xref: /openbmc/linux/security/selinux/hooks.c (revision de167752a889d19b9bb018f8eecbc1ebbfe07b2f)
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
7  *	      Chris Vance, <cvance@nai.com>
8  *	      Wayne Salamon, <wsalamon@nai.com>
9  *	      James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *					   Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *			    <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *	Paul Moore <paul@paul-moore.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *  Copyright (C) 2016 Mellanox Technologies
21  *
22  *	This program is free software; you can redistribute it and/or modify
23  *	it under the terms of the GNU General Public License version 2,
24  *	as published by the Free Software Foundation.
25  */
26 
27 #include <linux/init.h>
28 #include <linux/kd.h>
29 #include <linux/kernel.h>
30 #include <linux/tracehook.h>
31 #include <linux/errno.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/task.h>
34 #include <linux/lsm_hooks.h>
35 #include <linux/xattr.h>
36 #include <linux/capability.h>
37 #include <linux/unistd.h>
38 #include <linux/mm.h>
39 #include <linux/mman.h>
40 #include <linux/slab.h>
41 #include <linux/pagemap.h>
42 #include <linux/proc_fs.h>
43 #include <linux/swap.h>
44 #include <linux/spinlock.h>
45 #include <linux/syscalls.h>
46 #include <linux/dcache.h>
47 #include <linux/file.h>
48 #include <linux/fdtable.h>
49 #include <linux/namei.h>
50 #include <linux/mount.h>
51 #include <linux/netfilter_ipv4.h>
52 #include <linux/netfilter_ipv6.h>
53 #include <linux/tty.h>
54 #include <net/icmp.h>
55 #include <net/ip.h>		/* for local_port_range[] */
56 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
57 #include <net/inet_connection_sock.h>
58 #include <net/net_namespace.h>
59 #include <net/netlabel.h>
60 #include <linux/uaccess.h>
61 #include <asm/ioctls.h>
62 #include <linux/atomic.h>
63 #include <linux/bitops.h>
64 #include <linux/interrupt.h>
65 #include <linux/netdevice.h>	/* for network interface checks */
66 #include <net/netlink.h>
67 #include <linux/tcp.h>
68 #include <linux/udp.h>
69 #include <linux/dccp.h>
70 #include <linux/sctp.h>
71 #include <net/sctp/structs.h>
72 #include <linux/quota.h>
73 #include <linux/un.h>		/* for Unix socket types */
74 #include <net/af_unix.h>	/* for Unix socket types */
75 #include <linux/parser.h>
76 #include <linux/nfs_mount.h>
77 #include <net/ipv6.h>
78 #include <linux/hugetlb.h>
79 #include <linux/personality.h>
80 #include <linux/audit.h>
81 #include <linux/string.h>
82 #include <linux/selinux.h>
83 #include <linux/mutex.h>
84 #include <linux/posix-timers.h>
85 #include <linux/syslog.h>
86 #include <linux/user_namespace.h>
87 #include <linux/export.h>
88 #include <linux/msg.h>
89 #include <linux/shm.h>
90 #include <linux/bpf.h>
91 
92 #include "avc.h"
93 #include "objsec.h"
94 #include "netif.h"
95 #include "netnode.h"
96 #include "netport.h"
97 #include "ibpkey.h"
98 #include "xfrm.h"
99 #include "netlabel.h"
100 #include "audit.h"
101 #include "avc_ss.h"
102 
103 struct selinux_state selinux_state;
104 
105 /* SECMARK reference count */
106 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
107 
108 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
109 static int selinux_enforcing_boot;
110 
111 static int __init enforcing_setup(char *str)
112 {
113 	unsigned long enforcing;
114 	if (!kstrtoul(str, 0, &enforcing))
115 		selinux_enforcing_boot = enforcing ? 1 : 0;
116 	return 1;
117 }
118 __setup("enforcing=", enforcing_setup);
119 #else
120 #define selinux_enforcing_boot 1
121 #endif
122 
123 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
124 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
125 
126 static int __init selinux_enabled_setup(char *str)
127 {
128 	unsigned long enabled;
129 	if (!kstrtoul(str, 0, &enabled))
130 		selinux_enabled = enabled ? 1 : 0;
131 	return 1;
132 }
133 __setup("selinux=", selinux_enabled_setup);
134 #else
135 int selinux_enabled = 1;
136 #endif
137 
138 static unsigned int selinux_checkreqprot_boot =
139 	CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
140 
141 static int __init checkreqprot_setup(char *str)
142 {
143 	unsigned long checkreqprot;
144 
145 	if (!kstrtoul(str, 0, &checkreqprot))
146 		selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
147 	return 1;
148 }
149 __setup("checkreqprot=", checkreqprot_setup);
150 
151 static struct kmem_cache *sel_inode_cache;
152 static struct kmem_cache *file_security_cache;
153 
154 /**
155  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
156  *
157  * Description:
158  * This function checks the SECMARK reference counter to see if any SECMARK
159  * targets are currently configured, if the reference counter is greater than
160  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
161  * enabled, false (0) if SECMARK is disabled.  If the always_check_network
162  * policy capability is enabled, SECMARK is always considered enabled.
163  *
164  */
165 static int selinux_secmark_enabled(void)
166 {
167 	return (selinux_policycap_alwaysnetwork() ||
168 		atomic_read(&selinux_secmark_refcount));
169 }
170 
171 /**
172  * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
173  *
174  * Description:
175  * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
176  * (1) if any are enabled or false (0) if neither are enabled.  If the
177  * always_check_network policy capability is enabled, peer labeling
178  * is always considered enabled.
179  *
180  */
181 static int selinux_peerlbl_enabled(void)
182 {
183 	return (selinux_policycap_alwaysnetwork() ||
184 		netlbl_enabled() || selinux_xfrm_enabled());
185 }
186 
187 static int selinux_netcache_avc_callback(u32 event)
188 {
189 	if (event == AVC_CALLBACK_RESET) {
190 		sel_netif_flush();
191 		sel_netnode_flush();
192 		sel_netport_flush();
193 		synchronize_net();
194 	}
195 	return 0;
196 }
197 
198 static int selinux_lsm_notifier_avc_callback(u32 event)
199 {
200 	if (event == AVC_CALLBACK_RESET) {
201 		sel_ib_pkey_flush();
202 		call_lsm_notifier(LSM_POLICY_CHANGE, NULL);
203 	}
204 
205 	return 0;
206 }
207 
208 /*
209  * initialise the security for the init task
210  */
211 static void cred_init_security(void)
212 {
213 	struct cred *cred = (struct cred *) current->real_cred;
214 	struct task_security_struct *tsec;
215 
216 	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
217 	if (!tsec)
218 		panic("SELinux:  Failed to initialize initial task.\n");
219 
220 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
221 	cred->security = tsec;
222 }
223 
224 /*
225  * get the security ID of a set of credentials
226  */
227 static inline u32 cred_sid(const struct cred *cred)
228 {
229 	const struct task_security_struct *tsec;
230 
231 	tsec = cred->security;
232 	return tsec->sid;
233 }
234 
235 /*
236  * get the objective security ID of a task
237  */
238 static inline u32 task_sid(const struct task_struct *task)
239 {
240 	u32 sid;
241 
242 	rcu_read_lock();
243 	sid = cred_sid(__task_cred(task));
244 	rcu_read_unlock();
245 	return sid;
246 }
247 
248 /* Allocate and free functions for each kind of security blob. */
249 
250 static int inode_alloc_security(struct inode *inode)
251 {
252 	struct inode_security_struct *isec;
253 	u32 sid = current_sid();
254 
255 	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
256 	if (!isec)
257 		return -ENOMEM;
258 
259 	spin_lock_init(&isec->lock);
260 	INIT_LIST_HEAD(&isec->list);
261 	isec->inode = inode;
262 	isec->sid = SECINITSID_UNLABELED;
263 	isec->sclass = SECCLASS_FILE;
264 	isec->task_sid = sid;
265 	isec->initialized = LABEL_INVALID;
266 	inode->i_security = isec;
267 
268 	return 0;
269 }
270 
271 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
272 
273 /*
274  * Try reloading inode security labels that have been marked as invalid.  The
275  * @may_sleep parameter indicates when sleeping and thus reloading labels is
276  * allowed; when set to false, returns -ECHILD when the label is
277  * invalid.  The @dentry parameter should be set to a dentry of the inode.
278  */
279 static int __inode_security_revalidate(struct inode *inode,
280 				       struct dentry *dentry,
281 				       bool may_sleep)
282 {
283 	struct inode_security_struct *isec = inode->i_security;
284 
285 	might_sleep_if(may_sleep);
286 
287 	if (selinux_state.initialized &&
288 	    isec->initialized != LABEL_INITIALIZED) {
289 		if (!may_sleep)
290 			return -ECHILD;
291 
292 		/*
293 		 * Try reloading the inode security label.  This will fail if
294 		 * @opt_dentry is NULL and no dentry for this inode can be
295 		 * found; in that case, continue using the old label.
296 		 */
297 		inode_doinit_with_dentry(inode, dentry);
298 	}
299 	return 0;
300 }
301 
302 static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
303 {
304 	return inode->i_security;
305 }
306 
307 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
308 {
309 	int error;
310 
311 	error = __inode_security_revalidate(inode, NULL, !rcu);
312 	if (error)
313 		return ERR_PTR(error);
314 	return inode->i_security;
315 }
316 
317 /*
318  * Get the security label of an inode.
319  */
320 static struct inode_security_struct *inode_security(struct inode *inode)
321 {
322 	__inode_security_revalidate(inode, NULL, true);
323 	return inode->i_security;
324 }
325 
326 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
327 {
328 	struct inode *inode = d_backing_inode(dentry);
329 
330 	return inode->i_security;
331 }
332 
333 /*
334  * Get the security label of a dentry's backing inode.
335  */
336 static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
337 {
338 	struct inode *inode = d_backing_inode(dentry);
339 
340 	__inode_security_revalidate(inode, dentry, true);
341 	return inode->i_security;
342 }
343 
344 static void inode_free_rcu(struct rcu_head *head)
345 {
346 	struct inode_security_struct *isec;
347 
348 	isec = container_of(head, struct inode_security_struct, rcu);
349 	kmem_cache_free(sel_inode_cache, isec);
350 }
351 
352 static void inode_free_security(struct inode *inode)
353 {
354 	struct inode_security_struct *isec = inode->i_security;
355 	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
356 
357 	/*
358 	 * As not all inode security structures are in a list, we check for
359 	 * empty list outside of the lock to make sure that we won't waste
360 	 * time taking a lock doing nothing.
361 	 *
362 	 * The list_del_init() function can be safely called more than once.
363 	 * It should not be possible for this function to be called with
364 	 * concurrent list_add(), but for better safety against future changes
365 	 * in the code, we use list_empty_careful() here.
366 	 */
367 	if (!list_empty_careful(&isec->list)) {
368 		spin_lock(&sbsec->isec_lock);
369 		list_del_init(&isec->list);
370 		spin_unlock(&sbsec->isec_lock);
371 	}
372 
373 	/*
374 	 * The inode may still be referenced in a path walk and
375 	 * a call to selinux_inode_permission() can be made
376 	 * after inode_free_security() is called. Ideally, the VFS
377 	 * wouldn't do this, but fixing that is a much harder
378 	 * job. For now, simply free the i_security via RCU, and
379 	 * leave the current inode->i_security pointer intact.
380 	 * The inode will be freed after the RCU grace period too.
381 	 */
382 	call_rcu(&isec->rcu, inode_free_rcu);
383 }
384 
385 static int file_alloc_security(struct file *file)
386 {
387 	struct file_security_struct *fsec;
388 	u32 sid = current_sid();
389 
390 	fsec = kmem_cache_zalloc(file_security_cache, GFP_KERNEL);
391 	if (!fsec)
392 		return -ENOMEM;
393 
394 	fsec->sid = sid;
395 	fsec->fown_sid = sid;
396 	file->f_security = fsec;
397 
398 	return 0;
399 }
400 
401 static void file_free_security(struct file *file)
402 {
403 	struct file_security_struct *fsec = file->f_security;
404 	file->f_security = NULL;
405 	kmem_cache_free(file_security_cache, fsec);
406 }
407 
408 static int superblock_alloc_security(struct super_block *sb)
409 {
410 	struct superblock_security_struct *sbsec;
411 
412 	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
413 	if (!sbsec)
414 		return -ENOMEM;
415 
416 	mutex_init(&sbsec->lock);
417 	INIT_LIST_HEAD(&sbsec->isec_head);
418 	spin_lock_init(&sbsec->isec_lock);
419 	sbsec->sb = sb;
420 	sbsec->sid = SECINITSID_UNLABELED;
421 	sbsec->def_sid = SECINITSID_FILE;
422 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
423 	sb->s_security = sbsec;
424 
425 	return 0;
426 }
427 
428 static void superblock_free_security(struct super_block *sb)
429 {
430 	struct superblock_security_struct *sbsec = sb->s_security;
431 	sb->s_security = NULL;
432 	kfree(sbsec);
433 }
434 
435 static inline int inode_doinit(struct inode *inode)
436 {
437 	return inode_doinit_with_dentry(inode, NULL);
438 }
439 
440 enum {
441 	Opt_error = -1,
442 	Opt_context = 1,
443 	Opt_fscontext = 2,
444 	Opt_defcontext = 3,
445 	Opt_rootcontext = 4,
446 	Opt_labelsupport = 5,
447 	Opt_nextmntopt = 6,
448 };
449 
450 #define NUM_SEL_MNT_OPTS	(Opt_nextmntopt - 1)
451 
452 static const match_table_t tokens = {
453 	{Opt_context, CONTEXT_STR "%s"},
454 	{Opt_fscontext, FSCONTEXT_STR "%s"},
455 	{Opt_defcontext, DEFCONTEXT_STR "%s"},
456 	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
457 	{Opt_labelsupport, LABELSUPP_STR},
458 	{Opt_error, NULL},
459 };
460 
461 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
462 
463 static int may_context_mount_sb_relabel(u32 sid,
464 			struct superblock_security_struct *sbsec,
465 			const struct cred *cred)
466 {
467 	const struct task_security_struct *tsec = cred->security;
468 	int rc;
469 
470 	rc = avc_has_perm(&selinux_state,
471 			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
472 			  FILESYSTEM__RELABELFROM, NULL);
473 	if (rc)
474 		return rc;
475 
476 	rc = avc_has_perm(&selinux_state,
477 			  tsec->sid, sid, SECCLASS_FILESYSTEM,
478 			  FILESYSTEM__RELABELTO, NULL);
479 	return rc;
480 }
481 
482 static int may_context_mount_inode_relabel(u32 sid,
483 			struct superblock_security_struct *sbsec,
484 			const struct cred *cred)
485 {
486 	const struct task_security_struct *tsec = cred->security;
487 	int rc;
488 	rc = avc_has_perm(&selinux_state,
489 			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
490 			  FILESYSTEM__RELABELFROM, NULL);
491 	if (rc)
492 		return rc;
493 
494 	rc = avc_has_perm(&selinux_state,
495 			  sid, sbsec->sid, SECCLASS_FILESYSTEM,
496 			  FILESYSTEM__ASSOCIATE, NULL);
497 	return rc;
498 }
499 
500 static int selinux_is_sblabel_mnt(struct super_block *sb)
501 {
502 	struct superblock_security_struct *sbsec = sb->s_security;
503 
504 	return sbsec->behavior == SECURITY_FS_USE_XATTR ||
505 		sbsec->behavior == SECURITY_FS_USE_TRANS ||
506 		sbsec->behavior == SECURITY_FS_USE_TASK ||
507 		sbsec->behavior == SECURITY_FS_USE_NATIVE ||
508 		/* Special handling. Genfs but also in-core setxattr handler */
509 		!strcmp(sb->s_type->name, "sysfs") ||
510 		!strcmp(sb->s_type->name, "pstore") ||
511 		!strcmp(sb->s_type->name, "debugfs") ||
512 		!strcmp(sb->s_type->name, "tracefs") ||
513 		!strcmp(sb->s_type->name, "rootfs") ||
514 		(selinux_policycap_cgroupseclabel() &&
515 		 (!strcmp(sb->s_type->name, "cgroup") ||
516 		  !strcmp(sb->s_type->name, "cgroup2")));
517 }
518 
519 static int sb_finish_set_opts(struct super_block *sb)
520 {
521 	struct superblock_security_struct *sbsec = sb->s_security;
522 	struct dentry *root = sb->s_root;
523 	struct inode *root_inode = d_backing_inode(root);
524 	int rc = 0;
525 
526 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
527 		/* Make sure that the xattr handler exists and that no
528 		   error other than -ENODATA is returned by getxattr on
529 		   the root directory.  -ENODATA is ok, as this may be
530 		   the first boot of the SELinux kernel before we have
531 		   assigned xattr values to the filesystem. */
532 		if (!(root_inode->i_opflags & IOP_XATTR)) {
533 			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
534 			       "xattr support\n", sb->s_id, sb->s_type->name);
535 			rc = -EOPNOTSUPP;
536 			goto out;
537 		}
538 
539 		rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
540 		if (rc < 0 && rc != -ENODATA) {
541 			if (rc == -EOPNOTSUPP)
542 				printk(KERN_WARNING "SELinux: (dev %s, type "
543 				       "%s) has no security xattr handler\n",
544 				       sb->s_id, sb->s_type->name);
545 			else
546 				printk(KERN_WARNING "SELinux: (dev %s, type "
547 				       "%s) getxattr errno %d\n", sb->s_id,
548 				       sb->s_type->name, -rc);
549 			goto out;
550 		}
551 	}
552 
553 	sbsec->flags |= SE_SBINITIALIZED;
554 
555 	/*
556 	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
557 	 * leave the flag untouched because sb_clone_mnt_opts might be handing
558 	 * us a superblock that needs the flag to be cleared.
559 	 */
560 	if (selinux_is_sblabel_mnt(sb))
561 		sbsec->flags |= SBLABEL_MNT;
562 	else
563 		sbsec->flags &= ~SBLABEL_MNT;
564 
565 	/* Initialize the root inode. */
566 	rc = inode_doinit_with_dentry(root_inode, root);
567 
568 	/* Initialize any other inodes associated with the superblock, e.g.
569 	   inodes created prior to initial policy load or inodes created
570 	   during get_sb by a pseudo filesystem that directly
571 	   populates itself. */
572 	spin_lock(&sbsec->isec_lock);
573 next_inode:
574 	if (!list_empty(&sbsec->isec_head)) {
575 		struct inode_security_struct *isec =
576 				list_entry(sbsec->isec_head.next,
577 					   struct inode_security_struct, list);
578 		struct inode *inode = isec->inode;
579 		list_del_init(&isec->list);
580 		spin_unlock(&sbsec->isec_lock);
581 		inode = igrab(inode);
582 		if (inode) {
583 			if (!IS_PRIVATE(inode))
584 				inode_doinit(inode);
585 			iput(inode);
586 		}
587 		spin_lock(&sbsec->isec_lock);
588 		goto next_inode;
589 	}
590 	spin_unlock(&sbsec->isec_lock);
591 out:
592 	return rc;
593 }
594 
595 /*
596  * This function should allow an FS to ask what it's mount security
597  * options were so it can use those later for submounts, displaying
598  * mount options, or whatever.
599  */
600 static int selinux_get_mnt_opts(const struct super_block *sb,
601 				struct security_mnt_opts *opts)
602 {
603 	int rc = 0, i;
604 	struct superblock_security_struct *sbsec = sb->s_security;
605 	char *context = NULL;
606 	u32 len;
607 	char tmp;
608 
609 	security_init_mnt_opts(opts);
610 
611 	if (!(sbsec->flags & SE_SBINITIALIZED))
612 		return -EINVAL;
613 
614 	if (!selinux_state.initialized)
615 		return -EINVAL;
616 
617 	/* make sure we always check enough bits to cover the mask */
618 	BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
619 
620 	tmp = sbsec->flags & SE_MNTMASK;
621 	/* count the number of mount options for this sb */
622 	for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
623 		if (tmp & 0x01)
624 			opts->num_mnt_opts++;
625 		tmp >>= 1;
626 	}
627 	/* Check if the Label support flag is set */
628 	if (sbsec->flags & SBLABEL_MNT)
629 		opts->num_mnt_opts++;
630 
631 	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
632 	if (!opts->mnt_opts) {
633 		rc = -ENOMEM;
634 		goto out_free;
635 	}
636 
637 	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
638 	if (!opts->mnt_opts_flags) {
639 		rc = -ENOMEM;
640 		goto out_free;
641 	}
642 
643 	i = 0;
644 	if (sbsec->flags & FSCONTEXT_MNT) {
645 		rc = security_sid_to_context(&selinux_state, sbsec->sid,
646 					     &context, &len);
647 		if (rc)
648 			goto out_free;
649 		opts->mnt_opts[i] = context;
650 		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
651 	}
652 	if (sbsec->flags & CONTEXT_MNT) {
653 		rc = security_sid_to_context(&selinux_state,
654 					     sbsec->mntpoint_sid,
655 					     &context, &len);
656 		if (rc)
657 			goto out_free;
658 		opts->mnt_opts[i] = context;
659 		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
660 	}
661 	if (sbsec->flags & DEFCONTEXT_MNT) {
662 		rc = security_sid_to_context(&selinux_state, sbsec->def_sid,
663 					     &context, &len);
664 		if (rc)
665 			goto out_free;
666 		opts->mnt_opts[i] = context;
667 		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
668 	}
669 	if (sbsec->flags & ROOTCONTEXT_MNT) {
670 		struct dentry *root = sbsec->sb->s_root;
671 		struct inode_security_struct *isec = backing_inode_security(root);
672 
673 		rc = security_sid_to_context(&selinux_state, isec->sid,
674 					     &context, &len);
675 		if (rc)
676 			goto out_free;
677 		opts->mnt_opts[i] = context;
678 		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
679 	}
680 	if (sbsec->flags & SBLABEL_MNT) {
681 		opts->mnt_opts[i] = NULL;
682 		opts->mnt_opts_flags[i++] = SBLABEL_MNT;
683 	}
684 
685 	BUG_ON(i != opts->num_mnt_opts);
686 
687 	return 0;
688 
689 out_free:
690 	security_free_mnt_opts(opts);
691 	return rc;
692 }
693 
694 static int bad_option(struct superblock_security_struct *sbsec, char flag,
695 		      u32 old_sid, u32 new_sid)
696 {
697 	char mnt_flags = sbsec->flags & SE_MNTMASK;
698 
699 	/* check if the old mount command had the same options */
700 	if (sbsec->flags & SE_SBINITIALIZED)
701 		if (!(sbsec->flags & flag) ||
702 		    (old_sid != new_sid))
703 			return 1;
704 
705 	/* check if we were passed the same options twice,
706 	 * aka someone passed context=a,context=b
707 	 */
708 	if (!(sbsec->flags & SE_SBINITIALIZED))
709 		if (mnt_flags & flag)
710 			return 1;
711 	return 0;
712 }
713 
714 /*
715  * Allow filesystems with binary mount data to explicitly set mount point
716  * labeling information.
717  */
718 static int selinux_set_mnt_opts(struct super_block *sb,
719 				struct security_mnt_opts *opts,
720 				unsigned long kern_flags,
721 				unsigned long *set_kern_flags)
722 {
723 	const struct cred *cred = current_cred();
724 	int rc = 0, i;
725 	struct superblock_security_struct *sbsec = sb->s_security;
726 	const char *name = sb->s_type->name;
727 	struct dentry *root = sbsec->sb->s_root;
728 	struct inode_security_struct *root_isec;
729 	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
730 	u32 defcontext_sid = 0;
731 	char **mount_options = opts->mnt_opts;
732 	int *flags = opts->mnt_opts_flags;
733 	int num_opts = opts->num_mnt_opts;
734 
735 	mutex_lock(&sbsec->lock);
736 
737 	if (!selinux_state.initialized) {
738 		if (!num_opts) {
739 			/* Defer initialization until selinux_complete_init,
740 			   after the initial policy is loaded and the security
741 			   server is ready to handle calls. */
742 			goto out;
743 		}
744 		rc = -EINVAL;
745 		printk(KERN_WARNING "SELinux: Unable to set superblock options "
746 			"before the security server is initialized\n");
747 		goto out;
748 	}
749 	if (kern_flags && !set_kern_flags) {
750 		/* Specifying internal flags without providing a place to
751 		 * place the results is not allowed */
752 		rc = -EINVAL;
753 		goto out;
754 	}
755 
756 	/*
757 	 * Binary mount data FS will come through this function twice.  Once
758 	 * from an explicit call and once from the generic calls from the vfs.
759 	 * Since the generic VFS calls will not contain any security mount data
760 	 * we need to skip the double mount verification.
761 	 *
762 	 * This does open a hole in which we will not notice if the first
763 	 * mount using this sb set explict options and a second mount using
764 	 * this sb does not set any security options.  (The first options
765 	 * will be used for both mounts)
766 	 */
767 	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
768 	    && (num_opts == 0))
769 		goto out;
770 
771 	root_isec = backing_inode_security_novalidate(root);
772 
773 	/*
774 	 * parse the mount options, check if they are valid sids.
775 	 * also check if someone is trying to mount the same sb more
776 	 * than once with different security options.
777 	 */
778 	for (i = 0; i < num_opts; i++) {
779 		u32 sid;
780 
781 		if (flags[i] == SBLABEL_MNT)
782 			continue;
783 		rc = security_context_str_to_sid(&selinux_state,
784 						 mount_options[i], &sid,
785 						 GFP_KERNEL);
786 		if (rc) {
787 			printk(KERN_WARNING "SELinux: security_context_str_to_sid"
788 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
789 			       mount_options[i], sb->s_id, name, rc);
790 			goto out;
791 		}
792 		switch (flags[i]) {
793 		case FSCONTEXT_MNT:
794 			fscontext_sid = sid;
795 
796 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
797 					fscontext_sid))
798 				goto out_double_mount;
799 
800 			sbsec->flags |= FSCONTEXT_MNT;
801 			break;
802 		case CONTEXT_MNT:
803 			context_sid = sid;
804 
805 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
806 					context_sid))
807 				goto out_double_mount;
808 
809 			sbsec->flags |= CONTEXT_MNT;
810 			break;
811 		case ROOTCONTEXT_MNT:
812 			rootcontext_sid = sid;
813 
814 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
815 					rootcontext_sid))
816 				goto out_double_mount;
817 
818 			sbsec->flags |= ROOTCONTEXT_MNT;
819 
820 			break;
821 		case DEFCONTEXT_MNT:
822 			defcontext_sid = sid;
823 
824 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
825 					defcontext_sid))
826 				goto out_double_mount;
827 
828 			sbsec->flags |= DEFCONTEXT_MNT;
829 
830 			break;
831 		default:
832 			rc = -EINVAL;
833 			goto out;
834 		}
835 	}
836 
837 	if (sbsec->flags & SE_SBINITIALIZED) {
838 		/* previously mounted with options, but not on this attempt? */
839 		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
840 			goto out_double_mount;
841 		rc = 0;
842 		goto out;
843 	}
844 
845 	if (strcmp(sb->s_type->name, "proc") == 0)
846 		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
847 
848 	if (!strcmp(sb->s_type->name, "debugfs") ||
849 	    !strcmp(sb->s_type->name, "tracefs") ||
850 	    !strcmp(sb->s_type->name, "sysfs") ||
851 	    !strcmp(sb->s_type->name, "pstore") ||
852 	    !strcmp(sb->s_type->name, "cgroup") ||
853 	    !strcmp(sb->s_type->name, "cgroup2"))
854 		sbsec->flags |= SE_SBGENFS;
855 
856 	if (!sbsec->behavior) {
857 		/*
858 		 * Determine the labeling behavior to use for this
859 		 * filesystem type.
860 		 */
861 		rc = security_fs_use(&selinux_state, sb);
862 		if (rc) {
863 			printk(KERN_WARNING
864 				"%s: security_fs_use(%s) returned %d\n",
865 					__func__, sb->s_type->name, rc);
866 			goto out;
867 		}
868 	}
869 
870 	/*
871 	 * If this is a user namespace mount and the filesystem type is not
872 	 * explicitly whitelisted, then no contexts are allowed on the command
873 	 * line and security labels must be ignored.
874 	 */
875 	if (sb->s_user_ns != &init_user_ns &&
876 	    strcmp(sb->s_type->name, "tmpfs") &&
877 	    strcmp(sb->s_type->name, "ramfs") &&
878 	    strcmp(sb->s_type->name, "devpts")) {
879 		if (context_sid || fscontext_sid || rootcontext_sid ||
880 		    defcontext_sid) {
881 			rc = -EACCES;
882 			goto out;
883 		}
884 		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
885 			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
886 			rc = security_transition_sid(&selinux_state,
887 						     current_sid(),
888 						     current_sid(),
889 						     SECCLASS_FILE, NULL,
890 						     &sbsec->mntpoint_sid);
891 			if (rc)
892 				goto out;
893 		}
894 		goto out_set_opts;
895 	}
896 
897 	/* sets the context of the superblock for the fs being mounted. */
898 	if (fscontext_sid) {
899 		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
900 		if (rc)
901 			goto out;
902 
903 		sbsec->sid = fscontext_sid;
904 	}
905 
906 	/*
907 	 * Switch to using mount point labeling behavior.
908 	 * sets the label used on all file below the mountpoint, and will set
909 	 * the superblock context if not already set.
910 	 */
911 	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
912 		sbsec->behavior = SECURITY_FS_USE_NATIVE;
913 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
914 	}
915 
916 	if (context_sid) {
917 		if (!fscontext_sid) {
918 			rc = may_context_mount_sb_relabel(context_sid, sbsec,
919 							  cred);
920 			if (rc)
921 				goto out;
922 			sbsec->sid = context_sid;
923 		} else {
924 			rc = may_context_mount_inode_relabel(context_sid, sbsec,
925 							     cred);
926 			if (rc)
927 				goto out;
928 		}
929 		if (!rootcontext_sid)
930 			rootcontext_sid = context_sid;
931 
932 		sbsec->mntpoint_sid = context_sid;
933 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
934 	}
935 
936 	if (rootcontext_sid) {
937 		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
938 						     cred);
939 		if (rc)
940 			goto out;
941 
942 		root_isec->sid = rootcontext_sid;
943 		root_isec->initialized = LABEL_INITIALIZED;
944 	}
945 
946 	if (defcontext_sid) {
947 		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
948 			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
949 			rc = -EINVAL;
950 			printk(KERN_WARNING "SELinux: defcontext option is "
951 			       "invalid for this filesystem type\n");
952 			goto out;
953 		}
954 
955 		if (defcontext_sid != sbsec->def_sid) {
956 			rc = may_context_mount_inode_relabel(defcontext_sid,
957 							     sbsec, cred);
958 			if (rc)
959 				goto out;
960 		}
961 
962 		sbsec->def_sid = defcontext_sid;
963 	}
964 
965 out_set_opts:
966 	rc = sb_finish_set_opts(sb);
967 out:
968 	mutex_unlock(&sbsec->lock);
969 	return rc;
970 out_double_mount:
971 	rc = -EINVAL;
972 	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
973 	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
974 	goto out;
975 }
976 
977 static int selinux_cmp_sb_context(const struct super_block *oldsb,
978 				    const struct super_block *newsb)
979 {
980 	struct superblock_security_struct *old = oldsb->s_security;
981 	struct superblock_security_struct *new = newsb->s_security;
982 	char oldflags = old->flags & SE_MNTMASK;
983 	char newflags = new->flags & SE_MNTMASK;
984 
985 	if (oldflags != newflags)
986 		goto mismatch;
987 	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
988 		goto mismatch;
989 	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
990 		goto mismatch;
991 	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
992 		goto mismatch;
993 	if (oldflags & ROOTCONTEXT_MNT) {
994 		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
995 		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
996 		if (oldroot->sid != newroot->sid)
997 			goto mismatch;
998 	}
999 	return 0;
1000 mismatch:
1001 	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, "
1002 			    "different security settings for (dev %s, "
1003 			    "type %s)\n", newsb->s_id, newsb->s_type->name);
1004 	return -EBUSY;
1005 }
1006 
1007 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
1008 					struct super_block *newsb,
1009 					unsigned long kern_flags,
1010 					unsigned long *set_kern_flags)
1011 {
1012 	int rc = 0;
1013 	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
1014 	struct superblock_security_struct *newsbsec = newsb->s_security;
1015 
1016 	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
1017 	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
1018 	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
1019 
1020 	/*
1021 	 * if the parent was able to be mounted it clearly had no special lsm
1022 	 * mount options.  thus we can safely deal with this superblock later
1023 	 */
1024 	if (!selinux_state.initialized)
1025 		return 0;
1026 
1027 	/*
1028 	 * Specifying internal flags without providing a place to
1029 	 * place the results is not allowed.
1030 	 */
1031 	if (kern_flags && !set_kern_flags)
1032 		return -EINVAL;
1033 
1034 	/* how can we clone if the old one wasn't set up?? */
1035 	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
1036 
1037 	/* if fs is reusing a sb, make sure that the contexts match */
1038 	if (newsbsec->flags & SE_SBINITIALIZED)
1039 		return selinux_cmp_sb_context(oldsb, newsb);
1040 
1041 	mutex_lock(&newsbsec->lock);
1042 
1043 	newsbsec->flags = oldsbsec->flags;
1044 
1045 	newsbsec->sid = oldsbsec->sid;
1046 	newsbsec->def_sid = oldsbsec->def_sid;
1047 	newsbsec->behavior = oldsbsec->behavior;
1048 
1049 	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
1050 		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
1051 		rc = security_fs_use(&selinux_state, newsb);
1052 		if (rc)
1053 			goto out;
1054 	}
1055 
1056 	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
1057 		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
1058 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
1059 	}
1060 
1061 	if (set_context) {
1062 		u32 sid = oldsbsec->mntpoint_sid;
1063 
1064 		if (!set_fscontext)
1065 			newsbsec->sid = sid;
1066 		if (!set_rootcontext) {
1067 			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1068 			newisec->sid = sid;
1069 		}
1070 		newsbsec->mntpoint_sid = sid;
1071 	}
1072 	if (set_rootcontext) {
1073 		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
1074 		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1075 
1076 		newisec->sid = oldisec->sid;
1077 	}
1078 
1079 	sb_finish_set_opts(newsb);
1080 out:
1081 	mutex_unlock(&newsbsec->lock);
1082 	return rc;
1083 }
1084 
1085 static int selinux_parse_opts_str(char *options,
1086 				  struct security_mnt_opts *opts)
1087 {
1088 	char *p;
1089 	char *context = NULL, *defcontext = NULL;
1090 	char *fscontext = NULL, *rootcontext = NULL;
1091 	int rc, num_mnt_opts = 0;
1092 
1093 	opts->num_mnt_opts = 0;
1094 
1095 	/* Standard string-based options. */
1096 	while ((p = strsep(&options, "|")) != NULL) {
1097 		int token;
1098 		substring_t args[MAX_OPT_ARGS];
1099 
1100 		if (!*p)
1101 			continue;
1102 
1103 		token = match_token(p, tokens, args);
1104 
1105 		switch (token) {
1106 		case Opt_context:
1107 			if (context || defcontext) {
1108 				rc = -EINVAL;
1109 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1110 				goto out_err;
1111 			}
1112 			context = match_strdup(&args[0]);
1113 			if (!context) {
1114 				rc = -ENOMEM;
1115 				goto out_err;
1116 			}
1117 			break;
1118 
1119 		case Opt_fscontext:
1120 			if (fscontext) {
1121 				rc = -EINVAL;
1122 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1123 				goto out_err;
1124 			}
1125 			fscontext = match_strdup(&args[0]);
1126 			if (!fscontext) {
1127 				rc = -ENOMEM;
1128 				goto out_err;
1129 			}
1130 			break;
1131 
1132 		case Opt_rootcontext:
1133 			if (rootcontext) {
1134 				rc = -EINVAL;
1135 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1136 				goto out_err;
1137 			}
1138 			rootcontext = match_strdup(&args[0]);
1139 			if (!rootcontext) {
1140 				rc = -ENOMEM;
1141 				goto out_err;
1142 			}
1143 			break;
1144 
1145 		case Opt_defcontext:
1146 			if (context || defcontext) {
1147 				rc = -EINVAL;
1148 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1149 				goto out_err;
1150 			}
1151 			defcontext = match_strdup(&args[0]);
1152 			if (!defcontext) {
1153 				rc = -ENOMEM;
1154 				goto out_err;
1155 			}
1156 			break;
1157 		case Opt_labelsupport:
1158 			break;
1159 		default:
1160 			rc = -EINVAL;
1161 			printk(KERN_WARNING "SELinux:  unknown mount option\n");
1162 			goto out_err;
1163 
1164 		}
1165 	}
1166 
1167 	rc = -ENOMEM;
1168 	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_KERNEL);
1169 	if (!opts->mnt_opts)
1170 		goto out_err;
1171 
1172 	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int),
1173 				       GFP_KERNEL);
1174 	if (!opts->mnt_opts_flags)
1175 		goto out_err;
1176 
1177 	if (fscontext) {
1178 		opts->mnt_opts[num_mnt_opts] = fscontext;
1179 		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1180 	}
1181 	if (context) {
1182 		opts->mnt_opts[num_mnt_opts] = context;
1183 		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1184 	}
1185 	if (rootcontext) {
1186 		opts->mnt_opts[num_mnt_opts] = rootcontext;
1187 		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1188 	}
1189 	if (defcontext) {
1190 		opts->mnt_opts[num_mnt_opts] = defcontext;
1191 		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1192 	}
1193 
1194 	opts->num_mnt_opts = num_mnt_opts;
1195 	return 0;
1196 
1197 out_err:
1198 	security_free_mnt_opts(opts);
1199 	kfree(context);
1200 	kfree(defcontext);
1201 	kfree(fscontext);
1202 	kfree(rootcontext);
1203 	return rc;
1204 }
1205 /*
1206  * string mount options parsing and call set the sbsec
1207  */
1208 static int superblock_doinit(struct super_block *sb, void *data)
1209 {
1210 	int rc = 0;
1211 	char *options = data;
1212 	struct security_mnt_opts opts;
1213 
1214 	security_init_mnt_opts(&opts);
1215 
1216 	if (!data)
1217 		goto out;
1218 
1219 	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1220 
1221 	rc = selinux_parse_opts_str(options, &opts);
1222 	if (rc)
1223 		goto out_err;
1224 
1225 out:
1226 	rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1227 
1228 out_err:
1229 	security_free_mnt_opts(&opts);
1230 	return rc;
1231 }
1232 
1233 static void selinux_write_opts(struct seq_file *m,
1234 			       struct security_mnt_opts *opts)
1235 {
1236 	int i;
1237 	char *prefix;
1238 
1239 	for (i = 0; i < opts->num_mnt_opts; i++) {
1240 		char *has_comma;
1241 
1242 		if (opts->mnt_opts[i])
1243 			has_comma = strchr(opts->mnt_opts[i], ',');
1244 		else
1245 			has_comma = NULL;
1246 
1247 		switch (opts->mnt_opts_flags[i]) {
1248 		case CONTEXT_MNT:
1249 			prefix = CONTEXT_STR;
1250 			break;
1251 		case FSCONTEXT_MNT:
1252 			prefix = FSCONTEXT_STR;
1253 			break;
1254 		case ROOTCONTEXT_MNT:
1255 			prefix = ROOTCONTEXT_STR;
1256 			break;
1257 		case DEFCONTEXT_MNT:
1258 			prefix = DEFCONTEXT_STR;
1259 			break;
1260 		case SBLABEL_MNT:
1261 			seq_putc(m, ',');
1262 			seq_puts(m, LABELSUPP_STR);
1263 			continue;
1264 		default:
1265 			BUG();
1266 			return;
1267 		};
1268 		/* we need a comma before each option */
1269 		seq_putc(m, ',');
1270 		seq_puts(m, prefix);
1271 		if (has_comma)
1272 			seq_putc(m, '\"');
1273 		seq_escape(m, opts->mnt_opts[i], "\"\n\\");
1274 		if (has_comma)
1275 			seq_putc(m, '\"');
1276 	}
1277 }
1278 
1279 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1280 {
1281 	struct security_mnt_opts opts;
1282 	int rc;
1283 
1284 	rc = selinux_get_mnt_opts(sb, &opts);
1285 	if (rc) {
1286 		/* before policy load we may get EINVAL, don't show anything */
1287 		if (rc == -EINVAL)
1288 			rc = 0;
1289 		return rc;
1290 	}
1291 
1292 	selinux_write_opts(m, &opts);
1293 
1294 	security_free_mnt_opts(&opts);
1295 
1296 	return rc;
1297 }
1298 
1299 static inline u16 inode_mode_to_security_class(umode_t mode)
1300 {
1301 	switch (mode & S_IFMT) {
1302 	case S_IFSOCK:
1303 		return SECCLASS_SOCK_FILE;
1304 	case S_IFLNK:
1305 		return SECCLASS_LNK_FILE;
1306 	case S_IFREG:
1307 		return SECCLASS_FILE;
1308 	case S_IFBLK:
1309 		return SECCLASS_BLK_FILE;
1310 	case S_IFDIR:
1311 		return SECCLASS_DIR;
1312 	case S_IFCHR:
1313 		return SECCLASS_CHR_FILE;
1314 	case S_IFIFO:
1315 		return SECCLASS_FIFO_FILE;
1316 
1317 	}
1318 
1319 	return SECCLASS_FILE;
1320 }
1321 
1322 static inline int default_protocol_stream(int protocol)
1323 {
1324 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1325 }
1326 
1327 static inline int default_protocol_dgram(int protocol)
1328 {
1329 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1330 }
1331 
1332 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1333 {
1334 	int extsockclass = selinux_policycap_extsockclass();
1335 
1336 	switch (family) {
1337 	case PF_UNIX:
1338 		switch (type) {
1339 		case SOCK_STREAM:
1340 		case SOCK_SEQPACKET:
1341 			return SECCLASS_UNIX_STREAM_SOCKET;
1342 		case SOCK_DGRAM:
1343 		case SOCK_RAW:
1344 			return SECCLASS_UNIX_DGRAM_SOCKET;
1345 		}
1346 		break;
1347 	case PF_INET:
1348 	case PF_INET6:
1349 		switch (type) {
1350 		case SOCK_STREAM:
1351 		case SOCK_SEQPACKET:
1352 			if (default_protocol_stream(protocol))
1353 				return SECCLASS_TCP_SOCKET;
1354 			else if (extsockclass && protocol == IPPROTO_SCTP)
1355 				return SECCLASS_SCTP_SOCKET;
1356 			else
1357 				return SECCLASS_RAWIP_SOCKET;
1358 		case SOCK_DGRAM:
1359 			if (default_protocol_dgram(protocol))
1360 				return SECCLASS_UDP_SOCKET;
1361 			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1362 						  protocol == IPPROTO_ICMPV6))
1363 				return SECCLASS_ICMP_SOCKET;
1364 			else
1365 				return SECCLASS_RAWIP_SOCKET;
1366 		case SOCK_DCCP:
1367 			return SECCLASS_DCCP_SOCKET;
1368 		default:
1369 			return SECCLASS_RAWIP_SOCKET;
1370 		}
1371 		break;
1372 	case PF_NETLINK:
1373 		switch (protocol) {
1374 		case NETLINK_ROUTE:
1375 			return SECCLASS_NETLINK_ROUTE_SOCKET;
1376 		case NETLINK_SOCK_DIAG:
1377 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1378 		case NETLINK_NFLOG:
1379 			return SECCLASS_NETLINK_NFLOG_SOCKET;
1380 		case NETLINK_XFRM:
1381 			return SECCLASS_NETLINK_XFRM_SOCKET;
1382 		case NETLINK_SELINUX:
1383 			return SECCLASS_NETLINK_SELINUX_SOCKET;
1384 		case NETLINK_ISCSI:
1385 			return SECCLASS_NETLINK_ISCSI_SOCKET;
1386 		case NETLINK_AUDIT:
1387 			return SECCLASS_NETLINK_AUDIT_SOCKET;
1388 		case NETLINK_FIB_LOOKUP:
1389 			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1390 		case NETLINK_CONNECTOR:
1391 			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1392 		case NETLINK_NETFILTER:
1393 			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1394 		case NETLINK_DNRTMSG:
1395 			return SECCLASS_NETLINK_DNRT_SOCKET;
1396 		case NETLINK_KOBJECT_UEVENT:
1397 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1398 		case NETLINK_GENERIC:
1399 			return SECCLASS_NETLINK_GENERIC_SOCKET;
1400 		case NETLINK_SCSITRANSPORT:
1401 			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1402 		case NETLINK_RDMA:
1403 			return SECCLASS_NETLINK_RDMA_SOCKET;
1404 		case NETLINK_CRYPTO:
1405 			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1406 		default:
1407 			return SECCLASS_NETLINK_SOCKET;
1408 		}
1409 	case PF_PACKET:
1410 		return SECCLASS_PACKET_SOCKET;
1411 	case PF_KEY:
1412 		return SECCLASS_KEY_SOCKET;
1413 	case PF_APPLETALK:
1414 		return SECCLASS_APPLETALK_SOCKET;
1415 	}
1416 
1417 	if (extsockclass) {
1418 		switch (family) {
1419 		case PF_AX25:
1420 			return SECCLASS_AX25_SOCKET;
1421 		case PF_IPX:
1422 			return SECCLASS_IPX_SOCKET;
1423 		case PF_NETROM:
1424 			return SECCLASS_NETROM_SOCKET;
1425 		case PF_ATMPVC:
1426 			return SECCLASS_ATMPVC_SOCKET;
1427 		case PF_X25:
1428 			return SECCLASS_X25_SOCKET;
1429 		case PF_ROSE:
1430 			return SECCLASS_ROSE_SOCKET;
1431 		case PF_DECnet:
1432 			return SECCLASS_DECNET_SOCKET;
1433 		case PF_ATMSVC:
1434 			return SECCLASS_ATMSVC_SOCKET;
1435 		case PF_RDS:
1436 			return SECCLASS_RDS_SOCKET;
1437 		case PF_IRDA:
1438 			return SECCLASS_IRDA_SOCKET;
1439 		case PF_PPPOX:
1440 			return SECCLASS_PPPOX_SOCKET;
1441 		case PF_LLC:
1442 			return SECCLASS_LLC_SOCKET;
1443 		case PF_CAN:
1444 			return SECCLASS_CAN_SOCKET;
1445 		case PF_TIPC:
1446 			return SECCLASS_TIPC_SOCKET;
1447 		case PF_BLUETOOTH:
1448 			return SECCLASS_BLUETOOTH_SOCKET;
1449 		case PF_IUCV:
1450 			return SECCLASS_IUCV_SOCKET;
1451 		case PF_RXRPC:
1452 			return SECCLASS_RXRPC_SOCKET;
1453 		case PF_ISDN:
1454 			return SECCLASS_ISDN_SOCKET;
1455 		case PF_PHONET:
1456 			return SECCLASS_PHONET_SOCKET;
1457 		case PF_IEEE802154:
1458 			return SECCLASS_IEEE802154_SOCKET;
1459 		case PF_CAIF:
1460 			return SECCLASS_CAIF_SOCKET;
1461 		case PF_ALG:
1462 			return SECCLASS_ALG_SOCKET;
1463 		case PF_NFC:
1464 			return SECCLASS_NFC_SOCKET;
1465 		case PF_VSOCK:
1466 			return SECCLASS_VSOCK_SOCKET;
1467 		case PF_KCM:
1468 			return SECCLASS_KCM_SOCKET;
1469 		case PF_QIPCRTR:
1470 			return SECCLASS_QIPCRTR_SOCKET;
1471 		case PF_SMC:
1472 			return SECCLASS_SMC_SOCKET;
1473 		case PF_XDP:
1474 			return SECCLASS_XDP_SOCKET;
1475 #if PF_MAX > 45
1476 #error New address family defined, please update this function.
1477 #endif
1478 		}
1479 	}
1480 
1481 	return SECCLASS_SOCKET;
1482 }
1483 
1484 static int selinux_genfs_get_sid(struct dentry *dentry,
1485 				 u16 tclass,
1486 				 u16 flags,
1487 				 u32 *sid)
1488 {
1489 	int rc;
1490 	struct super_block *sb = dentry->d_sb;
1491 	char *buffer, *path;
1492 
1493 	buffer = (char *)__get_free_page(GFP_KERNEL);
1494 	if (!buffer)
1495 		return -ENOMEM;
1496 
1497 	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1498 	if (IS_ERR(path))
1499 		rc = PTR_ERR(path);
1500 	else {
1501 		if (flags & SE_SBPROC) {
1502 			/* each process gets a /proc/PID/ entry. Strip off the
1503 			 * PID part to get a valid selinux labeling.
1504 			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1505 			while (path[1] >= '0' && path[1] <= '9') {
1506 				path[1] = '/';
1507 				path++;
1508 			}
1509 		}
1510 		rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1511 					path, tclass, sid);
1512 	}
1513 	free_page((unsigned long)buffer);
1514 	return rc;
1515 }
1516 
1517 /* The inode's security attributes must be initialized before first use. */
1518 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1519 {
1520 	struct superblock_security_struct *sbsec = NULL;
1521 	struct inode_security_struct *isec = inode->i_security;
1522 	u32 task_sid, sid = 0;
1523 	u16 sclass;
1524 	struct dentry *dentry;
1525 #define INITCONTEXTLEN 255
1526 	char *context = NULL;
1527 	unsigned len = 0;
1528 	int rc = 0;
1529 
1530 	if (isec->initialized == LABEL_INITIALIZED)
1531 		return 0;
1532 
1533 	spin_lock(&isec->lock);
1534 	if (isec->initialized == LABEL_INITIALIZED)
1535 		goto out_unlock;
1536 
1537 	if (isec->sclass == SECCLASS_FILE)
1538 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1539 
1540 	sbsec = inode->i_sb->s_security;
1541 	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1542 		/* Defer initialization until selinux_complete_init,
1543 		   after the initial policy is loaded and the security
1544 		   server is ready to handle calls. */
1545 		spin_lock(&sbsec->isec_lock);
1546 		if (list_empty(&isec->list))
1547 			list_add(&isec->list, &sbsec->isec_head);
1548 		spin_unlock(&sbsec->isec_lock);
1549 		goto out_unlock;
1550 	}
1551 
1552 	sclass = isec->sclass;
1553 	task_sid = isec->task_sid;
1554 	sid = isec->sid;
1555 	isec->initialized = LABEL_PENDING;
1556 	spin_unlock(&isec->lock);
1557 
1558 	switch (sbsec->behavior) {
1559 	case SECURITY_FS_USE_NATIVE:
1560 		break;
1561 	case SECURITY_FS_USE_XATTR:
1562 		if (!(inode->i_opflags & IOP_XATTR)) {
1563 			sid = sbsec->def_sid;
1564 			break;
1565 		}
1566 		/* Need a dentry, since the xattr API requires one.
1567 		   Life would be simpler if we could just pass the inode. */
1568 		if (opt_dentry) {
1569 			/* Called from d_instantiate or d_splice_alias. */
1570 			dentry = dget(opt_dentry);
1571 		} else {
1572 			/*
1573 			 * Called from selinux_complete_init, try to find a dentry.
1574 			 * Some filesystems really want a connected one, so try
1575 			 * that first.  We could split SECURITY_FS_USE_XATTR in
1576 			 * two, depending upon that...
1577 			 */
1578 			dentry = d_find_alias(inode);
1579 			if (!dentry)
1580 				dentry = d_find_any_alias(inode);
1581 		}
1582 		if (!dentry) {
1583 			/*
1584 			 * this is can be hit on boot when a file is accessed
1585 			 * before the policy is loaded.  When we load policy we
1586 			 * may find inodes that have no dentry on the
1587 			 * sbsec->isec_head list.  No reason to complain as these
1588 			 * will get fixed up the next time we go through
1589 			 * inode_doinit with a dentry, before these inodes could
1590 			 * be used again by userspace.
1591 			 */
1592 			goto out;
1593 		}
1594 
1595 		len = INITCONTEXTLEN;
1596 		context = kmalloc(len+1, GFP_NOFS);
1597 		if (!context) {
1598 			rc = -ENOMEM;
1599 			dput(dentry);
1600 			goto out;
1601 		}
1602 		context[len] = '\0';
1603 		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1604 		if (rc == -ERANGE) {
1605 			kfree(context);
1606 
1607 			/* Need a larger buffer.  Query for the right size. */
1608 			rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1609 			if (rc < 0) {
1610 				dput(dentry);
1611 				goto out;
1612 			}
1613 			len = rc;
1614 			context = kmalloc(len+1, GFP_NOFS);
1615 			if (!context) {
1616 				rc = -ENOMEM;
1617 				dput(dentry);
1618 				goto out;
1619 			}
1620 			context[len] = '\0';
1621 			rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1622 		}
1623 		dput(dentry);
1624 		if (rc < 0) {
1625 			if (rc != -ENODATA) {
1626 				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1627 				       "%d for dev=%s ino=%ld\n", __func__,
1628 				       -rc, inode->i_sb->s_id, inode->i_ino);
1629 				kfree(context);
1630 				goto out;
1631 			}
1632 			/* Map ENODATA to the default file SID */
1633 			sid = sbsec->def_sid;
1634 			rc = 0;
1635 		} else {
1636 			rc = security_context_to_sid_default(&selinux_state,
1637 							     context, rc, &sid,
1638 							     sbsec->def_sid,
1639 							     GFP_NOFS);
1640 			if (rc) {
1641 				char *dev = inode->i_sb->s_id;
1642 				unsigned long ino = inode->i_ino;
1643 
1644 				if (rc == -EINVAL) {
1645 					if (printk_ratelimit())
1646 						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1647 							"context=%s.  This indicates you may need to relabel the inode or the "
1648 							"filesystem in question.\n", ino, dev, context);
1649 				} else {
1650 					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1651 					       "returned %d for dev=%s ino=%ld\n",
1652 					       __func__, context, -rc, dev, ino);
1653 				}
1654 				kfree(context);
1655 				/* Leave with the unlabeled SID */
1656 				rc = 0;
1657 				break;
1658 			}
1659 		}
1660 		kfree(context);
1661 		break;
1662 	case SECURITY_FS_USE_TASK:
1663 		sid = task_sid;
1664 		break;
1665 	case SECURITY_FS_USE_TRANS:
1666 		/* Default to the fs SID. */
1667 		sid = sbsec->sid;
1668 
1669 		/* Try to obtain a transition SID. */
1670 		rc = security_transition_sid(&selinux_state, task_sid, sid,
1671 					     sclass, NULL, &sid);
1672 		if (rc)
1673 			goto out;
1674 		break;
1675 	case SECURITY_FS_USE_MNTPOINT:
1676 		sid = sbsec->mntpoint_sid;
1677 		break;
1678 	default:
1679 		/* Default to the fs superblock SID. */
1680 		sid = sbsec->sid;
1681 
1682 		if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1683 			/* We must have a dentry to determine the label on
1684 			 * procfs inodes */
1685 			if (opt_dentry) {
1686 				/* Called from d_instantiate or
1687 				 * d_splice_alias. */
1688 				dentry = dget(opt_dentry);
1689 			} else {
1690 				/* Called from selinux_complete_init, try to
1691 				 * find a dentry.  Some filesystems really want
1692 				 * a connected one, so try that first.
1693 				 */
1694 				dentry = d_find_alias(inode);
1695 				if (!dentry)
1696 					dentry = d_find_any_alias(inode);
1697 			}
1698 			/*
1699 			 * This can be hit on boot when a file is accessed
1700 			 * before the policy is loaded.  When we load policy we
1701 			 * may find inodes that have no dentry on the
1702 			 * sbsec->isec_head list.  No reason to complain as
1703 			 * these will get fixed up the next time we go through
1704 			 * inode_doinit() with a dentry, before these inodes
1705 			 * could be used again by userspace.
1706 			 */
1707 			if (!dentry)
1708 				goto out;
1709 			rc = selinux_genfs_get_sid(dentry, sclass,
1710 						   sbsec->flags, &sid);
1711 			dput(dentry);
1712 			if (rc)
1713 				goto out;
1714 		}
1715 		break;
1716 	}
1717 
1718 out:
1719 	spin_lock(&isec->lock);
1720 	if (isec->initialized == LABEL_PENDING) {
1721 		if (!sid || rc) {
1722 			isec->initialized = LABEL_INVALID;
1723 			goto out_unlock;
1724 		}
1725 
1726 		isec->initialized = LABEL_INITIALIZED;
1727 		isec->sid = sid;
1728 	}
1729 
1730 out_unlock:
1731 	spin_unlock(&isec->lock);
1732 	return rc;
1733 }
1734 
1735 /* Convert a Linux signal to an access vector. */
1736 static inline u32 signal_to_av(int sig)
1737 {
1738 	u32 perm = 0;
1739 
1740 	switch (sig) {
1741 	case SIGCHLD:
1742 		/* Commonly granted from child to parent. */
1743 		perm = PROCESS__SIGCHLD;
1744 		break;
1745 	case SIGKILL:
1746 		/* Cannot be caught or ignored */
1747 		perm = PROCESS__SIGKILL;
1748 		break;
1749 	case SIGSTOP:
1750 		/* Cannot be caught or ignored */
1751 		perm = PROCESS__SIGSTOP;
1752 		break;
1753 	default:
1754 		/* All other signals. */
1755 		perm = PROCESS__SIGNAL;
1756 		break;
1757 	}
1758 
1759 	return perm;
1760 }
1761 
1762 #if CAP_LAST_CAP > 63
1763 #error Fix SELinux to handle capabilities > 63.
1764 #endif
1765 
1766 /* Check whether a task is allowed to use a capability. */
1767 static int cred_has_capability(const struct cred *cred,
1768 			       int cap, int audit, bool initns)
1769 {
1770 	struct common_audit_data ad;
1771 	struct av_decision avd;
1772 	u16 sclass;
1773 	u32 sid = cred_sid(cred);
1774 	u32 av = CAP_TO_MASK(cap);
1775 	int rc;
1776 
1777 	ad.type = LSM_AUDIT_DATA_CAP;
1778 	ad.u.cap = cap;
1779 
1780 	switch (CAP_TO_INDEX(cap)) {
1781 	case 0:
1782 		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1783 		break;
1784 	case 1:
1785 		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1786 		break;
1787 	default:
1788 		printk(KERN_ERR
1789 		       "SELinux:  out of range capability %d\n", cap);
1790 		BUG();
1791 		return -EINVAL;
1792 	}
1793 
1794 	rc = avc_has_perm_noaudit(&selinux_state,
1795 				  sid, sid, sclass, av, 0, &avd);
1796 	if (audit == SECURITY_CAP_AUDIT) {
1797 		int rc2 = avc_audit(&selinux_state,
1798 				    sid, sid, sclass, av, &avd, rc, &ad, 0);
1799 		if (rc2)
1800 			return rc2;
1801 	}
1802 	return rc;
1803 }
1804 
1805 /* Check whether a task has a particular permission to an inode.
1806    The 'adp' parameter is optional and allows other audit
1807    data to be passed (e.g. the dentry). */
1808 static int inode_has_perm(const struct cred *cred,
1809 			  struct inode *inode,
1810 			  u32 perms,
1811 			  struct common_audit_data *adp)
1812 {
1813 	struct inode_security_struct *isec;
1814 	u32 sid;
1815 
1816 	validate_creds(cred);
1817 
1818 	if (unlikely(IS_PRIVATE(inode)))
1819 		return 0;
1820 
1821 	sid = cred_sid(cred);
1822 	isec = inode->i_security;
1823 
1824 	return avc_has_perm(&selinux_state,
1825 			    sid, isec->sid, isec->sclass, perms, adp);
1826 }
1827 
1828 /* Same as inode_has_perm, but pass explicit audit data containing
1829    the dentry to help the auditing code to more easily generate the
1830    pathname if needed. */
1831 static inline int dentry_has_perm(const struct cred *cred,
1832 				  struct dentry *dentry,
1833 				  u32 av)
1834 {
1835 	struct inode *inode = d_backing_inode(dentry);
1836 	struct common_audit_data ad;
1837 
1838 	ad.type = LSM_AUDIT_DATA_DENTRY;
1839 	ad.u.dentry = dentry;
1840 	__inode_security_revalidate(inode, dentry, true);
1841 	return inode_has_perm(cred, inode, av, &ad);
1842 }
1843 
1844 /* Same as inode_has_perm, but pass explicit audit data containing
1845    the path to help the auditing code to more easily generate the
1846    pathname if needed. */
1847 static inline int path_has_perm(const struct cred *cred,
1848 				const struct path *path,
1849 				u32 av)
1850 {
1851 	struct inode *inode = d_backing_inode(path->dentry);
1852 	struct common_audit_data ad;
1853 
1854 	ad.type = LSM_AUDIT_DATA_PATH;
1855 	ad.u.path = *path;
1856 	__inode_security_revalidate(inode, path->dentry, true);
1857 	return inode_has_perm(cred, inode, av, &ad);
1858 }
1859 
1860 /* Same as path_has_perm, but uses the inode from the file struct. */
1861 static inline int file_path_has_perm(const struct cred *cred,
1862 				     struct file *file,
1863 				     u32 av)
1864 {
1865 	struct common_audit_data ad;
1866 
1867 	ad.type = LSM_AUDIT_DATA_FILE;
1868 	ad.u.file = file;
1869 	return inode_has_perm(cred, file_inode(file), av, &ad);
1870 }
1871 
1872 #ifdef CONFIG_BPF_SYSCALL
1873 static int bpf_fd_pass(struct file *file, u32 sid);
1874 #endif
1875 
1876 /* Check whether a task can use an open file descriptor to
1877    access an inode in a given way.  Check access to the
1878    descriptor itself, and then use dentry_has_perm to
1879    check a particular permission to the file.
1880    Access to the descriptor is implicitly granted if it
1881    has the same SID as the process.  If av is zero, then
1882    access to the file is not checked, e.g. for cases
1883    where only the descriptor is affected like seek. */
1884 static int file_has_perm(const struct cred *cred,
1885 			 struct file *file,
1886 			 u32 av)
1887 {
1888 	struct file_security_struct *fsec = file->f_security;
1889 	struct inode *inode = file_inode(file);
1890 	struct common_audit_data ad;
1891 	u32 sid = cred_sid(cred);
1892 	int rc;
1893 
1894 	ad.type = LSM_AUDIT_DATA_FILE;
1895 	ad.u.file = file;
1896 
1897 	if (sid != fsec->sid) {
1898 		rc = avc_has_perm(&selinux_state,
1899 				  sid, fsec->sid,
1900 				  SECCLASS_FD,
1901 				  FD__USE,
1902 				  &ad);
1903 		if (rc)
1904 			goto out;
1905 	}
1906 
1907 #ifdef CONFIG_BPF_SYSCALL
1908 	rc = bpf_fd_pass(file, cred_sid(cred));
1909 	if (rc)
1910 		return rc;
1911 #endif
1912 
1913 	/* av is zero if only checking access to the descriptor. */
1914 	rc = 0;
1915 	if (av)
1916 		rc = inode_has_perm(cred, inode, av, &ad);
1917 
1918 out:
1919 	return rc;
1920 }
1921 
1922 /*
1923  * Determine the label for an inode that might be unioned.
1924  */
1925 static int
1926 selinux_determine_inode_label(const struct task_security_struct *tsec,
1927 				 struct inode *dir,
1928 				 const struct qstr *name, u16 tclass,
1929 				 u32 *_new_isid)
1930 {
1931 	const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1932 
1933 	if ((sbsec->flags & SE_SBINITIALIZED) &&
1934 	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1935 		*_new_isid = sbsec->mntpoint_sid;
1936 	} else if ((sbsec->flags & SBLABEL_MNT) &&
1937 		   tsec->create_sid) {
1938 		*_new_isid = tsec->create_sid;
1939 	} else {
1940 		const struct inode_security_struct *dsec = inode_security(dir);
1941 		return security_transition_sid(&selinux_state, tsec->sid,
1942 					       dsec->sid, tclass,
1943 					       name, _new_isid);
1944 	}
1945 
1946 	return 0;
1947 }
1948 
1949 /* Check whether a task can create a file. */
1950 static int may_create(struct inode *dir,
1951 		      struct dentry *dentry,
1952 		      u16 tclass)
1953 {
1954 	const struct task_security_struct *tsec = current_security();
1955 	struct inode_security_struct *dsec;
1956 	struct superblock_security_struct *sbsec;
1957 	u32 sid, newsid;
1958 	struct common_audit_data ad;
1959 	int rc;
1960 
1961 	dsec = inode_security(dir);
1962 	sbsec = dir->i_sb->s_security;
1963 
1964 	sid = tsec->sid;
1965 
1966 	ad.type = LSM_AUDIT_DATA_DENTRY;
1967 	ad.u.dentry = dentry;
1968 
1969 	rc = avc_has_perm(&selinux_state,
1970 			  sid, dsec->sid, SECCLASS_DIR,
1971 			  DIR__ADD_NAME | DIR__SEARCH,
1972 			  &ad);
1973 	if (rc)
1974 		return rc;
1975 
1976 	rc = selinux_determine_inode_label(current_security(), dir,
1977 					   &dentry->d_name, tclass, &newsid);
1978 	if (rc)
1979 		return rc;
1980 
1981 	rc = avc_has_perm(&selinux_state,
1982 			  sid, newsid, tclass, FILE__CREATE, &ad);
1983 	if (rc)
1984 		return rc;
1985 
1986 	return avc_has_perm(&selinux_state,
1987 			    newsid, sbsec->sid,
1988 			    SECCLASS_FILESYSTEM,
1989 			    FILESYSTEM__ASSOCIATE, &ad);
1990 }
1991 
1992 #define MAY_LINK	0
1993 #define MAY_UNLINK	1
1994 #define MAY_RMDIR	2
1995 
1996 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1997 static int may_link(struct inode *dir,
1998 		    struct dentry *dentry,
1999 		    int kind)
2000 
2001 {
2002 	struct inode_security_struct *dsec, *isec;
2003 	struct common_audit_data ad;
2004 	u32 sid = current_sid();
2005 	u32 av;
2006 	int rc;
2007 
2008 	dsec = inode_security(dir);
2009 	isec = backing_inode_security(dentry);
2010 
2011 	ad.type = LSM_AUDIT_DATA_DENTRY;
2012 	ad.u.dentry = dentry;
2013 
2014 	av = DIR__SEARCH;
2015 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
2016 	rc = avc_has_perm(&selinux_state,
2017 			  sid, dsec->sid, SECCLASS_DIR, av, &ad);
2018 	if (rc)
2019 		return rc;
2020 
2021 	switch (kind) {
2022 	case MAY_LINK:
2023 		av = FILE__LINK;
2024 		break;
2025 	case MAY_UNLINK:
2026 		av = FILE__UNLINK;
2027 		break;
2028 	case MAY_RMDIR:
2029 		av = DIR__RMDIR;
2030 		break;
2031 	default:
2032 		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
2033 			__func__, kind);
2034 		return 0;
2035 	}
2036 
2037 	rc = avc_has_perm(&selinux_state,
2038 			  sid, isec->sid, isec->sclass, av, &ad);
2039 	return rc;
2040 }
2041 
2042 static inline int may_rename(struct inode *old_dir,
2043 			     struct dentry *old_dentry,
2044 			     struct inode *new_dir,
2045 			     struct dentry *new_dentry)
2046 {
2047 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
2048 	struct common_audit_data ad;
2049 	u32 sid = current_sid();
2050 	u32 av;
2051 	int old_is_dir, new_is_dir;
2052 	int rc;
2053 
2054 	old_dsec = inode_security(old_dir);
2055 	old_isec = backing_inode_security(old_dentry);
2056 	old_is_dir = d_is_dir(old_dentry);
2057 	new_dsec = inode_security(new_dir);
2058 
2059 	ad.type = LSM_AUDIT_DATA_DENTRY;
2060 
2061 	ad.u.dentry = old_dentry;
2062 	rc = avc_has_perm(&selinux_state,
2063 			  sid, old_dsec->sid, SECCLASS_DIR,
2064 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
2065 	if (rc)
2066 		return rc;
2067 	rc = avc_has_perm(&selinux_state,
2068 			  sid, old_isec->sid,
2069 			  old_isec->sclass, FILE__RENAME, &ad);
2070 	if (rc)
2071 		return rc;
2072 	if (old_is_dir && new_dir != old_dir) {
2073 		rc = avc_has_perm(&selinux_state,
2074 				  sid, old_isec->sid,
2075 				  old_isec->sclass, DIR__REPARENT, &ad);
2076 		if (rc)
2077 			return rc;
2078 	}
2079 
2080 	ad.u.dentry = new_dentry;
2081 	av = DIR__ADD_NAME | DIR__SEARCH;
2082 	if (d_is_positive(new_dentry))
2083 		av |= DIR__REMOVE_NAME;
2084 	rc = avc_has_perm(&selinux_state,
2085 			  sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
2086 	if (rc)
2087 		return rc;
2088 	if (d_is_positive(new_dentry)) {
2089 		new_isec = backing_inode_security(new_dentry);
2090 		new_is_dir = d_is_dir(new_dentry);
2091 		rc = avc_has_perm(&selinux_state,
2092 				  sid, new_isec->sid,
2093 				  new_isec->sclass,
2094 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
2095 		if (rc)
2096 			return rc;
2097 	}
2098 
2099 	return 0;
2100 }
2101 
2102 /* Check whether a task can perform a filesystem operation. */
2103 static int superblock_has_perm(const struct cred *cred,
2104 			       struct super_block *sb,
2105 			       u32 perms,
2106 			       struct common_audit_data *ad)
2107 {
2108 	struct superblock_security_struct *sbsec;
2109 	u32 sid = cred_sid(cred);
2110 
2111 	sbsec = sb->s_security;
2112 	return avc_has_perm(&selinux_state,
2113 			    sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
2114 }
2115 
2116 /* Convert a Linux mode and permission mask to an access vector. */
2117 static inline u32 file_mask_to_av(int mode, int mask)
2118 {
2119 	u32 av = 0;
2120 
2121 	if (!S_ISDIR(mode)) {
2122 		if (mask & MAY_EXEC)
2123 			av |= FILE__EXECUTE;
2124 		if (mask & MAY_READ)
2125 			av |= FILE__READ;
2126 
2127 		if (mask & MAY_APPEND)
2128 			av |= FILE__APPEND;
2129 		else if (mask & MAY_WRITE)
2130 			av |= FILE__WRITE;
2131 
2132 	} else {
2133 		if (mask & MAY_EXEC)
2134 			av |= DIR__SEARCH;
2135 		if (mask & MAY_WRITE)
2136 			av |= DIR__WRITE;
2137 		if (mask & MAY_READ)
2138 			av |= DIR__READ;
2139 	}
2140 
2141 	return av;
2142 }
2143 
2144 /* Convert a Linux file to an access vector. */
2145 static inline u32 file_to_av(struct file *file)
2146 {
2147 	u32 av = 0;
2148 
2149 	if (file->f_mode & FMODE_READ)
2150 		av |= FILE__READ;
2151 	if (file->f_mode & FMODE_WRITE) {
2152 		if (file->f_flags & O_APPEND)
2153 			av |= FILE__APPEND;
2154 		else
2155 			av |= FILE__WRITE;
2156 	}
2157 	if (!av) {
2158 		/*
2159 		 * Special file opened with flags 3 for ioctl-only use.
2160 		 */
2161 		av = FILE__IOCTL;
2162 	}
2163 
2164 	return av;
2165 }
2166 
2167 /*
2168  * Convert a file to an access vector and include the correct open
2169  * open permission.
2170  */
2171 static inline u32 open_file_to_av(struct file *file)
2172 {
2173 	u32 av = file_to_av(file);
2174 	struct inode *inode = file_inode(file);
2175 
2176 	if (selinux_policycap_openperm() &&
2177 	    inode->i_sb->s_magic != SOCKFS_MAGIC)
2178 		av |= FILE__OPEN;
2179 
2180 	return av;
2181 }
2182 
2183 /* Hook functions begin here. */
2184 
2185 static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2186 {
2187 	u32 mysid = current_sid();
2188 	u32 mgrsid = task_sid(mgr);
2189 
2190 	return avc_has_perm(&selinux_state,
2191 			    mysid, mgrsid, SECCLASS_BINDER,
2192 			    BINDER__SET_CONTEXT_MGR, NULL);
2193 }
2194 
2195 static int selinux_binder_transaction(struct task_struct *from,
2196 				      struct task_struct *to)
2197 {
2198 	u32 mysid = current_sid();
2199 	u32 fromsid = task_sid(from);
2200 	u32 tosid = task_sid(to);
2201 	int rc;
2202 
2203 	if (mysid != fromsid) {
2204 		rc = avc_has_perm(&selinux_state,
2205 				  mysid, fromsid, SECCLASS_BINDER,
2206 				  BINDER__IMPERSONATE, NULL);
2207 		if (rc)
2208 			return rc;
2209 	}
2210 
2211 	return avc_has_perm(&selinux_state,
2212 			    fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2213 			    NULL);
2214 }
2215 
2216 static int selinux_binder_transfer_binder(struct task_struct *from,
2217 					  struct task_struct *to)
2218 {
2219 	u32 fromsid = task_sid(from);
2220 	u32 tosid = task_sid(to);
2221 
2222 	return avc_has_perm(&selinux_state,
2223 			    fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2224 			    NULL);
2225 }
2226 
2227 static int selinux_binder_transfer_file(struct task_struct *from,
2228 					struct task_struct *to,
2229 					struct file *file)
2230 {
2231 	u32 sid = task_sid(to);
2232 	struct file_security_struct *fsec = file->f_security;
2233 	struct dentry *dentry = file->f_path.dentry;
2234 	struct inode_security_struct *isec;
2235 	struct common_audit_data ad;
2236 	int rc;
2237 
2238 	ad.type = LSM_AUDIT_DATA_PATH;
2239 	ad.u.path = file->f_path;
2240 
2241 	if (sid != fsec->sid) {
2242 		rc = avc_has_perm(&selinux_state,
2243 				  sid, fsec->sid,
2244 				  SECCLASS_FD,
2245 				  FD__USE,
2246 				  &ad);
2247 		if (rc)
2248 			return rc;
2249 	}
2250 
2251 #ifdef CONFIG_BPF_SYSCALL
2252 	rc = bpf_fd_pass(file, sid);
2253 	if (rc)
2254 		return rc;
2255 #endif
2256 
2257 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2258 		return 0;
2259 
2260 	isec = backing_inode_security(dentry);
2261 	return avc_has_perm(&selinux_state,
2262 			    sid, isec->sid, isec->sclass, file_to_av(file),
2263 			    &ad);
2264 }
2265 
2266 static int selinux_ptrace_access_check(struct task_struct *child,
2267 				     unsigned int mode)
2268 {
2269 	u32 sid = current_sid();
2270 	u32 csid = task_sid(child);
2271 
2272 	if (mode & PTRACE_MODE_READ)
2273 		return avc_has_perm(&selinux_state,
2274 				    sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2275 
2276 	return avc_has_perm(&selinux_state,
2277 			    sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2278 }
2279 
2280 static int selinux_ptrace_traceme(struct task_struct *parent)
2281 {
2282 	return avc_has_perm(&selinux_state,
2283 			    task_sid(parent), current_sid(), SECCLASS_PROCESS,
2284 			    PROCESS__PTRACE, NULL);
2285 }
2286 
2287 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2288 			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2289 {
2290 	return avc_has_perm(&selinux_state,
2291 			    current_sid(), task_sid(target), SECCLASS_PROCESS,
2292 			    PROCESS__GETCAP, NULL);
2293 }
2294 
2295 static int selinux_capset(struct cred *new, const struct cred *old,
2296 			  const kernel_cap_t *effective,
2297 			  const kernel_cap_t *inheritable,
2298 			  const kernel_cap_t *permitted)
2299 {
2300 	return avc_has_perm(&selinux_state,
2301 			    cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2302 			    PROCESS__SETCAP, NULL);
2303 }
2304 
2305 /*
2306  * (This comment used to live with the selinux_task_setuid hook,
2307  * which was removed).
2308  *
2309  * Since setuid only affects the current process, and since the SELinux
2310  * controls are not based on the Linux identity attributes, SELinux does not
2311  * need to control this operation.  However, SELinux does control the use of
2312  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2313  */
2314 
2315 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2316 			   int cap, int audit)
2317 {
2318 	return cred_has_capability(cred, cap, audit, ns == &init_user_ns);
2319 }
2320 
2321 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2322 {
2323 	const struct cred *cred = current_cred();
2324 	int rc = 0;
2325 
2326 	if (!sb)
2327 		return 0;
2328 
2329 	switch (cmds) {
2330 	case Q_SYNC:
2331 	case Q_QUOTAON:
2332 	case Q_QUOTAOFF:
2333 	case Q_SETINFO:
2334 	case Q_SETQUOTA:
2335 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2336 		break;
2337 	case Q_GETFMT:
2338 	case Q_GETINFO:
2339 	case Q_GETQUOTA:
2340 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2341 		break;
2342 	default:
2343 		rc = 0;  /* let the kernel handle invalid cmds */
2344 		break;
2345 	}
2346 	return rc;
2347 }
2348 
2349 static int selinux_quota_on(struct dentry *dentry)
2350 {
2351 	const struct cred *cred = current_cred();
2352 
2353 	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2354 }
2355 
2356 static int selinux_syslog(int type)
2357 {
2358 	switch (type) {
2359 	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2360 	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2361 		return avc_has_perm(&selinux_state,
2362 				    current_sid(), SECINITSID_KERNEL,
2363 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2364 	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2365 	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2366 	/* Set level of messages printed to console */
2367 	case SYSLOG_ACTION_CONSOLE_LEVEL:
2368 		return avc_has_perm(&selinux_state,
2369 				    current_sid(), SECINITSID_KERNEL,
2370 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2371 				    NULL);
2372 	}
2373 	/* All other syslog types */
2374 	return avc_has_perm(&selinux_state,
2375 			    current_sid(), SECINITSID_KERNEL,
2376 			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2377 }
2378 
2379 /*
2380  * Check that a process has enough memory to allocate a new virtual
2381  * mapping. 0 means there is enough memory for the allocation to
2382  * succeed and -ENOMEM implies there is not.
2383  *
2384  * Do not audit the selinux permission check, as this is applied to all
2385  * processes that allocate mappings.
2386  */
2387 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2388 {
2389 	int rc, cap_sys_admin = 0;
2390 
2391 	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2392 				 SECURITY_CAP_NOAUDIT, true);
2393 	if (rc == 0)
2394 		cap_sys_admin = 1;
2395 
2396 	return cap_sys_admin;
2397 }
2398 
2399 /* binprm security operations */
2400 
2401 static u32 ptrace_parent_sid(void)
2402 {
2403 	u32 sid = 0;
2404 	struct task_struct *tracer;
2405 
2406 	rcu_read_lock();
2407 	tracer = ptrace_parent(current);
2408 	if (tracer)
2409 		sid = task_sid(tracer);
2410 	rcu_read_unlock();
2411 
2412 	return sid;
2413 }
2414 
2415 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2416 			    const struct task_security_struct *old_tsec,
2417 			    const struct task_security_struct *new_tsec)
2418 {
2419 	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2420 	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2421 	int rc;
2422 	u32 av;
2423 
2424 	if (!nnp && !nosuid)
2425 		return 0; /* neither NNP nor nosuid */
2426 
2427 	if (new_tsec->sid == old_tsec->sid)
2428 		return 0; /* No change in credentials */
2429 
2430 	/*
2431 	 * If the policy enables the nnp_nosuid_transition policy capability,
2432 	 * then we permit transitions under NNP or nosuid if the
2433 	 * policy allows the corresponding permission between
2434 	 * the old and new contexts.
2435 	 */
2436 	if (selinux_policycap_nnp_nosuid_transition()) {
2437 		av = 0;
2438 		if (nnp)
2439 			av |= PROCESS2__NNP_TRANSITION;
2440 		if (nosuid)
2441 			av |= PROCESS2__NOSUID_TRANSITION;
2442 		rc = avc_has_perm(&selinux_state,
2443 				  old_tsec->sid, new_tsec->sid,
2444 				  SECCLASS_PROCESS2, av, NULL);
2445 		if (!rc)
2446 			return 0;
2447 	}
2448 
2449 	/*
2450 	 * We also permit NNP or nosuid transitions to bounded SIDs,
2451 	 * i.e. SIDs that are guaranteed to only be allowed a subset
2452 	 * of the permissions of the current SID.
2453 	 */
2454 	rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2455 					 new_tsec->sid);
2456 	if (!rc)
2457 		return 0;
2458 
2459 	/*
2460 	 * On failure, preserve the errno values for NNP vs nosuid.
2461 	 * NNP:  Operation not permitted for caller.
2462 	 * nosuid:  Permission denied to file.
2463 	 */
2464 	if (nnp)
2465 		return -EPERM;
2466 	return -EACCES;
2467 }
2468 
2469 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2470 {
2471 	const struct task_security_struct *old_tsec;
2472 	struct task_security_struct *new_tsec;
2473 	struct inode_security_struct *isec;
2474 	struct common_audit_data ad;
2475 	struct inode *inode = file_inode(bprm->file);
2476 	int rc;
2477 
2478 	/* SELinux context only depends on initial program or script and not
2479 	 * the script interpreter */
2480 	if (bprm->called_set_creds)
2481 		return 0;
2482 
2483 	old_tsec = current_security();
2484 	new_tsec = bprm->cred->security;
2485 	isec = inode_security(inode);
2486 
2487 	/* Default to the current task SID. */
2488 	new_tsec->sid = old_tsec->sid;
2489 	new_tsec->osid = old_tsec->sid;
2490 
2491 	/* Reset fs, key, and sock SIDs on execve. */
2492 	new_tsec->create_sid = 0;
2493 	new_tsec->keycreate_sid = 0;
2494 	new_tsec->sockcreate_sid = 0;
2495 
2496 	if (old_tsec->exec_sid) {
2497 		new_tsec->sid = old_tsec->exec_sid;
2498 		/* Reset exec SID on execve. */
2499 		new_tsec->exec_sid = 0;
2500 
2501 		/* Fail on NNP or nosuid if not an allowed transition. */
2502 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2503 		if (rc)
2504 			return rc;
2505 	} else {
2506 		/* Check for a default transition on this program. */
2507 		rc = security_transition_sid(&selinux_state, old_tsec->sid,
2508 					     isec->sid, SECCLASS_PROCESS, NULL,
2509 					     &new_tsec->sid);
2510 		if (rc)
2511 			return rc;
2512 
2513 		/*
2514 		 * Fallback to old SID on NNP or nosuid if not an allowed
2515 		 * transition.
2516 		 */
2517 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2518 		if (rc)
2519 			new_tsec->sid = old_tsec->sid;
2520 	}
2521 
2522 	ad.type = LSM_AUDIT_DATA_FILE;
2523 	ad.u.file = bprm->file;
2524 
2525 	if (new_tsec->sid == old_tsec->sid) {
2526 		rc = avc_has_perm(&selinux_state,
2527 				  old_tsec->sid, isec->sid,
2528 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2529 		if (rc)
2530 			return rc;
2531 	} else {
2532 		/* Check permissions for the transition. */
2533 		rc = avc_has_perm(&selinux_state,
2534 				  old_tsec->sid, new_tsec->sid,
2535 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2536 		if (rc)
2537 			return rc;
2538 
2539 		rc = avc_has_perm(&selinux_state,
2540 				  new_tsec->sid, isec->sid,
2541 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2542 		if (rc)
2543 			return rc;
2544 
2545 		/* Check for shared state */
2546 		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2547 			rc = avc_has_perm(&selinux_state,
2548 					  old_tsec->sid, new_tsec->sid,
2549 					  SECCLASS_PROCESS, PROCESS__SHARE,
2550 					  NULL);
2551 			if (rc)
2552 				return -EPERM;
2553 		}
2554 
2555 		/* Make sure that anyone attempting to ptrace over a task that
2556 		 * changes its SID has the appropriate permit */
2557 		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2558 			u32 ptsid = ptrace_parent_sid();
2559 			if (ptsid != 0) {
2560 				rc = avc_has_perm(&selinux_state,
2561 						  ptsid, new_tsec->sid,
2562 						  SECCLASS_PROCESS,
2563 						  PROCESS__PTRACE, NULL);
2564 				if (rc)
2565 					return -EPERM;
2566 			}
2567 		}
2568 
2569 		/* Clear any possibly unsafe personality bits on exec: */
2570 		bprm->per_clear |= PER_CLEAR_ON_SETID;
2571 
2572 		/* Enable secure mode for SIDs transitions unless
2573 		   the noatsecure permission is granted between
2574 		   the two SIDs, i.e. ahp returns 0. */
2575 		rc = avc_has_perm(&selinux_state,
2576 				  old_tsec->sid, new_tsec->sid,
2577 				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2578 				  NULL);
2579 		bprm->secureexec |= !!rc;
2580 	}
2581 
2582 	return 0;
2583 }
2584 
2585 static int match_file(const void *p, struct file *file, unsigned fd)
2586 {
2587 	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2588 }
2589 
2590 /* Derived from fs/exec.c:flush_old_files. */
2591 static inline void flush_unauthorized_files(const struct cred *cred,
2592 					    struct files_struct *files)
2593 {
2594 	struct file *file, *devnull = NULL;
2595 	struct tty_struct *tty;
2596 	int drop_tty = 0;
2597 	unsigned n;
2598 
2599 	tty = get_current_tty();
2600 	if (tty) {
2601 		spin_lock(&tty->files_lock);
2602 		if (!list_empty(&tty->tty_files)) {
2603 			struct tty_file_private *file_priv;
2604 
2605 			/* Revalidate access to controlling tty.
2606 			   Use file_path_has_perm on the tty path directly
2607 			   rather than using file_has_perm, as this particular
2608 			   open file may belong to another process and we are
2609 			   only interested in the inode-based check here. */
2610 			file_priv = list_first_entry(&tty->tty_files,
2611 						struct tty_file_private, list);
2612 			file = file_priv->file;
2613 			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2614 				drop_tty = 1;
2615 		}
2616 		spin_unlock(&tty->files_lock);
2617 		tty_kref_put(tty);
2618 	}
2619 	/* Reset controlling tty. */
2620 	if (drop_tty)
2621 		no_tty();
2622 
2623 	/* Revalidate access to inherited open files. */
2624 	n = iterate_fd(files, 0, match_file, cred);
2625 	if (!n) /* none found? */
2626 		return;
2627 
2628 	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2629 	if (IS_ERR(devnull))
2630 		devnull = NULL;
2631 	/* replace all the matching ones with this */
2632 	do {
2633 		replace_fd(n - 1, devnull, 0);
2634 	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2635 	if (devnull)
2636 		fput(devnull);
2637 }
2638 
2639 /*
2640  * Prepare a process for imminent new credential changes due to exec
2641  */
2642 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2643 {
2644 	struct task_security_struct *new_tsec;
2645 	struct rlimit *rlim, *initrlim;
2646 	int rc, i;
2647 
2648 	new_tsec = bprm->cred->security;
2649 	if (new_tsec->sid == new_tsec->osid)
2650 		return;
2651 
2652 	/* Close files for which the new task SID is not authorized. */
2653 	flush_unauthorized_files(bprm->cred, current->files);
2654 
2655 	/* Always clear parent death signal on SID transitions. */
2656 	current->pdeath_signal = 0;
2657 
2658 	/* Check whether the new SID can inherit resource limits from the old
2659 	 * SID.  If not, reset all soft limits to the lower of the current
2660 	 * task's hard limit and the init task's soft limit.
2661 	 *
2662 	 * Note that the setting of hard limits (even to lower them) can be
2663 	 * controlled by the setrlimit check.  The inclusion of the init task's
2664 	 * soft limit into the computation is to avoid resetting soft limits
2665 	 * higher than the default soft limit for cases where the default is
2666 	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2667 	 */
2668 	rc = avc_has_perm(&selinux_state,
2669 			  new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2670 			  PROCESS__RLIMITINH, NULL);
2671 	if (rc) {
2672 		/* protect against do_prlimit() */
2673 		task_lock(current);
2674 		for (i = 0; i < RLIM_NLIMITS; i++) {
2675 			rlim = current->signal->rlim + i;
2676 			initrlim = init_task.signal->rlim + i;
2677 			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2678 		}
2679 		task_unlock(current);
2680 		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2681 			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2682 	}
2683 }
2684 
2685 /*
2686  * Clean up the process immediately after the installation of new credentials
2687  * due to exec
2688  */
2689 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2690 {
2691 	const struct task_security_struct *tsec = current_security();
2692 	struct itimerval itimer;
2693 	u32 osid, sid;
2694 	int rc, i;
2695 
2696 	osid = tsec->osid;
2697 	sid = tsec->sid;
2698 
2699 	if (sid == osid)
2700 		return;
2701 
2702 	/* Check whether the new SID can inherit signal state from the old SID.
2703 	 * If not, clear itimers to avoid subsequent signal generation and
2704 	 * flush and unblock signals.
2705 	 *
2706 	 * This must occur _after_ the task SID has been updated so that any
2707 	 * kill done after the flush will be checked against the new SID.
2708 	 */
2709 	rc = avc_has_perm(&selinux_state,
2710 			  osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2711 	if (rc) {
2712 		if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
2713 			memset(&itimer, 0, sizeof itimer);
2714 			for (i = 0; i < 3; i++)
2715 				do_setitimer(i, &itimer, NULL);
2716 		}
2717 		spin_lock_irq(&current->sighand->siglock);
2718 		if (!fatal_signal_pending(current)) {
2719 			flush_sigqueue(&current->pending);
2720 			flush_sigqueue(&current->signal->shared_pending);
2721 			flush_signal_handlers(current, 1);
2722 			sigemptyset(&current->blocked);
2723 			recalc_sigpending();
2724 		}
2725 		spin_unlock_irq(&current->sighand->siglock);
2726 	}
2727 
2728 	/* Wake up the parent if it is waiting so that it can recheck
2729 	 * wait permission to the new task SID. */
2730 	read_lock(&tasklist_lock);
2731 	__wake_up_parent(current, current->real_parent);
2732 	read_unlock(&tasklist_lock);
2733 }
2734 
2735 /* superblock security operations */
2736 
2737 static int selinux_sb_alloc_security(struct super_block *sb)
2738 {
2739 	return superblock_alloc_security(sb);
2740 }
2741 
2742 static void selinux_sb_free_security(struct super_block *sb)
2743 {
2744 	superblock_free_security(sb);
2745 }
2746 
2747 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2748 {
2749 	if (plen > olen)
2750 		return 0;
2751 
2752 	return !memcmp(prefix, option, plen);
2753 }
2754 
2755 static inline int selinux_option(char *option, int len)
2756 {
2757 	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2758 		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2759 		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2760 		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2761 		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2762 }
2763 
2764 static inline void take_option(char **to, char *from, int *first, int len)
2765 {
2766 	if (!*first) {
2767 		**to = ',';
2768 		*to += 1;
2769 	} else
2770 		*first = 0;
2771 	memcpy(*to, from, len);
2772 	*to += len;
2773 }
2774 
2775 static inline void take_selinux_option(char **to, char *from, int *first,
2776 				       int len)
2777 {
2778 	int current_size = 0;
2779 
2780 	if (!*first) {
2781 		**to = '|';
2782 		*to += 1;
2783 	} else
2784 		*first = 0;
2785 
2786 	while (current_size < len) {
2787 		if (*from != '"') {
2788 			**to = *from;
2789 			*to += 1;
2790 		}
2791 		from += 1;
2792 		current_size += 1;
2793 	}
2794 }
2795 
2796 static int selinux_sb_copy_data(char *orig, char *copy)
2797 {
2798 	int fnosec, fsec, rc = 0;
2799 	char *in_save, *in_curr, *in_end;
2800 	char *sec_curr, *nosec_save, *nosec;
2801 	int open_quote = 0;
2802 
2803 	in_curr = orig;
2804 	sec_curr = copy;
2805 
2806 	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2807 	if (!nosec) {
2808 		rc = -ENOMEM;
2809 		goto out;
2810 	}
2811 
2812 	nosec_save = nosec;
2813 	fnosec = fsec = 1;
2814 	in_save = in_end = orig;
2815 
2816 	do {
2817 		if (*in_end == '"')
2818 			open_quote = !open_quote;
2819 		if ((*in_end == ',' && open_quote == 0) ||
2820 				*in_end == '\0') {
2821 			int len = in_end - in_curr;
2822 
2823 			if (selinux_option(in_curr, len))
2824 				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2825 			else
2826 				take_option(&nosec, in_curr, &fnosec, len);
2827 
2828 			in_curr = in_end + 1;
2829 		}
2830 	} while (*in_end++);
2831 
2832 	strcpy(in_save, nosec_save);
2833 	free_page((unsigned long)nosec_save);
2834 out:
2835 	return rc;
2836 }
2837 
2838 static int selinux_sb_remount(struct super_block *sb, void *data)
2839 {
2840 	int rc, i, *flags;
2841 	struct security_mnt_opts opts;
2842 	char *secdata, **mount_options;
2843 	struct superblock_security_struct *sbsec = sb->s_security;
2844 
2845 	if (!(sbsec->flags & SE_SBINITIALIZED))
2846 		return 0;
2847 
2848 	if (!data)
2849 		return 0;
2850 
2851 	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2852 		return 0;
2853 
2854 	security_init_mnt_opts(&opts);
2855 	secdata = alloc_secdata();
2856 	if (!secdata)
2857 		return -ENOMEM;
2858 	rc = selinux_sb_copy_data(data, secdata);
2859 	if (rc)
2860 		goto out_free_secdata;
2861 
2862 	rc = selinux_parse_opts_str(secdata, &opts);
2863 	if (rc)
2864 		goto out_free_secdata;
2865 
2866 	mount_options = opts.mnt_opts;
2867 	flags = opts.mnt_opts_flags;
2868 
2869 	for (i = 0; i < opts.num_mnt_opts; i++) {
2870 		u32 sid;
2871 
2872 		if (flags[i] == SBLABEL_MNT)
2873 			continue;
2874 		rc = security_context_str_to_sid(&selinux_state,
2875 						 mount_options[i], &sid,
2876 						 GFP_KERNEL);
2877 		if (rc) {
2878 			printk(KERN_WARNING "SELinux: security_context_str_to_sid"
2879 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
2880 			       mount_options[i], sb->s_id, sb->s_type->name, rc);
2881 			goto out_free_opts;
2882 		}
2883 		rc = -EINVAL;
2884 		switch (flags[i]) {
2885 		case FSCONTEXT_MNT:
2886 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2887 				goto out_bad_option;
2888 			break;
2889 		case CONTEXT_MNT:
2890 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2891 				goto out_bad_option;
2892 			break;
2893 		case ROOTCONTEXT_MNT: {
2894 			struct inode_security_struct *root_isec;
2895 			root_isec = backing_inode_security(sb->s_root);
2896 
2897 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2898 				goto out_bad_option;
2899 			break;
2900 		}
2901 		case DEFCONTEXT_MNT:
2902 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2903 				goto out_bad_option;
2904 			break;
2905 		default:
2906 			goto out_free_opts;
2907 		}
2908 	}
2909 
2910 	rc = 0;
2911 out_free_opts:
2912 	security_free_mnt_opts(&opts);
2913 out_free_secdata:
2914 	free_secdata(secdata);
2915 	return rc;
2916 out_bad_option:
2917 	printk(KERN_WARNING "SELinux: unable to change security options "
2918 	       "during remount (dev %s, type=%s)\n", sb->s_id,
2919 	       sb->s_type->name);
2920 	goto out_free_opts;
2921 }
2922 
2923 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2924 {
2925 	const struct cred *cred = current_cred();
2926 	struct common_audit_data ad;
2927 	int rc;
2928 
2929 	rc = superblock_doinit(sb, data);
2930 	if (rc)
2931 		return rc;
2932 
2933 	/* Allow all mounts performed by the kernel */
2934 	if (flags & MS_KERNMOUNT)
2935 		return 0;
2936 
2937 	ad.type = LSM_AUDIT_DATA_DENTRY;
2938 	ad.u.dentry = sb->s_root;
2939 	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2940 }
2941 
2942 static int selinux_sb_statfs(struct dentry *dentry)
2943 {
2944 	const struct cred *cred = current_cred();
2945 	struct common_audit_data ad;
2946 
2947 	ad.type = LSM_AUDIT_DATA_DENTRY;
2948 	ad.u.dentry = dentry->d_sb->s_root;
2949 	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2950 }
2951 
2952 static int selinux_mount(const char *dev_name,
2953 			 const struct path *path,
2954 			 const char *type,
2955 			 unsigned long flags,
2956 			 void *data)
2957 {
2958 	const struct cred *cred = current_cred();
2959 
2960 	if (flags & MS_REMOUNT)
2961 		return superblock_has_perm(cred, path->dentry->d_sb,
2962 					   FILESYSTEM__REMOUNT, NULL);
2963 	else
2964 		return path_has_perm(cred, path, FILE__MOUNTON);
2965 }
2966 
2967 static int selinux_umount(struct vfsmount *mnt, int flags)
2968 {
2969 	const struct cred *cred = current_cred();
2970 
2971 	return superblock_has_perm(cred, mnt->mnt_sb,
2972 				   FILESYSTEM__UNMOUNT, NULL);
2973 }
2974 
2975 /* inode security operations */
2976 
2977 static int selinux_inode_alloc_security(struct inode *inode)
2978 {
2979 	return inode_alloc_security(inode);
2980 }
2981 
2982 static void selinux_inode_free_security(struct inode *inode)
2983 {
2984 	inode_free_security(inode);
2985 }
2986 
2987 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2988 					const struct qstr *name, void **ctx,
2989 					u32 *ctxlen)
2990 {
2991 	u32 newsid;
2992 	int rc;
2993 
2994 	rc = selinux_determine_inode_label(current_security(),
2995 					   d_inode(dentry->d_parent), name,
2996 					   inode_mode_to_security_class(mode),
2997 					   &newsid);
2998 	if (rc)
2999 		return rc;
3000 
3001 	return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
3002 				       ctxlen);
3003 }
3004 
3005 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
3006 					  struct qstr *name,
3007 					  const struct cred *old,
3008 					  struct cred *new)
3009 {
3010 	u32 newsid;
3011 	int rc;
3012 	struct task_security_struct *tsec;
3013 
3014 	rc = selinux_determine_inode_label(old->security,
3015 					   d_inode(dentry->d_parent), name,
3016 					   inode_mode_to_security_class(mode),
3017 					   &newsid);
3018 	if (rc)
3019 		return rc;
3020 
3021 	tsec = new->security;
3022 	tsec->create_sid = newsid;
3023 	return 0;
3024 }
3025 
3026 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
3027 				       const struct qstr *qstr,
3028 				       const char **name,
3029 				       void **value, size_t *len)
3030 {
3031 	const struct task_security_struct *tsec = current_security();
3032 	struct superblock_security_struct *sbsec;
3033 	u32 newsid, clen;
3034 	int rc;
3035 	char *context;
3036 
3037 	sbsec = dir->i_sb->s_security;
3038 
3039 	newsid = tsec->create_sid;
3040 
3041 	rc = selinux_determine_inode_label(current_security(),
3042 		dir, qstr,
3043 		inode_mode_to_security_class(inode->i_mode),
3044 		&newsid);
3045 	if (rc)
3046 		return rc;
3047 
3048 	/* Possibly defer initialization to selinux_complete_init. */
3049 	if (sbsec->flags & SE_SBINITIALIZED) {
3050 		struct inode_security_struct *isec = inode->i_security;
3051 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
3052 		isec->sid = newsid;
3053 		isec->initialized = LABEL_INITIALIZED;
3054 	}
3055 
3056 	if (!selinux_state.initialized || !(sbsec->flags & SBLABEL_MNT))
3057 		return -EOPNOTSUPP;
3058 
3059 	if (name)
3060 		*name = XATTR_SELINUX_SUFFIX;
3061 
3062 	if (value && len) {
3063 		rc = security_sid_to_context_force(&selinux_state, newsid,
3064 						   &context, &clen);
3065 		if (rc)
3066 			return rc;
3067 		*value = context;
3068 		*len = clen;
3069 	}
3070 
3071 	return 0;
3072 }
3073 
3074 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3075 {
3076 	return may_create(dir, dentry, SECCLASS_FILE);
3077 }
3078 
3079 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3080 {
3081 	return may_link(dir, old_dentry, MAY_LINK);
3082 }
3083 
3084 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3085 {
3086 	return may_link(dir, dentry, MAY_UNLINK);
3087 }
3088 
3089 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3090 {
3091 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
3092 }
3093 
3094 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3095 {
3096 	return may_create(dir, dentry, SECCLASS_DIR);
3097 }
3098 
3099 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3100 {
3101 	return may_link(dir, dentry, MAY_RMDIR);
3102 }
3103 
3104 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3105 {
3106 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
3107 }
3108 
3109 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3110 				struct inode *new_inode, struct dentry *new_dentry)
3111 {
3112 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3113 }
3114 
3115 static int selinux_inode_readlink(struct dentry *dentry)
3116 {
3117 	const struct cred *cred = current_cred();
3118 
3119 	return dentry_has_perm(cred, dentry, FILE__READ);
3120 }
3121 
3122 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3123 				     bool rcu)
3124 {
3125 	const struct cred *cred = current_cred();
3126 	struct common_audit_data ad;
3127 	struct inode_security_struct *isec;
3128 	u32 sid;
3129 
3130 	validate_creds(cred);
3131 
3132 	ad.type = LSM_AUDIT_DATA_DENTRY;
3133 	ad.u.dentry = dentry;
3134 	sid = cred_sid(cred);
3135 	isec = inode_security_rcu(inode, rcu);
3136 	if (IS_ERR(isec))
3137 		return PTR_ERR(isec);
3138 
3139 	return avc_has_perm_flags(&selinux_state,
3140 				  sid, isec->sid, isec->sclass, FILE__READ, &ad,
3141 				  rcu ? MAY_NOT_BLOCK : 0);
3142 }
3143 
3144 static noinline int audit_inode_permission(struct inode *inode,
3145 					   u32 perms, u32 audited, u32 denied,
3146 					   int result,
3147 					   unsigned flags)
3148 {
3149 	struct common_audit_data ad;
3150 	struct inode_security_struct *isec = inode->i_security;
3151 	int rc;
3152 
3153 	ad.type = LSM_AUDIT_DATA_INODE;
3154 	ad.u.inode = inode;
3155 
3156 	rc = slow_avc_audit(&selinux_state,
3157 			    current_sid(), isec->sid, isec->sclass, perms,
3158 			    audited, denied, result, &ad, flags);
3159 	if (rc)
3160 		return rc;
3161 	return 0;
3162 }
3163 
3164 static int selinux_inode_permission(struct inode *inode, int mask)
3165 {
3166 	const struct cred *cred = current_cred();
3167 	u32 perms;
3168 	bool from_access;
3169 	unsigned flags = mask & MAY_NOT_BLOCK;
3170 	struct inode_security_struct *isec;
3171 	u32 sid;
3172 	struct av_decision avd;
3173 	int rc, rc2;
3174 	u32 audited, denied;
3175 
3176 	from_access = mask & MAY_ACCESS;
3177 	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3178 
3179 	/* No permission to check.  Existence test. */
3180 	if (!mask)
3181 		return 0;
3182 
3183 	validate_creds(cred);
3184 
3185 	if (unlikely(IS_PRIVATE(inode)))
3186 		return 0;
3187 
3188 	perms = file_mask_to_av(inode->i_mode, mask);
3189 
3190 	sid = cred_sid(cred);
3191 	isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
3192 	if (IS_ERR(isec))
3193 		return PTR_ERR(isec);
3194 
3195 	rc = avc_has_perm_noaudit(&selinux_state,
3196 				  sid, isec->sid, isec->sclass, perms, 0, &avd);
3197 	audited = avc_audit_required(perms, &avd, rc,
3198 				     from_access ? FILE__AUDIT_ACCESS : 0,
3199 				     &denied);
3200 	if (likely(!audited))
3201 		return rc;
3202 
3203 	rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
3204 	if (rc2)
3205 		return rc2;
3206 	return rc;
3207 }
3208 
3209 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3210 {
3211 	const struct cred *cred = current_cred();
3212 	struct inode *inode = d_backing_inode(dentry);
3213 	unsigned int ia_valid = iattr->ia_valid;
3214 	__u32 av = FILE__WRITE;
3215 
3216 	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3217 	if (ia_valid & ATTR_FORCE) {
3218 		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3219 			      ATTR_FORCE);
3220 		if (!ia_valid)
3221 			return 0;
3222 	}
3223 
3224 	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3225 			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3226 		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3227 
3228 	if (selinux_policycap_openperm() &&
3229 	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3230 	    (ia_valid & ATTR_SIZE) &&
3231 	    !(ia_valid & ATTR_FILE))
3232 		av |= FILE__OPEN;
3233 
3234 	return dentry_has_perm(cred, dentry, av);
3235 }
3236 
3237 static int selinux_inode_getattr(const struct path *path)
3238 {
3239 	return path_has_perm(current_cred(), path, FILE__GETATTR);
3240 }
3241 
3242 static bool has_cap_mac_admin(bool audit)
3243 {
3244 	const struct cred *cred = current_cred();
3245 	int cap_audit = audit ? SECURITY_CAP_AUDIT : SECURITY_CAP_NOAUDIT;
3246 
3247 	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, cap_audit))
3248 		return false;
3249 	if (cred_has_capability(cred, CAP_MAC_ADMIN, cap_audit, true))
3250 		return false;
3251 	return true;
3252 }
3253 
3254 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3255 				  const void *value, size_t size, int flags)
3256 {
3257 	struct inode *inode = d_backing_inode(dentry);
3258 	struct inode_security_struct *isec;
3259 	struct superblock_security_struct *sbsec;
3260 	struct common_audit_data ad;
3261 	u32 newsid, sid = current_sid();
3262 	int rc = 0;
3263 
3264 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3265 		rc = cap_inode_setxattr(dentry, name, value, size, flags);
3266 		if (rc)
3267 			return rc;
3268 
3269 		/* Not an attribute we recognize, so just check the
3270 		   ordinary setattr permission. */
3271 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3272 	}
3273 
3274 	sbsec = inode->i_sb->s_security;
3275 	if (!(sbsec->flags & SBLABEL_MNT))
3276 		return -EOPNOTSUPP;
3277 
3278 	if (!inode_owner_or_capable(inode))
3279 		return -EPERM;
3280 
3281 	ad.type = LSM_AUDIT_DATA_DENTRY;
3282 	ad.u.dentry = dentry;
3283 
3284 	isec = backing_inode_security(dentry);
3285 	rc = avc_has_perm(&selinux_state,
3286 			  sid, isec->sid, isec->sclass,
3287 			  FILE__RELABELFROM, &ad);
3288 	if (rc)
3289 		return rc;
3290 
3291 	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3292 				     GFP_KERNEL);
3293 	if (rc == -EINVAL) {
3294 		if (!has_cap_mac_admin(true)) {
3295 			struct audit_buffer *ab;
3296 			size_t audit_size;
3297 
3298 			/* We strip a nul only if it is at the end, otherwise the
3299 			 * context contains a nul and we should audit that */
3300 			if (value) {
3301 				const char *str = value;
3302 
3303 				if (str[size - 1] == '\0')
3304 					audit_size = size - 1;
3305 				else
3306 					audit_size = size;
3307 			} else {
3308 				audit_size = 0;
3309 			}
3310 			ab = audit_log_start(audit_context(),
3311 					     GFP_ATOMIC, AUDIT_SELINUX_ERR);
3312 			audit_log_format(ab, "op=setxattr invalid_context=");
3313 			audit_log_n_untrustedstring(ab, value, audit_size);
3314 			audit_log_end(ab);
3315 
3316 			return rc;
3317 		}
3318 		rc = security_context_to_sid_force(&selinux_state, value,
3319 						   size, &newsid);
3320 	}
3321 	if (rc)
3322 		return rc;
3323 
3324 	rc = avc_has_perm(&selinux_state,
3325 			  sid, newsid, isec->sclass,
3326 			  FILE__RELABELTO, &ad);
3327 	if (rc)
3328 		return rc;
3329 
3330 	rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3331 					  sid, isec->sclass);
3332 	if (rc)
3333 		return rc;
3334 
3335 	return avc_has_perm(&selinux_state,
3336 			    newsid,
3337 			    sbsec->sid,
3338 			    SECCLASS_FILESYSTEM,
3339 			    FILESYSTEM__ASSOCIATE,
3340 			    &ad);
3341 }
3342 
3343 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3344 					const void *value, size_t size,
3345 					int flags)
3346 {
3347 	struct inode *inode = d_backing_inode(dentry);
3348 	struct inode_security_struct *isec;
3349 	u32 newsid;
3350 	int rc;
3351 
3352 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3353 		/* Not an attribute we recognize, so nothing to do. */
3354 		return;
3355 	}
3356 
3357 	rc = security_context_to_sid_force(&selinux_state, value, size,
3358 					   &newsid);
3359 	if (rc) {
3360 		printk(KERN_ERR "SELinux:  unable to map context to SID"
3361 		       "for (%s, %lu), rc=%d\n",
3362 		       inode->i_sb->s_id, inode->i_ino, -rc);
3363 		return;
3364 	}
3365 
3366 	isec = backing_inode_security(dentry);
3367 	spin_lock(&isec->lock);
3368 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3369 	isec->sid = newsid;
3370 	isec->initialized = LABEL_INITIALIZED;
3371 	spin_unlock(&isec->lock);
3372 
3373 	return;
3374 }
3375 
3376 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3377 {
3378 	const struct cred *cred = current_cred();
3379 
3380 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3381 }
3382 
3383 static int selinux_inode_listxattr(struct dentry *dentry)
3384 {
3385 	const struct cred *cred = current_cred();
3386 
3387 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3388 }
3389 
3390 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3391 {
3392 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3393 		int rc = cap_inode_removexattr(dentry, name);
3394 		if (rc)
3395 			return rc;
3396 
3397 		/* Not an attribute we recognize, so just check the
3398 		   ordinary setattr permission. */
3399 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3400 	}
3401 
3402 	/* No one is allowed to remove a SELinux security label.
3403 	   You can change the label, but all data must be labeled. */
3404 	return -EACCES;
3405 }
3406 
3407 /*
3408  * Copy the inode security context value to the user.
3409  *
3410  * Permission check is handled by selinux_inode_getxattr hook.
3411  */
3412 static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3413 {
3414 	u32 size;
3415 	int error;
3416 	char *context = NULL;
3417 	struct inode_security_struct *isec;
3418 
3419 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3420 		return -EOPNOTSUPP;
3421 
3422 	/*
3423 	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3424 	 * value even if it is not defined by current policy; otherwise,
3425 	 * use the in-core value under current policy.
3426 	 * Use the non-auditing forms of the permission checks since
3427 	 * getxattr may be called by unprivileged processes commonly
3428 	 * and lack of permission just means that we fall back to the
3429 	 * in-core context value, not a denial.
3430 	 */
3431 	isec = inode_security(inode);
3432 	if (has_cap_mac_admin(false))
3433 		error = security_sid_to_context_force(&selinux_state,
3434 						      isec->sid, &context,
3435 						      &size);
3436 	else
3437 		error = security_sid_to_context(&selinux_state, isec->sid,
3438 						&context, &size);
3439 	if (error)
3440 		return error;
3441 	error = size;
3442 	if (alloc) {
3443 		*buffer = context;
3444 		goto out_nofree;
3445 	}
3446 	kfree(context);
3447 out_nofree:
3448 	return error;
3449 }
3450 
3451 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3452 				     const void *value, size_t size, int flags)
3453 {
3454 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3455 	u32 newsid;
3456 	int rc;
3457 
3458 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3459 		return -EOPNOTSUPP;
3460 
3461 	if (!value || !size)
3462 		return -EACCES;
3463 
3464 	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3465 				     GFP_KERNEL);
3466 	if (rc)
3467 		return rc;
3468 
3469 	spin_lock(&isec->lock);
3470 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3471 	isec->sid = newsid;
3472 	isec->initialized = LABEL_INITIALIZED;
3473 	spin_unlock(&isec->lock);
3474 	return 0;
3475 }
3476 
3477 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3478 {
3479 	const int len = sizeof(XATTR_NAME_SELINUX);
3480 	if (buffer && len <= buffer_size)
3481 		memcpy(buffer, XATTR_NAME_SELINUX, len);
3482 	return len;
3483 }
3484 
3485 static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3486 {
3487 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3488 	*secid = isec->sid;
3489 }
3490 
3491 static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3492 {
3493 	u32 sid;
3494 	struct task_security_struct *tsec;
3495 	struct cred *new_creds = *new;
3496 
3497 	if (new_creds == NULL) {
3498 		new_creds = prepare_creds();
3499 		if (!new_creds)
3500 			return -ENOMEM;
3501 	}
3502 
3503 	tsec = new_creds->security;
3504 	/* Get label from overlay inode and set it in create_sid */
3505 	selinux_inode_getsecid(d_inode(src), &sid);
3506 	tsec->create_sid = sid;
3507 	*new = new_creds;
3508 	return 0;
3509 }
3510 
3511 static int selinux_inode_copy_up_xattr(const char *name)
3512 {
3513 	/* The copy_up hook above sets the initial context on an inode, but we
3514 	 * don't then want to overwrite it by blindly copying all the lower
3515 	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3516 	 */
3517 	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3518 		return 1; /* Discard */
3519 	/*
3520 	 * Any other attribute apart from SELINUX is not claimed, supported
3521 	 * by selinux.
3522 	 */
3523 	return -EOPNOTSUPP;
3524 }
3525 
3526 /* file security operations */
3527 
3528 static int selinux_revalidate_file_permission(struct file *file, int mask)
3529 {
3530 	const struct cred *cred = current_cred();
3531 	struct inode *inode = file_inode(file);
3532 
3533 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3534 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3535 		mask |= MAY_APPEND;
3536 
3537 	return file_has_perm(cred, file,
3538 			     file_mask_to_av(inode->i_mode, mask));
3539 }
3540 
3541 static int selinux_file_permission(struct file *file, int mask)
3542 {
3543 	struct inode *inode = file_inode(file);
3544 	struct file_security_struct *fsec = file->f_security;
3545 	struct inode_security_struct *isec;
3546 	u32 sid = current_sid();
3547 
3548 	if (!mask)
3549 		/* No permission to check.  Existence test. */
3550 		return 0;
3551 
3552 	isec = inode_security(inode);
3553 	if (sid == fsec->sid && fsec->isid == isec->sid &&
3554 	    fsec->pseqno == avc_policy_seqno(&selinux_state))
3555 		/* No change since file_open check. */
3556 		return 0;
3557 
3558 	return selinux_revalidate_file_permission(file, mask);
3559 }
3560 
3561 static int selinux_file_alloc_security(struct file *file)
3562 {
3563 	return file_alloc_security(file);
3564 }
3565 
3566 static void selinux_file_free_security(struct file *file)
3567 {
3568 	file_free_security(file);
3569 }
3570 
3571 /*
3572  * Check whether a task has the ioctl permission and cmd
3573  * operation to an inode.
3574  */
3575 static int ioctl_has_perm(const struct cred *cred, struct file *file,
3576 		u32 requested, u16 cmd)
3577 {
3578 	struct common_audit_data ad;
3579 	struct file_security_struct *fsec = file->f_security;
3580 	struct inode *inode = file_inode(file);
3581 	struct inode_security_struct *isec;
3582 	struct lsm_ioctlop_audit ioctl;
3583 	u32 ssid = cred_sid(cred);
3584 	int rc;
3585 	u8 driver = cmd >> 8;
3586 	u8 xperm = cmd & 0xff;
3587 
3588 	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3589 	ad.u.op = &ioctl;
3590 	ad.u.op->cmd = cmd;
3591 	ad.u.op->path = file->f_path;
3592 
3593 	if (ssid != fsec->sid) {
3594 		rc = avc_has_perm(&selinux_state,
3595 				  ssid, fsec->sid,
3596 				SECCLASS_FD,
3597 				FD__USE,
3598 				&ad);
3599 		if (rc)
3600 			goto out;
3601 	}
3602 
3603 	if (unlikely(IS_PRIVATE(inode)))
3604 		return 0;
3605 
3606 	isec = inode_security(inode);
3607 	rc = avc_has_extended_perms(&selinux_state,
3608 				    ssid, isec->sid, isec->sclass,
3609 				    requested, driver, xperm, &ad);
3610 out:
3611 	return rc;
3612 }
3613 
3614 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3615 			      unsigned long arg)
3616 {
3617 	const struct cred *cred = current_cred();
3618 	int error = 0;
3619 
3620 	switch (cmd) {
3621 	case FIONREAD:
3622 	/* fall through */
3623 	case FIBMAP:
3624 	/* fall through */
3625 	case FIGETBSZ:
3626 	/* fall through */
3627 	case FS_IOC_GETFLAGS:
3628 	/* fall through */
3629 	case FS_IOC_GETVERSION:
3630 		error = file_has_perm(cred, file, FILE__GETATTR);
3631 		break;
3632 
3633 	case FS_IOC_SETFLAGS:
3634 	/* fall through */
3635 	case FS_IOC_SETVERSION:
3636 		error = file_has_perm(cred, file, FILE__SETATTR);
3637 		break;
3638 
3639 	/* sys_ioctl() checks */
3640 	case FIONBIO:
3641 	/* fall through */
3642 	case FIOASYNC:
3643 		error = file_has_perm(cred, file, 0);
3644 		break;
3645 
3646 	case KDSKBENT:
3647 	case KDSKBSENT:
3648 		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3649 					    SECURITY_CAP_AUDIT, true);
3650 		break;
3651 
3652 	/* default case assumes that the command will go
3653 	 * to the file's ioctl() function.
3654 	 */
3655 	default:
3656 		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3657 	}
3658 	return error;
3659 }
3660 
3661 static int default_noexec;
3662 
3663 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3664 {
3665 	const struct cred *cred = current_cred();
3666 	u32 sid = cred_sid(cred);
3667 	int rc = 0;
3668 
3669 	if (default_noexec &&
3670 	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3671 				   (!shared && (prot & PROT_WRITE)))) {
3672 		/*
3673 		 * We are making executable an anonymous mapping or a
3674 		 * private file mapping that will also be writable.
3675 		 * This has an additional check.
3676 		 */
3677 		rc = avc_has_perm(&selinux_state,
3678 				  sid, sid, SECCLASS_PROCESS,
3679 				  PROCESS__EXECMEM, NULL);
3680 		if (rc)
3681 			goto error;
3682 	}
3683 
3684 	if (file) {
3685 		/* read access is always possible with a mapping */
3686 		u32 av = FILE__READ;
3687 
3688 		/* write access only matters if the mapping is shared */
3689 		if (shared && (prot & PROT_WRITE))
3690 			av |= FILE__WRITE;
3691 
3692 		if (prot & PROT_EXEC)
3693 			av |= FILE__EXECUTE;
3694 
3695 		return file_has_perm(cred, file, av);
3696 	}
3697 
3698 error:
3699 	return rc;
3700 }
3701 
3702 static int selinux_mmap_addr(unsigned long addr)
3703 {
3704 	int rc = 0;
3705 
3706 	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3707 		u32 sid = current_sid();
3708 		rc = avc_has_perm(&selinux_state,
3709 				  sid, sid, SECCLASS_MEMPROTECT,
3710 				  MEMPROTECT__MMAP_ZERO, NULL);
3711 	}
3712 
3713 	return rc;
3714 }
3715 
3716 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3717 			     unsigned long prot, unsigned long flags)
3718 {
3719 	struct common_audit_data ad;
3720 	int rc;
3721 
3722 	if (file) {
3723 		ad.type = LSM_AUDIT_DATA_FILE;
3724 		ad.u.file = file;
3725 		rc = inode_has_perm(current_cred(), file_inode(file),
3726 				    FILE__MAP, &ad);
3727 		if (rc)
3728 			return rc;
3729 	}
3730 
3731 	if (selinux_state.checkreqprot)
3732 		prot = reqprot;
3733 
3734 	return file_map_prot_check(file, prot,
3735 				   (flags & MAP_TYPE) == MAP_SHARED);
3736 }
3737 
3738 static int selinux_file_mprotect(struct vm_area_struct *vma,
3739 				 unsigned long reqprot,
3740 				 unsigned long prot)
3741 {
3742 	const struct cred *cred = current_cred();
3743 	u32 sid = cred_sid(cred);
3744 
3745 	if (selinux_state.checkreqprot)
3746 		prot = reqprot;
3747 
3748 	if (default_noexec &&
3749 	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3750 		int rc = 0;
3751 		if (vma->vm_start >= vma->vm_mm->start_brk &&
3752 		    vma->vm_end <= vma->vm_mm->brk) {
3753 			rc = avc_has_perm(&selinux_state,
3754 					  sid, sid, SECCLASS_PROCESS,
3755 					  PROCESS__EXECHEAP, NULL);
3756 		} else if (!vma->vm_file &&
3757 			   ((vma->vm_start <= vma->vm_mm->start_stack &&
3758 			     vma->vm_end >= vma->vm_mm->start_stack) ||
3759 			    vma_is_stack_for_current(vma))) {
3760 			rc = avc_has_perm(&selinux_state,
3761 					  sid, sid, SECCLASS_PROCESS,
3762 					  PROCESS__EXECSTACK, NULL);
3763 		} else if (vma->vm_file && vma->anon_vma) {
3764 			/*
3765 			 * We are making executable a file mapping that has
3766 			 * had some COW done. Since pages might have been
3767 			 * written, check ability to execute the possibly
3768 			 * modified content.  This typically should only
3769 			 * occur for text relocations.
3770 			 */
3771 			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3772 		}
3773 		if (rc)
3774 			return rc;
3775 	}
3776 
3777 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3778 }
3779 
3780 static int selinux_file_lock(struct file *file, unsigned int cmd)
3781 {
3782 	const struct cred *cred = current_cred();
3783 
3784 	return file_has_perm(cred, file, FILE__LOCK);
3785 }
3786 
3787 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3788 			      unsigned long arg)
3789 {
3790 	const struct cred *cred = current_cred();
3791 	int err = 0;
3792 
3793 	switch (cmd) {
3794 	case F_SETFL:
3795 		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3796 			err = file_has_perm(cred, file, FILE__WRITE);
3797 			break;
3798 		}
3799 		/* fall through */
3800 	case F_SETOWN:
3801 	case F_SETSIG:
3802 	case F_GETFL:
3803 	case F_GETOWN:
3804 	case F_GETSIG:
3805 	case F_GETOWNER_UIDS:
3806 		/* Just check FD__USE permission */
3807 		err = file_has_perm(cred, file, 0);
3808 		break;
3809 	case F_GETLK:
3810 	case F_SETLK:
3811 	case F_SETLKW:
3812 	case F_OFD_GETLK:
3813 	case F_OFD_SETLK:
3814 	case F_OFD_SETLKW:
3815 #if BITS_PER_LONG == 32
3816 	case F_GETLK64:
3817 	case F_SETLK64:
3818 	case F_SETLKW64:
3819 #endif
3820 		err = file_has_perm(cred, file, FILE__LOCK);
3821 		break;
3822 	}
3823 
3824 	return err;
3825 }
3826 
3827 static void selinux_file_set_fowner(struct file *file)
3828 {
3829 	struct file_security_struct *fsec;
3830 
3831 	fsec = file->f_security;
3832 	fsec->fown_sid = current_sid();
3833 }
3834 
3835 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3836 				       struct fown_struct *fown, int signum)
3837 {
3838 	struct file *file;
3839 	u32 sid = task_sid(tsk);
3840 	u32 perm;
3841 	struct file_security_struct *fsec;
3842 
3843 	/* struct fown_struct is never outside the context of a struct file */
3844 	file = container_of(fown, struct file, f_owner);
3845 
3846 	fsec = file->f_security;
3847 
3848 	if (!signum)
3849 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3850 	else
3851 		perm = signal_to_av(signum);
3852 
3853 	return avc_has_perm(&selinux_state,
3854 			    fsec->fown_sid, sid,
3855 			    SECCLASS_PROCESS, perm, NULL);
3856 }
3857 
3858 static int selinux_file_receive(struct file *file)
3859 {
3860 	const struct cred *cred = current_cred();
3861 
3862 	return file_has_perm(cred, file, file_to_av(file));
3863 }
3864 
3865 static int selinux_file_open(struct file *file, const struct cred *cred)
3866 {
3867 	struct file_security_struct *fsec;
3868 	struct inode_security_struct *isec;
3869 
3870 	fsec = file->f_security;
3871 	isec = inode_security(file_inode(file));
3872 	/*
3873 	 * Save inode label and policy sequence number
3874 	 * at open-time so that selinux_file_permission
3875 	 * can determine whether revalidation is necessary.
3876 	 * Task label is already saved in the file security
3877 	 * struct as its SID.
3878 	 */
3879 	fsec->isid = isec->sid;
3880 	fsec->pseqno = avc_policy_seqno(&selinux_state);
3881 	/*
3882 	 * Since the inode label or policy seqno may have changed
3883 	 * between the selinux_inode_permission check and the saving
3884 	 * of state above, recheck that access is still permitted.
3885 	 * Otherwise, access might never be revalidated against the
3886 	 * new inode label or new policy.
3887 	 * This check is not redundant - do not remove.
3888 	 */
3889 	return file_path_has_perm(cred, file, open_file_to_av(file));
3890 }
3891 
3892 /* task security operations */
3893 
3894 static int selinux_task_alloc(struct task_struct *task,
3895 			      unsigned long clone_flags)
3896 {
3897 	u32 sid = current_sid();
3898 
3899 	return avc_has_perm(&selinux_state,
3900 			    sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3901 }
3902 
3903 /*
3904  * allocate the SELinux part of blank credentials
3905  */
3906 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3907 {
3908 	struct task_security_struct *tsec;
3909 
3910 	tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3911 	if (!tsec)
3912 		return -ENOMEM;
3913 
3914 	cred->security = tsec;
3915 	return 0;
3916 }
3917 
3918 /*
3919  * detach and free the LSM part of a set of credentials
3920  */
3921 static void selinux_cred_free(struct cred *cred)
3922 {
3923 	struct task_security_struct *tsec = cred->security;
3924 
3925 	/*
3926 	 * cred->security == NULL if security_cred_alloc_blank() or
3927 	 * security_prepare_creds() returned an error.
3928 	 */
3929 	BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3930 	cred->security = (void *) 0x7UL;
3931 	kfree(tsec);
3932 }
3933 
3934 /*
3935  * prepare a new set of credentials for modification
3936  */
3937 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3938 				gfp_t gfp)
3939 {
3940 	const struct task_security_struct *old_tsec;
3941 	struct task_security_struct *tsec;
3942 
3943 	old_tsec = old->security;
3944 
3945 	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3946 	if (!tsec)
3947 		return -ENOMEM;
3948 
3949 	new->security = tsec;
3950 	return 0;
3951 }
3952 
3953 /*
3954  * transfer the SELinux data to a blank set of creds
3955  */
3956 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3957 {
3958 	const struct task_security_struct *old_tsec = old->security;
3959 	struct task_security_struct *tsec = new->security;
3960 
3961 	*tsec = *old_tsec;
3962 }
3963 
3964 static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3965 {
3966 	*secid = cred_sid(c);
3967 }
3968 
3969 /*
3970  * set the security data for a kernel service
3971  * - all the creation contexts are set to unlabelled
3972  */
3973 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3974 {
3975 	struct task_security_struct *tsec = new->security;
3976 	u32 sid = current_sid();
3977 	int ret;
3978 
3979 	ret = avc_has_perm(&selinux_state,
3980 			   sid, secid,
3981 			   SECCLASS_KERNEL_SERVICE,
3982 			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3983 			   NULL);
3984 	if (ret == 0) {
3985 		tsec->sid = secid;
3986 		tsec->create_sid = 0;
3987 		tsec->keycreate_sid = 0;
3988 		tsec->sockcreate_sid = 0;
3989 	}
3990 	return ret;
3991 }
3992 
3993 /*
3994  * set the file creation context in a security record to the same as the
3995  * objective context of the specified inode
3996  */
3997 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3998 {
3999 	struct inode_security_struct *isec = inode_security(inode);
4000 	struct task_security_struct *tsec = new->security;
4001 	u32 sid = current_sid();
4002 	int ret;
4003 
4004 	ret = avc_has_perm(&selinux_state,
4005 			   sid, isec->sid,
4006 			   SECCLASS_KERNEL_SERVICE,
4007 			   KERNEL_SERVICE__CREATE_FILES_AS,
4008 			   NULL);
4009 
4010 	if (ret == 0)
4011 		tsec->create_sid = isec->sid;
4012 	return ret;
4013 }
4014 
4015 static int selinux_kernel_module_request(char *kmod_name)
4016 {
4017 	struct common_audit_data ad;
4018 
4019 	ad.type = LSM_AUDIT_DATA_KMOD;
4020 	ad.u.kmod_name = kmod_name;
4021 
4022 	return avc_has_perm(&selinux_state,
4023 			    current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4024 			    SYSTEM__MODULE_REQUEST, &ad);
4025 }
4026 
4027 static int selinux_kernel_module_from_file(struct file *file)
4028 {
4029 	struct common_audit_data ad;
4030 	struct inode_security_struct *isec;
4031 	struct file_security_struct *fsec;
4032 	u32 sid = current_sid();
4033 	int rc;
4034 
4035 	/* init_module */
4036 	if (file == NULL)
4037 		return avc_has_perm(&selinux_state,
4038 				    sid, sid, SECCLASS_SYSTEM,
4039 					SYSTEM__MODULE_LOAD, NULL);
4040 
4041 	/* finit_module */
4042 
4043 	ad.type = LSM_AUDIT_DATA_FILE;
4044 	ad.u.file = file;
4045 
4046 	fsec = file->f_security;
4047 	if (sid != fsec->sid) {
4048 		rc = avc_has_perm(&selinux_state,
4049 				  sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4050 		if (rc)
4051 			return rc;
4052 	}
4053 
4054 	isec = inode_security(file_inode(file));
4055 	return avc_has_perm(&selinux_state,
4056 			    sid, isec->sid, SECCLASS_SYSTEM,
4057 				SYSTEM__MODULE_LOAD, &ad);
4058 }
4059 
4060 static int selinux_kernel_read_file(struct file *file,
4061 				    enum kernel_read_file_id id)
4062 {
4063 	int rc = 0;
4064 
4065 	switch (id) {
4066 	case READING_MODULE:
4067 		rc = selinux_kernel_module_from_file(file);
4068 		break;
4069 	default:
4070 		break;
4071 	}
4072 
4073 	return rc;
4074 }
4075 
4076 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4077 {
4078 	return avc_has_perm(&selinux_state,
4079 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4080 			    PROCESS__SETPGID, NULL);
4081 }
4082 
4083 static int selinux_task_getpgid(struct task_struct *p)
4084 {
4085 	return avc_has_perm(&selinux_state,
4086 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4087 			    PROCESS__GETPGID, NULL);
4088 }
4089 
4090 static int selinux_task_getsid(struct task_struct *p)
4091 {
4092 	return avc_has_perm(&selinux_state,
4093 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4094 			    PROCESS__GETSESSION, NULL);
4095 }
4096 
4097 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
4098 {
4099 	*secid = task_sid(p);
4100 }
4101 
4102 static int selinux_task_setnice(struct task_struct *p, int nice)
4103 {
4104 	return avc_has_perm(&selinux_state,
4105 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4106 			    PROCESS__SETSCHED, NULL);
4107 }
4108 
4109 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4110 {
4111 	return avc_has_perm(&selinux_state,
4112 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4113 			    PROCESS__SETSCHED, NULL);
4114 }
4115 
4116 static int selinux_task_getioprio(struct task_struct *p)
4117 {
4118 	return avc_has_perm(&selinux_state,
4119 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4120 			    PROCESS__GETSCHED, NULL);
4121 }
4122 
4123 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4124 				unsigned int flags)
4125 {
4126 	u32 av = 0;
4127 
4128 	if (!flags)
4129 		return 0;
4130 	if (flags & LSM_PRLIMIT_WRITE)
4131 		av |= PROCESS__SETRLIMIT;
4132 	if (flags & LSM_PRLIMIT_READ)
4133 		av |= PROCESS__GETRLIMIT;
4134 	return avc_has_perm(&selinux_state,
4135 			    cred_sid(cred), cred_sid(tcred),
4136 			    SECCLASS_PROCESS, av, NULL);
4137 }
4138 
4139 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4140 		struct rlimit *new_rlim)
4141 {
4142 	struct rlimit *old_rlim = p->signal->rlim + resource;
4143 
4144 	/* Control the ability to change the hard limit (whether
4145 	   lowering or raising it), so that the hard limit can
4146 	   later be used as a safe reset point for the soft limit
4147 	   upon context transitions.  See selinux_bprm_committing_creds. */
4148 	if (old_rlim->rlim_max != new_rlim->rlim_max)
4149 		return avc_has_perm(&selinux_state,
4150 				    current_sid(), task_sid(p),
4151 				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4152 
4153 	return 0;
4154 }
4155 
4156 static int selinux_task_setscheduler(struct task_struct *p)
4157 {
4158 	return avc_has_perm(&selinux_state,
4159 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4160 			    PROCESS__SETSCHED, NULL);
4161 }
4162 
4163 static int selinux_task_getscheduler(struct task_struct *p)
4164 {
4165 	return avc_has_perm(&selinux_state,
4166 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4167 			    PROCESS__GETSCHED, NULL);
4168 }
4169 
4170 static int selinux_task_movememory(struct task_struct *p)
4171 {
4172 	return avc_has_perm(&selinux_state,
4173 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4174 			    PROCESS__SETSCHED, NULL);
4175 }
4176 
4177 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
4178 				int sig, const struct cred *cred)
4179 {
4180 	u32 secid;
4181 	u32 perm;
4182 
4183 	if (!sig)
4184 		perm = PROCESS__SIGNULL; /* null signal; existence test */
4185 	else
4186 		perm = signal_to_av(sig);
4187 	if (!cred)
4188 		secid = current_sid();
4189 	else
4190 		secid = cred_sid(cred);
4191 	return avc_has_perm(&selinux_state,
4192 			    secid, task_sid(p), SECCLASS_PROCESS, perm, NULL);
4193 }
4194 
4195 static void selinux_task_to_inode(struct task_struct *p,
4196 				  struct inode *inode)
4197 {
4198 	struct inode_security_struct *isec = inode->i_security;
4199 	u32 sid = task_sid(p);
4200 
4201 	spin_lock(&isec->lock);
4202 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4203 	isec->sid = sid;
4204 	isec->initialized = LABEL_INITIALIZED;
4205 	spin_unlock(&isec->lock);
4206 }
4207 
4208 /* Returns error only if unable to parse addresses */
4209 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4210 			struct common_audit_data *ad, u8 *proto)
4211 {
4212 	int offset, ihlen, ret = -EINVAL;
4213 	struct iphdr _iph, *ih;
4214 
4215 	offset = skb_network_offset(skb);
4216 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4217 	if (ih == NULL)
4218 		goto out;
4219 
4220 	ihlen = ih->ihl * 4;
4221 	if (ihlen < sizeof(_iph))
4222 		goto out;
4223 
4224 	ad->u.net->v4info.saddr = ih->saddr;
4225 	ad->u.net->v4info.daddr = ih->daddr;
4226 	ret = 0;
4227 
4228 	if (proto)
4229 		*proto = ih->protocol;
4230 
4231 	switch (ih->protocol) {
4232 	case IPPROTO_TCP: {
4233 		struct tcphdr _tcph, *th;
4234 
4235 		if (ntohs(ih->frag_off) & IP_OFFSET)
4236 			break;
4237 
4238 		offset += ihlen;
4239 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4240 		if (th == NULL)
4241 			break;
4242 
4243 		ad->u.net->sport = th->source;
4244 		ad->u.net->dport = th->dest;
4245 		break;
4246 	}
4247 
4248 	case IPPROTO_UDP: {
4249 		struct udphdr _udph, *uh;
4250 
4251 		if (ntohs(ih->frag_off) & IP_OFFSET)
4252 			break;
4253 
4254 		offset += ihlen;
4255 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4256 		if (uh == NULL)
4257 			break;
4258 
4259 		ad->u.net->sport = uh->source;
4260 		ad->u.net->dport = uh->dest;
4261 		break;
4262 	}
4263 
4264 	case IPPROTO_DCCP: {
4265 		struct dccp_hdr _dccph, *dh;
4266 
4267 		if (ntohs(ih->frag_off) & IP_OFFSET)
4268 			break;
4269 
4270 		offset += ihlen;
4271 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4272 		if (dh == NULL)
4273 			break;
4274 
4275 		ad->u.net->sport = dh->dccph_sport;
4276 		ad->u.net->dport = dh->dccph_dport;
4277 		break;
4278 	}
4279 
4280 #if IS_ENABLED(CONFIG_IP_SCTP)
4281 	case IPPROTO_SCTP: {
4282 		struct sctphdr _sctph, *sh;
4283 
4284 		if (ntohs(ih->frag_off) & IP_OFFSET)
4285 			break;
4286 
4287 		offset += ihlen;
4288 		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4289 		if (sh == NULL)
4290 			break;
4291 
4292 		ad->u.net->sport = sh->source;
4293 		ad->u.net->dport = sh->dest;
4294 		break;
4295 	}
4296 #endif
4297 	default:
4298 		break;
4299 	}
4300 out:
4301 	return ret;
4302 }
4303 
4304 #if IS_ENABLED(CONFIG_IPV6)
4305 
4306 /* Returns error only if unable to parse addresses */
4307 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4308 			struct common_audit_data *ad, u8 *proto)
4309 {
4310 	u8 nexthdr;
4311 	int ret = -EINVAL, offset;
4312 	struct ipv6hdr _ipv6h, *ip6;
4313 	__be16 frag_off;
4314 
4315 	offset = skb_network_offset(skb);
4316 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4317 	if (ip6 == NULL)
4318 		goto out;
4319 
4320 	ad->u.net->v6info.saddr = ip6->saddr;
4321 	ad->u.net->v6info.daddr = ip6->daddr;
4322 	ret = 0;
4323 
4324 	nexthdr = ip6->nexthdr;
4325 	offset += sizeof(_ipv6h);
4326 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4327 	if (offset < 0)
4328 		goto out;
4329 
4330 	if (proto)
4331 		*proto = nexthdr;
4332 
4333 	switch (nexthdr) {
4334 	case IPPROTO_TCP: {
4335 		struct tcphdr _tcph, *th;
4336 
4337 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4338 		if (th == NULL)
4339 			break;
4340 
4341 		ad->u.net->sport = th->source;
4342 		ad->u.net->dport = th->dest;
4343 		break;
4344 	}
4345 
4346 	case IPPROTO_UDP: {
4347 		struct udphdr _udph, *uh;
4348 
4349 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4350 		if (uh == NULL)
4351 			break;
4352 
4353 		ad->u.net->sport = uh->source;
4354 		ad->u.net->dport = uh->dest;
4355 		break;
4356 	}
4357 
4358 	case IPPROTO_DCCP: {
4359 		struct dccp_hdr _dccph, *dh;
4360 
4361 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4362 		if (dh == NULL)
4363 			break;
4364 
4365 		ad->u.net->sport = dh->dccph_sport;
4366 		ad->u.net->dport = dh->dccph_dport;
4367 		break;
4368 	}
4369 
4370 #if IS_ENABLED(CONFIG_IP_SCTP)
4371 	case IPPROTO_SCTP: {
4372 		struct sctphdr _sctph, *sh;
4373 
4374 		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4375 		if (sh == NULL)
4376 			break;
4377 
4378 		ad->u.net->sport = sh->source;
4379 		ad->u.net->dport = sh->dest;
4380 		break;
4381 	}
4382 #endif
4383 	/* includes fragments */
4384 	default:
4385 		break;
4386 	}
4387 out:
4388 	return ret;
4389 }
4390 
4391 #endif /* IPV6 */
4392 
4393 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4394 			     char **_addrp, int src, u8 *proto)
4395 {
4396 	char *addrp;
4397 	int ret;
4398 
4399 	switch (ad->u.net->family) {
4400 	case PF_INET:
4401 		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4402 		if (ret)
4403 			goto parse_error;
4404 		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4405 				       &ad->u.net->v4info.daddr);
4406 		goto okay;
4407 
4408 #if IS_ENABLED(CONFIG_IPV6)
4409 	case PF_INET6:
4410 		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4411 		if (ret)
4412 			goto parse_error;
4413 		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4414 				       &ad->u.net->v6info.daddr);
4415 		goto okay;
4416 #endif	/* IPV6 */
4417 	default:
4418 		addrp = NULL;
4419 		goto okay;
4420 	}
4421 
4422 parse_error:
4423 	printk(KERN_WARNING
4424 	       "SELinux: failure in selinux_parse_skb(),"
4425 	       " unable to parse packet\n");
4426 	return ret;
4427 
4428 okay:
4429 	if (_addrp)
4430 		*_addrp = addrp;
4431 	return 0;
4432 }
4433 
4434 /**
4435  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4436  * @skb: the packet
4437  * @family: protocol family
4438  * @sid: the packet's peer label SID
4439  *
4440  * Description:
4441  * Check the various different forms of network peer labeling and determine
4442  * the peer label/SID for the packet; most of the magic actually occurs in
4443  * the security server function security_net_peersid_cmp().  The function
4444  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4445  * or -EACCES if @sid is invalid due to inconsistencies with the different
4446  * peer labels.
4447  *
4448  */
4449 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4450 {
4451 	int err;
4452 	u32 xfrm_sid;
4453 	u32 nlbl_sid;
4454 	u32 nlbl_type;
4455 
4456 	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4457 	if (unlikely(err))
4458 		return -EACCES;
4459 	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4460 	if (unlikely(err))
4461 		return -EACCES;
4462 
4463 	err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4464 					   nlbl_type, xfrm_sid, sid);
4465 	if (unlikely(err)) {
4466 		printk(KERN_WARNING
4467 		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4468 		       " unable to determine packet's peer label\n");
4469 		return -EACCES;
4470 	}
4471 
4472 	return 0;
4473 }
4474 
4475 /**
4476  * selinux_conn_sid - Determine the child socket label for a connection
4477  * @sk_sid: the parent socket's SID
4478  * @skb_sid: the packet's SID
4479  * @conn_sid: the resulting connection SID
4480  *
4481  * If @skb_sid is valid then the user:role:type information from @sk_sid is
4482  * combined with the MLS information from @skb_sid in order to create
4483  * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
4484  * of @sk_sid.  Returns zero on success, negative values on failure.
4485  *
4486  */
4487 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4488 {
4489 	int err = 0;
4490 
4491 	if (skb_sid != SECSID_NULL)
4492 		err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4493 					    conn_sid);
4494 	else
4495 		*conn_sid = sk_sid;
4496 
4497 	return err;
4498 }
4499 
4500 /* socket security operations */
4501 
4502 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4503 				 u16 secclass, u32 *socksid)
4504 {
4505 	if (tsec->sockcreate_sid > SECSID_NULL) {
4506 		*socksid = tsec->sockcreate_sid;
4507 		return 0;
4508 	}
4509 
4510 	return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4511 				       secclass, NULL, socksid);
4512 }
4513 
4514 static int sock_has_perm(struct sock *sk, u32 perms)
4515 {
4516 	struct sk_security_struct *sksec = sk->sk_security;
4517 	struct common_audit_data ad;
4518 	struct lsm_network_audit net = {0,};
4519 
4520 	if (sksec->sid == SECINITSID_KERNEL)
4521 		return 0;
4522 
4523 	ad.type = LSM_AUDIT_DATA_NET;
4524 	ad.u.net = &net;
4525 	ad.u.net->sk = sk;
4526 
4527 	return avc_has_perm(&selinux_state,
4528 			    current_sid(), sksec->sid, sksec->sclass, perms,
4529 			    &ad);
4530 }
4531 
4532 static int selinux_socket_create(int family, int type,
4533 				 int protocol, int kern)
4534 {
4535 	const struct task_security_struct *tsec = current_security();
4536 	u32 newsid;
4537 	u16 secclass;
4538 	int rc;
4539 
4540 	if (kern)
4541 		return 0;
4542 
4543 	secclass = socket_type_to_security_class(family, type, protocol);
4544 	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4545 	if (rc)
4546 		return rc;
4547 
4548 	return avc_has_perm(&selinux_state,
4549 			    tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4550 }
4551 
4552 static int selinux_socket_post_create(struct socket *sock, int family,
4553 				      int type, int protocol, int kern)
4554 {
4555 	const struct task_security_struct *tsec = current_security();
4556 	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4557 	struct sk_security_struct *sksec;
4558 	u16 sclass = socket_type_to_security_class(family, type, protocol);
4559 	u32 sid = SECINITSID_KERNEL;
4560 	int err = 0;
4561 
4562 	if (!kern) {
4563 		err = socket_sockcreate_sid(tsec, sclass, &sid);
4564 		if (err)
4565 			return err;
4566 	}
4567 
4568 	isec->sclass = sclass;
4569 	isec->sid = sid;
4570 	isec->initialized = LABEL_INITIALIZED;
4571 
4572 	if (sock->sk) {
4573 		sksec = sock->sk->sk_security;
4574 		sksec->sclass = sclass;
4575 		sksec->sid = sid;
4576 		/* Allows detection of the first association on this socket */
4577 		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4578 			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4579 
4580 		err = selinux_netlbl_socket_post_create(sock->sk, family);
4581 	}
4582 
4583 	return err;
4584 }
4585 
4586 static int selinux_socket_socketpair(struct socket *socka,
4587 				     struct socket *sockb)
4588 {
4589 	struct sk_security_struct *sksec_a = socka->sk->sk_security;
4590 	struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4591 
4592 	sksec_a->peer_sid = sksec_b->sid;
4593 	sksec_b->peer_sid = sksec_a->sid;
4594 
4595 	return 0;
4596 }
4597 
4598 /* Range of port numbers used to automatically bind.
4599    Need to determine whether we should perform a name_bind
4600    permission check between the socket and the port number. */
4601 
4602 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4603 {
4604 	struct sock *sk = sock->sk;
4605 	struct sk_security_struct *sksec = sk->sk_security;
4606 	u16 family;
4607 	int err;
4608 
4609 	err = sock_has_perm(sk, SOCKET__BIND);
4610 	if (err)
4611 		goto out;
4612 
4613 	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
4614 	family = sk->sk_family;
4615 	if (family == PF_INET || family == PF_INET6) {
4616 		char *addrp;
4617 		struct common_audit_data ad;
4618 		struct lsm_network_audit net = {0,};
4619 		struct sockaddr_in *addr4 = NULL;
4620 		struct sockaddr_in6 *addr6 = NULL;
4621 		u16 family_sa = address->sa_family;
4622 		unsigned short snum;
4623 		u32 sid, node_perm;
4624 
4625 		/*
4626 		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4627 		 * that validates multiple binding addresses. Because of this
4628 		 * need to check address->sa_family as it is possible to have
4629 		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4630 		 */
4631 		switch (family_sa) {
4632 		case AF_UNSPEC:
4633 		case AF_INET:
4634 			if (addrlen < sizeof(struct sockaddr_in))
4635 				return -EINVAL;
4636 			addr4 = (struct sockaddr_in *)address;
4637 			if (family_sa == AF_UNSPEC) {
4638 				/* see __inet_bind(), we only want to allow
4639 				 * AF_UNSPEC if the address is INADDR_ANY
4640 				 */
4641 				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4642 					goto err_af;
4643 				family_sa = AF_INET;
4644 			}
4645 			snum = ntohs(addr4->sin_port);
4646 			addrp = (char *)&addr4->sin_addr.s_addr;
4647 			break;
4648 		case AF_INET6:
4649 			if (addrlen < SIN6_LEN_RFC2133)
4650 				return -EINVAL;
4651 			addr6 = (struct sockaddr_in6 *)address;
4652 			snum = ntohs(addr6->sin6_port);
4653 			addrp = (char *)&addr6->sin6_addr.s6_addr;
4654 			break;
4655 		default:
4656 			goto err_af;
4657 		}
4658 
4659 		ad.type = LSM_AUDIT_DATA_NET;
4660 		ad.u.net = &net;
4661 		ad.u.net->sport = htons(snum);
4662 		ad.u.net->family = family_sa;
4663 
4664 		if (snum) {
4665 			int low, high;
4666 
4667 			inet_get_local_port_range(sock_net(sk), &low, &high);
4668 
4669 			if (snum < max(inet_prot_sock(sock_net(sk)), low) ||
4670 			    snum > high) {
4671 				err = sel_netport_sid(sk->sk_protocol,
4672 						      snum, &sid);
4673 				if (err)
4674 					goto out;
4675 				err = avc_has_perm(&selinux_state,
4676 						   sksec->sid, sid,
4677 						   sksec->sclass,
4678 						   SOCKET__NAME_BIND, &ad);
4679 				if (err)
4680 					goto out;
4681 			}
4682 		}
4683 
4684 		switch (sksec->sclass) {
4685 		case SECCLASS_TCP_SOCKET:
4686 			node_perm = TCP_SOCKET__NODE_BIND;
4687 			break;
4688 
4689 		case SECCLASS_UDP_SOCKET:
4690 			node_perm = UDP_SOCKET__NODE_BIND;
4691 			break;
4692 
4693 		case SECCLASS_DCCP_SOCKET:
4694 			node_perm = DCCP_SOCKET__NODE_BIND;
4695 			break;
4696 
4697 		case SECCLASS_SCTP_SOCKET:
4698 			node_perm = SCTP_SOCKET__NODE_BIND;
4699 			break;
4700 
4701 		default:
4702 			node_perm = RAWIP_SOCKET__NODE_BIND;
4703 			break;
4704 		}
4705 
4706 		err = sel_netnode_sid(addrp, family_sa, &sid);
4707 		if (err)
4708 			goto out;
4709 
4710 		if (family_sa == AF_INET)
4711 			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4712 		else
4713 			ad.u.net->v6info.saddr = addr6->sin6_addr;
4714 
4715 		err = avc_has_perm(&selinux_state,
4716 				   sksec->sid, sid,
4717 				   sksec->sclass, node_perm, &ad);
4718 		if (err)
4719 			goto out;
4720 	}
4721 out:
4722 	return err;
4723 err_af:
4724 	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4725 	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4726 		return -EINVAL;
4727 	return -EAFNOSUPPORT;
4728 }
4729 
4730 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4731  * and sctp_sendmsg(3) as described in Documentation/security/LSM-sctp.rst
4732  */
4733 static int selinux_socket_connect_helper(struct socket *sock,
4734 					 struct sockaddr *address, int addrlen)
4735 {
4736 	struct sock *sk = sock->sk;
4737 	struct sk_security_struct *sksec = sk->sk_security;
4738 	int err;
4739 
4740 	err = sock_has_perm(sk, SOCKET__CONNECT);
4741 	if (err)
4742 		return err;
4743 
4744 	/*
4745 	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4746 	 * for the port.
4747 	 */
4748 	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4749 	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4750 	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4751 		struct common_audit_data ad;
4752 		struct lsm_network_audit net = {0,};
4753 		struct sockaddr_in *addr4 = NULL;
4754 		struct sockaddr_in6 *addr6 = NULL;
4755 		unsigned short snum;
4756 		u32 sid, perm;
4757 
4758 		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4759 		 * that validates multiple connect addresses. Because of this
4760 		 * need to check address->sa_family as it is possible to have
4761 		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4762 		 */
4763 		switch (address->sa_family) {
4764 		case AF_INET:
4765 			addr4 = (struct sockaddr_in *)address;
4766 			if (addrlen < sizeof(struct sockaddr_in))
4767 				return -EINVAL;
4768 			snum = ntohs(addr4->sin_port);
4769 			break;
4770 		case AF_INET6:
4771 			addr6 = (struct sockaddr_in6 *)address;
4772 			if (addrlen < SIN6_LEN_RFC2133)
4773 				return -EINVAL;
4774 			snum = ntohs(addr6->sin6_port);
4775 			break;
4776 		default:
4777 			/* Note that SCTP services expect -EINVAL, whereas
4778 			 * others expect -EAFNOSUPPORT.
4779 			 */
4780 			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4781 				return -EINVAL;
4782 			else
4783 				return -EAFNOSUPPORT;
4784 		}
4785 
4786 		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4787 		if (err)
4788 			return err;
4789 
4790 		switch (sksec->sclass) {
4791 		case SECCLASS_TCP_SOCKET:
4792 			perm = TCP_SOCKET__NAME_CONNECT;
4793 			break;
4794 		case SECCLASS_DCCP_SOCKET:
4795 			perm = DCCP_SOCKET__NAME_CONNECT;
4796 			break;
4797 		case SECCLASS_SCTP_SOCKET:
4798 			perm = SCTP_SOCKET__NAME_CONNECT;
4799 			break;
4800 		}
4801 
4802 		ad.type = LSM_AUDIT_DATA_NET;
4803 		ad.u.net = &net;
4804 		ad.u.net->dport = htons(snum);
4805 		ad.u.net->family = address->sa_family;
4806 		err = avc_has_perm(&selinux_state,
4807 				   sksec->sid, sid, sksec->sclass, perm, &ad);
4808 		if (err)
4809 			return err;
4810 	}
4811 
4812 	return 0;
4813 }
4814 
4815 /* Supports connect(2), see comments in selinux_socket_connect_helper() */
4816 static int selinux_socket_connect(struct socket *sock,
4817 				  struct sockaddr *address, int addrlen)
4818 {
4819 	int err;
4820 	struct sock *sk = sock->sk;
4821 
4822 	err = selinux_socket_connect_helper(sock, address, addrlen);
4823 	if (err)
4824 		return err;
4825 
4826 	return selinux_netlbl_socket_connect(sk, address);
4827 }
4828 
4829 static int selinux_socket_listen(struct socket *sock, int backlog)
4830 {
4831 	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4832 }
4833 
4834 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4835 {
4836 	int err;
4837 	struct inode_security_struct *isec;
4838 	struct inode_security_struct *newisec;
4839 	u16 sclass;
4840 	u32 sid;
4841 
4842 	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4843 	if (err)
4844 		return err;
4845 
4846 	isec = inode_security_novalidate(SOCK_INODE(sock));
4847 	spin_lock(&isec->lock);
4848 	sclass = isec->sclass;
4849 	sid = isec->sid;
4850 	spin_unlock(&isec->lock);
4851 
4852 	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4853 	newisec->sclass = sclass;
4854 	newisec->sid = sid;
4855 	newisec->initialized = LABEL_INITIALIZED;
4856 
4857 	return 0;
4858 }
4859 
4860 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4861 				  int size)
4862 {
4863 	return sock_has_perm(sock->sk, SOCKET__WRITE);
4864 }
4865 
4866 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4867 				  int size, int flags)
4868 {
4869 	return sock_has_perm(sock->sk, SOCKET__READ);
4870 }
4871 
4872 static int selinux_socket_getsockname(struct socket *sock)
4873 {
4874 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4875 }
4876 
4877 static int selinux_socket_getpeername(struct socket *sock)
4878 {
4879 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4880 }
4881 
4882 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4883 {
4884 	int err;
4885 
4886 	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4887 	if (err)
4888 		return err;
4889 
4890 	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4891 }
4892 
4893 static int selinux_socket_getsockopt(struct socket *sock, int level,
4894 				     int optname)
4895 {
4896 	return sock_has_perm(sock->sk, SOCKET__GETOPT);
4897 }
4898 
4899 static int selinux_socket_shutdown(struct socket *sock, int how)
4900 {
4901 	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4902 }
4903 
4904 static int selinux_socket_unix_stream_connect(struct sock *sock,
4905 					      struct sock *other,
4906 					      struct sock *newsk)
4907 {
4908 	struct sk_security_struct *sksec_sock = sock->sk_security;
4909 	struct sk_security_struct *sksec_other = other->sk_security;
4910 	struct sk_security_struct *sksec_new = newsk->sk_security;
4911 	struct common_audit_data ad;
4912 	struct lsm_network_audit net = {0,};
4913 	int err;
4914 
4915 	ad.type = LSM_AUDIT_DATA_NET;
4916 	ad.u.net = &net;
4917 	ad.u.net->sk = other;
4918 
4919 	err = avc_has_perm(&selinux_state,
4920 			   sksec_sock->sid, sksec_other->sid,
4921 			   sksec_other->sclass,
4922 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4923 	if (err)
4924 		return err;
4925 
4926 	/* server child socket */
4927 	sksec_new->peer_sid = sksec_sock->sid;
4928 	err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4929 				    sksec_sock->sid, &sksec_new->sid);
4930 	if (err)
4931 		return err;
4932 
4933 	/* connecting socket */
4934 	sksec_sock->peer_sid = sksec_new->sid;
4935 
4936 	return 0;
4937 }
4938 
4939 static int selinux_socket_unix_may_send(struct socket *sock,
4940 					struct socket *other)
4941 {
4942 	struct sk_security_struct *ssec = sock->sk->sk_security;
4943 	struct sk_security_struct *osec = other->sk->sk_security;
4944 	struct common_audit_data ad;
4945 	struct lsm_network_audit net = {0,};
4946 
4947 	ad.type = LSM_AUDIT_DATA_NET;
4948 	ad.u.net = &net;
4949 	ad.u.net->sk = other->sk;
4950 
4951 	return avc_has_perm(&selinux_state,
4952 			    ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4953 			    &ad);
4954 }
4955 
4956 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4957 				    char *addrp, u16 family, u32 peer_sid,
4958 				    struct common_audit_data *ad)
4959 {
4960 	int err;
4961 	u32 if_sid;
4962 	u32 node_sid;
4963 
4964 	err = sel_netif_sid(ns, ifindex, &if_sid);
4965 	if (err)
4966 		return err;
4967 	err = avc_has_perm(&selinux_state,
4968 			   peer_sid, if_sid,
4969 			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4970 	if (err)
4971 		return err;
4972 
4973 	err = sel_netnode_sid(addrp, family, &node_sid);
4974 	if (err)
4975 		return err;
4976 	return avc_has_perm(&selinux_state,
4977 			    peer_sid, node_sid,
4978 			    SECCLASS_NODE, NODE__RECVFROM, ad);
4979 }
4980 
4981 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4982 				       u16 family)
4983 {
4984 	int err = 0;
4985 	struct sk_security_struct *sksec = sk->sk_security;
4986 	u32 sk_sid = sksec->sid;
4987 	struct common_audit_data ad;
4988 	struct lsm_network_audit net = {0,};
4989 	char *addrp;
4990 
4991 	ad.type = LSM_AUDIT_DATA_NET;
4992 	ad.u.net = &net;
4993 	ad.u.net->netif = skb->skb_iif;
4994 	ad.u.net->family = family;
4995 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4996 	if (err)
4997 		return err;
4998 
4999 	if (selinux_secmark_enabled()) {
5000 		err = avc_has_perm(&selinux_state,
5001 				   sk_sid, skb->secmark, SECCLASS_PACKET,
5002 				   PACKET__RECV, &ad);
5003 		if (err)
5004 			return err;
5005 	}
5006 
5007 	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5008 	if (err)
5009 		return err;
5010 	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5011 
5012 	return err;
5013 }
5014 
5015 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5016 {
5017 	int err;
5018 	struct sk_security_struct *sksec = sk->sk_security;
5019 	u16 family = sk->sk_family;
5020 	u32 sk_sid = sksec->sid;
5021 	struct common_audit_data ad;
5022 	struct lsm_network_audit net = {0,};
5023 	char *addrp;
5024 	u8 secmark_active;
5025 	u8 peerlbl_active;
5026 
5027 	if (family != PF_INET && family != PF_INET6)
5028 		return 0;
5029 
5030 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
5031 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5032 		family = PF_INET;
5033 
5034 	/* If any sort of compatibility mode is enabled then handoff processing
5035 	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5036 	 * special handling.  We do this in an attempt to keep this function
5037 	 * as fast and as clean as possible. */
5038 	if (!selinux_policycap_netpeer())
5039 		return selinux_sock_rcv_skb_compat(sk, skb, family);
5040 
5041 	secmark_active = selinux_secmark_enabled();
5042 	peerlbl_active = selinux_peerlbl_enabled();
5043 	if (!secmark_active && !peerlbl_active)
5044 		return 0;
5045 
5046 	ad.type = LSM_AUDIT_DATA_NET;
5047 	ad.u.net = &net;
5048 	ad.u.net->netif = skb->skb_iif;
5049 	ad.u.net->family = family;
5050 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5051 	if (err)
5052 		return err;
5053 
5054 	if (peerlbl_active) {
5055 		u32 peer_sid;
5056 
5057 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5058 		if (err)
5059 			return err;
5060 		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5061 					       addrp, family, peer_sid, &ad);
5062 		if (err) {
5063 			selinux_netlbl_err(skb, family, err, 0);
5064 			return err;
5065 		}
5066 		err = avc_has_perm(&selinux_state,
5067 				   sk_sid, peer_sid, SECCLASS_PEER,
5068 				   PEER__RECV, &ad);
5069 		if (err) {
5070 			selinux_netlbl_err(skb, family, err, 0);
5071 			return err;
5072 		}
5073 	}
5074 
5075 	if (secmark_active) {
5076 		err = avc_has_perm(&selinux_state,
5077 				   sk_sid, skb->secmark, SECCLASS_PACKET,
5078 				   PACKET__RECV, &ad);
5079 		if (err)
5080 			return err;
5081 	}
5082 
5083 	return err;
5084 }
5085 
5086 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5087 					    int __user *optlen, unsigned len)
5088 {
5089 	int err = 0;
5090 	char *scontext;
5091 	u32 scontext_len;
5092 	struct sk_security_struct *sksec = sock->sk->sk_security;
5093 	u32 peer_sid = SECSID_NULL;
5094 
5095 	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5096 	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5097 	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5098 		peer_sid = sksec->peer_sid;
5099 	if (peer_sid == SECSID_NULL)
5100 		return -ENOPROTOOPT;
5101 
5102 	err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5103 				      &scontext_len);
5104 	if (err)
5105 		return err;
5106 
5107 	if (scontext_len > len) {
5108 		err = -ERANGE;
5109 		goto out_len;
5110 	}
5111 
5112 	if (copy_to_user(optval, scontext, scontext_len))
5113 		err = -EFAULT;
5114 
5115 out_len:
5116 	if (put_user(scontext_len, optlen))
5117 		err = -EFAULT;
5118 	kfree(scontext);
5119 	return err;
5120 }
5121 
5122 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5123 {
5124 	u32 peer_secid = SECSID_NULL;
5125 	u16 family;
5126 	struct inode_security_struct *isec;
5127 
5128 	if (skb && skb->protocol == htons(ETH_P_IP))
5129 		family = PF_INET;
5130 	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5131 		family = PF_INET6;
5132 	else if (sock)
5133 		family = sock->sk->sk_family;
5134 	else
5135 		goto out;
5136 
5137 	if (sock && family == PF_UNIX) {
5138 		isec = inode_security_novalidate(SOCK_INODE(sock));
5139 		peer_secid = isec->sid;
5140 	} else if (skb)
5141 		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5142 
5143 out:
5144 	*secid = peer_secid;
5145 	if (peer_secid == SECSID_NULL)
5146 		return -EINVAL;
5147 	return 0;
5148 }
5149 
5150 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5151 {
5152 	struct sk_security_struct *sksec;
5153 
5154 	sksec = kzalloc(sizeof(*sksec), priority);
5155 	if (!sksec)
5156 		return -ENOMEM;
5157 
5158 	sksec->peer_sid = SECINITSID_UNLABELED;
5159 	sksec->sid = SECINITSID_UNLABELED;
5160 	sksec->sclass = SECCLASS_SOCKET;
5161 	selinux_netlbl_sk_security_reset(sksec);
5162 	sk->sk_security = sksec;
5163 
5164 	return 0;
5165 }
5166 
5167 static void selinux_sk_free_security(struct sock *sk)
5168 {
5169 	struct sk_security_struct *sksec = sk->sk_security;
5170 
5171 	sk->sk_security = NULL;
5172 	selinux_netlbl_sk_security_free(sksec);
5173 	kfree(sksec);
5174 }
5175 
5176 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5177 {
5178 	struct sk_security_struct *sksec = sk->sk_security;
5179 	struct sk_security_struct *newsksec = newsk->sk_security;
5180 
5181 	newsksec->sid = sksec->sid;
5182 	newsksec->peer_sid = sksec->peer_sid;
5183 	newsksec->sclass = sksec->sclass;
5184 
5185 	selinux_netlbl_sk_security_reset(newsksec);
5186 }
5187 
5188 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5189 {
5190 	if (!sk)
5191 		*secid = SECINITSID_ANY_SOCKET;
5192 	else {
5193 		struct sk_security_struct *sksec = sk->sk_security;
5194 
5195 		*secid = sksec->sid;
5196 	}
5197 }
5198 
5199 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5200 {
5201 	struct inode_security_struct *isec =
5202 		inode_security_novalidate(SOCK_INODE(parent));
5203 	struct sk_security_struct *sksec = sk->sk_security;
5204 
5205 	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5206 	    sk->sk_family == PF_UNIX)
5207 		isec->sid = sksec->sid;
5208 	sksec->sclass = isec->sclass;
5209 }
5210 
5211 /* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5212  * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5213  * already present).
5214  */
5215 static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5216 				      struct sk_buff *skb)
5217 {
5218 	struct sk_security_struct *sksec = ep->base.sk->sk_security;
5219 	struct common_audit_data ad;
5220 	struct lsm_network_audit net = {0,};
5221 	u8 peerlbl_active;
5222 	u32 peer_sid = SECINITSID_UNLABELED;
5223 	u32 conn_sid;
5224 	int err = 0;
5225 
5226 	if (!selinux_policycap_extsockclass())
5227 		return 0;
5228 
5229 	peerlbl_active = selinux_peerlbl_enabled();
5230 
5231 	if (peerlbl_active) {
5232 		/* This will return peer_sid = SECSID_NULL if there are
5233 		 * no peer labels, see security_net_peersid_resolve().
5234 		 */
5235 		err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5236 					      &peer_sid);
5237 		if (err)
5238 			return err;
5239 
5240 		if (peer_sid == SECSID_NULL)
5241 			peer_sid = SECINITSID_UNLABELED;
5242 	}
5243 
5244 	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5245 		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5246 
5247 		/* Here as first association on socket. As the peer SID
5248 		 * was allowed by peer recv (and the netif/node checks),
5249 		 * then it is approved by policy and used as the primary
5250 		 * peer SID for getpeercon(3).
5251 		 */
5252 		sksec->peer_sid = peer_sid;
5253 	} else if  (sksec->peer_sid != peer_sid) {
5254 		/* Other association peer SIDs are checked to enforce
5255 		 * consistency among the peer SIDs.
5256 		 */
5257 		ad.type = LSM_AUDIT_DATA_NET;
5258 		ad.u.net = &net;
5259 		ad.u.net->sk = ep->base.sk;
5260 		err = avc_has_perm(&selinux_state,
5261 				   sksec->peer_sid, peer_sid, sksec->sclass,
5262 				   SCTP_SOCKET__ASSOCIATION, &ad);
5263 		if (err)
5264 			return err;
5265 	}
5266 
5267 	/* Compute the MLS component for the connection and store
5268 	 * the information in ep. This will be used by SCTP TCP type
5269 	 * sockets and peeled off connections as they cause a new
5270 	 * socket to be generated. selinux_sctp_sk_clone() will then
5271 	 * plug this into the new socket.
5272 	 */
5273 	err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5274 	if (err)
5275 		return err;
5276 
5277 	ep->secid = conn_sid;
5278 	ep->peer_secid = peer_sid;
5279 
5280 	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5281 	return selinux_netlbl_sctp_assoc_request(ep, skb);
5282 }
5283 
5284 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5285  * based on their @optname.
5286  */
5287 static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5288 				     struct sockaddr *address,
5289 				     int addrlen)
5290 {
5291 	int len, err = 0, walk_size = 0;
5292 	void *addr_buf;
5293 	struct sockaddr *addr;
5294 	struct socket *sock;
5295 
5296 	if (!selinux_policycap_extsockclass())
5297 		return 0;
5298 
5299 	/* Process one or more addresses that may be IPv4 or IPv6 */
5300 	sock = sk->sk_socket;
5301 	addr_buf = address;
5302 
5303 	while (walk_size < addrlen) {
5304 		addr = addr_buf;
5305 		switch (addr->sa_family) {
5306 		case AF_UNSPEC:
5307 		case AF_INET:
5308 			len = sizeof(struct sockaddr_in);
5309 			break;
5310 		case AF_INET6:
5311 			len = sizeof(struct sockaddr_in6);
5312 			break;
5313 		default:
5314 			return -EINVAL;
5315 		}
5316 
5317 		err = -EINVAL;
5318 		switch (optname) {
5319 		/* Bind checks */
5320 		case SCTP_PRIMARY_ADDR:
5321 		case SCTP_SET_PEER_PRIMARY_ADDR:
5322 		case SCTP_SOCKOPT_BINDX_ADD:
5323 			err = selinux_socket_bind(sock, addr, len);
5324 			break;
5325 		/* Connect checks */
5326 		case SCTP_SOCKOPT_CONNECTX:
5327 		case SCTP_PARAM_SET_PRIMARY:
5328 		case SCTP_PARAM_ADD_IP:
5329 		case SCTP_SENDMSG_CONNECT:
5330 			err = selinux_socket_connect_helper(sock, addr, len);
5331 			if (err)
5332 				return err;
5333 
5334 			/* As selinux_sctp_bind_connect() is called by the
5335 			 * SCTP protocol layer, the socket is already locked,
5336 			 * therefore selinux_netlbl_socket_connect_locked() is
5337 			 * is called here. The situations handled are:
5338 			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5339 			 * whenever a new IP address is added or when a new
5340 			 * primary address is selected.
5341 			 * Note that an SCTP connect(2) call happens before
5342 			 * the SCTP protocol layer and is handled via
5343 			 * selinux_socket_connect().
5344 			 */
5345 			err = selinux_netlbl_socket_connect_locked(sk, addr);
5346 			break;
5347 		}
5348 
5349 		if (err)
5350 			return err;
5351 
5352 		addr_buf += len;
5353 		walk_size += len;
5354 	}
5355 
5356 	return 0;
5357 }
5358 
5359 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5360 static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5361 				  struct sock *newsk)
5362 {
5363 	struct sk_security_struct *sksec = sk->sk_security;
5364 	struct sk_security_struct *newsksec = newsk->sk_security;
5365 
5366 	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5367 	 * the non-sctp clone version.
5368 	 */
5369 	if (!selinux_policycap_extsockclass())
5370 		return selinux_sk_clone_security(sk, newsk);
5371 
5372 	newsksec->sid = ep->secid;
5373 	newsksec->peer_sid = ep->peer_secid;
5374 	newsksec->sclass = sksec->sclass;
5375 	selinux_netlbl_sctp_sk_clone(sk, newsk);
5376 }
5377 
5378 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
5379 				     struct request_sock *req)
5380 {
5381 	struct sk_security_struct *sksec = sk->sk_security;
5382 	int err;
5383 	u16 family = req->rsk_ops->family;
5384 	u32 connsid;
5385 	u32 peersid;
5386 
5387 	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5388 	if (err)
5389 		return err;
5390 	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5391 	if (err)
5392 		return err;
5393 	req->secid = connsid;
5394 	req->peer_secid = peersid;
5395 
5396 	return selinux_netlbl_inet_conn_request(req, family);
5397 }
5398 
5399 static void selinux_inet_csk_clone(struct sock *newsk,
5400 				   const struct request_sock *req)
5401 {
5402 	struct sk_security_struct *newsksec = newsk->sk_security;
5403 
5404 	newsksec->sid = req->secid;
5405 	newsksec->peer_sid = req->peer_secid;
5406 	/* NOTE: Ideally, we should also get the isec->sid for the
5407 	   new socket in sync, but we don't have the isec available yet.
5408 	   So we will wait until sock_graft to do it, by which
5409 	   time it will have been created and available. */
5410 
5411 	/* We don't need to take any sort of lock here as we are the only
5412 	 * thread with access to newsksec */
5413 	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5414 }
5415 
5416 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5417 {
5418 	u16 family = sk->sk_family;
5419 	struct sk_security_struct *sksec = sk->sk_security;
5420 
5421 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5422 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5423 		family = PF_INET;
5424 
5425 	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5426 }
5427 
5428 static int selinux_secmark_relabel_packet(u32 sid)
5429 {
5430 	const struct task_security_struct *__tsec;
5431 	u32 tsid;
5432 
5433 	__tsec = current_security();
5434 	tsid = __tsec->sid;
5435 
5436 	return avc_has_perm(&selinux_state,
5437 			    tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5438 			    NULL);
5439 }
5440 
5441 static void selinux_secmark_refcount_inc(void)
5442 {
5443 	atomic_inc(&selinux_secmark_refcount);
5444 }
5445 
5446 static void selinux_secmark_refcount_dec(void)
5447 {
5448 	atomic_dec(&selinux_secmark_refcount);
5449 }
5450 
5451 static void selinux_req_classify_flow(const struct request_sock *req,
5452 				      struct flowi *fl)
5453 {
5454 	fl->flowi_secid = req->secid;
5455 }
5456 
5457 static int selinux_tun_dev_alloc_security(void **security)
5458 {
5459 	struct tun_security_struct *tunsec;
5460 
5461 	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5462 	if (!tunsec)
5463 		return -ENOMEM;
5464 	tunsec->sid = current_sid();
5465 
5466 	*security = tunsec;
5467 	return 0;
5468 }
5469 
5470 static void selinux_tun_dev_free_security(void *security)
5471 {
5472 	kfree(security);
5473 }
5474 
5475 static int selinux_tun_dev_create(void)
5476 {
5477 	u32 sid = current_sid();
5478 
5479 	/* we aren't taking into account the "sockcreate" SID since the socket
5480 	 * that is being created here is not a socket in the traditional sense,
5481 	 * instead it is a private sock, accessible only to the kernel, and
5482 	 * representing a wide range of network traffic spanning multiple
5483 	 * connections unlike traditional sockets - check the TUN driver to
5484 	 * get a better understanding of why this socket is special */
5485 
5486 	return avc_has_perm(&selinux_state,
5487 			    sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5488 			    NULL);
5489 }
5490 
5491 static int selinux_tun_dev_attach_queue(void *security)
5492 {
5493 	struct tun_security_struct *tunsec = security;
5494 
5495 	return avc_has_perm(&selinux_state,
5496 			    current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5497 			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5498 }
5499 
5500 static int selinux_tun_dev_attach(struct sock *sk, void *security)
5501 {
5502 	struct tun_security_struct *tunsec = security;
5503 	struct sk_security_struct *sksec = sk->sk_security;
5504 
5505 	/* we don't currently perform any NetLabel based labeling here and it
5506 	 * isn't clear that we would want to do so anyway; while we could apply
5507 	 * labeling without the support of the TUN user the resulting labeled
5508 	 * traffic from the other end of the connection would almost certainly
5509 	 * cause confusion to the TUN user that had no idea network labeling
5510 	 * protocols were being used */
5511 
5512 	sksec->sid = tunsec->sid;
5513 	sksec->sclass = SECCLASS_TUN_SOCKET;
5514 
5515 	return 0;
5516 }
5517 
5518 static int selinux_tun_dev_open(void *security)
5519 {
5520 	struct tun_security_struct *tunsec = security;
5521 	u32 sid = current_sid();
5522 	int err;
5523 
5524 	err = avc_has_perm(&selinux_state,
5525 			   sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5526 			   TUN_SOCKET__RELABELFROM, NULL);
5527 	if (err)
5528 		return err;
5529 	err = avc_has_perm(&selinux_state,
5530 			   sid, sid, SECCLASS_TUN_SOCKET,
5531 			   TUN_SOCKET__RELABELTO, NULL);
5532 	if (err)
5533 		return err;
5534 	tunsec->sid = sid;
5535 
5536 	return 0;
5537 }
5538 
5539 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
5540 {
5541 	int err = 0;
5542 	u32 perm;
5543 	struct nlmsghdr *nlh;
5544 	struct sk_security_struct *sksec = sk->sk_security;
5545 
5546 	if (skb->len < NLMSG_HDRLEN) {
5547 		err = -EINVAL;
5548 		goto out;
5549 	}
5550 	nlh = nlmsg_hdr(skb);
5551 
5552 	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
5553 	if (err) {
5554 		if (err == -EINVAL) {
5555 			pr_warn_ratelimited("SELinux: unrecognized netlink"
5556 			       " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5557 			       " pig=%d comm=%s\n",
5558 			       sk->sk_protocol, nlh->nlmsg_type,
5559 			       secclass_map[sksec->sclass - 1].name,
5560 			       task_pid_nr(current), current->comm);
5561 			if (!enforcing_enabled(&selinux_state) ||
5562 			    security_get_allow_unknown(&selinux_state))
5563 				err = 0;
5564 		}
5565 
5566 		/* Ignore */
5567 		if (err == -ENOENT)
5568 			err = 0;
5569 		goto out;
5570 	}
5571 
5572 	err = sock_has_perm(sk, perm);
5573 out:
5574 	return err;
5575 }
5576 
5577 #ifdef CONFIG_NETFILTER
5578 
5579 static unsigned int selinux_ip_forward(struct sk_buff *skb,
5580 				       const struct net_device *indev,
5581 				       u16 family)
5582 {
5583 	int err;
5584 	char *addrp;
5585 	u32 peer_sid;
5586 	struct common_audit_data ad;
5587 	struct lsm_network_audit net = {0,};
5588 	u8 secmark_active;
5589 	u8 netlbl_active;
5590 	u8 peerlbl_active;
5591 
5592 	if (!selinux_policycap_netpeer())
5593 		return NF_ACCEPT;
5594 
5595 	secmark_active = selinux_secmark_enabled();
5596 	netlbl_active = netlbl_enabled();
5597 	peerlbl_active = selinux_peerlbl_enabled();
5598 	if (!secmark_active && !peerlbl_active)
5599 		return NF_ACCEPT;
5600 
5601 	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5602 		return NF_DROP;
5603 
5604 	ad.type = LSM_AUDIT_DATA_NET;
5605 	ad.u.net = &net;
5606 	ad.u.net->netif = indev->ifindex;
5607 	ad.u.net->family = family;
5608 	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5609 		return NF_DROP;
5610 
5611 	if (peerlbl_active) {
5612 		err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5613 					       addrp, family, peer_sid, &ad);
5614 		if (err) {
5615 			selinux_netlbl_err(skb, family, err, 1);
5616 			return NF_DROP;
5617 		}
5618 	}
5619 
5620 	if (secmark_active)
5621 		if (avc_has_perm(&selinux_state,
5622 				 peer_sid, skb->secmark,
5623 				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5624 			return NF_DROP;
5625 
5626 	if (netlbl_active)
5627 		/* we do this in the FORWARD path and not the POST_ROUTING
5628 		 * path because we want to make sure we apply the necessary
5629 		 * labeling before IPsec is applied so we can leverage AH
5630 		 * protection */
5631 		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5632 			return NF_DROP;
5633 
5634 	return NF_ACCEPT;
5635 }
5636 
5637 static unsigned int selinux_ipv4_forward(void *priv,
5638 					 struct sk_buff *skb,
5639 					 const struct nf_hook_state *state)
5640 {
5641 	return selinux_ip_forward(skb, state->in, PF_INET);
5642 }
5643 
5644 #if IS_ENABLED(CONFIG_IPV6)
5645 static unsigned int selinux_ipv6_forward(void *priv,
5646 					 struct sk_buff *skb,
5647 					 const struct nf_hook_state *state)
5648 {
5649 	return selinux_ip_forward(skb, state->in, PF_INET6);
5650 }
5651 #endif	/* IPV6 */
5652 
5653 static unsigned int selinux_ip_output(struct sk_buff *skb,
5654 				      u16 family)
5655 {
5656 	struct sock *sk;
5657 	u32 sid;
5658 
5659 	if (!netlbl_enabled())
5660 		return NF_ACCEPT;
5661 
5662 	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5663 	 * because we want to make sure we apply the necessary labeling
5664 	 * before IPsec is applied so we can leverage AH protection */
5665 	sk = skb->sk;
5666 	if (sk) {
5667 		struct sk_security_struct *sksec;
5668 
5669 		if (sk_listener(sk))
5670 			/* if the socket is the listening state then this
5671 			 * packet is a SYN-ACK packet which means it needs to
5672 			 * be labeled based on the connection/request_sock and
5673 			 * not the parent socket.  unfortunately, we can't
5674 			 * lookup the request_sock yet as it isn't queued on
5675 			 * the parent socket until after the SYN-ACK is sent.
5676 			 * the "solution" is to simply pass the packet as-is
5677 			 * as any IP option based labeling should be copied
5678 			 * from the initial connection request (in the IP
5679 			 * layer).  it is far from ideal, but until we get a
5680 			 * security label in the packet itself this is the
5681 			 * best we can do. */
5682 			return NF_ACCEPT;
5683 
5684 		/* standard practice, label using the parent socket */
5685 		sksec = sk->sk_security;
5686 		sid = sksec->sid;
5687 	} else
5688 		sid = SECINITSID_KERNEL;
5689 	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5690 		return NF_DROP;
5691 
5692 	return NF_ACCEPT;
5693 }
5694 
5695 static unsigned int selinux_ipv4_output(void *priv,
5696 					struct sk_buff *skb,
5697 					const struct nf_hook_state *state)
5698 {
5699 	return selinux_ip_output(skb, PF_INET);
5700 }
5701 
5702 #if IS_ENABLED(CONFIG_IPV6)
5703 static unsigned int selinux_ipv6_output(void *priv,
5704 					struct sk_buff *skb,
5705 					const struct nf_hook_state *state)
5706 {
5707 	return selinux_ip_output(skb, PF_INET6);
5708 }
5709 #endif	/* IPV6 */
5710 
5711 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5712 						int ifindex,
5713 						u16 family)
5714 {
5715 	struct sock *sk = skb_to_full_sk(skb);
5716 	struct sk_security_struct *sksec;
5717 	struct common_audit_data ad;
5718 	struct lsm_network_audit net = {0,};
5719 	char *addrp;
5720 	u8 proto;
5721 
5722 	if (sk == NULL)
5723 		return NF_ACCEPT;
5724 	sksec = sk->sk_security;
5725 
5726 	ad.type = LSM_AUDIT_DATA_NET;
5727 	ad.u.net = &net;
5728 	ad.u.net->netif = ifindex;
5729 	ad.u.net->family = family;
5730 	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5731 		return NF_DROP;
5732 
5733 	if (selinux_secmark_enabled())
5734 		if (avc_has_perm(&selinux_state,
5735 				 sksec->sid, skb->secmark,
5736 				 SECCLASS_PACKET, PACKET__SEND, &ad))
5737 			return NF_DROP_ERR(-ECONNREFUSED);
5738 
5739 	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5740 		return NF_DROP_ERR(-ECONNREFUSED);
5741 
5742 	return NF_ACCEPT;
5743 }
5744 
5745 static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5746 					 const struct net_device *outdev,
5747 					 u16 family)
5748 {
5749 	u32 secmark_perm;
5750 	u32 peer_sid;
5751 	int ifindex = outdev->ifindex;
5752 	struct sock *sk;
5753 	struct common_audit_data ad;
5754 	struct lsm_network_audit net = {0,};
5755 	char *addrp;
5756 	u8 secmark_active;
5757 	u8 peerlbl_active;
5758 
5759 	/* If any sort of compatibility mode is enabled then handoff processing
5760 	 * to the selinux_ip_postroute_compat() function to deal with the
5761 	 * special handling.  We do this in an attempt to keep this function
5762 	 * as fast and as clean as possible. */
5763 	if (!selinux_policycap_netpeer())
5764 		return selinux_ip_postroute_compat(skb, ifindex, family);
5765 
5766 	secmark_active = selinux_secmark_enabled();
5767 	peerlbl_active = selinux_peerlbl_enabled();
5768 	if (!secmark_active && !peerlbl_active)
5769 		return NF_ACCEPT;
5770 
5771 	sk = skb_to_full_sk(skb);
5772 
5773 #ifdef CONFIG_XFRM
5774 	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5775 	 * packet transformation so allow the packet to pass without any checks
5776 	 * since we'll have another chance to perform access control checks
5777 	 * when the packet is on it's final way out.
5778 	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5779 	 *       is NULL, in this case go ahead and apply access control.
5780 	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5781 	 *       TCP listening state we cannot wait until the XFRM processing
5782 	 *       is done as we will miss out on the SA label if we do;
5783 	 *       unfortunately, this means more work, but it is only once per
5784 	 *       connection. */
5785 	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5786 	    !(sk && sk_listener(sk)))
5787 		return NF_ACCEPT;
5788 #endif
5789 
5790 	if (sk == NULL) {
5791 		/* Without an associated socket the packet is either coming
5792 		 * from the kernel or it is being forwarded; check the packet
5793 		 * to determine which and if the packet is being forwarded
5794 		 * query the packet directly to determine the security label. */
5795 		if (skb->skb_iif) {
5796 			secmark_perm = PACKET__FORWARD_OUT;
5797 			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5798 				return NF_DROP;
5799 		} else {
5800 			secmark_perm = PACKET__SEND;
5801 			peer_sid = SECINITSID_KERNEL;
5802 		}
5803 	} else if (sk_listener(sk)) {
5804 		/* Locally generated packet but the associated socket is in the
5805 		 * listening state which means this is a SYN-ACK packet.  In
5806 		 * this particular case the correct security label is assigned
5807 		 * to the connection/request_sock but unfortunately we can't
5808 		 * query the request_sock as it isn't queued on the parent
5809 		 * socket until after the SYN-ACK packet is sent; the only
5810 		 * viable choice is to regenerate the label like we do in
5811 		 * selinux_inet_conn_request().  See also selinux_ip_output()
5812 		 * for similar problems. */
5813 		u32 skb_sid;
5814 		struct sk_security_struct *sksec;
5815 
5816 		sksec = sk->sk_security;
5817 		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5818 			return NF_DROP;
5819 		/* At this point, if the returned skb peerlbl is SECSID_NULL
5820 		 * and the packet has been through at least one XFRM
5821 		 * transformation then we must be dealing with the "final"
5822 		 * form of labeled IPsec packet; since we've already applied
5823 		 * all of our access controls on this packet we can safely
5824 		 * pass the packet. */
5825 		if (skb_sid == SECSID_NULL) {
5826 			switch (family) {
5827 			case PF_INET:
5828 				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5829 					return NF_ACCEPT;
5830 				break;
5831 			case PF_INET6:
5832 				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5833 					return NF_ACCEPT;
5834 				break;
5835 			default:
5836 				return NF_DROP_ERR(-ECONNREFUSED);
5837 			}
5838 		}
5839 		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5840 			return NF_DROP;
5841 		secmark_perm = PACKET__SEND;
5842 	} else {
5843 		/* Locally generated packet, fetch the security label from the
5844 		 * associated socket. */
5845 		struct sk_security_struct *sksec = sk->sk_security;
5846 		peer_sid = sksec->sid;
5847 		secmark_perm = PACKET__SEND;
5848 	}
5849 
5850 	ad.type = LSM_AUDIT_DATA_NET;
5851 	ad.u.net = &net;
5852 	ad.u.net->netif = ifindex;
5853 	ad.u.net->family = family;
5854 	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5855 		return NF_DROP;
5856 
5857 	if (secmark_active)
5858 		if (avc_has_perm(&selinux_state,
5859 				 peer_sid, skb->secmark,
5860 				 SECCLASS_PACKET, secmark_perm, &ad))
5861 			return NF_DROP_ERR(-ECONNREFUSED);
5862 
5863 	if (peerlbl_active) {
5864 		u32 if_sid;
5865 		u32 node_sid;
5866 
5867 		if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5868 			return NF_DROP;
5869 		if (avc_has_perm(&selinux_state,
5870 				 peer_sid, if_sid,
5871 				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5872 			return NF_DROP_ERR(-ECONNREFUSED);
5873 
5874 		if (sel_netnode_sid(addrp, family, &node_sid))
5875 			return NF_DROP;
5876 		if (avc_has_perm(&selinux_state,
5877 				 peer_sid, node_sid,
5878 				 SECCLASS_NODE, NODE__SENDTO, &ad))
5879 			return NF_DROP_ERR(-ECONNREFUSED);
5880 	}
5881 
5882 	return NF_ACCEPT;
5883 }
5884 
5885 static unsigned int selinux_ipv4_postroute(void *priv,
5886 					   struct sk_buff *skb,
5887 					   const struct nf_hook_state *state)
5888 {
5889 	return selinux_ip_postroute(skb, state->out, PF_INET);
5890 }
5891 
5892 #if IS_ENABLED(CONFIG_IPV6)
5893 static unsigned int selinux_ipv6_postroute(void *priv,
5894 					   struct sk_buff *skb,
5895 					   const struct nf_hook_state *state)
5896 {
5897 	return selinux_ip_postroute(skb, state->out, PF_INET6);
5898 }
5899 #endif	/* IPV6 */
5900 
5901 #endif	/* CONFIG_NETFILTER */
5902 
5903 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5904 {
5905 	return selinux_nlmsg_perm(sk, skb);
5906 }
5907 
5908 static int ipc_alloc_security(struct kern_ipc_perm *perm,
5909 			      u16 sclass)
5910 {
5911 	struct ipc_security_struct *isec;
5912 
5913 	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5914 	if (!isec)
5915 		return -ENOMEM;
5916 
5917 	isec->sclass = sclass;
5918 	isec->sid = current_sid();
5919 	perm->security = isec;
5920 
5921 	return 0;
5922 }
5923 
5924 static void ipc_free_security(struct kern_ipc_perm *perm)
5925 {
5926 	struct ipc_security_struct *isec = perm->security;
5927 	perm->security = NULL;
5928 	kfree(isec);
5929 }
5930 
5931 static int msg_msg_alloc_security(struct msg_msg *msg)
5932 {
5933 	struct msg_security_struct *msec;
5934 
5935 	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5936 	if (!msec)
5937 		return -ENOMEM;
5938 
5939 	msec->sid = SECINITSID_UNLABELED;
5940 	msg->security = msec;
5941 
5942 	return 0;
5943 }
5944 
5945 static void msg_msg_free_security(struct msg_msg *msg)
5946 {
5947 	struct msg_security_struct *msec = msg->security;
5948 
5949 	msg->security = NULL;
5950 	kfree(msec);
5951 }
5952 
5953 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5954 			u32 perms)
5955 {
5956 	struct ipc_security_struct *isec;
5957 	struct common_audit_data ad;
5958 	u32 sid = current_sid();
5959 
5960 	isec = ipc_perms->security;
5961 
5962 	ad.type = LSM_AUDIT_DATA_IPC;
5963 	ad.u.ipc_id = ipc_perms->key;
5964 
5965 	return avc_has_perm(&selinux_state,
5966 			    sid, isec->sid, isec->sclass, perms, &ad);
5967 }
5968 
5969 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5970 {
5971 	return msg_msg_alloc_security(msg);
5972 }
5973 
5974 static void selinux_msg_msg_free_security(struct msg_msg *msg)
5975 {
5976 	msg_msg_free_security(msg);
5977 }
5978 
5979 /* message queue security operations */
5980 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
5981 {
5982 	struct ipc_security_struct *isec;
5983 	struct common_audit_data ad;
5984 	u32 sid = current_sid();
5985 	int rc;
5986 
5987 	rc = ipc_alloc_security(msq, SECCLASS_MSGQ);
5988 	if (rc)
5989 		return rc;
5990 
5991 	isec = msq->security;
5992 
5993 	ad.type = LSM_AUDIT_DATA_IPC;
5994 	ad.u.ipc_id = msq->key;
5995 
5996 	rc = avc_has_perm(&selinux_state,
5997 			  sid, isec->sid, SECCLASS_MSGQ,
5998 			  MSGQ__CREATE, &ad);
5999 	if (rc) {
6000 		ipc_free_security(msq);
6001 		return rc;
6002 	}
6003 	return 0;
6004 }
6005 
6006 static void selinux_msg_queue_free_security(struct kern_ipc_perm *msq)
6007 {
6008 	ipc_free_security(msq);
6009 }
6010 
6011 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
6012 {
6013 	struct ipc_security_struct *isec;
6014 	struct common_audit_data ad;
6015 	u32 sid = current_sid();
6016 
6017 	isec = msq->security;
6018 
6019 	ad.type = LSM_AUDIT_DATA_IPC;
6020 	ad.u.ipc_id = msq->key;
6021 
6022 	return avc_has_perm(&selinux_state,
6023 			    sid, isec->sid, SECCLASS_MSGQ,
6024 			    MSGQ__ASSOCIATE, &ad);
6025 }
6026 
6027 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6028 {
6029 	int err;
6030 	int perms;
6031 
6032 	switch (cmd) {
6033 	case IPC_INFO:
6034 	case MSG_INFO:
6035 		/* No specific object, just general system-wide information. */
6036 		return avc_has_perm(&selinux_state,
6037 				    current_sid(), SECINITSID_KERNEL,
6038 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6039 	case IPC_STAT:
6040 	case MSG_STAT:
6041 	case MSG_STAT_ANY:
6042 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6043 		break;
6044 	case IPC_SET:
6045 		perms = MSGQ__SETATTR;
6046 		break;
6047 	case IPC_RMID:
6048 		perms = MSGQ__DESTROY;
6049 		break;
6050 	default:
6051 		return 0;
6052 	}
6053 
6054 	err = ipc_has_perm(msq, perms);
6055 	return err;
6056 }
6057 
6058 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6059 {
6060 	struct ipc_security_struct *isec;
6061 	struct msg_security_struct *msec;
6062 	struct common_audit_data ad;
6063 	u32 sid = current_sid();
6064 	int rc;
6065 
6066 	isec = msq->security;
6067 	msec = msg->security;
6068 
6069 	/*
6070 	 * First time through, need to assign label to the message
6071 	 */
6072 	if (msec->sid == SECINITSID_UNLABELED) {
6073 		/*
6074 		 * Compute new sid based on current process and
6075 		 * message queue this message will be stored in
6076 		 */
6077 		rc = security_transition_sid(&selinux_state, sid, isec->sid,
6078 					     SECCLASS_MSG, NULL, &msec->sid);
6079 		if (rc)
6080 			return rc;
6081 	}
6082 
6083 	ad.type = LSM_AUDIT_DATA_IPC;
6084 	ad.u.ipc_id = msq->key;
6085 
6086 	/* Can this process write to the queue? */
6087 	rc = avc_has_perm(&selinux_state,
6088 			  sid, isec->sid, SECCLASS_MSGQ,
6089 			  MSGQ__WRITE, &ad);
6090 	if (!rc)
6091 		/* Can this process send the message */
6092 		rc = avc_has_perm(&selinux_state,
6093 				  sid, msec->sid, SECCLASS_MSG,
6094 				  MSG__SEND, &ad);
6095 	if (!rc)
6096 		/* Can the message be put in the queue? */
6097 		rc = avc_has_perm(&selinux_state,
6098 				  msec->sid, isec->sid, SECCLASS_MSGQ,
6099 				  MSGQ__ENQUEUE, &ad);
6100 
6101 	return rc;
6102 }
6103 
6104 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6105 				    struct task_struct *target,
6106 				    long type, int mode)
6107 {
6108 	struct ipc_security_struct *isec;
6109 	struct msg_security_struct *msec;
6110 	struct common_audit_data ad;
6111 	u32 sid = task_sid(target);
6112 	int rc;
6113 
6114 	isec = msq->security;
6115 	msec = msg->security;
6116 
6117 	ad.type = LSM_AUDIT_DATA_IPC;
6118 	ad.u.ipc_id = msq->key;
6119 
6120 	rc = avc_has_perm(&selinux_state,
6121 			  sid, isec->sid,
6122 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6123 	if (!rc)
6124 		rc = avc_has_perm(&selinux_state,
6125 				  sid, msec->sid,
6126 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6127 	return rc;
6128 }
6129 
6130 /* Shared Memory security operations */
6131 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6132 {
6133 	struct ipc_security_struct *isec;
6134 	struct common_audit_data ad;
6135 	u32 sid = current_sid();
6136 	int rc;
6137 
6138 	rc = ipc_alloc_security(shp, SECCLASS_SHM);
6139 	if (rc)
6140 		return rc;
6141 
6142 	isec = shp->security;
6143 
6144 	ad.type = LSM_AUDIT_DATA_IPC;
6145 	ad.u.ipc_id = shp->key;
6146 
6147 	rc = avc_has_perm(&selinux_state,
6148 			  sid, isec->sid, SECCLASS_SHM,
6149 			  SHM__CREATE, &ad);
6150 	if (rc) {
6151 		ipc_free_security(shp);
6152 		return rc;
6153 	}
6154 	return 0;
6155 }
6156 
6157 static void selinux_shm_free_security(struct kern_ipc_perm *shp)
6158 {
6159 	ipc_free_security(shp);
6160 }
6161 
6162 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6163 {
6164 	struct ipc_security_struct *isec;
6165 	struct common_audit_data ad;
6166 	u32 sid = current_sid();
6167 
6168 	isec = shp->security;
6169 
6170 	ad.type = LSM_AUDIT_DATA_IPC;
6171 	ad.u.ipc_id = shp->key;
6172 
6173 	return avc_has_perm(&selinux_state,
6174 			    sid, isec->sid, SECCLASS_SHM,
6175 			    SHM__ASSOCIATE, &ad);
6176 }
6177 
6178 /* Note, at this point, shp is locked down */
6179 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6180 {
6181 	int perms;
6182 	int err;
6183 
6184 	switch (cmd) {
6185 	case IPC_INFO:
6186 	case SHM_INFO:
6187 		/* No specific object, just general system-wide information. */
6188 		return avc_has_perm(&selinux_state,
6189 				    current_sid(), SECINITSID_KERNEL,
6190 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6191 	case IPC_STAT:
6192 	case SHM_STAT:
6193 	case SHM_STAT_ANY:
6194 		perms = SHM__GETATTR | SHM__ASSOCIATE;
6195 		break;
6196 	case IPC_SET:
6197 		perms = SHM__SETATTR;
6198 		break;
6199 	case SHM_LOCK:
6200 	case SHM_UNLOCK:
6201 		perms = SHM__LOCK;
6202 		break;
6203 	case IPC_RMID:
6204 		perms = SHM__DESTROY;
6205 		break;
6206 	default:
6207 		return 0;
6208 	}
6209 
6210 	err = ipc_has_perm(shp, perms);
6211 	return err;
6212 }
6213 
6214 static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6215 			     char __user *shmaddr, int shmflg)
6216 {
6217 	u32 perms;
6218 
6219 	if (shmflg & SHM_RDONLY)
6220 		perms = SHM__READ;
6221 	else
6222 		perms = SHM__READ | SHM__WRITE;
6223 
6224 	return ipc_has_perm(shp, perms);
6225 }
6226 
6227 /* Semaphore security operations */
6228 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6229 {
6230 	struct ipc_security_struct *isec;
6231 	struct common_audit_data ad;
6232 	u32 sid = current_sid();
6233 	int rc;
6234 
6235 	rc = ipc_alloc_security(sma, SECCLASS_SEM);
6236 	if (rc)
6237 		return rc;
6238 
6239 	isec = sma->security;
6240 
6241 	ad.type = LSM_AUDIT_DATA_IPC;
6242 	ad.u.ipc_id = sma->key;
6243 
6244 	rc = avc_has_perm(&selinux_state,
6245 			  sid, isec->sid, SECCLASS_SEM,
6246 			  SEM__CREATE, &ad);
6247 	if (rc) {
6248 		ipc_free_security(sma);
6249 		return rc;
6250 	}
6251 	return 0;
6252 }
6253 
6254 static void selinux_sem_free_security(struct kern_ipc_perm *sma)
6255 {
6256 	ipc_free_security(sma);
6257 }
6258 
6259 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6260 {
6261 	struct ipc_security_struct *isec;
6262 	struct common_audit_data ad;
6263 	u32 sid = current_sid();
6264 
6265 	isec = sma->security;
6266 
6267 	ad.type = LSM_AUDIT_DATA_IPC;
6268 	ad.u.ipc_id = sma->key;
6269 
6270 	return avc_has_perm(&selinux_state,
6271 			    sid, isec->sid, SECCLASS_SEM,
6272 			    SEM__ASSOCIATE, &ad);
6273 }
6274 
6275 /* Note, at this point, sma is locked down */
6276 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6277 {
6278 	int err;
6279 	u32 perms;
6280 
6281 	switch (cmd) {
6282 	case IPC_INFO:
6283 	case SEM_INFO:
6284 		/* No specific object, just general system-wide information. */
6285 		return avc_has_perm(&selinux_state,
6286 				    current_sid(), SECINITSID_KERNEL,
6287 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6288 	case GETPID:
6289 	case GETNCNT:
6290 	case GETZCNT:
6291 		perms = SEM__GETATTR;
6292 		break;
6293 	case GETVAL:
6294 	case GETALL:
6295 		perms = SEM__READ;
6296 		break;
6297 	case SETVAL:
6298 	case SETALL:
6299 		perms = SEM__WRITE;
6300 		break;
6301 	case IPC_RMID:
6302 		perms = SEM__DESTROY;
6303 		break;
6304 	case IPC_SET:
6305 		perms = SEM__SETATTR;
6306 		break;
6307 	case IPC_STAT:
6308 	case SEM_STAT:
6309 	case SEM_STAT_ANY:
6310 		perms = SEM__GETATTR | SEM__ASSOCIATE;
6311 		break;
6312 	default:
6313 		return 0;
6314 	}
6315 
6316 	err = ipc_has_perm(sma, perms);
6317 	return err;
6318 }
6319 
6320 static int selinux_sem_semop(struct kern_ipc_perm *sma,
6321 			     struct sembuf *sops, unsigned nsops, int alter)
6322 {
6323 	u32 perms;
6324 
6325 	if (alter)
6326 		perms = SEM__READ | SEM__WRITE;
6327 	else
6328 		perms = SEM__READ;
6329 
6330 	return ipc_has_perm(sma, perms);
6331 }
6332 
6333 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6334 {
6335 	u32 av = 0;
6336 
6337 	av = 0;
6338 	if (flag & S_IRUGO)
6339 		av |= IPC__UNIX_READ;
6340 	if (flag & S_IWUGO)
6341 		av |= IPC__UNIX_WRITE;
6342 
6343 	if (av == 0)
6344 		return 0;
6345 
6346 	return ipc_has_perm(ipcp, av);
6347 }
6348 
6349 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6350 {
6351 	struct ipc_security_struct *isec = ipcp->security;
6352 	*secid = isec->sid;
6353 }
6354 
6355 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6356 {
6357 	if (inode)
6358 		inode_doinit_with_dentry(inode, dentry);
6359 }
6360 
6361 static int selinux_getprocattr(struct task_struct *p,
6362 			       char *name, char **value)
6363 {
6364 	const struct task_security_struct *__tsec;
6365 	u32 sid;
6366 	int error;
6367 	unsigned len;
6368 
6369 	rcu_read_lock();
6370 	__tsec = __task_cred(p)->security;
6371 
6372 	if (current != p) {
6373 		error = avc_has_perm(&selinux_state,
6374 				     current_sid(), __tsec->sid,
6375 				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6376 		if (error)
6377 			goto bad;
6378 	}
6379 
6380 	if (!strcmp(name, "current"))
6381 		sid = __tsec->sid;
6382 	else if (!strcmp(name, "prev"))
6383 		sid = __tsec->osid;
6384 	else if (!strcmp(name, "exec"))
6385 		sid = __tsec->exec_sid;
6386 	else if (!strcmp(name, "fscreate"))
6387 		sid = __tsec->create_sid;
6388 	else if (!strcmp(name, "keycreate"))
6389 		sid = __tsec->keycreate_sid;
6390 	else if (!strcmp(name, "sockcreate"))
6391 		sid = __tsec->sockcreate_sid;
6392 	else {
6393 		error = -EINVAL;
6394 		goto bad;
6395 	}
6396 	rcu_read_unlock();
6397 
6398 	if (!sid)
6399 		return 0;
6400 
6401 	error = security_sid_to_context(&selinux_state, sid, value, &len);
6402 	if (error)
6403 		return error;
6404 	return len;
6405 
6406 bad:
6407 	rcu_read_unlock();
6408 	return error;
6409 }
6410 
6411 static int selinux_setprocattr(const char *name, void *value, size_t size)
6412 {
6413 	struct task_security_struct *tsec;
6414 	struct cred *new;
6415 	u32 mysid = current_sid(), sid = 0, ptsid;
6416 	int error;
6417 	char *str = value;
6418 
6419 	/*
6420 	 * Basic control over ability to set these attributes at all.
6421 	 */
6422 	if (!strcmp(name, "exec"))
6423 		error = avc_has_perm(&selinux_state,
6424 				     mysid, mysid, SECCLASS_PROCESS,
6425 				     PROCESS__SETEXEC, NULL);
6426 	else if (!strcmp(name, "fscreate"))
6427 		error = avc_has_perm(&selinux_state,
6428 				     mysid, mysid, SECCLASS_PROCESS,
6429 				     PROCESS__SETFSCREATE, NULL);
6430 	else if (!strcmp(name, "keycreate"))
6431 		error = avc_has_perm(&selinux_state,
6432 				     mysid, mysid, SECCLASS_PROCESS,
6433 				     PROCESS__SETKEYCREATE, NULL);
6434 	else if (!strcmp(name, "sockcreate"))
6435 		error = avc_has_perm(&selinux_state,
6436 				     mysid, mysid, SECCLASS_PROCESS,
6437 				     PROCESS__SETSOCKCREATE, NULL);
6438 	else if (!strcmp(name, "current"))
6439 		error = avc_has_perm(&selinux_state,
6440 				     mysid, mysid, SECCLASS_PROCESS,
6441 				     PROCESS__SETCURRENT, NULL);
6442 	else
6443 		error = -EINVAL;
6444 	if (error)
6445 		return error;
6446 
6447 	/* Obtain a SID for the context, if one was specified. */
6448 	if (size && str[0] && str[0] != '\n') {
6449 		if (str[size-1] == '\n') {
6450 			str[size-1] = 0;
6451 			size--;
6452 		}
6453 		error = security_context_to_sid(&selinux_state, value, size,
6454 						&sid, GFP_KERNEL);
6455 		if (error == -EINVAL && !strcmp(name, "fscreate")) {
6456 			if (!has_cap_mac_admin(true)) {
6457 				struct audit_buffer *ab;
6458 				size_t audit_size;
6459 
6460 				/* We strip a nul only if it is at the end, otherwise the
6461 				 * context contains a nul and we should audit that */
6462 				if (str[size - 1] == '\0')
6463 					audit_size = size - 1;
6464 				else
6465 					audit_size = size;
6466 				ab = audit_log_start(audit_context(),
6467 						     GFP_ATOMIC,
6468 						     AUDIT_SELINUX_ERR);
6469 				audit_log_format(ab, "op=fscreate invalid_context=");
6470 				audit_log_n_untrustedstring(ab, value, audit_size);
6471 				audit_log_end(ab);
6472 
6473 				return error;
6474 			}
6475 			error = security_context_to_sid_force(
6476 						      &selinux_state,
6477 						      value, size, &sid);
6478 		}
6479 		if (error)
6480 			return error;
6481 	}
6482 
6483 	new = prepare_creds();
6484 	if (!new)
6485 		return -ENOMEM;
6486 
6487 	/* Permission checking based on the specified context is
6488 	   performed during the actual operation (execve,
6489 	   open/mkdir/...), when we know the full context of the
6490 	   operation.  See selinux_bprm_set_creds for the execve
6491 	   checks and may_create for the file creation checks. The
6492 	   operation will then fail if the context is not permitted. */
6493 	tsec = new->security;
6494 	if (!strcmp(name, "exec")) {
6495 		tsec->exec_sid = sid;
6496 	} else if (!strcmp(name, "fscreate")) {
6497 		tsec->create_sid = sid;
6498 	} else if (!strcmp(name, "keycreate")) {
6499 		error = avc_has_perm(&selinux_state,
6500 				     mysid, sid, SECCLASS_KEY, KEY__CREATE,
6501 				     NULL);
6502 		if (error)
6503 			goto abort_change;
6504 		tsec->keycreate_sid = sid;
6505 	} else if (!strcmp(name, "sockcreate")) {
6506 		tsec->sockcreate_sid = sid;
6507 	} else if (!strcmp(name, "current")) {
6508 		error = -EINVAL;
6509 		if (sid == 0)
6510 			goto abort_change;
6511 
6512 		/* Only allow single threaded processes to change context */
6513 		error = -EPERM;
6514 		if (!current_is_single_threaded()) {
6515 			error = security_bounded_transition(&selinux_state,
6516 							    tsec->sid, sid);
6517 			if (error)
6518 				goto abort_change;
6519 		}
6520 
6521 		/* Check permissions for the transition. */
6522 		error = avc_has_perm(&selinux_state,
6523 				     tsec->sid, sid, SECCLASS_PROCESS,
6524 				     PROCESS__DYNTRANSITION, NULL);
6525 		if (error)
6526 			goto abort_change;
6527 
6528 		/* Check for ptracing, and update the task SID if ok.
6529 		   Otherwise, leave SID unchanged and fail. */
6530 		ptsid = ptrace_parent_sid();
6531 		if (ptsid != 0) {
6532 			error = avc_has_perm(&selinux_state,
6533 					     ptsid, sid, SECCLASS_PROCESS,
6534 					     PROCESS__PTRACE, NULL);
6535 			if (error)
6536 				goto abort_change;
6537 		}
6538 
6539 		tsec->sid = sid;
6540 	} else {
6541 		error = -EINVAL;
6542 		goto abort_change;
6543 	}
6544 
6545 	commit_creds(new);
6546 	return size;
6547 
6548 abort_change:
6549 	abort_creds(new);
6550 	return error;
6551 }
6552 
6553 static int selinux_ismaclabel(const char *name)
6554 {
6555 	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6556 }
6557 
6558 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6559 {
6560 	return security_sid_to_context(&selinux_state, secid,
6561 				       secdata, seclen);
6562 }
6563 
6564 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6565 {
6566 	return security_context_to_sid(&selinux_state, secdata, seclen,
6567 				       secid, GFP_KERNEL);
6568 }
6569 
6570 static void selinux_release_secctx(char *secdata, u32 seclen)
6571 {
6572 	kfree(secdata);
6573 }
6574 
6575 static void selinux_inode_invalidate_secctx(struct inode *inode)
6576 {
6577 	struct inode_security_struct *isec = inode->i_security;
6578 
6579 	spin_lock(&isec->lock);
6580 	isec->initialized = LABEL_INVALID;
6581 	spin_unlock(&isec->lock);
6582 }
6583 
6584 /*
6585  *	called with inode->i_mutex locked
6586  */
6587 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6588 {
6589 	return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
6590 }
6591 
6592 /*
6593  *	called with inode->i_mutex locked
6594  */
6595 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6596 {
6597 	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6598 }
6599 
6600 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6601 {
6602 	int len = 0;
6603 	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6604 						ctx, true);
6605 	if (len < 0)
6606 		return len;
6607 	*ctxlen = len;
6608 	return 0;
6609 }
6610 #ifdef CONFIG_KEYS
6611 
6612 static int selinux_key_alloc(struct key *k, const struct cred *cred,
6613 			     unsigned long flags)
6614 {
6615 	const struct task_security_struct *tsec;
6616 	struct key_security_struct *ksec;
6617 
6618 	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6619 	if (!ksec)
6620 		return -ENOMEM;
6621 
6622 	tsec = cred->security;
6623 	if (tsec->keycreate_sid)
6624 		ksec->sid = tsec->keycreate_sid;
6625 	else
6626 		ksec->sid = tsec->sid;
6627 
6628 	k->security = ksec;
6629 	return 0;
6630 }
6631 
6632 static void selinux_key_free(struct key *k)
6633 {
6634 	struct key_security_struct *ksec = k->security;
6635 
6636 	k->security = NULL;
6637 	kfree(ksec);
6638 }
6639 
6640 static int selinux_key_permission(key_ref_t key_ref,
6641 				  const struct cred *cred,
6642 				  unsigned perm)
6643 {
6644 	struct key *key;
6645 	struct key_security_struct *ksec;
6646 	u32 sid;
6647 
6648 	/* if no specific permissions are requested, we skip the
6649 	   permission check. No serious, additional covert channels
6650 	   appear to be created. */
6651 	if (perm == 0)
6652 		return 0;
6653 
6654 	sid = cred_sid(cred);
6655 
6656 	key = key_ref_to_ptr(key_ref);
6657 	ksec = key->security;
6658 
6659 	return avc_has_perm(&selinux_state,
6660 			    sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6661 }
6662 
6663 static int selinux_key_getsecurity(struct key *key, char **_buffer)
6664 {
6665 	struct key_security_struct *ksec = key->security;
6666 	char *context = NULL;
6667 	unsigned len;
6668 	int rc;
6669 
6670 	rc = security_sid_to_context(&selinux_state, ksec->sid,
6671 				     &context, &len);
6672 	if (!rc)
6673 		rc = len;
6674 	*_buffer = context;
6675 	return rc;
6676 }
6677 #endif
6678 
6679 #ifdef CONFIG_SECURITY_INFINIBAND
6680 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6681 {
6682 	struct common_audit_data ad;
6683 	int err;
6684 	u32 sid = 0;
6685 	struct ib_security_struct *sec = ib_sec;
6686 	struct lsm_ibpkey_audit ibpkey;
6687 
6688 	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6689 	if (err)
6690 		return err;
6691 
6692 	ad.type = LSM_AUDIT_DATA_IBPKEY;
6693 	ibpkey.subnet_prefix = subnet_prefix;
6694 	ibpkey.pkey = pkey_val;
6695 	ad.u.ibpkey = &ibpkey;
6696 	return avc_has_perm(&selinux_state,
6697 			    sec->sid, sid,
6698 			    SECCLASS_INFINIBAND_PKEY,
6699 			    INFINIBAND_PKEY__ACCESS, &ad);
6700 }
6701 
6702 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6703 					    u8 port_num)
6704 {
6705 	struct common_audit_data ad;
6706 	int err;
6707 	u32 sid = 0;
6708 	struct ib_security_struct *sec = ib_sec;
6709 	struct lsm_ibendport_audit ibendport;
6710 
6711 	err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6712 				      &sid);
6713 
6714 	if (err)
6715 		return err;
6716 
6717 	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6718 	strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name));
6719 	ibendport.port = port_num;
6720 	ad.u.ibendport = &ibendport;
6721 	return avc_has_perm(&selinux_state,
6722 			    sec->sid, sid,
6723 			    SECCLASS_INFINIBAND_ENDPORT,
6724 			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6725 }
6726 
6727 static int selinux_ib_alloc_security(void **ib_sec)
6728 {
6729 	struct ib_security_struct *sec;
6730 
6731 	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6732 	if (!sec)
6733 		return -ENOMEM;
6734 	sec->sid = current_sid();
6735 
6736 	*ib_sec = sec;
6737 	return 0;
6738 }
6739 
6740 static void selinux_ib_free_security(void *ib_sec)
6741 {
6742 	kfree(ib_sec);
6743 }
6744 #endif
6745 
6746 #ifdef CONFIG_BPF_SYSCALL
6747 static int selinux_bpf(int cmd, union bpf_attr *attr,
6748 				     unsigned int size)
6749 {
6750 	u32 sid = current_sid();
6751 	int ret;
6752 
6753 	switch (cmd) {
6754 	case BPF_MAP_CREATE:
6755 		ret = avc_has_perm(&selinux_state,
6756 				   sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6757 				   NULL);
6758 		break;
6759 	case BPF_PROG_LOAD:
6760 		ret = avc_has_perm(&selinux_state,
6761 				   sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6762 				   NULL);
6763 		break;
6764 	default:
6765 		ret = 0;
6766 		break;
6767 	}
6768 
6769 	return ret;
6770 }
6771 
6772 static u32 bpf_map_fmode_to_av(fmode_t fmode)
6773 {
6774 	u32 av = 0;
6775 
6776 	if (fmode & FMODE_READ)
6777 		av |= BPF__MAP_READ;
6778 	if (fmode & FMODE_WRITE)
6779 		av |= BPF__MAP_WRITE;
6780 	return av;
6781 }
6782 
6783 /* This function will check the file pass through unix socket or binder to see
6784  * if it is a bpf related object. And apply correspinding checks on the bpf
6785  * object based on the type. The bpf maps and programs, not like other files and
6786  * socket, are using a shared anonymous inode inside the kernel as their inode.
6787  * So checking that inode cannot identify if the process have privilege to
6788  * access the bpf object and that's why we have to add this additional check in
6789  * selinux_file_receive and selinux_binder_transfer_files.
6790  */
6791 static int bpf_fd_pass(struct file *file, u32 sid)
6792 {
6793 	struct bpf_security_struct *bpfsec;
6794 	struct bpf_prog *prog;
6795 	struct bpf_map *map;
6796 	int ret;
6797 
6798 	if (file->f_op == &bpf_map_fops) {
6799 		map = file->private_data;
6800 		bpfsec = map->security;
6801 		ret = avc_has_perm(&selinux_state,
6802 				   sid, bpfsec->sid, SECCLASS_BPF,
6803 				   bpf_map_fmode_to_av(file->f_mode), NULL);
6804 		if (ret)
6805 			return ret;
6806 	} else if (file->f_op == &bpf_prog_fops) {
6807 		prog = file->private_data;
6808 		bpfsec = prog->aux->security;
6809 		ret = avc_has_perm(&selinux_state,
6810 				   sid, bpfsec->sid, SECCLASS_BPF,
6811 				   BPF__PROG_RUN, NULL);
6812 		if (ret)
6813 			return ret;
6814 	}
6815 	return 0;
6816 }
6817 
6818 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6819 {
6820 	u32 sid = current_sid();
6821 	struct bpf_security_struct *bpfsec;
6822 
6823 	bpfsec = map->security;
6824 	return avc_has_perm(&selinux_state,
6825 			    sid, bpfsec->sid, SECCLASS_BPF,
6826 			    bpf_map_fmode_to_av(fmode), NULL);
6827 }
6828 
6829 static int selinux_bpf_prog(struct bpf_prog *prog)
6830 {
6831 	u32 sid = current_sid();
6832 	struct bpf_security_struct *bpfsec;
6833 
6834 	bpfsec = prog->aux->security;
6835 	return avc_has_perm(&selinux_state,
6836 			    sid, bpfsec->sid, SECCLASS_BPF,
6837 			    BPF__PROG_RUN, NULL);
6838 }
6839 
6840 static int selinux_bpf_map_alloc(struct bpf_map *map)
6841 {
6842 	struct bpf_security_struct *bpfsec;
6843 
6844 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6845 	if (!bpfsec)
6846 		return -ENOMEM;
6847 
6848 	bpfsec->sid = current_sid();
6849 	map->security = bpfsec;
6850 
6851 	return 0;
6852 }
6853 
6854 static void selinux_bpf_map_free(struct bpf_map *map)
6855 {
6856 	struct bpf_security_struct *bpfsec = map->security;
6857 
6858 	map->security = NULL;
6859 	kfree(bpfsec);
6860 }
6861 
6862 static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6863 {
6864 	struct bpf_security_struct *bpfsec;
6865 
6866 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6867 	if (!bpfsec)
6868 		return -ENOMEM;
6869 
6870 	bpfsec->sid = current_sid();
6871 	aux->security = bpfsec;
6872 
6873 	return 0;
6874 }
6875 
6876 static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6877 {
6878 	struct bpf_security_struct *bpfsec = aux->security;
6879 
6880 	aux->security = NULL;
6881 	kfree(bpfsec);
6882 }
6883 #endif
6884 
6885 static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
6886 	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6887 	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6888 	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6889 	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6890 
6891 	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6892 	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6893 	LSM_HOOK_INIT(capget, selinux_capget),
6894 	LSM_HOOK_INIT(capset, selinux_capset),
6895 	LSM_HOOK_INIT(capable, selinux_capable),
6896 	LSM_HOOK_INIT(quotactl, selinux_quotactl),
6897 	LSM_HOOK_INIT(quota_on, selinux_quota_on),
6898 	LSM_HOOK_INIT(syslog, selinux_syslog),
6899 	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6900 
6901 	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6902 
6903 	LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
6904 	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6905 	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6906 
6907 	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
6908 	LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6909 	LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data),
6910 	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6911 	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6912 	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6913 	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6914 	LSM_HOOK_INIT(sb_mount, selinux_mount),
6915 	LSM_HOOK_INIT(sb_umount, selinux_umount),
6916 	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6917 	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6918 	LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str),
6919 
6920 	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6921 	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6922 
6923 	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
6924 	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6925 	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6926 	LSM_HOOK_INIT(inode_create, selinux_inode_create),
6927 	LSM_HOOK_INIT(inode_link, selinux_inode_link),
6928 	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6929 	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6930 	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6931 	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6932 	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6933 	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6934 	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6935 	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
6936 	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
6937 	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
6938 	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
6939 	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
6940 	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
6941 	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
6942 	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
6943 	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
6944 	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
6945 	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
6946 	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
6947 	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
6948 	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
6949 	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
6950 
6951 	LSM_HOOK_INIT(file_permission, selinux_file_permission),
6952 	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6953 	LSM_HOOK_INIT(file_free_security, selinux_file_free_security),
6954 	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6955 	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6956 	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6957 	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6958 	LSM_HOOK_INIT(file_lock, selinux_file_lock),
6959 	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6960 	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6961 	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6962 	LSM_HOOK_INIT(file_receive, selinux_file_receive),
6963 
6964 	LSM_HOOK_INIT(file_open, selinux_file_open),
6965 
6966 	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
6967 	LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),
6968 	LSM_HOOK_INIT(cred_free, selinux_cred_free),
6969 	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6970 	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
6971 	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
6972 	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6973 	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6974 	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
6975 	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
6976 	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6977 	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6978 	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6979 	LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
6980 	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6981 	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6982 	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
6983 	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
6984 	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6985 	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6986 	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6987 	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6988 	LSM_HOOK_INIT(task_kill, selinux_task_kill),
6989 	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6990 
6991 	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6992 	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6993 
6994 	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6995 	LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security),
6996 
6997 	LSM_HOOK_INIT(msg_queue_alloc_security,
6998 			selinux_msg_queue_alloc_security),
6999 	LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security),
7000 	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7001 	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7002 	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7003 	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7004 
7005 	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7006 	LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security),
7007 	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7008 	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7009 	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7010 
7011 	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7012 	LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security),
7013 	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7014 	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7015 	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7016 
7017 	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7018 
7019 	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7020 	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7021 
7022 	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7023 	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7024 	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7025 	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7026 	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7027 	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7028 	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7029 	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7030 
7031 	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7032 	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7033 
7034 	LSM_HOOK_INIT(socket_create, selinux_socket_create),
7035 	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7036 	LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7037 	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7038 	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7039 	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7040 	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7041 	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7042 	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7043 	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7044 	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7045 	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7046 	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7047 	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7048 	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7049 	LSM_HOOK_INIT(socket_getpeersec_stream,
7050 			selinux_socket_getpeersec_stream),
7051 	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7052 	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7053 	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7054 	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7055 	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7056 	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7057 	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7058 	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7059 	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7060 	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7061 	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7062 	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7063 	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7064 	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7065 	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7066 	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7067 	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7068 	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7069 	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7070 	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7071 	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7072 	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7073 #ifdef CONFIG_SECURITY_INFINIBAND
7074 	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7075 	LSM_HOOK_INIT(ib_endport_manage_subnet,
7076 		      selinux_ib_endport_manage_subnet),
7077 	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7078 	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7079 #endif
7080 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7081 	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7082 	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7083 	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7084 	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7085 	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7086 	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7087 			selinux_xfrm_state_alloc_acquire),
7088 	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7089 	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7090 	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7091 	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7092 			selinux_xfrm_state_pol_flow_match),
7093 	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7094 #endif
7095 
7096 #ifdef CONFIG_KEYS
7097 	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7098 	LSM_HOOK_INIT(key_free, selinux_key_free),
7099 	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7100 	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7101 #endif
7102 
7103 #ifdef CONFIG_AUDIT
7104 	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7105 	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7106 	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7107 	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7108 #endif
7109 
7110 #ifdef CONFIG_BPF_SYSCALL
7111 	LSM_HOOK_INIT(bpf, selinux_bpf),
7112 	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7113 	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7114 	LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7115 	LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7116 	LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7117 	LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7118 #endif
7119 };
7120 
7121 static __init int selinux_init(void)
7122 {
7123 	if (!security_module_enable("selinux")) {
7124 		selinux_enabled = 0;
7125 		return 0;
7126 	}
7127 
7128 	if (!selinux_enabled) {
7129 		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
7130 		return 0;
7131 	}
7132 
7133 	printk(KERN_INFO "SELinux:  Initializing.\n");
7134 
7135 	memset(&selinux_state, 0, sizeof(selinux_state));
7136 	enforcing_set(&selinux_state, selinux_enforcing_boot);
7137 	selinux_state.checkreqprot = selinux_checkreqprot_boot;
7138 	selinux_ss_init(&selinux_state.ss);
7139 	selinux_avc_init(&selinux_state.avc);
7140 
7141 	/* Set the security state for the initial task. */
7142 	cred_init_security();
7143 
7144 	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7145 
7146 	sel_inode_cache = kmem_cache_create("selinux_inode_security",
7147 					    sizeof(struct inode_security_struct),
7148 					    0, SLAB_PANIC, NULL);
7149 	file_security_cache = kmem_cache_create("selinux_file_security",
7150 					    sizeof(struct file_security_struct),
7151 					    0, SLAB_PANIC, NULL);
7152 	avc_init();
7153 
7154 	avtab_cache_init();
7155 
7156 	ebitmap_cache_init();
7157 
7158 	hashtab_cache_init();
7159 
7160 	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7161 
7162 	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7163 		panic("SELinux: Unable to register AVC netcache callback\n");
7164 
7165 	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7166 		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7167 
7168 	if (selinux_enforcing_boot)
7169 		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
7170 	else
7171 		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
7172 
7173 	return 0;
7174 }
7175 
7176 static void delayed_superblock_init(struct super_block *sb, void *unused)
7177 {
7178 	superblock_doinit(sb, NULL);
7179 }
7180 
7181 void selinux_complete_init(void)
7182 {
7183 	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
7184 
7185 	/* Set up any superblocks initialized prior to the policy load. */
7186 	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
7187 	iterate_supers(delayed_superblock_init, NULL);
7188 }
7189 
7190 /* SELinux requires early initialization in order to label
7191    all processes and objects when they are created. */
7192 security_initcall(selinux_init);
7193 
7194 #if defined(CONFIG_NETFILTER)
7195 
7196 static const struct nf_hook_ops selinux_nf_ops[] = {
7197 	{
7198 		.hook =		selinux_ipv4_postroute,
7199 		.pf =		NFPROTO_IPV4,
7200 		.hooknum =	NF_INET_POST_ROUTING,
7201 		.priority =	NF_IP_PRI_SELINUX_LAST,
7202 	},
7203 	{
7204 		.hook =		selinux_ipv4_forward,
7205 		.pf =		NFPROTO_IPV4,
7206 		.hooknum =	NF_INET_FORWARD,
7207 		.priority =	NF_IP_PRI_SELINUX_FIRST,
7208 	},
7209 	{
7210 		.hook =		selinux_ipv4_output,
7211 		.pf =		NFPROTO_IPV4,
7212 		.hooknum =	NF_INET_LOCAL_OUT,
7213 		.priority =	NF_IP_PRI_SELINUX_FIRST,
7214 	},
7215 #if IS_ENABLED(CONFIG_IPV6)
7216 	{
7217 		.hook =		selinux_ipv6_postroute,
7218 		.pf =		NFPROTO_IPV6,
7219 		.hooknum =	NF_INET_POST_ROUTING,
7220 		.priority =	NF_IP6_PRI_SELINUX_LAST,
7221 	},
7222 	{
7223 		.hook =		selinux_ipv6_forward,
7224 		.pf =		NFPROTO_IPV6,
7225 		.hooknum =	NF_INET_FORWARD,
7226 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7227 	},
7228 	{
7229 		.hook =		selinux_ipv6_output,
7230 		.pf =		NFPROTO_IPV6,
7231 		.hooknum =	NF_INET_LOCAL_OUT,
7232 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7233 	},
7234 #endif	/* IPV6 */
7235 };
7236 
7237 static int __net_init selinux_nf_register(struct net *net)
7238 {
7239 	return nf_register_net_hooks(net, selinux_nf_ops,
7240 				     ARRAY_SIZE(selinux_nf_ops));
7241 }
7242 
7243 static void __net_exit selinux_nf_unregister(struct net *net)
7244 {
7245 	nf_unregister_net_hooks(net, selinux_nf_ops,
7246 				ARRAY_SIZE(selinux_nf_ops));
7247 }
7248 
7249 static struct pernet_operations selinux_net_ops = {
7250 	.init = selinux_nf_register,
7251 	.exit = selinux_nf_unregister,
7252 };
7253 
7254 static int __init selinux_nf_ip_init(void)
7255 {
7256 	int err;
7257 
7258 	if (!selinux_enabled)
7259 		return 0;
7260 
7261 	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
7262 
7263 	err = register_pernet_subsys(&selinux_net_ops);
7264 	if (err)
7265 		panic("SELinux: register_pernet_subsys: error %d\n", err);
7266 
7267 	return 0;
7268 }
7269 __initcall(selinux_nf_ip_init);
7270 
7271 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7272 static void selinux_nf_ip_exit(void)
7273 {
7274 	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
7275 
7276 	unregister_pernet_subsys(&selinux_net_ops);
7277 }
7278 #endif
7279 
7280 #else /* CONFIG_NETFILTER */
7281 
7282 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7283 #define selinux_nf_ip_exit()
7284 #endif
7285 
7286 #endif /* CONFIG_NETFILTER */
7287 
7288 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7289 int selinux_disable(struct selinux_state *state)
7290 {
7291 	if (state->initialized) {
7292 		/* Not permitted after initial policy load. */
7293 		return -EINVAL;
7294 	}
7295 
7296 	if (state->disabled) {
7297 		/* Only do this once. */
7298 		return -EINVAL;
7299 	}
7300 
7301 	state->disabled = 1;
7302 
7303 	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
7304 
7305 	selinux_enabled = 0;
7306 
7307 	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7308 
7309 	/* Try to destroy the avc node cache */
7310 	avc_disable();
7311 
7312 	/* Unregister netfilter hooks. */
7313 	selinux_nf_ip_exit();
7314 
7315 	/* Unregister selinuxfs. */
7316 	exit_sel_fs();
7317 
7318 	return 0;
7319 }
7320 #endif
7321