xref: /openbmc/linux/security/selinux/hooks.c (revision b04b4f78)
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *	      Chris Vance, <cvance@nai.com>
8  *	      Wayne Salamon, <wsalamon@nai.com>
9  *	      James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *					   Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *			    <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
17  *		Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *	This program is free software; you can redistribute it and/or modify
22  *	it under the terms of the GNU General Public License version 2,
23  *	as published by the Free Software Foundation.
24  */
25 
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>		/* for local_port_range[] */
52 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>	/* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>		/* for Unix socket types */
67 #include <net/af_unix.h>	/* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78 #include <linux/posix-timers.h>
79 
80 #include "avc.h"
81 #include "objsec.h"
82 #include "netif.h"
83 #include "netnode.h"
84 #include "netport.h"
85 #include "xfrm.h"
86 #include "netlabel.h"
87 #include "audit.h"
88 
89 #define XATTR_SELINUX_SUFFIX "selinux"
90 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
91 
92 #define NUM_SEL_MNT_OPTS 5
93 
94 extern unsigned int policydb_loaded_version;
95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
96 extern struct security_operations *security_ops;
97 
98 /* SECMARK reference count */
99 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
100 
101 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
102 int selinux_enforcing;
103 
104 static int __init enforcing_setup(char *str)
105 {
106 	unsigned long enforcing;
107 	if (!strict_strtoul(str, 0, &enforcing))
108 		selinux_enforcing = enforcing ? 1 : 0;
109 	return 1;
110 }
111 __setup("enforcing=", enforcing_setup);
112 #endif
113 
114 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
115 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
116 
117 static int __init selinux_enabled_setup(char *str)
118 {
119 	unsigned long enabled;
120 	if (!strict_strtoul(str, 0, &enabled))
121 		selinux_enabled = enabled ? 1 : 0;
122 	return 1;
123 }
124 __setup("selinux=", selinux_enabled_setup);
125 #else
126 int selinux_enabled = 1;
127 #endif
128 
129 
130 /*
131  * Minimal support for a secondary security module,
132  * just to allow the use of the capability module.
133  */
134 static struct security_operations *secondary_ops;
135 
136 /* Lists of inode and superblock security structures initialized
137    before the policy was loaded. */
138 static LIST_HEAD(superblock_security_head);
139 static DEFINE_SPINLOCK(sb_security_lock);
140 
141 static struct kmem_cache *sel_inode_cache;
142 
143 /**
144  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
145  *
146  * Description:
147  * This function checks the SECMARK reference counter to see if any SECMARK
148  * targets are currently configured, if the reference counter is greater than
149  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
150  * enabled, false (0) if SECMARK is disabled.
151  *
152  */
153 static int selinux_secmark_enabled(void)
154 {
155 	return (atomic_read(&selinux_secmark_refcount) > 0);
156 }
157 
158 /*
159  * initialise the security for the init task
160  */
161 static void cred_init_security(void)
162 {
163 	struct cred *cred = (struct cred *) current->real_cred;
164 	struct task_security_struct *tsec;
165 
166 	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
167 	if (!tsec)
168 		panic("SELinux:  Failed to initialize initial task.\n");
169 
170 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
171 	cred->security = tsec;
172 }
173 
174 /*
175  * get the security ID of a set of credentials
176  */
177 static inline u32 cred_sid(const struct cred *cred)
178 {
179 	const struct task_security_struct *tsec;
180 
181 	tsec = cred->security;
182 	return tsec->sid;
183 }
184 
185 /*
186  * get the objective security ID of a task
187  */
188 static inline u32 task_sid(const struct task_struct *task)
189 {
190 	u32 sid;
191 
192 	rcu_read_lock();
193 	sid = cred_sid(__task_cred(task));
194 	rcu_read_unlock();
195 	return sid;
196 }
197 
198 /*
199  * get the subjective security ID of the current task
200  */
201 static inline u32 current_sid(void)
202 {
203 	const struct task_security_struct *tsec = current_cred()->security;
204 
205 	return tsec->sid;
206 }
207 
208 /* Allocate and free functions for each kind of security blob. */
209 
210 static int inode_alloc_security(struct inode *inode)
211 {
212 	struct inode_security_struct *isec;
213 	u32 sid = current_sid();
214 
215 	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
216 	if (!isec)
217 		return -ENOMEM;
218 
219 	mutex_init(&isec->lock);
220 	INIT_LIST_HEAD(&isec->list);
221 	isec->inode = inode;
222 	isec->sid = SECINITSID_UNLABELED;
223 	isec->sclass = SECCLASS_FILE;
224 	isec->task_sid = sid;
225 	inode->i_security = isec;
226 
227 	return 0;
228 }
229 
230 static void inode_free_security(struct inode *inode)
231 {
232 	struct inode_security_struct *isec = inode->i_security;
233 	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
234 
235 	spin_lock(&sbsec->isec_lock);
236 	if (!list_empty(&isec->list))
237 		list_del_init(&isec->list);
238 	spin_unlock(&sbsec->isec_lock);
239 
240 	inode->i_security = NULL;
241 	kmem_cache_free(sel_inode_cache, isec);
242 }
243 
244 static int file_alloc_security(struct file *file)
245 {
246 	struct file_security_struct *fsec;
247 	u32 sid = current_sid();
248 
249 	fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
250 	if (!fsec)
251 		return -ENOMEM;
252 
253 	fsec->sid = sid;
254 	fsec->fown_sid = sid;
255 	file->f_security = fsec;
256 
257 	return 0;
258 }
259 
260 static void file_free_security(struct file *file)
261 {
262 	struct file_security_struct *fsec = file->f_security;
263 	file->f_security = NULL;
264 	kfree(fsec);
265 }
266 
267 static int superblock_alloc_security(struct super_block *sb)
268 {
269 	struct superblock_security_struct *sbsec;
270 
271 	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
272 	if (!sbsec)
273 		return -ENOMEM;
274 
275 	mutex_init(&sbsec->lock);
276 	INIT_LIST_HEAD(&sbsec->list);
277 	INIT_LIST_HEAD(&sbsec->isec_head);
278 	spin_lock_init(&sbsec->isec_lock);
279 	sbsec->sb = sb;
280 	sbsec->sid = SECINITSID_UNLABELED;
281 	sbsec->def_sid = SECINITSID_FILE;
282 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
283 	sb->s_security = sbsec;
284 
285 	return 0;
286 }
287 
288 static void superblock_free_security(struct super_block *sb)
289 {
290 	struct superblock_security_struct *sbsec = sb->s_security;
291 
292 	spin_lock(&sb_security_lock);
293 	if (!list_empty(&sbsec->list))
294 		list_del_init(&sbsec->list);
295 	spin_unlock(&sb_security_lock);
296 
297 	sb->s_security = NULL;
298 	kfree(sbsec);
299 }
300 
301 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
302 {
303 	struct sk_security_struct *ssec;
304 
305 	ssec = kzalloc(sizeof(*ssec), priority);
306 	if (!ssec)
307 		return -ENOMEM;
308 
309 	ssec->peer_sid = SECINITSID_UNLABELED;
310 	ssec->sid = SECINITSID_UNLABELED;
311 	sk->sk_security = ssec;
312 
313 	selinux_netlbl_sk_security_reset(ssec);
314 
315 	return 0;
316 }
317 
318 static void sk_free_security(struct sock *sk)
319 {
320 	struct sk_security_struct *ssec = sk->sk_security;
321 
322 	sk->sk_security = NULL;
323 	selinux_netlbl_sk_security_free(ssec);
324 	kfree(ssec);
325 }
326 
327 /* The security server must be initialized before
328    any labeling or access decisions can be provided. */
329 extern int ss_initialized;
330 
331 /* The file system's label must be initialized prior to use. */
332 
333 static char *labeling_behaviors[6] = {
334 	"uses xattr",
335 	"uses transition SIDs",
336 	"uses task SIDs",
337 	"uses genfs_contexts",
338 	"not configured for labeling",
339 	"uses mountpoint labeling",
340 };
341 
342 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
343 
344 static inline int inode_doinit(struct inode *inode)
345 {
346 	return inode_doinit_with_dentry(inode, NULL);
347 }
348 
349 enum {
350 	Opt_error = -1,
351 	Opt_context = 1,
352 	Opt_fscontext = 2,
353 	Opt_defcontext = 3,
354 	Opt_rootcontext = 4,
355 	Opt_labelsupport = 5,
356 };
357 
358 static const match_table_t tokens = {
359 	{Opt_context, CONTEXT_STR "%s"},
360 	{Opt_fscontext, FSCONTEXT_STR "%s"},
361 	{Opt_defcontext, DEFCONTEXT_STR "%s"},
362 	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
363 	{Opt_labelsupport, LABELSUPP_STR},
364 	{Opt_error, NULL},
365 };
366 
367 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
368 
369 static int may_context_mount_sb_relabel(u32 sid,
370 			struct superblock_security_struct *sbsec,
371 			const struct cred *cred)
372 {
373 	const struct task_security_struct *tsec = cred->security;
374 	int rc;
375 
376 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
377 			  FILESYSTEM__RELABELFROM, NULL);
378 	if (rc)
379 		return rc;
380 
381 	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
382 			  FILESYSTEM__RELABELTO, NULL);
383 	return rc;
384 }
385 
386 static int may_context_mount_inode_relabel(u32 sid,
387 			struct superblock_security_struct *sbsec,
388 			const struct cred *cred)
389 {
390 	const struct task_security_struct *tsec = cred->security;
391 	int rc;
392 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
393 			  FILESYSTEM__RELABELFROM, NULL);
394 	if (rc)
395 		return rc;
396 
397 	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
398 			  FILESYSTEM__ASSOCIATE, NULL);
399 	return rc;
400 }
401 
402 static int sb_finish_set_opts(struct super_block *sb)
403 {
404 	struct superblock_security_struct *sbsec = sb->s_security;
405 	struct dentry *root = sb->s_root;
406 	struct inode *root_inode = root->d_inode;
407 	int rc = 0;
408 
409 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
410 		/* Make sure that the xattr handler exists and that no
411 		   error other than -ENODATA is returned by getxattr on
412 		   the root directory.  -ENODATA is ok, as this may be
413 		   the first boot of the SELinux kernel before we have
414 		   assigned xattr values to the filesystem. */
415 		if (!root_inode->i_op->getxattr) {
416 			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
417 			       "xattr support\n", sb->s_id, sb->s_type->name);
418 			rc = -EOPNOTSUPP;
419 			goto out;
420 		}
421 		rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
422 		if (rc < 0 && rc != -ENODATA) {
423 			if (rc == -EOPNOTSUPP)
424 				printk(KERN_WARNING "SELinux: (dev %s, type "
425 				       "%s) has no security xattr handler\n",
426 				       sb->s_id, sb->s_type->name);
427 			else
428 				printk(KERN_WARNING "SELinux: (dev %s, type "
429 				       "%s) getxattr errno %d\n", sb->s_id,
430 				       sb->s_type->name, -rc);
431 			goto out;
432 		}
433 	}
434 
435 	sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
436 
437 	if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
438 		printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
439 		       sb->s_id, sb->s_type->name);
440 	else
441 		printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
442 		       sb->s_id, sb->s_type->name,
443 		       labeling_behaviors[sbsec->behavior-1]);
444 
445 	if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
446 	    sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
447 	    sbsec->behavior == SECURITY_FS_USE_NONE ||
448 	    sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
449 		sbsec->flags &= ~SE_SBLABELSUPP;
450 
451 	/* Initialize the root inode. */
452 	rc = inode_doinit_with_dentry(root_inode, root);
453 
454 	/* Initialize any other inodes associated with the superblock, e.g.
455 	   inodes created prior to initial policy load or inodes created
456 	   during get_sb by a pseudo filesystem that directly
457 	   populates itself. */
458 	spin_lock(&sbsec->isec_lock);
459 next_inode:
460 	if (!list_empty(&sbsec->isec_head)) {
461 		struct inode_security_struct *isec =
462 				list_entry(sbsec->isec_head.next,
463 					   struct inode_security_struct, list);
464 		struct inode *inode = isec->inode;
465 		spin_unlock(&sbsec->isec_lock);
466 		inode = igrab(inode);
467 		if (inode) {
468 			if (!IS_PRIVATE(inode))
469 				inode_doinit(inode);
470 			iput(inode);
471 		}
472 		spin_lock(&sbsec->isec_lock);
473 		list_del_init(&isec->list);
474 		goto next_inode;
475 	}
476 	spin_unlock(&sbsec->isec_lock);
477 out:
478 	return rc;
479 }
480 
481 /*
482  * This function should allow an FS to ask what it's mount security
483  * options were so it can use those later for submounts, displaying
484  * mount options, or whatever.
485  */
486 static int selinux_get_mnt_opts(const struct super_block *sb,
487 				struct security_mnt_opts *opts)
488 {
489 	int rc = 0, i;
490 	struct superblock_security_struct *sbsec = sb->s_security;
491 	char *context = NULL;
492 	u32 len;
493 	char tmp;
494 
495 	security_init_mnt_opts(opts);
496 
497 	if (!(sbsec->flags & SE_SBINITIALIZED))
498 		return -EINVAL;
499 
500 	if (!ss_initialized)
501 		return -EINVAL;
502 
503 	tmp = sbsec->flags & SE_MNTMASK;
504 	/* count the number of mount options for this sb */
505 	for (i = 0; i < 8; i++) {
506 		if (tmp & 0x01)
507 			opts->num_mnt_opts++;
508 		tmp >>= 1;
509 	}
510 	/* Check if the Label support flag is set */
511 	if (sbsec->flags & SE_SBLABELSUPP)
512 		opts->num_mnt_opts++;
513 
514 	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
515 	if (!opts->mnt_opts) {
516 		rc = -ENOMEM;
517 		goto out_free;
518 	}
519 
520 	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
521 	if (!opts->mnt_opts_flags) {
522 		rc = -ENOMEM;
523 		goto out_free;
524 	}
525 
526 	i = 0;
527 	if (sbsec->flags & FSCONTEXT_MNT) {
528 		rc = security_sid_to_context(sbsec->sid, &context, &len);
529 		if (rc)
530 			goto out_free;
531 		opts->mnt_opts[i] = context;
532 		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
533 	}
534 	if (sbsec->flags & CONTEXT_MNT) {
535 		rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
536 		if (rc)
537 			goto out_free;
538 		opts->mnt_opts[i] = context;
539 		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
540 	}
541 	if (sbsec->flags & DEFCONTEXT_MNT) {
542 		rc = security_sid_to_context(sbsec->def_sid, &context, &len);
543 		if (rc)
544 			goto out_free;
545 		opts->mnt_opts[i] = context;
546 		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
547 	}
548 	if (sbsec->flags & ROOTCONTEXT_MNT) {
549 		struct inode *root = sbsec->sb->s_root->d_inode;
550 		struct inode_security_struct *isec = root->i_security;
551 
552 		rc = security_sid_to_context(isec->sid, &context, &len);
553 		if (rc)
554 			goto out_free;
555 		opts->mnt_opts[i] = context;
556 		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
557 	}
558 	if (sbsec->flags & SE_SBLABELSUPP) {
559 		opts->mnt_opts[i] = NULL;
560 		opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
561 	}
562 
563 	BUG_ON(i != opts->num_mnt_opts);
564 
565 	return 0;
566 
567 out_free:
568 	security_free_mnt_opts(opts);
569 	return rc;
570 }
571 
572 static int bad_option(struct superblock_security_struct *sbsec, char flag,
573 		      u32 old_sid, u32 new_sid)
574 {
575 	char mnt_flags = sbsec->flags & SE_MNTMASK;
576 
577 	/* check if the old mount command had the same options */
578 	if (sbsec->flags & SE_SBINITIALIZED)
579 		if (!(sbsec->flags & flag) ||
580 		    (old_sid != new_sid))
581 			return 1;
582 
583 	/* check if we were passed the same options twice,
584 	 * aka someone passed context=a,context=b
585 	 */
586 	if (!(sbsec->flags & SE_SBINITIALIZED))
587 		if (mnt_flags & flag)
588 			return 1;
589 	return 0;
590 }
591 
592 /*
593  * Allow filesystems with binary mount data to explicitly set mount point
594  * labeling information.
595  */
596 static int selinux_set_mnt_opts(struct super_block *sb,
597 				struct security_mnt_opts *opts)
598 {
599 	const struct cred *cred = current_cred();
600 	int rc = 0, i;
601 	struct superblock_security_struct *sbsec = sb->s_security;
602 	const char *name = sb->s_type->name;
603 	struct inode *inode = sbsec->sb->s_root->d_inode;
604 	struct inode_security_struct *root_isec = inode->i_security;
605 	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
606 	u32 defcontext_sid = 0;
607 	char **mount_options = opts->mnt_opts;
608 	int *flags = opts->mnt_opts_flags;
609 	int num_opts = opts->num_mnt_opts;
610 
611 	mutex_lock(&sbsec->lock);
612 
613 	if (!ss_initialized) {
614 		if (!num_opts) {
615 			/* Defer initialization until selinux_complete_init,
616 			   after the initial policy is loaded and the security
617 			   server is ready to handle calls. */
618 			spin_lock(&sb_security_lock);
619 			if (list_empty(&sbsec->list))
620 				list_add(&sbsec->list, &superblock_security_head);
621 			spin_unlock(&sb_security_lock);
622 			goto out;
623 		}
624 		rc = -EINVAL;
625 		printk(KERN_WARNING "SELinux: Unable to set superblock options "
626 			"before the security server is initialized\n");
627 		goto out;
628 	}
629 
630 	/*
631 	 * Binary mount data FS will come through this function twice.  Once
632 	 * from an explicit call and once from the generic calls from the vfs.
633 	 * Since the generic VFS calls will not contain any security mount data
634 	 * we need to skip the double mount verification.
635 	 *
636 	 * This does open a hole in which we will not notice if the first
637 	 * mount using this sb set explict options and a second mount using
638 	 * this sb does not set any security options.  (The first options
639 	 * will be used for both mounts)
640 	 */
641 	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
642 	    && (num_opts == 0))
643 		goto out;
644 
645 	/*
646 	 * parse the mount options, check if they are valid sids.
647 	 * also check if someone is trying to mount the same sb more
648 	 * than once with different security options.
649 	 */
650 	for (i = 0; i < num_opts; i++) {
651 		u32 sid;
652 
653 		if (flags[i] == SE_SBLABELSUPP)
654 			continue;
655 		rc = security_context_to_sid(mount_options[i],
656 					     strlen(mount_options[i]), &sid);
657 		if (rc) {
658 			printk(KERN_WARNING "SELinux: security_context_to_sid"
659 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
660 			       mount_options[i], sb->s_id, name, rc);
661 			goto out;
662 		}
663 		switch (flags[i]) {
664 		case FSCONTEXT_MNT:
665 			fscontext_sid = sid;
666 
667 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
668 					fscontext_sid))
669 				goto out_double_mount;
670 
671 			sbsec->flags |= FSCONTEXT_MNT;
672 			break;
673 		case CONTEXT_MNT:
674 			context_sid = sid;
675 
676 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
677 					context_sid))
678 				goto out_double_mount;
679 
680 			sbsec->flags |= CONTEXT_MNT;
681 			break;
682 		case ROOTCONTEXT_MNT:
683 			rootcontext_sid = sid;
684 
685 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
686 					rootcontext_sid))
687 				goto out_double_mount;
688 
689 			sbsec->flags |= ROOTCONTEXT_MNT;
690 
691 			break;
692 		case DEFCONTEXT_MNT:
693 			defcontext_sid = sid;
694 
695 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
696 					defcontext_sid))
697 				goto out_double_mount;
698 
699 			sbsec->flags |= DEFCONTEXT_MNT;
700 
701 			break;
702 		default:
703 			rc = -EINVAL;
704 			goto out;
705 		}
706 	}
707 
708 	if (sbsec->flags & SE_SBINITIALIZED) {
709 		/* previously mounted with options, but not on this attempt? */
710 		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
711 			goto out_double_mount;
712 		rc = 0;
713 		goto out;
714 	}
715 
716 	if (strcmp(sb->s_type->name, "proc") == 0)
717 		sbsec->flags |= SE_SBPROC;
718 
719 	/* Determine the labeling behavior to use for this filesystem type. */
720 	rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
721 	if (rc) {
722 		printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
723 		       __func__, sb->s_type->name, rc);
724 		goto out;
725 	}
726 
727 	/* sets the context of the superblock for the fs being mounted. */
728 	if (fscontext_sid) {
729 		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
730 		if (rc)
731 			goto out;
732 
733 		sbsec->sid = fscontext_sid;
734 	}
735 
736 	/*
737 	 * Switch to using mount point labeling behavior.
738 	 * sets the label used on all file below the mountpoint, and will set
739 	 * the superblock context if not already set.
740 	 */
741 	if (context_sid) {
742 		if (!fscontext_sid) {
743 			rc = may_context_mount_sb_relabel(context_sid, sbsec,
744 							  cred);
745 			if (rc)
746 				goto out;
747 			sbsec->sid = context_sid;
748 		} else {
749 			rc = may_context_mount_inode_relabel(context_sid, sbsec,
750 							     cred);
751 			if (rc)
752 				goto out;
753 		}
754 		if (!rootcontext_sid)
755 			rootcontext_sid = context_sid;
756 
757 		sbsec->mntpoint_sid = context_sid;
758 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
759 	}
760 
761 	if (rootcontext_sid) {
762 		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
763 						     cred);
764 		if (rc)
765 			goto out;
766 
767 		root_isec->sid = rootcontext_sid;
768 		root_isec->initialized = 1;
769 	}
770 
771 	if (defcontext_sid) {
772 		if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
773 			rc = -EINVAL;
774 			printk(KERN_WARNING "SELinux: defcontext option is "
775 			       "invalid for this filesystem type\n");
776 			goto out;
777 		}
778 
779 		if (defcontext_sid != sbsec->def_sid) {
780 			rc = may_context_mount_inode_relabel(defcontext_sid,
781 							     sbsec, cred);
782 			if (rc)
783 				goto out;
784 		}
785 
786 		sbsec->def_sid = defcontext_sid;
787 	}
788 
789 	rc = sb_finish_set_opts(sb);
790 out:
791 	mutex_unlock(&sbsec->lock);
792 	return rc;
793 out_double_mount:
794 	rc = -EINVAL;
795 	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
796 	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
797 	goto out;
798 }
799 
800 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
801 					struct super_block *newsb)
802 {
803 	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
804 	struct superblock_security_struct *newsbsec = newsb->s_security;
805 
806 	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
807 	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
808 	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
809 
810 	/*
811 	 * if the parent was able to be mounted it clearly had no special lsm
812 	 * mount options.  thus we can safely put this sb on the list and deal
813 	 * with it later
814 	 */
815 	if (!ss_initialized) {
816 		spin_lock(&sb_security_lock);
817 		if (list_empty(&newsbsec->list))
818 			list_add(&newsbsec->list, &superblock_security_head);
819 		spin_unlock(&sb_security_lock);
820 		return;
821 	}
822 
823 	/* how can we clone if the old one wasn't set up?? */
824 	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
825 
826 	/* if fs is reusing a sb, just let its options stand... */
827 	if (newsbsec->flags & SE_SBINITIALIZED)
828 		return;
829 
830 	mutex_lock(&newsbsec->lock);
831 
832 	newsbsec->flags = oldsbsec->flags;
833 
834 	newsbsec->sid = oldsbsec->sid;
835 	newsbsec->def_sid = oldsbsec->def_sid;
836 	newsbsec->behavior = oldsbsec->behavior;
837 
838 	if (set_context) {
839 		u32 sid = oldsbsec->mntpoint_sid;
840 
841 		if (!set_fscontext)
842 			newsbsec->sid = sid;
843 		if (!set_rootcontext) {
844 			struct inode *newinode = newsb->s_root->d_inode;
845 			struct inode_security_struct *newisec = newinode->i_security;
846 			newisec->sid = sid;
847 		}
848 		newsbsec->mntpoint_sid = sid;
849 	}
850 	if (set_rootcontext) {
851 		const struct inode *oldinode = oldsb->s_root->d_inode;
852 		const struct inode_security_struct *oldisec = oldinode->i_security;
853 		struct inode *newinode = newsb->s_root->d_inode;
854 		struct inode_security_struct *newisec = newinode->i_security;
855 
856 		newisec->sid = oldisec->sid;
857 	}
858 
859 	sb_finish_set_opts(newsb);
860 	mutex_unlock(&newsbsec->lock);
861 }
862 
863 static int selinux_parse_opts_str(char *options,
864 				  struct security_mnt_opts *opts)
865 {
866 	char *p;
867 	char *context = NULL, *defcontext = NULL;
868 	char *fscontext = NULL, *rootcontext = NULL;
869 	int rc, num_mnt_opts = 0;
870 
871 	opts->num_mnt_opts = 0;
872 
873 	/* Standard string-based options. */
874 	while ((p = strsep(&options, "|")) != NULL) {
875 		int token;
876 		substring_t args[MAX_OPT_ARGS];
877 
878 		if (!*p)
879 			continue;
880 
881 		token = match_token(p, tokens, args);
882 
883 		switch (token) {
884 		case Opt_context:
885 			if (context || defcontext) {
886 				rc = -EINVAL;
887 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
888 				goto out_err;
889 			}
890 			context = match_strdup(&args[0]);
891 			if (!context) {
892 				rc = -ENOMEM;
893 				goto out_err;
894 			}
895 			break;
896 
897 		case Opt_fscontext:
898 			if (fscontext) {
899 				rc = -EINVAL;
900 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
901 				goto out_err;
902 			}
903 			fscontext = match_strdup(&args[0]);
904 			if (!fscontext) {
905 				rc = -ENOMEM;
906 				goto out_err;
907 			}
908 			break;
909 
910 		case Opt_rootcontext:
911 			if (rootcontext) {
912 				rc = -EINVAL;
913 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
914 				goto out_err;
915 			}
916 			rootcontext = match_strdup(&args[0]);
917 			if (!rootcontext) {
918 				rc = -ENOMEM;
919 				goto out_err;
920 			}
921 			break;
922 
923 		case Opt_defcontext:
924 			if (context || defcontext) {
925 				rc = -EINVAL;
926 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
927 				goto out_err;
928 			}
929 			defcontext = match_strdup(&args[0]);
930 			if (!defcontext) {
931 				rc = -ENOMEM;
932 				goto out_err;
933 			}
934 			break;
935 		case Opt_labelsupport:
936 			break;
937 		default:
938 			rc = -EINVAL;
939 			printk(KERN_WARNING "SELinux:  unknown mount option\n");
940 			goto out_err;
941 
942 		}
943 	}
944 
945 	rc = -ENOMEM;
946 	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
947 	if (!opts->mnt_opts)
948 		goto out_err;
949 
950 	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
951 	if (!opts->mnt_opts_flags) {
952 		kfree(opts->mnt_opts);
953 		goto out_err;
954 	}
955 
956 	if (fscontext) {
957 		opts->mnt_opts[num_mnt_opts] = fscontext;
958 		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
959 	}
960 	if (context) {
961 		opts->mnt_opts[num_mnt_opts] = context;
962 		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
963 	}
964 	if (rootcontext) {
965 		opts->mnt_opts[num_mnt_opts] = rootcontext;
966 		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
967 	}
968 	if (defcontext) {
969 		opts->mnt_opts[num_mnt_opts] = defcontext;
970 		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
971 	}
972 
973 	opts->num_mnt_opts = num_mnt_opts;
974 	return 0;
975 
976 out_err:
977 	kfree(context);
978 	kfree(defcontext);
979 	kfree(fscontext);
980 	kfree(rootcontext);
981 	return rc;
982 }
983 /*
984  * string mount options parsing and call set the sbsec
985  */
986 static int superblock_doinit(struct super_block *sb, void *data)
987 {
988 	int rc = 0;
989 	char *options = data;
990 	struct security_mnt_opts opts;
991 
992 	security_init_mnt_opts(&opts);
993 
994 	if (!data)
995 		goto out;
996 
997 	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
998 
999 	rc = selinux_parse_opts_str(options, &opts);
1000 	if (rc)
1001 		goto out_err;
1002 
1003 out:
1004 	rc = selinux_set_mnt_opts(sb, &opts);
1005 
1006 out_err:
1007 	security_free_mnt_opts(&opts);
1008 	return rc;
1009 }
1010 
1011 static void selinux_write_opts(struct seq_file *m,
1012 			       struct security_mnt_opts *opts)
1013 {
1014 	int i;
1015 	char *prefix;
1016 
1017 	for (i = 0; i < opts->num_mnt_opts; i++) {
1018 		char *has_comma;
1019 
1020 		if (opts->mnt_opts[i])
1021 			has_comma = strchr(opts->mnt_opts[i], ',');
1022 		else
1023 			has_comma = NULL;
1024 
1025 		switch (opts->mnt_opts_flags[i]) {
1026 		case CONTEXT_MNT:
1027 			prefix = CONTEXT_STR;
1028 			break;
1029 		case FSCONTEXT_MNT:
1030 			prefix = FSCONTEXT_STR;
1031 			break;
1032 		case ROOTCONTEXT_MNT:
1033 			prefix = ROOTCONTEXT_STR;
1034 			break;
1035 		case DEFCONTEXT_MNT:
1036 			prefix = DEFCONTEXT_STR;
1037 			break;
1038 		case SE_SBLABELSUPP:
1039 			seq_putc(m, ',');
1040 			seq_puts(m, LABELSUPP_STR);
1041 			continue;
1042 		default:
1043 			BUG();
1044 		};
1045 		/* we need a comma before each option */
1046 		seq_putc(m, ',');
1047 		seq_puts(m, prefix);
1048 		if (has_comma)
1049 			seq_putc(m, '\"');
1050 		seq_puts(m, opts->mnt_opts[i]);
1051 		if (has_comma)
1052 			seq_putc(m, '\"');
1053 	}
1054 }
1055 
1056 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1057 {
1058 	struct security_mnt_opts opts;
1059 	int rc;
1060 
1061 	rc = selinux_get_mnt_opts(sb, &opts);
1062 	if (rc) {
1063 		/* before policy load we may get EINVAL, don't show anything */
1064 		if (rc == -EINVAL)
1065 			rc = 0;
1066 		return rc;
1067 	}
1068 
1069 	selinux_write_opts(m, &opts);
1070 
1071 	security_free_mnt_opts(&opts);
1072 
1073 	return rc;
1074 }
1075 
1076 static inline u16 inode_mode_to_security_class(umode_t mode)
1077 {
1078 	switch (mode & S_IFMT) {
1079 	case S_IFSOCK:
1080 		return SECCLASS_SOCK_FILE;
1081 	case S_IFLNK:
1082 		return SECCLASS_LNK_FILE;
1083 	case S_IFREG:
1084 		return SECCLASS_FILE;
1085 	case S_IFBLK:
1086 		return SECCLASS_BLK_FILE;
1087 	case S_IFDIR:
1088 		return SECCLASS_DIR;
1089 	case S_IFCHR:
1090 		return SECCLASS_CHR_FILE;
1091 	case S_IFIFO:
1092 		return SECCLASS_FIFO_FILE;
1093 
1094 	}
1095 
1096 	return SECCLASS_FILE;
1097 }
1098 
1099 static inline int default_protocol_stream(int protocol)
1100 {
1101 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1102 }
1103 
1104 static inline int default_protocol_dgram(int protocol)
1105 {
1106 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1107 }
1108 
1109 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1110 {
1111 	switch (family) {
1112 	case PF_UNIX:
1113 		switch (type) {
1114 		case SOCK_STREAM:
1115 		case SOCK_SEQPACKET:
1116 			return SECCLASS_UNIX_STREAM_SOCKET;
1117 		case SOCK_DGRAM:
1118 			return SECCLASS_UNIX_DGRAM_SOCKET;
1119 		}
1120 		break;
1121 	case PF_INET:
1122 	case PF_INET6:
1123 		switch (type) {
1124 		case SOCK_STREAM:
1125 			if (default_protocol_stream(protocol))
1126 				return SECCLASS_TCP_SOCKET;
1127 			else
1128 				return SECCLASS_RAWIP_SOCKET;
1129 		case SOCK_DGRAM:
1130 			if (default_protocol_dgram(protocol))
1131 				return SECCLASS_UDP_SOCKET;
1132 			else
1133 				return SECCLASS_RAWIP_SOCKET;
1134 		case SOCK_DCCP:
1135 			return SECCLASS_DCCP_SOCKET;
1136 		default:
1137 			return SECCLASS_RAWIP_SOCKET;
1138 		}
1139 		break;
1140 	case PF_NETLINK:
1141 		switch (protocol) {
1142 		case NETLINK_ROUTE:
1143 			return SECCLASS_NETLINK_ROUTE_SOCKET;
1144 		case NETLINK_FIREWALL:
1145 			return SECCLASS_NETLINK_FIREWALL_SOCKET;
1146 		case NETLINK_INET_DIAG:
1147 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1148 		case NETLINK_NFLOG:
1149 			return SECCLASS_NETLINK_NFLOG_SOCKET;
1150 		case NETLINK_XFRM:
1151 			return SECCLASS_NETLINK_XFRM_SOCKET;
1152 		case NETLINK_SELINUX:
1153 			return SECCLASS_NETLINK_SELINUX_SOCKET;
1154 		case NETLINK_AUDIT:
1155 			return SECCLASS_NETLINK_AUDIT_SOCKET;
1156 		case NETLINK_IP6_FW:
1157 			return SECCLASS_NETLINK_IP6FW_SOCKET;
1158 		case NETLINK_DNRTMSG:
1159 			return SECCLASS_NETLINK_DNRT_SOCKET;
1160 		case NETLINK_KOBJECT_UEVENT:
1161 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1162 		default:
1163 			return SECCLASS_NETLINK_SOCKET;
1164 		}
1165 	case PF_PACKET:
1166 		return SECCLASS_PACKET_SOCKET;
1167 	case PF_KEY:
1168 		return SECCLASS_KEY_SOCKET;
1169 	case PF_APPLETALK:
1170 		return SECCLASS_APPLETALK_SOCKET;
1171 	}
1172 
1173 	return SECCLASS_SOCKET;
1174 }
1175 
1176 #ifdef CONFIG_PROC_FS
1177 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1178 				u16 tclass,
1179 				u32 *sid)
1180 {
1181 	int buflen, rc;
1182 	char *buffer, *path, *end;
1183 
1184 	buffer = (char *)__get_free_page(GFP_KERNEL);
1185 	if (!buffer)
1186 		return -ENOMEM;
1187 
1188 	buflen = PAGE_SIZE;
1189 	end = buffer+buflen;
1190 	*--end = '\0';
1191 	buflen--;
1192 	path = end-1;
1193 	*path = '/';
1194 	while (de && de != de->parent) {
1195 		buflen -= de->namelen + 1;
1196 		if (buflen < 0)
1197 			break;
1198 		end -= de->namelen;
1199 		memcpy(end, de->name, de->namelen);
1200 		*--end = '/';
1201 		path = end;
1202 		de = de->parent;
1203 	}
1204 	rc = security_genfs_sid("proc", path, tclass, sid);
1205 	free_page((unsigned long)buffer);
1206 	return rc;
1207 }
1208 #else
1209 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1210 				u16 tclass,
1211 				u32 *sid)
1212 {
1213 	return -EINVAL;
1214 }
1215 #endif
1216 
1217 /* The inode's security attributes must be initialized before first use. */
1218 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1219 {
1220 	struct superblock_security_struct *sbsec = NULL;
1221 	struct inode_security_struct *isec = inode->i_security;
1222 	u32 sid;
1223 	struct dentry *dentry;
1224 #define INITCONTEXTLEN 255
1225 	char *context = NULL;
1226 	unsigned len = 0;
1227 	int rc = 0;
1228 
1229 	if (isec->initialized)
1230 		goto out;
1231 
1232 	mutex_lock(&isec->lock);
1233 	if (isec->initialized)
1234 		goto out_unlock;
1235 
1236 	sbsec = inode->i_sb->s_security;
1237 	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1238 		/* Defer initialization until selinux_complete_init,
1239 		   after the initial policy is loaded and the security
1240 		   server is ready to handle calls. */
1241 		spin_lock(&sbsec->isec_lock);
1242 		if (list_empty(&isec->list))
1243 			list_add(&isec->list, &sbsec->isec_head);
1244 		spin_unlock(&sbsec->isec_lock);
1245 		goto out_unlock;
1246 	}
1247 
1248 	switch (sbsec->behavior) {
1249 	case SECURITY_FS_USE_XATTR:
1250 		if (!inode->i_op->getxattr) {
1251 			isec->sid = sbsec->def_sid;
1252 			break;
1253 		}
1254 
1255 		/* Need a dentry, since the xattr API requires one.
1256 		   Life would be simpler if we could just pass the inode. */
1257 		if (opt_dentry) {
1258 			/* Called from d_instantiate or d_splice_alias. */
1259 			dentry = dget(opt_dentry);
1260 		} else {
1261 			/* Called from selinux_complete_init, try to find a dentry. */
1262 			dentry = d_find_alias(inode);
1263 		}
1264 		if (!dentry) {
1265 			/*
1266 			 * this is can be hit on boot when a file is accessed
1267 			 * before the policy is loaded.  When we load policy we
1268 			 * may find inodes that have no dentry on the
1269 			 * sbsec->isec_head list.  No reason to complain as these
1270 			 * will get fixed up the next time we go through
1271 			 * inode_doinit with a dentry, before these inodes could
1272 			 * be used again by userspace.
1273 			 */
1274 			goto out_unlock;
1275 		}
1276 
1277 		len = INITCONTEXTLEN;
1278 		context = kmalloc(len+1, GFP_NOFS);
1279 		if (!context) {
1280 			rc = -ENOMEM;
1281 			dput(dentry);
1282 			goto out_unlock;
1283 		}
1284 		context[len] = '\0';
1285 		rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1286 					   context, len);
1287 		if (rc == -ERANGE) {
1288 			/* Need a larger buffer.  Query for the right size. */
1289 			rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1290 						   NULL, 0);
1291 			if (rc < 0) {
1292 				dput(dentry);
1293 				goto out_unlock;
1294 			}
1295 			kfree(context);
1296 			len = rc;
1297 			context = kmalloc(len+1, GFP_NOFS);
1298 			if (!context) {
1299 				rc = -ENOMEM;
1300 				dput(dentry);
1301 				goto out_unlock;
1302 			}
1303 			context[len] = '\0';
1304 			rc = inode->i_op->getxattr(dentry,
1305 						   XATTR_NAME_SELINUX,
1306 						   context, len);
1307 		}
1308 		dput(dentry);
1309 		if (rc < 0) {
1310 			if (rc != -ENODATA) {
1311 				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1312 				       "%d for dev=%s ino=%ld\n", __func__,
1313 				       -rc, inode->i_sb->s_id, inode->i_ino);
1314 				kfree(context);
1315 				goto out_unlock;
1316 			}
1317 			/* Map ENODATA to the default file SID */
1318 			sid = sbsec->def_sid;
1319 			rc = 0;
1320 		} else {
1321 			rc = security_context_to_sid_default(context, rc, &sid,
1322 							     sbsec->def_sid,
1323 							     GFP_NOFS);
1324 			if (rc) {
1325 				char *dev = inode->i_sb->s_id;
1326 				unsigned long ino = inode->i_ino;
1327 
1328 				if (rc == -EINVAL) {
1329 					if (printk_ratelimit())
1330 						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1331 							"context=%s.  This indicates you may need to relabel the inode or the "
1332 							"filesystem in question.\n", ino, dev, context);
1333 				} else {
1334 					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1335 					       "returned %d for dev=%s ino=%ld\n",
1336 					       __func__, context, -rc, dev, ino);
1337 				}
1338 				kfree(context);
1339 				/* Leave with the unlabeled SID */
1340 				rc = 0;
1341 				break;
1342 			}
1343 		}
1344 		kfree(context);
1345 		isec->sid = sid;
1346 		break;
1347 	case SECURITY_FS_USE_TASK:
1348 		isec->sid = isec->task_sid;
1349 		break;
1350 	case SECURITY_FS_USE_TRANS:
1351 		/* Default to the fs SID. */
1352 		isec->sid = sbsec->sid;
1353 
1354 		/* Try to obtain a transition SID. */
1355 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1356 		rc = security_transition_sid(isec->task_sid,
1357 					     sbsec->sid,
1358 					     isec->sclass,
1359 					     &sid);
1360 		if (rc)
1361 			goto out_unlock;
1362 		isec->sid = sid;
1363 		break;
1364 	case SECURITY_FS_USE_MNTPOINT:
1365 		isec->sid = sbsec->mntpoint_sid;
1366 		break;
1367 	default:
1368 		/* Default to the fs superblock SID. */
1369 		isec->sid = sbsec->sid;
1370 
1371 		if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1372 			struct proc_inode *proci = PROC_I(inode);
1373 			if (proci->pde) {
1374 				isec->sclass = inode_mode_to_security_class(inode->i_mode);
1375 				rc = selinux_proc_get_sid(proci->pde,
1376 							  isec->sclass,
1377 							  &sid);
1378 				if (rc)
1379 					goto out_unlock;
1380 				isec->sid = sid;
1381 			}
1382 		}
1383 		break;
1384 	}
1385 
1386 	isec->initialized = 1;
1387 
1388 out_unlock:
1389 	mutex_unlock(&isec->lock);
1390 out:
1391 	if (isec->sclass == SECCLASS_FILE)
1392 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1393 	return rc;
1394 }
1395 
1396 /* Convert a Linux signal to an access vector. */
1397 static inline u32 signal_to_av(int sig)
1398 {
1399 	u32 perm = 0;
1400 
1401 	switch (sig) {
1402 	case SIGCHLD:
1403 		/* Commonly granted from child to parent. */
1404 		perm = PROCESS__SIGCHLD;
1405 		break;
1406 	case SIGKILL:
1407 		/* Cannot be caught or ignored */
1408 		perm = PROCESS__SIGKILL;
1409 		break;
1410 	case SIGSTOP:
1411 		/* Cannot be caught or ignored */
1412 		perm = PROCESS__SIGSTOP;
1413 		break;
1414 	default:
1415 		/* All other signals. */
1416 		perm = PROCESS__SIGNAL;
1417 		break;
1418 	}
1419 
1420 	return perm;
1421 }
1422 
1423 /*
1424  * Check permission between a pair of credentials
1425  * fork check, ptrace check, etc.
1426  */
1427 static int cred_has_perm(const struct cred *actor,
1428 			 const struct cred *target,
1429 			 u32 perms)
1430 {
1431 	u32 asid = cred_sid(actor), tsid = cred_sid(target);
1432 
1433 	return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1434 }
1435 
1436 /*
1437  * Check permission between a pair of tasks, e.g. signal checks,
1438  * fork check, ptrace check, etc.
1439  * tsk1 is the actor and tsk2 is the target
1440  * - this uses the default subjective creds of tsk1
1441  */
1442 static int task_has_perm(const struct task_struct *tsk1,
1443 			 const struct task_struct *tsk2,
1444 			 u32 perms)
1445 {
1446 	const struct task_security_struct *__tsec1, *__tsec2;
1447 	u32 sid1, sid2;
1448 
1449 	rcu_read_lock();
1450 	__tsec1 = __task_cred(tsk1)->security;	sid1 = __tsec1->sid;
1451 	__tsec2 = __task_cred(tsk2)->security;	sid2 = __tsec2->sid;
1452 	rcu_read_unlock();
1453 	return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1454 }
1455 
1456 /*
1457  * Check permission between current and another task, e.g. signal checks,
1458  * fork check, ptrace check, etc.
1459  * current is the actor and tsk2 is the target
1460  * - this uses current's subjective creds
1461  */
1462 static int current_has_perm(const struct task_struct *tsk,
1463 			    u32 perms)
1464 {
1465 	u32 sid, tsid;
1466 
1467 	sid = current_sid();
1468 	tsid = task_sid(tsk);
1469 	return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1470 }
1471 
1472 #if CAP_LAST_CAP > 63
1473 #error Fix SELinux to handle capabilities > 63.
1474 #endif
1475 
1476 /* Check whether a task is allowed to use a capability. */
1477 static int task_has_capability(struct task_struct *tsk,
1478 			       const struct cred *cred,
1479 			       int cap, int audit)
1480 {
1481 	struct avc_audit_data ad;
1482 	struct av_decision avd;
1483 	u16 sclass;
1484 	u32 sid = cred_sid(cred);
1485 	u32 av = CAP_TO_MASK(cap);
1486 	int rc;
1487 
1488 	AVC_AUDIT_DATA_INIT(&ad, CAP);
1489 	ad.tsk = tsk;
1490 	ad.u.cap = cap;
1491 
1492 	switch (CAP_TO_INDEX(cap)) {
1493 	case 0:
1494 		sclass = SECCLASS_CAPABILITY;
1495 		break;
1496 	case 1:
1497 		sclass = SECCLASS_CAPABILITY2;
1498 		break;
1499 	default:
1500 		printk(KERN_ERR
1501 		       "SELinux:  out of range capability %d\n", cap);
1502 		BUG();
1503 	}
1504 
1505 	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1506 	if (audit == SECURITY_CAP_AUDIT)
1507 		avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1508 	return rc;
1509 }
1510 
1511 /* Check whether a task is allowed to use a system operation. */
1512 static int task_has_system(struct task_struct *tsk,
1513 			   u32 perms)
1514 {
1515 	u32 sid = task_sid(tsk);
1516 
1517 	return avc_has_perm(sid, SECINITSID_KERNEL,
1518 			    SECCLASS_SYSTEM, perms, NULL);
1519 }
1520 
1521 /* Check whether a task has a particular permission to an inode.
1522    The 'adp' parameter is optional and allows other audit
1523    data to be passed (e.g. the dentry). */
1524 static int inode_has_perm(const struct cred *cred,
1525 			  struct inode *inode,
1526 			  u32 perms,
1527 			  struct avc_audit_data *adp)
1528 {
1529 	struct inode_security_struct *isec;
1530 	struct avc_audit_data ad;
1531 	u32 sid;
1532 
1533 	if (unlikely(IS_PRIVATE(inode)))
1534 		return 0;
1535 
1536 	sid = cred_sid(cred);
1537 	isec = inode->i_security;
1538 
1539 	if (!adp) {
1540 		adp = &ad;
1541 		AVC_AUDIT_DATA_INIT(&ad, FS);
1542 		ad.u.fs.inode = inode;
1543 	}
1544 
1545 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1546 }
1547 
1548 /* Same as inode_has_perm, but pass explicit audit data containing
1549    the dentry to help the auditing code to more easily generate the
1550    pathname if needed. */
1551 static inline int dentry_has_perm(const struct cred *cred,
1552 				  struct vfsmount *mnt,
1553 				  struct dentry *dentry,
1554 				  u32 av)
1555 {
1556 	struct inode *inode = dentry->d_inode;
1557 	struct avc_audit_data ad;
1558 
1559 	AVC_AUDIT_DATA_INIT(&ad, FS);
1560 	ad.u.fs.path.mnt = mnt;
1561 	ad.u.fs.path.dentry = dentry;
1562 	return inode_has_perm(cred, inode, av, &ad);
1563 }
1564 
1565 /* Check whether a task can use an open file descriptor to
1566    access an inode in a given way.  Check access to the
1567    descriptor itself, and then use dentry_has_perm to
1568    check a particular permission to the file.
1569    Access to the descriptor is implicitly granted if it
1570    has the same SID as the process.  If av is zero, then
1571    access to the file is not checked, e.g. for cases
1572    where only the descriptor is affected like seek. */
1573 static int file_has_perm(const struct cred *cred,
1574 			 struct file *file,
1575 			 u32 av)
1576 {
1577 	struct file_security_struct *fsec = file->f_security;
1578 	struct inode *inode = file->f_path.dentry->d_inode;
1579 	struct avc_audit_data ad;
1580 	u32 sid = cred_sid(cred);
1581 	int rc;
1582 
1583 	AVC_AUDIT_DATA_INIT(&ad, FS);
1584 	ad.u.fs.path = file->f_path;
1585 
1586 	if (sid != fsec->sid) {
1587 		rc = avc_has_perm(sid, fsec->sid,
1588 				  SECCLASS_FD,
1589 				  FD__USE,
1590 				  &ad);
1591 		if (rc)
1592 			goto out;
1593 	}
1594 
1595 	/* av is zero if only checking access to the descriptor. */
1596 	rc = 0;
1597 	if (av)
1598 		rc = inode_has_perm(cred, inode, av, &ad);
1599 
1600 out:
1601 	return rc;
1602 }
1603 
1604 /* Check whether a task can create a file. */
1605 static int may_create(struct inode *dir,
1606 		      struct dentry *dentry,
1607 		      u16 tclass)
1608 {
1609 	const struct cred *cred = current_cred();
1610 	const struct task_security_struct *tsec = cred->security;
1611 	struct inode_security_struct *dsec;
1612 	struct superblock_security_struct *sbsec;
1613 	u32 sid, newsid;
1614 	struct avc_audit_data ad;
1615 	int rc;
1616 
1617 	dsec = dir->i_security;
1618 	sbsec = dir->i_sb->s_security;
1619 
1620 	sid = tsec->sid;
1621 	newsid = tsec->create_sid;
1622 
1623 	AVC_AUDIT_DATA_INIT(&ad, FS);
1624 	ad.u.fs.path.dentry = dentry;
1625 
1626 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1627 			  DIR__ADD_NAME | DIR__SEARCH,
1628 			  &ad);
1629 	if (rc)
1630 		return rc;
1631 
1632 	if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1633 		rc = security_transition_sid(sid, dsec->sid, tclass, &newsid);
1634 		if (rc)
1635 			return rc;
1636 	}
1637 
1638 	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1639 	if (rc)
1640 		return rc;
1641 
1642 	return avc_has_perm(newsid, sbsec->sid,
1643 			    SECCLASS_FILESYSTEM,
1644 			    FILESYSTEM__ASSOCIATE, &ad);
1645 }
1646 
1647 /* Check whether a task can create a key. */
1648 static int may_create_key(u32 ksid,
1649 			  struct task_struct *ctx)
1650 {
1651 	u32 sid = task_sid(ctx);
1652 
1653 	return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1654 }
1655 
1656 #define MAY_LINK	0
1657 #define MAY_UNLINK	1
1658 #define MAY_RMDIR	2
1659 
1660 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1661 static int may_link(struct inode *dir,
1662 		    struct dentry *dentry,
1663 		    int kind)
1664 
1665 {
1666 	struct inode_security_struct *dsec, *isec;
1667 	struct avc_audit_data ad;
1668 	u32 sid = current_sid();
1669 	u32 av;
1670 	int rc;
1671 
1672 	dsec = dir->i_security;
1673 	isec = dentry->d_inode->i_security;
1674 
1675 	AVC_AUDIT_DATA_INIT(&ad, FS);
1676 	ad.u.fs.path.dentry = dentry;
1677 
1678 	av = DIR__SEARCH;
1679 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1680 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1681 	if (rc)
1682 		return rc;
1683 
1684 	switch (kind) {
1685 	case MAY_LINK:
1686 		av = FILE__LINK;
1687 		break;
1688 	case MAY_UNLINK:
1689 		av = FILE__UNLINK;
1690 		break;
1691 	case MAY_RMDIR:
1692 		av = DIR__RMDIR;
1693 		break;
1694 	default:
1695 		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1696 			__func__, kind);
1697 		return 0;
1698 	}
1699 
1700 	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1701 	return rc;
1702 }
1703 
1704 static inline int may_rename(struct inode *old_dir,
1705 			     struct dentry *old_dentry,
1706 			     struct inode *new_dir,
1707 			     struct dentry *new_dentry)
1708 {
1709 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1710 	struct avc_audit_data ad;
1711 	u32 sid = current_sid();
1712 	u32 av;
1713 	int old_is_dir, new_is_dir;
1714 	int rc;
1715 
1716 	old_dsec = old_dir->i_security;
1717 	old_isec = old_dentry->d_inode->i_security;
1718 	old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1719 	new_dsec = new_dir->i_security;
1720 
1721 	AVC_AUDIT_DATA_INIT(&ad, FS);
1722 
1723 	ad.u.fs.path.dentry = old_dentry;
1724 	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1725 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1726 	if (rc)
1727 		return rc;
1728 	rc = avc_has_perm(sid, old_isec->sid,
1729 			  old_isec->sclass, FILE__RENAME, &ad);
1730 	if (rc)
1731 		return rc;
1732 	if (old_is_dir && new_dir != old_dir) {
1733 		rc = avc_has_perm(sid, old_isec->sid,
1734 				  old_isec->sclass, DIR__REPARENT, &ad);
1735 		if (rc)
1736 			return rc;
1737 	}
1738 
1739 	ad.u.fs.path.dentry = new_dentry;
1740 	av = DIR__ADD_NAME | DIR__SEARCH;
1741 	if (new_dentry->d_inode)
1742 		av |= DIR__REMOVE_NAME;
1743 	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1744 	if (rc)
1745 		return rc;
1746 	if (new_dentry->d_inode) {
1747 		new_isec = new_dentry->d_inode->i_security;
1748 		new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1749 		rc = avc_has_perm(sid, new_isec->sid,
1750 				  new_isec->sclass,
1751 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1752 		if (rc)
1753 			return rc;
1754 	}
1755 
1756 	return 0;
1757 }
1758 
1759 /* Check whether a task can perform a filesystem operation. */
1760 static int superblock_has_perm(const struct cred *cred,
1761 			       struct super_block *sb,
1762 			       u32 perms,
1763 			       struct avc_audit_data *ad)
1764 {
1765 	struct superblock_security_struct *sbsec;
1766 	u32 sid = cred_sid(cred);
1767 
1768 	sbsec = sb->s_security;
1769 	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1770 }
1771 
1772 /* Convert a Linux mode and permission mask to an access vector. */
1773 static inline u32 file_mask_to_av(int mode, int mask)
1774 {
1775 	u32 av = 0;
1776 
1777 	if ((mode & S_IFMT) != S_IFDIR) {
1778 		if (mask & MAY_EXEC)
1779 			av |= FILE__EXECUTE;
1780 		if (mask & MAY_READ)
1781 			av |= FILE__READ;
1782 
1783 		if (mask & MAY_APPEND)
1784 			av |= FILE__APPEND;
1785 		else if (mask & MAY_WRITE)
1786 			av |= FILE__WRITE;
1787 
1788 	} else {
1789 		if (mask & MAY_EXEC)
1790 			av |= DIR__SEARCH;
1791 		if (mask & MAY_WRITE)
1792 			av |= DIR__WRITE;
1793 		if (mask & MAY_READ)
1794 			av |= DIR__READ;
1795 	}
1796 
1797 	return av;
1798 }
1799 
1800 /* Convert a Linux file to an access vector. */
1801 static inline u32 file_to_av(struct file *file)
1802 {
1803 	u32 av = 0;
1804 
1805 	if (file->f_mode & FMODE_READ)
1806 		av |= FILE__READ;
1807 	if (file->f_mode & FMODE_WRITE) {
1808 		if (file->f_flags & O_APPEND)
1809 			av |= FILE__APPEND;
1810 		else
1811 			av |= FILE__WRITE;
1812 	}
1813 	if (!av) {
1814 		/*
1815 		 * Special file opened with flags 3 for ioctl-only use.
1816 		 */
1817 		av = FILE__IOCTL;
1818 	}
1819 
1820 	return av;
1821 }
1822 
1823 /*
1824  * Convert a file to an access vector and include the correct open
1825  * open permission.
1826  */
1827 static inline u32 open_file_to_av(struct file *file)
1828 {
1829 	u32 av = file_to_av(file);
1830 
1831 	if (selinux_policycap_openperm) {
1832 		mode_t mode = file->f_path.dentry->d_inode->i_mode;
1833 		/*
1834 		 * lnk files and socks do not really have an 'open'
1835 		 */
1836 		if (S_ISREG(mode))
1837 			av |= FILE__OPEN;
1838 		else if (S_ISCHR(mode))
1839 			av |= CHR_FILE__OPEN;
1840 		else if (S_ISBLK(mode))
1841 			av |= BLK_FILE__OPEN;
1842 		else if (S_ISFIFO(mode))
1843 			av |= FIFO_FILE__OPEN;
1844 		else if (S_ISDIR(mode))
1845 			av |= DIR__OPEN;
1846 		else if (S_ISSOCK(mode))
1847 			av |= SOCK_FILE__OPEN;
1848 		else
1849 			printk(KERN_ERR "SELinux: WARNING: inside %s with "
1850 				"unknown mode:%o\n", __func__, mode);
1851 	}
1852 	return av;
1853 }
1854 
1855 /* Hook functions begin here. */
1856 
1857 static int selinux_ptrace_may_access(struct task_struct *child,
1858 				     unsigned int mode)
1859 {
1860 	int rc;
1861 
1862 	rc = cap_ptrace_may_access(child, mode);
1863 	if (rc)
1864 		return rc;
1865 
1866 	if (mode == PTRACE_MODE_READ) {
1867 		u32 sid = current_sid();
1868 		u32 csid = task_sid(child);
1869 		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1870 	}
1871 
1872 	return current_has_perm(child, PROCESS__PTRACE);
1873 }
1874 
1875 static int selinux_ptrace_traceme(struct task_struct *parent)
1876 {
1877 	int rc;
1878 
1879 	rc = cap_ptrace_traceme(parent);
1880 	if (rc)
1881 		return rc;
1882 
1883 	return task_has_perm(parent, current, PROCESS__PTRACE);
1884 }
1885 
1886 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1887 			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
1888 {
1889 	int error;
1890 
1891 	error = current_has_perm(target, PROCESS__GETCAP);
1892 	if (error)
1893 		return error;
1894 
1895 	return cap_capget(target, effective, inheritable, permitted);
1896 }
1897 
1898 static int selinux_capset(struct cred *new, const struct cred *old,
1899 			  const kernel_cap_t *effective,
1900 			  const kernel_cap_t *inheritable,
1901 			  const kernel_cap_t *permitted)
1902 {
1903 	int error;
1904 
1905 	error = cap_capset(new, old,
1906 				      effective, inheritable, permitted);
1907 	if (error)
1908 		return error;
1909 
1910 	return cred_has_perm(old, new, PROCESS__SETCAP);
1911 }
1912 
1913 /*
1914  * (This comment used to live with the selinux_task_setuid hook,
1915  * which was removed).
1916  *
1917  * Since setuid only affects the current process, and since the SELinux
1918  * controls are not based on the Linux identity attributes, SELinux does not
1919  * need to control this operation.  However, SELinux does control the use of
1920  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1921  */
1922 
1923 static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1924 			   int cap, int audit)
1925 {
1926 	int rc;
1927 
1928 	rc = cap_capable(tsk, cred, cap, audit);
1929 	if (rc)
1930 		return rc;
1931 
1932 	return task_has_capability(tsk, cred, cap, audit);
1933 }
1934 
1935 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1936 {
1937 	int buflen, rc;
1938 	char *buffer, *path, *end;
1939 
1940 	rc = -ENOMEM;
1941 	buffer = (char *)__get_free_page(GFP_KERNEL);
1942 	if (!buffer)
1943 		goto out;
1944 
1945 	buflen = PAGE_SIZE;
1946 	end = buffer+buflen;
1947 	*--end = '\0';
1948 	buflen--;
1949 	path = end-1;
1950 	*path = '/';
1951 	while (table) {
1952 		const char *name = table->procname;
1953 		size_t namelen = strlen(name);
1954 		buflen -= namelen + 1;
1955 		if (buflen < 0)
1956 			goto out_free;
1957 		end -= namelen;
1958 		memcpy(end, name, namelen);
1959 		*--end = '/';
1960 		path = end;
1961 		table = table->parent;
1962 	}
1963 	buflen -= 4;
1964 	if (buflen < 0)
1965 		goto out_free;
1966 	end -= 4;
1967 	memcpy(end, "/sys", 4);
1968 	path = end;
1969 	rc = security_genfs_sid("proc", path, tclass, sid);
1970 out_free:
1971 	free_page((unsigned long)buffer);
1972 out:
1973 	return rc;
1974 }
1975 
1976 static int selinux_sysctl(ctl_table *table, int op)
1977 {
1978 	int error = 0;
1979 	u32 av;
1980 	u32 tsid, sid;
1981 	int rc;
1982 
1983 	rc = secondary_ops->sysctl(table, op);
1984 	if (rc)
1985 		return rc;
1986 
1987 	sid = current_sid();
1988 
1989 	rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1990 				    SECCLASS_DIR : SECCLASS_FILE, &tsid);
1991 	if (rc) {
1992 		/* Default to the well-defined sysctl SID. */
1993 		tsid = SECINITSID_SYSCTL;
1994 	}
1995 
1996 	/* The op values are "defined" in sysctl.c, thereby creating
1997 	 * a bad coupling between this module and sysctl.c */
1998 	if (op == 001) {
1999 		error = avc_has_perm(sid, tsid,
2000 				     SECCLASS_DIR, DIR__SEARCH, NULL);
2001 	} else {
2002 		av = 0;
2003 		if (op & 004)
2004 			av |= FILE__READ;
2005 		if (op & 002)
2006 			av |= FILE__WRITE;
2007 		if (av)
2008 			error = avc_has_perm(sid, tsid,
2009 					     SECCLASS_FILE, av, NULL);
2010 	}
2011 
2012 	return error;
2013 }
2014 
2015 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2016 {
2017 	const struct cred *cred = current_cred();
2018 	int rc = 0;
2019 
2020 	if (!sb)
2021 		return 0;
2022 
2023 	switch (cmds) {
2024 	case Q_SYNC:
2025 	case Q_QUOTAON:
2026 	case Q_QUOTAOFF:
2027 	case Q_SETINFO:
2028 	case Q_SETQUOTA:
2029 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2030 		break;
2031 	case Q_GETFMT:
2032 	case Q_GETINFO:
2033 	case Q_GETQUOTA:
2034 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2035 		break;
2036 	default:
2037 		rc = 0;  /* let the kernel handle invalid cmds */
2038 		break;
2039 	}
2040 	return rc;
2041 }
2042 
2043 static int selinux_quota_on(struct dentry *dentry)
2044 {
2045 	const struct cred *cred = current_cred();
2046 
2047 	return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON);
2048 }
2049 
2050 static int selinux_syslog(int type)
2051 {
2052 	int rc;
2053 
2054 	rc = cap_syslog(type);
2055 	if (rc)
2056 		return rc;
2057 
2058 	switch (type) {
2059 	case 3:		/* Read last kernel messages */
2060 	case 10:	/* Return size of the log buffer */
2061 		rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2062 		break;
2063 	case 6:		/* Disable logging to console */
2064 	case 7:		/* Enable logging to console */
2065 	case 8:		/* Set level of messages printed to console */
2066 		rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2067 		break;
2068 	case 0:		/* Close log */
2069 	case 1:		/* Open log */
2070 	case 2:		/* Read from log */
2071 	case 4:		/* Read/clear last kernel messages */
2072 	case 5:		/* Clear ring buffer */
2073 	default:
2074 		rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2075 		break;
2076 	}
2077 	return rc;
2078 }
2079 
2080 /*
2081  * Check that a process has enough memory to allocate a new virtual
2082  * mapping. 0 means there is enough memory for the allocation to
2083  * succeed and -ENOMEM implies there is not.
2084  *
2085  * Do not audit the selinux permission check, as this is applied to all
2086  * processes that allocate mappings.
2087  */
2088 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2089 {
2090 	int rc, cap_sys_admin = 0;
2091 
2092 	rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN,
2093 			     SECURITY_CAP_NOAUDIT);
2094 	if (rc == 0)
2095 		cap_sys_admin = 1;
2096 
2097 	return __vm_enough_memory(mm, pages, cap_sys_admin);
2098 }
2099 
2100 /* binprm security operations */
2101 
2102 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2103 {
2104 	const struct task_security_struct *old_tsec;
2105 	struct task_security_struct *new_tsec;
2106 	struct inode_security_struct *isec;
2107 	struct avc_audit_data ad;
2108 	struct inode *inode = bprm->file->f_path.dentry->d_inode;
2109 	int rc;
2110 
2111 	rc = cap_bprm_set_creds(bprm);
2112 	if (rc)
2113 		return rc;
2114 
2115 	/* SELinux context only depends on initial program or script and not
2116 	 * the script interpreter */
2117 	if (bprm->cred_prepared)
2118 		return 0;
2119 
2120 	old_tsec = current_security();
2121 	new_tsec = bprm->cred->security;
2122 	isec = inode->i_security;
2123 
2124 	/* Default to the current task SID. */
2125 	new_tsec->sid = old_tsec->sid;
2126 	new_tsec->osid = old_tsec->sid;
2127 
2128 	/* Reset fs, key, and sock SIDs on execve. */
2129 	new_tsec->create_sid = 0;
2130 	new_tsec->keycreate_sid = 0;
2131 	new_tsec->sockcreate_sid = 0;
2132 
2133 	if (old_tsec->exec_sid) {
2134 		new_tsec->sid = old_tsec->exec_sid;
2135 		/* Reset exec SID on execve. */
2136 		new_tsec->exec_sid = 0;
2137 	} else {
2138 		/* Check for a default transition on this program. */
2139 		rc = security_transition_sid(old_tsec->sid, isec->sid,
2140 					     SECCLASS_PROCESS, &new_tsec->sid);
2141 		if (rc)
2142 			return rc;
2143 	}
2144 
2145 	AVC_AUDIT_DATA_INIT(&ad, FS);
2146 	ad.u.fs.path = bprm->file->f_path;
2147 
2148 	if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2149 		new_tsec->sid = old_tsec->sid;
2150 
2151 	if (new_tsec->sid == old_tsec->sid) {
2152 		rc = avc_has_perm(old_tsec->sid, isec->sid,
2153 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2154 		if (rc)
2155 			return rc;
2156 	} else {
2157 		/* Check permissions for the transition. */
2158 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2159 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2160 		if (rc)
2161 			return rc;
2162 
2163 		rc = avc_has_perm(new_tsec->sid, isec->sid,
2164 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2165 		if (rc)
2166 			return rc;
2167 
2168 		/* Check for shared state */
2169 		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2170 			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2171 					  SECCLASS_PROCESS, PROCESS__SHARE,
2172 					  NULL);
2173 			if (rc)
2174 				return -EPERM;
2175 		}
2176 
2177 		/* Make sure that anyone attempting to ptrace over a task that
2178 		 * changes its SID has the appropriate permit */
2179 		if (bprm->unsafe &
2180 		    (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2181 			struct task_struct *tracer;
2182 			struct task_security_struct *sec;
2183 			u32 ptsid = 0;
2184 
2185 			rcu_read_lock();
2186 			tracer = tracehook_tracer_task(current);
2187 			if (likely(tracer != NULL)) {
2188 				sec = __task_cred(tracer)->security;
2189 				ptsid = sec->sid;
2190 			}
2191 			rcu_read_unlock();
2192 
2193 			if (ptsid != 0) {
2194 				rc = avc_has_perm(ptsid, new_tsec->sid,
2195 						  SECCLASS_PROCESS,
2196 						  PROCESS__PTRACE, NULL);
2197 				if (rc)
2198 					return -EPERM;
2199 			}
2200 		}
2201 
2202 		/* Clear any possibly unsafe personality bits on exec: */
2203 		bprm->per_clear |= PER_CLEAR_ON_SETID;
2204 	}
2205 
2206 	return 0;
2207 }
2208 
2209 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2210 {
2211 	const struct cred *cred = current_cred();
2212 	const struct task_security_struct *tsec = cred->security;
2213 	u32 sid, osid;
2214 	int atsecure = 0;
2215 
2216 	sid = tsec->sid;
2217 	osid = tsec->osid;
2218 
2219 	if (osid != sid) {
2220 		/* Enable secure mode for SIDs transitions unless
2221 		   the noatsecure permission is granted between
2222 		   the two SIDs, i.e. ahp returns 0. */
2223 		atsecure = avc_has_perm(osid, sid,
2224 					SECCLASS_PROCESS,
2225 					PROCESS__NOATSECURE, NULL);
2226 	}
2227 
2228 	return (atsecure || cap_bprm_secureexec(bprm));
2229 }
2230 
2231 extern struct vfsmount *selinuxfs_mount;
2232 extern struct dentry *selinux_null;
2233 
2234 /* Derived from fs/exec.c:flush_old_files. */
2235 static inline void flush_unauthorized_files(const struct cred *cred,
2236 					    struct files_struct *files)
2237 {
2238 	struct avc_audit_data ad;
2239 	struct file *file, *devnull = NULL;
2240 	struct tty_struct *tty;
2241 	struct fdtable *fdt;
2242 	long j = -1;
2243 	int drop_tty = 0;
2244 
2245 	tty = get_current_tty();
2246 	if (tty) {
2247 		file_list_lock();
2248 		if (!list_empty(&tty->tty_files)) {
2249 			struct inode *inode;
2250 
2251 			/* Revalidate access to controlling tty.
2252 			   Use inode_has_perm on the tty inode directly rather
2253 			   than using file_has_perm, as this particular open
2254 			   file may belong to another process and we are only
2255 			   interested in the inode-based check here. */
2256 			file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list);
2257 			inode = file->f_path.dentry->d_inode;
2258 			if (inode_has_perm(cred, inode,
2259 					   FILE__READ | FILE__WRITE, NULL)) {
2260 				drop_tty = 1;
2261 			}
2262 		}
2263 		file_list_unlock();
2264 		tty_kref_put(tty);
2265 	}
2266 	/* Reset controlling tty. */
2267 	if (drop_tty)
2268 		no_tty();
2269 
2270 	/* Revalidate access to inherited open files. */
2271 
2272 	AVC_AUDIT_DATA_INIT(&ad, FS);
2273 
2274 	spin_lock(&files->file_lock);
2275 	for (;;) {
2276 		unsigned long set, i;
2277 		int fd;
2278 
2279 		j++;
2280 		i = j * __NFDBITS;
2281 		fdt = files_fdtable(files);
2282 		if (i >= fdt->max_fds)
2283 			break;
2284 		set = fdt->open_fds->fds_bits[j];
2285 		if (!set)
2286 			continue;
2287 		spin_unlock(&files->file_lock);
2288 		for ( ; set ; i++, set >>= 1) {
2289 			if (set & 1) {
2290 				file = fget(i);
2291 				if (!file)
2292 					continue;
2293 				if (file_has_perm(cred,
2294 						  file,
2295 						  file_to_av(file))) {
2296 					sys_close(i);
2297 					fd = get_unused_fd();
2298 					if (fd != i) {
2299 						if (fd >= 0)
2300 							put_unused_fd(fd);
2301 						fput(file);
2302 						continue;
2303 					}
2304 					if (devnull) {
2305 						get_file(devnull);
2306 					} else {
2307 						devnull = dentry_open(
2308 							dget(selinux_null),
2309 							mntget(selinuxfs_mount),
2310 							O_RDWR, cred);
2311 						if (IS_ERR(devnull)) {
2312 							devnull = NULL;
2313 							put_unused_fd(fd);
2314 							fput(file);
2315 							continue;
2316 						}
2317 					}
2318 					fd_install(fd, devnull);
2319 				}
2320 				fput(file);
2321 			}
2322 		}
2323 		spin_lock(&files->file_lock);
2324 
2325 	}
2326 	spin_unlock(&files->file_lock);
2327 }
2328 
2329 /*
2330  * Prepare a process for imminent new credential changes due to exec
2331  */
2332 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2333 {
2334 	struct task_security_struct *new_tsec;
2335 	struct rlimit *rlim, *initrlim;
2336 	int rc, i;
2337 
2338 	new_tsec = bprm->cred->security;
2339 	if (new_tsec->sid == new_tsec->osid)
2340 		return;
2341 
2342 	/* Close files for which the new task SID is not authorized. */
2343 	flush_unauthorized_files(bprm->cred, current->files);
2344 
2345 	/* Always clear parent death signal on SID transitions. */
2346 	current->pdeath_signal = 0;
2347 
2348 	/* Check whether the new SID can inherit resource limits from the old
2349 	 * SID.  If not, reset all soft limits to the lower of the current
2350 	 * task's hard limit and the init task's soft limit.
2351 	 *
2352 	 * Note that the setting of hard limits (even to lower them) can be
2353 	 * controlled by the setrlimit check.  The inclusion of the init task's
2354 	 * soft limit into the computation is to avoid resetting soft limits
2355 	 * higher than the default soft limit for cases where the default is
2356 	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2357 	 */
2358 	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2359 			  PROCESS__RLIMITINH, NULL);
2360 	if (rc) {
2361 		for (i = 0; i < RLIM_NLIMITS; i++) {
2362 			rlim = current->signal->rlim + i;
2363 			initrlim = init_task.signal->rlim + i;
2364 			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2365 		}
2366 		update_rlimit_cpu(rlim->rlim_cur);
2367 	}
2368 }
2369 
2370 /*
2371  * Clean up the process immediately after the installation of new credentials
2372  * due to exec
2373  */
2374 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2375 {
2376 	const struct task_security_struct *tsec = current_security();
2377 	struct itimerval itimer;
2378 	struct sighand_struct *psig;
2379 	u32 osid, sid;
2380 	int rc, i;
2381 	unsigned long flags;
2382 
2383 	osid = tsec->osid;
2384 	sid = tsec->sid;
2385 
2386 	if (sid == osid)
2387 		return;
2388 
2389 	/* Check whether the new SID can inherit signal state from the old SID.
2390 	 * If not, clear itimers to avoid subsequent signal generation and
2391 	 * flush and unblock signals.
2392 	 *
2393 	 * This must occur _after_ the task SID has been updated so that any
2394 	 * kill done after the flush will be checked against the new SID.
2395 	 */
2396 	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2397 	if (rc) {
2398 		memset(&itimer, 0, sizeof itimer);
2399 		for (i = 0; i < 3; i++)
2400 			do_setitimer(i, &itimer, NULL);
2401 		flush_signals(current);
2402 		spin_lock_irq(&current->sighand->siglock);
2403 		flush_signal_handlers(current, 1);
2404 		sigemptyset(&current->blocked);
2405 		recalc_sigpending();
2406 		spin_unlock_irq(&current->sighand->siglock);
2407 	}
2408 
2409 	/* Wake up the parent if it is waiting so that it can recheck
2410 	 * wait permission to the new task SID. */
2411 	read_lock_irq(&tasklist_lock);
2412 	psig = current->parent->sighand;
2413 	spin_lock_irqsave(&psig->siglock, flags);
2414 	wake_up_interruptible(&current->parent->signal->wait_chldexit);
2415 	spin_unlock_irqrestore(&psig->siglock, flags);
2416 	read_unlock_irq(&tasklist_lock);
2417 }
2418 
2419 /* superblock security operations */
2420 
2421 static int selinux_sb_alloc_security(struct super_block *sb)
2422 {
2423 	return superblock_alloc_security(sb);
2424 }
2425 
2426 static void selinux_sb_free_security(struct super_block *sb)
2427 {
2428 	superblock_free_security(sb);
2429 }
2430 
2431 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2432 {
2433 	if (plen > olen)
2434 		return 0;
2435 
2436 	return !memcmp(prefix, option, plen);
2437 }
2438 
2439 static inline int selinux_option(char *option, int len)
2440 {
2441 	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2442 		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2443 		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2444 		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2445 		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2446 }
2447 
2448 static inline void take_option(char **to, char *from, int *first, int len)
2449 {
2450 	if (!*first) {
2451 		**to = ',';
2452 		*to += 1;
2453 	} else
2454 		*first = 0;
2455 	memcpy(*to, from, len);
2456 	*to += len;
2457 }
2458 
2459 static inline void take_selinux_option(char **to, char *from, int *first,
2460 				       int len)
2461 {
2462 	int current_size = 0;
2463 
2464 	if (!*first) {
2465 		**to = '|';
2466 		*to += 1;
2467 	} else
2468 		*first = 0;
2469 
2470 	while (current_size < len) {
2471 		if (*from != '"') {
2472 			**to = *from;
2473 			*to += 1;
2474 		}
2475 		from += 1;
2476 		current_size += 1;
2477 	}
2478 }
2479 
2480 static int selinux_sb_copy_data(char *orig, char *copy)
2481 {
2482 	int fnosec, fsec, rc = 0;
2483 	char *in_save, *in_curr, *in_end;
2484 	char *sec_curr, *nosec_save, *nosec;
2485 	int open_quote = 0;
2486 
2487 	in_curr = orig;
2488 	sec_curr = copy;
2489 
2490 	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2491 	if (!nosec) {
2492 		rc = -ENOMEM;
2493 		goto out;
2494 	}
2495 
2496 	nosec_save = nosec;
2497 	fnosec = fsec = 1;
2498 	in_save = in_end = orig;
2499 
2500 	do {
2501 		if (*in_end == '"')
2502 			open_quote = !open_quote;
2503 		if ((*in_end == ',' && open_quote == 0) ||
2504 				*in_end == '\0') {
2505 			int len = in_end - in_curr;
2506 
2507 			if (selinux_option(in_curr, len))
2508 				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2509 			else
2510 				take_option(&nosec, in_curr, &fnosec, len);
2511 
2512 			in_curr = in_end + 1;
2513 		}
2514 	} while (*in_end++);
2515 
2516 	strcpy(in_save, nosec_save);
2517 	free_page((unsigned long)nosec_save);
2518 out:
2519 	return rc;
2520 }
2521 
2522 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2523 {
2524 	const struct cred *cred = current_cred();
2525 	struct avc_audit_data ad;
2526 	int rc;
2527 
2528 	rc = superblock_doinit(sb, data);
2529 	if (rc)
2530 		return rc;
2531 
2532 	/* Allow all mounts performed by the kernel */
2533 	if (flags & MS_KERNMOUNT)
2534 		return 0;
2535 
2536 	AVC_AUDIT_DATA_INIT(&ad, FS);
2537 	ad.u.fs.path.dentry = sb->s_root;
2538 	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2539 }
2540 
2541 static int selinux_sb_statfs(struct dentry *dentry)
2542 {
2543 	const struct cred *cred = current_cred();
2544 	struct avc_audit_data ad;
2545 
2546 	AVC_AUDIT_DATA_INIT(&ad, FS);
2547 	ad.u.fs.path.dentry = dentry->d_sb->s_root;
2548 	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2549 }
2550 
2551 static int selinux_mount(char *dev_name,
2552 			 struct path *path,
2553 			 char *type,
2554 			 unsigned long flags,
2555 			 void *data)
2556 {
2557 	const struct cred *cred = current_cred();
2558 
2559 	if (flags & MS_REMOUNT)
2560 		return superblock_has_perm(cred, path->mnt->mnt_sb,
2561 					   FILESYSTEM__REMOUNT, NULL);
2562 	else
2563 		return dentry_has_perm(cred, path->mnt, path->dentry,
2564 				       FILE__MOUNTON);
2565 }
2566 
2567 static int selinux_umount(struct vfsmount *mnt, int flags)
2568 {
2569 	const struct cred *cred = current_cred();
2570 
2571 	return superblock_has_perm(cred, mnt->mnt_sb,
2572 				   FILESYSTEM__UNMOUNT, NULL);
2573 }
2574 
2575 /* inode security operations */
2576 
2577 static int selinux_inode_alloc_security(struct inode *inode)
2578 {
2579 	return inode_alloc_security(inode);
2580 }
2581 
2582 static void selinux_inode_free_security(struct inode *inode)
2583 {
2584 	inode_free_security(inode);
2585 }
2586 
2587 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2588 				       char **name, void **value,
2589 				       size_t *len)
2590 {
2591 	const struct cred *cred = current_cred();
2592 	const struct task_security_struct *tsec = cred->security;
2593 	struct inode_security_struct *dsec;
2594 	struct superblock_security_struct *sbsec;
2595 	u32 sid, newsid, clen;
2596 	int rc;
2597 	char *namep = NULL, *context;
2598 
2599 	dsec = dir->i_security;
2600 	sbsec = dir->i_sb->s_security;
2601 
2602 	sid = tsec->sid;
2603 	newsid = tsec->create_sid;
2604 
2605 	if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2606 		rc = security_transition_sid(sid, dsec->sid,
2607 					     inode_mode_to_security_class(inode->i_mode),
2608 					     &newsid);
2609 		if (rc) {
2610 			printk(KERN_WARNING "%s:  "
2611 			       "security_transition_sid failed, rc=%d (dev=%s "
2612 			       "ino=%ld)\n",
2613 			       __func__,
2614 			       -rc, inode->i_sb->s_id, inode->i_ino);
2615 			return rc;
2616 		}
2617 	}
2618 
2619 	/* Possibly defer initialization to selinux_complete_init. */
2620 	if (sbsec->flags & SE_SBINITIALIZED) {
2621 		struct inode_security_struct *isec = inode->i_security;
2622 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2623 		isec->sid = newsid;
2624 		isec->initialized = 1;
2625 	}
2626 
2627 	if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2628 		return -EOPNOTSUPP;
2629 
2630 	if (name) {
2631 		namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2632 		if (!namep)
2633 			return -ENOMEM;
2634 		*name = namep;
2635 	}
2636 
2637 	if (value && len) {
2638 		rc = security_sid_to_context_force(newsid, &context, &clen);
2639 		if (rc) {
2640 			kfree(namep);
2641 			return rc;
2642 		}
2643 		*value = context;
2644 		*len = clen;
2645 	}
2646 
2647 	return 0;
2648 }
2649 
2650 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2651 {
2652 	return may_create(dir, dentry, SECCLASS_FILE);
2653 }
2654 
2655 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2656 {
2657 	return may_link(dir, old_dentry, MAY_LINK);
2658 }
2659 
2660 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2661 {
2662 	return may_link(dir, dentry, MAY_UNLINK);
2663 }
2664 
2665 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2666 {
2667 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2668 }
2669 
2670 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2671 {
2672 	return may_create(dir, dentry, SECCLASS_DIR);
2673 }
2674 
2675 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2676 {
2677 	return may_link(dir, dentry, MAY_RMDIR);
2678 }
2679 
2680 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2681 {
2682 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2683 }
2684 
2685 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2686 				struct inode *new_inode, struct dentry *new_dentry)
2687 {
2688 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2689 }
2690 
2691 static int selinux_inode_readlink(struct dentry *dentry)
2692 {
2693 	const struct cred *cred = current_cred();
2694 
2695 	return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2696 }
2697 
2698 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2699 {
2700 	const struct cred *cred = current_cred();
2701 
2702 	return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2703 }
2704 
2705 static int selinux_inode_permission(struct inode *inode, int mask)
2706 {
2707 	const struct cred *cred = current_cred();
2708 
2709 	if (!mask) {
2710 		/* No permission to check.  Existence test. */
2711 		return 0;
2712 	}
2713 
2714 	return inode_has_perm(cred, inode,
2715 			      file_mask_to_av(inode->i_mode, mask), NULL);
2716 }
2717 
2718 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2719 {
2720 	const struct cred *cred = current_cred();
2721 
2722 	if (iattr->ia_valid & ATTR_FORCE)
2723 		return 0;
2724 
2725 	if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2726 			       ATTR_ATIME_SET | ATTR_MTIME_SET))
2727 		return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2728 
2729 	return dentry_has_perm(cred, NULL, dentry, FILE__WRITE);
2730 }
2731 
2732 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2733 {
2734 	const struct cred *cred = current_cred();
2735 
2736 	return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR);
2737 }
2738 
2739 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2740 {
2741 	const struct cred *cred = current_cred();
2742 
2743 	if (!strncmp(name, XATTR_SECURITY_PREFIX,
2744 		     sizeof XATTR_SECURITY_PREFIX - 1)) {
2745 		if (!strcmp(name, XATTR_NAME_CAPS)) {
2746 			if (!capable(CAP_SETFCAP))
2747 				return -EPERM;
2748 		} else if (!capable(CAP_SYS_ADMIN)) {
2749 			/* A different attribute in the security namespace.
2750 			   Restrict to administrator. */
2751 			return -EPERM;
2752 		}
2753 	}
2754 
2755 	/* Not an attribute we recognize, so just check the
2756 	   ordinary setattr permission. */
2757 	return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2758 }
2759 
2760 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2761 				  const void *value, size_t size, int flags)
2762 {
2763 	struct inode *inode = dentry->d_inode;
2764 	struct inode_security_struct *isec = inode->i_security;
2765 	struct superblock_security_struct *sbsec;
2766 	struct avc_audit_data ad;
2767 	u32 newsid, sid = current_sid();
2768 	int rc = 0;
2769 
2770 	if (strcmp(name, XATTR_NAME_SELINUX))
2771 		return selinux_inode_setotherxattr(dentry, name);
2772 
2773 	sbsec = inode->i_sb->s_security;
2774 	if (!(sbsec->flags & SE_SBLABELSUPP))
2775 		return -EOPNOTSUPP;
2776 
2777 	if (!is_owner_or_cap(inode))
2778 		return -EPERM;
2779 
2780 	AVC_AUDIT_DATA_INIT(&ad, FS);
2781 	ad.u.fs.path.dentry = dentry;
2782 
2783 	rc = avc_has_perm(sid, isec->sid, isec->sclass,
2784 			  FILE__RELABELFROM, &ad);
2785 	if (rc)
2786 		return rc;
2787 
2788 	rc = security_context_to_sid(value, size, &newsid);
2789 	if (rc == -EINVAL) {
2790 		if (!capable(CAP_MAC_ADMIN))
2791 			return rc;
2792 		rc = security_context_to_sid_force(value, size, &newsid);
2793 	}
2794 	if (rc)
2795 		return rc;
2796 
2797 	rc = avc_has_perm(sid, newsid, isec->sclass,
2798 			  FILE__RELABELTO, &ad);
2799 	if (rc)
2800 		return rc;
2801 
2802 	rc = security_validate_transition(isec->sid, newsid, sid,
2803 					  isec->sclass);
2804 	if (rc)
2805 		return rc;
2806 
2807 	return avc_has_perm(newsid,
2808 			    sbsec->sid,
2809 			    SECCLASS_FILESYSTEM,
2810 			    FILESYSTEM__ASSOCIATE,
2811 			    &ad);
2812 }
2813 
2814 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2815 					const void *value, size_t size,
2816 					int flags)
2817 {
2818 	struct inode *inode = dentry->d_inode;
2819 	struct inode_security_struct *isec = inode->i_security;
2820 	u32 newsid;
2821 	int rc;
2822 
2823 	if (strcmp(name, XATTR_NAME_SELINUX)) {
2824 		/* Not an attribute we recognize, so nothing to do. */
2825 		return;
2826 	}
2827 
2828 	rc = security_context_to_sid_force(value, size, &newsid);
2829 	if (rc) {
2830 		printk(KERN_ERR "SELinux:  unable to map context to SID"
2831 		       "for (%s, %lu), rc=%d\n",
2832 		       inode->i_sb->s_id, inode->i_ino, -rc);
2833 		return;
2834 	}
2835 
2836 	isec->sid = newsid;
2837 	return;
2838 }
2839 
2840 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2841 {
2842 	const struct cred *cred = current_cred();
2843 
2844 	return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2845 }
2846 
2847 static int selinux_inode_listxattr(struct dentry *dentry)
2848 {
2849 	const struct cred *cred = current_cred();
2850 
2851 	return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2852 }
2853 
2854 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2855 {
2856 	if (strcmp(name, XATTR_NAME_SELINUX))
2857 		return selinux_inode_setotherxattr(dentry, name);
2858 
2859 	/* No one is allowed to remove a SELinux security label.
2860 	   You can change the label, but all data must be labeled. */
2861 	return -EACCES;
2862 }
2863 
2864 /*
2865  * Copy the inode security context value to the user.
2866  *
2867  * Permission check is handled by selinux_inode_getxattr hook.
2868  */
2869 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2870 {
2871 	u32 size;
2872 	int error;
2873 	char *context = NULL;
2874 	struct inode_security_struct *isec = inode->i_security;
2875 
2876 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2877 		return -EOPNOTSUPP;
2878 
2879 	/*
2880 	 * If the caller has CAP_MAC_ADMIN, then get the raw context
2881 	 * value even if it is not defined by current policy; otherwise,
2882 	 * use the in-core value under current policy.
2883 	 * Use the non-auditing forms of the permission checks since
2884 	 * getxattr may be called by unprivileged processes commonly
2885 	 * and lack of permission just means that we fall back to the
2886 	 * in-core context value, not a denial.
2887 	 */
2888 	error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN,
2889 				SECURITY_CAP_NOAUDIT);
2890 	if (!error)
2891 		error = security_sid_to_context_force(isec->sid, &context,
2892 						      &size);
2893 	else
2894 		error = security_sid_to_context(isec->sid, &context, &size);
2895 	if (error)
2896 		return error;
2897 	error = size;
2898 	if (alloc) {
2899 		*buffer = context;
2900 		goto out_nofree;
2901 	}
2902 	kfree(context);
2903 out_nofree:
2904 	return error;
2905 }
2906 
2907 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2908 				     const void *value, size_t size, int flags)
2909 {
2910 	struct inode_security_struct *isec = inode->i_security;
2911 	u32 newsid;
2912 	int rc;
2913 
2914 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2915 		return -EOPNOTSUPP;
2916 
2917 	if (!value || !size)
2918 		return -EACCES;
2919 
2920 	rc = security_context_to_sid((void *)value, size, &newsid);
2921 	if (rc)
2922 		return rc;
2923 
2924 	isec->sid = newsid;
2925 	return 0;
2926 }
2927 
2928 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2929 {
2930 	const int len = sizeof(XATTR_NAME_SELINUX);
2931 	if (buffer && len <= buffer_size)
2932 		memcpy(buffer, XATTR_NAME_SELINUX, len);
2933 	return len;
2934 }
2935 
2936 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2937 {
2938 	struct inode_security_struct *isec = inode->i_security;
2939 	*secid = isec->sid;
2940 }
2941 
2942 /* file security operations */
2943 
2944 static int selinux_revalidate_file_permission(struct file *file, int mask)
2945 {
2946 	const struct cred *cred = current_cred();
2947 	struct inode *inode = file->f_path.dentry->d_inode;
2948 
2949 	if (!mask) {
2950 		/* No permission to check.  Existence test. */
2951 		return 0;
2952 	}
2953 
2954 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2955 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2956 		mask |= MAY_APPEND;
2957 
2958 	return file_has_perm(cred, file,
2959 			     file_mask_to_av(inode->i_mode, mask));
2960 }
2961 
2962 static int selinux_file_permission(struct file *file, int mask)
2963 {
2964 	if (!mask)
2965 		/* No permission to check.  Existence test. */
2966 		return 0;
2967 
2968 	return selinux_revalidate_file_permission(file, mask);
2969 }
2970 
2971 static int selinux_file_alloc_security(struct file *file)
2972 {
2973 	return file_alloc_security(file);
2974 }
2975 
2976 static void selinux_file_free_security(struct file *file)
2977 {
2978 	file_free_security(file);
2979 }
2980 
2981 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2982 			      unsigned long arg)
2983 {
2984 	const struct cred *cred = current_cred();
2985 	u32 av = 0;
2986 
2987 	if (_IOC_DIR(cmd) & _IOC_WRITE)
2988 		av |= FILE__WRITE;
2989 	if (_IOC_DIR(cmd) & _IOC_READ)
2990 		av |= FILE__READ;
2991 	if (!av)
2992 		av = FILE__IOCTL;
2993 
2994 	return file_has_perm(cred, file, av);
2995 }
2996 
2997 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2998 {
2999 	const struct cred *cred = current_cred();
3000 	int rc = 0;
3001 
3002 #ifndef CONFIG_PPC32
3003 	if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3004 		/*
3005 		 * We are making executable an anonymous mapping or a
3006 		 * private file mapping that will also be writable.
3007 		 * This has an additional check.
3008 		 */
3009 		rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3010 		if (rc)
3011 			goto error;
3012 	}
3013 #endif
3014 
3015 	if (file) {
3016 		/* read access is always possible with a mapping */
3017 		u32 av = FILE__READ;
3018 
3019 		/* write access only matters if the mapping is shared */
3020 		if (shared && (prot & PROT_WRITE))
3021 			av |= FILE__WRITE;
3022 
3023 		if (prot & PROT_EXEC)
3024 			av |= FILE__EXECUTE;
3025 
3026 		return file_has_perm(cred, file, av);
3027 	}
3028 
3029 error:
3030 	return rc;
3031 }
3032 
3033 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3034 			     unsigned long prot, unsigned long flags,
3035 			     unsigned long addr, unsigned long addr_only)
3036 {
3037 	int rc = 0;
3038 	u32 sid = current_sid();
3039 
3040 	if (addr < mmap_min_addr)
3041 		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3042 				  MEMPROTECT__MMAP_ZERO, NULL);
3043 	if (rc || addr_only)
3044 		return rc;
3045 
3046 	if (selinux_checkreqprot)
3047 		prot = reqprot;
3048 
3049 	return file_map_prot_check(file, prot,
3050 				   (flags & MAP_TYPE) == MAP_SHARED);
3051 }
3052 
3053 static int selinux_file_mprotect(struct vm_area_struct *vma,
3054 				 unsigned long reqprot,
3055 				 unsigned long prot)
3056 {
3057 	const struct cred *cred = current_cred();
3058 
3059 	if (selinux_checkreqprot)
3060 		prot = reqprot;
3061 
3062 #ifndef CONFIG_PPC32
3063 	if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3064 		int rc = 0;
3065 		if (vma->vm_start >= vma->vm_mm->start_brk &&
3066 		    vma->vm_end <= vma->vm_mm->brk) {
3067 			rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3068 		} else if (!vma->vm_file &&
3069 			   vma->vm_start <= vma->vm_mm->start_stack &&
3070 			   vma->vm_end >= vma->vm_mm->start_stack) {
3071 			rc = current_has_perm(current, PROCESS__EXECSTACK);
3072 		} else if (vma->vm_file && vma->anon_vma) {
3073 			/*
3074 			 * We are making executable a file mapping that has
3075 			 * had some COW done. Since pages might have been
3076 			 * written, check ability to execute the possibly
3077 			 * modified content.  This typically should only
3078 			 * occur for text relocations.
3079 			 */
3080 			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3081 		}
3082 		if (rc)
3083 			return rc;
3084 	}
3085 #endif
3086 
3087 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3088 }
3089 
3090 static int selinux_file_lock(struct file *file, unsigned int cmd)
3091 {
3092 	const struct cred *cred = current_cred();
3093 
3094 	return file_has_perm(cred, file, FILE__LOCK);
3095 }
3096 
3097 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3098 			      unsigned long arg)
3099 {
3100 	const struct cred *cred = current_cred();
3101 	int err = 0;
3102 
3103 	switch (cmd) {
3104 	case F_SETFL:
3105 		if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3106 			err = -EINVAL;
3107 			break;
3108 		}
3109 
3110 		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3111 			err = file_has_perm(cred, file, FILE__WRITE);
3112 			break;
3113 		}
3114 		/* fall through */
3115 	case F_SETOWN:
3116 	case F_SETSIG:
3117 	case F_GETFL:
3118 	case F_GETOWN:
3119 	case F_GETSIG:
3120 		/* Just check FD__USE permission */
3121 		err = file_has_perm(cred, file, 0);
3122 		break;
3123 	case F_GETLK:
3124 	case F_SETLK:
3125 	case F_SETLKW:
3126 #if BITS_PER_LONG == 32
3127 	case F_GETLK64:
3128 	case F_SETLK64:
3129 	case F_SETLKW64:
3130 #endif
3131 		if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3132 			err = -EINVAL;
3133 			break;
3134 		}
3135 		err = file_has_perm(cred, file, FILE__LOCK);
3136 		break;
3137 	}
3138 
3139 	return err;
3140 }
3141 
3142 static int selinux_file_set_fowner(struct file *file)
3143 {
3144 	struct file_security_struct *fsec;
3145 
3146 	fsec = file->f_security;
3147 	fsec->fown_sid = current_sid();
3148 
3149 	return 0;
3150 }
3151 
3152 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3153 				       struct fown_struct *fown, int signum)
3154 {
3155 	struct file *file;
3156 	u32 sid = task_sid(tsk);
3157 	u32 perm;
3158 	struct file_security_struct *fsec;
3159 
3160 	/* struct fown_struct is never outside the context of a struct file */
3161 	file = container_of(fown, struct file, f_owner);
3162 
3163 	fsec = file->f_security;
3164 
3165 	if (!signum)
3166 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3167 	else
3168 		perm = signal_to_av(signum);
3169 
3170 	return avc_has_perm(fsec->fown_sid, sid,
3171 			    SECCLASS_PROCESS, perm, NULL);
3172 }
3173 
3174 static int selinux_file_receive(struct file *file)
3175 {
3176 	const struct cred *cred = current_cred();
3177 
3178 	return file_has_perm(cred, file, file_to_av(file));
3179 }
3180 
3181 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3182 {
3183 	struct file_security_struct *fsec;
3184 	struct inode *inode;
3185 	struct inode_security_struct *isec;
3186 
3187 	inode = file->f_path.dentry->d_inode;
3188 	fsec = file->f_security;
3189 	isec = inode->i_security;
3190 	/*
3191 	 * Save inode label and policy sequence number
3192 	 * at open-time so that selinux_file_permission
3193 	 * can determine whether revalidation is necessary.
3194 	 * Task label is already saved in the file security
3195 	 * struct as its SID.
3196 	 */
3197 	fsec->isid = isec->sid;
3198 	fsec->pseqno = avc_policy_seqno();
3199 	/*
3200 	 * Since the inode label or policy seqno may have changed
3201 	 * between the selinux_inode_permission check and the saving
3202 	 * of state above, recheck that access is still permitted.
3203 	 * Otherwise, access might never be revalidated against the
3204 	 * new inode label or new policy.
3205 	 * This check is not redundant - do not remove.
3206 	 */
3207 	return inode_has_perm(cred, inode, open_file_to_av(file), NULL);
3208 }
3209 
3210 /* task security operations */
3211 
3212 static int selinux_task_create(unsigned long clone_flags)
3213 {
3214 	return current_has_perm(current, PROCESS__FORK);
3215 }
3216 
3217 /*
3218  * detach and free the LSM part of a set of credentials
3219  */
3220 static void selinux_cred_free(struct cred *cred)
3221 {
3222 	struct task_security_struct *tsec = cred->security;
3223 	cred->security = NULL;
3224 	kfree(tsec);
3225 }
3226 
3227 /*
3228  * prepare a new set of credentials for modification
3229  */
3230 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3231 				gfp_t gfp)
3232 {
3233 	const struct task_security_struct *old_tsec;
3234 	struct task_security_struct *tsec;
3235 
3236 	old_tsec = old->security;
3237 
3238 	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3239 	if (!tsec)
3240 		return -ENOMEM;
3241 
3242 	new->security = tsec;
3243 	return 0;
3244 }
3245 
3246 /*
3247  * set the security data for a kernel service
3248  * - all the creation contexts are set to unlabelled
3249  */
3250 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3251 {
3252 	struct task_security_struct *tsec = new->security;
3253 	u32 sid = current_sid();
3254 	int ret;
3255 
3256 	ret = avc_has_perm(sid, secid,
3257 			   SECCLASS_KERNEL_SERVICE,
3258 			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3259 			   NULL);
3260 	if (ret == 0) {
3261 		tsec->sid = secid;
3262 		tsec->create_sid = 0;
3263 		tsec->keycreate_sid = 0;
3264 		tsec->sockcreate_sid = 0;
3265 	}
3266 	return ret;
3267 }
3268 
3269 /*
3270  * set the file creation context in a security record to the same as the
3271  * objective context of the specified inode
3272  */
3273 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3274 {
3275 	struct inode_security_struct *isec = inode->i_security;
3276 	struct task_security_struct *tsec = new->security;
3277 	u32 sid = current_sid();
3278 	int ret;
3279 
3280 	ret = avc_has_perm(sid, isec->sid,
3281 			   SECCLASS_KERNEL_SERVICE,
3282 			   KERNEL_SERVICE__CREATE_FILES_AS,
3283 			   NULL);
3284 
3285 	if (ret == 0)
3286 		tsec->create_sid = isec->sid;
3287 	return 0;
3288 }
3289 
3290 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3291 {
3292 	return current_has_perm(p, PROCESS__SETPGID);
3293 }
3294 
3295 static int selinux_task_getpgid(struct task_struct *p)
3296 {
3297 	return current_has_perm(p, PROCESS__GETPGID);
3298 }
3299 
3300 static int selinux_task_getsid(struct task_struct *p)
3301 {
3302 	return current_has_perm(p, PROCESS__GETSESSION);
3303 }
3304 
3305 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3306 {
3307 	*secid = task_sid(p);
3308 }
3309 
3310 static int selinux_task_setnice(struct task_struct *p, int nice)
3311 {
3312 	int rc;
3313 
3314 	rc = cap_task_setnice(p, nice);
3315 	if (rc)
3316 		return rc;
3317 
3318 	return current_has_perm(p, PROCESS__SETSCHED);
3319 }
3320 
3321 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3322 {
3323 	int rc;
3324 
3325 	rc = cap_task_setioprio(p, ioprio);
3326 	if (rc)
3327 		return rc;
3328 
3329 	return current_has_perm(p, PROCESS__SETSCHED);
3330 }
3331 
3332 static int selinux_task_getioprio(struct task_struct *p)
3333 {
3334 	return current_has_perm(p, PROCESS__GETSCHED);
3335 }
3336 
3337 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3338 {
3339 	struct rlimit *old_rlim = current->signal->rlim + resource;
3340 
3341 	/* Control the ability to change the hard limit (whether
3342 	   lowering or raising it), so that the hard limit can
3343 	   later be used as a safe reset point for the soft limit
3344 	   upon context transitions.  See selinux_bprm_committing_creds. */
3345 	if (old_rlim->rlim_max != new_rlim->rlim_max)
3346 		return current_has_perm(current, PROCESS__SETRLIMIT);
3347 
3348 	return 0;
3349 }
3350 
3351 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3352 {
3353 	int rc;
3354 
3355 	rc = cap_task_setscheduler(p, policy, lp);
3356 	if (rc)
3357 		return rc;
3358 
3359 	return current_has_perm(p, PROCESS__SETSCHED);
3360 }
3361 
3362 static int selinux_task_getscheduler(struct task_struct *p)
3363 {
3364 	return current_has_perm(p, PROCESS__GETSCHED);
3365 }
3366 
3367 static int selinux_task_movememory(struct task_struct *p)
3368 {
3369 	return current_has_perm(p, PROCESS__SETSCHED);
3370 }
3371 
3372 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3373 				int sig, u32 secid)
3374 {
3375 	u32 perm;
3376 	int rc;
3377 
3378 	if (!sig)
3379 		perm = PROCESS__SIGNULL; /* null signal; existence test */
3380 	else
3381 		perm = signal_to_av(sig);
3382 	if (secid)
3383 		rc = avc_has_perm(secid, task_sid(p),
3384 				  SECCLASS_PROCESS, perm, NULL);
3385 	else
3386 		rc = current_has_perm(p, perm);
3387 	return rc;
3388 }
3389 
3390 static int selinux_task_wait(struct task_struct *p)
3391 {
3392 	return task_has_perm(p, current, PROCESS__SIGCHLD);
3393 }
3394 
3395 static void selinux_task_to_inode(struct task_struct *p,
3396 				  struct inode *inode)
3397 {
3398 	struct inode_security_struct *isec = inode->i_security;
3399 	u32 sid = task_sid(p);
3400 
3401 	isec->sid = sid;
3402 	isec->initialized = 1;
3403 }
3404 
3405 /* Returns error only if unable to parse addresses */
3406 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3407 			struct avc_audit_data *ad, u8 *proto)
3408 {
3409 	int offset, ihlen, ret = -EINVAL;
3410 	struct iphdr _iph, *ih;
3411 
3412 	offset = skb_network_offset(skb);
3413 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3414 	if (ih == NULL)
3415 		goto out;
3416 
3417 	ihlen = ih->ihl * 4;
3418 	if (ihlen < sizeof(_iph))
3419 		goto out;
3420 
3421 	ad->u.net.v4info.saddr = ih->saddr;
3422 	ad->u.net.v4info.daddr = ih->daddr;
3423 	ret = 0;
3424 
3425 	if (proto)
3426 		*proto = ih->protocol;
3427 
3428 	switch (ih->protocol) {
3429 	case IPPROTO_TCP: {
3430 		struct tcphdr _tcph, *th;
3431 
3432 		if (ntohs(ih->frag_off) & IP_OFFSET)
3433 			break;
3434 
3435 		offset += ihlen;
3436 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3437 		if (th == NULL)
3438 			break;
3439 
3440 		ad->u.net.sport = th->source;
3441 		ad->u.net.dport = th->dest;
3442 		break;
3443 	}
3444 
3445 	case IPPROTO_UDP: {
3446 		struct udphdr _udph, *uh;
3447 
3448 		if (ntohs(ih->frag_off) & IP_OFFSET)
3449 			break;
3450 
3451 		offset += ihlen;
3452 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3453 		if (uh == NULL)
3454 			break;
3455 
3456 		ad->u.net.sport = uh->source;
3457 		ad->u.net.dport = uh->dest;
3458 		break;
3459 	}
3460 
3461 	case IPPROTO_DCCP: {
3462 		struct dccp_hdr _dccph, *dh;
3463 
3464 		if (ntohs(ih->frag_off) & IP_OFFSET)
3465 			break;
3466 
3467 		offset += ihlen;
3468 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3469 		if (dh == NULL)
3470 			break;
3471 
3472 		ad->u.net.sport = dh->dccph_sport;
3473 		ad->u.net.dport = dh->dccph_dport;
3474 		break;
3475 	}
3476 
3477 	default:
3478 		break;
3479 	}
3480 out:
3481 	return ret;
3482 }
3483 
3484 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3485 
3486 /* Returns error only if unable to parse addresses */
3487 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3488 			struct avc_audit_data *ad, u8 *proto)
3489 {
3490 	u8 nexthdr;
3491 	int ret = -EINVAL, offset;
3492 	struct ipv6hdr _ipv6h, *ip6;
3493 
3494 	offset = skb_network_offset(skb);
3495 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3496 	if (ip6 == NULL)
3497 		goto out;
3498 
3499 	ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3500 	ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3501 	ret = 0;
3502 
3503 	nexthdr = ip6->nexthdr;
3504 	offset += sizeof(_ipv6h);
3505 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3506 	if (offset < 0)
3507 		goto out;
3508 
3509 	if (proto)
3510 		*proto = nexthdr;
3511 
3512 	switch (nexthdr) {
3513 	case IPPROTO_TCP: {
3514 		struct tcphdr _tcph, *th;
3515 
3516 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3517 		if (th == NULL)
3518 			break;
3519 
3520 		ad->u.net.sport = th->source;
3521 		ad->u.net.dport = th->dest;
3522 		break;
3523 	}
3524 
3525 	case IPPROTO_UDP: {
3526 		struct udphdr _udph, *uh;
3527 
3528 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3529 		if (uh == NULL)
3530 			break;
3531 
3532 		ad->u.net.sport = uh->source;
3533 		ad->u.net.dport = uh->dest;
3534 		break;
3535 	}
3536 
3537 	case IPPROTO_DCCP: {
3538 		struct dccp_hdr _dccph, *dh;
3539 
3540 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3541 		if (dh == NULL)
3542 			break;
3543 
3544 		ad->u.net.sport = dh->dccph_sport;
3545 		ad->u.net.dport = dh->dccph_dport;
3546 		break;
3547 	}
3548 
3549 	/* includes fragments */
3550 	default:
3551 		break;
3552 	}
3553 out:
3554 	return ret;
3555 }
3556 
3557 #endif /* IPV6 */
3558 
3559 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3560 			     char **_addrp, int src, u8 *proto)
3561 {
3562 	char *addrp;
3563 	int ret;
3564 
3565 	switch (ad->u.net.family) {
3566 	case PF_INET:
3567 		ret = selinux_parse_skb_ipv4(skb, ad, proto);
3568 		if (ret)
3569 			goto parse_error;
3570 		addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3571 				       &ad->u.net.v4info.daddr);
3572 		goto okay;
3573 
3574 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3575 	case PF_INET6:
3576 		ret = selinux_parse_skb_ipv6(skb, ad, proto);
3577 		if (ret)
3578 			goto parse_error;
3579 		addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3580 				       &ad->u.net.v6info.daddr);
3581 		goto okay;
3582 #endif	/* IPV6 */
3583 	default:
3584 		addrp = NULL;
3585 		goto okay;
3586 	}
3587 
3588 parse_error:
3589 	printk(KERN_WARNING
3590 	       "SELinux: failure in selinux_parse_skb(),"
3591 	       " unable to parse packet\n");
3592 	return ret;
3593 
3594 okay:
3595 	if (_addrp)
3596 		*_addrp = addrp;
3597 	return 0;
3598 }
3599 
3600 /**
3601  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3602  * @skb: the packet
3603  * @family: protocol family
3604  * @sid: the packet's peer label SID
3605  *
3606  * Description:
3607  * Check the various different forms of network peer labeling and determine
3608  * the peer label/SID for the packet; most of the magic actually occurs in
3609  * the security server function security_net_peersid_cmp().  The function
3610  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3611  * or -EACCES if @sid is invalid due to inconsistencies with the different
3612  * peer labels.
3613  *
3614  */
3615 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3616 {
3617 	int err;
3618 	u32 xfrm_sid;
3619 	u32 nlbl_sid;
3620 	u32 nlbl_type;
3621 
3622 	selinux_skb_xfrm_sid(skb, &xfrm_sid);
3623 	selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3624 
3625 	err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3626 	if (unlikely(err)) {
3627 		printk(KERN_WARNING
3628 		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
3629 		       " unable to determine packet's peer label\n");
3630 		return -EACCES;
3631 	}
3632 
3633 	return 0;
3634 }
3635 
3636 /* socket security operations */
3637 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3638 			   u32 perms)
3639 {
3640 	struct inode_security_struct *isec;
3641 	struct avc_audit_data ad;
3642 	u32 sid;
3643 	int err = 0;
3644 
3645 	isec = SOCK_INODE(sock)->i_security;
3646 
3647 	if (isec->sid == SECINITSID_KERNEL)
3648 		goto out;
3649 	sid = task_sid(task);
3650 
3651 	AVC_AUDIT_DATA_INIT(&ad, NET);
3652 	ad.u.net.sk = sock->sk;
3653 	err = avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
3654 
3655 out:
3656 	return err;
3657 }
3658 
3659 static int selinux_socket_create(int family, int type,
3660 				 int protocol, int kern)
3661 {
3662 	const struct cred *cred = current_cred();
3663 	const struct task_security_struct *tsec = cred->security;
3664 	u32 sid, newsid;
3665 	u16 secclass;
3666 	int err = 0;
3667 
3668 	if (kern)
3669 		goto out;
3670 
3671 	sid = tsec->sid;
3672 	newsid = tsec->sockcreate_sid ?: sid;
3673 
3674 	secclass = socket_type_to_security_class(family, type, protocol);
3675 	err = avc_has_perm(sid, newsid, secclass, SOCKET__CREATE, NULL);
3676 
3677 out:
3678 	return err;
3679 }
3680 
3681 static int selinux_socket_post_create(struct socket *sock, int family,
3682 				      int type, int protocol, int kern)
3683 {
3684 	const struct cred *cred = current_cred();
3685 	const struct task_security_struct *tsec = cred->security;
3686 	struct inode_security_struct *isec;
3687 	struct sk_security_struct *sksec;
3688 	u32 sid, newsid;
3689 	int err = 0;
3690 
3691 	sid = tsec->sid;
3692 	newsid = tsec->sockcreate_sid;
3693 
3694 	isec = SOCK_INODE(sock)->i_security;
3695 
3696 	if (kern)
3697 		isec->sid = SECINITSID_KERNEL;
3698 	else if (newsid)
3699 		isec->sid = newsid;
3700 	else
3701 		isec->sid = sid;
3702 
3703 	isec->sclass = socket_type_to_security_class(family, type, protocol);
3704 	isec->initialized = 1;
3705 
3706 	if (sock->sk) {
3707 		sksec = sock->sk->sk_security;
3708 		sksec->sid = isec->sid;
3709 		sksec->sclass = isec->sclass;
3710 		err = selinux_netlbl_socket_post_create(sock->sk, family);
3711 	}
3712 
3713 	return err;
3714 }
3715 
3716 /* Range of port numbers used to automatically bind.
3717    Need to determine whether we should perform a name_bind
3718    permission check between the socket and the port number. */
3719 
3720 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3721 {
3722 	u16 family;
3723 	int err;
3724 
3725 	err = socket_has_perm(current, sock, SOCKET__BIND);
3726 	if (err)
3727 		goto out;
3728 
3729 	/*
3730 	 * If PF_INET or PF_INET6, check name_bind permission for the port.
3731 	 * Multiple address binding for SCTP is not supported yet: we just
3732 	 * check the first address now.
3733 	 */
3734 	family = sock->sk->sk_family;
3735 	if (family == PF_INET || family == PF_INET6) {
3736 		char *addrp;
3737 		struct inode_security_struct *isec;
3738 		struct avc_audit_data ad;
3739 		struct sockaddr_in *addr4 = NULL;
3740 		struct sockaddr_in6 *addr6 = NULL;
3741 		unsigned short snum;
3742 		struct sock *sk = sock->sk;
3743 		u32 sid, node_perm;
3744 
3745 		isec = SOCK_INODE(sock)->i_security;
3746 
3747 		if (family == PF_INET) {
3748 			addr4 = (struct sockaddr_in *)address;
3749 			snum = ntohs(addr4->sin_port);
3750 			addrp = (char *)&addr4->sin_addr.s_addr;
3751 		} else {
3752 			addr6 = (struct sockaddr_in6 *)address;
3753 			snum = ntohs(addr6->sin6_port);
3754 			addrp = (char *)&addr6->sin6_addr.s6_addr;
3755 		}
3756 
3757 		if (snum) {
3758 			int low, high;
3759 
3760 			inet_get_local_port_range(&low, &high);
3761 
3762 			if (snum < max(PROT_SOCK, low) || snum > high) {
3763 				err = sel_netport_sid(sk->sk_protocol,
3764 						      snum, &sid);
3765 				if (err)
3766 					goto out;
3767 				AVC_AUDIT_DATA_INIT(&ad, NET);
3768 				ad.u.net.sport = htons(snum);
3769 				ad.u.net.family = family;
3770 				err = avc_has_perm(isec->sid, sid,
3771 						   isec->sclass,
3772 						   SOCKET__NAME_BIND, &ad);
3773 				if (err)
3774 					goto out;
3775 			}
3776 		}
3777 
3778 		switch (isec->sclass) {
3779 		case SECCLASS_TCP_SOCKET:
3780 			node_perm = TCP_SOCKET__NODE_BIND;
3781 			break;
3782 
3783 		case SECCLASS_UDP_SOCKET:
3784 			node_perm = UDP_SOCKET__NODE_BIND;
3785 			break;
3786 
3787 		case SECCLASS_DCCP_SOCKET:
3788 			node_perm = DCCP_SOCKET__NODE_BIND;
3789 			break;
3790 
3791 		default:
3792 			node_perm = RAWIP_SOCKET__NODE_BIND;
3793 			break;
3794 		}
3795 
3796 		err = sel_netnode_sid(addrp, family, &sid);
3797 		if (err)
3798 			goto out;
3799 
3800 		AVC_AUDIT_DATA_INIT(&ad, NET);
3801 		ad.u.net.sport = htons(snum);
3802 		ad.u.net.family = family;
3803 
3804 		if (family == PF_INET)
3805 			ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3806 		else
3807 			ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3808 
3809 		err = avc_has_perm(isec->sid, sid,
3810 				   isec->sclass, node_perm, &ad);
3811 		if (err)
3812 			goto out;
3813 	}
3814 out:
3815 	return err;
3816 }
3817 
3818 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3819 {
3820 	struct sock *sk = sock->sk;
3821 	struct inode_security_struct *isec;
3822 	int err;
3823 
3824 	err = socket_has_perm(current, sock, SOCKET__CONNECT);
3825 	if (err)
3826 		return err;
3827 
3828 	/*
3829 	 * If a TCP or DCCP socket, check name_connect permission for the port.
3830 	 */
3831 	isec = SOCK_INODE(sock)->i_security;
3832 	if (isec->sclass == SECCLASS_TCP_SOCKET ||
3833 	    isec->sclass == SECCLASS_DCCP_SOCKET) {
3834 		struct avc_audit_data ad;
3835 		struct sockaddr_in *addr4 = NULL;
3836 		struct sockaddr_in6 *addr6 = NULL;
3837 		unsigned short snum;
3838 		u32 sid, perm;
3839 
3840 		if (sk->sk_family == PF_INET) {
3841 			addr4 = (struct sockaddr_in *)address;
3842 			if (addrlen < sizeof(struct sockaddr_in))
3843 				return -EINVAL;
3844 			snum = ntohs(addr4->sin_port);
3845 		} else {
3846 			addr6 = (struct sockaddr_in6 *)address;
3847 			if (addrlen < SIN6_LEN_RFC2133)
3848 				return -EINVAL;
3849 			snum = ntohs(addr6->sin6_port);
3850 		}
3851 
3852 		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3853 		if (err)
3854 			goto out;
3855 
3856 		perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3857 		       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3858 
3859 		AVC_AUDIT_DATA_INIT(&ad, NET);
3860 		ad.u.net.dport = htons(snum);
3861 		ad.u.net.family = sk->sk_family;
3862 		err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3863 		if (err)
3864 			goto out;
3865 	}
3866 
3867 	err = selinux_netlbl_socket_connect(sk, address);
3868 
3869 out:
3870 	return err;
3871 }
3872 
3873 static int selinux_socket_listen(struct socket *sock, int backlog)
3874 {
3875 	return socket_has_perm(current, sock, SOCKET__LISTEN);
3876 }
3877 
3878 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3879 {
3880 	int err;
3881 	struct inode_security_struct *isec;
3882 	struct inode_security_struct *newisec;
3883 
3884 	err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3885 	if (err)
3886 		return err;
3887 
3888 	newisec = SOCK_INODE(newsock)->i_security;
3889 
3890 	isec = SOCK_INODE(sock)->i_security;
3891 	newisec->sclass = isec->sclass;
3892 	newisec->sid = isec->sid;
3893 	newisec->initialized = 1;
3894 
3895 	return 0;
3896 }
3897 
3898 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3899 				  int size)
3900 {
3901 	return socket_has_perm(current, sock, SOCKET__WRITE);
3902 }
3903 
3904 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3905 				  int size, int flags)
3906 {
3907 	return socket_has_perm(current, sock, SOCKET__READ);
3908 }
3909 
3910 static int selinux_socket_getsockname(struct socket *sock)
3911 {
3912 	return socket_has_perm(current, sock, SOCKET__GETATTR);
3913 }
3914 
3915 static int selinux_socket_getpeername(struct socket *sock)
3916 {
3917 	return socket_has_perm(current, sock, SOCKET__GETATTR);
3918 }
3919 
3920 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3921 {
3922 	int err;
3923 
3924 	err = socket_has_perm(current, sock, SOCKET__SETOPT);
3925 	if (err)
3926 		return err;
3927 
3928 	return selinux_netlbl_socket_setsockopt(sock, level, optname);
3929 }
3930 
3931 static int selinux_socket_getsockopt(struct socket *sock, int level,
3932 				     int optname)
3933 {
3934 	return socket_has_perm(current, sock, SOCKET__GETOPT);
3935 }
3936 
3937 static int selinux_socket_shutdown(struct socket *sock, int how)
3938 {
3939 	return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3940 }
3941 
3942 static int selinux_socket_unix_stream_connect(struct socket *sock,
3943 					      struct socket *other,
3944 					      struct sock *newsk)
3945 {
3946 	struct sk_security_struct *ssec;
3947 	struct inode_security_struct *isec;
3948 	struct inode_security_struct *other_isec;
3949 	struct avc_audit_data ad;
3950 	int err;
3951 
3952 	isec = SOCK_INODE(sock)->i_security;
3953 	other_isec = SOCK_INODE(other)->i_security;
3954 
3955 	AVC_AUDIT_DATA_INIT(&ad, NET);
3956 	ad.u.net.sk = other->sk;
3957 
3958 	err = avc_has_perm(isec->sid, other_isec->sid,
3959 			   isec->sclass,
3960 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3961 	if (err)
3962 		return err;
3963 
3964 	/* connecting socket */
3965 	ssec = sock->sk->sk_security;
3966 	ssec->peer_sid = other_isec->sid;
3967 
3968 	/* server child socket */
3969 	ssec = newsk->sk_security;
3970 	ssec->peer_sid = isec->sid;
3971 	err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3972 
3973 	return err;
3974 }
3975 
3976 static int selinux_socket_unix_may_send(struct socket *sock,
3977 					struct socket *other)
3978 {
3979 	struct inode_security_struct *isec;
3980 	struct inode_security_struct *other_isec;
3981 	struct avc_audit_data ad;
3982 	int err;
3983 
3984 	isec = SOCK_INODE(sock)->i_security;
3985 	other_isec = SOCK_INODE(other)->i_security;
3986 
3987 	AVC_AUDIT_DATA_INIT(&ad, NET);
3988 	ad.u.net.sk = other->sk;
3989 
3990 	err = avc_has_perm(isec->sid, other_isec->sid,
3991 			   isec->sclass, SOCKET__SENDTO, &ad);
3992 	if (err)
3993 		return err;
3994 
3995 	return 0;
3996 }
3997 
3998 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
3999 				    u32 peer_sid,
4000 				    struct avc_audit_data *ad)
4001 {
4002 	int err;
4003 	u32 if_sid;
4004 	u32 node_sid;
4005 
4006 	err = sel_netif_sid(ifindex, &if_sid);
4007 	if (err)
4008 		return err;
4009 	err = avc_has_perm(peer_sid, if_sid,
4010 			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4011 	if (err)
4012 		return err;
4013 
4014 	err = sel_netnode_sid(addrp, family, &node_sid);
4015 	if (err)
4016 		return err;
4017 	return avc_has_perm(peer_sid, node_sid,
4018 			    SECCLASS_NODE, NODE__RECVFROM, ad);
4019 }
4020 
4021 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4022 				       u16 family)
4023 {
4024 	int err = 0;
4025 	struct sk_security_struct *sksec = sk->sk_security;
4026 	u32 peer_sid;
4027 	u32 sk_sid = sksec->sid;
4028 	struct avc_audit_data ad;
4029 	char *addrp;
4030 
4031 	AVC_AUDIT_DATA_INIT(&ad, NET);
4032 	ad.u.net.netif = skb->iif;
4033 	ad.u.net.family = family;
4034 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4035 	if (err)
4036 		return err;
4037 
4038 	if (selinux_secmark_enabled()) {
4039 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4040 				   PACKET__RECV, &ad);
4041 		if (err)
4042 			return err;
4043 	}
4044 
4045 	if (selinux_policycap_netpeer) {
4046 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4047 		if (err)
4048 			return err;
4049 		err = avc_has_perm(sk_sid, peer_sid,
4050 				   SECCLASS_PEER, PEER__RECV, &ad);
4051 		if (err)
4052 			selinux_netlbl_err(skb, err, 0);
4053 	} else {
4054 		err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4055 		if (err)
4056 			return err;
4057 		err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4058 	}
4059 
4060 	return err;
4061 }
4062 
4063 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4064 {
4065 	int err;
4066 	struct sk_security_struct *sksec = sk->sk_security;
4067 	u16 family = sk->sk_family;
4068 	u32 sk_sid = sksec->sid;
4069 	struct avc_audit_data ad;
4070 	char *addrp;
4071 	u8 secmark_active;
4072 	u8 peerlbl_active;
4073 
4074 	if (family != PF_INET && family != PF_INET6)
4075 		return 0;
4076 
4077 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4078 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4079 		family = PF_INET;
4080 
4081 	/* If any sort of compatibility mode is enabled then handoff processing
4082 	 * to the selinux_sock_rcv_skb_compat() function to deal with the
4083 	 * special handling.  We do this in an attempt to keep this function
4084 	 * as fast and as clean as possible. */
4085 	if (!selinux_policycap_netpeer)
4086 		return selinux_sock_rcv_skb_compat(sk, skb, family);
4087 
4088 	secmark_active = selinux_secmark_enabled();
4089 	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4090 	if (!secmark_active && !peerlbl_active)
4091 		return 0;
4092 
4093 	AVC_AUDIT_DATA_INIT(&ad, NET);
4094 	ad.u.net.netif = skb->iif;
4095 	ad.u.net.family = family;
4096 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4097 	if (err)
4098 		return err;
4099 
4100 	if (peerlbl_active) {
4101 		u32 peer_sid;
4102 
4103 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4104 		if (err)
4105 			return err;
4106 		err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family,
4107 					       peer_sid, &ad);
4108 		if (err) {
4109 			selinux_netlbl_err(skb, err, 0);
4110 			return err;
4111 		}
4112 		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4113 				   PEER__RECV, &ad);
4114 		if (err)
4115 			selinux_netlbl_err(skb, err, 0);
4116 	}
4117 
4118 	if (secmark_active) {
4119 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4120 				   PACKET__RECV, &ad);
4121 		if (err)
4122 			return err;
4123 	}
4124 
4125 	return err;
4126 }
4127 
4128 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4129 					    int __user *optlen, unsigned len)
4130 {
4131 	int err = 0;
4132 	char *scontext;
4133 	u32 scontext_len;
4134 	struct sk_security_struct *ssec;
4135 	struct inode_security_struct *isec;
4136 	u32 peer_sid = SECSID_NULL;
4137 
4138 	isec = SOCK_INODE(sock)->i_security;
4139 
4140 	if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4141 	    isec->sclass == SECCLASS_TCP_SOCKET) {
4142 		ssec = sock->sk->sk_security;
4143 		peer_sid = ssec->peer_sid;
4144 	}
4145 	if (peer_sid == SECSID_NULL) {
4146 		err = -ENOPROTOOPT;
4147 		goto out;
4148 	}
4149 
4150 	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4151 
4152 	if (err)
4153 		goto out;
4154 
4155 	if (scontext_len > len) {
4156 		err = -ERANGE;
4157 		goto out_len;
4158 	}
4159 
4160 	if (copy_to_user(optval, scontext, scontext_len))
4161 		err = -EFAULT;
4162 
4163 out_len:
4164 	if (put_user(scontext_len, optlen))
4165 		err = -EFAULT;
4166 
4167 	kfree(scontext);
4168 out:
4169 	return err;
4170 }
4171 
4172 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4173 {
4174 	u32 peer_secid = SECSID_NULL;
4175 	u16 family;
4176 
4177 	if (skb && skb->protocol == htons(ETH_P_IP))
4178 		family = PF_INET;
4179 	else if (skb && skb->protocol == htons(ETH_P_IPV6))
4180 		family = PF_INET6;
4181 	else if (sock)
4182 		family = sock->sk->sk_family;
4183 	else
4184 		goto out;
4185 
4186 	if (sock && family == PF_UNIX)
4187 		selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4188 	else if (skb)
4189 		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4190 
4191 out:
4192 	*secid = peer_secid;
4193 	if (peer_secid == SECSID_NULL)
4194 		return -EINVAL;
4195 	return 0;
4196 }
4197 
4198 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4199 {
4200 	return sk_alloc_security(sk, family, priority);
4201 }
4202 
4203 static void selinux_sk_free_security(struct sock *sk)
4204 {
4205 	sk_free_security(sk);
4206 }
4207 
4208 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4209 {
4210 	struct sk_security_struct *ssec = sk->sk_security;
4211 	struct sk_security_struct *newssec = newsk->sk_security;
4212 
4213 	newssec->sid = ssec->sid;
4214 	newssec->peer_sid = ssec->peer_sid;
4215 	newssec->sclass = ssec->sclass;
4216 
4217 	selinux_netlbl_sk_security_reset(newssec);
4218 }
4219 
4220 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4221 {
4222 	if (!sk)
4223 		*secid = SECINITSID_ANY_SOCKET;
4224 	else {
4225 		struct sk_security_struct *sksec = sk->sk_security;
4226 
4227 		*secid = sksec->sid;
4228 	}
4229 }
4230 
4231 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4232 {
4233 	struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4234 	struct sk_security_struct *sksec = sk->sk_security;
4235 
4236 	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4237 	    sk->sk_family == PF_UNIX)
4238 		isec->sid = sksec->sid;
4239 	sksec->sclass = isec->sclass;
4240 }
4241 
4242 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4243 				     struct request_sock *req)
4244 {
4245 	struct sk_security_struct *sksec = sk->sk_security;
4246 	int err;
4247 	u16 family = sk->sk_family;
4248 	u32 newsid;
4249 	u32 peersid;
4250 
4251 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4252 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4253 		family = PF_INET;
4254 
4255 	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4256 	if (err)
4257 		return err;
4258 	if (peersid == SECSID_NULL) {
4259 		req->secid = sksec->sid;
4260 		req->peer_secid = SECSID_NULL;
4261 	} else {
4262 		err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4263 		if (err)
4264 			return err;
4265 		req->secid = newsid;
4266 		req->peer_secid = peersid;
4267 	}
4268 
4269 	return selinux_netlbl_inet_conn_request(req, family);
4270 }
4271 
4272 static void selinux_inet_csk_clone(struct sock *newsk,
4273 				   const struct request_sock *req)
4274 {
4275 	struct sk_security_struct *newsksec = newsk->sk_security;
4276 
4277 	newsksec->sid = req->secid;
4278 	newsksec->peer_sid = req->peer_secid;
4279 	/* NOTE: Ideally, we should also get the isec->sid for the
4280 	   new socket in sync, but we don't have the isec available yet.
4281 	   So we will wait until sock_graft to do it, by which
4282 	   time it will have been created and available. */
4283 
4284 	/* We don't need to take any sort of lock here as we are the only
4285 	 * thread with access to newsksec */
4286 	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4287 }
4288 
4289 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4290 {
4291 	u16 family = sk->sk_family;
4292 	struct sk_security_struct *sksec = sk->sk_security;
4293 
4294 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4295 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4296 		family = PF_INET;
4297 
4298 	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4299 }
4300 
4301 static void selinux_req_classify_flow(const struct request_sock *req,
4302 				      struct flowi *fl)
4303 {
4304 	fl->secid = req->secid;
4305 }
4306 
4307 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4308 {
4309 	int err = 0;
4310 	u32 perm;
4311 	struct nlmsghdr *nlh;
4312 	struct socket *sock = sk->sk_socket;
4313 	struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4314 
4315 	if (skb->len < NLMSG_SPACE(0)) {
4316 		err = -EINVAL;
4317 		goto out;
4318 	}
4319 	nlh = nlmsg_hdr(skb);
4320 
4321 	err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4322 	if (err) {
4323 		if (err == -EINVAL) {
4324 			audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4325 				  "SELinux:  unrecognized netlink message"
4326 				  " type=%hu for sclass=%hu\n",
4327 				  nlh->nlmsg_type, isec->sclass);
4328 			if (!selinux_enforcing || security_get_allow_unknown())
4329 				err = 0;
4330 		}
4331 
4332 		/* Ignore */
4333 		if (err == -ENOENT)
4334 			err = 0;
4335 		goto out;
4336 	}
4337 
4338 	err = socket_has_perm(current, sock, perm);
4339 out:
4340 	return err;
4341 }
4342 
4343 #ifdef CONFIG_NETFILTER
4344 
4345 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4346 				       u16 family)
4347 {
4348 	int err;
4349 	char *addrp;
4350 	u32 peer_sid;
4351 	struct avc_audit_data ad;
4352 	u8 secmark_active;
4353 	u8 netlbl_active;
4354 	u8 peerlbl_active;
4355 
4356 	if (!selinux_policycap_netpeer)
4357 		return NF_ACCEPT;
4358 
4359 	secmark_active = selinux_secmark_enabled();
4360 	netlbl_active = netlbl_enabled();
4361 	peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4362 	if (!secmark_active && !peerlbl_active)
4363 		return NF_ACCEPT;
4364 
4365 	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4366 		return NF_DROP;
4367 
4368 	AVC_AUDIT_DATA_INIT(&ad, NET);
4369 	ad.u.net.netif = ifindex;
4370 	ad.u.net.family = family;
4371 	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4372 		return NF_DROP;
4373 
4374 	if (peerlbl_active) {
4375 		err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4376 					       peer_sid, &ad);
4377 		if (err) {
4378 			selinux_netlbl_err(skb, err, 1);
4379 			return NF_DROP;
4380 		}
4381 	}
4382 
4383 	if (secmark_active)
4384 		if (avc_has_perm(peer_sid, skb->secmark,
4385 				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4386 			return NF_DROP;
4387 
4388 	if (netlbl_active)
4389 		/* we do this in the FORWARD path and not the POST_ROUTING
4390 		 * path because we want to make sure we apply the necessary
4391 		 * labeling before IPsec is applied so we can leverage AH
4392 		 * protection */
4393 		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4394 			return NF_DROP;
4395 
4396 	return NF_ACCEPT;
4397 }
4398 
4399 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4400 					 struct sk_buff *skb,
4401 					 const struct net_device *in,
4402 					 const struct net_device *out,
4403 					 int (*okfn)(struct sk_buff *))
4404 {
4405 	return selinux_ip_forward(skb, in->ifindex, PF_INET);
4406 }
4407 
4408 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4409 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4410 					 struct sk_buff *skb,
4411 					 const struct net_device *in,
4412 					 const struct net_device *out,
4413 					 int (*okfn)(struct sk_buff *))
4414 {
4415 	return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4416 }
4417 #endif	/* IPV6 */
4418 
4419 static unsigned int selinux_ip_output(struct sk_buff *skb,
4420 				      u16 family)
4421 {
4422 	u32 sid;
4423 
4424 	if (!netlbl_enabled())
4425 		return NF_ACCEPT;
4426 
4427 	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4428 	 * because we want to make sure we apply the necessary labeling
4429 	 * before IPsec is applied so we can leverage AH protection */
4430 	if (skb->sk) {
4431 		struct sk_security_struct *sksec = skb->sk->sk_security;
4432 		sid = sksec->sid;
4433 	} else
4434 		sid = SECINITSID_KERNEL;
4435 	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4436 		return NF_DROP;
4437 
4438 	return NF_ACCEPT;
4439 }
4440 
4441 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4442 					struct sk_buff *skb,
4443 					const struct net_device *in,
4444 					const struct net_device *out,
4445 					int (*okfn)(struct sk_buff *))
4446 {
4447 	return selinux_ip_output(skb, PF_INET);
4448 }
4449 
4450 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4451 						int ifindex,
4452 						u16 family)
4453 {
4454 	struct sock *sk = skb->sk;
4455 	struct sk_security_struct *sksec;
4456 	struct avc_audit_data ad;
4457 	char *addrp;
4458 	u8 proto;
4459 
4460 	if (sk == NULL)
4461 		return NF_ACCEPT;
4462 	sksec = sk->sk_security;
4463 
4464 	AVC_AUDIT_DATA_INIT(&ad, NET);
4465 	ad.u.net.netif = ifindex;
4466 	ad.u.net.family = family;
4467 	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4468 		return NF_DROP;
4469 
4470 	if (selinux_secmark_enabled())
4471 		if (avc_has_perm(sksec->sid, skb->secmark,
4472 				 SECCLASS_PACKET, PACKET__SEND, &ad))
4473 			return NF_DROP;
4474 
4475 	if (selinux_policycap_netpeer)
4476 		if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4477 			return NF_DROP;
4478 
4479 	return NF_ACCEPT;
4480 }
4481 
4482 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4483 					 u16 family)
4484 {
4485 	u32 secmark_perm;
4486 	u32 peer_sid;
4487 	struct sock *sk;
4488 	struct avc_audit_data ad;
4489 	char *addrp;
4490 	u8 secmark_active;
4491 	u8 peerlbl_active;
4492 
4493 	/* If any sort of compatibility mode is enabled then handoff processing
4494 	 * to the selinux_ip_postroute_compat() function to deal with the
4495 	 * special handling.  We do this in an attempt to keep this function
4496 	 * as fast and as clean as possible. */
4497 	if (!selinux_policycap_netpeer)
4498 		return selinux_ip_postroute_compat(skb, ifindex, family);
4499 #ifdef CONFIG_XFRM
4500 	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4501 	 * packet transformation so allow the packet to pass without any checks
4502 	 * since we'll have another chance to perform access control checks
4503 	 * when the packet is on it's final way out.
4504 	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4505 	 *       is NULL, in this case go ahead and apply access control. */
4506 	if (skb->dst != NULL && skb->dst->xfrm != NULL)
4507 		return NF_ACCEPT;
4508 #endif
4509 	secmark_active = selinux_secmark_enabled();
4510 	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4511 	if (!secmark_active && !peerlbl_active)
4512 		return NF_ACCEPT;
4513 
4514 	/* if the packet is being forwarded then get the peer label from the
4515 	 * packet itself; otherwise check to see if it is from a local
4516 	 * application or the kernel, if from an application get the peer label
4517 	 * from the sending socket, otherwise use the kernel's sid */
4518 	sk = skb->sk;
4519 	if (sk == NULL) {
4520 		switch (family) {
4521 		case PF_INET:
4522 			if (IPCB(skb)->flags & IPSKB_FORWARDED)
4523 				secmark_perm = PACKET__FORWARD_OUT;
4524 			else
4525 				secmark_perm = PACKET__SEND;
4526 			break;
4527 		case PF_INET6:
4528 			if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4529 				secmark_perm = PACKET__FORWARD_OUT;
4530 			else
4531 				secmark_perm = PACKET__SEND;
4532 			break;
4533 		default:
4534 			return NF_DROP;
4535 		}
4536 		if (secmark_perm == PACKET__FORWARD_OUT) {
4537 			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4538 				return NF_DROP;
4539 		} else
4540 			peer_sid = SECINITSID_KERNEL;
4541 	} else {
4542 		struct sk_security_struct *sksec = sk->sk_security;
4543 		peer_sid = sksec->sid;
4544 		secmark_perm = PACKET__SEND;
4545 	}
4546 
4547 	AVC_AUDIT_DATA_INIT(&ad, NET);
4548 	ad.u.net.netif = ifindex;
4549 	ad.u.net.family = family;
4550 	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4551 		return NF_DROP;
4552 
4553 	if (secmark_active)
4554 		if (avc_has_perm(peer_sid, skb->secmark,
4555 				 SECCLASS_PACKET, secmark_perm, &ad))
4556 			return NF_DROP;
4557 
4558 	if (peerlbl_active) {
4559 		u32 if_sid;
4560 		u32 node_sid;
4561 
4562 		if (sel_netif_sid(ifindex, &if_sid))
4563 			return NF_DROP;
4564 		if (avc_has_perm(peer_sid, if_sid,
4565 				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4566 			return NF_DROP;
4567 
4568 		if (sel_netnode_sid(addrp, family, &node_sid))
4569 			return NF_DROP;
4570 		if (avc_has_perm(peer_sid, node_sid,
4571 				 SECCLASS_NODE, NODE__SENDTO, &ad))
4572 			return NF_DROP;
4573 	}
4574 
4575 	return NF_ACCEPT;
4576 }
4577 
4578 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4579 					   struct sk_buff *skb,
4580 					   const struct net_device *in,
4581 					   const struct net_device *out,
4582 					   int (*okfn)(struct sk_buff *))
4583 {
4584 	return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4585 }
4586 
4587 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4588 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4589 					   struct sk_buff *skb,
4590 					   const struct net_device *in,
4591 					   const struct net_device *out,
4592 					   int (*okfn)(struct sk_buff *))
4593 {
4594 	return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4595 }
4596 #endif	/* IPV6 */
4597 
4598 #endif	/* CONFIG_NETFILTER */
4599 
4600 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4601 {
4602 	int err;
4603 
4604 	err = cap_netlink_send(sk, skb);
4605 	if (err)
4606 		return err;
4607 
4608 	if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4609 		err = selinux_nlmsg_perm(sk, skb);
4610 
4611 	return err;
4612 }
4613 
4614 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4615 {
4616 	int err;
4617 	struct avc_audit_data ad;
4618 
4619 	err = cap_netlink_recv(skb, capability);
4620 	if (err)
4621 		return err;
4622 
4623 	AVC_AUDIT_DATA_INIT(&ad, CAP);
4624 	ad.u.cap = capability;
4625 
4626 	return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4627 			    SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4628 }
4629 
4630 static int ipc_alloc_security(struct task_struct *task,
4631 			      struct kern_ipc_perm *perm,
4632 			      u16 sclass)
4633 {
4634 	struct ipc_security_struct *isec;
4635 	u32 sid;
4636 
4637 	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4638 	if (!isec)
4639 		return -ENOMEM;
4640 
4641 	sid = task_sid(task);
4642 	isec->sclass = sclass;
4643 	isec->sid = sid;
4644 	perm->security = isec;
4645 
4646 	return 0;
4647 }
4648 
4649 static void ipc_free_security(struct kern_ipc_perm *perm)
4650 {
4651 	struct ipc_security_struct *isec = perm->security;
4652 	perm->security = NULL;
4653 	kfree(isec);
4654 }
4655 
4656 static int msg_msg_alloc_security(struct msg_msg *msg)
4657 {
4658 	struct msg_security_struct *msec;
4659 
4660 	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4661 	if (!msec)
4662 		return -ENOMEM;
4663 
4664 	msec->sid = SECINITSID_UNLABELED;
4665 	msg->security = msec;
4666 
4667 	return 0;
4668 }
4669 
4670 static void msg_msg_free_security(struct msg_msg *msg)
4671 {
4672 	struct msg_security_struct *msec = msg->security;
4673 
4674 	msg->security = NULL;
4675 	kfree(msec);
4676 }
4677 
4678 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4679 			u32 perms)
4680 {
4681 	struct ipc_security_struct *isec;
4682 	struct avc_audit_data ad;
4683 	u32 sid = current_sid();
4684 
4685 	isec = ipc_perms->security;
4686 
4687 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4688 	ad.u.ipc_id = ipc_perms->key;
4689 
4690 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4691 }
4692 
4693 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4694 {
4695 	return msg_msg_alloc_security(msg);
4696 }
4697 
4698 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4699 {
4700 	msg_msg_free_security(msg);
4701 }
4702 
4703 /* message queue security operations */
4704 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4705 {
4706 	struct ipc_security_struct *isec;
4707 	struct avc_audit_data ad;
4708 	u32 sid = current_sid();
4709 	int rc;
4710 
4711 	rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4712 	if (rc)
4713 		return rc;
4714 
4715 	isec = msq->q_perm.security;
4716 
4717 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4718 	ad.u.ipc_id = msq->q_perm.key;
4719 
4720 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4721 			  MSGQ__CREATE, &ad);
4722 	if (rc) {
4723 		ipc_free_security(&msq->q_perm);
4724 		return rc;
4725 	}
4726 	return 0;
4727 }
4728 
4729 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4730 {
4731 	ipc_free_security(&msq->q_perm);
4732 }
4733 
4734 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4735 {
4736 	struct ipc_security_struct *isec;
4737 	struct avc_audit_data ad;
4738 	u32 sid = current_sid();
4739 
4740 	isec = msq->q_perm.security;
4741 
4742 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4743 	ad.u.ipc_id = msq->q_perm.key;
4744 
4745 	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4746 			    MSGQ__ASSOCIATE, &ad);
4747 }
4748 
4749 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4750 {
4751 	int err;
4752 	int perms;
4753 
4754 	switch (cmd) {
4755 	case IPC_INFO:
4756 	case MSG_INFO:
4757 		/* No specific object, just general system-wide information. */
4758 		return task_has_system(current, SYSTEM__IPC_INFO);
4759 	case IPC_STAT:
4760 	case MSG_STAT:
4761 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4762 		break;
4763 	case IPC_SET:
4764 		perms = MSGQ__SETATTR;
4765 		break;
4766 	case IPC_RMID:
4767 		perms = MSGQ__DESTROY;
4768 		break;
4769 	default:
4770 		return 0;
4771 	}
4772 
4773 	err = ipc_has_perm(&msq->q_perm, perms);
4774 	return err;
4775 }
4776 
4777 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4778 {
4779 	struct ipc_security_struct *isec;
4780 	struct msg_security_struct *msec;
4781 	struct avc_audit_data ad;
4782 	u32 sid = current_sid();
4783 	int rc;
4784 
4785 	isec = msq->q_perm.security;
4786 	msec = msg->security;
4787 
4788 	/*
4789 	 * First time through, need to assign label to the message
4790 	 */
4791 	if (msec->sid == SECINITSID_UNLABELED) {
4792 		/*
4793 		 * Compute new sid based on current process and
4794 		 * message queue this message will be stored in
4795 		 */
4796 		rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4797 					     &msec->sid);
4798 		if (rc)
4799 			return rc;
4800 	}
4801 
4802 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4803 	ad.u.ipc_id = msq->q_perm.key;
4804 
4805 	/* Can this process write to the queue? */
4806 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4807 			  MSGQ__WRITE, &ad);
4808 	if (!rc)
4809 		/* Can this process send the message */
4810 		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4811 				  MSG__SEND, &ad);
4812 	if (!rc)
4813 		/* Can the message be put in the queue? */
4814 		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4815 				  MSGQ__ENQUEUE, &ad);
4816 
4817 	return rc;
4818 }
4819 
4820 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4821 				    struct task_struct *target,
4822 				    long type, int mode)
4823 {
4824 	struct ipc_security_struct *isec;
4825 	struct msg_security_struct *msec;
4826 	struct avc_audit_data ad;
4827 	u32 sid = task_sid(target);
4828 	int rc;
4829 
4830 	isec = msq->q_perm.security;
4831 	msec = msg->security;
4832 
4833 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4834 	ad.u.ipc_id = msq->q_perm.key;
4835 
4836 	rc = avc_has_perm(sid, isec->sid,
4837 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
4838 	if (!rc)
4839 		rc = avc_has_perm(sid, msec->sid,
4840 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
4841 	return rc;
4842 }
4843 
4844 /* Shared Memory security operations */
4845 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4846 {
4847 	struct ipc_security_struct *isec;
4848 	struct avc_audit_data ad;
4849 	u32 sid = current_sid();
4850 	int rc;
4851 
4852 	rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4853 	if (rc)
4854 		return rc;
4855 
4856 	isec = shp->shm_perm.security;
4857 
4858 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4859 	ad.u.ipc_id = shp->shm_perm.key;
4860 
4861 	rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4862 			  SHM__CREATE, &ad);
4863 	if (rc) {
4864 		ipc_free_security(&shp->shm_perm);
4865 		return rc;
4866 	}
4867 	return 0;
4868 }
4869 
4870 static void selinux_shm_free_security(struct shmid_kernel *shp)
4871 {
4872 	ipc_free_security(&shp->shm_perm);
4873 }
4874 
4875 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4876 {
4877 	struct ipc_security_struct *isec;
4878 	struct avc_audit_data ad;
4879 	u32 sid = current_sid();
4880 
4881 	isec = shp->shm_perm.security;
4882 
4883 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4884 	ad.u.ipc_id = shp->shm_perm.key;
4885 
4886 	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4887 			    SHM__ASSOCIATE, &ad);
4888 }
4889 
4890 /* Note, at this point, shp is locked down */
4891 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4892 {
4893 	int perms;
4894 	int err;
4895 
4896 	switch (cmd) {
4897 	case IPC_INFO:
4898 	case SHM_INFO:
4899 		/* No specific object, just general system-wide information. */
4900 		return task_has_system(current, SYSTEM__IPC_INFO);
4901 	case IPC_STAT:
4902 	case SHM_STAT:
4903 		perms = SHM__GETATTR | SHM__ASSOCIATE;
4904 		break;
4905 	case IPC_SET:
4906 		perms = SHM__SETATTR;
4907 		break;
4908 	case SHM_LOCK:
4909 	case SHM_UNLOCK:
4910 		perms = SHM__LOCK;
4911 		break;
4912 	case IPC_RMID:
4913 		perms = SHM__DESTROY;
4914 		break;
4915 	default:
4916 		return 0;
4917 	}
4918 
4919 	err = ipc_has_perm(&shp->shm_perm, perms);
4920 	return err;
4921 }
4922 
4923 static int selinux_shm_shmat(struct shmid_kernel *shp,
4924 			     char __user *shmaddr, int shmflg)
4925 {
4926 	u32 perms;
4927 
4928 	if (shmflg & SHM_RDONLY)
4929 		perms = SHM__READ;
4930 	else
4931 		perms = SHM__READ | SHM__WRITE;
4932 
4933 	return ipc_has_perm(&shp->shm_perm, perms);
4934 }
4935 
4936 /* Semaphore security operations */
4937 static int selinux_sem_alloc_security(struct sem_array *sma)
4938 {
4939 	struct ipc_security_struct *isec;
4940 	struct avc_audit_data ad;
4941 	u32 sid = current_sid();
4942 	int rc;
4943 
4944 	rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4945 	if (rc)
4946 		return rc;
4947 
4948 	isec = sma->sem_perm.security;
4949 
4950 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4951 	ad.u.ipc_id = sma->sem_perm.key;
4952 
4953 	rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
4954 			  SEM__CREATE, &ad);
4955 	if (rc) {
4956 		ipc_free_security(&sma->sem_perm);
4957 		return rc;
4958 	}
4959 	return 0;
4960 }
4961 
4962 static void selinux_sem_free_security(struct sem_array *sma)
4963 {
4964 	ipc_free_security(&sma->sem_perm);
4965 }
4966 
4967 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4968 {
4969 	struct ipc_security_struct *isec;
4970 	struct avc_audit_data ad;
4971 	u32 sid = current_sid();
4972 
4973 	isec = sma->sem_perm.security;
4974 
4975 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4976 	ad.u.ipc_id = sma->sem_perm.key;
4977 
4978 	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
4979 			    SEM__ASSOCIATE, &ad);
4980 }
4981 
4982 /* Note, at this point, sma is locked down */
4983 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4984 {
4985 	int err;
4986 	u32 perms;
4987 
4988 	switch (cmd) {
4989 	case IPC_INFO:
4990 	case SEM_INFO:
4991 		/* No specific object, just general system-wide information. */
4992 		return task_has_system(current, SYSTEM__IPC_INFO);
4993 	case GETPID:
4994 	case GETNCNT:
4995 	case GETZCNT:
4996 		perms = SEM__GETATTR;
4997 		break;
4998 	case GETVAL:
4999 	case GETALL:
5000 		perms = SEM__READ;
5001 		break;
5002 	case SETVAL:
5003 	case SETALL:
5004 		perms = SEM__WRITE;
5005 		break;
5006 	case IPC_RMID:
5007 		perms = SEM__DESTROY;
5008 		break;
5009 	case IPC_SET:
5010 		perms = SEM__SETATTR;
5011 		break;
5012 	case IPC_STAT:
5013 	case SEM_STAT:
5014 		perms = SEM__GETATTR | SEM__ASSOCIATE;
5015 		break;
5016 	default:
5017 		return 0;
5018 	}
5019 
5020 	err = ipc_has_perm(&sma->sem_perm, perms);
5021 	return err;
5022 }
5023 
5024 static int selinux_sem_semop(struct sem_array *sma,
5025 			     struct sembuf *sops, unsigned nsops, int alter)
5026 {
5027 	u32 perms;
5028 
5029 	if (alter)
5030 		perms = SEM__READ | SEM__WRITE;
5031 	else
5032 		perms = SEM__READ;
5033 
5034 	return ipc_has_perm(&sma->sem_perm, perms);
5035 }
5036 
5037 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5038 {
5039 	u32 av = 0;
5040 
5041 	av = 0;
5042 	if (flag & S_IRUGO)
5043 		av |= IPC__UNIX_READ;
5044 	if (flag & S_IWUGO)
5045 		av |= IPC__UNIX_WRITE;
5046 
5047 	if (av == 0)
5048 		return 0;
5049 
5050 	return ipc_has_perm(ipcp, av);
5051 }
5052 
5053 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5054 {
5055 	struct ipc_security_struct *isec = ipcp->security;
5056 	*secid = isec->sid;
5057 }
5058 
5059 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5060 {
5061 	if (inode)
5062 		inode_doinit_with_dentry(inode, dentry);
5063 }
5064 
5065 static int selinux_getprocattr(struct task_struct *p,
5066 			       char *name, char **value)
5067 {
5068 	const struct task_security_struct *__tsec;
5069 	u32 sid;
5070 	int error;
5071 	unsigned len;
5072 
5073 	if (current != p) {
5074 		error = current_has_perm(p, PROCESS__GETATTR);
5075 		if (error)
5076 			return error;
5077 	}
5078 
5079 	rcu_read_lock();
5080 	__tsec = __task_cred(p)->security;
5081 
5082 	if (!strcmp(name, "current"))
5083 		sid = __tsec->sid;
5084 	else if (!strcmp(name, "prev"))
5085 		sid = __tsec->osid;
5086 	else if (!strcmp(name, "exec"))
5087 		sid = __tsec->exec_sid;
5088 	else if (!strcmp(name, "fscreate"))
5089 		sid = __tsec->create_sid;
5090 	else if (!strcmp(name, "keycreate"))
5091 		sid = __tsec->keycreate_sid;
5092 	else if (!strcmp(name, "sockcreate"))
5093 		sid = __tsec->sockcreate_sid;
5094 	else
5095 		goto invalid;
5096 	rcu_read_unlock();
5097 
5098 	if (!sid)
5099 		return 0;
5100 
5101 	error = security_sid_to_context(sid, value, &len);
5102 	if (error)
5103 		return error;
5104 	return len;
5105 
5106 invalid:
5107 	rcu_read_unlock();
5108 	return -EINVAL;
5109 }
5110 
5111 static int selinux_setprocattr(struct task_struct *p,
5112 			       char *name, void *value, size_t size)
5113 {
5114 	struct task_security_struct *tsec;
5115 	struct task_struct *tracer;
5116 	struct cred *new;
5117 	u32 sid = 0, ptsid;
5118 	int error;
5119 	char *str = value;
5120 
5121 	if (current != p) {
5122 		/* SELinux only allows a process to change its own
5123 		   security attributes. */
5124 		return -EACCES;
5125 	}
5126 
5127 	/*
5128 	 * Basic control over ability to set these attributes at all.
5129 	 * current == p, but we'll pass them separately in case the
5130 	 * above restriction is ever removed.
5131 	 */
5132 	if (!strcmp(name, "exec"))
5133 		error = current_has_perm(p, PROCESS__SETEXEC);
5134 	else if (!strcmp(name, "fscreate"))
5135 		error = current_has_perm(p, PROCESS__SETFSCREATE);
5136 	else if (!strcmp(name, "keycreate"))
5137 		error = current_has_perm(p, PROCESS__SETKEYCREATE);
5138 	else if (!strcmp(name, "sockcreate"))
5139 		error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5140 	else if (!strcmp(name, "current"))
5141 		error = current_has_perm(p, PROCESS__SETCURRENT);
5142 	else
5143 		error = -EINVAL;
5144 	if (error)
5145 		return error;
5146 
5147 	/* Obtain a SID for the context, if one was specified. */
5148 	if (size && str[1] && str[1] != '\n') {
5149 		if (str[size-1] == '\n') {
5150 			str[size-1] = 0;
5151 			size--;
5152 		}
5153 		error = security_context_to_sid(value, size, &sid);
5154 		if (error == -EINVAL && !strcmp(name, "fscreate")) {
5155 			if (!capable(CAP_MAC_ADMIN))
5156 				return error;
5157 			error = security_context_to_sid_force(value, size,
5158 							      &sid);
5159 		}
5160 		if (error)
5161 			return error;
5162 	}
5163 
5164 	new = prepare_creds();
5165 	if (!new)
5166 		return -ENOMEM;
5167 
5168 	/* Permission checking based on the specified context is
5169 	   performed during the actual operation (execve,
5170 	   open/mkdir/...), when we know the full context of the
5171 	   operation.  See selinux_bprm_set_creds for the execve
5172 	   checks and may_create for the file creation checks. The
5173 	   operation will then fail if the context is not permitted. */
5174 	tsec = new->security;
5175 	if (!strcmp(name, "exec")) {
5176 		tsec->exec_sid = sid;
5177 	} else if (!strcmp(name, "fscreate")) {
5178 		tsec->create_sid = sid;
5179 	} else if (!strcmp(name, "keycreate")) {
5180 		error = may_create_key(sid, p);
5181 		if (error)
5182 			goto abort_change;
5183 		tsec->keycreate_sid = sid;
5184 	} else if (!strcmp(name, "sockcreate")) {
5185 		tsec->sockcreate_sid = sid;
5186 	} else if (!strcmp(name, "current")) {
5187 		error = -EINVAL;
5188 		if (sid == 0)
5189 			goto abort_change;
5190 
5191 		/* Only allow single threaded processes to change context */
5192 		error = -EPERM;
5193 		if (!is_single_threaded(p)) {
5194 			error = security_bounded_transition(tsec->sid, sid);
5195 			if (error)
5196 				goto abort_change;
5197 		}
5198 
5199 		/* Check permissions for the transition. */
5200 		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5201 				     PROCESS__DYNTRANSITION, NULL);
5202 		if (error)
5203 			goto abort_change;
5204 
5205 		/* Check for ptracing, and update the task SID if ok.
5206 		   Otherwise, leave SID unchanged and fail. */
5207 		ptsid = 0;
5208 		task_lock(p);
5209 		tracer = tracehook_tracer_task(p);
5210 		if (tracer)
5211 			ptsid = task_sid(tracer);
5212 		task_unlock(p);
5213 
5214 		if (tracer) {
5215 			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5216 					     PROCESS__PTRACE, NULL);
5217 			if (error)
5218 				goto abort_change;
5219 		}
5220 
5221 		tsec->sid = sid;
5222 	} else {
5223 		error = -EINVAL;
5224 		goto abort_change;
5225 	}
5226 
5227 	commit_creds(new);
5228 	return size;
5229 
5230 abort_change:
5231 	abort_creds(new);
5232 	return error;
5233 }
5234 
5235 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5236 {
5237 	return security_sid_to_context(secid, secdata, seclen);
5238 }
5239 
5240 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5241 {
5242 	return security_context_to_sid(secdata, seclen, secid);
5243 }
5244 
5245 static void selinux_release_secctx(char *secdata, u32 seclen)
5246 {
5247 	kfree(secdata);
5248 }
5249 
5250 #ifdef CONFIG_KEYS
5251 
5252 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5253 			     unsigned long flags)
5254 {
5255 	const struct task_security_struct *tsec;
5256 	struct key_security_struct *ksec;
5257 
5258 	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5259 	if (!ksec)
5260 		return -ENOMEM;
5261 
5262 	tsec = cred->security;
5263 	if (tsec->keycreate_sid)
5264 		ksec->sid = tsec->keycreate_sid;
5265 	else
5266 		ksec->sid = tsec->sid;
5267 
5268 	k->security = ksec;
5269 	return 0;
5270 }
5271 
5272 static void selinux_key_free(struct key *k)
5273 {
5274 	struct key_security_struct *ksec = k->security;
5275 
5276 	k->security = NULL;
5277 	kfree(ksec);
5278 }
5279 
5280 static int selinux_key_permission(key_ref_t key_ref,
5281 				  const struct cred *cred,
5282 				  key_perm_t perm)
5283 {
5284 	struct key *key;
5285 	struct key_security_struct *ksec;
5286 	u32 sid;
5287 
5288 	/* if no specific permissions are requested, we skip the
5289 	   permission check. No serious, additional covert channels
5290 	   appear to be created. */
5291 	if (perm == 0)
5292 		return 0;
5293 
5294 	sid = cred_sid(cred);
5295 
5296 	key = key_ref_to_ptr(key_ref);
5297 	ksec = key->security;
5298 
5299 	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5300 }
5301 
5302 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5303 {
5304 	struct key_security_struct *ksec = key->security;
5305 	char *context = NULL;
5306 	unsigned len;
5307 	int rc;
5308 
5309 	rc = security_sid_to_context(ksec->sid, &context, &len);
5310 	if (!rc)
5311 		rc = len;
5312 	*_buffer = context;
5313 	return rc;
5314 }
5315 
5316 #endif
5317 
5318 static struct security_operations selinux_ops = {
5319 	.name =				"selinux",
5320 
5321 	.ptrace_may_access =		selinux_ptrace_may_access,
5322 	.ptrace_traceme =		selinux_ptrace_traceme,
5323 	.capget =			selinux_capget,
5324 	.capset =			selinux_capset,
5325 	.sysctl =			selinux_sysctl,
5326 	.capable =			selinux_capable,
5327 	.quotactl =			selinux_quotactl,
5328 	.quota_on =			selinux_quota_on,
5329 	.syslog =			selinux_syslog,
5330 	.vm_enough_memory =		selinux_vm_enough_memory,
5331 
5332 	.netlink_send =			selinux_netlink_send,
5333 	.netlink_recv =			selinux_netlink_recv,
5334 
5335 	.bprm_set_creds =		selinux_bprm_set_creds,
5336 	.bprm_committing_creds =	selinux_bprm_committing_creds,
5337 	.bprm_committed_creds =		selinux_bprm_committed_creds,
5338 	.bprm_secureexec =		selinux_bprm_secureexec,
5339 
5340 	.sb_alloc_security =		selinux_sb_alloc_security,
5341 	.sb_free_security =		selinux_sb_free_security,
5342 	.sb_copy_data =			selinux_sb_copy_data,
5343 	.sb_kern_mount =		selinux_sb_kern_mount,
5344 	.sb_show_options =		selinux_sb_show_options,
5345 	.sb_statfs =			selinux_sb_statfs,
5346 	.sb_mount =			selinux_mount,
5347 	.sb_umount =			selinux_umount,
5348 	.sb_set_mnt_opts =		selinux_set_mnt_opts,
5349 	.sb_clone_mnt_opts =		selinux_sb_clone_mnt_opts,
5350 	.sb_parse_opts_str = 		selinux_parse_opts_str,
5351 
5352 
5353 	.inode_alloc_security =		selinux_inode_alloc_security,
5354 	.inode_free_security =		selinux_inode_free_security,
5355 	.inode_init_security =		selinux_inode_init_security,
5356 	.inode_create =			selinux_inode_create,
5357 	.inode_link =			selinux_inode_link,
5358 	.inode_unlink =			selinux_inode_unlink,
5359 	.inode_symlink =		selinux_inode_symlink,
5360 	.inode_mkdir =			selinux_inode_mkdir,
5361 	.inode_rmdir =			selinux_inode_rmdir,
5362 	.inode_mknod =			selinux_inode_mknod,
5363 	.inode_rename =			selinux_inode_rename,
5364 	.inode_readlink =		selinux_inode_readlink,
5365 	.inode_follow_link =		selinux_inode_follow_link,
5366 	.inode_permission =		selinux_inode_permission,
5367 	.inode_setattr =		selinux_inode_setattr,
5368 	.inode_getattr =		selinux_inode_getattr,
5369 	.inode_setxattr =		selinux_inode_setxattr,
5370 	.inode_post_setxattr =		selinux_inode_post_setxattr,
5371 	.inode_getxattr =		selinux_inode_getxattr,
5372 	.inode_listxattr =		selinux_inode_listxattr,
5373 	.inode_removexattr =		selinux_inode_removexattr,
5374 	.inode_getsecurity =		selinux_inode_getsecurity,
5375 	.inode_setsecurity =		selinux_inode_setsecurity,
5376 	.inode_listsecurity =		selinux_inode_listsecurity,
5377 	.inode_getsecid =		selinux_inode_getsecid,
5378 
5379 	.file_permission =		selinux_file_permission,
5380 	.file_alloc_security =		selinux_file_alloc_security,
5381 	.file_free_security =		selinux_file_free_security,
5382 	.file_ioctl =			selinux_file_ioctl,
5383 	.file_mmap =			selinux_file_mmap,
5384 	.file_mprotect =		selinux_file_mprotect,
5385 	.file_lock =			selinux_file_lock,
5386 	.file_fcntl =			selinux_file_fcntl,
5387 	.file_set_fowner =		selinux_file_set_fowner,
5388 	.file_send_sigiotask =		selinux_file_send_sigiotask,
5389 	.file_receive =			selinux_file_receive,
5390 
5391 	.dentry_open =			selinux_dentry_open,
5392 
5393 	.task_create =			selinux_task_create,
5394 	.cred_free =			selinux_cred_free,
5395 	.cred_prepare =			selinux_cred_prepare,
5396 	.kernel_act_as =		selinux_kernel_act_as,
5397 	.kernel_create_files_as =	selinux_kernel_create_files_as,
5398 	.task_setpgid =			selinux_task_setpgid,
5399 	.task_getpgid =			selinux_task_getpgid,
5400 	.task_getsid =			selinux_task_getsid,
5401 	.task_getsecid =		selinux_task_getsecid,
5402 	.task_setnice =			selinux_task_setnice,
5403 	.task_setioprio =		selinux_task_setioprio,
5404 	.task_getioprio =		selinux_task_getioprio,
5405 	.task_setrlimit =		selinux_task_setrlimit,
5406 	.task_setscheduler =		selinux_task_setscheduler,
5407 	.task_getscheduler =		selinux_task_getscheduler,
5408 	.task_movememory =		selinux_task_movememory,
5409 	.task_kill =			selinux_task_kill,
5410 	.task_wait =			selinux_task_wait,
5411 	.task_to_inode =		selinux_task_to_inode,
5412 
5413 	.ipc_permission =		selinux_ipc_permission,
5414 	.ipc_getsecid =			selinux_ipc_getsecid,
5415 
5416 	.msg_msg_alloc_security =	selinux_msg_msg_alloc_security,
5417 	.msg_msg_free_security =	selinux_msg_msg_free_security,
5418 
5419 	.msg_queue_alloc_security =	selinux_msg_queue_alloc_security,
5420 	.msg_queue_free_security =	selinux_msg_queue_free_security,
5421 	.msg_queue_associate =		selinux_msg_queue_associate,
5422 	.msg_queue_msgctl =		selinux_msg_queue_msgctl,
5423 	.msg_queue_msgsnd =		selinux_msg_queue_msgsnd,
5424 	.msg_queue_msgrcv =		selinux_msg_queue_msgrcv,
5425 
5426 	.shm_alloc_security =		selinux_shm_alloc_security,
5427 	.shm_free_security =		selinux_shm_free_security,
5428 	.shm_associate =		selinux_shm_associate,
5429 	.shm_shmctl =			selinux_shm_shmctl,
5430 	.shm_shmat =			selinux_shm_shmat,
5431 
5432 	.sem_alloc_security =		selinux_sem_alloc_security,
5433 	.sem_free_security =		selinux_sem_free_security,
5434 	.sem_associate =		selinux_sem_associate,
5435 	.sem_semctl =			selinux_sem_semctl,
5436 	.sem_semop =			selinux_sem_semop,
5437 
5438 	.d_instantiate =		selinux_d_instantiate,
5439 
5440 	.getprocattr =			selinux_getprocattr,
5441 	.setprocattr =			selinux_setprocattr,
5442 
5443 	.secid_to_secctx =		selinux_secid_to_secctx,
5444 	.secctx_to_secid =		selinux_secctx_to_secid,
5445 	.release_secctx =		selinux_release_secctx,
5446 
5447 	.unix_stream_connect =		selinux_socket_unix_stream_connect,
5448 	.unix_may_send =		selinux_socket_unix_may_send,
5449 
5450 	.socket_create =		selinux_socket_create,
5451 	.socket_post_create =		selinux_socket_post_create,
5452 	.socket_bind =			selinux_socket_bind,
5453 	.socket_connect =		selinux_socket_connect,
5454 	.socket_listen =		selinux_socket_listen,
5455 	.socket_accept =		selinux_socket_accept,
5456 	.socket_sendmsg =		selinux_socket_sendmsg,
5457 	.socket_recvmsg =		selinux_socket_recvmsg,
5458 	.socket_getsockname =		selinux_socket_getsockname,
5459 	.socket_getpeername =		selinux_socket_getpeername,
5460 	.socket_getsockopt =		selinux_socket_getsockopt,
5461 	.socket_setsockopt =		selinux_socket_setsockopt,
5462 	.socket_shutdown =		selinux_socket_shutdown,
5463 	.socket_sock_rcv_skb =		selinux_socket_sock_rcv_skb,
5464 	.socket_getpeersec_stream =	selinux_socket_getpeersec_stream,
5465 	.socket_getpeersec_dgram =	selinux_socket_getpeersec_dgram,
5466 	.sk_alloc_security =		selinux_sk_alloc_security,
5467 	.sk_free_security =		selinux_sk_free_security,
5468 	.sk_clone_security =		selinux_sk_clone_security,
5469 	.sk_getsecid =			selinux_sk_getsecid,
5470 	.sock_graft =			selinux_sock_graft,
5471 	.inet_conn_request =		selinux_inet_conn_request,
5472 	.inet_csk_clone =		selinux_inet_csk_clone,
5473 	.inet_conn_established =	selinux_inet_conn_established,
5474 	.req_classify_flow =		selinux_req_classify_flow,
5475 
5476 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5477 	.xfrm_policy_alloc_security =	selinux_xfrm_policy_alloc,
5478 	.xfrm_policy_clone_security =	selinux_xfrm_policy_clone,
5479 	.xfrm_policy_free_security =	selinux_xfrm_policy_free,
5480 	.xfrm_policy_delete_security =	selinux_xfrm_policy_delete,
5481 	.xfrm_state_alloc_security =	selinux_xfrm_state_alloc,
5482 	.xfrm_state_free_security =	selinux_xfrm_state_free,
5483 	.xfrm_state_delete_security =	selinux_xfrm_state_delete,
5484 	.xfrm_policy_lookup =		selinux_xfrm_policy_lookup,
5485 	.xfrm_state_pol_flow_match =	selinux_xfrm_state_pol_flow_match,
5486 	.xfrm_decode_session =		selinux_xfrm_decode_session,
5487 #endif
5488 
5489 #ifdef CONFIG_KEYS
5490 	.key_alloc =			selinux_key_alloc,
5491 	.key_free =			selinux_key_free,
5492 	.key_permission =		selinux_key_permission,
5493 	.key_getsecurity =		selinux_key_getsecurity,
5494 #endif
5495 
5496 #ifdef CONFIG_AUDIT
5497 	.audit_rule_init =		selinux_audit_rule_init,
5498 	.audit_rule_known =		selinux_audit_rule_known,
5499 	.audit_rule_match =		selinux_audit_rule_match,
5500 	.audit_rule_free =		selinux_audit_rule_free,
5501 #endif
5502 };
5503 
5504 static __init int selinux_init(void)
5505 {
5506 	if (!security_module_enable(&selinux_ops)) {
5507 		selinux_enabled = 0;
5508 		return 0;
5509 	}
5510 
5511 	if (!selinux_enabled) {
5512 		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5513 		return 0;
5514 	}
5515 
5516 	printk(KERN_INFO "SELinux:  Initializing.\n");
5517 
5518 	/* Set the security state for the initial task. */
5519 	cred_init_security();
5520 
5521 	sel_inode_cache = kmem_cache_create("selinux_inode_security",
5522 					    sizeof(struct inode_security_struct),
5523 					    0, SLAB_PANIC, NULL);
5524 	avc_init();
5525 
5526 	secondary_ops = security_ops;
5527 	if (!secondary_ops)
5528 		panic("SELinux: No initial security operations\n");
5529 	if (register_security(&selinux_ops))
5530 		panic("SELinux: Unable to register with kernel.\n");
5531 
5532 	if (selinux_enforcing)
5533 		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5534 	else
5535 		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5536 
5537 	return 0;
5538 }
5539 
5540 void selinux_complete_init(void)
5541 {
5542 	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5543 
5544 	/* Set up any superblocks initialized prior to the policy load. */
5545 	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5546 	spin_lock(&sb_lock);
5547 	spin_lock(&sb_security_lock);
5548 next_sb:
5549 	if (!list_empty(&superblock_security_head)) {
5550 		struct superblock_security_struct *sbsec =
5551 				list_entry(superblock_security_head.next,
5552 					   struct superblock_security_struct,
5553 					   list);
5554 		struct super_block *sb = sbsec->sb;
5555 		sb->s_count++;
5556 		spin_unlock(&sb_security_lock);
5557 		spin_unlock(&sb_lock);
5558 		down_read(&sb->s_umount);
5559 		if (sb->s_root)
5560 			superblock_doinit(sb, NULL);
5561 		drop_super(sb);
5562 		spin_lock(&sb_lock);
5563 		spin_lock(&sb_security_lock);
5564 		list_del_init(&sbsec->list);
5565 		goto next_sb;
5566 	}
5567 	spin_unlock(&sb_security_lock);
5568 	spin_unlock(&sb_lock);
5569 }
5570 
5571 /* SELinux requires early initialization in order to label
5572    all processes and objects when they are created. */
5573 security_initcall(selinux_init);
5574 
5575 #if defined(CONFIG_NETFILTER)
5576 
5577 static struct nf_hook_ops selinux_ipv4_ops[] = {
5578 	{
5579 		.hook =		selinux_ipv4_postroute,
5580 		.owner =	THIS_MODULE,
5581 		.pf =		PF_INET,
5582 		.hooknum =	NF_INET_POST_ROUTING,
5583 		.priority =	NF_IP_PRI_SELINUX_LAST,
5584 	},
5585 	{
5586 		.hook =		selinux_ipv4_forward,
5587 		.owner =	THIS_MODULE,
5588 		.pf =		PF_INET,
5589 		.hooknum =	NF_INET_FORWARD,
5590 		.priority =	NF_IP_PRI_SELINUX_FIRST,
5591 	},
5592 	{
5593 		.hook =		selinux_ipv4_output,
5594 		.owner =	THIS_MODULE,
5595 		.pf =		PF_INET,
5596 		.hooknum =	NF_INET_LOCAL_OUT,
5597 		.priority =	NF_IP_PRI_SELINUX_FIRST,
5598 	}
5599 };
5600 
5601 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5602 
5603 static struct nf_hook_ops selinux_ipv6_ops[] = {
5604 	{
5605 		.hook =		selinux_ipv6_postroute,
5606 		.owner =	THIS_MODULE,
5607 		.pf =		PF_INET6,
5608 		.hooknum =	NF_INET_POST_ROUTING,
5609 		.priority =	NF_IP6_PRI_SELINUX_LAST,
5610 	},
5611 	{
5612 		.hook =		selinux_ipv6_forward,
5613 		.owner =	THIS_MODULE,
5614 		.pf =		PF_INET6,
5615 		.hooknum =	NF_INET_FORWARD,
5616 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
5617 	}
5618 };
5619 
5620 #endif	/* IPV6 */
5621 
5622 static int __init selinux_nf_ip_init(void)
5623 {
5624 	int err = 0;
5625 
5626 	if (!selinux_enabled)
5627 		goto out;
5628 
5629 	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5630 
5631 	err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5632 	if (err)
5633 		panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5634 
5635 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5636 	err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5637 	if (err)
5638 		panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5639 #endif	/* IPV6 */
5640 
5641 out:
5642 	return err;
5643 }
5644 
5645 __initcall(selinux_nf_ip_init);
5646 
5647 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5648 static void selinux_nf_ip_exit(void)
5649 {
5650 	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5651 
5652 	nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5653 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5654 	nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5655 #endif	/* IPV6 */
5656 }
5657 #endif
5658 
5659 #else /* CONFIG_NETFILTER */
5660 
5661 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5662 #define selinux_nf_ip_exit()
5663 #endif
5664 
5665 #endif /* CONFIG_NETFILTER */
5666 
5667 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5668 static int selinux_disabled;
5669 
5670 int selinux_disable(void)
5671 {
5672 	extern void exit_sel_fs(void);
5673 
5674 	if (ss_initialized) {
5675 		/* Not permitted after initial policy load. */
5676 		return -EINVAL;
5677 	}
5678 
5679 	if (selinux_disabled) {
5680 		/* Only do this once. */
5681 		return -EINVAL;
5682 	}
5683 
5684 	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5685 
5686 	selinux_disabled = 1;
5687 	selinux_enabled = 0;
5688 
5689 	/* Reset security_ops to the secondary module, dummy or capability. */
5690 	security_ops = secondary_ops;
5691 
5692 	/* Unregister netfilter hooks. */
5693 	selinux_nf_ip_exit();
5694 
5695 	/* Unregister selinuxfs. */
5696 	exit_sel_fs();
5697 
5698 	return 0;
5699 }
5700 #endif
5701