net.netif = ifindex; 4523 ad.u.net.family = family; 4524 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto)) 4525 return NF_DROP; 4526 4527 if (selinux_secmark_enabled()) 4528 if (avc_has_perm(sksec->sid, skb->secmark, 4529 SECCLASS_PACKET, PACKET__SEND, &ad)) 4530 return NF_DROP_ERR(-ECONNREFUSED); 4531 4532 if (selinux_policycap_netpeer) 4533 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto)) 4534 return NF_DROP_ERR(-ECONNREFUSED); 4535 4536 return NF_ACCEPT; 4537 } 4538 4539 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex, 4540 u16 family) 4541 { 4542 u32 secmark_perm; 4543 u32 peer_sid; 4544 struct sock *sk; 4545 struct common_audit_data ad; 4546 char *addrp; 4547 u8 secmark_active; 4548 u8 peerlbl_active; 4549 4550 /* If any sort of compatibility mode is enabled then handoff processing 4551 * to the selinux_ip_postroute_compat() function to deal with the 4552 * special handling. We do this in an attempt to keep this function 4553 * as fast and as clean as possible. */ 4554 if (!selinux_policycap_netpeer) 4555 return selinux_ip_postroute_compat(skb, ifindex, family); 4556 #ifdef CONFIG_XFRM 4557 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec 4558 * packet transformation so allow the packet to pass without any checks 4559 * since we'll have another chance to perform access control checks 4560 * when the packet is on it's final way out. 4561 * NOTE: there appear to be some IPv6 multicast cases where skb->dst 4562 * is NULL, in this case go ahead and apply access control. */ 4563 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL) 4564 return NF_ACCEPT; 4565 #endif 4566 secmark_active = selinux_secmark_enabled(); 4567 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled(); 4568 if (!secmark_active && !peerlbl_active) 4569 return NF_ACCEPT; 4570 4571 /* if the packet is being forwarded then get the peer label from the 4572 * packet itself; otherwise check to see if it is from a local 4573 * application or the kernel, if from an application get the peer label 4574 * from the sending socket, otherwise use the kernel's sid */ 4575 sk = skb->sk; 4576 if (sk == NULL) { 4577 switch (family) { 4578 case PF_INET: 4579 if (IPCB(skb)->flags & IPSKB_FORWARDED) 4580 secmark_perm = PACKET__FORWARD_OUT; 4581 else 4582 secmark_perm = PACKET__SEND; 4583 break; 4584 case PF_INET6: 4585 if (IP6CB(skb)->flags & IP6SKB_FORWARDED) 4586 secmark_perm = PACKET__FORWARD_OUT; 4587 else 4588 secmark_perm = PACKET__SEND; 4589 break; 4590 default: 4591 return NF_DROP_ERR(-ECONNREFUSED); 4592 } 4593 if (secmark_perm == PACKET__FORWARD_OUT) { 4594 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid)) 4595 return NF_DROP; 4596 } else 4597 peer_sid = SECINITSID_KERNEL; 4598 } else { 4599 struct sk_security_struct *sksec = sk->sk_security; 4600 peer_sid = sksec->sid; 4601 secmark_perm = PACKET__SEND; 4602 } 4603 4604 COMMON_AUDIT_DATA_INIT(&ad, NET); 4605 ad.u.net.netif = ifindex; 4606 ad.u.net.family = family; 4607 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL)) 4608 return NF_DROP; 4609 4610 if (secmark_active) 4611 if (avc_has_perm(peer_sid, skb->secmark, 4612 SECCLASS_PACKET, secmark_perm, &ad)) 4613 return NF_DROP_ERR(-ECONNREFUSED); 4614 4615 if (peerlbl_active) { 4616 u32 if_sid; 4617 u32 node_sid; 4618 4619 if (sel_netif_sid(ifindex, &if_sid)) 4620 return NF_DROP; 4621 if (avc_has_perm(peer_sid, if_sid, 4622 SECCLASS_NETIF, NETIF__EGRESS, &ad)) 4623 return NF_DROP_ERR(-ECONNREFUSED); 4624 4625 if (sel_netnode_sid(addrp, family, &node_sid)) 4626 return NF_DROP; 4627 if (avc_has_perm(peer_sid, node_sid, 4628 SECCLASS_NODE, NODE__SENDTO, &ad)) 4629 return NF_DROP_ERR(-ECONNREFUSED); 4630 } 4631 4632 return NF_ACCEPT; 4633 } 4634 4635 static unsigned int selinux_ipv4_postroute(unsigned int hooknum, 4636 struct sk_buff *skb, 4637 const struct net_device *in, 4638 const struct net_device *out, 4639 int (*okfn)(struct sk_buff *)) 4640 { 4641 return selinux_ip_postroute(skb, out->ifindex, PF_INET); 4642 } 4643 4644 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4645 static unsigned int selinux_ipv6_postroute(unsigned int hooknum, 4646 struct sk_buff *skb, 4647 const struct net_device *in, 4648 const struct net_device *out, 4649 int (*okfn)(struct sk_buff *)) 4650 { 4651 return selinux_ip_postroute(skb, out->ifindex, PF_INET6); 4652 } 4653 #endif /* IPV6 */ 4654 4655 #endif /* CONFIG_NETFILTER */ 4656 4657 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 4658 { 4659 int err; 4660 4661 err = cap_netlink_send(sk, skb); 4662 if (err) 4663 return err; 4664 4665 return selinux_nlmsg_perm(sk, skb); 4666 } 4667 4668 static int selinux_netlink_recv(struct sk_buff *skb, int capability) 4669 { 4670 int err; 4671 struct common_audit_data ad; 4672 4673 err = cap_netlink_recv(skb, capability); 4674 if (err) 4675 return err; 4676 4677 COMMON_AUDIT_DATA_INIT(&ad, CAP); 4678 ad.u.cap = capability; 4679 4680 return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid, 4681 SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad); 4682 } 4683 4684 static int ipc_alloc_security(struct task_struct *task, 4685 struct kern_ipc_perm *perm, 4686 u16 sclass) 4687 { 4688 struct ipc_security_struct *isec; 4689 u32 sid; 4690 4691 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL); 4692 if (!isec) 4693 return -ENOMEM; 4694 4695 sid = task_sid(task); 4696 isec->sclass = sclass; 4697 isec->sid = sid; 4698 perm->security = isec; 4699 4700 return 0; 4701 } 4702 4703 static void ipc_free_security(struct kern_ipc_perm *perm) 4704 { 4705 struct ipc_security_struct *isec = perm->security; 4706 perm->security = NULL; 4707 kfree(isec); 4708 } 4709 4710 static int msg_msg_alloc_security(struct msg_msg *msg) 4711 { 4712 struct msg_security_struct *msec; 4713 4714 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL); 4715 if (!msec) 4716 return -ENOMEM; 4717 4718 msec->sid = SECINITSID_UNLABELED; 4719 msg->security = msec; 4720 4721 return 0; 4722 } 4723 4724 static void msg_msg_free_security(struct msg_msg *msg) 4725 { 4726 struct msg_security_struct *msec = msg->security; 4727 4728 msg->security = NULL; 4729 kfree(msec); 4730 } 4731 4732 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 4733 u32 perms) 4734 { 4735 struct ipc_security_struct *isec; 4736 struct common_audit_data ad; 4737 u32 sid = current_sid(); 4738 4739 isec = ipc_perms->security; 4740 4741 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4742 ad.u.ipc_id = ipc_perms->key; 4743 4744 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad); 4745 } 4746 4747 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 4748 { 4749 return msg_msg_alloc_security(msg); 4750 } 4751 4752 static void selinux_msg_msg_free_security(struct msg_msg *msg) 4753 { 4754 msg_msg_free_security(msg); 4755 } 4756 4757 /* message queue security operations */ 4758 static int selinux_msg_queue_alloc_security(struct msg_queue *msq) 4759 { 4760 struct ipc_security_struct *isec; 4761 struct common_audit_data ad; 4762 u32 sid = current_sid(); 4763 int rc; 4764 4765 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ); 4766 if (rc) 4767 return rc; 4768 4769 isec = msq->q_perm.security; 4770 4771 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4772 ad.u.ipc_id = msq->q_perm.key; 4773 4774 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 4775 MSGQ__CREATE, &ad); 4776 if (rc) { 4777 ipc_free_security(&msq->q_perm); 4778 return rc; 4779 } 4780 return 0; 4781 } 4782 4783 static void selinux_msg_queue_free_security(struct msg_queue *msq) 4784 { 4785 ipc_free_security(&msq->q_perm); 4786 } 4787 4788 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg) 4789 { 4790 struct ipc_security_struct *isec; 4791 struct common_audit_data ad; 4792 u32 sid = current_sid(); 4793 4794 isec = msq->q_perm.security; 4795 4796 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4797 ad.u.ipc_id = msq->q_perm.key; 4798 4799 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 4800 MSGQ__ASSOCIATE, &ad); 4801 } 4802 4803 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd) 4804 { 4805 int err; 4806 int perms; 4807 4808 switch (cmd) { 4809 case IPC_INFO: 4810 case MSG_INFO: 4811 /* No specific object, just general system-wide information. */ 4812 return task_has_system(current, SYSTEM__IPC_INFO); 4813 case IPC_STAT: 4814 case MSG_STAT: 4815 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 4816 break; 4817 case IPC_SET: 4818 perms = MSGQ__SETATTR; 4819 break; 4820 case IPC_RMID: 4821 perms = MSGQ__DESTROY; 4822 break; 4823 default: 4824 return 0; 4825 } 4826 4827 err = ipc_has_perm(&msq->q_perm, perms); 4828 return err; 4829 } 4830 4831 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg) 4832 { 4833 struct ipc_security_struct *isec; 4834 struct msg_security_struct *msec; 4835 struct common_audit_data ad; 4836 u32 sid = current_sid(); 4837 int rc; 4838 4839 isec = msq->q_perm.security; 4840 msec = msg->security; 4841 4842 /* 4843 * First time through, need to assign label to the message 4844 */ 4845 if (msec->sid == SECINITSID_UNLABELED) { 4846 /* 4847 * Compute new sid based on current process and 4848 * message queue this message will be stored in 4849 */ 4850 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG, 4851 &msec->sid); 4852 if (rc) 4853 return rc; 4854 } 4855 4856 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4857 ad.u.ipc_id = msq->q_perm.key; 4858 4859 /* Can this process write to the queue? */ 4860 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 4861 MSGQ__WRITE, &ad); 4862 if (!rc) 4863 /* Can this process send the message */ 4864 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG, 4865 MSG__SEND, &ad); 4866 if (!rc) 4867 /* Can the message be put in the queue? */ 4868 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ, 4869 MSGQ__ENQUEUE, &ad); 4870 4871 return rc; 4872 } 4873 4874 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 4875 struct task_struct *target, 4876 long type, int mode) 4877 { 4878 struct ipc_security_struct *isec; 4879 struct msg_security_struct *msec; 4880 struct common_audit_data ad; 4881 u32 sid = task_sid(target); 4882 int rc; 4883 4884 isec = msq->q_perm.security; 4885 msec = msg->security; 4886 4887 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4888 ad.u.ipc_id = msq->q_perm.key; 4889 4890 rc = avc_has_perm(sid, isec->sid, 4891 SECCLASS_MSGQ, MSGQ__READ, &ad); 4892 if (!rc) 4893 rc = avc_has_perm(sid, msec->sid, 4894 SECCLASS_MSG, MSG__RECEIVE, &ad); 4895 return rc; 4896 } 4897 4898 /* Shared Memory security operations */ 4899 static int selinux_shm_alloc_security(struct shmid_kernel *shp) 4900 { 4901 struct ipc_security_struct *isec; 4902 struct common_audit_data ad; 4903 u32 sid = current_sid(); 4904 int rc; 4905 4906 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM); 4907 if (rc) 4908 return rc; 4909 4910 isec = shp->shm_perm.security; 4911 4912 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4913 ad.u.ipc_id = shp->shm_perm.key; 4914 4915 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM, 4916 SHM__CREATE, &ad); 4917 if (rc) { 4918 ipc_free_security(&shp->shm_perm); 4919 return rc; 4920 } 4921 return 0; 4922 } 4923 4924 static void selinux_shm_free_security(struct shmid_kernel *shp) 4925 { 4926 ipc_free_security(&shp->shm_perm); 4927 } 4928 4929 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg) 4930 { 4931 struct ipc_security_struct *isec; 4932 struct common_audit_data ad; 4933 u32 sid = current_sid(); 4934 4935 isec = shp->shm_perm.security; 4936 4937 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4938 ad.u.ipc_id = shp->shm_perm.key; 4939 4940 return avc_has_perm(sid, isec->sid, SECCLASS_SHM, 4941 SHM__ASSOCIATE, &ad); 4942 } 4943 4944 /* Note, at this point, shp is locked down */ 4945 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd) 4946 { 4947 int perms; 4948 int err; 4949 4950 switch (cmd) { 4951 case IPC_INFO: 4952 case SHM_INFO: 4953 /* No specific object, just general system-wide information. */ 4954 return task_has_system(current, SYSTEM__IPC_INFO); 4955 case IPC_STAT: 4956 case SHM_STAT: 4957 perms = SHM__GETATTR | SHM__ASSOCIATE; 4958 break; 4959 case IPC_SET: 4960 perms = SHM__SETATTR; 4961 break; 4962 case SHM_LOCK: 4963 case SHM_UNLOCK: 4964 perms = SHM__LOCK; 4965 break; 4966 case IPC_RMID: 4967 perms = SHM__DESTROY; 4968 break; 4969 default: 4970 return 0; 4971 } 4972 4973 err = ipc_has_perm(&shp->shm_perm, perms); 4974 return err; 4975 } 4976 4977 static int selinux_shm_shmat(struct shmid_kernel *shp, 4978 char __user *shmaddr, int shmflg) 4979 { 4980 u32 perms; 4981 4982 if (shmflg & SHM_RDONLY) 4983 perms = SHM__READ; 4984 else 4985 perms = SHM__READ | SHM__WRITE; 4986 4987 return ipc_has_perm(&shp->shm_perm, perms); 4988 } 4989 4990 /* Semaphore security operations */ 4991 static int selinux_sem_alloc_security(struct sem_array *sma) 4992 { 4993 struct ipc_security_struct *isec; 4994 struct common_audit_data ad; 4995 u32 sid = current_sid(); 4996 int rc; 4997 4998 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM); 4999 if (rc) 5000 return rc; 5001 5002 isec = sma->sem_perm.security; 5003 5004 COMMON_AUDIT_DATA_INIT(&ad, IPC); 5005 ad.u.ipc_id = sma->sem_perm.key; 5006 5007 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM, 5008 SEM__CREATE, &ad); 5009 if (rc) { 5010 ipc_free_security(&sma->sem_perm); 5011 return rc; 5012 } 5013 return 0; 5014 } 5015 5016 static void selinux_sem_free_security(struct sem_array *sma) 5017 { 5018 ipc_free_security(&sma->sem_perm); 5019 } 5020 5021 static int selinux_sem_associate(struct sem_array *sma, int semflg) 5022 { 5023 struct ipc_security_struct *isec; 5024 struct common_audit_data ad; 5025 u32 sid = current_sid(); 5026 5027 isec = sma->sem_perm.security; 5028 5029 COMMON_AUDIT_DATA_INIT(&ad, IPC); 5030 ad.u.ipc_id = sma->sem_perm.key; 5031 5032 return avc_has_perm(sid, isec->sid, SECCLASS_SEM, 5033 SEM__ASSOCIATE, &ad); 5034 } 5035 5036 /* Note, at this point, sma is locked down */ 5037 static int selinux_sem_semctl(struct sem_array *sma, int cmd) 5038 { 5039 int err; 5040 u32 perms; 5041 5042 switch (cmd) { 5043 case IPC_INFO: 5044 case SEM_INFO: 5045 /* No specific object, just general system-wide information. */ 5046 return task_has_system(current, SYSTEM__IPC_INFO); 5047 case GETPID: 5048 case GETNCNT: 5049 case GETZCNT: 5050 perms = SEM__GETATTR; 5051 break; 5052 case GETVAL: 5053 case GETALL: 5054 perms = SEM__READ; 5055 break; 5056 case SETVAL: 5057 case SETALL: 5058 perms = SEM__WRITE; 5059 break; 5060 case IPC_RMID: 5061 perms = SEM__DESTROY; 5062 break; 5063 case IPC_SET: 5064 perms = SEM__SETATTR; 5065 break; 5066 case IPC_STAT: 5067 case SEM_STAT: 5068 perms = SEM__GETATTR | SEM__ASSOCIATE; 5069 break; 5070 default: 5071 return 0; 5072 } 5073 5074 err = ipc_has_perm(&sma->sem_perm, perms); 5075 return err; 5076 } 5077 5078 static int selinux_sem_semop(struct sem_array *sma, 5079 struct sembuf *sops, unsigned nsops, int alter) 5080 { 5081 u32 perms; 5082 5083 if (alter) 5084 perms = SEM__READ | SEM__WRITE; 5085 else 5086 perms = SEM__READ; 5087 5088 return ipc_has_perm(&sma->sem_perm, perms); 5089 } 5090 5091 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 5092 { 5093 u32 av = 0; 5094 5095 av = 0; 5096 if (flag & S_IRUGO) 5097 av |= IPC__UNIX_READ; 5098 if (flag & S_IWUGO) 5099 av |= IPC__UNIX_WRITE; 5100 5101 if (av == 0) 5102 return 0; 5103 5104 return ipc_has_perm(ipcp, av); 5105 } 5106 5107 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 5108 { 5109 struct ipc_security_struct *isec = ipcp->security; 5110 *secid = isec->sid; 5111 } 5112 5113 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode) 5114 { 5115 if (inode) 5116 inode_doinit_with_dentry(inode, dentry); 5117 } 5118 5119 static int selinux_getprocattr(struct task_struct *p, 5120 char *name, char **value) 5121 { 5122 const struct task_security_struct *__tsec; 5123 u32 sid; 5124 int error; 5125 unsigned len; 5126 5127 if (current != p) { 5128 error = current_has_perm(p, PROCESS__GETATTR); 5129 if (error) 5130 return error; 5131 } 5132 5133 rcu_read_lock(); 5134 __tsec = __task_cred(p)->security; 5135 5136 if (!strcmp(name, "current")) 5137 sid = __tsec->sid; 5138 else if (!strcmp(name, "prev")) 5139 sid = __tsec->osid; 5140 else if (!strcmp(name, "exec")) 5141 sid = __tsec->exec_sid; 5142 else if (!strcmp(name, "fscreate")) 5143 sid = __tsec->create_sid; 5144 else if (!strcmp(name, "keycreate")) 5145 sid = __tsec->keycreate_sid; 5146 else if (!strcmp(name, "sockcreate")) 5147 sid = __tsec->sockcreate_sid; 5148 else 5149 goto invalid; 5150 rcu_read_unlock(); 5151 5152 if (!sid) 5153 return 0; 5154 5155 error = security_sid_to_context(sid, value, &len); 5156 if (error) 5157 return error; 5158 return len; 5159 5160 invalid: 5161 rcu_read_unlock(); 5162 return -EINVAL; 5163 } 5164 5165 static int selinux_setprocattr(struct task_struct *p, 5166 char *name, void *value, size_t size) 5167 { 5168 struct task_security_struct *tsec; 5169 struct task_struct *tracer; 5170 struct cred *new; 5171 u32 sid = 0, ptsid; 5172 int error; 5173 char *str = value; 5174 5175 if (current != p) { 5176 /* SELinux only allows a process to change its own 5177 security attributes. */ 5178 return -EACCES; 5179 } 5180 5181 /* 5182 * Basic control over ability to set these attributes at all. 5183 * current == p, but we'll pass them separately in case the 5184 * above restriction is ever removed. 5185 */ 5186 if (!strcmp(name, "exec")) 5187 error = current_has_perm(p, PROCESS__SETEXEC); 5188 else if (!strcmp(name, "fscreate")) 5189 error = current_has_perm(p, PROCESS__SETFSCREATE); 5190 else if (!strcmp(name, "keycreate")) 5191 error = current_has_perm(p, PROCESS__SETKEYCREATE); 5192 else if (!strcmp(name, "sockcreate")) 5193 error = current_has_perm(p, PROCESS__SETSOCKCREATE); 5194 else if (!strcmp(name, "current")) 5195 error = current_has_perm(p, PROCESS__SETCURRENT); 5196 else 5197 error = -EINVAL; 5198 if (error) 5199 return error; 5200 5201 /* Obtain a SID for the context, if one was specified. */ 5202 if (size && str[1] && str[1] != '\n') { 5203 if (str[size-1] == '\n') { 5204 str[size-1] = 0; 5205 size--; 5206 } 5207 error = security_context_to_sid(value, size, &sid); 5208 if (error == -EINVAL && !strcmp(name, "fscreate")) { 5209 if (!capable(CAP_MAC_ADMIN)) 5210 return error; 5211 error = security_context_to_sid_force(value, size, 5212 &sid); 5213 } 5214 if (error) 5215 return error; 5216 } 5217 5218 new = prepare_creds(); 5219 if (!new) 5220 return -ENOMEM; 5221 5222 /* Permission checking based on the specified context is 5223 performed during the actual operation (execve, 5224 open/mkdir/...), when we know the full context of the 5225 operation. See selinux_bprm_set_creds for the execve 5226 checks and may_create for the file creation checks. The 5227 operation will then fail if the context is not permitted. */ 5228 tsec = new->security; 5229 if (!strcmp(name, "exec")) { 5230 tsec->exec_sid = sid; 5231 } else if (!strcmp(name, "fscreate")) { 5232 tsec->create_sid = sid; 5233 } else if (!strcmp(name, "keycreate")) { 5234 error = may_create_key(sid, p); 5235 if (error) 5236 goto abort_change; 5237 tsec->keycreate_sid = sid; 5238 } else if (!strcmp(name, "sockcreate")) { 5239 tsec->sockcreate_sid = sid; 5240 } else if (!strcmp(name, "current")) { 5241 error = -EINVAL; 5242 if (sid == 0) 5243 goto abort_change; 5244 5245 /* Only allow single threaded processes to change context */ 5246 error = -EPERM; 5247 if (!current_is_single_threaded()) { 5248 error = security_bounded_transition(tsec->sid, sid); 5249 if (error) 5250 goto abort_change; 5251 } 5252 5253 /* Check permissions for the transition. */ 5254 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 5255 PROCESS__DYNTRANSITION, NULL); 5256 if (error) 5257 goto abort_change; 5258 5259 /* Check for ptracing, and update the task SID if ok. 5260 Otherwise, leave SID unchanged and fail. */ 5261 ptsid = 0; 5262 task_lock(p); 5263 tracer = tracehook_tracer_task(p); 5264 if (tracer) 5265 ptsid = task_sid(tracer); 5266 task_unlock(p); 5267 5268 if (tracer) { 5269 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS, 5270 PROCESS__PTRACE, NULL); 5271 if (error) 5272 goto abort_change; 5273 } 5274 5275 tsec->sid = sid; 5276 } else { 5277 error = -EINVAL; 5278 goto abort_change; 5279 } 5280 5281 commit_creds(new); 5282 return size; 5283 5284 abort_change: 5285 abort_creds(new); 5286 return error; 5287 } 5288 5289 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 5290 { 5291 return security_sid_to_context(secid, secdata, seclen); 5292 } 5293 5294 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 5295 { 5296 return security_context_to_sid(secdata, seclen, secid); 5297 } 5298 5299 static void selinux_release_secctx(char *secdata, u32 seclen) 5300 { 5301 kfree(secdata); 5302 } 5303 5304 /* 5305 * called with inode->i_mutex locked 5306 */ 5307 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 5308 { 5309 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0); 5310 } 5311 5312 /* 5313 * called with inode->i_mutex locked 5314 */ 5315 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 5316 { 5317 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0); 5318 } 5319 5320 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 5321 { 5322 int len = 0; 5323 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX, 5324 ctx, true); 5325 if (len < 0) 5326 return len; 5327 *ctxlen = len; 5328 return 0; 5329 } 5330 #ifdef CONFIG_KEYS 5331 5332 static int selinux_key_alloc(struct key *k, const struct cred *cred, 5333 unsigned long flags) 5334 { 5335 const struct task_security_struct *tsec; 5336 struct key_security_struct *ksec; 5337 5338 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); 5339 if (!ksec) 5340 return -ENOMEM; 5341 5342 tsec = cred->security; 5343 if (tsec->keycreate_sid) 5344 ksec->sid = tsec->keycreate_sid; 5345 else 5346 ksec->sid = tsec->sid; 5347 5348 k->security = ksec; 5349 return 0; 5350 } 5351 5352 static void selinux_key_free(struct key *k) 5353 { 5354 struct key_security_struct *ksec = k->security; 5355 5356 k->security = NULL; 5357 kfree(ksec); 5358 } 5359 5360 static int selinux_key_permission(key_ref_t key_ref, 5361 const struct cred *cred, 5362 key_perm_t perm) 5363 { 5364 struct key *key; 5365 struct key_security_struct *ksec; 5366 u32 sid; 5367 5368 /* if no specific permissions are requested, we skip the 5369 permission check. No serious, additional covert channels 5370 appear to be created. */ 5371 if (perm == 0) 5372 return 0; 5373 5374 sid = cred_sid(cred); 5375 5376 key = key_ref_to_ptr(key_ref); 5377 ksec = key->security; 5378 5379 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL); 5380 } 5381 5382 static int selinux_key_getsecurity(struct key *key, char **_buffer) 5383 { 5384 struct key_security_struct *ksec = key->security; 5385 char *context = NULL; 5386 unsigned len; 5387 int rc; 5388 5389 rc = security_sid_to_context(ksec->sid, &context, &len); 5390 if (!rc) 5391 rc = len; 5392 *_buffer = context; 5393 return rc; 5394 } 5395 5396 #endif 5397 5398 static struct security_operations selinux_ops = { 5399 .name = "selinux", 5400 5401 .ptrace_access_check = selinux_ptrace_access_check, 5402 .ptrace_traceme = selinux_ptrace_traceme, 5403 .capget = selinux_capget, 5404 .capset = selinux_capset, 5405 .sysctl = selinux_sysctl, 5406 .capable = selinux_capable, 5407 .quotactl = selinux_quotactl, 5408 .quota_on = selinux_quota_on, 5409 .syslog = selinux_syslog, 5410 .vm_enough_memory = selinux_vm_enough_memory, 5411 5412 .netlink_send = selinux_netlink_send, 5413 .netlink_recv = selinux_netlink_recv, 5414 5415 .bprm_set_creds = selinux_bprm_set_creds, 5416 .bprm_committing_creds = selinux_bprm_committing_creds, 5417 .bprm_committed_creds = selinux_bprm_committed_creds, 5418 .bprm_secureexec = selinux_bprm_secureexec, 5419 5420 .sb_alloc_security = selinux_sb_alloc_security, 5421 .sb_free_security = selinux_sb_free_security, 5422 .sb_copy_data = selinux_sb_copy_data, 5423 .sb_kern_mount = selinux_sb_kern_mount, 5424 .sb_show_options = selinux_sb_show_options, 5425 .sb_statfs = selinux_sb_statfs, 5426 .sb_mount = selinux_mount, 5427 .sb_umount = selinux_umount, 5428 .sb_set_mnt_opts = selinux_set_mnt_opts, 5429 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts, 5430 .sb_parse_opts_str = selinux_parse_opts_str, 5431 5432 5433 .inode_alloc_security = selinux_inode_alloc_security, 5434 .inode_free_security = selinux_inode_free_security, 5435 .inode_init_security = selinux_inode_init_security, 5436 .inode_create = selinux_inode_create, 5437 .inode_link = selinux_inode_link, 5438 .inode_unlink = selinux_inode_unlink, 5439 .inode_symlink = selinux_inode_symlink, 5440 .inode_mkdir = selinux_inode_mkdir, 5441 .inode_rmdir = selinux_inode_rmdir, 5442 .inode_mknod = selinux_inode_mknod, 5443 .inode_rename = selinux_inode_rename, 5444 .inode_readlink = selinux_inode_readlink, 5445 .inode_follow_link = selinux_inode_follow_link, 5446 .inode_permission = selinux_inode_permission, 5447 .inode_setattr = selinux_inode_setattr, 5448 .inode_getattr = selinux_inode_getattr, 5449 .inode_setxattr = selinux_inode_setxattr, 5450 .inode_post_setxattr = selinux_inode_post_setxattr, 5451 .inode_getxattr = selinux_inode_getxattr, 5452 .inode_listxattr = selinux_inode_listxattr, 5453 .inode_removexattr = selinux_inode_removexattr, 5454 .inode_getsecurity = selinux_inode_getsecurity, 5455 .inode_setsecurity = selinux_inode_setsecurity, 5456 .inode_listsecurity = selinux_inode_listsecurity, 5457 .inode_getsecid = selinux_inode_getsecid, 5458 5459 .file_permission = selinux_file_permission, 5460 .file_alloc_security = selinux_file_alloc_security, 5461 .file_free_security = selinux_file_free_security, 5462 .file_ioctl = selinux_file_ioctl, 5463 .file_mmap = selinux_file_mmap, 5464 .file_mprotect = selinux_file_mprotect, 5465 .file_lock = selinux_file_lock, 5466 .file_fcntl = selinux_file_fcntl, 5467 .file_set_fowner = selinux_file_set_fowner, 5468 .file_send_sigiotask = selinux_file_send_sigiotask, 5469 .file_receive = selinux_file_receive, 5470 5471 .dentry_open = selinux_dentry_open, 5472 5473 .task_create = selinux_task_create, 5474 .cred_alloc_blank = selinux_cred_alloc_blank, 5475 .cred_free = selinux_cred_free, 5476 .cred_prepare = selinux_cred_prepare, 5477 .cred_transfer = selinux_cred_transfer, 5478 .kernel_act_as = selinux_kernel_act_as, 5479 .kernel_create_files_as = selinux_kernel_create_files_as, 5480 .kernel_module_request = selinux_kernel_module_request, 5481 .task_setpgid = selinux_task_setpgid, 5482 .task_getpgid = selinux_task_getpgid, 5483 .task_getsid = selinux_task_getsid, 5484 .task_getsecid = selinux_task_getsecid, 5485 .task_setnice = selinux_task_setnice, 5486 .task_setioprio = selinux_task_setioprio, 5487 .task_getioprio = selinux_task_getioprio, 5488 .task_setrlimit = selinux_task_setrlimit, 5489 .task_setscheduler = selinux_task_setscheduler, 5490 .task_getscheduler = selinux_task_getscheduler, 5491 .task_movememory = selinux_task_movememory, 5492 .task_kill = selinux_task_kill, 5493 .task_wait = selinux_task_wait, 5494 .task_to_inode = selinux_task_to_inode, 5495 5496 .ipc_permission = selinux_ipc_permission, 5497 .ipc_getsecid = selinux_ipc_getsecid, 5498 5499 .msg_msg_alloc_security = selinux_msg_msg_alloc_security, 5500 .msg_msg_free_security = selinux_msg_msg_free_security, 5501 5502 .msg_queue_alloc_security = selinux_msg_queue_alloc_security, 5503 .msg_queue_free_security = selinux_msg_queue_free_security, 5504 .msg_queue_associate = selinux_msg_queue_associate, 5505 .msg_queue_msgctl = selinux_msg_queue_msgctl, 5506 .msg_queue_msgsnd = selinux_msg_queue_msgsnd, 5507 .msg_queue_msgrcv = selinux_msg_queue_msgrcv, 5508 5509 .shm_alloc_security = selinux_shm_alloc_security, 5510 .shm_free_security = selinux_shm_free_security, 5511 .shm_associate = selinux_shm_associate, 5512 .shm_shmctl = selinux_shm_shmctl, 5513 .shm_shmat = selinux_shm_shmat, 5514 5515 .sem_alloc_security = selinux_sem_alloc_security, 5516 .sem_free_security = selinux_sem_free_security, 5517 .sem_associate = selinux_sem_associate, 5518 .sem_semctl = selinux_sem_semctl, 5519 .sem_semop = selinux_sem_semop, 5520 5521 .d_instantiate = selinux_d_instantiate, 5522 5523 .getprocattr = selinux_getprocattr, 5524 .setprocattr = selinux_setprocattr, 5525 5526 .secid_to_secctx = selinux_secid_to_secctx, 5527 .secctx_to_secid = selinux_secctx_to_secid, 5528 .release_secctx = selinux_release_secctx, 5529 .inode_notifysecctx = selinux_inode_notifysecctx, 5530 .inode_setsecctx = selinux_inode_setsecctx, 5531 .inode_getsecctx = selinux_inode_getsecctx, 5532 5533 .unix_stream_connect = selinux_socket_unix_stream_connect, 5534 .unix_may_send = selinux_socket_unix_may_send, 5535 5536 .socket_create = selinux_socket_create, 5537 .socket_post_create = selinux_socket_post_create, 5538 .socket_bind = selinux_socket_bind, 5539 .socket_connect = selinux_socket_connect, 5540 .socket_listen = selinux_socket_listen, 5541 .socket_accept = selinux_socket_accept, 5542 .socket_sendmsg = selinux_socket_sendmsg, 5543 .socket_recvmsg = selinux_socket_recvmsg, 5544 .socket_getsockname = selinux_socket_getsockname, 5545 .socket_getpeername = selinux_socket_getpeername, 5546 .socket_getsockopt = selinux_socket_getsockopt, 5547 .socket_setsockopt = selinux_socket_setsockopt, 5548 .socket_shutdown = selinux_socket_shutdown, 5549 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb, 5550 .socket_getpeersec_stream = selinux_socket_getpeersec_stream, 5551 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram, 5552 .sk_alloc_security = selinux_sk_alloc_security, 5553 .sk_free_security = selinux_sk_free_security, 5554 .sk_clone_security = selinux_sk_clone_security, 5555 .sk_getsecid = selinux_sk_getsecid, 5556 .sock_graft = selinux_sock_graft, 5557 .inet_conn_request = selinux_inet_conn_request, 5558 .inet_csk_clone = selinux_inet_csk_clone, 5559 .inet_conn_established = selinux_inet_conn_established, 5560 .secmark_relabel_packet = selinux_secmark_relabel_packet, 5561 .secmark_refcount_inc = selinux_secmark_refcount_inc, 5562 .secmark_refcount_dec = selinux_secmark_refcount_dec, 5563 .req_classify_flow = selinux_req_classify_flow, 5564 .tun_dev_create = selinux_tun_dev_create, 5565 .tun_dev_post_create = selinux_tun_dev_post_create, 5566 .tun_dev_attach = selinux_tun_dev_attach, 5567 5568 #ifdef CONFIG_SECURITY_NETWORK_XFRM 5569 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc, 5570 .xfrm_policy_clone_security = selinux_xfrm_policy_clone, 5571 .xfrm_policy_free_security = selinux_xfrm_policy_free, 5572 .xfrm_policy_delete_security = selinux_xfrm_policy_delete, 5573 .xfrm_state_alloc_security = selinux_xfrm_state_alloc, 5574 .xfrm_state_free_security = selinux_xfrm_state_free, 5575 .xfrm_state_delete_security = selinux_xfrm_state_delete, 5576 .xfrm_policy_lookup = selinux_xfrm_policy_lookup, 5577 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match, 5578 .xfrm_decode_session = selinux_xfrm_decode_session, 5579 #endif 5580 5581 #ifdef CONFIG_KEYS 5582 .key_alloc = selinux_key_alloc, 5583 .key_free = selinux_key_free, 5584 .key_permission = selinux_key_permission, 5585 .key_getsecurity = selinux_key_getsecurity, 5586 #endif 5587 5588 #ifdef CONFIG_AUDIT 5589 .audit_rule_init = selinux_audit_rule_init, 5590 .audit_rule_known = selinux_audit_rule_known, 5591 .audit_rule_match = selinux_audit_rule_match, 5592 .audit_rule_free = selinux_audit_rule_free, 5593 #endif 5594 }; 5595 5596 static __init int selinux_init(void) 5597 { 5598 if (!security_module_enable(&selinux_ops)) { 5599 selinux_enabled = 0; 5600 return 0; 5601 } 5602 5603 if (!selinux_enabled) { 5604 printk(KERN_INFO "SELinux: Disabled at boot.\n"); 5605 return 0; 5606 } 5607 5608 printk(KERN_INFO "SELinux: Initializing.\n"); 5609 5610 /* Set the security state for the initial task. */ 5611 cred_init_security(); 5612 5613 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC); 5614 5615 sel_inode_cache = kmem_cache_create("selinux_inode_security", 5616 sizeof(struct inode_security_struct), 5617 0, SLAB_PANIC, NULL); 5618 avc_init(); 5619 5620 if (register_security(&selinux_ops)) 5621 panic("SELinux: Unable to register with kernel.\n"); 5622 5623 if (selinux_enforcing) 5624 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n"); 5625 else 5626 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n"); 5627 5628 return 0; 5629 } 5630 5631 static void delayed_superblock_init(struct super_block *sb, void *unused) 5632 { 5633 superblock_doinit(sb, NULL); 5634 } 5635 5636 void selinux_complete_init(void) 5637 { 5638 printk(KERN_DEBUG "SELinux: Completing initialization.\n"); 5639 5640 /* Set up any superblocks initialized prior to the policy load. */ 5641 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n"); 5642 iterate_supers(delayed_superblock_init, NULL); 5643 } 5644 5645 /* SELinux requires early initialization in order to label 5646 all processes and objects when they are created. */ 5647 security_initcall(selinux_init); 5648 5649 #if defined(CONFIG_NETFILTER) 5650 5651 static struct nf_hook_ops selinux_ipv4_ops[] = { 5652 { 5653 .hook = selinux_ipv4_postroute, 5654 .owner = THIS_MODULE, 5655 .pf = PF_INET, 5656 .hooknum = NF_INET_POST_ROUTING, 5657 .priority = NF_IP_PRI_SELINUX_LAST, 5658 }, 5659 { 5660 .hook = selinux_ipv4_forward, 5661 .owner = THIS_MODULE, 5662 .pf = PF_INET, 5663 .hooknum = NF_INET_FORWARD, 5664 .priority = NF_IP_PRI_SELINUX_FIRST, 5665 }, 5666 { 5667 .hook = selinux_ipv4_output, 5668 .owner = THIS_MODULE, 5669 .pf = PF_INET, 5670 .hooknum = NF_INET_LOCAL_OUT, 5671 .priority = NF_IP_PRI_SELINUX_FIRST, 5672 } 5673 }; 5674 5675 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5676 5677 static struct nf_hook_ops selinux_ipv6_ops[] = { 5678 { 5679 .hook = selinux_ipv6_postroute, 5680 .owner = THIS_MODULE, 5681 .pf = PF_INET6, 5682 .hooknum = NF_INET_POST_ROUTING, 5683 .priority = NF_IP6_PRI_SELINUX_LAST, 5684 }, 5685 { 5686 .hook = selinux_ipv6_forward, 5687 .owner = THIS_MODULE, 5688 .pf = PF_INET6, 5689 .hooknum = NF_INET_FORWARD, 5690 .priority = NF_IP6_PRI_SELINUX_FIRST, 5691 } 5692 }; 5693 5694 #endif /* IPV6 */ 5695 5696 static int __init selinux_nf_ip_init(void) 5697 { 5698 int err = 0; 5699 5700 if (!selinux_enabled) 5701 goto out; 5702 5703 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n"); 5704 5705 err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops)); 5706 if (err) 5707 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err); 5708 5709 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5710 err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops)); 5711 if (err) 5712 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err); 5713 #endif /* IPV6 */ 5714 5715 out: 5716 return err; 5717 } 5718 5719 __initcall(selinux_nf_ip_init); 5720 5721 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5722 static void selinux_nf_ip_exit(void) 5723 { 5724 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n"); 5725 5726 nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops)); 5727 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5728 nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops)); 5729 #endif /* IPV6 */ 5730 } 5731 #endif 5732 5733 #else /* CONFIG_NETFILTER */ 5734 5735 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5736 #define selinux_nf_ip_exit() 5737 #endif 5738 5739 #endif /* CONFIG_NETFILTER */ 5740 5741 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5742 static int selinux_disabled; 5743 5744 int selinux_disable(void) 5745 { 5746 extern void exit_sel_fs(void); 5747 5748 if (ss_initialized) { 5749 /* Not permitted after initial policy load. */ 5750 return -EINVAL; 5751 } 5752 5753 if (selinux_disabled) { 5754 /* Only do this once. */ 5755 return -EINVAL; 5756 } 5757 5758 printk(KERN_INFO "SELinux: Disabled at runtime.\n"); 5759 5760 selinux_disabled = 1; 5761 selinux_enabled = 0; 5762 5763 reset_security_ops(); 5764 5765 /* Try to destroy the avc node cache */ 5766 avc_disable(); 5767 5768 /* Unregister netfilter hooks. */ 5769 selinux_nf_ip_exit(); 5770 5771 /* Unregister selinuxfs. */ 5772 exit_sel_fs(); 5773 5774 return 0; 5775 } 5776 #endif 5777