1 /* 2 * NSA Security-Enhanced Linux (SELinux) security module 3 * 4 * This file contains the SELinux hook function implementations. 5 * 6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil> 7 * Chris Vance, <cvance@nai.com> 8 * Wayne Salamon, <wsalamon@nai.com> 9 * James Morris <jmorris@redhat.com> 10 * 11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com> 13 * Eric Paris <eparis@redhat.com> 14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 15 * <dgoeddel@trustedcs.com> 16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P. 17 * Paul Moore <paul@paul-moore.com> 18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. 19 * Yuichi Nakamura <ynakam@hitachisoft.jp> 20 * 21 * This program is free software; you can redistribute it and/or modify 22 * it under the terms of the GNU General Public License version 2, 23 * as published by the Free Software Foundation. 24 */ 25 26 #include <linux/init.h> 27 #include <linux/kd.h> 28 #include <linux/kernel.h> 29 #include <linux/tracehook.h> 30 #include <linux/errno.h> 31 #include <linux/sched.h> 32 #include <linux/security.h> 33 #include <linux/xattr.h> 34 #include <linux/capability.h> 35 #include <linux/unistd.h> 36 #include <linux/mm.h> 37 #include <linux/mman.h> 38 #include <linux/slab.h> 39 #include <linux/pagemap.h> 40 #include <linux/proc_fs.h> 41 #include <linux/swap.h> 42 #include <linux/spinlock.h> 43 #include <linux/syscalls.h> 44 #include <linux/dcache.h> 45 #include <linux/file.h> 46 #include <linux/fdtable.h> 47 #include <linux/namei.h> 48 #include <linux/mount.h> 49 #include <linux/netfilter_ipv4.h> 50 #include <linux/netfilter_ipv6.h> 51 #include <linux/tty.h> 52 #include <net/icmp.h> 53 #include <net/ip.h> /* for local_port_range[] */ 54 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 55 #include <net/inet_connection_sock.h> 56 #include <net/net_namespace.h> 57 #include <net/netlabel.h> 58 #include <linux/uaccess.h> 59 #include <asm/ioctls.h> 60 #include <linux/atomic.h> 61 #include <linux/bitops.h> 62 #include <linux/interrupt.h> 63 #include <linux/netdevice.h> /* for network interface checks */ 64 #include <net/netlink.h> 65 #include <linux/tcp.h> 66 #include <linux/udp.h> 67 #include <linux/dccp.h> 68 #include <linux/quota.h> 69 #include <linux/un.h> /* for Unix socket types */ 70 #include <net/af_unix.h> /* for Unix socket types */ 71 #include <linux/parser.h> 72 #include <linux/nfs_mount.h> 73 #include <net/ipv6.h> 74 #include <linux/hugetlb.h> 75 #include <linux/personality.h> 76 #include <linux/audit.h> 77 #include <linux/string.h> 78 #include <linux/selinux.h> 79 #include <linux/mutex.h> 80 #include <linux/posix-timers.h> 81 #include <linux/syslog.h> 82 #include <linux/user_namespace.h> 83 #include <linux/export.h> 84 #include <linux/msg.h> 85 #include <linux/shm.h> 86 87 #include "avc.h" 88 #include "objsec.h" 89 #include "netif.h" 90 #include "netnode.h" 91 #include "netport.h" 92 #include "xfrm.h" 93 #include "netlabel.h" 94 #include "audit.h" 95 #include "avc_ss.h" 96 97 /* SECMARK reference count */ 98 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0); 99 100 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 101 int selinux_enforcing; 102 103 static int __init enforcing_setup(char *str) 104 { 105 unsigned long enforcing; 106 if (!kstrtoul(str, 0, &enforcing)) 107 selinux_enforcing = enforcing ? 1 : 0; 108 return 1; 109 } 110 __setup("enforcing=", enforcing_setup); 111 #endif 112 113 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 114 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE; 115 116 static int __init selinux_enabled_setup(char *str) 117 { 118 unsigned long enabled; 119 if (!kstrtoul(str, 0, &enabled)) 120 selinux_enabled = enabled ? 1 : 0; 121 return 1; 122 } 123 __setup("selinux=", selinux_enabled_setup); 124 #else 125 int selinux_enabled = 1; 126 #endif 127 128 static struct kmem_cache *sel_inode_cache; 129 130 /** 131 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled 132 * 133 * Description: 134 * This function checks the SECMARK reference counter to see if any SECMARK 135 * targets are currently configured, if the reference counter is greater than 136 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is 137 * enabled, false (0) if SECMARK is disabled. If the always_check_network 138 * policy capability is enabled, SECMARK is always considered enabled. 139 * 140 */ 141 static int selinux_secmark_enabled(void) 142 { 143 return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount)); 144 } 145 146 /** 147 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled 148 * 149 * Description: 150 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true 151 * (1) if any are enabled or false (0) if neither are enabled. If the 152 * always_check_network policy capability is enabled, peer labeling 153 * is always considered enabled. 154 * 155 */ 156 static int selinux_peerlbl_enabled(void) 157 { 158 return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled()); 159 } 160 161 static int selinux_netcache_avc_callback(u32 event) 162 { 163 if (event == AVC_CALLBACK_RESET) { 164 sel_netif_flush(); 165 sel_netnode_flush(); 166 sel_netport_flush(); 167 synchronize_net(); 168 } 169 return 0; 170 } 171 172 /* 173 * initialise the security for the init task 174 */ 175 static void cred_init_security(void) 176 { 177 struct cred *cred = (struct cred *) current->real_cred; 178 struct task_security_struct *tsec; 179 180 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL); 181 if (!tsec) 182 panic("SELinux: Failed to initialize initial task.\n"); 183 184 tsec->osid = tsec->sid = SECINITSID_KERNEL; 185 cred->security = tsec; 186 } 187 188 /* 189 * get the security ID of a set of credentials 190 */ 191 static inline u32 cred_sid(const struct cred *cred) 192 { 193 const struct task_security_struct *tsec; 194 195 tsec = cred->security; 196 return tsec->sid; 197 } 198 199 /* 200 * get the objective security ID of a task 201 */ 202 static inline u32 task_sid(const struct task_struct *task) 203 { 204 u32 sid; 205 206 rcu_read_lock(); 207 sid = cred_sid(__task_cred(task)); 208 rcu_read_unlock(); 209 return sid; 210 } 211 212 /* 213 * get the subjective security ID of the current task 214 */ 215 static inline u32 current_sid(void) 216 { 217 const struct task_security_struct *tsec = current_security(); 218 219 return tsec->sid; 220 } 221 222 /* Allocate and free functions for each kind of security blob. */ 223 224 static int inode_alloc_security(struct inode *inode) 225 { 226 struct inode_security_struct *isec; 227 u32 sid = current_sid(); 228 229 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS); 230 if (!isec) 231 return -ENOMEM; 232 233 mutex_init(&isec->lock); 234 INIT_LIST_HEAD(&isec->list); 235 isec->inode = inode; 236 isec->sid = SECINITSID_UNLABELED; 237 isec->sclass = SECCLASS_FILE; 238 isec->task_sid = sid; 239 inode->i_security = isec; 240 241 return 0; 242 } 243 244 static void inode_free_rcu(struct rcu_head *head) 245 { 246 struct inode_security_struct *isec; 247 248 isec = container_of(head, struct inode_security_struct, rcu); 249 kmem_cache_free(sel_inode_cache, isec); 250 } 251 252 static void inode_free_security(struct inode *inode) 253 { 254 struct inode_security_struct *isec = inode->i_security; 255 struct superblock_security_struct *sbsec = inode->i_sb->s_security; 256 257 spin_lock(&sbsec->isec_lock); 258 if (!list_empty(&isec->list)) 259 list_del_init(&isec->list); 260 spin_unlock(&sbsec->isec_lock); 261 262 /* 263 * The inode may still be referenced in a path walk and 264 * a call to selinux_inode_permission() can be made 265 * after inode_free_security() is called. Ideally, the VFS 266 * wouldn't do this, but fixing that is a much harder 267 * job. For now, simply free the i_security via RCU, and 268 * leave the current inode->i_security pointer intact. 269 * The inode will be freed after the RCU grace period too. 270 */ 271 call_rcu(&isec->rcu, inode_free_rcu); 272 } 273 274 static int file_alloc_security(struct file *file) 275 { 276 struct file_security_struct *fsec; 277 u32 sid = current_sid(); 278 279 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL); 280 if (!fsec) 281 return -ENOMEM; 282 283 fsec->sid = sid; 284 fsec->fown_sid = sid; 285 file->f_security = fsec; 286 287 return 0; 288 } 289 290 static void file_free_security(struct file *file) 291 { 292 struct file_security_struct *fsec = file->f_security; 293 file->f_security = NULL; 294 kfree(fsec); 295 } 296 297 static int superblock_alloc_security(struct super_block *sb) 298 { 299 struct superblock_security_struct *sbsec; 300 301 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL); 302 if (!sbsec) 303 return -ENOMEM; 304 305 mutex_init(&sbsec->lock); 306 INIT_LIST_HEAD(&sbsec->isec_head); 307 spin_lock_init(&sbsec->isec_lock); 308 sbsec->sb = sb; 309 sbsec->sid = SECINITSID_UNLABELED; 310 sbsec->def_sid = SECINITSID_FILE; 311 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 312 sb->s_security = sbsec; 313 314 return 0; 315 } 316 317 static void superblock_free_security(struct super_block *sb) 318 { 319 struct superblock_security_struct *sbsec = sb->s_security; 320 sb->s_security = NULL; 321 kfree(sbsec); 322 } 323 324 /* The file system's label must be initialized prior to use. */ 325 326 static const char *labeling_behaviors[7] = { 327 "uses xattr", 328 "uses transition SIDs", 329 "uses task SIDs", 330 "uses genfs_contexts", 331 "not configured for labeling", 332 "uses mountpoint labeling", 333 "uses native labeling", 334 }; 335 336 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 337 338 static inline int inode_doinit(struct inode *inode) 339 { 340 return inode_doinit_with_dentry(inode, NULL); 341 } 342 343 enum { 344 Opt_error = -1, 345 Opt_context = 1, 346 Opt_fscontext = 2, 347 Opt_defcontext = 3, 348 Opt_rootcontext = 4, 349 Opt_labelsupport = 5, 350 Opt_nextmntopt = 6, 351 }; 352 353 #define NUM_SEL_MNT_OPTS (Opt_nextmntopt - 1) 354 355 static const match_table_t tokens = { 356 {Opt_context, CONTEXT_STR "%s"}, 357 {Opt_fscontext, FSCONTEXT_STR "%s"}, 358 {Opt_defcontext, DEFCONTEXT_STR "%s"}, 359 {Opt_rootcontext, ROOTCONTEXT_STR "%s"}, 360 {Opt_labelsupport, LABELSUPP_STR}, 361 {Opt_error, NULL}, 362 }; 363 364 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 365 366 static int may_context_mount_sb_relabel(u32 sid, 367 struct superblock_security_struct *sbsec, 368 const struct cred *cred) 369 { 370 const struct task_security_struct *tsec = cred->security; 371 int rc; 372 373 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 374 FILESYSTEM__RELABELFROM, NULL); 375 if (rc) 376 return rc; 377 378 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM, 379 FILESYSTEM__RELABELTO, NULL); 380 return rc; 381 } 382 383 static int may_context_mount_inode_relabel(u32 sid, 384 struct superblock_security_struct *sbsec, 385 const struct cred *cred) 386 { 387 const struct task_security_struct *tsec = cred->security; 388 int rc; 389 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 390 FILESYSTEM__RELABELFROM, NULL); 391 if (rc) 392 return rc; 393 394 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, 395 FILESYSTEM__ASSOCIATE, NULL); 396 return rc; 397 } 398 399 static int selinux_is_sblabel_mnt(struct super_block *sb) 400 { 401 struct superblock_security_struct *sbsec = sb->s_security; 402 403 return sbsec->behavior == SECURITY_FS_USE_XATTR || 404 sbsec->behavior == SECURITY_FS_USE_TRANS || 405 sbsec->behavior == SECURITY_FS_USE_TASK || 406 /* Special handling. Genfs but also in-core setxattr handler */ 407 !strcmp(sb->s_type->name, "sysfs") || 408 !strcmp(sb->s_type->name, "pstore") || 409 !strcmp(sb->s_type->name, "debugfs") || 410 !strcmp(sb->s_type->name, "rootfs"); 411 } 412 413 static int sb_finish_set_opts(struct super_block *sb) 414 { 415 struct superblock_security_struct *sbsec = sb->s_security; 416 struct dentry *root = sb->s_root; 417 struct inode *root_inode = root->d_inode; 418 int rc = 0; 419 420 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 421 /* Make sure that the xattr handler exists and that no 422 error other than -ENODATA is returned by getxattr on 423 the root directory. -ENODATA is ok, as this may be 424 the first boot of the SELinux kernel before we have 425 assigned xattr values to the filesystem. */ 426 if (!root_inode->i_op->getxattr) { 427 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no " 428 "xattr support\n", sb->s_id, sb->s_type->name); 429 rc = -EOPNOTSUPP; 430 goto out; 431 } 432 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0); 433 if (rc < 0 && rc != -ENODATA) { 434 if (rc == -EOPNOTSUPP) 435 printk(KERN_WARNING "SELinux: (dev %s, type " 436 "%s) has no security xattr handler\n", 437 sb->s_id, sb->s_type->name); 438 else 439 printk(KERN_WARNING "SELinux: (dev %s, type " 440 "%s) getxattr errno %d\n", sb->s_id, 441 sb->s_type->name, -rc); 442 goto out; 443 } 444 } 445 446 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) 447 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n", 448 sb->s_id, sb->s_type->name); 449 450 sbsec->flags |= SE_SBINITIALIZED; 451 if (selinux_is_sblabel_mnt(sb)) 452 sbsec->flags |= SBLABEL_MNT; 453 454 /* Initialize the root inode. */ 455 rc = inode_doinit_with_dentry(root_inode, root); 456 457 /* Initialize any other inodes associated with the superblock, e.g. 458 inodes created prior to initial policy load or inodes created 459 during get_sb by a pseudo filesystem that directly 460 populates itself. */ 461 spin_lock(&sbsec->isec_lock); 462 next_inode: 463 if (!list_empty(&sbsec->isec_head)) { 464 struct inode_security_struct *isec = 465 list_entry(sbsec->isec_head.next, 466 struct inode_security_struct, list); 467 struct inode *inode = isec->inode; 468 list_del_init(&isec->list); 469 spin_unlock(&sbsec->isec_lock); 470 inode = igrab(inode); 471 if (inode) { 472 if (!IS_PRIVATE(inode)) 473 inode_doinit(inode); 474 iput(inode); 475 } 476 spin_lock(&sbsec->isec_lock); 477 goto next_inode; 478 } 479 spin_unlock(&sbsec->isec_lock); 480 out: 481 return rc; 482 } 483 484 /* 485 * This function should allow an FS to ask what it's mount security 486 * options were so it can use those later for submounts, displaying 487 * mount options, or whatever. 488 */ 489 static int selinux_get_mnt_opts(const struct super_block *sb, 490 struct security_mnt_opts *opts) 491 { 492 int rc = 0, i; 493 struct superblock_security_struct *sbsec = sb->s_security; 494 char *context = NULL; 495 u32 len; 496 char tmp; 497 498 security_init_mnt_opts(opts); 499 500 if (!(sbsec->flags & SE_SBINITIALIZED)) 501 return -EINVAL; 502 503 if (!ss_initialized) 504 return -EINVAL; 505 506 /* make sure we always check enough bits to cover the mask */ 507 BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS)); 508 509 tmp = sbsec->flags & SE_MNTMASK; 510 /* count the number of mount options for this sb */ 511 for (i = 0; i < NUM_SEL_MNT_OPTS; i++) { 512 if (tmp & 0x01) 513 opts->num_mnt_opts++; 514 tmp >>= 1; 515 } 516 /* Check if the Label support flag is set */ 517 if (sbsec->flags & SBLABEL_MNT) 518 opts->num_mnt_opts++; 519 520 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC); 521 if (!opts->mnt_opts) { 522 rc = -ENOMEM; 523 goto out_free; 524 } 525 526 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC); 527 if (!opts->mnt_opts_flags) { 528 rc = -ENOMEM; 529 goto out_free; 530 } 531 532 i = 0; 533 if (sbsec->flags & FSCONTEXT_MNT) { 534 rc = security_sid_to_context(sbsec->sid, &context, &len); 535 if (rc) 536 goto out_free; 537 opts->mnt_opts[i] = context; 538 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT; 539 } 540 if (sbsec->flags & CONTEXT_MNT) { 541 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len); 542 if (rc) 543 goto out_free; 544 opts->mnt_opts[i] = context; 545 opts->mnt_opts_flags[i++] = CONTEXT_MNT; 546 } 547 if (sbsec->flags & DEFCONTEXT_MNT) { 548 rc = security_sid_to_context(sbsec->def_sid, &context, &len); 549 if (rc) 550 goto out_free; 551 opts->mnt_opts[i] = context; 552 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT; 553 } 554 if (sbsec->flags & ROOTCONTEXT_MNT) { 555 struct inode *root = sbsec->sb->s_root->d_inode; 556 struct inode_security_struct *isec = root->i_security; 557 558 rc = security_sid_to_context(isec->sid, &context, &len); 559 if (rc) 560 goto out_free; 561 opts->mnt_opts[i] = context; 562 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT; 563 } 564 if (sbsec->flags & SBLABEL_MNT) { 565 opts->mnt_opts[i] = NULL; 566 opts->mnt_opts_flags[i++] = SBLABEL_MNT; 567 } 568 569 BUG_ON(i != opts->num_mnt_opts); 570 571 return 0; 572 573 out_free: 574 security_free_mnt_opts(opts); 575 return rc; 576 } 577 578 static int bad_option(struct superblock_security_struct *sbsec, char flag, 579 u32 old_sid, u32 new_sid) 580 { 581 char mnt_flags = sbsec->flags & SE_MNTMASK; 582 583 /* check if the old mount command had the same options */ 584 if (sbsec->flags & SE_SBINITIALIZED) 585 if (!(sbsec->flags & flag) || 586 (old_sid != new_sid)) 587 return 1; 588 589 /* check if we were passed the same options twice, 590 * aka someone passed context=a,context=b 591 */ 592 if (!(sbsec->flags & SE_SBINITIALIZED)) 593 if (mnt_flags & flag) 594 return 1; 595 return 0; 596 } 597 598 /* 599 * Allow filesystems with binary mount data to explicitly set mount point 600 * labeling information. 601 */ 602 static int selinux_set_mnt_opts(struct super_block *sb, 603 struct security_mnt_opts *opts, 604 unsigned long kern_flags, 605 unsigned long *set_kern_flags) 606 { 607 const struct cred *cred = current_cred(); 608 int rc = 0, i; 609 struct superblock_security_struct *sbsec = sb->s_security; 610 const char *name = sb->s_type->name; 611 struct inode *inode = sbsec->sb->s_root->d_inode; 612 struct inode_security_struct *root_isec = inode->i_security; 613 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; 614 u32 defcontext_sid = 0; 615 char **mount_options = opts->mnt_opts; 616 int *flags = opts->mnt_opts_flags; 617 int num_opts = opts->num_mnt_opts; 618 619 mutex_lock(&sbsec->lock); 620 621 if (!ss_initialized) { 622 if (!num_opts) { 623 /* Defer initialization until selinux_complete_init, 624 after the initial policy is loaded and the security 625 server is ready to handle calls. */ 626 goto out; 627 } 628 rc = -EINVAL; 629 printk(KERN_WARNING "SELinux: Unable to set superblock options " 630 "before the security server is initialized\n"); 631 goto out; 632 } 633 if (kern_flags && !set_kern_flags) { 634 /* Specifying internal flags without providing a place to 635 * place the results is not allowed */ 636 rc = -EINVAL; 637 goto out; 638 } 639 640 /* 641 * Binary mount data FS will come through this function twice. Once 642 * from an explicit call and once from the generic calls from the vfs. 643 * Since the generic VFS calls will not contain any security mount data 644 * we need to skip the double mount verification. 645 * 646 * This does open a hole in which we will not notice if the first 647 * mount using this sb set explict options and a second mount using 648 * this sb does not set any security options. (The first options 649 * will be used for both mounts) 650 */ 651 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 652 && (num_opts == 0)) 653 goto out; 654 655 /* 656 * parse the mount options, check if they are valid sids. 657 * also check if someone is trying to mount the same sb more 658 * than once with different security options. 659 */ 660 for (i = 0; i < num_opts; i++) { 661 u32 sid; 662 663 if (flags[i] == SBLABEL_MNT) 664 continue; 665 rc = security_context_to_sid(mount_options[i], 666 strlen(mount_options[i]), &sid, GFP_KERNEL); 667 if (rc) { 668 printk(KERN_WARNING "SELinux: security_context_to_sid" 669 "(%s) failed for (dev %s, type %s) errno=%d\n", 670 mount_options[i], sb->s_id, name, rc); 671 goto out; 672 } 673 switch (flags[i]) { 674 case FSCONTEXT_MNT: 675 fscontext_sid = sid; 676 677 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 678 fscontext_sid)) 679 goto out_double_mount; 680 681 sbsec->flags |= FSCONTEXT_MNT; 682 break; 683 case CONTEXT_MNT: 684 context_sid = sid; 685 686 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 687 context_sid)) 688 goto out_double_mount; 689 690 sbsec->flags |= CONTEXT_MNT; 691 break; 692 case ROOTCONTEXT_MNT: 693 rootcontext_sid = sid; 694 695 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 696 rootcontext_sid)) 697 goto out_double_mount; 698 699 sbsec->flags |= ROOTCONTEXT_MNT; 700 701 break; 702 case DEFCONTEXT_MNT: 703 defcontext_sid = sid; 704 705 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 706 defcontext_sid)) 707 goto out_double_mount; 708 709 sbsec->flags |= DEFCONTEXT_MNT; 710 711 break; 712 default: 713 rc = -EINVAL; 714 goto out; 715 } 716 } 717 718 if (sbsec->flags & SE_SBINITIALIZED) { 719 /* previously mounted with options, but not on this attempt? */ 720 if ((sbsec->flags & SE_MNTMASK) && !num_opts) 721 goto out_double_mount; 722 rc = 0; 723 goto out; 724 } 725 726 if (strcmp(sb->s_type->name, "proc") == 0) 727 sbsec->flags |= SE_SBPROC; 728 729 if (!sbsec->behavior) { 730 /* 731 * Determine the labeling behavior to use for this 732 * filesystem type. 733 */ 734 rc = security_fs_use(sb); 735 if (rc) { 736 printk(KERN_WARNING 737 "%s: security_fs_use(%s) returned %d\n", 738 __func__, sb->s_type->name, rc); 739 goto out; 740 } 741 } 742 /* sets the context of the superblock for the fs being mounted. */ 743 if (fscontext_sid) { 744 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred); 745 if (rc) 746 goto out; 747 748 sbsec->sid = fscontext_sid; 749 } 750 751 /* 752 * Switch to using mount point labeling behavior. 753 * sets the label used on all file below the mountpoint, and will set 754 * the superblock context if not already set. 755 */ 756 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) { 757 sbsec->behavior = SECURITY_FS_USE_NATIVE; 758 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 759 } 760 761 if (context_sid) { 762 if (!fscontext_sid) { 763 rc = may_context_mount_sb_relabel(context_sid, sbsec, 764 cred); 765 if (rc) 766 goto out; 767 sbsec->sid = context_sid; 768 } else { 769 rc = may_context_mount_inode_relabel(context_sid, sbsec, 770 cred); 771 if (rc) 772 goto out; 773 } 774 if (!rootcontext_sid) 775 rootcontext_sid = context_sid; 776 777 sbsec->mntpoint_sid = context_sid; 778 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 779 } 780 781 if (rootcontext_sid) { 782 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, 783 cred); 784 if (rc) 785 goto out; 786 787 root_isec->sid = rootcontext_sid; 788 root_isec->initialized = 1; 789 } 790 791 if (defcontext_sid) { 792 if (sbsec->behavior != SECURITY_FS_USE_XATTR && 793 sbsec->behavior != SECURITY_FS_USE_NATIVE) { 794 rc = -EINVAL; 795 printk(KERN_WARNING "SELinux: defcontext option is " 796 "invalid for this filesystem type\n"); 797 goto out; 798 } 799 800 if (defcontext_sid != sbsec->def_sid) { 801 rc = may_context_mount_inode_relabel(defcontext_sid, 802 sbsec, cred); 803 if (rc) 804 goto out; 805 } 806 807 sbsec->def_sid = defcontext_sid; 808 } 809 810 rc = sb_finish_set_opts(sb); 811 out: 812 mutex_unlock(&sbsec->lock); 813 return rc; 814 out_double_mount: 815 rc = -EINVAL; 816 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different " 817 "security settings for (dev %s, type %s)\n", sb->s_id, name); 818 goto out; 819 } 820 821 static int selinux_cmp_sb_context(const struct super_block *oldsb, 822 const struct super_block *newsb) 823 { 824 struct superblock_security_struct *old = oldsb->s_security; 825 struct superblock_security_struct *new = newsb->s_security; 826 char oldflags = old->flags & SE_MNTMASK; 827 char newflags = new->flags & SE_MNTMASK; 828 829 if (oldflags != newflags) 830 goto mismatch; 831 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid) 832 goto mismatch; 833 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid) 834 goto mismatch; 835 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid) 836 goto mismatch; 837 if (oldflags & ROOTCONTEXT_MNT) { 838 struct inode_security_struct *oldroot = oldsb->s_root->d_inode->i_security; 839 struct inode_security_struct *newroot = newsb->s_root->d_inode->i_security; 840 if (oldroot->sid != newroot->sid) 841 goto mismatch; 842 } 843 return 0; 844 mismatch: 845 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, " 846 "different security settings for (dev %s, " 847 "type %s)\n", newsb->s_id, newsb->s_type->name); 848 return -EBUSY; 849 } 850 851 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb, 852 struct super_block *newsb) 853 { 854 const struct superblock_security_struct *oldsbsec = oldsb->s_security; 855 struct superblock_security_struct *newsbsec = newsb->s_security; 856 857 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); 858 int set_context = (oldsbsec->flags & CONTEXT_MNT); 859 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); 860 861 /* 862 * if the parent was able to be mounted it clearly had no special lsm 863 * mount options. thus we can safely deal with this superblock later 864 */ 865 if (!ss_initialized) 866 return 0; 867 868 /* how can we clone if the old one wasn't set up?? */ 869 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED)); 870 871 /* if fs is reusing a sb, make sure that the contexts match */ 872 if (newsbsec->flags & SE_SBINITIALIZED) 873 return selinux_cmp_sb_context(oldsb, newsb); 874 875 mutex_lock(&newsbsec->lock); 876 877 newsbsec->flags = oldsbsec->flags; 878 879 newsbsec->sid = oldsbsec->sid; 880 newsbsec->def_sid = oldsbsec->def_sid; 881 newsbsec->behavior = oldsbsec->behavior; 882 883 if (set_context) { 884 u32 sid = oldsbsec->mntpoint_sid; 885 886 if (!set_fscontext) 887 newsbsec->sid = sid; 888 if (!set_rootcontext) { 889 struct inode *newinode = newsb->s_root->d_inode; 890 struct inode_security_struct *newisec = newinode->i_security; 891 newisec->sid = sid; 892 } 893 newsbsec->mntpoint_sid = sid; 894 } 895 if (set_rootcontext) { 896 const struct inode *oldinode = oldsb->s_root->d_inode; 897 const struct inode_security_struct *oldisec = oldinode->i_security; 898 struct inode *newinode = newsb->s_root->d_inode; 899 struct inode_security_struct *newisec = newinode->i_security; 900 901 newisec->sid = oldisec->sid; 902 } 903 904 sb_finish_set_opts(newsb); 905 mutex_unlock(&newsbsec->lock); 906 return 0; 907 } 908 909 static int selinux_parse_opts_str(char *options, 910 struct security_mnt_opts *opts) 911 { 912 char *p; 913 char *context = NULL, *defcontext = NULL; 914 char *fscontext = NULL, *rootcontext = NULL; 915 int rc, num_mnt_opts = 0; 916 917 opts->num_mnt_opts = 0; 918 919 /* Standard string-based options. */ 920 while ((p = strsep(&options, "|")) != NULL) { 921 int token; 922 substring_t args[MAX_OPT_ARGS]; 923 924 if (!*p) 925 continue; 926 927 token = match_token(p, tokens, args); 928 929 switch (token) { 930 case Opt_context: 931 if (context || defcontext) { 932 rc = -EINVAL; 933 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 934 goto out_err; 935 } 936 context = match_strdup(&args[0]); 937 if (!context) { 938 rc = -ENOMEM; 939 goto out_err; 940 } 941 break; 942 943 case Opt_fscontext: 944 if (fscontext) { 945 rc = -EINVAL; 946 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 947 goto out_err; 948 } 949 fscontext = match_strdup(&args[0]); 950 if (!fscontext) { 951 rc = -ENOMEM; 952 goto out_err; 953 } 954 break; 955 956 case Opt_rootcontext: 957 if (rootcontext) { 958 rc = -EINVAL; 959 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 960 goto out_err; 961 } 962 rootcontext = match_strdup(&args[0]); 963 if (!rootcontext) { 964 rc = -ENOMEM; 965 goto out_err; 966 } 967 break; 968 969 case Opt_defcontext: 970 if (context || defcontext) { 971 rc = -EINVAL; 972 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 973 goto out_err; 974 } 975 defcontext = match_strdup(&args[0]); 976 if (!defcontext) { 977 rc = -ENOMEM; 978 goto out_err; 979 } 980 break; 981 case Opt_labelsupport: 982 break; 983 default: 984 rc = -EINVAL; 985 printk(KERN_WARNING "SELinux: unknown mount option\n"); 986 goto out_err; 987 988 } 989 } 990 991 rc = -ENOMEM; 992 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC); 993 if (!opts->mnt_opts) 994 goto out_err; 995 996 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC); 997 if (!opts->mnt_opts_flags) { 998 kfree(opts->mnt_opts); 999 goto out_err; 1000 } 1001 1002 if (fscontext) { 1003 opts->mnt_opts[num_mnt_opts] = fscontext; 1004 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT; 1005 } 1006 if (context) { 1007 opts->mnt_opts[num_mnt_opts] = context; 1008 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT; 1009 } 1010 if (rootcontext) { 1011 opts->mnt_opts[num_mnt_opts] = rootcontext; 1012 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT; 1013 } 1014 if (defcontext) { 1015 opts->mnt_opts[num_mnt_opts] = defcontext; 1016 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT; 1017 } 1018 1019 opts->num_mnt_opts = num_mnt_opts; 1020 return 0; 1021 1022 out_err: 1023 kfree(context); 1024 kfree(defcontext); 1025 kfree(fscontext); 1026 kfree(rootcontext); 1027 return rc; 1028 } 1029 /* 1030 * string mount options parsing and call set the sbsec 1031 */ 1032 static int superblock_doinit(struct super_block *sb, void *data) 1033 { 1034 int rc = 0; 1035 char *options = data; 1036 struct security_mnt_opts opts; 1037 1038 security_init_mnt_opts(&opts); 1039 1040 if (!data) 1041 goto out; 1042 1043 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA); 1044 1045 rc = selinux_parse_opts_str(options, &opts); 1046 if (rc) 1047 goto out_err; 1048 1049 out: 1050 rc = selinux_set_mnt_opts(sb, &opts, 0, NULL); 1051 1052 out_err: 1053 security_free_mnt_opts(&opts); 1054 return rc; 1055 } 1056 1057 static void selinux_write_opts(struct seq_file *m, 1058 struct security_mnt_opts *opts) 1059 { 1060 int i; 1061 char *prefix; 1062 1063 for (i = 0; i < opts->num_mnt_opts; i++) { 1064 char *has_comma; 1065 1066 if (opts->mnt_opts[i]) 1067 has_comma = strchr(opts->mnt_opts[i], ','); 1068 else 1069 has_comma = NULL; 1070 1071 switch (opts->mnt_opts_flags[i]) { 1072 case CONTEXT_MNT: 1073 prefix = CONTEXT_STR; 1074 break; 1075 case FSCONTEXT_MNT: 1076 prefix = FSCONTEXT_STR; 1077 break; 1078 case ROOTCONTEXT_MNT: 1079 prefix = ROOTCONTEXT_STR; 1080 break; 1081 case DEFCONTEXT_MNT: 1082 prefix = DEFCONTEXT_STR; 1083 break; 1084 case SBLABEL_MNT: 1085 seq_putc(m, ','); 1086 seq_puts(m, LABELSUPP_STR); 1087 continue; 1088 default: 1089 BUG(); 1090 return; 1091 }; 1092 /* we need a comma before each option */ 1093 seq_putc(m, ','); 1094 seq_puts(m, prefix); 1095 if (has_comma) 1096 seq_putc(m, '\"'); 1097 seq_puts(m, opts->mnt_opts[i]); 1098 if (has_comma) 1099 seq_putc(m, '\"'); 1100 } 1101 } 1102 1103 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb) 1104 { 1105 struct security_mnt_opts opts; 1106 int rc; 1107 1108 rc = selinux_get_mnt_opts(sb, &opts); 1109 if (rc) { 1110 /* before policy load we may get EINVAL, don't show anything */ 1111 if (rc == -EINVAL) 1112 rc = 0; 1113 return rc; 1114 } 1115 1116 selinux_write_opts(m, &opts); 1117 1118 security_free_mnt_opts(&opts); 1119 1120 return rc; 1121 } 1122 1123 static inline u16 inode_mode_to_security_class(umode_t mode) 1124 { 1125 switch (mode & S_IFMT) { 1126 case S_IFSOCK: 1127 return SECCLASS_SOCK_FILE; 1128 case S_IFLNK: 1129 return SECCLASS_LNK_FILE; 1130 case S_IFREG: 1131 return SECCLASS_FILE; 1132 case S_IFBLK: 1133 return SECCLASS_BLK_FILE; 1134 case S_IFDIR: 1135 return SECCLASS_DIR; 1136 case S_IFCHR: 1137 return SECCLASS_CHR_FILE; 1138 case S_IFIFO: 1139 return SECCLASS_FIFO_FILE; 1140 1141 } 1142 1143 return SECCLASS_FILE; 1144 } 1145 1146 static inline int default_protocol_stream(int protocol) 1147 { 1148 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP); 1149 } 1150 1151 static inline int default_protocol_dgram(int protocol) 1152 { 1153 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 1154 } 1155 1156 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 1157 { 1158 switch (family) { 1159 case PF_UNIX: 1160 switch (type) { 1161 case SOCK_STREAM: 1162 case SOCK_SEQPACKET: 1163 return SECCLASS_UNIX_STREAM_SOCKET; 1164 case SOCK_DGRAM: 1165 return SECCLASS_UNIX_DGRAM_SOCKET; 1166 } 1167 break; 1168 case PF_INET: 1169 case PF_INET6: 1170 switch (type) { 1171 case SOCK_STREAM: 1172 if (default_protocol_stream(protocol)) 1173 return SECCLASS_TCP_SOCKET; 1174 else 1175 return SECCLASS_RAWIP_SOCKET; 1176 case SOCK_DGRAM: 1177 if (default_protocol_dgram(protocol)) 1178 return SECCLASS_UDP_SOCKET; 1179 else 1180 return SECCLASS_RAWIP_SOCKET; 1181 case SOCK_DCCP: 1182 return SECCLASS_DCCP_SOCKET; 1183 default: 1184 return SECCLASS_RAWIP_SOCKET; 1185 } 1186 break; 1187 case PF_NETLINK: 1188 switch (protocol) { 1189 case NETLINK_ROUTE: 1190 return SECCLASS_NETLINK_ROUTE_SOCKET; 1191 case NETLINK_FIREWALL: 1192 return SECCLASS_NETLINK_FIREWALL_SOCKET; 1193 case NETLINK_SOCK_DIAG: 1194 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 1195 case NETLINK_NFLOG: 1196 return SECCLASS_NETLINK_NFLOG_SOCKET; 1197 case NETLINK_XFRM: 1198 return SECCLASS_NETLINK_XFRM_SOCKET; 1199 case NETLINK_SELINUX: 1200 return SECCLASS_NETLINK_SELINUX_SOCKET; 1201 case NETLINK_AUDIT: 1202 return SECCLASS_NETLINK_AUDIT_SOCKET; 1203 case NETLINK_IP6_FW: 1204 return SECCLASS_NETLINK_IP6FW_SOCKET; 1205 case NETLINK_DNRTMSG: 1206 return SECCLASS_NETLINK_DNRT_SOCKET; 1207 case NETLINK_KOBJECT_UEVENT: 1208 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 1209 default: 1210 return SECCLASS_NETLINK_SOCKET; 1211 } 1212 case PF_PACKET: 1213 return SECCLASS_PACKET_SOCKET; 1214 case PF_KEY: 1215 return SECCLASS_KEY_SOCKET; 1216 case PF_APPLETALK: 1217 return SECCLASS_APPLETALK_SOCKET; 1218 } 1219 1220 return SECCLASS_SOCKET; 1221 } 1222 1223 #ifdef CONFIG_PROC_FS 1224 static int selinux_proc_get_sid(struct dentry *dentry, 1225 u16 tclass, 1226 u32 *sid) 1227 { 1228 int rc; 1229 char *buffer, *path; 1230 1231 buffer = (char *)__get_free_page(GFP_KERNEL); 1232 if (!buffer) 1233 return -ENOMEM; 1234 1235 path = dentry_path_raw(dentry, buffer, PAGE_SIZE); 1236 if (IS_ERR(path)) 1237 rc = PTR_ERR(path); 1238 else { 1239 /* each process gets a /proc/PID/ entry. Strip off the 1240 * PID part to get a valid selinux labeling. 1241 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */ 1242 while (path[1] >= '0' && path[1] <= '9') { 1243 path[1] = '/'; 1244 path++; 1245 } 1246 rc = security_genfs_sid("proc", path, tclass, sid); 1247 } 1248 free_page((unsigned long)buffer); 1249 return rc; 1250 } 1251 #else 1252 static int selinux_proc_get_sid(struct dentry *dentry, 1253 u16 tclass, 1254 u32 *sid) 1255 { 1256 return -EINVAL; 1257 } 1258 #endif 1259 1260 /* The inode's security attributes must be initialized before first use. */ 1261 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 1262 { 1263 struct superblock_security_struct *sbsec = NULL; 1264 struct inode_security_struct *isec = inode->i_security; 1265 u32 sid; 1266 struct dentry *dentry; 1267 #define INITCONTEXTLEN 255 1268 char *context = NULL; 1269 unsigned len = 0; 1270 int rc = 0; 1271 1272 if (isec->initialized) 1273 goto out; 1274 1275 mutex_lock(&isec->lock); 1276 if (isec->initialized) 1277 goto out_unlock; 1278 1279 sbsec = inode->i_sb->s_security; 1280 if (!(sbsec->flags & SE_SBINITIALIZED)) { 1281 /* Defer initialization until selinux_complete_init, 1282 after the initial policy is loaded and the security 1283 server is ready to handle calls. */ 1284 spin_lock(&sbsec->isec_lock); 1285 if (list_empty(&isec->list)) 1286 list_add(&isec->list, &sbsec->isec_head); 1287 spin_unlock(&sbsec->isec_lock); 1288 goto out_unlock; 1289 } 1290 1291 switch (sbsec->behavior) { 1292 case SECURITY_FS_USE_NATIVE: 1293 break; 1294 case SECURITY_FS_USE_XATTR: 1295 if (!inode->i_op->getxattr) { 1296 isec->sid = sbsec->def_sid; 1297 break; 1298 } 1299 1300 /* Need a dentry, since the xattr API requires one. 1301 Life would be simpler if we could just pass the inode. */ 1302 if (opt_dentry) { 1303 /* Called from d_instantiate or d_splice_alias. */ 1304 dentry = dget(opt_dentry); 1305 } else { 1306 /* Called from selinux_complete_init, try to find a dentry. */ 1307 dentry = d_find_alias(inode); 1308 } 1309 if (!dentry) { 1310 /* 1311 * this is can be hit on boot when a file is accessed 1312 * before the policy is loaded. When we load policy we 1313 * may find inodes that have no dentry on the 1314 * sbsec->isec_head list. No reason to complain as these 1315 * will get fixed up the next time we go through 1316 * inode_doinit with a dentry, before these inodes could 1317 * be used again by userspace. 1318 */ 1319 goto out_unlock; 1320 } 1321 1322 len = INITCONTEXTLEN; 1323 context = kmalloc(len+1, GFP_NOFS); 1324 if (!context) { 1325 rc = -ENOMEM; 1326 dput(dentry); 1327 goto out_unlock; 1328 } 1329 context[len] = '\0'; 1330 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1331 context, len); 1332 if (rc == -ERANGE) { 1333 kfree(context); 1334 1335 /* Need a larger buffer. Query for the right size. */ 1336 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1337 NULL, 0); 1338 if (rc < 0) { 1339 dput(dentry); 1340 goto out_unlock; 1341 } 1342 len = rc; 1343 context = kmalloc(len+1, GFP_NOFS); 1344 if (!context) { 1345 rc = -ENOMEM; 1346 dput(dentry); 1347 goto out_unlock; 1348 } 1349 context[len] = '\0'; 1350 rc = inode->i_op->getxattr(dentry, 1351 XATTR_NAME_SELINUX, 1352 context, len); 1353 } 1354 dput(dentry); 1355 if (rc < 0) { 1356 if (rc != -ENODATA) { 1357 printk(KERN_WARNING "SELinux: %s: getxattr returned " 1358 "%d for dev=%s ino=%ld\n", __func__, 1359 -rc, inode->i_sb->s_id, inode->i_ino); 1360 kfree(context); 1361 goto out_unlock; 1362 } 1363 /* Map ENODATA to the default file SID */ 1364 sid = sbsec->def_sid; 1365 rc = 0; 1366 } else { 1367 rc = security_context_to_sid_default(context, rc, &sid, 1368 sbsec->def_sid, 1369 GFP_NOFS); 1370 if (rc) { 1371 char *dev = inode->i_sb->s_id; 1372 unsigned long ino = inode->i_ino; 1373 1374 if (rc == -EINVAL) { 1375 if (printk_ratelimit()) 1376 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid " 1377 "context=%s. This indicates you may need to relabel the inode or the " 1378 "filesystem in question.\n", ino, dev, context); 1379 } else { 1380 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) " 1381 "returned %d for dev=%s ino=%ld\n", 1382 __func__, context, -rc, dev, ino); 1383 } 1384 kfree(context); 1385 /* Leave with the unlabeled SID */ 1386 rc = 0; 1387 break; 1388 } 1389 } 1390 kfree(context); 1391 isec->sid = sid; 1392 break; 1393 case SECURITY_FS_USE_TASK: 1394 isec->sid = isec->task_sid; 1395 break; 1396 case SECURITY_FS_USE_TRANS: 1397 /* Default to the fs SID. */ 1398 isec->sid = sbsec->sid; 1399 1400 /* Try to obtain a transition SID. */ 1401 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1402 rc = security_transition_sid(isec->task_sid, sbsec->sid, 1403 isec->sclass, NULL, &sid); 1404 if (rc) 1405 goto out_unlock; 1406 isec->sid = sid; 1407 break; 1408 case SECURITY_FS_USE_MNTPOINT: 1409 isec->sid = sbsec->mntpoint_sid; 1410 break; 1411 default: 1412 /* Default to the fs superblock SID. */ 1413 isec->sid = sbsec->sid; 1414 1415 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) { 1416 /* We must have a dentry to determine the label on 1417 * procfs inodes */ 1418 if (opt_dentry) 1419 /* Called from d_instantiate or 1420 * d_splice_alias. */ 1421 dentry = dget(opt_dentry); 1422 else 1423 /* Called from selinux_complete_init, try to 1424 * find a dentry. */ 1425 dentry = d_find_alias(inode); 1426 /* 1427 * This can be hit on boot when a file is accessed 1428 * before the policy is loaded. When we load policy we 1429 * may find inodes that have no dentry on the 1430 * sbsec->isec_head list. No reason to complain as 1431 * these will get fixed up the next time we go through 1432 * inode_doinit() with a dentry, before these inodes 1433 * could be used again by userspace. 1434 */ 1435 if (!dentry) 1436 goto out_unlock; 1437 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1438 rc = selinux_proc_get_sid(dentry, isec->sclass, &sid); 1439 dput(dentry); 1440 if (rc) 1441 goto out_unlock; 1442 isec->sid = sid; 1443 } 1444 break; 1445 } 1446 1447 isec->initialized = 1; 1448 1449 out_unlock: 1450 mutex_unlock(&isec->lock); 1451 out: 1452 if (isec->sclass == SECCLASS_FILE) 1453 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1454 return rc; 1455 } 1456 1457 /* Convert a Linux signal to an access vector. */ 1458 static inline u32 signal_to_av(int sig) 1459 { 1460 u32 perm = 0; 1461 1462 switch (sig) { 1463 case SIGCHLD: 1464 /* Commonly granted from child to parent. */ 1465 perm = PROCESS__SIGCHLD; 1466 break; 1467 case SIGKILL: 1468 /* Cannot be caught or ignored */ 1469 perm = PROCESS__SIGKILL; 1470 break; 1471 case SIGSTOP: 1472 /* Cannot be caught or ignored */ 1473 perm = PROCESS__SIGSTOP; 1474 break; 1475 default: 1476 /* All other signals. */ 1477 perm = PROCESS__SIGNAL; 1478 break; 1479 } 1480 1481 return perm; 1482 } 1483 1484 /* 1485 * Check permission between a pair of credentials 1486 * fork check, ptrace check, etc. 1487 */ 1488 static int cred_has_perm(const struct cred *actor, 1489 const struct cred *target, 1490 u32 perms) 1491 { 1492 u32 asid = cred_sid(actor), tsid = cred_sid(target); 1493 1494 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL); 1495 } 1496 1497 /* 1498 * Check permission between a pair of tasks, e.g. signal checks, 1499 * fork check, ptrace check, etc. 1500 * tsk1 is the actor and tsk2 is the target 1501 * - this uses the default subjective creds of tsk1 1502 */ 1503 static int task_has_perm(const struct task_struct *tsk1, 1504 const struct task_struct *tsk2, 1505 u32 perms) 1506 { 1507 const struct task_security_struct *__tsec1, *__tsec2; 1508 u32 sid1, sid2; 1509 1510 rcu_read_lock(); 1511 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid; 1512 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid; 1513 rcu_read_unlock(); 1514 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL); 1515 } 1516 1517 /* 1518 * Check permission between current and another task, e.g. signal checks, 1519 * fork check, ptrace check, etc. 1520 * current is the actor and tsk2 is the target 1521 * - this uses current's subjective creds 1522 */ 1523 static int current_has_perm(const struct task_struct *tsk, 1524 u32 perms) 1525 { 1526 u32 sid, tsid; 1527 1528 sid = current_sid(); 1529 tsid = task_sid(tsk); 1530 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL); 1531 } 1532 1533 #if CAP_LAST_CAP > 63 1534 #error Fix SELinux to handle capabilities > 63. 1535 #endif 1536 1537 /* Check whether a task is allowed to use a capability. */ 1538 static int cred_has_capability(const struct cred *cred, 1539 int cap, int audit) 1540 { 1541 struct common_audit_data ad; 1542 struct av_decision avd; 1543 u16 sclass; 1544 u32 sid = cred_sid(cred); 1545 u32 av = CAP_TO_MASK(cap); 1546 int rc; 1547 1548 ad.type = LSM_AUDIT_DATA_CAP; 1549 ad.u.cap = cap; 1550 1551 switch (CAP_TO_INDEX(cap)) { 1552 case 0: 1553 sclass = SECCLASS_CAPABILITY; 1554 break; 1555 case 1: 1556 sclass = SECCLASS_CAPABILITY2; 1557 break; 1558 default: 1559 printk(KERN_ERR 1560 "SELinux: out of range capability %d\n", cap); 1561 BUG(); 1562 return -EINVAL; 1563 } 1564 1565 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd); 1566 if (audit == SECURITY_CAP_AUDIT) { 1567 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad); 1568 if (rc2) 1569 return rc2; 1570 } 1571 return rc; 1572 } 1573 1574 /* Check whether a task is allowed to use a system operation. */ 1575 static int task_has_system(struct task_struct *tsk, 1576 u32 perms) 1577 { 1578 u32 sid = task_sid(tsk); 1579 1580 return avc_has_perm(sid, SECINITSID_KERNEL, 1581 SECCLASS_SYSTEM, perms, NULL); 1582 } 1583 1584 /* Check whether a task has a particular permission to an inode. 1585 The 'adp' parameter is optional and allows other audit 1586 data to be passed (e.g. the dentry). */ 1587 static int inode_has_perm(const struct cred *cred, 1588 struct inode *inode, 1589 u32 perms, 1590 struct common_audit_data *adp) 1591 { 1592 struct inode_security_struct *isec; 1593 u32 sid; 1594 1595 validate_creds(cred); 1596 1597 if (unlikely(IS_PRIVATE(inode))) 1598 return 0; 1599 1600 sid = cred_sid(cred); 1601 isec = inode->i_security; 1602 1603 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp); 1604 } 1605 1606 /* Same as inode_has_perm, but pass explicit audit data containing 1607 the dentry to help the auditing code to more easily generate the 1608 pathname if needed. */ 1609 static inline int dentry_has_perm(const struct cred *cred, 1610 struct dentry *dentry, 1611 u32 av) 1612 { 1613 struct inode *inode = dentry->d_inode; 1614 struct common_audit_data ad; 1615 1616 ad.type = LSM_AUDIT_DATA_DENTRY; 1617 ad.u.dentry = dentry; 1618 return inode_has_perm(cred, inode, av, &ad); 1619 } 1620 1621 /* Same as inode_has_perm, but pass explicit audit data containing 1622 the path to help the auditing code to more easily generate the 1623 pathname if needed. */ 1624 static inline int path_has_perm(const struct cred *cred, 1625 struct path *path, 1626 u32 av) 1627 { 1628 struct inode *inode = path->dentry->d_inode; 1629 struct common_audit_data ad; 1630 1631 ad.type = LSM_AUDIT_DATA_PATH; 1632 ad.u.path = *path; 1633 return inode_has_perm(cred, inode, av, &ad); 1634 } 1635 1636 /* Same as path_has_perm, but uses the inode from the file struct. */ 1637 static inline int file_path_has_perm(const struct cred *cred, 1638 struct file *file, 1639 u32 av) 1640 { 1641 struct common_audit_data ad; 1642 1643 ad.type = LSM_AUDIT_DATA_PATH; 1644 ad.u.path = file->f_path; 1645 return inode_has_perm(cred, file_inode(file), av, &ad); 1646 } 1647 1648 /* Check whether a task can use an open file descriptor to 1649 access an inode in a given way. Check access to the 1650 descriptor itself, and then use dentry_has_perm to 1651 check a particular permission to the file. 1652 Access to the descriptor is implicitly granted if it 1653 has the same SID as the process. If av is zero, then 1654 access to the file is not checked, e.g. for cases 1655 where only the descriptor is affected like seek. */ 1656 static int file_has_perm(const struct cred *cred, 1657 struct file *file, 1658 u32 av) 1659 { 1660 struct file_security_struct *fsec = file->f_security; 1661 struct inode *inode = file_inode(file); 1662 struct common_audit_data ad; 1663 u32 sid = cred_sid(cred); 1664 int rc; 1665 1666 ad.type = LSM_AUDIT_DATA_PATH; 1667 ad.u.path = file->f_path; 1668 1669 if (sid != fsec->sid) { 1670 rc = avc_has_perm(sid, fsec->sid, 1671 SECCLASS_FD, 1672 FD__USE, 1673 &ad); 1674 if (rc) 1675 goto out; 1676 } 1677 1678 /* av is zero if only checking access to the descriptor. */ 1679 rc = 0; 1680 if (av) 1681 rc = inode_has_perm(cred, inode, av, &ad); 1682 1683 out: 1684 return rc; 1685 } 1686 1687 /* Check whether a task can create a file. */ 1688 static int may_create(struct inode *dir, 1689 struct dentry *dentry, 1690 u16 tclass) 1691 { 1692 const struct task_security_struct *tsec = current_security(); 1693 struct inode_security_struct *dsec; 1694 struct superblock_security_struct *sbsec; 1695 u32 sid, newsid; 1696 struct common_audit_data ad; 1697 int rc; 1698 1699 dsec = dir->i_security; 1700 sbsec = dir->i_sb->s_security; 1701 1702 sid = tsec->sid; 1703 newsid = tsec->create_sid; 1704 1705 ad.type = LSM_AUDIT_DATA_DENTRY; 1706 ad.u.dentry = dentry; 1707 1708 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, 1709 DIR__ADD_NAME | DIR__SEARCH, 1710 &ad); 1711 if (rc) 1712 return rc; 1713 1714 if (!newsid || !(sbsec->flags & SBLABEL_MNT)) { 1715 rc = security_transition_sid(sid, dsec->sid, tclass, 1716 &dentry->d_name, &newsid); 1717 if (rc) 1718 return rc; 1719 } 1720 1721 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad); 1722 if (rc) 1723 return rc; 1724 1725 return avc_has_perm(newsid, sbsec->sid, 1726 SECCLASS_FILESYSTEM, 1727 FILESYSTEM__ASSOCIATE, &ad); 1728 } 1729 1730 /* Check whether a task can create a key. */ 1731 static int may_create_key(u32 ksid, 1732 struct task_struct *ctx) 1733 { 1734 u32 sid = task_sid(ctx); 1735 1736 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL); 1737 } 1738 1739 #define MAY_LINK 0 1740 #define MAY_UNLINK 1 1741 #define MAY_RMDIR 2 1742 1743 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1744 static int may_link(struct inode *dir, 1745 struct dentry *dentry, 1746 int kind) 1747 1748 { 1749 struct inode_security_struct *dsec, *isec; 1750 struct common_audit_data ad; 1751 u32 sid = current_sid(); 1752 u32 av; 1753 int rc; 1754 1755 dsec = dir->i_security; 1756 isec = dentry->d_inode->i_security; 1757 1758 ad.type = LSM_AUDIT_DATA_DENTRY; 1759 ad.u.dentry = dentry; 1760 1761 av = DIR__SEARCH; 1762 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1763 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad); 1764 if (rc) 1765 return rc; 1766 1767 switch (kind) { 1768 case MAY_LINK: 1769 av = FILE__LINK; 1770 break; 1771 case MAY_UNLINK: 1772 av = FILE__UNLINK; 1773 break; 1774 case MAY_RMDIR: 1775 av = DIR__RMDIR; 1776 break; 1777 default: 1778 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n", 1779 __func__, kind); 1780 return 0; 1781 } 1782 1783 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad); 1784 return rc; 1785 } 1786 1787 static inline int may_rename(struct inode *old_dir, 1788 struct dentry *old_dentry, 1789 struct inode *new_dir, 1790 struct dentry *new_dentry) 1791 { 1792 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1793 struct common_audit_data ad; 1794 u32 sid = current_sid(); 1795 u32 av; 1796 int old_is_dir, new_is_dir; 1797 int rc; 1798 1799 old_dsec = old_dir->i_security; 1800 old_isec = old_dentry->d_inode->i_security; 1801 old_is_dir = d_is_dir(old_dentry); 1802 new_dsec = new_dir->i_security; 1803 1804 ad.type = LSM_AUDIT_DATA_DENTRY; 1805 1806 ad.u.dentry = old_dentry; 1807 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR, 1808 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1809 if (rc) 1810 return rc; 1811 rc = avc_has_perm(sid, old_isec->sid, 1812 old_isec->sclass, FILE__RENAME, &ad); 1813 if (rc) 1814 return rc; 1815 if (old_is_dir && new_dir != old_dir) { 1816 rc = avc_has_perm(sid, old_isec->sid, 1817 old_isec->sclass, DIR__REPARENT, &ad); 1818 if (rc) 1819 return rc; 1820 } 1821 1822 ad.u.dentry = new_dentry; 1823 av = DIR__ADD_NAME | DIR__SEARCH; 1824 if (d_is_positive(new_dentry)) 1825 av |= DIR__REMOVE_NAME; 1826 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1827 if (rc) 1828 return rc; 1829 if (d_is_positive(new_dentry)) { 1830 new_isec = new_dentry->d_inode->i_security; 1831 new_is_dir = d_is_dir(new_dentry); 1832 rc = avc_has_perm(sid, new_isec->sid, 1833 new_isec->sclass, 1834 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1835 if (rc) 1836 return rc; 1837 } 1838 1839 return 0; 1840 } 1841 1842 /* Check whether a task can perform a filesystem operation. */ 1843 static int superblock_has_perm(const struct cred *cred, 1844 struct super_block *sb, 1845 u32 perms, 1846 struct common_audit_data *ad) 1847 { 1848 struct superblock_security_struct *sbsec; 1849 u32 sid = cred_sid(cred); 1850 1851 sbsec = sb->s_security; 1852 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad); 1853 } 1854 1855 /* Convert a Linux mode and permission mask to an access vector. */ 1856 static inline u32 file_mask_to_av(int mode, int mask) 1857 { 1858 u32 av = 0; 1859 1860 if (!S_ISDIR(mode)) { 1861 if (mask & MAY_EXEC) 1862 av |= FILE__EXECUTE; 1863 if (mask & MAY_READ) 1864 av |= FILE__READ; 1865 1866 if (mask & MAY_APPEND) 1867 av |= FILE__APPEND; 1868 else if (mask & MAY_WRITE) 1869 av |= FILE__WRITE; 1870 1871 } else { 1872 if (mask & MAY_EXEC) 1873 av |= DIR__SEARCH; 1874 if (mask & MAY_WRITE) 1875 av |= DIR__WRITE; 1876 if (mask & MAY_READ) 1877 av |= DIR__READ; 1878 } 1879 1880 return av; 1881 } 1882 1883 /* Convert a Linux file to an access vector. */ 1884 static inline u32 file_to_av(struct file *file) 1885 { 1886 u32 av = 0; 1887 1888 if (file->f_mode & FMODE_READ) 1889 av |= FILE__READ; 1890 if (file->f_mode & FMODE_WRITE) { 1891 if (file->f_flags & O_APPEND) 1892 av |= FILE__APPEND; 1893 else 1894 av |= FILE__WRITE; 1895 } 1896 if (!av) { 1897 /* 1898 * Special file opened with flags 3 for ioctl-only use. 1899 */ 1900 av = FILE__IOCTL; 1901 } 1902 1903 return av; 1904 } 1905 1906 /* 1907 * Convert a file to an access vector and include the correct open 1908 * open permission. 1909 */ 1910 static inline u32 open_file_to_av(struct file *file) 1911 { 1912 u32 av = file_to_av(file); 1913 1914 if (selinux_policycap_openperm) 1915 av |= FILE__OPEN; 1916 1917 return av; 1918 } 1919 1920 /* Hook functions begin here. */ 1921 1922 static int selinux_binder_set_context_mgr(struct task_struct *mgr) 1923 { 1924 u32 mysid = current_sid(); 1925 u32 mgrsid = task_sid(mgr); 1926 1927 return avc_has_perm(mysid, mgrsid, SECCLASS_BINDER, 1928 BINDER__SET_CONTEXT_MGR, NULL); 1929 } 1930 1931 static int selinux_binder_transaction(struct task_struct *from, 1932 struct task_struct *to) 1933 { 1934 u32 mysid = current_sid(); 1935 u32 fromsid = task_sid(from); 1936 u32 tosid = task_sid(to); 1937 int rc; 1938 1939 if (mysid != fromsid) { 1940 rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER, 1941 BINDER__IMPERSONATE, NULL); 1942 if (rc) 1943 return rc; 1944 } 1945 1946 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__CALL, 1947 NULL); 1948 } 1949 1950 static int selinux_binder_transfer_binder(struct task_struct *from, 1951 struct task_struct *to) 1952 { 1953 u32 fromsid = task_sid(from); 1954 u32 tosid = task_sid(to); 1955 1956 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER, 1957 NULL); 1958 } 1959 1960 static int selinux_binder_transfer_file(struct task_struct *from, 1961 struct task_struct *to, 1962 struct file *file) 1963 { 1964 u32 sid = task_sid(to); 1965 struct file_security_struct *fsec = file->f_security; 1966 struct inode *inode = file->f_path.dentry->d_inode; 1967 struct inode_security_struct *isec = inode->i_security; 1968 struct common_audit_data ad; 1969 int rc; 1970 1971 ad.type = LSM_AUDIT_DATA_PATH; 1972 ad.u.path = file->f_path; 1973 1974 if (sid != fsec->sid) { 1975 rc = avc_has_perm(sid, fsec->sid, 1976 SECCLASS_FD, 1977 FD__USE, 1978 &ad); 1979 if (rc) 1980 return rc; 1981 } 1982 1983 if (unlikely(IS_PRIVATE(inode))) 1984 return 0; 1985 1986 return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file), 1987 &ad); 1988 } 1989 1990 static int selinux_ptrace_access_check(struct task_struct *child, 1991 unsigned int mode) 1992 { 1993 int rc; 1994 1995 rc = cap_ptrace_access_check(child, mode); 1996 if (rc) 1997 return rc; 1998 1999 if (mode & PTRACE_MODE_READ) { 2000 u32 sid = current_sid(); 2001 u32 csid = task_sid(child); 2002 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL); 2003 } 2004 2005 return current_has_perm(child, PROCESS__PTRACE); 2006 } 2007 2008 static int selinux_ptrace_traceme(struct task_struct *parent) 2009 { 2010 int rc; 2011 2012 rc = cap_ptrace_traceme(parent); 2013 if (rc) 2014 return rc; 2015 2016 return task_has_perm(parent, current, PROCESS__PTRACE); 2017 } 2018 2019 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective, 2020 kernel_cap_t *inheritable, kernel_cap_t *permitted) 2021 { 2022 int error; 2023 2024 error = current_has_perm(target, PROCESS__GETCAP); 2025 if (error) 2026 return error; 2027 2028 return cap_capget(target, effective, inheritable, permitted); 2029 } 2030 2031 static int selinux_capset(struct cred *new, const struct cred *old, 2032 const kernel_cap_t *effective, 2033 const kernel_cap_t *inheritable, 2034 const kernel_cap_t *permitted) 2035 { 2036 int error; 2037 2038 error = cap_capset(new, old, 2039 effective, inheritable, permitted); 2040 if (error) 2041 return error; 2042 2043 return cred_has_perm(old, new, PROCESS__SETCAP); 2044 } 2045 2046 /* 2047 * (This comment used to live with the selinux_task_setuid hook, 2048 * which was removed). 2049 * 2050 * Since setuid only affects the current process, and since the SELinux 2051 * controls are not based on the Linux identity attributes, SELinux does not 2052 * need to control this operation. However, SELinux does control the use of 2053 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook. 2054 */ 2055 2056 static int selinux_capable(const struct cred *cred, struct user_namespace *ns, 2057 int cap, int audit) 2058 { 2059 int rc; 2060 2061 rc = cap_capable(cred, ns, cap, audit); 2062 if (rc) 2063 return rc; 2064 2065 return cred_has_capability(cred, cap, audit); 2066 } 2067 2068 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) 2069 { 2070 const struct cred *cred = current_cred(); 2071 int rc = 0; 2072 2073 if (!sb) 2074 return 0; 2075 2076 switch (cmds) { 2077 case Q_SYNC: 2078 case Q_QUOTAON: 2079 case Q_QUOTAOFF: 2080 case Q_SETINFO: 2081 case Q_SETQUOTA: 2082 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL); 2083 break; 2084 case Q_GETFMT: 2085 case Q_GETINFO: 2086 case Q_GETQUOTA: 2087 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL); 2088 break; 2089 default: 2090 rc = 0; /* let the kernel handle invalid cmds */ 2091 break; 2092 } 2093 return rc; 2094 } 2095 2096 static int selinux_quota_on(struct dentry *dentry) 2097 { 2098 const struct cred *cred = current_cred(); 2099 2100 return dentry_has_perm(cred, dentry, FILE__QUOTAON); 2101 } 2102 2103 static int selinux_syslog(int type) 2104 { 2105 int rc; 2106 2107 switch (type) { 2108 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */ 2109 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */ 2110 rc = task_has_system(current, SYSTEM__SYSLOG_READ); 2111 break; 2112 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */ 2113 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */ 2114 /* Set level of messages printed to console */ 2115 case SYSLOG_ACTION_CONSOLE_LEVEL: 2116 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE); 2117 break; 2118 case SYSLOG_ACTION_CLOSE: /* Close log */ 2119 case SYSLOG_ACTION_OPEN: /* Open log */ 2120 case SYSLOG_ACTION_READ: /* Read from log */ 2121 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */ 2122 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */ 2123 default: 2124 rc = task_has_system(current, SYSTEM__SYSLOG_MOD); 2125 break; 2126 } 2127 return rc; 2128 } 2129 2130 /* 2131 * Check that a process has enough memory to allocate a new virtual 2132 * mapping. 0 means there is enough memory for the allocation to 2133 * succeed and -ENOMEM implies there is not. 2134 * 2135 * Do not audit the selinux permission check, as this is applied to all 2136 * processes that allocate mappings. 2137 */ 2138 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) 2139 { 2140 int rc, cap_sys_admin = 0; 2141 2142 rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN, 2143 SECURITY_CAP_NOAUDIT); 2144 if (rc == 0) 2145 cap_sys_admin = 1; 2146 2147 return __vm_enough_memory(mm, pages, cap_sys_admin); 2148 } 2149 2150 /* binprm security operations */ 2151 2152 static int check_nnp_nosuid(const struct linux_binprm *bprm, 2153 const struct task_security_struct *old_tsec, 2154 const struct task_security_struct *new_tsec) 2155 { 2156 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS); 2157 int nosuid = (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID); 2158 int rc; 2159 2160 if (!nnp && !nosuid) 2161 return 0; /* neither NNP nor nosuid */ 2162 2163 if (new_tsec->sid == old_tsec->sid) 2164 return 0; /* No change in credentials */ 2165 2166 /* 2167 * The only transitions we permit under NNP or nosuid 2168 * are transitions to bounded SIDs, i.e. SIDs that are 2169 * guaranteed to only be allowed a subset of the permissions 2170 * of the current SID. 2171 */ 2172 rc = security_bounded_transition(old_tsec->sid, new_tsec->sid); 2173 if (rc) { 2174 /* 2175 * On failure, preserve the errno values for NNP vs nosuid. 2176 * NNP: Operation not permitted for caller. 2177 * nosuid: Permission denied to file. 2178 */ 2179 if (nnp) 2180 return -EPERM; 2181 else 2182 return -EACCES; 2183 } 2184 return 0; 2185 } 2186 2187 static int selinux_bprm_set_creds(struct linux_binprm *bprm) 2188 { 2189 const struct task_security_struct *old_tsec; 2190 struct task_security_struct *new_tsec; 2191 struct inode_security_struct *isec; 2192 struct common_audit_data ad; 2193 struct inode *inode = file_inode(bprm->file); 2194 int rc; 2195 2196 rc = cap_bprm_set_creds(bprm); 2197 if (rc) 2198 return rc; 2199 2200 /* SELinux context only depends on initial program or script and not 2201 * the script interpreter */ 2202 if (bprm->cred_prepared) 2203 return 0; 2204 2205 old_tsec = current_security(); 2206 new_tsec = bprm->cred->security; 2207 isec = inode->i_security; 2208 2209 /* Default to the current task SID. */ 2210 new_tsec->sid = old_tsec->sid; 2211 new_tsec->osid = old_tsec->sid; 2212 2213 /* Reset fs, key, and sock SIDs on execve. */ 2214 new_tsec->create_sid = 0; 2215 new_tsec->keycreate_sid = 0; 2216 new_tsec->sockcreate_sid = 0; 2217 2218 if (old_tsec->exec_sid) { 2219 new_tsec->sid = old_tsec->exec_sid; 2220 /* Reset exec SID on execve. */ 2221 new_tsec->exec_sid = 0; 2222 2223 /* Fail on NNP or nosuid if not an allowed transition. */ 2224 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2225 if (rc) 2226 return rc; 2227 } else { 2228 /* Check for a default transition on this program. */ 2229 rc = security_transition_sid(old_tsec->sid, isec->sid, 2230 SECCLASS_PROCESS, NULL, 2231 &new_tsec->sid); 2232 if (rc) 2233 return rc; 2234 2235 /* 2236 * Fallback to old SID on NNP or nosuid if not an allowed 2237 * transition. 2238 */ 2239 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2240 if (rc) 2241 new_tsec->sid = old_tsec->sid; 2242 } 2243 2244 ad.type = LSM_AUDIT_DATA_PATH; 2245 ad.u.path = bprm->file->f_path; 2246 2247 if (new_tsec->sid == old_tsec->sid) { 2248 rc = avc_has_perm(old_tsec->sid, isec->sid, 2249 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 2250 if (rc) 2251 return rc; 2252 } else { 2253 /* Check permissions for the transition. */ 2254 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2255 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 2256 if (rc) 2257 return rc; 2258 2259 rc = avc_has_perm(new_tsec->sid, isec->sid, 2260 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 2261 if (rc) 2262 return rc; 2263 2264 /* Check for shared state */ 2265 if (bprm->unsafe & LSM_UNSAFE_SHARE) { 2266 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2267 SECCLASS_PROCESS, PROCESS__SHARE, 2268 NULL); 2269 if (rc) 2270 return -EPERM; 2271 } 2272 2273 /* Make sure that anyone attempting to ptrace over a task that 2274 * changes its SID has the appropriate permit */ 2275 if (bprm->unsafe & 2276 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) { 2277 struct task_struct *tracer; 2278 struct task_security_struct *sec; 2279 u32 ptsid = 0; 2280 2281 rcu_read_lock(); 2282 tracer = ptrace_parent(current); 2283 if (likely(tracer != NULL)) { 2284 sec = __task_cred(tracer)->security; 2285 ptsid = sec->sid; 2286 } 2287 rcu_read_unlock(); 2288 2289 if (ptsid != 0) { 2290 rc = avc_has_perm(ptsid, new_tsec->sid, 2291 SECCLASS_PROCESS, 2292 PROCESS__PTRACE, NULL); 2293 if (rc) 2294 return -EPERM; 2295 } 2296 } 2297 2298 /* Clear any possibly unsafe personality bits on exec: */ 2299 bprm->per_clear |= PER_CLEAR_ON_SETID; 2300 } 2301 2302 return 0; 2303 } 2304 2305 static int selinux_bprm_secureexec(struct linux_binprm *bprm) 2306 { 2307 const struct task_security_struct *tsec = current_security(); 2308 u32 sid, osid; 2309 int atsecure = 0; 2310 2311 sid = tsec->sid; 2312 osid = tsec->osid; 2313 2314 if (osid != sid) { 2315 /* Enable secure mode for SIDs transitions unless 2316 the noatsecure permission is granted between 2317 the two SIDs, i.e. ahp returns 0. */ 2318 atsecure = avc_has_perm(osid, sid, 2319 SECCLASS_PROCESS, 2320 PROCESS__NOATSECURE, NULL); 2321 } 2322 2323 return (atsecure || cap_bprm_secureexec(bprm)); 2324 } 2325 2326 static int match_file(const void *p, struct file *file, unsigned fd) 2327 { 2328 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0; 2329 } 2330 2331 /* Derived from fs/exec.c:flush_old_files. */ 2332 static inline void flush_unauthorized_files(const struct cred *cred, 2333 struct files_struct *files) 2334 { 2335 struct file *file, *devnull = NULL; 2336 struct tty_struct *tty; 2337 int drop_tty = 0; 2338 unsigned n; 2339 2340 tty = get_current_tty(); 2341 if (tty) { 2342 spin_lock(&tty_files_lock); 2343 if (!list_empty(&tty->tty_files)) { 2344 struct tty_file_private *file_priv; 2345 2346 /* Revalidate access to controlling tty. 2347 Use file_path_has_perm on the tty path directly 2348 rather than using file_has_perm, as this particular 2349 open file may belong to another process and we are 2350 only interested in the inode-based check here. */ 2351 file_priv = list_first_entry(&tty->tty_files, 2352 struct tty_file_private, list); 2353 file = file_priv->file; 2354 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE)) 2355 drop_tty = 1; 2356 } 2357 spin_unlock(&tty_files_lock); 2358 tty_kref_put(tty); 2359 } 2360 /* Reset controlling tty. */ 2361 if (drop_tty) 2362 no_tty(); 2363 2364 /* Revalidate access to inherited open files. */ 2365 n = iterate_fd(files, 0, match_file, cred); 2366 if (!n) /* none found? */ 2367 return; 2368 2369 devnull = dentry_open(&selinux_null, O_RDWR, cred); 2370 if (IS_ERR(devnull)) 2371 devnull = NULL; 2372 /* replace all the matching ones with this */ 2373 do { 2374 replace_fd(n - 1, devnull, 0); 2375 } while ((n = iterate_fd(files, n, match_file, cred)) != 0); 2376 if (devnull) 2377 fput(devnull); 2378 } 2379 2380 /* 2381 * Prepare a process for imminent new credential changes due to exec 2382 */ 2383 static void selinux_bprm_committing_creds(struct linux_binprm *bprm) 2384 { 2385 struct task_security_struct *new_tsec; 2386 struct rlimit *rlim, *initrlim; 2387 int rc, i; 2388 2389 new_tsec = bprm->cred->security; 2390 if (new_tsec->sid == new_tsec->osid) 2391 return; 2392 2393 /* Close files for which the new task SID is not authorized. */ 2394 flush_unauthorized_files(bprm->cred, current->files); 2395 2396 /* Always clear parent death signal on SID transitions. */ 2397 current->pdeath_signal = 0; 2398 2399 /* Check whether the new SID can inherit resource limits from the old 2400 * SID. If not, reset all soft limits to the lower of the current 2401 * task's hard limit and the init task's soft limit. 2402 * 2403 * Note that the setting of hard limits (even to lower them) can be 2404 * controlled by the setrlimit check. The inclusion of the init task's 2405 * soft limit into the computation is to avoid resetting soft limits 2406 * higher than the default soft limit for cases where the default is 2407 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK. 2408 */ 2409 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS, 2410 PROCESS__RLIMITINH, NULL); 2411 if (rc) { 2412 /* protect against do_prlimit() */ 2413 task_lock(current); 2414 for (i = 0; i < RLIM_NLIMITS; i++) { 2415 rlim = current->signal->rlim + i; 2416 initrlim = init_task.signal->rlim + i; 2417 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur); 2418 } 2419 task_unlock(current); 2420 update_rlimit_cpu(current, rlimit(RLIMIT_CPU)); 2421 } 2422 } 2423 2424 /* 2425 * Clean up the process immediately after the installation of new credentials 2426 * due to exec 2427 */ 2428 static void selinux_bprm_committed_creds(struct linux_binprm *bprm) 2429 { 2430 const struct task_security_struct *tsec = current_security(); 2431 struct itimerval itimer; 2432 u32 osid, sid; 2433 int rc, i; 2434 2435 osid = tsec->osid; 2436 sid = tsec->sid; 2437 2438 if (sid == osid) 2439 return; 2440 2441 /* Check whether the new SID can inherit signal state from the old SID. 2442 * If not, clear itimers to avoid subsequent signal generation and 2443 * flush and unblock signals. 2444 * 2445 * This must occur _after_ the task SID has been updated so that any 2446 * kill done after the flush will be checked against the new SID. 2447 */ 2448 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL); 2449 if (rc) { 2450 memset(&itimer, 0, sizeof itimer); 2451 for (i = 0; i < 3; i++) 2452 do_setitimer(i, &itimer, NULL); 2453 spin_lock_irq(¤t->sighand->siglock); 2454 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) { 2455 __flush_signals(current); 2456 flush_signal_handlers(current, 1); 2457 sigemptyset(¤t->blocked); 2458 } 2459 spin_unlock_irq(¤t->sighand->siglock); 2460 } 2461 2462 /* Wake up the parent if it is waiting so that it can recheck 2463 * wait permission to the new task SID. */ 2464 read_lock(&tasklist_lock); 2465 __wake_up_parent(current, current->real_parent); 2466 read_unlock(&tasklist_lock); 2467 } 2468 2469 /* superblock security operations */ 2470 2471 static int selinux_sb_alloc_security(struct super_block *sb) 2472 { 2473 return superblock_alloc_security(sb); 2474 } 2475 2476 static void selinux_sb_free_security(struct super_block *sb) 2477 { 2478 superblock_free_security(sb); 2479 } 2480 2481 static inline int match_prefix(char *prefix, int plen, char *option, int olen) 2482 { 2483 if (plen > olen) 2484 return 0; 2485 2486 return !memcmp(prefix, option, plen); 2487 } 2488 2489 static inline int selinux_option(char *option, int len) 2490 { 2491 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) || 2492 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) || 2493 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) || 2494 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) || 2495 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len)); 2496 } 2497 2498 static inline void take_option(char **to, char *from, int *first, int len) 2499 { 2500 if (!*first) { 2501 **to = ','; 2502 *to += 1; 2503 } else 2504 *first = 0; 2505 memcpy(*to, from, len); 2506 *to += len; 2507 } 2508 2509 static inline void take_selinux_option(char **to, char *from, int *first, 2510 int len) 2511 { 2512 int current_size = 0; 2513 2514 if (!*first) { 2515 **to = '|'; 2516 *to += 1; 2517 } else 2518 *first = 0; 2519 2520 while (current_size < len) { 2521 if (*from != '"') { 2522 **to = *from; 2523 *to += 1; 2524 } 2525 from += 1; 2526 current_size += 1; 2527 } 2528 } 2529 2530 static int selinux_sb_copy_data(char *orig, char *copy) 2531 { 2532 int fnosec, fsec, rc = 0; 2533 char *in_save, *in_curr, *in_end; 2534 char *sec_curr, *nosec_save, *nosec; 2535 int open_quote = 0; 2536 2537 in_curr = orig; 2538 sec_curr = copy; 2539 2540 nosec = (char *)get_zeroed_page(GFP_KERNEL); 2541 if (!nosec) { 2542 rc = -ENOMEM; 2543 goto out; 2544 } 2545 2546 nosec_save = nosec; 2547 fnosec = fsec = 1; 2548 in_save = in_end = orig; 2549 2550 do { 2551 if (*in_end == '"') 2552 open_quote = !open_quote; 2553 if ((*in_end == ',' && open_quote == 0) || 2554 *in_end == '\0') { 2555 int len = in_end - in_curr; 2556 2557 if (selinux_option(in_curr, len)) 2558 take_selinux_option(&sec_curr, in_curr, &fsec, len); 2559 else 2560 take_option(&nosec, in_curr, &fnosec, len); 2561 2562 in_curr = in_end + 1; 2563 } 2564 } while (*in_end++); 2565 2566 strcpy(in_save, nosec_save); 2567 free_page((unsigned long)nosec_save); 2568 out: 2569 return rc; 2570 } 2571 2572 static int selinux_sb_remount(struct super_block *sb, void *data) 2573 { 2574 int rc, i, *flags; 2575 struct security_mnt_opts opts; 2576 char *secdata, **mount_options; 2577 struct superblock_security_struct *sbsec = sb->s_security; 2578 2579 if (!(sbsec->flags & SE_SBINITIALIZED)) 2580 return 0; 2581 2582 if (!data) 2583 return 0; 2584 2585 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 2586 return 0; 2587 2588 security_init_mnt_opts(&opts); 2589 secdata = alloc_secdata(); 2590 if (!secdata) 2591 return -ENOMEM; 2592 rc = selinux_sb_copy_data(data, secdata); 2593 if (rc) 2594 goto out_free_secdata; 2595 2596 rc = selinux_parse_opts_str(secdata, &opts); 2597 if (rc) 2598 goto out_free_secdata; 2599 2600 mount_options = opts.mnt_opts; 2601 flags = opts.mnt_opts_flags; 2602 2603 for (i = 0; i < opts.num_mnt_opts; i++) { 2604 u32 sid; 2605 size_t len; 2606 2607 if (flags[i] == SBLABEL_MNT) 2608 continue; 2609 len = strlen(mount_options[i]); 2610 rc = security_context_to_sid(mount_options[i], len, &sid, 2611 GFP_KERNEL); 2612 if (rc) { 2613 printk(KERN_WARNING "SELinux: security_context_to_sid" 2614 "(%s) failed for (dev %s, type %s) errno=%d\n", 2615 mount_options[i], sb->s_id, sb->s_type->name, rc); 2616 goto out_free_opts; 2617 } 2618 rc = -EINVAL; 2619 switch (flags[i]) { 2620 case FSCONTEXT_MNT: 2621 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid)) 2622 goto out_bad_option; 2623 break; 2624 case CONTEXT_MNT: 2625 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid)) 2626 goto out_bad_option; 2627 break; 2628 case ROOTCONTEXT_MNT: { 2629 struct inode_security_struct *root_isec; 2630 root_isec = sb->s_root->d_inode->i_security; 2631 2632 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid)) 2633 goto out_bad_option; 2634 break; 2635 } 2636 case DEFCONTEXT_MNT: 2637 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid)) 2638 goto out_bad_option; 2639 break; 2640 default: 2641 goto out_free_opts; 2642 } 2643 } 2644 2645 rc = 0; 2646 out_free_opts: 2647 security_free_mnt_opts(&opts); 2648 out_free_secdata: 2649 free_secdata(secdata); 2650 return rc; 2651 out_bad_option: 2652 printk(KERN_WARNING "SELinux: unable to change security options " 2653 "during remount (dev %s, type=%s)\n", sb->s_id, 2654 sb->s_type->name); 2655 goto out_free_opts; 2656 } 2657 2658 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data) 2659 { 2660 const struct cred *cred = current_cred(); 2661 struct common_audit_data ad; 2662 int rc; 2663 2664 rc = superblock_doinit(sb, data); 2665 if (rc) 2666 return rc; 2667 2668 /* Allow all mounts performed by the kernel */ 2669 if (flags & MS_KERNMOUNT) 2670 return 0; 2671 2672 ad.type = LSM_AUDIT_DATA_DENTRY; 2673 ad.u.dentry = sb->s_root; 2674 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad); 2675 } 2676 2677 static int selinux_sb_statfs(struct dentry *dentry) 2678 { 2679 const struct cred *cred = current_cred(); 2680 struct common_audit_data ad; 2681 2682 ad.type = LSM_AUDIT_DATA_DENTRY; 2683 ad.u.dentry = dentry->d_sb->s_root; 2684 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2685 } 2686 2687 static int selinux_mount(const char *dev_name, 2688 struct path *path, 2689 const char *type, 2690 unsigned long flags, 2691 void *data) 2692 { 2693 const struct cred *cred = current_cred(); 2694 2695 if (flags & MS_REMOUNT) 2696 return superblock_has_perm(cred, path->dentry->d_sb, 2697 FILESYSTEM__REMOUNT, NULL); 2698 else 2699 return path_has_perm(cred, path, FILE__MOUNTON); 2700 } 2701 2702 static int selinux_umount(struct vfsmount *mnt, int flags) 2703 { 2704 const struct cred *cred = current_cred(); 2705 2706 return superblock_has_perm(cred, mnt->mnt_sb, 2707 FILESYSTEM__UNMOUNT, NULL); 2708 } 2709 2710 /* inode security operations */ 2711 2712 static int selinux_inode_alloc_security(struct inode *inode) 2713 { 2714 return inode_alloc_security(inode); 2715 } 2716 2717 static void selinux_inode_free_security(struct inode *inode) 2718 { 2719 inode_free_security(inode); 2720 } 2721 2722 static int selinux_dentry_init_security(struct dentry *dentry, int mode, 2723 struct qstr *name, void **ctx, 2724 u32 *ctxlen) 2725 { 2726 const struct cred *cred = current_cred(); 2727 struct task_security_struct *tsec; 2728 struct inode_security_struct *dsec; 2729 struct superblock_security_struct *sbsec; 2730 struct inode *dir = dentry->d_parent->d_inode; 2731 u32 newsid; 2732 int rc; 2733 2734 tsec = cred->security; 2735 dsec = dir->i_security; 2736 sbsec = dir->i_sb->s_security; 2737 2738 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) { 2739 newsid = tsec->create_sid; 2740 } else { 2741 rc = security_transition_sid(tsec->sid, dsec->sid, 2742 inode_mode_to_security_class(mode), 2743 name, 2744 &newsid); 2745 if (rc) { 2746 printk(KERN_WARNING 2747 "%s: security_transition_sid failed, rc=%d\n", 2748 __func__, -rc); 2749 return rc; 2750 } 2751 } 2752 2753 return security_sid_to_context(newsid, (char **)ctx, ctxlen); 2754 } 2755 2756 static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 2757 const struct qstr *qstr, 2758 const char **name, 2759 void **value, size_t *len) 2760 { 2761 const struct task_security_struct *tsec = current_security(); 2762 struct inode_security_struct *dsec; 2763 struct superblock_security_struct *sbsec; 2764 u32 sid, newsid, clen; 2765 int rc; 2766 char *context; 2767 2768 dsec = dir->i_security; 2769 sbsec = dir->i_sb->s_security; 2770 2771 sid = tsec->sid; 2772 newsid = tsec->create_sid; 2773 2774 if ((sbsec->flags & SE_SBINITIALIZED) && 2775 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) 2776 newsid = sbsec->mntpoint_sid; 2777 else if (!newsid || !(sbsec->flags & SBLABEL_MNT)) { 2778 rc = security_transition_sid(sid, dsec->sid, 2779 inode_mode_to_security_class(inode->i_mode), 2780 qstr, &newsid); 2781 if (rc) { 2782 printk(KERN_WARNING "%s: " 2783 "security_transition_sid failed, rc=%d (dev=%s " 2784 "ino=%ld)\n", 2785 __func__, 2786 -rc, inode->i_sb->s_id, inode->i_ino); 2787 return rc; 2788 } 2789 } 2790 2791 /* Possibly defer initialization to selinux_complete_init. */ 2792 if (sbsec->flags & SE_SBINITIALIZED) { 2793 struct inode_security_struct *isec = inode->i_security; 2794 isec->sclass = inode_mode_to_security_class(inode->i_mode); 2795 isec->sid = newsid; 2796 isec->initialized = 1; 2797 } 2798 2799 if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT)) 2800 return -EOPNOTSUPP; 2801 2802 if (name) 2803 *name = XATTR_SELINUX_SUFFIX; 2804 2805 if (value && len) { 2806 rc = security_sid_to_context_force(newsid, &context, &clen); 2807 if (rc) 2808 return rc; 2809 *value = context; 2810 *len = clen; 2811 } 2812 2813 return 0; 2814 } 2815 2816 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 2817 { 2818 return may_create(dir, dentry, SECCLASS_FILE); 2819 } 2820 2821 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2822 { 2823 return may_link(dir, old_dentry, MAY_LINK); 2824 } 2825 2826 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 2827 { 2828 return may_link(dir, dentry, MAY_UNLINK); 2829 } 2830 2831 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 2832 { 2833 return may_create(dir, dentry, SECCLASS_LNK_FILE); 2834 } 2835 2836 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask) 2837 { 2838 return may_create(dir, dentry, SECCLASS_DIR); 2839 } 2840 2841 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 2842 { 2843 return may_link(dir, dentry, MAY_RMDIR); 2844 } 2845 2846 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2847 { 2848 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 2849 } 2850 2851 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 2852 struct inode *new_inode, struct dentry *new_dentry) 2853 { 2854 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 2855 } 2856 2857 static int selinux_inode_readlink(struct dentry *dentry) 2858 { 2859 const struct cred *cred = current_cred(); 2860 2861 return dentry_has_perm(cred, dentry, FILE__READ); 2862 } 2863 2864 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata) 2865 { 2866 const struct cred *cred = current_cred(); 2867 2868 return dentry_has_perm(cred, dentry, FILE__READ); 2869 } 2870 2871 static noinline int audit_inode_permission(struct inode *inode, 2872 u32 perms, u32 audited, u32 denied, 2873 int result, 2874 unsigned flags) 2875 { 2876 struct common_audit_data ad; 2877 struct inode_security_struct *isec = inode->i_security; 2878 int rc; 2879 2880 ad.type = LSM_AUDIT_DATA_INODE; 2881 ad.u.inode = inode; 2882 2883 rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms, 2884 audited, denied, result, &ad, flags); 2885 if (rc) 2886 return rc; 2887 return 0; 2888 } 2889 2890 static int selinux_inode_permission(struct inode *inode, int mask) 2891 { 2892 const struct cred *cred = current_cred(); 2893 u32 perms; 2894 bool from_access; 2895 unsigned flags = mask & MAY_NOT_BLOCK; 2896 struct inode_security_struct *isec; 2897 u32 sid; 2898 struct av_decision avd; 2899 int rc, rc2; 2900 u32 audited, denied; 2901 2902 from_access = mask & MAY_ACCESS; 2903 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND); 2904 2905 /* No permission to check. Existence test. */ 2906 if (!mask) 2907 return 0; 2908 2909 validate_creds(cred); 2910 2911 if (unlikely(IS_PRIVATE(inode))) 2912 return 0; 2913 2914 perms = file_mask_to_av(inode->i_mode, mask); 2915 2916 sid = cred_sid(cred); 2917 isec = inode->i_security; 2918 2919 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd); 2920 audited = avc_audit_required(perms, &avd, rc, 2921 from_access ? FILE__AUDIT_ACCESS : 0, 2922 &denied); 2923 if (likely(!audited)) 2924 return rc; 2925 2926 rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags); 2927 if (rc2) 2928 return rc2; 2929 return rc; 2930 } 2931 2932 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) 2933 { 2934 const struct cred *cred = current_cred(); 2935 unsigned int ia_valid = iattr->ia_valid; 2936 __u32 av = FILE__WRITE; 2937 2938 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */ 2939 if (ia_valid & ATTR_FORCE) { 2940 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE | 2941 ATTR_FORCE); 2942 if (!ia_valid) 2943 return 0; 2944 } 2945 2946 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 2947 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET)) 2948 return dentry_has_perm(cred, dentry, FILE__SETATTR); 2949 2950 if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE)) 2951 av |= FILE__OPEN; 2952 2953 return dentry_has_perm(cred, dentry, av); 2954 } 2955 2956 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 2957 { 2958 const struct cred *cred = current_cred(); 2959 struct path path; 2960 2961 path.dentry = dentry; 2962 path.mnt = mnt; 2963 2964 return path_has_perm(cred, &path, FILE__GETATTR); 2965 } 2966 2967 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name) 2968 { 2969 const struct cred *cred = current_cred(); 2970 2971 if (!strncmp(name, XATTR_SECURITY_PREFIX, 2972 sizeof XATTR_SECURITY_PREFIX - 1)) { 2973 if (!strcmp(name, XATTR_NAME_CAPS)) { 2974 if (!capable(CAP_SETFCAP)) 2975 return -EPERM; 2976 } else if (!capable(CAP_SYS_ADMIN)) { 2977 /* A different attribute in the security namespace. 2978 Restrict to administrator. */ 2979 return -EPERM; 2980 } 2981 } 2982 2983 /* Not an attribute we recognize, so just check the 2984 ordinary setattr permission. */ 2985 return dentry_has_perm(cred, dentry, FILE__SETATTR); 2986 } 2987 2988 static int selinux_inode_setxattr(struct dentry *dentry, const char *name, 2989 const void *value, size_t size, int flags) 2990 { 2991 struct inode *inode = dentry->d_inode; 2992 struct inode_security_struct *isec = inode->i_security; 2993 struct superblock_security_struct *sbsec; 2994 struct common_audit_data ad; 2995 u32 newsid, sid = current_sid(); 2996 int rc = 0; 2997 2998 if (strcmp(name, XATTR_NAME_SELINUX)) 2999 return selinux_inode_setotherxattr(dentry, name); 3000 3001 sbsec = inode->i_sb->s_security; 3002 if (!(sbsec->flags & SBLABEL_MNT)) 3003 return -EOPNOTSUPP; 3004 3005 if (!inode_owner_or_capable(inode)) 3006 return -EPERM; 3007 3008 ad.type = LSM_AUDIT_DATA_DENTRY; 3009 ad.u.dentry = dentry; 3010 3011 rc = avc_has_perm(sid, isec->sid, isec->sclass, 3012 FILE__RELABELFROM, &ad); 3013 if (rc) 3014 return rc; 3015 3016 rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL); 3017 if (rc == -EINVAL) { 3018 if (!capable(CAP_MAC_ADMIN)) { 3019 struct audit_buffer *ab; 3020 size_t audit_size; 3021 const char *str; 3022 3023 /* We strip a nul only if it is at the end, otherwise the 3024 * context contains a nul and we should audit that */ 3025 if (value) { 3026 str = value; 3027 if (str[size - 1] == '\0') 3028 audit_size = size - 1; 3029 else 3030 audit_size = size; 3031 } else { 3032 str = ""; 3033 audit_size = 0; 3034 } 3035 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR); 3036 audit_log_format(ab, "op=setxattr invalid_context="); 3037 audit_log_n_untrustedstring(ab, value, audit_size); 3038 audit_log_end(ab); 3039 3040 return rc; 3041 } 3042 rc = security_context_to_sid_force(value, size, &newsid); 3043 } 3044 if (rc) 3045 return rc; 3046 3047 rc = avc_has_perm(sid, newsid, isec->sclass, 3048 FILE__RELABELTO, &ad); 3049 if (rc) 3050 return rc; 3051 3052 rc = security_validate_transition(isec->sid, newsid, sid, 3053 isec->sclass); 3054 if (rc) 3055 return rc; 3056 3057 return avc_has_perm(newsid, 3058 sbsec->sid, 3059 SECCLASS_FILESYSTEM, 3060 FILESYSTEM__ASSOCIATE, 3061 &ad); 3062 } 3063 3064 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name, 3065 const void *value, size_t size, 3066 int flags) 3067 { 3068 struct inode *inode = dentry->d_inode; 3069 struct inode_security_struct *isec = inode->i_security; 3070 u32 newsid; 3071 int rc; 3072 3073 if (strcmp(name, XATTR_NAME_SELINUX)) { 3074 /* Not an attribute we recognize, so nothing to do. */ 3075 return; 3076 } 3077 3078 rc = security_context_to_sid_force(value, size, &newsid); 3079 if (rc) { 3080 printk(KERN_ERR "SELinux: unable to map context to SID" 3081 "for (%s, %lu), rc=%d\n", 3082 inode->i_sb->s_id, inode->i_ino, -rc); 3083 return; 3084 } 3085 3086 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3087 isec->sid = newsid; 3088 isec->initialized = 1; 3089 3090 return; 3091 } 3092 3093 static int selinux_inode_getxattr(struct dentry *dentry, const char *name) 3094 { 3095 const struct cred *cred = current_cred(); 3096 3097 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3098 } 3099 3100 static int selinux_inode_listxattr(struct dentry *dentry) 3101 { 3102 const struct cred *cred = current_cred(); 3103 3104 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3105 } 3106 3107 static int selinux_inode_removexattr(struct dentry *dentry, const char *name) 3108 { 3109 if (strcmp(name, XATTR_NAME_SELINUX)) 3110 return selinux_inode_setotherxattr(dentry, name); 3111 3112 /* No one is allowed to remove a SELinux security label. 3113 You can change the label, but all data must be labeled. */ 3114 return -EACCES; 3115 } 3116 3117 /* 3118 * Copy the inode security context value to the user. 3119 * 3120 * Permission check is handled by selinux_inode_getxattr hook. 3121 */ 3122 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 3123 { 3124 u32 size; 3125 int error; 3126 char *context = NULL; 3127 struct inode_security_struct *isec = inode->i_security; 3128 3129 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 3130 return -EOPNOTSUPP; 3131 3132 /* 3133 * If the caller has CAP_MAC_ADMIN, then get the raw context 3134 * value even if it is not defined by current policy; otherwise, 3135 * use the in-core value under current policy. 3136 * Use the non-auditing forms of the permission checks since 3137 * getxattr may be called by unprivileged processes commonly 3138 * and lack of permission just means that we fall back to the 3139 * in-core context value, not a denial. 3140 */ 3141 error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN, 3142 SECURITY_CAP_NOAUDIT); 3143 if (!error) 3144 error = security_sid_to_context_force(isec->sid, &context, 3145 &size); 3146 else 3147 error = security_sid_to_context(isec->sid, &context, &size); 3148 if (error) 3149 return error; 3150 error = size; 3151 if (alloc) { 3152 *buffer = context; 3153 goto out_nofree; 3154 } 3155 kfree(context); 3156 out_nofree: 3157 return error; 3158 } 3159 3160 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 3161 const void *value, size_t size, int flags) 3162 { 3163 struct inode_security_struct *isec = inode->i_security; 3164 u32 newsid; 3165 int rc; 3166 3167 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 3168 return -EOPNOTSUPP; 3169 3170 if (!value || !size) 3171 return -EACCES; 3172 3173 rc = security_context_to_sid((void *)value, size, &newsid, GFP_KERNEL); 3174 if (rc) 3175 return rc; 3176 3177 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3178 isec->sid = newsid; 3179 isec->initialized = 1; 3180 return 0; 3181 } 3182 3183 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 3184 { 3185 const int len = sizeof(XATTR_NAME_SELINUX); 3186 if (buffer && len <= buffer_size) 3187 memcpy(buffer, XATTR_NAME_SELINUX, len); 3188 return len; 3189 } 3190 3191 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid) 3192 { 3193 struct inode_security_struct *isec = inode->i_security; 3194 *secid = isec->sid; 3195 } 3196 3197 /* file security operations */ 3198 3199 static int selinux_revalidate_file_permission(struct file *file, int mask) 3200 { 3201 const struct cred *cred = current_cred(); 3202 struct inode *inode = file_inode(file); 3203 3204 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 3205 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 3206 mask |= MAY_APPEND; 3207 3208 return file_has_perm(cred, file, 3209 file_mask_to_av(inode->i_mode, mask)); 3210 } 3211 3212 static int selinux_file_permission(struct file *file, int mask) 3213 { 3214 struct inode *inode = file_inode(file); 3215 struct file_security_struct *fsec = file->f_security; 3216 struct inode_security_struct *isec = inode->i_security; 3217 u32 sid = current_sid(); 3218 3219 if (!mask) 3220 /* No permission to check. Existence test. */ 3221 return 0; 3222 3223 if (sid == fsec->sid && fsec->isid == isec->sid && 3224 fsec->pseqno == avc_policy_seqno()) 3225 /* No change since file_open check. */ 3226 return 0; 3227 3228 return selinux_revalidate_file_permission(file, mask); 3229 } 3230 3231 static int selinux_file_alloc_security(struct file *file) 3232 { 3233 return file_alloc_security(file); 3234 } 3235 3236 static void selinux_file_free_security(struct file *file) 3237 { 3238 file_free_security(file); 3239 } 3240 3241 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 3242 unsigned long arg) 3243 { 3244 const struct cred *cred = current_cred(); 3245 int error = 0; 3246 3247 switch (cmd) { 3248 case FIONREAD: 3249 /* fall through */ 3250 case FIBMAP: 3251 /* fall through */ 3252 case FIGETBSZ: 3253 /* fall through */ 3254 case FS_IOC_GETFLAGS: 3255 /* fall through */ 3256 case FS_IOC_GETVERSION: 3257 error = file_has_perm(cred, file, FILE__GETATTR); 3258 break; 3259 3260 case FS_IOC_SETFLAGS: 3261 /* fall through */ 3262 case FS_IOC_SETVERSION: 3263 error = file_has_perm(cred, file, FILE__SETATTR); 3264 break; 3265 3266 /* sys_ioctl() checks */ 3267 case FIONBIO: 3268 /* fall through */ 3269 case FIOASYNC: 3270 error = file_has_perm(cred, file, 0); 3271 break; 3272 3273 case KDSKBENT: 3274 case KDSKBSENT: 3275 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG, 3276 SECURITY_CAP_AUDIT); 3277 break; 3278 3279 /* default case assumes that the command will go 3280 * to the file's ioctl() function. 3281 */ 3282 default: 3283 error = file_has_perm(cred, file, FILE__IOCTL); 3284 } 3285 return error; 3286 } 3287 3288 static int default_noexec; 3289 3290 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 3291 { 3292 const struct cred *cred = current_cred(); 3293 int rc = 0; 3294 3295 if (default_noexec && 3296 (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) { 3297 /* 3298 * We are making executable an anonymous mapping or a 3299 * private file mapping that will also be writable. 3300 * This has an additional check. 3301 */ 3302 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM); 3303 if (rc) 3304 goto error; 3305 } 3306 3307 if (file) { 3308 /* read access is always possible with a mapping */ 3309 u32 av = FILE__READ; 3310 3311 /* write access only matters if the mapping is shared */ 3312 if (shared && (prot & PROT_WRITE)) 3313 av |= FILE__WRITE; 3314 3315 if (prot & PROT_EXEC) 3316 av |= FILE__EXECUTE; 3317 3318 return file_has_perm(cred, file, av); 3319 } 3320 3321 error: 3322 return rc; 3323 } 3324 3325 static int selinux_mmap_addr(unsigned long addr) 3326 { 3327 int rc; 3328 3329 /* do DAC check on address space usage */ 3330 rc = cap_mmap_addr(addr); 3331 if (rc) 3332 return rc; 3333 3334 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) { 3335 u32 sid = current_sid(); 3336 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT, 3337 MEMPROTECT__MMAP_ZERO, NULL); 3338 } 3339 3340 return rc; 3341 } 3342 3343 static int selinux_mmap_file(struct file *file, unsigned long reqprot, 3344 unsigned long prot, unsigned long flags) 3345 { 3346 if (selinux_checkreqprot) 3347 prot = reqprot; 3348 3349 return file_map_prot_check(file, prot, 3350 (flags & MAP_TYPE) == MAP_SHARED); 3351 } 3352 3353 static int selinux_file_mprotect(struct vm_area_struct *vma, 3354 unsigned long reqprot, 3355 unsigned long prot) 3356 { 3357 const struct cred *cred = current_cred(); 3358 3359 if (selinux_checkreqprot) 3360 prot = reqprot; 3361 3362 if (default_noexec && 3363 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 3364 int rc = 0; 3365 if (vma->vm_start >= vma->vm_mm->start_brk && 3366 vma->vm_end <= vma->vm_mm->brk) { 3367 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP); 3368 } else if (!vma->vm_file && 3369 vma->vm_start <= vma->vm_mm->start_stack && 3370 vma->vm_end >= vma->vm_mm->start_stack) { 3371 rc = current_has_perm(current, PROCESS__EXECSTACK); 3372 } else if (vma->vm_file && vma->anon_vma) { 3373 /* 3374 * We are making executable a file mapping that has 3375 * had some COW done. Since pages might have been 3376 * written, check ability to execute the possibly 3377 * modified content. This typically should only 3378 * occur for text relocations. 3379 */ 3380 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD); 3381 } 3382 if (rc) 3383 return rc; 3384 } 3385 3386 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 3387 } 3388 3389 static int selinux_file_lock(struct file *file, unsigned int cmd) 3390 { 3391 const struct cred *cred = current_cred(); 3392 3393 return file_has_perm(cred, file, FILE__LOCK); 3394 } 3395 3396 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 3397 unsigned long arg) 3398 { 3399 const struct cred *cred = current_cred(); 3400 int err = 0; 3401 3402 switch (cmd) { 3403 case F_SETFL: 3404 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 3405 err = file_has_perm(cred, file, FILE__WRITE); 3406 break; 3407 } 3408 /* fall through */ 3409 case F_SETOWN: 3410 case F_SETSIG: 3411 case F_GETFL: 3412 case F_GETOWN: 3413 case F_GETSIG: 3414 case F_GETOWNER_UIDS: 3415 /* Just check FD__USE permission */ 3416 err = file_has_perm(cred, file, 0); 3417 break; 3418 case F_GETLK: 3419 case F_SETLK: 3420 case F_SETLKW: 3421 case F_OFD_GETLK: 3422 case F_OFD_SETLK: 3423 case F_OFD_SETLKW: 3424 #if BITS_PER_LONG == 32 3425 case F_GETLK64: 3426 case F_SETLK64: 3427 case F_SETLKW64: 3428 #endif 3429 err = file_has_perm(cred, file, FILE__LOCK); 3430 break; 3431 } 3432 3433 return err; 3434 } 3435 3436 static void selinux_file_set_fowner(struct file *file) 3437 { 3438 struct file_security_struct *fsec; 3439 3440 fsec = file->f_security; 3441 fsec->fown_sid = current_sid(); 3442 } 3443 3444 static int selinux_file_send_sigiotask(struct task_struct *tsk, 3445 struct fown_struct *fown, int signum) 3446 { 3447 struct file *file; 3448 u32 sid = task_sid(tsk); 3449 u32 perm; 3450 struct file_security_struct *fsec; 3451 3452 /* struct fown_struct is never outside the context of a struct file */ 3453 file = container_of(fown, struct file, f_owner); 3454 3455 fsec = file->f_security; 3456 3457 if (!signum) 3458 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 3459 else 3460 perm = signal_to_av(signum); 3461 3462 return avc_has_perm(fsec->fown_sid, sid, 3463 SECCLASS_PROCESS, perm, NULL); 3464 } 3465 3466 static int selinux_file_receive(struct file *file) 3467 { 3468 const struct cred *cred = current_cred(); 3469 3470 return file_has_perm(cred, file, file_to_av(file)); 3471 } 3472 3473 static int selinux_file_open(struct file *file, const struct cred *cred) 3474 { 3475 struct file_security_struct *fsec; 3476 struct inode_security_struct *isec; 3477 3478 fsec = file->f_security; 3479 isec = file_inode(file)->i_security; 3480 /* 3481 * Save inode label and policy sequence number 3482 * at open-time so that selinux_file_permission 3483 * can determine whether revalidation is necessary. 3484 * Task label is already saved in the file security 3485 * struct as its SID. 3486 */ 3487 fsec->isid = isec->sid; 3488 fsec->pseqno = avc_policy_seqno(); 3489 /* 3490 * Since the inode label or policy seqno may have changed 3491 * between the selinux_inode_permission check and the saving 3492 * of state above, recheck that access is still permitted. 3493 * Otherwise, access might never be revalidated against the 3494 * new inode label or new policy. 3495 * This check is not redundant - do not remove. 3496 */ 3497 return file_path_has_perm(cred, file, open_file_to_av(file)); 3498 } 3499 3500 /* task security operations */ 3501 3502 static int selinux_task_create(unsigned long clone_flags) 3503 { 3504 return current_has_perm(current, PROCESS__FORK); 3505 } 3506 3507 /* 3508 * allocate the SELinux part of blank credentials 3509 */ 3510 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp) 3511 { 3512 struct task_security_struct *tsec; 3513 3514 tsec = kzalloc(sizeof(struct task_security_struct), gfp); 3515 if (!tsec) 3516 return -ENOMEM; 3517 3518 cred->security = tsec; 3519 return 0; 3520 } 3521 3522 /* 3523 * detach and free the LSM part of a set of credentials 3524 */ 3525 static void selinux_cred_free(struct cred *cred) 3526 { 3527 struct task_security_struct *tsec = cred->security; 3528 3529 /* 3530 * cred->security == NULL if security_cred_alloc_blank() or 3531 * security_prepare_creds() returned an error. 3532 */ 3533 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE); 3534 cred->security = (void *) 0x7UL; 3535 kfree(tsec); 3536 } 3537 3538 /* 3539 * prepare a new set of credentials for modification 3540 */ 3541 static int selinux_cred_prepare(struct cred *new, const struct cred *old, 3542 gfp_t gfp) 3543 { 3544 const struct task_security_struct *old_tsec; 3545 struct task_security_struct *tsec; 3546 3547 old_tsec = old->security; 3548 3549 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp); 3550 if (!tsec) 3551 return -ENOMEM; 3552 3553 new->security = tsec; 3554 return 0; 3555 } 3556 3557 /* 3558 * transfer the SELinux data to a blank set of creds 3559 */ 3560 static void selinux_cred_transfer(struct cred *new, const struct cred *old) 3561 { 3562 const struct task_security_struct *old_tsec = old->security; 3563 struct task_security_struct *tsec = new->security; 3564 3565 *tsec = *old_tsec; 3566 } 3567 3568 /* 3569 * set the security data for a kernel service 3570 * - all the creation contexts are set to unlabelled 3571 */ 3572 static int selinux_kernel_act_as(struct cred *new, u32 secid) 3573 { 3574 struct task_security_struct *tsec = new->security; 3575 u32 sid = current_sid(); 3576 int ret; 3577 3578 ret = avc_has_perm(sid, secid, 3579 SECCLASS_KERNEL_SERVICE, 3580 KERNEL_SERVICE__USE_AS_OVERRIDE, 3581 NULL); 3582 if (ret == 0) { 3583 tsec->sid = secid; 3584 tsec->create_sid = 0; 3585 tsec->keycreate_sid = 0; 3586 tsec->sockcreate_sid = 0; 3587 } 3588 return ret; 3589 } 3590 3591 /* 3592 * set the file creation context in a security record to the same as the 3593 * objective context of the specified inode 3594 */ 3595 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode) 3596 { 3597 struct inode_security_struct *isec = inode->i_security; 3598 struct task_security_struct *tsec = new->security; 3599 u32 sid = current_sid(); 3600 int ret; 3601 3602 ret = avc_has_perm(sid, isec->sid, 3603 SECCLASS_KERNEL_SERVICE, 3604 KERNEL_SERVICE__CREATE_FILES_AS, 3605 NULL); 3606 3607 if (ret == 0) 3608 tsec->create_sid = isec->sid; 3609 return ret; 3610 } 3611 3612 static int selinux_kernel_module_request(char *kmod_name) 3613 { 3614 u32 sid; 3615 struct common_audit_data ad; 3616 3617 sid = task_sid(current); 3618 3619 ad.type = LSM_AUDIT_DATA_KMOD; 3620 ad.u.kmod_name = kmod_name; 3621 3622 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM, 3623 SYSTEM__MODULE_REQUEST, &ad); 3624 } 3625 3626 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 3627 { 3628 return current_has_perm(p, PROCESS__SETPGID); 3629 } 3630 3631 static int selinux_task_getpgid(struct task_struct *p) 3632 { 3633 return current_has_perm(p, PROCESS__GETPGID); 3634 } 3635 3636 static int selinux_task_getsid(struct task_struct *p) 3637 { 3638 return current_has_perm(p, PROCESS__GETSESSION); 3639 } 3640 3641 static void selinux_task_getsecid(struct task_struct *p, u32 *secid) 3642 { 3643 *secid = task_sid(p); 3644 } 3645 3646 static int selinux_task_setnice(struct task_struct *p, int nice) 3647 { 3648 int rc; 3649 3650 rc = cap_task_setnice(p, nice); 3651 if (rc) 3652 return rc; 3653 3654 return current_has_perm(p, PROCESS__SETSCHED); 3655 } 3656 3657 static int selinux_task_setioprio(struct task_struct *p, int ioprio) 3658 { 3659 int rc; 3660 3661 rc = cap_task_setioprio(p, ioprio); 3662 if (rc) 3663 return rc; 3664 3665 return current_has_perm(p, PROCESS__SETSCHED); 3666 } 3667 3668 static int selinux_task_getioprio(struct task_struct *p) 3669 { 3670 return current_has_perm(p, PROCESS__GETSCHED); 3671 } 3672 3673 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource, 3674 struct rlimit *new_rlim) 3675 { 3676 struct rlimit *old_rlim = p->signal->rlim + resource; 3677 3678 /* Control the ability to change the hard limit (whether 3679 lowering or raising it), so that the hard limit can 3680 later be used as a safe reset point for the soft limit 3681 upon context transitions. See selinux_bprm_committing_creds. */ 3682 if (old_rlim->rlim_max != new_rlim->rlim_max) 3683 return current_has_perm(p, PROCESS__SETRLIMIT); 3684 3685 return 0; 3686 } 3687 3688 static int selinux_task_setscheduler(struct task_struct *p) 3689 { 3690 int rc; 3691 3692 rc = cap_task_setscheduler(p); 3693 if (rc) 3694 return rc; 3695 3696 return current_has_perm(p, PROCESS__SETSCHED); 3697 } 3698 3699 static int selinux_task_getscheduler(struct task_struct *p) 3700 { 3701 return current_has_perm(p, PROCESS__GETSCHED); 3702 } 3703 3704 static int selinux_task_movememory(struct task_struct *p) 3705 { 3706 return current_has_perm(p, PROCESS__SETSCHED); 3707 } 3708 3709 static int selinux_task_kill(struct task_struct *p, struct siginfo *info, 3710 int sig, u32 secid) 3711 { 3712 u32 perm; 3713 int rc; 3714 3715 if (!sig) 3716 perm = PROCESS__SIGNULL; /* null signal; existence test */ 3717 else 3718 perm = signal_to_av(sig); 3719 if (secid) 3720 rc = avc_has_perm(secid, task_sid(p), 3721 SECCLASS_PROCESS, perm, NULL); 3722 else 3723 rc = current_has_perm(p, perm); 3724 return rc; 3725 } 3726 3727 static int selinux_task_wait(struct task_struct *p) 3728 { 3729 return task_has_perm(p, current, PROCESS__SIGCHLD); 3730 } 3731 3732 static void selinux_task_to_inode(struct task_struct *p, 3733 struct inode *inode) 3734 { 3735 struct inode_security_struct *isec = inode->i_security; 3736 u32 sid = task_sid(p); 3737 3738 isec->sid = sid; 3739 isec->initialized = 1; 3740 } 3741 3742 /* Returns error only if unable to parse addresses */ 3743 static int selinux_parse_skb_ipv4(struct sk_buff *skb, 3744 struct common_audit_data *ad, u8 *proto) 3745 { 3746 int offset, ihlen, ret = -EINVAL; 3747 struct iphdr _iph, *ih; 3748 3749 offset = skb_network_offset(skb); 3750 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 3751 if (ih == NULL) 3752 goto out; 3753 3754 ihlen = ih->ihl * 4; 3755 if (ihlen < sizeof(_iph)) 3756 goto out; 3757 3758 ad->u.net->v4info.saddr = ih->saddr; 3759 ad->u.net->v4info.daddr = ih->daddr; 3760 ret = 0; 3761 3762 if (proto) 3763 *proto = ih->protocol; 3764 3765 switch (ih->protocol) { 3766 case IPPROTO_TCP: { 3767 struct tcphdr _tcph, *th; 3768 3769 if (ntohs(ih->frag_off) & IP_OFFSET) 3770 break; 3771 3772 offset += ihlen; 3773 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3774 if (th == NULL) 3775 break; 3776 3777 ad->u.net->sport = th->source; 3778 ad->u.net->dport = th->dest; 3779 break; 3780 } 3781 3782 case IPPROTO_UDP: { 3783 struct udphdr _udph, *uh; 3784 3785 if (ntohs(ih->frag_off) & IP_OFFSET) 3786 break; 3787 3788 offset += ihlen; 3789 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3790 if (uh == NULL) 3791 break; 3792 3793 ad->u.net->sport = uh->source; 3794 ad->u.net->dport = uh->dest; 3795 break; 3796 } 3797 3798 case IPPROTO_DCCP: { 3799 struct dccp_hdr _dccph, *dh; 3800 3801 if (ntohs(ih->frag_off) & IP_OFFSET) 3802 break; 3803 3804 offset += ihlen; 3805 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3806 if (dh == NULL) 3807 break; 3808 3809 ad->u.net->sport = dh->dccph_sport; 3810 ad->u.net->dport = dh->dccph_dport; 3811 break; 3812 } 3813 3814 default: 3815 break; 3816 } 3817 out: 3818 return ret; 3819 } 3820 3821 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3822 3823 /* Returns error only if unable to parse addresses */ 3824 static int selinux_parse_skb_ipv6(struct sk_buff *skb, 3825 struct common_audit_data *ad, u8 *proto) 3826 { 3827 u8 nexthdr; 3828 int ret = -EINVAL, offset; 3829 struct ipv6hdr _ipv6h, *ip6; 3830 __be16 frag_off; 3831 3832 offset = skb_network_offset(skb); 3833 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 3834 if (ip6 == NULL) 3835 goto out; 3836 3837 ad->u.net->v6info.saddr = ip6->saddr; 3838 ad->u.net->v6info.daddr = ip6->daddr; 3839 ret = 0; 3840 3841 nexthdr = ip6->nexthdr; 3842 offset += sizeof(_ipv6h); 3843 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off); 3844 if (offset < 0) 3845 goto out; 3846 3847 if (proto) 3848 *proto = nexthdr; 3849 3850 switch (nexthdr) { 3851 case IPPROTO_TCP: { 3852 struct tcphdr _tcph, *th; 3853 3854 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3855 if (th == NULL) 3856 break; 3857 3858 ad->u.net->sport = th->source; 3859 ad->u.net->dport = th->dest; 3860 break; 3861 } 3862 3863 case IPPROTO_UDP: { 3864 struct udphdr _udph, *uh; 3865 3866 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3867 if (uh == NULL) 3868 break; 3869 3870 ad->u.net->sport = uh->source; 3871 ad->u.net->dport = uh->dest; 3872 break; 3873 } 3874 3875 case IPPROTO_DCCP: { 3876 struct dccp_hdr _dccph, *dh; 3877 3878 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3879 if (dh == NULL) 3880 break; 3881 3882 ad->u.net->sport = dh->dccph_sport; 3883 ad->u.net->dport = dh->dccph_dport; 3884 break; 3885 } 3886 3887 /* includes fragments */ 3888 default: 3889 break; 3890 } 3891 out: 3892 return ret; 3893 } 3894 3895 #endif /* IPV6 */ 3896 3897 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad, 3898 char **_addrp, int src, u8 *proto) 3899 { 3900 char *addrp; 3901 int ret; 3902 3903 switch (ad->u.net->family) { 3904 case PF_INET: 3905 ret = selinux_parse_skb_ipv4(skb, ad, proto); 3906 if (ret) 3907 goto parse_error; 3908 addrp = (char *)(src ? &ad->u.net->v4info.saddr : 3909 &ad->u.net->v4info.daddr); 3910 goto okay; 3911 3912 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3913 case PF_INET6: 3914 ret = selinux_parse_skb_ipv6(skb, ad, proto); 3915 if (ret) 3916 goto parse_error; 3917 addrp = (char *)(src ? &ad->u.net->v6info.saddr : 3918 &ad->u.net->v6info.daddr); 3919 goto okay; 3920 #endif /* IPV6 */ 3921 default: 3922 addrp = NULL; 3923 goto okay; 3924 } 3925 3926 parse_error: 3927 printk(KERN_WARNING 3928 "SELinux: failure in selinux_parse_skb()," 3929 " unable to parse packet\n"); 3930 return ret; 3931 3932 okay: 3933 if (_addrp) 3934 *_addrp = addrp; 3935 return 0; 3936 } 3937 3938 /** 3939 * selinux_skb_peerlbl_sid - Determine the peer label of a packet 3940 * @skb: the packet 3941 * @family: protocol family 3942 * @sid: the packet's peer label SID 3943 * 3944 * Description: 3945 * Check the various different forms of network peer labeling and determine 3946 * the peer label/SID for the packet; most of the magic actually occurs in 3947 * the security server function security_net_peersid_cmp(). The function 3948 * returns zero if the value in @sid is valid (although it may be SECSID_NULL) 3949 * or -EACCES if @sid is invalid due to inconsistencies with the different 3950 * peer labels. 3951 * 3952 */ 3953 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid) 3954 { 3955 int err; 3956 u32 xfrm_sid; 3957 u32 nlbl_sid; 3958 u32 nlbl_type; 3959 3960 err = selinux_xfrm_skb_sid(skb, &xfrm_sid); 3961 if (unlikely(err)) 3962 return -EACCES; 3963 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid); 3964 if (unlikely(err)) 3965 return -EACCES; 3966 3967 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid); 3968 if (unlikely(err)) { 3969 printk(KERN_WARNING 3970 "SELinux: failure in selinux_skb_peerlbl_sid()," 3971 " unable to determine packet's peer label\n"); 3972 return -EACCES; 3973 } 3974 3975 return 0; 3976 } 3977 3978 /** 3979 * selinux_conn_sid - Determine the child socket label for a connection 3980 * @sk_sid: the parent socket's SID 3981 * @skb_sid: the packet's SID 3982 * @conn_sid: the resulting connection SID 3983 * 3984 * If @skb_sid is valid then the user:role:type information from @sk_sid is 3985 * combined with the MLS information from @skb_sid in order to create 3986 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy 3987 * of @sk_sid. Returns zero on success, negative values on failure. 3988 * 3989 */ 3990 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid) 3991 { 3992 int err = 0; 3993 3994 if (skb_sid != SECSID_NULL) 3995 err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid); 3996 else 3997 *conn_sid = sk_sid; 3998 3999 return err; 4000 } 4001 4002 /* socket security operations */ 4003 4004 static int socket_sockcreate_sid(const struct task_security_struct *tsec, 4005 u16 secclass, u32 *socksid) 4006 { 4007 if (tsec->sockcreate_sid > SECSID_NULL) { 4008 *socksid = tsec->sockcreate_sid; 4009 return 0; 4010 } 4011 4012 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL, 4013 socksid); 4014 } 4015 4016 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms) 4017 { 4018 struct sk_security_struct *sksec = sk->sk_security; 4019 struct common_audit_data ad; 4020 struct lsm_network_audit net = {0,}; 4021 u32 tsid = task_sid(task); 4022 4023 if (sksec->sid == SECINITSID_KERNEL) 4024 return 0; 4025 4026 ad.type = LSM_AUDIT_DATA_NET; 4027 ad.u.net = &net; 4028 ad.u.net->sk = sk; 4029 4030 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad); 4031 } 4032 4033 static int selinux_socket_create(int family, int type, 4034 int protocol, int kern) 4035 { 4036 const struct task_security_struct *tsec = current_security(); 4037 u32 newsid; 4038 u16 secclass; 4039 int rc; 4040 4041 if (kern) 4042 return 0; 4043 4044 secclass = socket_type_to_security_class(family, type, protocol); 4045 rc = socket_sockcreate_sid(tsec, secclass, &newsid); 4046 if (rc) 4047 return rc; 4048 4049 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL); 4050 } 4051 4052 static int selinux_socket_post_create(struct socket *sock, int family, 4053 int type, int protocol, int kern) 4054 { 4055 const struct task_security_struct *tsec = current_security(); 4056 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security; 4057 struct sk_security_struct *sksec; 4058 int err = 0; 4059 4060 isec->sclass = socket_type_to_security_class(family, type, protocol); 4061 4062 if (kern) 4063 isec->sid = SECINITSID_KERNEL; 4064 else { 4065 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid)); 4066 if (err) 4067 return err; 4068 } 4069 4070 isec->initialized = 1; 4071 4072 if (sock->sk) { 4073 sksec = sock->sk->sk_security; 4074 sksec->sid = isec->sid; 4075 sksec->sclass = isec->sclass; 4076 err = selinux_netlbl_socket_post_create(sock->sk, family); 4077 } 4078 4079 return err; 4080 } 4081 4082 /* Range of port numbers used to automatically bind. 4083 Need to determine whether we should perform a name_bind 4084 permission check between the socket and the port number. */ 4085 4086 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 4087 { 4088 struct sock *sk = sock->sk; 4089 u16 family; 4090 int err; 4091 4092 err = sock_has_perm(current, sk, SOCKET__BIND); 4093 if (err) 4094 goto out; 4095 4096 /* 4097 * If PF_INET or PF_INET6, check name_bind permission for the port. 4098 * Multiple address binding for SCTP is not supported yet: we just 4099 * check the first address now. 4100 */ 4101 family = sk->sk_family; 4102 if (family == PF_INET || family == PF_INET6) { 4103 char *addrp; 4104 struct sk_security_struct *sksec = sk->sk_security; 4105 struct common_audit_data ad; 4106 struct lsm_network_audit net = {0,}; 4107 struct sockaddr_in *addr4 = NULL; 4108 struct sockaddr_in6 *addr6 = NULL; 4109 unsigned short snum; 4110 u32 sid, node_perm; 4111 4112 if (family == PF_INET) { 4113 addr4 = (struct sockaddr_in *)address; 4114 snum = ntohs(addr4->sin_port); 4115 addrp = (char *)&addr4->sin_addr.s_addr; 4116 } else { 4117 addr6 = (struct sockaddr_in6 *)address; 4118 snum = ntohs(addr6->sin6_port); 4119 addrp = (char *)&addr6->sin6_addr.s6_addr; 4120 } 4121 4122 if (snum) { 4123 int low, high; 4124 4125 inet_get_local_port_range(sock_net(sk), &low, &high); 4126 4127 if (snum < max(PROT_SOCK, low) || snum > high) { 4128 err = sel_netport_sid(sk->sk_protocol, 4129 snum, &sid); 4130 if (err) 4131 goto out; 4132 ad.type = LSM_AUDIT_DATA_NET; 4133 ad.u.net = &net; 4134 ad.u.net->sport = htons(snum); 4135 ad.u.net->family = family; 4136 err = avc_has_perm(sksec->sid, sid, 4137 sksec->sclass, 4138 SOCKET__NAME_BIND, &ad); 4139 if (err) 4140 goto out; 4141 } 4142 } 4143 4144 switch (sksec->sclass) { 4145 case SECCLASS_TCP_SOCKET: 4146 node_perm = TCP_SOCKET__NODE_BIND; 4147 break; 4148 4149 case SECCLASS_UDP_SOCKET: 4150 node_perm = UDP_SOCKET__NODE_BIND; 4151 break; 4152 4153 case SECCLASS_DCCP_SOCKET: 4154 node_perm = DCCP_SOCKET__NODE_BIND; 4155 break; 4156 4157 default: 4158 node_perm = RAWIP_SOCKET__NODE_BIND; 4159 break; 4160 } 4161 4162 err = sel_netnode_sid(addrp, family, &sid); 4163 if (err) 4164 goto out; 4165 4166 ad.type = LSM_AUDIT_DATA_NET; 4167 ad.u.net = &net; 4168 ad.u.net->sport = htons(snum); 4169 ad.u.net->family = family; 4170 4171 if (family == PF_INET) 4172 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr; 4173 else 4174 ad.u.net->v6info.saddr = addr6->sin6_addr; 4175 4176 err = avc_has_perm(sksec->sid, sid, 4177 sksec->sclass, node_perm, &ad); 4178 if (err) 4179 goto out; 4180 } 4181 out: 4182 return err; 4183 } 4184 4185 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 4186 { 4187 struct sock *sk = sock->sk; 4188 struct sk_security_struct *sksec = sk->sk_security; 4189 int err; 4190 4191 err = sock_has_perm(current, sk, SOCKET__CONNECT); 4192 if (err) 4193 return err; 4194 4195 /* 4196 * If a TCP or DCCP socket, check name_connect permission for the port. 4197 */ 4198 if (sksec->sclass == SECCLASS_TCP_SOCKET || 4199 sksec->sclass == SECCLASS_DCCP_SOCKET) { 4200 struct common_audit_data ad; 4201 struct lsm_network_audit net = {0,}; 4202 struct sockaddr_in *addr4 = NULL; 4203 struct sockaddr_in6 *addr6 = NULL; 4204 unsigned short snum; 4205 u32 sid, perm; 4206 4207 if (sk->sk_family == PF_INET) { 4208 addr4 = (struct sockaddr_in *)address; 4209 if (addrlen < sizeof(struct sockaddr_in)) 4210 return -EINVAL; 4211 snum = ntohs(addr4->sin_port); 4212 } else { 4213 addr6 = (struct sockaddr_in6 *)address; 4214 if (addrlen < SIN6_LEN_RFC2133) 4215 return -EINVAL; 4216 snum = ntohs(addr6->sin6_port); 4217 } 4218 4219 err = sel_netport_sid(sk->sk_protocol, snum, &sid); 4220 if (err) 4221 goto out; 4222 4223 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ? 4224 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT; 4225 4226 ad.type = LSM_AUDIT_DATA_NET; 4227 ad.u.net = &net; 4228 ad.u.net->dport = htons(snum); 4229 ad.u.net->family = sk->sk_family; 4230 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad); 4231 if (err) 4232 goto out; 4233 } 4234 4235 err = selinux_netlbl_socket_connect(sk, address); 4236 4237 out: 4238 return err; 4239 } 4240 4241 static int selinux_socket_listen(struct socket *sock, int backlog) 4242 { 4243 return sock_has_perm(current, sock->sk, SOCKET__LISTEN); 4244 } 4245 4246 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 4247 { 4248 int err; 4249 struct inode_security_struct *isec; 4250 struct inode_security_struct *newisec; 4251 4252 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT); 4253 if (err) 4254 return err; 4255 4256 newisec = SOCK_INODE(newsock)->i_security; 4257 4258 isec = SOCK_INODE(sock)->i_security; 4259 newisec->sclass = isec->sclass; 4260 newisec->sid = isec->sid; 4261 newisec->initialized = 1; 4262 4263 return 0; 4264 } 4265 4266 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 4267 int size) 4268 { 4269 return sock_has_perm(current, sock->sk, SOCKET__WRITE); 4270 } 4271 4272 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 4273 int size, int flags) 4274 { 4275 return sock_has_perm(current, sock->sk, SOCKET__READ); 4276 } 4277 4278 static int selinux_socket_getsockname(struct socket *sock) 4279 { 4280 return sock_has_perm(current, sock->sk, SOCKET__GETATTR); 4281 } 4282 4283 static int selinux_socket_getpeername(struct socket *sock) 4284 { 4285 return sock_has_perm(current, sock->sk, SOCKET__GETATTR); 4286 } 4287 4288 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname) 4289 { 4290 int err; 4291 4292 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT); 4293 if (err) 4294 return err; 4295 4296 return selinux_netlbl_socket_setsockopt(sock, level, optname); 4297 } 4298 4299 static int selinux_socket_getsockopt(struct socket *sock, int level, 4300 int optname) 4301 { 4302 return sock_has_perm(current, sock->sk, SOCKET__GETOPT); 4303 } 4304 4305 static int selinux_socket_shutdown(struct socket *sock, int how) 4306 { 4307 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN); 4308 } 4309 4310 static int selinux_socket_unix_stream_connect(struct sock *sock, 4311 struct sock *other, 4312 struct sock *newsk) 4313 { 4314 struct sk_security_struct *sksec_sock = sock->sk_security; 4315 struct sk_security_struct *sksec_other = other->sk_security; 4316 struct sk_security_struct *sksec_new = newsk->sk_security; 4317 struct common_audit_data ad; 4318 struct lsm_network_audit net = {0,}; 4319 int err; 4320 4321 ad.type = LSM_AUDIT_DATA_NET; 4322 ad.u.net = &net; 4323 ad.u.net->sk = other; 4324 4325 err = avc_has_perm(sksec_sock->sid, sksec_other->sid, 4326 sksec_other->sclass, 4327 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 4328 if (err) 4329 return err; 4330 4331 /* server child socket */ 4332 sksec_new->peer_sid = sksec_sock->sid; 4333 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid, 4334 &sksec_new->sid); 4335 if (err) 4336 return err; 4337 4338 /* connecting socket */ 4339 sksec_sock->peer_sid = sksec_new->sid; 4340 4341 return 0; 4342 } 4343 4344 static int selinux_socket_unix_may_send(struct socket *sock, 4345 struct socket *other) 4346 { 4347 struct sk_security_struct *ssec = sock->sk->sk_security; 4348 struct sk_security_struct *osec = other->sk->sk_security; 4349 struct common_audit_data ad; 4350 struct lsm_network_audit net = {0,}; 4351 4352 ad.type = LSM_AUDIT_DATA_NET; 4353 ad.u.net = &net; 4354 ad.u.net->sk = other->sk; 4355 4356 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO, 4357 &ad); 4358 } 4359 4360 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex, 4361 char *addrp, u16 family, u32 peer_sid, 4362 struct common_audit_data *ad) 4363 { 4364 int err; 4365 u32 if_sid; 4366 u32 node_sid; 4367 4368 err = sel_netif_sid(ns, ifindex, &if_sid); 4369 if (err) 4370 return err; 4371 err = avc_has_perm(peer_sid, if_sid, 4372 SECCLASS_NETIF, NETIF__INGRESS, ad); 4373 if (err) 4374 return err; 4375 4376 err = sel_netnode_sid(addrp, family, &node_sid); 4377 if (err) 4378 return err; 4379 return avc_has_perm(peer_sid, node_sid, 4380 SECCLASS_NODE, NODE__RECVFROM, ad); 4381 } 4382 4383 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 4384 u16 family) 4385 { 4386 int err = 0; 4387 struct sk_security_struct *sksec = sk->sk_security; 4388 u32 sk_sid = sksec->sid; 4389 struct common_audit_data ad; 4390 struct lsm_network_audit net = {0,}; 4391 char *addrp; 4392 4393 ad.type = LSM_AUDIT_DATA_NET; 4394 ad.u.net = &net; 4395 ad.u.net->netif = skb->skb_iif; 4396 ad.u.net->family = family; 4397 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4398 if (err) 4399 return err; 4400 4401 if (selinux_secmark_enabled()) { 4402 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4403 PACKET__RECV, &ad); 4404 if (err) 4405 return err; 4406 } 4407 4408 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad); 4409 if (err) 4410 return err; 4411 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad); 4412 4413 return err; 4414 } 4415 4416 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4417 { 4418 int err; 4419 struct sk_security_struct *sksec = sk->sk_security; 4420 u16 family = sk->sk_family; 4421 u32 sk_sid = sksec->sid; 4422 struct common_audit_data ad; 4423 struct lsm_network_audit net = {0,}; 4424 char *addrp; 4425 u8 secmark_active; 4426 u8 peerlbl_active; 4427 4428 if (family != PF_INET && family != PF_INET6) 4429 return 0; 4430 4431 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 4432 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4433 family = PF_INET; 4434 4435 /* If any sort of compatibility mode is enabled then handoff processing 4436 * to the selinux_sock_rcv_skb_compat() function to deal with the 4437 * special handling. We do this in an attempt to keep this function 4438 * as fast and as clean as possible. */ 4439 if (!selinux_policycap_netpeer) 4440 return selinux_sock_rcv_skb_compat(sk, skb, family); 4441 4442 secmark_active = selinux_secmark_enabled(); 4443 peerlbl_active = selinux_peerlbl_enabled(); 4444 if (!secmark_active && !peerlbl_active) 4445 return 0; 4446 4447 ad.type = LSM_AUDIT_DATA_NET; 4448 ad.u.net = &net; 4449 ad.u.net->netif = skb->skb_iif; 4450 ad.u.net->family = family; 4451 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4452 if (err) 4453 return err; 4454 4455 if (peerlbl_active) { 4456 u32 peer_sid; 4457 4458 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 4459 if (err) 4460 return err; 4461 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif, 4462 addrp, family, peer_sid, &ad); 4463 if (err) { 4464 selinux_netlbl_err(skb, err, 0); 4465 return err; 4466 } 4467 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER, 4468 PEER__RECV, &ad); 4469 if (err) { 4470 selinux_netlbl_err(skb, err, 0); 4471 return err; 4472 } 4473 } 4474 4475 if (secmark_active) { 4476 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4477 PACKET__RECV, &ad); 4478 if (err) 4479 return err; 4480 } 4481 4482 return err; 4483 } 4484 4485 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval, 4486 int __user *optlen, unsigned len) 4487 { 4488 int err = 0; 4489 char *scontext; 4490 u32 scontext_len; 4491 struct sk_security_struct *sksec = sock->sk->sk_security; 4492 u32 peer_sid = SECSID_NULL; 4493 4494 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 4495 sksec->sclass == SECCLASS_TCP_SOCKET) 4496 peer_sid = sksec->peer_sid; 4497 if (peer_sid == SECSID_NULL) 4498 return -ENOPROTOOPT; 4499 4500 err = security_sid_to_context(peer_sid, &scontext, &scontext_len); 4501 if (err) 4502 return err; 4503 4504 if (scontext_len > len) { 4505 err = -ERANGE; 4506 goto out_len; 4507 } 4508 4509 if (copy_to_user(optval, scontext, scontext_len)) 4510 err = -EFAULT; 4511 4512 out_len: 4513 if (put_user(scontext_len, optlen)) 4514 err = -EFAULT; 4515 kfree(scontext); 4516 return err; 4517 } 4518 4519 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 4520 { 4521 u32 peer_secid = SECSID_NULL; 4522 u16 family; 4523 4524 if (skb && skb->protocol == htons(ETH_P_IP)) 4525 family = PF_INET; 4526 else if (skb && skb->protocol == htons(ETH_P_IPV6)) 4527 family = PF_INET6; 4528 else if (sock) 4529 family = sock->sk->sk_family; 4530 else 4531 goto out; 4532 4533 if (sock && family == PF_UNIX) 4534 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid); 4535 else if (skb) 4536 selinux_skb_peerlbl_sid(skb, family, &peer_secid); 4537 4538 out: 4539 *secid = peer_secid; 4540 if (peer_secid == SECSID_NULL) 4541 return -EINVAL; 4542 return 0; 4543 } 4544 4545 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 4546 { 4547 struct sk_security_struct *sksec; 4548 4549 sksec = kzalloc(sizeof(*sksec), priority); 4550 if (!sksec) 4551 return -ENOMEM; 4552 4553 sksec->peer_sid = SECINITSID_UNLABELED; 4554 sksec->sid = SECINITSID_UNLABELED; 4555 selinux_netlbl_sk_security_reset(sksec); 4556 sk->sk_security = sksec; 4557 4558 return 0; 4559 } 4560 4561 static void selinux_sk_free_security(struct sock *sk) 4562 { 4563 struct sk_security_struct *sksec = sk->sk_security; 4564 4565 sk->sk_security = NULL; 4566 selinux_netlbl_sk_security_free(sksec); 4567 kfree(sksec); 4568 } 4569 4570 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 4571 { 4572 struct sk_security_struct *sksec = sk->sk_security; 4573 struct sk_security_struct *newsksec = newsk->sk_security; 4574 4575 newsksec->sid = sksec->sid; 4576 newsksec->peer_sid = sksec->peer_sid; 4577 newsksec->sclass = sksec->sclass; 4578 4579 selinux_netlbl_sk_security_reset(newsksec); 4580 } 4581 4582 static void selinux_sk_getsecid(struct sock *sk, u32 *secid) 4583 { 4584 if (!sk) 4585 *secid = SECINITSID_ANY_SOCKET; 4586 else { 4587 struct sk_security_struct *sksec = sk->sk_security; 4588 4589 *secid = sksec->sid; 4590 } 4591 } 4592 4593 static void selinux_sock_graft(struct sock *sk, struct socket *parent) 4594 { 4595 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security; 4596 struct sk_security_struct *sksec = sk->sk_security; 4597 4598 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 4599 sk->sk_family == PF_UNIX) 4600 isec->sid = sksec->sid; 4601 sksec->sclass = isec->sclass; 4602 } 4603 4604 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb, 4605 struct request_sock *req) 4606 { 4607 struct sk_security_struct *sksec = sk->sk_security; 4608 int err; 4609 u16 family = req->rsk_ops->family; 4610 u32 connsid; 4611 u32 peersid; 4612 4613 err = selinux_skb_peerlbl_sid(skb, family, &peersid); 4614 if (err) 4615 return err; 4616 err = selinux_conn_sid(sksec->sid, peersid, &connsid); 4617 if (err) 4618 return err; 4619 req->secid = connsid; 4620 req->peer_secid = peersid; 4621 4622 return selinux_netlbl_inet_conn_request(req, family); 4623 } 4624 4625 static void selinux_inet_csk_clone(struct sock *newsk, 4626 const struct request_sock *req) 4627 { 4628 struct sk_security_struct *newsksec = newsk->sk_security; 4629 4630 newsksec->sid = req->secid; 4631 newsksec->peer_sid = req->peer_secid; 4632 /* NOTE: Ideally, we should also get the isec->sid for the 4633 new socket in sync, but we don't have the isec available yet. 4634 So we will wait until sock_graft to do it, by which 4635 time it will have been created and available. */ 4636 4637 /* We don't need to take any sort of lock here as we are the only 4638 * thread with access to newsksec */ 4639 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family); 4640 } 4641 4642 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb) 4643 { 4644 u16 family = sk->sk_family; 4645 struct sk_security_struct *sksec = sk->sk_security; 4646 4647 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 4648 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4649 family = PF_INET; 4650 4651 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid); 4652 } 4653 4654 static int selinux_secmark_relabel_packet(u32 sid) 4655 { 4656 const struct task_security_struct *__tsec; 4657 u32 tsid; 4658 4659 __tsec = current_security(); 4660 tsid = __tsec->sid; 4661 4662 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL); 4663 } 4664 4665 static void selinux_secmark_refcount_inc(void) 4666 { 4667 atomic_inc(&selinux_secmark_refcount); 4668 } 4669 4670 static void selinux_secmark_refcount_dec(void) 4671 { 4672 atomic_dec(&selinux_secmark_refcount); 4673 } 4674 4675 static void selinux_req_classify_flow(const struct request_sock *req, 4676 struct flowi *fl) 4677 { 4678 fl->flowi_secid = req->secid; 4679 } 4680 4681 static int selinux_tun_dev_alloc_security(void **security) 4682 { 4683 struct tun_security_struct *tunsec; 4684 4685 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL); 4686 if (!tunsec) 4687 return -ENOMEM; 4688 tunsec->sid = current_sid(); 4689 4690 *security = tunsec; 4691 return 0; 4692 } 4693 4694 static void selinux_tun_dev_free_security(void *security) 4695 { 4696 kfree(security); 4697 } 4698 4699 static int selinux_tun_dev_create(void) 4700 { 4701 u32 sid = current_sid(); 4702 4703 /* we aren't taking into account the "sockcreate" SID since the socket 4704 * that is being created here is not a socket in the traditional sense, 4705 * instead it is a private sock, accessible only to the kernel, and 4706 * representing a wide range of network traffic spanning multiple 4707 * connections unlike traditional sockets - check the TUN driver to 4708 * get a better understanding of why this socket is special */ 4709 4710 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE, 4711 NULL); 4712 } 4713 4714 static int selinux_tun_dev_attach_queue(void *security) 4715 { 4716 struct tun_security_struct *tunsec = security; 4717 4718 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET, 4719 TUN_SOCKET__ATTACH_QUEUE, NULL); 4720 } 4721 4722 static int selinux_tun_dev_attach(struct sock *sk, void *security) 4723 { 4724 struct tun_security_struct *tunsec = security; 4725 struct sk_security_struct *sksec = sk->sk_security; 4726 4727 /* we don't currently perform any NetLabel based labeling here and it 4728 * isn't clear that we would want to do so anyway; while we could apply 4729 * labeling without the support of the TUN user the resulting labeled 4730 * traffic from the other end of the connection would almost certainly 4731 * cause confusion to the TUN user that had no idea network labeling 4732 * protocols were being used */ 4733 4734 sksec->sid = tunsec->sid; 4735 sksec->sclass = SECCLASS_TUN_SOCKET; 4736 4737 return 0; 4738 } 4739 4740 static int selinux_tun_dev_open(void *security) 4741 { 4742 struct tun_security_struct *tunsec = security; 4743 u32 sid = current_sid(); 4744 int err; 4745 4746 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET, 4747 TUN_SOCKET__RELABELFROM, NULL); 4748 if (err) 4749 return err; 4750 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, 4751 TUN_SOCKET__RELABELTO, NULL); 4752 if (err) 4753 return err; 4754 tunsec->sid = sid; 4755 4756 return 0; 4757 } 4758 4759 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb) 4760 { 4761 int err = 0; 4762 u32 perm; 4763 struct nlmsghdr *nlh; 4764 struct sk_security_struct *sksec = sk->sk_security; 4765 4766 if (skb->len < NLMSG_HDRLEN) { 4767 err = -EINVAL; 4768 goto out; 4769 } 4770 nlh = nlmsg_hdr(skb); 4771 4772 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm); 4773 if (err) { 4774 if (err == -EINVAL) { 4775 printk(KERN_WARNING 4776 "SELinux: unrecognized netlink message:" 4777 " protocol=%hu nlmsg_type=%hu sclass=%hu\n", 4778 sk->sk_protocol, nlh->nlmsg_type, sksec->sclass); 4779 if (!selinux_enforcing || security_get_allow_unknown()) 4780 err = 0; 4781 } 4782 4783 /* Ignore */ 4784 if (err == -ENOENT) 4785 err = 0; 4786 goto out; 4787 } 4788 4789 err = sock_has_perm(current, sk, perm); 4790 out: 4791 return err; 4792 } 4793 4794 #ifdef CONFIG_NETFILTER 4795 4796 static unsigned int selinux_ip_forward(struct sk_buff *skb, 4797 const struct net_device *indev, 4798 u16 family) 4799 { 4800 int err; 4801 char *addrp; 4802 u32 peer_sid; 4803 struct common_audit_data ad; 4804 struct lsm_network_audit net = {0,}; 4805 u8 secmark_active; 4806 u8 netlbl_active; 4807 u8 peerlbl_active; 4808 4809 if (!selinux_policycap_netpeer) 4810 return NF_ACCEPT; 4811 4812 secmark_active = selinux_secmark_enabled(); 4813 netlbl_active = netlbl_enabled(); 4814 peerlbl_active = selinux_peerlbl_enabled(); 4815 if (!secmark_active && !peerlbl_active) 4816 return NF_ACCEPT; 4817 4818 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0) 4819 return NF_DROP; 4820 4821 ad.type = LSM_AUDIT_DATA_NET; 4822 ad.u.net = &net; 4823 ad.u.net->netif = indev->ifindex; 4824 ad.u.net->family = family; 4825 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0) 4826 return NF_DROP; 4827 4828 if (peerlbl_active) { 4829 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex, 4830 addrp, family, peer_sid, &ad); 4831 if (err) { 4832 selinux_netlbl_err(skb, err, 1); 4833 return NF_DROP; 4834 } 4835 } 4836 4837 if (secmark_active) 4838 if (avc_has_perm(peer_sid, skb->secmark, 4839 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad)) 4840 return NF_DROP; 4841 4842 if (netlbl_active) 4843 /* we do this in the FORWARD path and not the POST_ROUTING 4844 * path because we want to make sure we apply the necessary 4845 * labeling before IPsec is applied so we can leverage AH 4846 * protection */ 4847 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0) 4848 return NF_DROP; 4849 4850 return NF_ACCEPT; 4851 } 4852 4853 static unsigned int selinux_ipv4_forward(const struct nf_hook_ops *ops, 4854 struct sk_buff *skb, 4855 const struct net_device *in, 4856 const struct net_device *out, 4857 int (*okfn)(struct sk_buff *)) 4858 { 4859 return selinux_ip_forward(skb, in, PF_INET); 4860 } 4861 4862 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4863 static unsigned int selinux_ipv6_forward(const struct nf_hook_ops *ops, 4864 struct sk_buff *skb, 4865 const struct net_device *in, 4866 const struct net_device *out, 4867 int (*okfn)(struct sk_buff *)) 4868 { 4869 return selinux_ip_forward(skb, in, PF_INET6); 4870 } 4871 #endif /* IPV6 */ 4872 4873 static unsigned int selinux_ip_output(struct sk_buff *skb, 4874 u16 family) 4875 { 4876 struct sock *sk; 4877 u32 sid; 4878 4879 if (!netlbl_enabled()) 4880 return NF_ACCEPT; 4881 4882 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path 4883 * because we want to make sure we apply the necessary labeling 4884 * before IPsec is applied so we can leverage AH protection */ 4885 sk = skb->sk; 4886 if (sk) { 4887 struct sk_security_struct *sksec; 4888 4889 if (sk->sk_state == TCP_LISTEN) 4890 /* if the socket is the listening state then this 4891 * packet is a SYN-ACK packet which means it needs to 4892 * be labeled based on the connection/request_sock and 4893 * not the parent socket. unfortunately, we can't 4894 * lookup the request_sock yet as it isn't queued on 4895 * the parent socket until after the SYN-ACK is sent. 4896 * the "solution" is to simply pass the packet as-is 4897 * as any IP option based labeling should be copied 4898 * from the initial connection request (in the IP 4899 * layer). it is far from ideal, but until we get a 4900 * security label in the packet itself this is the 4901 * best we can do. */ 4902 return NF_ACCEPT; 4903 4904 /* standard practice, label using the parent socket */ 4905 sksec = sk->sk_security; 4906 sid = sksec->sid; 4907 } else 4908 sid = SECINITSID_KERNEL; 4909 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0) 4910 return NF_DROP; 4911 4912 return NF_ACCEPT; 4913 } 4914 4915 static unsigned int selinux_ipv4_output(const struct nf_hook_ops *ops, 4916 struct sk_buff *skb, 4917 const struct net_device *in, 4918 const struct net_device *out, 4919 int (*okfn)(struct sk_buff *)) 4920 { 4921 return selinux_ip_output(skb, PF_INET); 4922 } 4923 4924 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb, 4925 int ifindex, 4926 u16 family) 4927 { 4928 struct sock *sk = skb->sk; 4929 struct sk_security_struct *sksec; 4930 struct common_audit_data ad; 4931 struct lsm_network_audit net = {0,}; 4932 char *addrp; 4933 u8 proto; 4934 4935 if (sk == NULL) 4936 return NF_ACCEPT; 4937 sksec = sk->sk_security; 4938 4939 ad.type = LSM_AUDIT_DATA_NET; 4940 ad.u.net = &net; 4941 ad.u.net->netif = ifindex; 4942 ad.u.net->family = family; 4943 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto)) 4944 return NF_DROP; 4945 4946 if (selinux_secmark_enabled()) 4947 if (avc_has_perm(sksec->sid, skb->secmark, 4948 SECCLASS_PACKET, PACKET__SEND, &ad)) 4949 return NF_DROP_ERR(-ECONNREFUSED); 4950 4951 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto)) 4952 return NF_DROP_ERR(-ECONNREFUSED); 4953 4954 return NF_ACCEPT; 4955 } 4956 4957 static unsigned int selinux_ip_postroute(struct sk_buff *skb, 4958 const struct net_device *outdev, 4959 u16 family) 4960 { 4961 u32 secmark_perm; 4962 u32 peer_sid; 4963 int ifindex = outdev->ifindex; 4964 struct sock *sk; 4965 struct common_audit_data ad; 4966 struct lsm_network_audit net = {0,}; 4967 char *addrp; 4968 u8 secmark_active; 4969 u8 peerlbl_active; 4970 4971 /* If any sort of compatibility mode is enabled then handoff processing 4972 * to the selinux_ip_postroute_compat() function to deal with the 4973 * special handling. We do this in an attempt to keep this function 4974 * as fast and as clean as possible. */ 4975 if (!selinux_policycap_netpeer) 4976 return selinux_ip_postroute_compat(skb, ifindex, family); 4977 4978 secmark_active = selinux_secmark_enabled(); 4979 peerlbl_active = selinux_peerlbl_enabled(); 4980 if (!secmark_active && !peerlbl_active) 4981 return NF_ACCEPT; 4982 4983 sk = skb->sk; 4984 4985 #ifdef CONFIG_XFRM 4986 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec 4987 * packet transformation so allow the packet to pass without any checks 4988 * since we'll have another chance to perform access control checks 4989 * when the packet is on it's final way out. 4990 * NOTE: there appear to be some IPv6 multicast cases where skb->dst 4991 * is NULL, in this case go ahead and apply access control. 4992 * NOTE: if this is a local socket (skb->sk != NULL) that is in the 4993 * TCP listening state we cannot wait until the XFRM processing 4994 * is done as we will miss out on the SA label if we do; 4995 * unfortunately, this means more work, but it is only once per 4996 * connection. */ 4997 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL && 4998 !(sk != NULL && sk->sk_state == TCP_LISTEN)) 4999 return NF_ACCEPT; 5000 #endif 5001 5002 if (sk == NULL) { 5003 /* Without an associated socket the packet is either coming 5004 * from the kernel or it is being forwarded; check the packet 5005 * to determine which and if the packet is being forwarded 5006 * query the packet directly to determine the security label. */ 5007 if (skb->skb_iif) { 5008 secmark_perm = PACKET__FORWARD_OUT; 5009 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid)) 5010 return NF_DROP; 5011 } else { 5012 secmark_perm = PACKET__SEND; 5013 peer_sid = SECINITSID_KERNEL; 5014 } 5015 } else if (sk->sk_state == TCP_LISTEN) { 5016 /* Locally generated packet but the associated socket is in the 5017 * listening state which means this is a SYN-ACK packet. In 5018 * this particular case the correct security label is assigned 5019 * to the connection/request_sock but unfortunately we can't 5020 * query the request_sock as it isn't queued on the parent 5021 * socket until after the SYN-ACK packet is sent; the only 5022 * viable choice is to regenerate the label like we do in 5023 * selinux_inet_conn_request(). See also selinux_ip_output() 5024 * for similar problems. */ 5025 u32 skb_sid; 5026 struct sk_security_struct *sksec = sk->sk_security; 5027 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid)) 5028 return NF_DROP; 5029 /* At this point, if the returned skb peerlbl is SECSID_NULL 5030 * and the packet has been through at least one XFRM 5031 * transformation then we must be dealing with the "final" 5032 * form of labeled IPsec packet; since we've already applied 5033 * all of our access controls on this packet we can safely 5034 * pass the packet. */ 5035 if (skb_sid == SECSID_NULL) { 5036 switch (family) { 5037 case PF_INET: 5038 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED) 5039 return NF_ACCEPT; 5040 break; 5041 case PF_INET6: 5042 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED) 5043 return NF_ACCEPT; 5044 break; 5045 default: 5046 return NF_DROP_ERR(-ECONNREFUSED); 5047 } 5048 } 5049 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid)) 5050 return NF_DROP; 5051 secmark_perm = PACKET__SEND; 5052 } else { 5053 /* Locally generated packet, fetch the security label from the 5054 * associated socket. */ 5055 struct sk_security_struct *sksec = sk->sk_security; 5056 peer_sid = sksec->sid; 5057 secmark_perm = PACKET__SEND; 5058 } 5059 5060 ad.type = LSM_AUDIT_DATA_NET; 5061 ad.u.net = &net; 5062 ad.u.net->netif = ifindex; 5063 ad.u.net->family = family; 5064 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL)) 5065 return NF_DROP; 5066 5067 if (secmark_active) 5068 if (avc_has_perm(peer_sid, skb->secmark, 5069 SECCLASS_PACKET, secmark_perm, &ad)) 5070 return NF_DROP_ERR(-ECONNREFUSED); 5071 5072 if (peerlbl_active) { 5073 u32 if_sid; 5074 u32 node_sid; 5075 5076 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid)) 5077 return NF_DROP; 5078 if (avc_has_perm(peer_sid, if_sid, 5079 SECCLASS_NETIF, NETIF__EGRESS, &ad)) 5080 return NF_DROP_ERR(-ECONNREFUSED); 5081 5082 if (sel_netnode_sid(addrp, family, &node_sid)) 5083 return NF_DROP; 5084 if (avc_has_perm(peer_sid, node_sid, 5085 SECCLASS_NODE, NODE__SENDTO, &ad)) 5086 return NF_DROP_ERR(-ECONNREFUSED); 5087 } 5088 5089 return NF_ACCEPT; 5090 } 5091 5092 static unsigned int selinux_ipv4_postroute(const struct nf_hook_ops *ops, 5093 struct sk_buff *skb, 5094 const struct net_device *in, 5095 const struct net_device *out, 5096 int (*okfn)(struct sk_buff *)) 5097 { 5098 return selinux_ip_postroute(skb, out, PF_INET); 5099 } 5100 5101 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5102 static unsigned int selinux_ipv6_postroute(const struct nf_hook_ops *ops, 5103 struct sk_buff *skb, 5104 const struct net_device *in, 5105 const struct net_device *out, 5106 int (*okfn)(struct sk_buff *)) 5107 { 5108 return selinux_ip_postroute(skb, out, PF_INET6); 5109 } 5110 #endif /* IPV6 */ 5111 5112 #endif /* CONFIG_NETFILTER */ 5113 5114 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 5115 { 5116 int err; 5117 5118 err = cap_netlink_send(sk, skb); 5119 if (err) 5120 return err; 5121 5122 return selinux_nlmsg_perm(sk, skb); 5123 } 5124 5125 static int ipc_alloc_security(struct task_struct *task, 5126 struct kern_ipc_perm *perm, 5127 u16 sclass) 5128 { 5129 struct ipc_security_struct *isec; 5130 u32 sid; 5131 5132 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL); 5133 if (!isec) 5134 return -ENOMEM; 5135 5136 sid = task_sid(task); 5137 isec->sclass = sclass; 5138 isec->sid = sid; 5139 perm->security = isec; 5140 5141 return 0; 5142 } 5143 5144 static void ipc_free_security(struct kern_ipc_perm *perm) 5145 { 5146 struct ipc_security_struct *isec = perm->security; 5147 perm->security = NULL; 5148 kfree(isec); 5149 } 5150 5151 static int msg_msg_alloc_security(struct msg_msg *msg) 5152 { 5153 struct msg_security_struct *msec; 5154 5155 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL); 5156 if (!msec) 5157 return -ENOMEM; 5158 5159 msec->sid = SECINITSID_UNLABELED; 5160 msg->security = msec; 5161 5162 return 0; 5163 } 5164 5165 static void msg_msg_free_security(struct msg_msg *msg) 5166 { 5167 struct msg_security_struct *msec = msg->security; 5168 5169 msg->security = NULL; 5170 kfree(msec); 5171 } 5172 5173 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 5174 u32 perms) 5175 { 5176 struct ipc_security_struct *isec; 5177 struct common_audit_data ad; 5178 u32 sid = current_sid(); 5179 5180 isec = ipc_perms->security; 5181 5182 ad.type = LSM_AUDIT_DATA_IPC; 5183 ad.u.ipc_id = ipc_perms->key; 5184 5185 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad); 5186 } 5187 5188 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 5189 { 5190 return msg_msg_alloc_security(msg); 5191 } 5192 5193 static void selinux_msg_msg_free_security(struct msg_msg *msg) 5194 { 5195 msg_msg_free_security(msg); 5196 } 5197 5198 /* message queue security operations */ 5199 static int selinux_msg_queue_alloc_security(struct msg_queue *msq) 5200 { 5201 struct ipc_security_struct *isec; 5202 struct common_audit_data ad; 5203 u32 sid = current_sid(); 5204 int rc; 5205 5206 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ); 5207 if (rc) 5208 return rc; 5209 5210 isec = msq->q_perm.security; 5211 5212 ad.type = LSM_AUDIT_DATA_IPC; 5213 ad.u.ipc_id = msq->q_perm.key; 5214 5215 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 5216 MSGQ__CREATE, &ad); 5217 if (rc) { 5218 ipc_free_security(&msq->q_perm); 5219 return rc; 5220 } 5221 return 0; 5222 } 5223 5224 static void selinux_msg_queue_free_security(struct msg_queue *msq) 5225 { 5226 ipc_free_security(&msq->q_perm); 5227 } 5228 5229 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg) 5230 { 5231 struct ipc_security_struct *isec; 5232 struct common_audit_data ad; 5233 u32 sid = current_sid(); 5234 5235 isec = msq->q_perm.security; 5236 5237 ad.type = LSM_AUDIT_DATA_IPC; 5238 ad.u.ipc_id = msq->q_perm.key; 5239 5240 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 5241 MSGQ__ASSOCIATE, &ad); 5242 } 5243 5244 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd) 5245 { 5246 int err; 5247 int perms; 5248 5249 switch (cmd) { 5250 case IPC_INFO: 5251 case MSG_INFO: 5252 /* No specific object, just general system-wide information. */ 5253 return task_has_system(current, SYSTEM__IPC_INFO); 5254 case IPC_STAT: 5255 case MSG_STAT: 5256 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 5257 break; 5258 case IPC_SET: 5259 perms = MSGQ__SETATTR; 5260 break; 5261 case IPC_RMID: 5262 perms = MSGQ__DESTROY; 5263 break; 5264 default: 5265 return 0; 5266 } 5267 5268 err = ipc_has_perm(&msq->q_perm, perms); 5269 return err; 5270 } 5271 5272 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg) 5273 { 5274 struct ipc_security_struct *isec; 5275 struct msg_security_struct *msec; 5276 struct common_audit_data ad; 5277 u32 sid = current_sid(); 5278 int rc; 5279 5280 isec = msq->q_perm.security; 5281 msec = msg->security; 5282 5283 /* 5284 * First time through, need to assign label to the message 5285 */ 5286 if (msec->sid == SECINITSID_UNLABELED) { 5287 /* 5288 * Compute new sid based on current process and 5289 * message queue this message will be stored in 5290 */ 5291 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG, 5292 NULL, &msec->sid); 5293 if (rc) 5294 return rc; 5295 } 5296 5297 ad.type = LSM_AUDIT_DATA_IPC; 5298 ad.u.ipc_id = msq->q_perm.key; 5299 5300 /* Can this process write to the queue? */ 5301 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 5302 MSGQ__WRITE, &ad); 5303 if (!rc) 5304 /* Can this process send the message */ 5305 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG, 5306 MSG__SEND, &ad); 5307 if (!rc) 5308 /* Can the message be put in the queue? */ 5309 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ, 5310 MSGQ__ENQUEUE, &ad); 5311 5312 return rc; 5313 } 5314 5315 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 5316 struct task_struct *target, 5317 long type, int mode) 5318 { 5319 struct ipc_security_struct *isec; 5320 struct msg_security_struct *msec; 5321 struct common_audit_data ad; 5322 u32 sid = task_sid(target); 5323 int rc; 5324 5325 isec = msq->q_perm.security; 5326 msec = msg->security; 5327 5328 ad.type = LSM_AUDIT_DATA_IPC; 5329 ad.u.ipc_id = msq->q_perm.key; 5330 5331 rc = avc_has_perm(sid, isec->sid, 5332 SECCLASS_MSGQ, MSGQ__READ, &ad); 5333 if (!rc) 5334 rc = avc_has_perm(sid, msec->sid, 5335 SECCLASS_MSG, MSG__RECEIVE, &ad); 5336 return rc; 5337 } 5338 5339 /* Shared Memory security operations */ 5340 static int selinux_shm_alloc_security(struct shmid_kernel *shp) 5341 { 5342 struct ipc_security_struct *isec; 5343 struct common_audit_data ad; 5344 u32 sid = current_sid(); 5345 int rc; 5346 5347 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM); 5348 if (rc) 5349 return rc; 5350 5351 isec = shp->shm_perm.security; 5352 5353 ad.type = LSM_AUDIT_DATA_IPC; 5354 ad.u.ipc_id = shp->shm_perm.key; 5355 5356 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM, 5357 SHM__CREATE, &ad); 5358 if (rc) { 5359 ipc_free_security(&shp->shm_perm); 5360 return rc; 5361 } 5362 return 0; 5363 } 5364 5365 static void selinux_shm_free_security(struct shmid_kernel *shp) 5366 { 5367 ipc_free_security(&shp->shm_perm); 5368 } 5369 5370 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg) 5371 { 5372 struct ipc_security_struct *isec; 5373 struct common_audit_data ad; 5374 u32 sid = current_sid(); 5375 5376 isec = shp->shm_perm.security; 5377 5378 ad.type = LSM_AUDIT_DATA_IPC; 5379 ad.u.ipc_id = shp->shm_perm.key; 5380 5381 return avc_has_perm(sid, isec->sid, SECCLASS_SHM, 5382 SHM__ASSOCIATE, &ad); 5383 } 5384 5385 /* Note, at this point, shp is locked down */ 5386 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd) 5387 { 5388 int perms; 5389 int err; 5390 5391 switch (cmd) { 5392 case IPC_INFO: 5393 case SHM_INFO: 5394 /* No specific object, just general system-wide information. */ 5395 return task_has_system(current, SYSTEM__IPC_INFO); 5396 case IPC_STAT: 5397 case SHM_STAT: 5398 perms = SHM__GETATTR | SHM__ASSOCIATE; 5399 break; 5400 case IPC_SET: 5401 perms = SHM__SETATTR; 5402 break; 5403 case SHM_LOCK: 5404 case SHM_UNLOCK: 5405 perms = SHM__LOCK; 5406 break; 5407 case IPC_RMID: 5408 perms = SHM__DESTROY; 5409 break; 5410 default: 5411 return 0; 5412 } 5413 5414 err = ipc_has_perm(&shp->shm_perm, perms); 5415 return err; 5416 } 5417 5418 static int selinux_shm_shmat(struct shmid_kernel *shp, 5419 char __user *shmaddr, int shmflg) 5420 { 5421 u32 perms; 5422 5423 if (shmflg & SHM_RDONLY) 5424 perms = SHM__READ; 5425 else 5426 perms = SHM__READ | SHM__WRITE; 5427 5428 return ipc_has_perm(&shp->shm_perm, perms); 5429 } 5430 5431 /* Semaphore security operations */ 5432 static int selinux_sem_alloc_security(struct sem_array *sma) 5433 { 5434 struct ipc_security_struct *isec; 5435 struct common_audit_data ad; 5436 u32 sid = current_sid(); 5437 int rc; 5438 5439 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM); 5440 if (rc) 5441 return rc; 5442 5443 isec = sma->sem_perm.security; 5444 5445 ad.type = LSM_AUDIT_DATA_IPC; 5446 ad.u.ipc_id = sma->sem_perm.key; 5447 5448 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM, 5449 SEM__CREATE, &ad); 5450 if (rc) { 5451 ipc_free_security(&sma->sem_perm); 5452 return rc; 5453 } 5454 return 0; 5455 } 5456 5457 static void selinux_sem_free_security(struct sem_array *sma) 5458 { 5459 ipc_free_security(&sma->sem_perm); 5460 } 5461 5462 static int selinux_sem_associate(struct sem_array *sma, int semflg) 5463 { 5464 struct ipc_security_struct *isec; 5465 struct common_audit_data ad; 5466 u32 sid = current_sid(); 5467 5468 isec = sma->sem_perm.security; 5469 5470 ad.type = LSM_AUDIT_DATA_IPC; 5471 ad.u.ipc_id = sma->sem_perm.key; 5472 5473 return avc_has_perm(sid, isec->sid, SECCLASS_SEM, 5474 SEM__ASSOCIATE, &ad); 5475 } 5476 5477 /* Note, at this point, sma is locked down */ 5478 static int selinux_sem_semctl(struct sem_array *sma, int cmd) 5479 { 5480 int err; 5481 u32 perms; 5482 5483 switch (cmd) { 5484 case IPC_INFO: 5485 case SEM_INFO: 5486 /* No specific object, just general system-wide information. */ 5487 return task_has_system(current, SYSTEM__IPC_INFO); 5488 case GETPID: 5489 case GETNCNT: 5490 case GETZCNT: 5491 perms = SEM__GETATTR; 5492 break; 5493 case GETVAL: 5494 case GETALL: 5495 perms = SEM__READ; 5496 break; 5497 case SETVAL: 5498 case SETALL: 5499 perms = SEM__WRITE; 5500 break; 5501 case IPC_RMID: 5502 perms = SEM__DESTROY; 5503 break; 5504 case IPC_SET: 5505 perms = SEM__SETATTR; 5506 break; 5507 case IPC_STAT: 5508 case SEM_STAT: 5509 perms = SEM__GETATTR | SEM__ASSOCIATE; 5510 break; 5511 default: 5512 return 0; 5513 } 5514 5515 err = ipc_has_perm(&sma->sem_perm, perms); 5516 return err; 5517 } 5518 5519 static int selinux_sem_semop(struct sem_array *sma, 5520 struct sembuf *sops, unsigned nsops, int alter) 5521 { 5522 u32 perms; 5523 5524 if (alter) 5525 perms = SEM__READ | SEM__WRITE; 5526 else 5527 perms = SEM__READ; 5528 5529 return ipc_has_perm(&sma->sem_perm, perms); 5530 } 5531 5532 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 5533 { 5534 u32 av = 0; 5535 5536 av = 0; 5537 if (flag & S_IRUGO) 5538 av |= IPC__UNIX_READ; 5539 if (flag & S_IWUGO) 5540 av |= IPC__UNIX_WRITE; 5541 5542 if (av == 0) 5543 return 0; 5544 5545 return ipc_has_perm(ipcp, av); 5546 } 5547 5548 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 5549 { 5550 struct ipc_security_struct *isec = ipcp->security; 5551 *secid = isec->sid; 5552 } 5553 5554 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode) 5555 { 5556 if (inode) 5557 inode_doinit_with_dentry(inode, dentry); 5558 } 5559 5560 static int selinux_getprocattr(struct task_struct *p, 5561 char *name, char **value) 5562 { 5563 const struct task_security_struct *__tsec; 5564 u32 sid; 5565 int error; 5566 unsigned len; 5567 5568 if (current != p) { 5569 error = current_has_perm(p, PROCESS__GETATTR); 5570 if (error) 5571 return error; 5572 } 5573 5574 rcu_read_lock(); 5575 __tsec = __task_cred(p)->security; 5576 5577 if (!strcmp(name, "current")) 5578 sid = __tsec->sid; 5579 else if (!strcmp(name, "prev")) 5580 sid = __tsec->osid; 5581 else if (!strcmp(name, "exec")) 5582 sid = __tsec->exec_sid; 5583 else if (!strcmp(name, "fscreate")) 5584 sid = __tsec->create_sid; 5585 else if (!strcmp(name, "keycreate")) 5586 sid = __tsec->keycreate_sid; 5587 else if (!strcmp(name, "sockcreate")) 5588 sid = __tsec->sockcreate_sid; 5589 else 5590 goto invalid; 5591 rcu_read_unlock(); 5592 5593 if (!sid) 5594 return 0; 5595 5596 error = security_sid_to_context(sid, value, &len); 5597 if (error) 5598 return error; 5599 return len; 5600 5601 invalid: 5602 rcu_read_unlock(); 5603 return -EINVAL; 5604 } 5605 5606 static int selinux_setprocattr(struct task_struct *p, 5607 char *name, void *value, size_t size) 5608 { 5609 struct task_security_struct *tsec; 5610 struct task_struct *tracer; 5611 struct cred *new; 5612 u32 sid = 0, ptsid; 5613 int error; 5614 char *str = value; 5615 5616 if (current != p) { 5617 /* SELinux only allows a process to change its own 5618 security attributes. */ 5619 return -EACCES; 5620 } 5621 5622 /* 5623 * Basic control over ability to set these attributes at all. 5624 * current == p, but we'll pass them separately in case the 5625 * above restriction is ever removed. 5626 */ 5627 if (!strcmp(name, "exec")) 5628 error = current_has_perm(p, PROCESS__SETEXEC); 5629 else if (!strcmp(name, "fscreate")) 5630 error = current_has_perm(p, PROCESS__SETFSCREATE); 5631 else if (!strcmp(name, "keycreate")) 5632 error = current_has_perm(p, PROCESS__SETKEYCREATE); 5633 else if (!strcmp(name, "sockcreate")) 5634 error = current_has_perm(p, PROCESS__SETSOCKCREATE); 5635 else if (!strcmp(name, "current")) 5636 error = current_has_perm(p, PROCESS__SETCURRENT); 5637 else 5638 error = -EINVAL; 5639 if (error) 5640 return error; 5641 5642 /* Obtain a SID for the context, if one was specified. */ 5643 if (size && str[1] && str[1] != '\n') { 5644 if (str[size-1] == '\n') { 5645 str[size-1] = 0; 5646 size--; 5647 } 5648 error = security_context_to_sid(value, size, &sid, GFP_KERNEL); 5649 if (error == -EINVAL && !strcmp(name, "fscreate")) { 5650 if (!capable(CAP_MAC_ADMIN)) { 5651 struct audit_buffer *ab; 5652 size_t audit_size; 5653 5654 /* We strip a nul only if it is at the end, otherwise the 5655 * context contains a nul and we should audit that */ 5656 if (str[size - 1] == '\0') 5657 audit_size = size - 1; 5658 else 5659 audit_size = size; 5660 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR); 5661 audit_log_format(ab, "op=fscreate invalid_context="); 5662 audit_log_n_untrustedstring(ab, value, audit_size); 5663 audit_log_end(ab); 5664 5665 return error; 5666 } 5667 error = security_context_to_sid_force(value, size, 5668 &sid); 5669 } 5670 if (error) 5671 return error; 5672 } 5673 5674 new = prepare_creds(); 5675 if (!new) 5676 return -ENOMEM; 5677 5678 /* Permission checking based on the specified context is 5679 performed during the actual operation (execve, 5680 open/mkdir/...), when we know the full context of the 5681 operation. See selinux_bprm_set_creds for the execve 5682 checks and may_create for the file creation checks. The 5683 operation will then fail if the context is not permitted. */ 5684 tsec = new->security; 5685 if (!strcmp(name, "exec")) { 5686 tsec->exec_sid = sid; 5687 } else if (!strcmp(name, "fscreate")) { 5688 tsec->create_sid = sid; 5689 } else if (!strcmp(name, "keycreate")) { 5690 error = may_create_key(sid, p); 5691 if (error) 5692 goto abort_change; 5693 tsec->keycreate_sid = sid; 5694 } else if (!strcmp(name, "sockcreate")) { 5695 tsec->sockcreate_sid = sid; 5696 } else if (!strcmp(name, "current")) { 5697 error = -EINVAL; 5698 if (sid == 0) 5699 goto abort_change; 5700 5701 /* Only allow single threaded processes to change context */ 5702 error = -EPERM; 5703 if (!current_is_single_threaded()) { 5704 error = security_bounded_transition(tsec->sid, sid); 5705 if (error) 5706 goto abort_change; 5707 } 5708 5709 /* Check permissions for the transition. */ 5710 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 5711 PROCESS__DYNTRANSITION, NULL); 5712 if (error) 5713 goto abort_change; 5714 5715 /* Check for ptracing, and update the task SID if ok. 5716 Otherwise, leave SID unchanged and fail. */ 5717 ptsid = 0; 5718 rcu_read_lock(); 5719 tracer = ptrace_parent(p); 5720 if (tracer) 5721 ptsid = task_sid(tracer); 5722 rcu_read_unlock(); 5723 5724 if (tracer) { 5725 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS, 5726 PROCESS__PTRACE, NULL); 5727 if (error) 5728 goto abort_change; 5729 } 5730 5731 tsec->sid = sid; 5732 } else { 5733 error = -EINVAL; 5734 goto abort_change; 5735 } 5736 5737 commit_creds(new); 5738 return size; 5739 5740 abort_change: 5741 abort_creds(new); 5742 return error; 5743 } 5744 5745 static int selinux_ismaclabel(const char *name) 5746 { 5747 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0); 5748 } 5749 5750 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 5751 { 5752 return security_sid_to_context(secid, secdata, seclen); 5753 } 5754 5755 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 5756 { 5757 return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL); 5758 } 5759 5760 static void selinux_release_secctx(char *secdata, u32 seclen) 5761 { 5762 kfree(secdata); 5763 } 5764 5765 /* 5766 * called with inode->i_mutex locked 5767 */ 5768 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 5769 { 5770 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0); 5771 } 5772 5773 /* 5774 * called with inode->i_mutex locked 5775 */ 5776 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 5777 { 5778 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0); 5779 } 5780 5781 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 5782 { 5783 int len = 0; 5784 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX, 5785 ctx, true); 5786 if (len < 0) 5787 return len; 5788 *ctxlen = len; 5789 return 0; 5790 } 5791 #ifdef CONFIG_KEYS 5792 5793 static int selinux_key_alloc(struct key *k, const struct cred *cred, 5794 unsigned long flags) 5795 { 5796 const struct task_security_struct *tsec; 5797 struct key_security_struct *ksec; 5798 5799 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); 5800 if (!ksec) 5801 return -ENOMEM; 5802 5803 tsec = cred->security; 5804 if (tsec->keycreate_sid) 5805 ksec->sid = tsec->keycreate_sid; 5806 else 5807 ksec->sid = tsec->sid; 5808 5809 k->security = ksec; 5810 return 0; 5811 } 5812 5813 static void selinux_key_free(struct key *k) 5814 { 5815 struct key_security_struct *ksec = k->security; 5816 5817 k->security = NULL; 5818 kfree(ksec); 5819 } 5820 5821 static int selinux_key_permission(key_ref_t key_ref, 5822 const struct cred *cred, 5823 unsigned perm) 5824 { 5825 struct key *key; 5826 struct key_security_struct *ksec; 5827 u32 sid; 5828 5829 /* if no specific permissions are requested, we skip the 5830 permission check. No serious, additional covert channels 5831 appear to be created. */ 5832 if (perm == 0) 5833 return 0; 5834 5835 sid = cred_sid(cred); 5836 5837 key = key_ref_to_ptr(key_ref); 5838 ksec = key->security; 5839 5840 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL); 5841 } 5842 5843 static int selinux_key_getsecurity(struct key *key, char **_buffer) 5844 { 5845 struct key_security_struct *ksec = key->security; 5846 char *context = NULL; 5847 unsigned len; 5848 int rc; 5849 5850 rc = security_sid_to_context(ksec->sid, &context, &len); 5851 if (!rc) 5852 rc = len; 5853 *_buffer = context; 5854 return rc; 5855 } 5856 5857 #endif 5858 5859 static struct security_operations selinux_ops = { 5860 .name = "selinux", 5861 5862 .binder_set_context_mgr = selinux_binder_set_context_mgr, 5863 .binder_transaction = selinux_binder_transaction, 5864 .binder_transfer_binder = selinux_binder_transfer_binder, 5865 .binder_transfer_file = selinux_binder_transfer_file, 5866 5867 .ptrace_access_check = selinux_ptrace_access_check, 5868 .ptrace_traceme = selinux_ptrace_traceme, 5869 .capget = selinux_capget, 5870 .capset = selinux_capset, 5871 .capable = selinux_capable, 5872 .quotactl = selinux_quotactl, 5873 .quota_on = selinux_quota_on, 5874 .syslog = selinux_syslog, 5875 .vm_enough_memory = selinux_vm_enough_memory, 5876 5877 .netlink_send = selinux_netlink_send, 5878 5879 .bprm_set_creds = selinux_bprm_set_creds, 5880 .bprm_committing_creds = selinux_bprm_committing_creds, 5881 .bprm_committed_creds = selinux_bprm_committed_creds, 5882 .bprm_secureexec = selinux_bprm_secureexec, 5883 5884 .sb_alloc_security = selinux_sb_alloc_security, 5885 .sb_free_security = selinux_sb_free_security, 5886 .sb_copy_data = selinux_sb_copy_data, 5887 .sb_remount = selinux_sb_remount, 5888 .sb_kern_mount = selinux_sb_kern_mount, 5889 .sb_show_options = selinux_sb_show_options, 5890 .sb_statfs = selinux_sb_statfs, 5891 .sb_mount = selinux_mount, 5892 .sb_umount = selinux_umount, 5893 .sb_set_mnt_opts = selinux_set_mnt_opts, 5894 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts, 5895 .sb_parse_opts_str = selinux_parse_opts_str, 5896 5897 .dentry_init_security = selinux_dentry_init_security, 5898 5899 .inode_alloc_security = selinux_inode_alloc_security, 5900 .inode_free_security = selinux_inode_free_security, 5901 .inode_init_security = selinux_inode_init_security, 5902 .inode_create = selinux_inode_create, 5903 .inode_link = selinux_inode_link, 5904 .inode_unlink = selinux_inode_unlink, 5905 .inode_symlink = selinux_inode_symlink, 5906 .inode_mkdir = selinux_inode_mkdir, 5907 .inode_rmdir = selinux_inode_rmdir, 5908 .inode_mknod = selinux_inode_mknod, 5909 .inode_rename = selinux_inode_rename, 5910 .inode_readlink = selinux_inode_readlink, 5911 .inode_follow_link = selinux_inode_follow_link, 5912 .inode_permission = selinux_inode_permission, 5913 .inode_setattr = selinux_inode_setattr, 5914 .inode_getattr = selinux_inode_getattr, 5915 .inode_setxattr = selinux_inode_setxattr, 5916 .inode_post_setxattr = selinux_inode_post_setxattr, 5917 .inode_getxattr = selinux_inode_getxattr, 5918 .inode_listxattr = selinux_inode_listxattr, 5919 .inode_removexattr = selinux_inode_removexattr, 5920 .inode_getsecurity = selinux_inode_getsecurity, 5921 .inode_setsecurity = selinux_inode_setsecurity, 5922 .inode_listsecurity = selinux_inode_listsecurity, 5923 .inode_getsecid = selinux_inode_getsecid, 5924 5925 .file_permission = selinux_file_permission, 5926 .file_alloc_security = selinux_file_alloc_security, 5927 .file_free_security = selinux_file_free_security, 5928 .file_ioctl = selinux_file_ioctl, 5929 .mmap_file = selinux_mmap_file, 5930 .mmap_addr = selinux_mmap_addr, 5931 .file_mprotect = selinux_file_mprotect, 5932 .file_lock = selinux_file_lock, 5933 .file_fcntl = selinux_file_fcntl, 5934 .file_set_fowner = selinux_file_set_fowner, 5935 .file_send_sigiotask = selinux_file_send_sigiotask, 5936 .file_receive = selinux_file_receive, 5937 5938 .file_open = selinux_file_open, 5939 5940 .task_create = selinux_task_create, 5941 .cred_alloc_blank = selinux_cred_alloc_blank, 5942 .cred_free = selinux_cred_free, 5943 .cred_prepare = selinux_cred_prepare, 5944 .cred_transfer = selinux_cred_transfer, 5945 .kernel_act_as = selinux_kernel_act_as, 5946 .kernel_create_files_as = selinux_kernel_create_files_as, 5947 .kernel_module_request = selinux_kernel_module_request, 5948 .task_setpgid = selinux_task_setpgid, 5949 .task_getpgid = selinux_task_getpgid, 5950 .task_getsid = selinux_task_getsid, 5951 .task_getsecid = selinux_task_getsecid, 5952 .task_setnice = selinux_task_setnice, 5953 .task_setioprio = selinux_task_setioprio, 5954 .task_getioprio = selinux_task_getioprio, 5955 .task_setrlimit = selinux_task_setrlimit, 5956 .task_setscheduler = selinux_task_setscheduler, 5957 .task_getscheduler = selinux_task_getscheduler, 5958 .task_movememory = selinux_task_movememory, 5959 .task_kill = selinux_task_kill, 5960 .task_wait = selinux_task_wait, 5961 .task_to_inode = selinux_task_to_inode, 5962 5963 .ipc_permission = selinux_ipc_permission, 5964 .ipc_getsecid = selinux_ipc_getsecid, 5965 5966 .msg_msg_alloc_security = selinux_msg_msg_alloc_security, 5967 .msg_msg_free_security = selinux_msg_msg_free_security, 5968 5969 .msg_queue_alloc_security = selinux_msg_queue_alloc_security, 5970 .msg_queue_free_security = selinux_msg_queue_free_security, 5971 .msg_queue_associate = selinux_msg_queue_associate, 5972 .msg_queue_msgctl = selinux_msg_queue_msgctl, 5973 .msg_queue_msgsnd = selinux_msg_queue_msgsnd, 5974 .msg_queue_msgrcv = selinux_msg_queue_msgrcv, 5975 5976 .shm_alloc_security = selinux_shm_alloc_security, 5977 .shm_free_security = selinux_shm_free_security, 5978 .shm_associate = selinux_shm_associate, 5979 .shm_shmctl = selinux_shm_shmctl, 5980 .shm_shmat = selinux_shm_shmat, 5981 5982 .sem_alloc_security = selinux_sem_alloc_security, 5983 .sem_free_security = selinux_sem_free_security, 5984 .sem_associate = selinux_sem_associate, 5985 .sem_semctl = selinux_sem_semctl, 5986 .sem_semop = selinux_sem_semop, 5987 5988 .d_instantiate = selinux_d_instantiate, 5989 5990 .getprocattr = selinux_getprocattr, 5991 .setprocattr = selinux_setprocattr, 5992 5993 .ismaclabel = selinux_ismaclabel, 5994 .secid_to_secctx = selinux_secid_to_secctx, 5995 .secctx_to_secid = selinux_secctx_to_secid, 5996 .release_secctx = selinux_release_secctx, 5997 .inode_notifysecctx = selinux_inode_notifysecctx, 5998 .inode_setsecctx = selinux_inode_setsecctx, 5999 .inode_getsecctx = selinux_inode_getsecctx, 6000 6001 .unix_stream_connect = selinux_socket_unix_stream_connect, 6002 .unix_may_send = selinux_socket_unix_may_send, 6003 6004 .socket_create = selinux_socket_create, 6005 .socket_post_create = selinux_socket_post_create, 6006 .socket_bind = selinux_socket_bind, 6007 .socket_connect = selinux_socket_connect, 6008 .socket_listen = selinux_socket_listen, 6009 .socket_accept = selinux_socket_accept, 6010 .socket_sendmsg = selinux_socket_sendmsg, 6011 .socket_recvmsg = selinux_socket_recvmsg, 6012 .socket_getsockname = selinux_socket_getsockname, 6013 .socket_getpeername = selinux_socket_getpeername, 6014 .socket_getsockopt = selinux_socket_getsockopt, 6015 .socket_setsockopt = selinux_socket_setsockopt, 6016 .socket_shutdown = selinux_socket_shutdown, 6017 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb, 6018 .socket_getpeersec_stream = selinux_socket_getpeersec_stream, 6019 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram, 6020 .sk_alloc_security = selinux_sk_alloc_security, 6021 .sk_free_security = selinux_sk_free_security, 6022 .sk_clone_security = selinux_sk_clone_security, 6023 .sk_getsecid = selinux_sk_getsecid, 6024 .sock_graft = selinux_sock_graft, 6025 .inet_conn_request = selinux_inet_conn_request, 6026 .inet_csk_clone = selinux_inet_csk_clone, 6027 .inet_conn_established = selinux_inet_conn_established, 6028 .secmark_relabel_packet = selinux_secmark_relabel_packet, 6029 .secmark_refcount_inc = selinux_secmark_refcount_inc, 6030 .secmark_refcount_dec = selinux_secmark_refcount_dec, 6031 .req_classify_flow = selinux_req_classify_flow, 6032 .tun_dev_alloc_security = selinux_tun_dev_alloc_security, 6033 .tun_dev_free_security = selinux_tun_dev_free_security, 6034 .tun_dev_create = selinux_tun_dev_create, 6035 .tun_dev_attach_queue = selinux_tun_dev_attach_queue, 6036 .tun_dev_attach = selinux_tun_dev_attach, 6037 .tun_dev_open = selinux_tun_dev_open, 6038 6039 #ifdef CONFIG_SECURITY_NETWORK_XFRM 6040 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc, 6041 .xfrm_policy_clone_security = selinux_xfrm_policy_clone, 6042 .xfrm_policy_free_security = selinux_xfrm_policy_free, 6043 .xfrm_policy_delete_security = selinux_xfrm_policy_delete, 6044 .xfrm_state_alloc = selinux_xfrm_state_alloc, 6045 .xfrm_state_alloc_acquire = selinux_xfrm_state_alloc_acquire, 6046 .xfrm_state_free_security = selinux_xfrm_state_free, 6047 .xfrm_state_delete_security = selinux_xfrm_state_delete, 6048 .xfrm_policy_lookup = selinux_xfrm_policy_lookup, 6049 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match, 6050 .xfrm_decode_session = selinux_xfrm_decode_session, 6051 #endif 6052 6053 #ifdef CONFIG_KEYS 6054 .key_alloc = selinux_key_alloc, 6055 .key_free = selinux_key_free, 6056 .key_permission = selinux_key_permission, 6057 .key_getsecurity = selinux_key_getsecurity, 6058 #endif 6059 6060 #ifdef CONFIG_AUDIT 6061 .audit_rule_init = selinux_audit_rule_init, 6062 .audit_rule_known = selinux_audit_rule_known, 6063 .audit_rule_match = selinux_audit_rule_match, 6064 .audit_rule_free = selinux_audit_rule_free, 6065 #endif 6066 }; 6067 6068 static __init int selinux_init(void) 6069 { 6070 if (!security_module_enable(&selinux_ops)) { 6071 selinux_enabled = 0; 6072 return 0; 6073 } 6074 6075 if (!selinux_enabled) { 6076 printk(KERN_INFO "SELinux: Disabled at boot.\n"); 6077 return 0; 6078 } 6079 6080 printk(KERN_INFO "SELinux: Initializing.\n"); 6081 6082 /* Set the security state for the initial task. */ 6083 cred_init_security(); 6084 6085 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC); 6086 6087 sel_inode_cache = kmem_cache_create("selinux_inode_security", 6088 sizeof(struct inode_security_struct), 6089 0, SLAB_PANIC, NULL); 6090 avc_init(); 6091 6092 if (register_security(&selinux_ops)) 6093 panic("SELinux: Unable to register with kernel.\n"); 6094 6095 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET)) 6096 panic("SELinux: Unable to register AVC netcache callback\n"); 6097 6098 if (selinux_enforcing) 6099 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n"); 6100 else 6101 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n"); 6102 6103 return 0; 6104 } 6105 6106 static void delayed_superblock_init(struct super_block *sb, void *unused) 6107 { 6108 superblock_doinit(sb, NULL); 6109 } 6110 6111 void selinux_complete_init(void) 6112 { 6113 printk(KERN_DEBUG "SELinux: Completing initialization.\n"); 6114 6115 /* Set up any superblocks initialized prior to the policy load. */ 6116 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n"); 6117 iterate_supers(delayed_superblock_init, NULL); 6118 } 6119 6120 /* SELinux requires early initialization in order to label 6121 all processes and objects when they are created. */ 6122 security_initcall(selinux_init); 6123 6124 #if defined(CONFIG_NETFILTER) 6125 6126 static struct nf_hook_ops selinux_nf_ops[] = { 6127 { 6128 .hook = selinux_ipv4_postroute, 6129 .owner = THIS_MODULE, 6130 .pf = NFPROTO_IPV4, 6131 .hooknum = NF_INET_POST_ROUTING, 6132 .priority = NF_IP_PRI_SELINUX_LAST, 6133 }, 6134 { 6135 .hook = selinux_ipv4_forward, 6136 .owner = THIS_MODULE, 6137 .pf = NFPROTO_IPV4, 6138 .hooknum = NF_INET_FORWARD, 6139 .priority = NF_IP_PRI_SELINUX_FIRST, 6140 }, 6141 { 6142 .hook = selinux_ipv4_output, 6143 .owner = THIS_MODULE, 6144 .pf = NFPROTO_IPV4, 6145 .hooknum = NF_INET_LOCAL_OUT, 6146 .priority = NF_IP_PRI_SELINUX_FIRST, 6147 }, 6148 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 6149 { 6150 .hook = selinux_ipv6_postroute, 6151 .owner = THIS_MODULE, 6152 .pf = NFPROTO_IPV6, 6153 .hooknum = NF_INET_POST_ROUTING, 6154 .priority = NF_IP6_PRI_SELINUX_LAST, 6155 }, 6156 { 6157 .hook = selinux_ipv6_forward, 6158 .owner = THIS_MODULE, 6159 .pf = NFPROTO_IPV6, 6160 .hooknum = NF_INET_FORWARD, 6161 .priority = NF_IP6_PRI_SELINUX_FIRST, 6162 }, 6163 #endif /* IPV6 */ 6164 }; 6165 6166 static int __init selinux_nf_ip_init(void) 6167 { 6168 int err; 6169 6170 if (!selinux_enabled) 6171 return 0; 6172 6173 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n"); 6174 6175 err = nf_register_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops)); 6176 if (err) 6177 panic("SELinux: nf_register_hooks: error %d\n", err); 6178 6179 return 0; 6180 } 6181 6182 __initcall(selinux_nf_ip_init); 6183 6184 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 6185 static void selinux_nf_ip_exit(void) 6186 { 6187 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n"); 6188 6189 nf_unregister_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops)); 6190 } 6191 #endif 6192 6193 #else /* CONFIG_NETFILTER */ 6194 6195 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 6196 #define selinux_nf_ip_exit() 6197 #endif 6198 6199 #endif /* CONFIG_NETFILTER */ 6200 6201 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 6202 static int selinux_disabled; 6203 6204 int selinux_disable(void) 6205 { 6206 if (ss_initialized) { 6207 /* Not permitted after initial policy load. */ 6208 return -EINVAL; 6209 } 6210 6211 if (selinux_disabled) { 6212 /* Only do this once. */ 6213 return -EINVAL; 6214 } 6215 6216 printk(KERN_INFO "SELinux: Disabled at runtime.\n"); 6217 6218 selinux_disabled = 1; 6219 selinux_enabled = 0; 6220 6221 reset_security_ops(); 6222 6223 /* Try to destroy the avc node cache */ 6224 avc_disable(); 6225 6226 /* Unregister netfilter hooks. */ 6227 selinux_nf_ip_exit(); 6228 6229 /* Unregister selinuxfs. */ 6230 exit_sel_fs(); 6231 6232 return 0; 6233 } 6234 #endif 6235