1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * NSA Security-Enhanced Linux (SELinux) security module 4 * 5 * This file contains the SELinux hook function implementations. 6 * 7 * Authors: Stephen Smalley, <sds@tycho.nsa.gov> 8 * Chris Vance, <cvance@nai.com> 9 * Wayne Salamon, <wsalamon@nai.com> 10 * James Morris <jmorris@redhat.com> 11 * 12 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 13 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com> 14 * Eric Paris <eparis@redhat.com> 15 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 16 * <dgoeddel@trustedcs.com> 17 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P. 18 * Paul Moore <paul@paul-moore.com> 19 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. 20 * Yuichi Nakamura <ynakam@hitachisoft.jp> 21 * Copyright (C) 2016 Mellanox Technologies 22 */ 23 24 #include <linux/init.h> 25 #include <linux/kd.h> 26 #include <linux/kernel.h> 27 #include <linux/tracehook.h> 28 #include <linux/errno.h> 29 #include <linux/sched/signal.h> 30 #include <linux/sched/task.h> 31 #include <linux/lsm_hooks.h> 32 #include <linux/xattr.h> 33 #include <linux/capability.h> 34 #include <linux/unistd.h> 35 #include <linux/mm.h> 36 #include <linux/mman.h> 37 #include <linux/slab.h> 38 #include <linux/pagemap.h> 39 #include <linux/proc_fs.h> 40 #include <linux/swap.h> 41 #include <linux/spinlock.h> 42 #include <linux/syscalls.h> 43 #include <linux/dcache.h> 44 #include <linux/file.h> 45 #include <linux/fdtable.h> 46 #include <linux/namei.h> 47 #include <linux/mount.h> 48 #include <linux/fs_context.h> 49 #include <linux/fs_parser.h> 50 #include <linux/netfilter_ipv4.h> 51 #include <linux/netfilter_ipv6.h> 52 #include <linux/tty.h> 53 #include <net/icmp.h> 54 #include <net/ip.h> /* for local_port_range[] */ 55 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 56 #include <net/inet_connection_sock.h> 57 #include <net/net_namespace.h> 58 #include <net/netlabel.h> 59 #include <linux/uaccess.h> 60 #include <asm/ioctls.h> 61 #include <linux/atomic.h> 62 #include <linux/bitops.h> 63 #include <linux/interrupt.h> 64 #include <linux/netdevice.h> /* for network interface checks */ 65 #include <net/netlink.h> 66 #include <linux/tcp.h> 67 #include <linux/udp.h> 68 #include <linux/dccp.h> 69 #include <linux/sctp.h> 70 #include <net/sctp/structs.h> 71 #include <linux/quota.h> 72 #include <linux/un.h> /* for Unix socket types */ 73 #include <net/af_unix.h> /* for Unix socket types */ 74 #include <linux/parser.h> 75 #include <linux/nfs_mount.h> 76 #include <net/ipv6.h> 77 #include <linux/hugetlb.h> 78 #include <linux/personality.h> 79 #include <linux/audit.h> 80 #include <linux/string.h> 81 #include <linux/mutex.h> 82 #include <linux/posix-timers.h> 83 #include <linux/syslog.h> 84 #include <linux/user_namespace.h> 85 #include <linux/export.h> 86 #include <linux/msg.h> 87 #include <linux/shm.h> 88 #include <linux/bpf.h> 89 #include <linux/kernfs.h> 90 #include <linux/stringhash.h> /* for hashlen_string() */ 91 #include <uapi/linux/mount.h> 92 #include <linux/fsnotify.h> 93 #include <linux/fanotify.h> 94 95 #include "avc.h" 96 #include "objsec.h" 97 #include "netif.h" 98 #include "netnode.h" 99 #include "netport.h" 100 #include "ibpkey.h" 101 #include "xfrm.h" 102 #include "netlabel.h" 103 #include "audit.h" 104 #include "avc_ss.h" 105 106 struct selinux_state selinux_state; 107 108 /* SECMARK reference count */ 109 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0); 110 111 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 112 static int selinux_enforcing_boot __initdata; 113 114 static int __init enforcing_setup(char *str) 115 { 116 unsigned long enforcing; 117 if (!kstrtoul(str, 0, &enforcing)) 118 selinux_enforcing_boot = enforcing ? 1 : 0; 119 return 1; 120 } 121 __setup("enforcing=", enforcing_setup); 122 #else 123 #define selinux_enforcing_boot 1 124 #endif 125 126 int selinux_enabled_boot __initdata = 1; 127 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 128 static int __init selinux_enabled_setup(char *str) 129 { 130 unsigned long enabled; 131 if (!kstrtoul(str, 0, &enabled)) 132 selinux_enabled_boot = enabled ? 1 : 0; 133 return 1; 134 } 135 __setup("selinux=", selinux_enabled_setup); 136 #endif 137 138 static unsigned int selinux_checkreqprot_boot = 139 CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE; 140 141 static int __init checkreqprot_setup(char *str) 142 { 143 unsigned long checkreqprot; 144 145 if (!kstrtoul(str, 0, &checkreqprot)) 146 selinux_checkreqprot_boot = checkreqprot ? 1 : 0; 147 return 1; 148 } 149 __setup("checkreqprot=", checkreqprot_setup); 150 151 /** 152 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled 153 * 154 * Description: 155 * This function checks the SECMARK reference counter to see if any SECMARK 156 * targets are currently configured, if the reference counter is greater than 157 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is 158 * enabled, false (0) if SECMARK is disabled. If the always_check_network 159 * policy capability is enabled, SECMARK is always considered enabled. 160 * 161 */ 162 static int selinux_secmark_enabled(void) 163 { 164 return (selinux_policycap_alwaysnetwork() || 165 atomic_read(&selinux_secmark_refcount)); 166 } 167 168 /** 169 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled 170 * 171 * Description: 172 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true 173 * (1) if any are enabled or false (0) if neither are enabled. If the 174 * always_check_network policy capability is enabled, peer labeling 175 * is always considered enabled. 176 * 177 */ 178 static int selinux_peerlbl_enabled(void) 179 { 180 return (selinux_policycap_alwaysnetwork() || 181 netlbl_enabled() || selinux_xfrm_enabled()); 182 } 183 184 static int selinux_netcache_avc_callback(u32 event) 185 { 186 if (event == AVC_CALLBACK_RESET) { 187 sel_netif_flush(); 188 sel_netnode_flush(); 189 sel_netport_flush(); 190 synchronize_net(); 191 } 192 return 0; 193 } 194 195 static int selinux_lsm_notifier_avc_callback(u32 event) 196 { 197 if (event == AVC_CALLBACK_RESET) { 198 sel_ib_pkey_flush(); 199 call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL); 200 } 201 202 return 0; 203 } 204 205 /* 206 * initialise the security for the init task 207 */ 208 static void cred_init_security(void) 209 { 210 struct cred *cred = (struct cred *) current->real_cred; 211 struct task_security_struct *tsec; 212 213 tsec = selinux_cred(cred); 214 tsec->osid = tsec->sid = SECINITSID_KERNEL; 215 } 216 217 /* 218 * get the security ID of a set of credentials 219 */ 220 static inline u32 cred_sid(const struct cred *cred) 221 { 222 const struct task_security_struct *tsec; 223 224 tsec = selinux_cred(cred); 225 return tsec->sid; 226 } 227 228 /* 229 * get the objective security ID of a task 230 */ 231 static inline u32 task_sid(const struct task_struct *task) 232 { 233 u32 sid; 234 235 rcu_read_lock(); 236 sid = cred_sid(__task_cred(task)); 237 rcu_read_unlock(); 238 return sid; 239 } 240 241 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 242 243 /* 244 * Try reloading inode security labels that have been marked as invalid. The 245 * @may_sleep parameter indicates when sleeping and thus reloading labels is 246 * allowed; when set to false, returns -ECHILD when the label is 247 * invalid. The @dentry parameter should be set to a dentry of the inode. 248 */ 249 static int __inode_security_revalidate(struct inode *inode, 250 struct dentry *dentry, 251 bool may_sleep) 252 { 253 struct inode_security_struct *isec = selinux_inode(inode); 254 255 might_sleep_if(may_sleep); 256 257 if (selinux_initialized(&selinux_state) && 258 isec->initialized != LABEL_INITIALIZED) { 259 if (!may_sleep) 260 return -ECHILD; 261 262 /* 263 * Try reloading the inode security label. This will fail if 264 * @opt_dentry is NULL and no dentry for this inode can be 265 * found; in that case, continue using the old label. 266 */ 267 inode_doinit_with_dentry(inode, dentry); 268 } 269 return 0; 270 } 271 272 static struct inode_security_struct *inode_security_novalidate(struct inode *inode) 273 { 274 return selinux_inode(inode); 275 } 276 277 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu) 278 { 279 int error; 280 281 error = __inode_security_revalidate(inode, NULL, !rcu); 282 if (error) 283 return ERR_PTR(error); 284 return selinux_inode(inode); 285 } 286 287 /* 288 * Get the security label of an inode. 289 */ 290 static struct inode_security_struct *inode_security(struct inode *inode) 291 { 292 __inode_security_revalidate(inode, NULL, true); 293 return selinux_inode(inode); 294 } 295 296 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry) 297 { 298 struct inode *inode = d_backing_inode(dentry); 299 300 return selinux_inode(inode); 301 } 302 303 /* 304 * Get the security label of a dentry's backing inode. 305 */ 306 static struct inode_security_struct *backing_inode_security(struct dentry *dentry) 307 { 308 struct inode *inode = d_backing_inode(dentry); 309 310 __inode_security_revalidate(inode, dentry, true); 311 return selinux_inode(inode); 312 } 313 314 static void inode_free_security(struct inode *inode) 315 { 316 struct inode_security_struct *isec = selinux_inode(inode); 317 struct superblock_security_struct *sbsec; 318 319 if (!isec) 320 return; 321 sbsec = inode->i_sb->s_security; 322 /* 323 * As not all inode security structures are in a list, we check for 324 * empty list outside of the lock to make sure that we won't waste 325 * time taking a lock doing nothing. 326 * 327 * The list_del_init() function can be safely called more than once. 328 * It should not be possible for this function to be called with 329 * concurrent list_add(), but for better safety against future changes 330 * in the code, we use list_empty_careful() here. 331 */ 332 if (!list_empty_careful(&isec->list)) { 333 spin_lock(&sbsec->isec_lock); 334 list_del_init(&isec->list); 335 spin_unlock(&sbsec->isec_lock); 336 } 337 } 338 339 static void superblock_free_security(struct super_block *sb) 340 { 341 struct superblock_security_struct *sbsec = sb->s_security; 342 sb->s_security = NULL; 343 kfree(sbsec); 344 } 345 346 struct selinux_mnt_opts { 347 const char *fscontext, *context, *rootcontext, *defcontext; 348 }; 349 350 static void selinux_free_mnt_opts(void *mnt_opts) 351 { 352 struct selinux_mnt_opts *opts = mnt_opts; 353 kfree(opts->fscontext); 354 kfree(opts->context); 355 kfree(opts->rootcontext); 356 kfree(opts->defcontext); 357 kfree(opts); 358 } 359 360 enum { 361 Opt_error = -1, 362 Opt_context = 0, 363 Opt_defcontext = 1, 364 Opt_fscontext = 2, 365 Opt_rootcontext = 3, 366 Opt_seclabel = 4, 367 }; 368 369 #define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg} 370 static struct { 371 const char *name; 372 int len; 373 int opt; 374 bool has_arg; 375 } tokens[] = { 376 A(context, true), 377 A(fscontext, true), 378 A(defcontext, true), 379 A(rootcontext, true), 380 A(seclabel, false), 381 }; 382 #undef A 383 384 static int match_opt_prefix(char *s, int l, char **arg) 385 { 386 int i; 387 388 for (i = 0; i < ARRAY_SIZE(tokens); i++) { 389 size_t len = tokens[i].len; 390 if (len > l || memcmp(s, tokens[i].name, len)) 391 continue; 392 if (tokens[i].has_arg) { 393 if (len == l || s[len] != '=') 394 continue; 395 *arg = s + len + 1; 396 } else if (len != l) 397 continue; 398 return tokens[i].opt; 399 } 400 return Opt_error; 401 } 402 403 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 404 405 static int may_context_mount_sb_relabel(u32 sid, 406 struct superblock_security_struct *sbsec, 407 const struct cred *cred) 408 { 409 const struct task_security_struct *tsec = selinux_cred(cred); 410 int rc; 411 412 rc = avc_has_perm(&selinux_state, 413 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 414 FILESYSTEM__RELABELFROM, NULL); 415 if (rc) 416 return rc; 417 418 rc = avc_has_perm(&selinux_state, 419 tsec->sid, sid, SECCLASS_FILESYSTEM, 420 FILESYSTEM__RELABELTO, NULL); 421 return rc; 422 } 423 424 static int may_context_mount_inode_relabel(u32 sid, 425 struct superblock_security_struct *sbsec, 426 const struct cred *cred) 427 { 428 const struct task_security_struct *tsec = selinux_cred(cred); 429 int rc; 430 rc = avc_has_perm(&selinux_state, 431 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 432 FILESYSTEM__RELABELFROM, NULL); 433 if (rc) 434 return rc; 435 436 rc = avc_has_perm(&selinux_state, 437 sid, sbsec->sid, SECCLASS_FILESYSTEM, 438 FILESYSTEM__ASSOCIATE, NULL); 439 return rc; 440 } 441 442 static int selinux_is_genfs_special_handling(struct super_block *sb) 443 { 444 /* Special handling. Genfs but also in-core setxattr handler */ 445 return !strcmp(sb->s_type->name, "sysfs") || 446 !strcmp(sb->s_type->name, "pstore") || 447 !strcmp(sb->s_type->name, "debugfs") || 448 !strcmp(sb->s_type->name, "tracefs") || 449 !strcmp(sb->s_type->name, "rootfs") || 450 (selinux_policycap_cgroupseclabel() && 451 (!strcmp(sb->s_type->name, "cgroup") || 452 !strcmp(sb->s_type->name, "cgroup2"))); 453 } 454 455 static int selinux_is_sblabel_mnt(struct super_block *sb) 456 { 457 struct superblock_security_struct *sbsec = sb->s_security; 458 459 /* 460 * IMPORTANT: Double-check logic in this function when adding a new 461 * SECURITY_FS_USE_* definition! 462 */ 463 BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7); 464 465 switch (sbsec->behavior) { 466 case SECURITY_FS_USE_XATTR: 467 case SECURITY_FS_USE_TRANS: 468 case SECURITY_FS_USE_TASK: 469 case SECURITY_FS_USE_NATIVE: 470 return 1; 471 472 case SECURITY_FS_USE_GENFS: 473 return selinux_is_genfs_special_handling(sb); 474 475 /* Never allow relabeling on context mounts */ 476 case SECURITY_FS_USE_MNTPOINT: 477 case SECURITY_FS_USE_NONE: 478 default: 479 return 0; 480 } 481 } 482 483 static int sb_finish_set_opts(struct super_block *sb) 484 { 485 struct superblock_security_struct *sbsec = sb->s_security; 486 struct dentry *root = sb->s_root; 487 struct inode *root_inode = d_backing_inode(root); 488 int rc = 0; 489 490 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 491 /* Make sure that the xattr handler exists and that no 492 error other than -ENODATA is returned by getxattr on 493 the root directory. -ENODATA is ok, as this may be 494 the first boot of the SELinux kernel before we have 495 assigned xattr values to the filesystem. */ 496 if (!(root_inode->i_opflags & IOP_XATTR)) { 497 pr_warn("SELinux: (dev %s, type %s) has no " 498 "xattr support\n", sb->s_id, sb->s_type->name); 499 rc = -EOPNOTSUPP; 500 goto out; 501 } 502 503 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0); 504 if (rc < 0 && rc != -ENODATA) { 505 if (rc == -EOPNOTSUPP) 506 pr_warn("SELinux: (dev %s, type " 507 "%s) has no security xattr handler\n", 508 sb->s_id, sb->s_type->name); 509 else 510 pr_warn("SELinux: (dev %s, type " 511 "%s) getxattr errno %d\n", sb->s_id, 512 sb->s_type->name, -rc); 513 goto out; 514 } 515 } 516 517 sbsec->flags |= SE_SBINITIALIZED; 518 519 /* 520 * Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply 521 * leave the flag untouched because sb_clone_mnt_opts might be handing 522 * us a superblock that needs the flag to be cleared. 523 */ 524 if (selinux_is_sblabel_mnt(sb)) 525 sbsec->flags |= SBLABEL_MNT; 526 else 527 sbsec->flags &= ~SBLABEL_MNT; 528 529 /* Initialize the root inode. */ 530 rc = inode_doinit_with_dentry(root_inode, root); 531 532 /* Initialize any other inodes associated with the superblock, e.g. 533 inodes created prior to initial policy load or inodes created 534 during get_sb by a pseudo filesystem that directly 535 populates itself. */ 536 spin_lock(&sbsec->isec_lock); 537 while (!list_empty(&sbsec->isec_head)) { 538 struct inode_security_struct *isec = 539 list_first_entry(&sbsec->isec_head, 540 struct inode_security_struct, list); 541 struct inode *inode = isec->inode; 542 list_del_init(&isec->list); 543 spin_unlock(&sbsec->isec_lock); 544 inode = igrab(inode); 545 if (inode) { 546 if (!IS_PRIVATE(inode)) 547 inode_doinit_with_dentry(inode, NULL); 548 iput(inode); 549 } 550 spin_lock(&sbsec->isec_lock); 551 } 552 spin_unlock(&sbsec->isec_lock); 553 out: 554 return rc; 555 } 556 557 static int bad_option(struct superblock_security_struct *sbsec, char flag, 558 u32 old_sid, u32 new_sid) 559 { 560 char mnt_flags = sbsec->flags & SE_MNTMASK; 561 562 /* check if the old mount command had the same options */ 563 if (sbsec->flags & SE_SBINITIALIZED) 564 if (!(sbsec->flags & flag) || 565 (old_sid != new_sid)) 566 return 1; 567 568 /* check if we were passed the same options twice, 569 * aka someone passed context=a,context=b 570 */ 571 if (!(sbsec->flags & SE_SBINITIALIZED)) 572 if (mnt_flags & flag) 573 return 1; 574 return 0; 575 } 576 577 static int parse_sid(struct super_block *sb, const char *s, u32 *sid) 578 { 579 int rc = security_context_str_to_sid(&selinux_state, s, 580 sid, GFP_KERNEL); 581 if (rc) 582 pr_warn("SELinux: security_context_str_to_sid" 583 "(%s) failed for (dev %s, type %s) errno=%d\n", 584 s, sb->s_id, sb->s_type->name, rc); 585 return rc; 586 } 587 588 /* 589 * Allow filesystems with binary mount data to explicitly set mount point 590 * labeling information. 591 */ 592 static int selinux_set_mnt_opts(struct super_block *sb, 593 void *mnt_opts, 594 unsigned long kern_flags, 595 unsigned long *set_kern_flags) 596 { 597 const struct cred *cred = current_cred(); 598 struct superblock_security_struct *sbsec = sb->s_security; 599 struct dentry *root = sbsec->sb->s_root; 600 struct selinux_mnt_opts *opts = mnt_opts; 601 struct inode_security_struct *root_isec; 602 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; 603 u32 defcontext_sid = 0; 604 int rc = 0; 605 606 mutex_lock(&sbsec->lock); 607 608 if (!selinux_initialized(&selinux_state)) { 609 if (!opts) { 610 /* Defer initialization until selinux_complete_init, 611 after the initial policy is loaded and the security 612 server is ready to handle calls. */ 613 goto out; 614 } 615 rc = -EINVAL; 616 pr_warn("SELinux: Unable to set superblock options " 617 "before the security server is initialized\n"); 618 goto out; 619 } 620 if (kern_flags && !set_kern_flags) { 621 /* Specifying internal flags without providing a place to 622 * place the results is not allowed */ 623 rc = -EINVAL; 624 goto out; 625 } 626 627 /* 628 * Binary mount data FS will come through this function twice. Once 629 * from an explicit call and once from the generic calls from the vfs. 630 * Since the generic VFS calls will not contain any security mount data 631 * we need to skip the double mount verification. 632 * 633 * This does open a hole in which we will not notice if the first 634 * mount using this sb set explict options and a second mount using 635 * this sb does not set any security options. (The first options 636 * will be used for both mounts) 637 */ 638 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 639 && !opts) 640 goto out; 641 642 root_isec = backing_inode_security_novalidate(root); 643 644 /* 645 * parse the mount options, check if they are valid sids. 646 * also check if someone is trying to mount the same sb more 647 * than once with different security options. 648 */ 649 if (opts) { 650 if (opts->fscontext) { 651 rc = parse_sid(sb, opts->fscontext, &fscontext_sid); 652 if (rc) 653 goto out; 654 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 655 fscontext_sid)) 656 goto out_double_mount; 657 sbsec->flags |= FSCONTEXT_MNT; 658 } 659 if (opts->context) { 660 rc = parse_sid(sb, opts->context, &context_sid); 661 if (rc) 662 goto out; 663 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 664 context_sid)) 665 goto out_double_mount; 666 sbsec->flags |= CONTEXT_MNT; 667 } 668 if (opts->rootcontext) { 669 rc = parse_sid(sb, opts->rootcontext, &rootcontext_sid); 670 if (rc) 671 goto out; 672 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 673 rootcontext_sid)) 674 goto out_double_mount; 675 sbsec->flags |= ROOTCONTEXT_MNT; 676 } 677 if (opts->defcontext) { 678 rc = parse_sid(sb, opts->defcontext, &defcontext_sid); 679 if (rc) 680 goto out; 681 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 682 defcontext_sid)) 683 goto out_double_mount; 684 sbsec->flags |= DEFCONTEXT_MNT; 685 } 686 } 687 688 if (sbsec->flags & SE_SBINITIALIZED) { 689 /* previously mounted with options, but not on this attempt? */ 690 if ((sbsec->flags & SE_MNTMASK) && !opts) 691 goto out_double_mount; 692 rc = 0; 693 goto out; 694 } 695 696 if (strcmp(sb->s_type->name, "proc") == 0) 697 sbsec->flags |= SE_SBPROC | SE_SBGENFS; 698 699 if (!strcmp(sb->s_type->name, "debugfs") || 700 !strcmp(sb->s_type->name, "tracefs") || 701 !strcmp(sb->s_type->name, "binderfs") || 702 !strcmp(sb->s_type->name, "pstore")) 703 sbsec->flags |= SE_SBGENFS; 704 705 if (!strcmp(sb->s_type->name, "sysfs") || 706 !strcmp(sb->s_type->name, "cgroup") || 707 !strcmp(sb->s_type->name, "cgroup2")) 708 sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR; 709 710 if (!sbsec->behavior) { 711 /* 712 * Determine the labeling behavior to use for this 713 * filesystem type. 714 */ 715 rc = security_fs_use(&selinux_state, sb); 716 if (rc) { 717 pr_warn("%s: security_fs_use(%s) returned %d\n", 718 __func__, sb->s_type->name, rc); 719 goto out; 720 } 721 } 722 723 /* 724 * If this is a user namespace mount and the filesystem type is not 725 * explicitly whitelisted, then no contexts are allowed on the command 726 * line and security labels must be ignored. 727 */ 728 if (sb->s_user_ns != &init_user_ns && 729 strcmp(sb->s_type->name, "tmpfs") && 730 strcmp(sb->s_type->name, "ramfs") && 731 strcmp(sb->s_type->name, "devpts")) { 732 if (context_sid || fscontext_sid || rootcontext_sid || 733 defcontext_sid) { 734 rc = -EACCES; 735 goto out; 736 } 737 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 738 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 739 rc = security_transition_sid(&selinux_state, 740 current_sid(), 741 current_sid(), 742 SECCLASS_FILE, NULL, 743 &sbsec->mntpoint_sid); 744 if (rc) 745 goto out; 746 } 747 goto out_set_opts; 748 } 749 750 /* sets the context of the superblock for the fs being mounted. */ 751 if (fscontext_sid) { 752 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred); 753 if (rc) 754 goto out; 755 756 sbsec->sid = fscontext_sid; 757 } 758 759 /* 760 * Switch to using mount point labeling behavior. 761 * sets the label used on all file below the mountpoint, and will set 762 * the superblock context if not already set. 763 */ 764 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) { 765 sbsec->behavior = SECURITY_FS_USE_NATIVE; 766 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 767 } 768 769 if (context_sid) { 770 if (!fscontext_sid) { 771 rc = may_context_mount_sb_relabel(context_sid, sbsec, 772 cred); 773 if (rc) 774 goto out; 775 sbsec->sid = context_sid; 776 } else { 777 rc = may_context_mount_inode_relabel(context_sid, sbsec, 778 cred); 779 if (rc) 780 goto out; 781 } 782 if (!rootcontext_sid) 783 rootcontext_sid = context_sid; 784 785 sbsec->mntpoint_sid = context_sid; 786 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 787 } 788 789 if (rootcontext_sid) { 790 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, 791 cred); 792 if (rc) 793 goto out; 794 795 root_isec->sid = rootcontext_sid; 796 root_isec->initialized = LABEL_INITIALIZED; 797 } 798 799 if (defcontext_sid) { 800 if (sbsec->behavior != SECURITY_FS_USE_XATTR && 801 sbsec->behavior != SECURITY_FS_USE_NATIVE) { 802 rc = -EINVAL; 803 pr_warn("SELinux: defcontext option is " 804 "invalid for this filesystem type\n"); 805 goto out; 806 } 807 808 if (defcontext_sid != sbsec->def_sid) { 809 rc = may_context_mount_inode_relabel(defcontext_sid, 810 sbsec, cred); 811 if (rc) 812 goto out; 813 } 814 815 sbsec->def_sid = defcontext_sid; 816 } 817 818 out_set_opts: 819 rc = sb_finish_set_opts(sb); 820 out: 821 mutex_unlock(&sbsec->lock); 822 return rc; 823 out_double_mount: 824 rc = -EINVAL; 825 pr_warn("SELinux: mount invalid. Same superblock, different " 826 "security settings for (dev %s, type %s)\n", sb->s_id, 827 sb->s_type->name); 828 goto out; 829 } 830 831 static int selinux_cmp_sb_context(const struct super_block *oldsb, 832 const struct super_block *newsb) 833 { 834 struct superblock_security_struct *old = oldsb->s_security; 835 struct superblock_security_struct *new = newsb->s_security; 836 char oldflags = old->flags & SE_MNTMASK; 837 char newflags = new->flags & SE_MNTMASK; 838 839 if (oldflags != newflags) 840 goto mismatch; 841 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid) 842 goto mismatch; 843 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid) 844 goto mismatch; 845 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid) 846 goto mismatch; 847 if (oldflags & ROOTCONTEXT_MNT) { 848 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root); 849 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root); 850 if (oldroot->sid != newroot->sid) 851 goto mismatch; 852 } 853 return 0; 854 mismatch: 855 pr_warn("SELinux: mount invalid. Same superblock, " 856 "different security settings for (dev %s, " 857 "type %s)\n", newsb->s_id, newsb->s_type->name); 858 return -EBUSY; 859 } 860 861 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb, 862 struct super_block *newsb, 863 unsigned long kern_flags, 864 unsigned long *set_kern_flags) 865 { 866 int rc = 0; 867 const struct superblock_security_struct *oldsbsec = oldsb->s_security; 868 struct superblock_security_struct *newsbsec = newsb->s_security; 869 870 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); 871 int set_context = (oldsbsec->flags & CONTEXT_MNT); 872 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); 873 874 /* 875 * if the parent was able to be mounted it clearly had no special lsm 876 * mount options. thus we can safely deal with this superblock later 877 */ 878 if (!selinux_initialized(&selinux_state)) 879 return 0; 880 881 /* 882 * Specifying internal flags without providing a place to 883 * place the results is not allowed. 884 */ 885 if (kern_flags && !set_kern_flags) 886 return -EINVAL; 887 888 /* how can we clone if the old one wasn't set up?? */ 889 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED)); 890 891 /* if fs is reusing a sb, make sure that the contexts match */ 892 if (newsbsec->flags & SE_SBINITIALIZED) { 893 if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) 894 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 895 return selinux_cmp_sb_context(oldsb, newsb); 896 } 897 898 mutex_lock(&newsbsec->lock); 899 900 newsbsec->flags = oldsbsec->flags; 901 902 newsbsec->sid = oldsbsec->sid; 903 newsbsec->def_sid = oldsbsec->def_sid; 904 newsbsec->behavior = oldsbsec->behavior; 905 906 if (newsbsec->behavior == SECURITY_FS_USE_NATIVE && 907 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) { 908 rc = security_fs_use(&selinux_state, newsb); 909 if (rc) 910 goto out; 911 } 912 913 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) { 914 newsbsec->behavior = SECURITY_FS_USE_NATIVE; 915 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 916 } 917 918 if (set_context) { 919 u32 sid = oldsbsec->mntpoint_sid; 920 921 if (!set_fscontext) 922 newsbsec->sid = sid; 923 if (!set_rootcontext) { 924 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root); 925 newisec->sid = sid; 926 } 927 newsbsec->mntpoint_sid = sid; 928 } 929 if (set_rootcontext) { 930 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root); 931 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root); 932 933 newisec->sid = oldisec->sid; 934 } 935 936 sb_finish_set_opts(newsb); 937 out: 938 mutex_unlock(&newsbsec->lock); 939 return rc; 940 } 941 942 static int selinux_add_opt(int token, const char *s, void **mnt_opts) 943 { 944 struct selinux_mnt_opts *opts = *mnt_opts; 945 946 if (token == Opt_seclabel) /* eaten and completely ignored */ 947 return 0; 948 949 if (!opts) { 950 opts = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL); 951 if (!opts) 952 return -ENOMEM; 953 *mnt_opts = opts; 954 } 955 if (!s) 956 return -ENOMEM; 957 switch (token) { 958 case Opt_context: 959 if (opts->context || opts->defcontext) 960 goto Einval; 961 opts->context = s; 962 break; 963 case Opt_fscontext: 964 if (opts->fscontext) 965 goto Einval; 966 opts->fscontext = s; 967 break; 968 case Opt_rootcontext: 969 if (opts->rootcontext) 970 goto Einval; 971 opts->rootcontext = s; 972 break; 973 case Opt_defcontext: 974 if (opts->context || opts->defcontext) 975 goto Einval; 976 opts->defcontext = s; 977 break; 978 } 979 return 0; 980 Einval: 981 pr_warn(SEL_MOUNT_FAIL_MSG); 982 return -EINVAL; 983 } 984 985 static int selinux_add_mnt_opt(const char *option, const char *val, int len, 986 void **mnt_opts) 987 { 988 int token = Opt_error; 989 int rc, i; 990 991 for (i = 0; i < ARRAY_SIZE(tokens); i++) { 992 if (strcmp(option, tokens[i].name) == 0) { 993 token = tokens[i].opt; 994 break; 995 } 996 } 997 998 if (token == Opt_error) 999 return -EINVAL; 1000 1001 if (token != Opt_seclabel) { 1002 val = kmemdup_nul(val, len, GFP_KERNEL); 1003 if (!val) { 1004 rc = -ENOMEM; 1005 goto free_opt; 1006 } 1007 } 1008 rc = selinux_add_opt(token, val, mnt_opts); 1009 if (unlikely(rc)) { 1010 kfree(val); 1011 goto free_opt; 1012 } 1013 return rc; 1014 1015 free_opt: 1016 if (*mnt_opts) { 1017 selinux_free_mnt_opts(*mnt_opts); 1018 *mnt_opts = NULL; 1019 } 1020 return rc; 1021 } 1022 1023 static int show_sid(struct seq_file *m, u32 sid) 1024 { 1025 char *context = NULL; 1026 u32 len; 1027 int rc; 1028 1029 rc = security_sid_to_context(&selinux_state, sid, 1030 &context, &len); 1031 if (!rc) { 1032 bool has_comma = context && strchr(context, ','); 1033 1034 seq_putc(m, '='); 1035 if (has_comma) 1036 seq_putc(m, '\"'); 1037 seq_escape(m, context, "\"\n\\"); 1038 if (has_comma) 1039 seq_putc(m, '\"'); 1040 } 1041 kfree(context); 1042 return rc; 1043 } 1044 1045 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb) 1046 { 1047 struct superblock_security_struct *sbsec = sb->s_security; 1048 int rc; 1049 1050 if (!(sbsec->flags & SE_SBINITIALIZED)) 1051 return 0; 1052 1053 if (!selinux_initialized(&selinux_state)) 1054 return 0; 1055 1056 if (sbsec->flags & FSCONTEXT_MNT) { 1057 seq_putc(m, ','); 1058 seq_puts(m, FSCONTEXT_STR); 1059 rc = show_sid(m, sbsec->sid); 1060 if (rc) 1061 return rc; 1062 } 1063 if (sbsec->flags & CONTEXT_MNT) { 1064 seq_putc(m, ','); 1065 seq_puts(m, CONTEXT_STR); 1066 rc = show_sid(m, sbsec->mntpoint_sid); 1067 if (rc) 1068 return rc; 1069 } 1070 if (sbsec->flags & DEFCONTEXT_MNT) { 1071 seq_putc(m, ','); 1072 seq_puts(m, DEFCONTEXT_STR); 1073 rc = show_sid(m, sbsec->def_sid); 1074 if (rc) 1075 return rc; 1076 } 1077 if (sbsec->flags & ROOTCONTEXT_MNT) { 1078 struct dentry *root = sbsec->sb->s_root; 1079 struct inode_security_struct *isec = backing_inode_security(root); 1080 seq_putc(m, ','); 1081 seq_puts(m, ROOTCONTEXT_STR); 1082 rc = show_sid(m, isec->sid); 1083 if (rc) 1084 return rc; 1085 } 1086 if (sbsec->flags & SBLABEL_MNT) { 1087 seq_putc(m, ','); 1088 seq_puts(m, SECLABEL_STR); 1089 } 1090 return 0; 1091 } 1092 1093 static inline u16 inode_mode_to_security_class(umode_t mode) 1094 { 1095 switch (mode & S_IFMT) { 1096 case S_IFSOCK: 1097 return SECCLASS_SOCK_FILE; 1098 case S_IFLNK: 1099 return SECCLASS_LNK_FILE; 1100 case S_IFREG: 1101 return SECCLASS_FILE; 1102 case S_IFBLK: 1103 return SECCLASS_BLK_FILE; 1104 case S_IFDIR: 1105 return SECCLASS_DIR; 1106 case S_IFCHR: 1107 return SECCLASS_CHR_FILE; 1108 case S_IFIFO: 1109 return SECCLASS_FIFO_FILE; 1110 1111 } 1112 1113 return SECCLASS_FILE; 1114 } 1115 1116 static inline int default_protocol_stream(int protocol) 1117 { 1118 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP); 1119 } 1120 1121 static inline int default_protocol_dgram(int protocol) 1122 { 1123 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 1124 } 1125 1126 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 1127 { 1128 int extsockclass = selinux_policycap_extsockclass(); 1129 1130 switch (family) { 1131 case PF_UNIX: 1132 switch (type) { 1133 case SOCK_STREAM: 1134 case SOCK_SEQPACKET: 1135 return SECCLASS_UNIX_STREAM_SOCKET; 1136 case SOCK_DGRAM: 1137 case SOCK_RAW: 1138 return SECCLASS_UNIX_DGRAM_SOCKET; 1139 } 1140 break; 1141 case PF_INET: 1142 case PF_INET6: 1143 switch (type) { 1144 case SOCK_STREAM: 1145 case SOCK_SEQPACKET: 1146 if (default_protocol_stream(protocol)) 1147 return SECCLASS_TCP_SOCKET; 1148 else if (extsockclass && protocol == IPPROTO_SCTP) 1149 return SECCLASS_SCTP_SOCKET; 1150 else 1151 return SECCLASS_RAWIP_SOCKET; 1152 case SOCK_DGRAM: 1153 if (default_protocol_dgram(protocol)) 1154 return SECCLASS_UDP_SOCKET; 1155 else if (extsockclass && (protocol == IPPROTO_ICMP || 1156 protocol == IPPROTO_ICMPV6)) 1157 return SECCLASS_ICMP_SOCKET; 1158 else 1159 return SECCLASS_RAWIP_SOCKET; 1160 case SOCK_DCCP: 1161 return SECCLASS_DCCP_SOCKET; 1162 default: 1163 return SECCLASS_RAWIP_SOCKET; 1164 } 1165 break; 1166 case PF_NETLINK: 1167 switch (protocol) { 1168 case NETLINK_ROUTE: 1169 return SECCLASS_NETLINK_ROUTE_SOCKET; 1170 case NETLINK_SOCK_DIAG: 1171 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 1172 case NETLINK_NFLOG: 1173 return SECCLASS_NETLINK_NFLOG_SOCKET; 1174 case NETLINK_XFRM: 1175 return SECCLASS_NETLINK_XFRM_SOCKET; 1176 case NETLINK_SELINUX: 1177 return SECCLASS_NETLINK_SELINUX_SOCKET; 1178 case NETLINK_ISCSI: 1179 return SECCLASS_NETLINK_ISCSI_SOCKET; 1180 case NETLINK_AUDIT: 1181 return SECCLASS_NETLINK_AUDIT_SOCKET; 1182 case NETLINK_FIB_LOOKUP: 1183 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET; 1184 case NETLINK_CONNECTOR: 1185 return SECCLASS_NETLINK_CONNECTOR_SOCKET; 1186 case NETLINK_NETFILTER: 1187 return SECCLASS_NETLINK_NETFILTER_SOCKET; 1188 case NETLINK_DNRTMSG: 1189 return SECCLASS_NETLINK_DNRT_SOCKET; 1190 case NETLINK_KOBJECT_UEVENT: 1191 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 1192 case NETLINK_GENERIC: 1193 return SECCLASS_NETLINK_GENERIC_SOCKET; 1194 case NETLINK_SCSITRANSPORT: 1195 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET; 1196 case NETLINK_RDMA: 1197 return SECCLASS_NETLINK_RDMA_SOCKET; 1198 case NETLINK_CRYPTO: 1199 return SECCLASS_NETLINK_CRYPTO_SOCKET; 1200 default: 1201 return SECCLASS_NETLINK_SOCKET; 1202 } 1203 case PF_PACKET: 1204 return SECCLASS_PACKET_SOCKET; 1205 case PF_KEY: 1206 return SECCLASS_KEY_SOCKET; 1207 case PF_APPLETALK: 1208 return SECCLASS_APPLETALK_SOCKET; 1209 } 1210 1211 if (extsockclass) { 1212 switch (family) { 1213 case PF_AX25: 1214 return SECCLASS_AX25_SOCKET; 1215 case PF_IPX: 1216 return SECCLASS_IPX_SOCKET; 1217 case PF_NETROM: 1218 return SECCLASS_NETROM_SOCKET; 1219 case PF_ATMPVC: 1220 return SECCLASS_ATMPVC_SOCKET; 1221 case PF_X25: 1222 return SECCLASS_X25_SOCKET; 1223 case PF_ROSE: 1224 return SECCLASS_ROSE_SOCKET; 1225 case PF_DECnet: 1226 return SECCLASS_DECNET_SOCKET; 1227 case PF_ATMSVC: 1228 return SECCLASS_ATMSVC_SOCKET; 1229 case PF_RDS: 1230 return SECCLASS_RDS_SOCKET; 1231 case PF_IRDA: 1232 return SECCLASS_IRDA_SOCKET; 1233 case PF_PPPOX: 1234 return SECCLASS_PPPOX_SOCKET; 1235 case PF_LLC: 1236 return SECCLASS_LLC_SOCKET; 1237 case PF_CAN: 1238 return SECCLASS_CAN_SOCKET; 1239 case PF_TIPC: 1240 return SECCLASS_TIPC_SOCKET; 1241 case PF_BLUETOOTH: 1242 return SECCLASS_BLUETOOTH_SOCKET; 1243 case PF_IUCV: 1244 return SECCLASS_IUCV_SOCKET; 1245 case PF_RXRPC: 1246 return SECCLASS_RXRPC_SOCKET; 1247 case PF_ISDN: 1248 return SECCLASS_ISDN_SOCKET; 1249 case PF_PHONET: 1250 return SECCLASS_PHONET_SOCKET; 1251 case PF_IEEE802154: 1252 return SECCLASS_IEEE802154_SOCKET; 1253 case PF_CAIF: 1254 return SECCLASS_CAIF_SOCKET; 1255 case PF_ALG: 1256 return SECCLASS_ALG_SOCKET; 1257 case PF_NFC: 1258 return SECCLASS_NFC_SOCKET; 1259 case PF_VSOCK: 1260 return SECCLASS_VSOCK_SOCKET; 1261 case PF_KCM: 1262 return SECCLASS_KCM_SOCKET; 1263 case PF_QIPCRTR: 1264 return SECCLASS_QIPCRTR_SOCKET; 1265 case PF_SMC: 1266 return SECCLASS_SMC_SOCKET; 1267 case PF_XDP: 1268 return SECCLASS_XDP_SOCKET; 1269 #if PF_MAX > 45 1270 #error New address family defined, please update this function. 1271 #endif 1272 } 1273 } 1274 1275 return SECCLASS_SOCKET; 1276 } 1277 1278 static int selinux_genfs_get_sid(struct dentry *dentry, 1279 u16 tclass, 1280 u16 flags, 1281 u32 *sid) 1282 { 1283 int rc; 1284 struct super_block *sb = dentry->d_sb; 1285 char *buffer, *path; 1286 1287 buffer = (char *)__get_free_page(GFP_KERNEL); 1288 if (!buffer) 1289 return -ENOMEM; 1290 1291 path = dentry_path_raw(dentry, buffer, PAGE_SIZE); 1292 if (IS_ERR(path)) 1293 rc = PTR_ERR(path); 1294 else { 1295 if (flags & SE_SBPROC) { 1296 /* each process gets a /proc/PID/ entry. Strip off the 1297 * PID part to get a valid selinux labeling. 1298 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */ 1299 while (path[1] >= '0' && path[1] <= '9') { 1300 path[1] = '/'; 1301 path++; 1302 } 1303 } 1304 rc = security_genfs_sid(&selinux_state, sb->s_type->name, 1305 path, tclass, sid); 1306 if (rc == -ENOENT) { 1307 /* No match in policy, mark as unlabeled. */ 1308 *sid = SECINITSID_UNLABELED; 1309 rc = 0; 1310 } 1311 } 1312 free_page((unsigned long)buffer); 1313 return rc; 1314 } 1315 1316 static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry, 1317 u32 def_sid, u32 *sid) 1318 { 1319 #define INITCONTEXTLEN 255 1320 char *context; 1321 unsigned int len; 1322 int rc; 1323 1324 len = INITCONTEXTLEN; 1325 context = kmalloc(len + 1, GFP_NOFS); 1326 if (!context) 1327 return -ENOMEM; 1328 1329 context[len] = '\0'; 1330 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len); 1331 if (rc == -ERANGE) { 1332 kfree(context); 1333 1334 /* Need a larger buffer. Query for the right size. */ 1335 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0); 1336 if (rc < 0) 1337 return rc; 1338 1339 len = rc; 1340 context = kmalloc(len + 1, GFP_NOFS); 1341 if (!context) 1342 return -ENOMEM; 1343 1344 context[len] = '\0'; 1345 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, 1346 context, len); 1347 } 1348 if (rc < 0) { 1349 kfree(context); 1350 if (rc != -ENODATA) { 1351 pr_warn("SELinux: %s: getxattr returned %d for dev=%s ino=%ld\n", 1352 __func__, -rc, inode->i_sb->s_id, inode->i_ino); 1353 return rc; 1354 } 1355 *sid = def_sid; 1356 return 0; 1357 } 1358 1359 rc = security_context_to_sid_default(&selinux_state, context, rc, sid, 1360 def_sid, GFP_NOFS); 1361 if (rc) { 1362 char *dev = inode->i_sb->s_id; 1363 unsigned long ino = inode->i_ino; 1364 1365 if (rc == -EINVAL) { 1366 pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s. This indicates you may need to relabel the inode or the filesystem in question.\n", 1367 ino, dev, context); 1368 } else { 1369 pr_warn("SELinux: %s: context_to_sid(%s) returned %d for dev=%s ino=%ld\n", 1370 __func__, context, -rc, dev, ino); 1371 } 1372 } 1373 kfree(context); 1374 return 0; 1375 } 1376 1377 /* The inode's security attributes must be initialized before first use. */ 1378 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 1379 { 1380 struct superblock_security_struct *sbsec = NULL; 1381 struct inode_security_struct *isec = selinux_inode(inode); 1382 u32 task_sid, sid = 0; 1383 u16 sclass; 1384 struct dentry *dentry; 1385 int rc = 0; 1386 1387 if (isec->initialized == LABEL_INITIALIZED) 1388 return 0; 1389 1390 spin_lock(&isec->lock); 1391 if (isec->initialized == LABEL_INITIALIZED) 1392 goto out_unlock; 1393 1394 if (isec->sclass == SECCLASS_FILE) 1395 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1396 1397 sbsec = inode->i_sb->s_security; 1398 if (!(sbsec->flags & SE_SBINITIALIZED)) { 1399 /* Defer initialization until selinux_complete_init, 1400 after the initial policy is loaded and the security 1401 server is ready to handle calls. */ 1402 spin_lock(&sbsec->isec_lock); 1403 if (list_empty(&isec->list)) 1404 list_add(&isec->list, &sbsec->isec_head); 1405 spin_unlock(&sbsec->isec_lock); 1406 goto out_unlock; 1407 } 1408 1409 sclass = isec->sclass; 1410 task_sid = isec->task_sid; 1411 sid = isec->sid; 1412 isec->initialized = LABEL_PENDING; 1413 spin_unlock(&isec->lock); 1414 1415 switch (sbsec->behavior) { 1416 case SECURITY_FS_USE_NATIVE: 1417 break; 1418 case SECURITY_FS_USE_XATTR: 1419 if (!(inode->i_opflags & IOP_XATTR)) { 1420 sid = sbsec->def_sid; 1421 break; 1422 } 1423 /* Need a dentry, since the xattr API requires one. 1424 Life would be simpler if we could just pass the inode. */ 1425 if (opt_dentry) { 1426 /* Called from d_instantiate or d_splice_alias. */ 1427 dentry = dget(opt_dentry); 1428 } else { 1429 /* 1430 * Called from selinux_complete_init, try to find a dentry. 1431 * Some filesystems really want a connected one, so try 1432 * that first. We could split SECURITY_FS_USE_XATTR in 1433 * two, depending upon that... 1434 */ 1435 dentry = d_find_alias(inode); 1436 if (!dentry) 1437 dentry = d_find_any_alias(inode); 1438 } 1439 if (!dentry) { 1440 /* 1441 * this is can be hit on boot when a file is accessed 1442 * before the policy is loaded. When we load policy we 1443 * may find inodes that have no dentry on the 1444 * sbsec->isec_head list. No reason to complain as these 1445 * will get fixed up the next time we go through 1446 * inode_doinit with a dentry, before these inodes could 1447 * be used again by userspace. 1448 */ 1449 goto out; 1450 } 1451 1452 rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid, 1453 &sid); 1454 dput(dentry); 1455 if (rc) 1456 goto out; 1457 break; 1458 case SECURITY_FS_USE_TASK: 1459 sid = task_sid; 1460 break; 1461 case SECURITY_FS_USE_TRANS: 1462 /* Default to the fs SID. */ 1463 sid = sbsec->sid; 1464 1465 /* Try to obtain a transition SID. */ 1466 rc = security_transition_sid(&selinux_state, task_sid, sid, 1467 sclass, NULL, &sid); 1468 if (rc) 1469 goto out; 1470 break; 1471 case SECURITY_FS_USE_MNTPOINT: 1472 sid = sbsec->mntpoint_sid; 1473 break; 1474 default: 1475 /* Default to the fs superblock SID. */ 1476 sid = sbsec->sid; 1477 1478 if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) { 1479 /* We must have a dentry to determine the label on 1480 * procfs inodes */ 1481 if (opt_dentry) { 1482 /* Called from d_instantiate or 1483 * d_splice_alias. */ 1484 dentry = dget(opt_dentry); 1485 } else { 1486 /* Called from selinux_complete_init, try to 1487 * find a dentry. Some filesystems really want 1488 * a connected one, so try that first. 1489 */ 1490 dentry = d_find_alias(inode); 1491 if (!dentry) 1492 dentry = d_find_any_alias(inode); 1493 } 1494 /* 1495 * This can be hit on boot when a file is accessed 1496 * before the policy is loaded. When we load policy we 1497 * may find inodes that have no dentry on the 1498 * sbsec->isec_head list. No reason to complain as 1499 * these will get fixed up the next time we go through 1500 * inode_doinit() with a dentry, before these inodes 1501 * could be used again by userspace. 1502 */ 1503 if (!dentry) 1504 goto out; 1505 rc = selinux_genfs_get_sid(dentry, sclass, 1506 sbsec->flags, &sid); 1507 if (rc) { 1508 dput(dentry); 1509 goto out; 1510 } 1511 1512 if ((sbsec->flags & SE_SBGENFS_XATTR) && 1513 (inode->i_opflags & IOP_XATTR)) { 1514 rc = inode_doinit_use_xattr(inode, dentry, 1515 sid, &sid); 1516 if (rc) { 1517 dput(dentry); 1518 goto out; 1519 } 1520 } 1521 dput(dentry); 1522 } 1523 break; 1524 } 1525 1526 out: 1527 spin_lock(&isec->lock); 1528 if (isec->initialized == LABEL_PENDING) { 1529 if (!sid || rc) { 1530 isec->initialized = LABEL_INVALID; 1531 goto out_unlock; 1532 } 1533 1534 isec->initialized = LABEL_INITIALIZED; 1535 isec->sid = sid; 1536 } 1537 1538 out_unlock: 1539 spin_unlock(&isec->lock); 1540 return rc; 1541 } 1542 1543 /* Convert a Linux signal to an access vector. */ 1544 static inline u32 signal_to_av(int sig) 1545 { 1546 u32 perm = 0; 1547 1548 switch (sig) { 1549 case SIGCHLD: 1550 /* Commonly granted from child to parent. */ 1551 perm = PROCESS__SIGCHLD; 1552 break; 1553 case SIGKILL: 1554 /* Cannot be caught or ignored */ 1555 perm = PROCESS__SIGKILL; 1556 break; 1557 case SIGSTOP: 1558 /* Cannot be caught or ignored */ 1559 perm = PROCESS__SIGSTOP; 1560 break; 1561 default: 1562 /* All other signals. */ 1563 perm = PROCESS__SIGNAL; 1564 break; 1565 } 1566 1567 return perm; 1568 } 1569 1570 #if CAP_LAST_CAP > 63 1571 #error Fix SELinux to handle capabilities > 63. 1572 #endif 1573 1574 /* Check whether a task is allowed to use a capability. */ 1575 static int cred_has_capability(const struct cred *cred, 1576 int cap, unsigned int opts, bool initns) 1577 { 1578 struct common_audit_data ad; 1579 struct av_decision avd; 1580 u16 sclass; 1581 u32 sid = cred_sid(cred); 1582 u32 av = CAP_TO_MASK(cap); 1583 int rc; 1584 1585 ad.type = LSM_AUDIT_DATA_CAP; 1586 ad.u.cap = cap; 1587 1588 switch (CAP_TO_INDEX(cap)) { 1589 case 0: 1590 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS; 1591 break; 1592 case 1: 1593 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS; 1594 break; 1595 default: 1596 pr_err("SELinux: out of range capability %d\n", cap); 1597 BUG(); 1598 return -EINVAL; 1599 } 1600 1601 rc = avc_has_perm_noaudit(&selinux_state, 1602 sid, sid, sclass, av, 0, &avd); 1603 if (!(opts & CAP_OPT_NOAUDIT)) { 1604 int rc2 = avc_audit(&selinux_state, 1605 sid, sid, sclass, av, &avd, rc, &ad, 0); 1606 if (rc2) 1607 return rc2; 1608 } 1609 return rc; 1610 } 1611 1612 /* Check whether a task has a particular permission to an inode. 1613 The 'adp' parameter is optional and allows other audit 1614 data to be passed (e.g. the dentry). */ 1615 static int inode_has_perm(const struct cred *cred, 1616 struct inode *inode, 1617 u32 perms, 1618 struct common_audit_data *adp) 1619 { 1620 struct inode_security_struct *isec; 1621 u32 sid; 1622 1623 validate_creds(cred); 1624 1625 if (unlikely(IS_PRIVATE(inode))) 1626 return 0; 1627 1628 sid = cred_sid(cred); 1629 isec = selinux_inode(inode); 1630 1631 return avc_has_perm(&selinux_state, 1632 sid, isec->sid, isec->sclass, perms, adp); 1633 } 1634 1635 /* Same as inode_has_perm, but pass explicit audit data containing 1636 the dentry to help the auditing code to more easily generate the 1637 pathname if needed. */ 1638 static inline int dentry_has_perm(const struct cred *cred, 1639 struct dentry *dentry, 1640 u32 av) 1641 { 1642 struct inode *inode = d_backing_inode(dentry); 1643 struct common_audit_data ad; 1644 1645 ad.type = LSM_AUDIT_DATA_DENTRY; 1646 ad.u.dentry = dentry; 1647 __inode_security_revalidate(inode, dentry, true); 1648 return inode_has_perm(cred, inode, av, &ad); 1649 } 1650 1651 /* Same as inode_has_perm, but pass explicit audit data containing 1652 the path to help the auditing code to more easily generate the 1653 pathname if needed. */ 1654 static inline int path_has_perm(const struct cred *cred, 1655 const struct path *path, 1656 u32 av) 1657 { 1658 struct inode *inode = d_backing_inode(path->dentry); 1659 struct common_audit_data ad; 1660 1661 ad.type = LSM_AUDIT_DATA_PATH; 1662 ad.u.path = *path; 1663 __inode_security_revalidate(inode, path->dentry, true); 1664 return inode_has_perm(cred, inode, av, &ad); 1665 } 1666 1667 /* Same as path_has_perm, but uses the inode from the file struct. */ 1668 static inline int file_path_has_perm(const struct cred *cred, 1669 struct file *file, 1670 u32 av) 1671 { 1672 struct common_audit_data ad; 1673 1674 ad.type = LSM_AUDIT_DATA_FILE; 1675 ad.u.file = file; 1676 return inode_has_perm(cred, file_inode(file), av, &ad); 1677 } 1678 1679 #ifdef CONFIG_BPF_SYSCALL 1680 static int bpf_fd_pass(struct file *file, u32 sid); 1681 #endif 1682 1683 /* Check whether a task can use an open file descriptor to 1684 access an inode in a given way. Check access to the 1685 descriptor itself, and then use dentry_has_perm to 1686 check a particular permission to the file. 1687 Access to the descriptor is implicitly granted if it 1688 has the same SID as the process. If av is zero, then 1689 access to the file is not checked, e.g. for cases 1690 where only the descriptor is affected like seek. */ 1691 static int file_has_perm(const struct cred *cred, 1692 struct file *file, 1693 u32 av) 1694 { 1695 struct file_security_struct *fsec = selinux_file(file); 1696 struct inode *inode = file_inode(file); 1697 struct common_audit_data ad; 1698 u32 sid = cred_sid(cred); 1699 int rc; 1700 1701 ad.type = LSM_AUDIT_DATA_FILE; 1702 ad.u.file = file; 1703 1704 if (sid != fsec->sid) { 1705 rc = avc_has_perm(&selinux_state, 1706 sid, fsec->sid, 1707 SECCLASS_FD, 1708 FD__USE, 1709 &ad); 1710 if (rc) 1711 goto out; 1712 } 1713 1714 #ifdef CONFIG_BPF_SYSCALL 1715 rc = bpf_fd_pass(file, cred_sid(cred)); 1716 if (rc) 1717 return rc; 1718 #endif 1719 1720 /* av is zero if only checking access to the descriptor. */ 1721 rc = 0; 1722 if (av) 1723 rc = inode_has_perm(cred, inode, av, &ad); 1724 1725 out: 1726 return rc; 1727 } 1728 1729 /* 1730 * Determine the label for an inode that might be unioned. 1731 */ 1732 static int 1733 selinux_determine_inode_label(const struct task_security_struct *tsec, 1734 struct inode *dir, 1735 const struct qstr *name, u16 tclass, 1736 u32 *_new_isid) 1737 { 1738 const struct superblock_security_struct *sbsec = dir->i_sb->s_security; 1739 1740 if ((sbsec->flags & SE_SBINITIALIZED) && 1741 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) { 1742 *_new_isid = sbsec->mntpoint_sid; 1743 } else if ((sbsec->flags & SBLABEL_MNT) && 1744 tsec->create_sid) { 1745 *_new_isid = tsec->create_sid; 1746 } else { 1747 const struct inode_security_struct *dsec = inode_security(dir); 1748 return security_transition_sid(&selinux_state, tsec->sid, 1749 dsec->sid, tclass, 1750 name, _new_isid); 1751 } 1752 1753 return 0; 1754 } 1755 1756 /* Check whether a task can create a file. */ 1757 static int may_create(struct inode *dir, 1758 struct dentry *dentry, 1759 u16 tclass) 1760 { 1761 const struct task_security_struct *tsec = selinux_cred(current_cred()); 1762 struct inode_security_struct *dsec; 1763 struct superblock_security_struct *sbsec; 1764 u32 sid, newsid; 1765 struct common_audit_data ad; 1766 int rc; 1767 1768 dsec = inode_security(dir); 1769 sbsec = dir->i_sb->s_security; 1770 1771 sid = tsec->sid; 1772 1773 ad.type = LSM_AUDIT_DATA_DENTRY; 1774 ad.u.dentry = dentry; 1775 1776 rc = avc_has_perm(&selinux_state, 1777 sid, dsec->sid, SECCLASS_DIR, 1778 DIR__ADD_NAME | DIR__SEARCH, 1779 &ad); 1780 if (rc) 1781 return rc; 1782 1783 rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass, 1784 &newsid); 1785 if (rc) 1786 return rc; 1787 1788 rc = avc_has_perm(&selinux_state, 1789 sid, newsid, tclass, FILE__CREATE, &ad); 1790 if (rc) 1791 return rc; 1792 1793 return avc_has_perm(&selinux_state, 1794 newsid, sbsec->sid, 1795 SECCLASS_FILESYSTEM, 1796 FILESYSTEM__ASSOCIATE, &ad); 1797 } 1798 1799 #define MAY_LINK 0 1800 #define MAY_UNLINK 1 1801 #define MAY_RMDIR 2 1802 1803 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1804 static int may_link(struct inode *dir, 1805 struct dentry *dentry, 1806 int kind) 1807 1808 { 1809 struct inode_security_struct *dsec, *isec; 1810 struct common_audit_data ad; 1811 u32 sid = current_sid(); 1812 u32 av; 1813 int rc; 1814 1815 dsec = inode_security(dir); 1816 isec = backing_inode_security(dentry); 1817 1818 ad.type = LSM_AUDIT_DATA_DENTRY; 1819 ad.u.dentry = dentry; 1820 1821 av = DIR__SEARCH; 1822 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1823 rc = avc_has_perm(&selinux_state, 1824 sid, dsec->sid, SECCLASS_DIR, av, &ad); 1825 if (rc) 1826 return rc; 1827 1828 switch (kind) { 1829 case MAY_LINK: 1830 av = FILE__LINK; 1831 break; 1832 case MAY_UNLINK: 1833 av = FILE__UNLINK; 1834 break; 1835 case MAY_RMDIR: 1836 av = DIR__RMDIR; 1837 break; 1838 default: 1839 pr_warn("SELinux: %s: unrecognized kind %d\n", 1840 __func__, kind); 1841 return 0; 1842 } 1843 1844 rc = avc_has_perm(&selinux_state, 1845 sid, isec->sid, isec->sclass, av, &ad); 1846 return rc; 1847 } 1848 1849 static inline int may_rename(struct inode *old_dir, 1850 struct dentry *old_dentry, 1851 struct inode *new_dir, 1852 struct dentry *new_dentry) 1853 { 1854 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1855 struct common_audit_data ad; 1856 u32 sid = current_sid(); 1857 u32 av; 1858 int old_is_dir, new_is_dir; 1859 int rc; 1860 1861 old_dsec = inode_security(old_dir); 1862 old_isec = backing_inode_security(old_dentry); 1863 old_is_dir = d_is_dir(old_dentry); 1864 new_dsec = inode_security(new_dir); 1865 1866 ad.type = LSM_AUDIT_DATA_DENTRY; 1867 1868 ad.u.dentry = old_dentry; 1869 rc = avc_has_perm(&selinux_state, 1870 sid, old_dsec->sid, SECCLASS_DIR, 1871 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1872 if (rc) 1873 return rc; 1874 rc = avc_has_perm(&selinux_state, 1875 sid, old_isec->sid, 1876 old_isec->sclass, FILE__RENAME, &ad); 1877 if (rc) 1878 return rc; 1879 if (old_is_dir && new_dir != old_dir) { 1880 rc = avc_has_perm(&selinux_state, 1881 sid, old_isec->sid, 1882 old_isec->sclass, DIR__REPARENT, &ad); 1883 if (rc) 1884 return rc; 1885 } 1886 1887 ad.u.dentry = new_dentry; 1888 av = DIR__ADD_NAME | DIR__SEARCH; 1889 if (d_is_positive(new_dentry)) 1890 av |= DIR__REMOVE_NAME; 1891 rc = avc_has_perm(&selinux_state, 1892 sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1893 if (rc) 1894 return rc; 1895 if (d_is_positive(new_dentry)) { 1896 new_isec = backing_inode_security(new_dentry); 1897 new_is_dir = d_is_dir(new_dentry); 1898 rc = avc_has_perm(&selinux_state, 1899 sid, new_isec->sid, 1900 new_isec->sclass, 1901 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1902 if (rc) 1903 return rc; 1904 } 1905 1906 return 0; 1907 } 1908 1909 /* Check whether a task can perform a filesystem operation. */ 1910 static int superblock_has_perm(const struct cred *cred, 1911 struct super_block *sb, 1912 u32 perms, 1913 struct common_audit_data *ad) 1914 { 1915 struct superblock_security_struct *sbsec; 1916 u32 sid = cred_sid(cred); 1917 1918 sbsec = sb->s_security; 1919 return avc_has_perm(&selinux_state, 1920 sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad); 1921 } 1922 1923 /* Convert a Linux mode and permission mask to an access vector. */ 1924 static inline u32 file_mask_to_av(int mode, int mask) 1925 { 1926 u32 av = 0; 1927 1928 if (!S_ISDIR(mode)) { 1929 if (mask & MAY_EXEC) 1930 av |= FILE__EXECUTE; 1931 if (mask & MAY_READ) 1932 av |= FILE__READ; 1933 1934 if (mask & MAY_APPEND) 1935 av |= FILE__APPEND; 1936 else if (mask & MAY_WRITE) 1937 av |= FILE__WRITE; 1938 1939 } else { 1940 if (mask & MAY_EXEC) 1941 av |= DIR__SEARCH; 1942 if (mask & MAY_WRITE) 1943 av |= DIR__WRITE; 1944 if (mask & MAY_READ) 1945 av |= DIR__READ; 1946 } 1947 1948 return av; 1949 } 1950 1951 /* Convert a Linux file to an access vector. */ 1952 static inline u32 file_to_av(struct file *file) 1953 { 1954 u32 av = 0; 1955 1956 if (file->f_mode & FMODE_READ) 1957 av |= FILE__READ; 1958 if (file->f_mode & FMODE_WRITE) { 1959 if (file->f_flags & O_APPEND) 1960 av |= FILE__APPEND; 1961 else 1962 av |= FILE__WRITE; 1963 } 1964 if (!av) { 1965 /* 1966 * Special file opened with flags 3 for ioctl-only use. 1967 */ 1968 av = FILE__IOCTL; 1969 } 1970 1971 return av; 1972 } 1973 1974 /* 1975 * Convert a file to an access vector and include the correct open 1976 * open permission. 1977 */ 1978 static inline u32 open_file_to_av(struct file *file) 1979 { 1980 u32 av = file_to_av(file); 1981 struct inode *inode = file_inode(file); 1982 1983 if (selinux_policycap_openperm() && 1984 inode->i_sb->s_magic != SOCKFS_MAGIC) 1985 av |= FILE__OPEN; 1986 1987 return av; 1988 } 1989 1990 /* Hook functions begin here. */ 1991 1992 static int selinux_binder_set_context_mgr(struct task_struct *mgr) 1993 { 1994 u32 mysid = current_sid(); 1995 u32 mgrsid = task_sid(mgr); 1996 1997 return avc_has_perm(&selinux_state, 1998 mysid, mgrsid, SECCLASS_BINDER, 1999 BINDER__SET_CONTEXT_MGR, NULL); 2000 } 2001 2002 static int selinux_binder_transaction(struct task_struct *from, 2003 struct task_struct *to) 2004 { 2005 u32 mysid = current_sid(); 2006 u32 fromsid = task_sid(from); 2007 u32 tosid = task_sid(to); 2008 int rc; 2009 2010 if (mysid != fromsid) { 2011 rc = avc_has_perm(&selinux_state, 2012 mysid, fromsid, SECCLASS_BINDER, 2013 BINDER__IMPERSONATE, NULL); 2014 if (rc) 2015 return rc; 2016 } 2017 2018 return avc_has_perm(&selinux_state, 2019 fromsid, tosid, SECCLASS_BINDER, BINDER__CALL, 2020 NULL); 2021 } 2022 2023 static int selinux_binder_transfer_binder(struct task_struct *from, 2024 struct task_struct *to) 2025 { 2026 u32 fromsid = task_sid(from); 2027 u32 tosid = task_sid(to); 2028 2029 return avc_has_perm(&selinux_state, 2030 fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER, 2031 NULL); 2032 } 2033 2034 static int selinux_binder_transfer_file(struct task_struct *from, 2035 struct task_struct *to, 2036 struct file *file) 2037 { 2038 u32 sid = task_sid(to); 2039 struct file_security_struct *fsec = selinux_file(file); 2040 struct dentry *dentry = file->f_path.dentry; 2041 struct inode_security_struct *isec; 2042 struct common_audit_data ad; 2043 int rc; 2044 2045 ad.type = LSM_AUDIT_DATA_PATH; 2046 ad.u.path = file->f_path; 2047 2048 if (sid != fsec->sid) { 2049 rc = avc_has_perm(&selinux_state, 2050 sid, fsec->sid, 2051 SECCLASS_FD, 2052 FD__USE, 2053 &ad); 2054 if (rc) 2055 return rc; 2056 } 2057 2058 #ifdef CONFIG_BPF_SYSCALL 2059 rc = bpf_fd_pass(file, sid); 2060 if (rc) 2061 return rc; 2062 #endif 2063 2064 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2065 return 0; 2066 2067 isec = backing_inode_security(dentry); 2068 return avc_has_perm(&selinux_state, 2069 sid, isec->sid, isec->sclass, file_to_av(file), 2070 &ad); 2071 } 2072 2073 static int selinux_ptrace_access_check(struct task_struct *child, 2074 unsigned int mode) 2075 { 2076 u32 sid = current_sid(); 2077 u32 csid = task_sid(child); 2078 2079 if (mode & PTRACE_MODE_READ) 2080 return avc_has_perm(&selinux_state, 2081 sid, csid, SECCLASS_FILE, FILE__READ, NULL); 2082 2083 return avc_has_perm(&selinux_state, 2084 sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL); 2085 } 2086 2087 static int selinux_ptrace_traceme(struct task_struct *parent) 2088 { 2089 return avc_has_perm(&selinux_state, 2090 task_sid(parent), current_sid(), SECCLASS_PROCESS, 2091 PROCESS__PTRACE, NULL); 2092 } 2093 2094 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective, 2095 kernel_cap_t *inheritable, kernel_cap_t *permitted) 2096 { 2097 return avc_has_perm(&selinux_state, 2098 current_sid(), task_sid(target), SECCLASS_PROCESS, 2099 PROCESS__GETCAP, NULL); 2100 } 2101 2102 static int selinux_capset(struct cred *new, const struct cred *old, 2103 const kernel_cap_t *effective, 2104 const kernel_cap_t *inheritable, 2105 const kernel_cap_t *permitted) 2106 { 2107 return avc_has_perm(&selinux_state, 2108 cred_sid(old), cred_sid(new), SECCLASS_PROCESS, 2109 PROCESS__SETCAP, NULL); 2110 } 2111 2112 /* 2113 * (This comment used to live with the selinux_task_setuid hook, 2114 * which was removed). 2115 * 2116 * Since setuid only affects the current process, and since the SELinux 2117 * controls are not based on the Linux identity attributes, SELinux does not 2118 * need to control this operation. However, SELinux does control the use of 2119 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook. 2120 */ 2121 2122 static int selinux_capable(const struct cred *cred, struct user_namespace *ns, 2123 int cap, unsigned int opts) 2124 { 2125 return cred_has_capability(cred, cap, opts, ns == &init_user_ns); 2126 } 2127 2128 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) 2129 { 2130 const struct cred *cred = current_cred(); 2131 int rc = 0; 2132 2133 if (!sb) 2134 return 0; 2135 2136 switch (cmds) { 2137 case Q_SYNC: 2138 case Q_QUOTAON: 2139 case Q_QUOTAOFF: 2140 case Q_SETINFO: 2141 case Q_SETQUOTA: 2142 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL); 2143 break; 2144 case Q_GETFMT: 2145 case Q_GETINFO: 2146 case Q_GETQUOTA: 2147 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL); 2148 break; 2149 default: 2150 rc = 0; /* let the kernel handle invalid cmds */ 2151 break; 2152 } 2153 return rc; 2154 } 2155 2156 static int selinux_quota_on(struct dentry *dentry) 2157 { 2158 const struct cred *cred = current_cred(); 2159 2160 return dentry_has_perm(cred, dentry, FILE__QUOTAON); 2161 } 2162 2163 static int selinux_syslog(int type) 2164 { 2165 switch (type) { 2166 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */ 2167 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */ 2168 return avc_has_perm(&selinux_state, 2169 current_sid(), SECINITSID_KERNEL, 2170 SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL); 2171 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */ 2172 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */ 2173 /* Set level of messages printed to console */ 2174 case SYSLOG_ACTION_CONSOLE_LEVEL: 2175 return avc_has_perm(&selinux_state, 2176 current_sid(), SECINITSID_KERNEL, 2177 SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE, 2178 NULL); 2179 } 2180 /* All other syslog types */ 2181 return avc_has_perm(&selinux_state, 2182 current_sid(), SECINITSID_KERNEL, 2183 SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL); 2184 } 2185 2186 /* 2187 * Check that a process has enough memory to allocate a new virtual 2188 * mapping. 0 means there is enough memory for the allocation to 2189 * succeed and -ENOMEM implies there is not. 2190 * 2191 * Do not audit the selinux permission check, as this is applied to all 2192 * processes that allocate mappings. 2193 */ 2194 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) 2195 { 2196 int rc, cap_sys_admin = 0; 2197 2198 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN, 2199 CAP_OPT_NOAUDIT, true); 2200 if (rc == 0) 2201 cap_sys_admin = 1; 2202 2203 return cap_sys_admin; 2204 } 2205 2206 /* binprm security operations */ 2207 2208 static u32 ptrace_parent_sid(void) 2209 { 2210 u32 sid = 0; 2211 struct task_struct *tracer; 2212 2213 rcu_read_lock(); 2214 tracer = ptrace_parent(current); 2215 if (tracer) 2216 sid = task_sid(tracer); 2217 rcu_read_unlock(); 2218 2219 return sid; 2220 } 2221 2222 static int check_nnp_nosuid(const struct linux_binprm *bprm, 2223 const struct task_security_struct *old_tsec, 2224 const struct task_security_struct *new_tsec) 2225 { 2226 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS); 2227 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt); 2228 int rc; 2229 u32 av; 2230 2231 if (!nnp && !nosuid) 2232 return 0; /* neither NNP nor nosuid */ 2233 2234 if (new_tsec->sid == old_tsec->sid) 2235 return 0; /* No change in credentials */ 2236 2237 /* 2238 * If the policy enables the nnp_nosuid_transition policy capability, 2239 * then we permit transitions under NNP or nosuid if the 2240 * policy allows the corresponding permission between 2241 * the old and new contexts. 2242 */ 2243 if (selinux_policycap_nnp_nosuid_transition()) { 2244 av = 0; 2245 if (nnp) 2246 av |= PROCESS2__NNP_TRANSITION; 2247 if (nosuid) 2248 av |= PROCESS2__NOSUID_TRANSITION; 2249 rc = avc_has_perm(&selinux_state, 2250 old_tsec->sid, new_tsec->sid, 2251 SECCLASS_PROCESS2, av, NULL); 2252 if (!rc) 2253 return 0; 2254 } 2255 2256 /* 2257 * We also permit NNP or nosuid transitions to bounded SIDs, 2258 * i.e. SIDs that are guaranteed to only be allowed a subset 2259 * of the permissions of the current SID. 2260 */ 2261 rc = security_bounded_transition(&selinux_state, old_tsec->sid, 2262 new_tsec->sid); 2263 if (!rc) 2264 return 0; 2265 2266 /* 2267 * On failure, preserve the errno values for NNP vs nosuid. 2268 * NNP: Operation not permitted for caller. 2269 * nosuid: Permission denied to file. 2270 */ 2271 if (nnp) 2272 return -EPERM; 2273 return -EACCES; 2274 } 2275 2276 static int selinux_bprm_set_creds(struct linux_binprm *bprm) 2277 { 2278 const struct task_security_struct *old_tsec; 2279 struct task_security_struct *new_tsec; 2280 struct inode_security_struct *isec; 2281 struct common_audit_data ad; 2282 struct inode *inode = file_inode(bprm->file); 2283 int rc; 2284 2285 /* SELinux context only depends on initial program or script and not 2286 * the script interpreter */ 2287 if (bprm->called_set_creds) 2288 return 0; 2289 2290 old_tsec = selinux_cred(current_cred()); 2291 new_tsec = selinux_cred(bprm->cred); 2292 isec = inode_security(inode); 2293 2294 /* Default to the current task SID. */ 2295 new_tsec->sid = old_tsec->sid; 2296 new_tsec->osid = old_tsec->sid; 2297 2298 /* Reset fs, key, and sock SIDs on execve. */ 2299 new_tsec->create_sid = 0; 2300 new_tsec->keycreate_sid = 0; 2301 new_tsec->sockcreate_sid = 0; 2302 2303 if (old_tsec->exec_sid) { 2304 new_tsec->sid = old_tsec->exec_sid; 2305 /* Reset exec SID on execve. */ 2306 new_tsec->exec_sid = 0; 2307 2308 /* Fail on NNP or nosuid if not an allowed transition. */ 2309 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2310 if (rc) 2311 return rc; 2312 } else { 2313 /* Check for a default transition on this program. */ 2314 rc = security_transition_sid(&selinux_state, old_tsec->sid, 2315 isec->sid, SECCLASS_PROCESS, NULL, 2316 &new_tsec->sid); 2317 if (rc) 2318 return rc; 2319 2320 /* 2321 * Fallback to old SID on NNP or nosuid if not an allowed 2322 * transition. 2323 */ 2324 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2325 if (rc) 2326 new_tsec->sid = old_tsec->sid; 2327 } 2328 2329 ad.type = LSM_AUDIT_DATA_FILE; 2330 ad.u.file = bprm->file; 2331 2332 if (new_tsec->sid == old_tsec->sid) { 2333 rc = avc_has_perm(&selinux_state, 2334 old_tsec->sid, isec->sid, 2335 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 2336 if (rc) 2337 return rc; 2338 } else { 2339 /* Check permissions for the transition. */ 2340 rc = avc_has_perm(&selinux_state, 2341 old_tsec->sid, new_tsec->sid, 2342 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 2343 if (rc) 2344 return rc; 2345 2346 rc = avc_has_perm(&selinux_state, 2347 new_tsec->sid, isec->sid, 2348 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 2349 if (rc) 2350 return rc; 2351 2352 /* Check for shared state */ 2353 if (bprm->unsafe & LSM_UNSAFE_SHARE) { 2354 rc = avc_has_perm(&selinux_state, 2355 old_tsec->sid, new_tsec->sid, 2356 SECCLASS_PROCESS, PROCESS__SHARE, 2357 NULL); 2358 if (rc) 2359 return -EPERM; 2360 } 2361 2362 /* Make sure that anyone attempting to ptrace over a task that 2363 * changes its SID has the appropriate permit */ 2364 if (bprm->unsafe & LSM_UNSAFE_PTRACE) { 2365 u32 ptsid = ptrace_parent_sid(); 2366 if (ptsid != 0) { 2367 rc = avc_has_perm(&selinux_state, 2368 ptsid, new_tsec->sid, 2369 SECCLASS_PROCESS, 2370 PROCESS__PTRACE, NULL); 2371 if (rc) 2372 return -EPERM; 2373 } 2374 } 2375 2376 /* Clear any possibly unsafe personality bits on exec: */ 2377 bprm->per_clear |= PER_CLEAR_ON_SETID; 2378 2379 /* Enable secure mode for SIDs transitions unless 2380 the noatsecure permission is granted between 2381 the two SIDs, i.e. ahp returns 0. */ 2382 rc = avc_has_perm(&selinux_state, 2383 old_tsec->sid, new_tsec->sid, 2384 SECCLASS_PROCESS, PROCESS__NOATSECURE, 2385 NULL); 2386 bprm->secureexec |= !!rc; 2387 } 2388 2389 return 0; 2390 } 2391 2392 static int match_file(const void *p, struct file *file, unsigned fd) 2393 { 2394 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0; 2395 } 2396 2397 /* Derived from fs/exec.c:flush_old_files. */ 2398 static inline void flush_unauthorized_files(const struct cred *cred, 2399 struct files_struct *files) 2400 { 2401 struct file *file, *devnull = NULL; 2402 struct tty_struct *tty; 2403 int drop_tty = 0; 2404 unsigned n; 2405 2406 tty = get_current_tty(); 2407 if (tty) { 2408 spin_lock(&tty->files_lock); 2409 if (!list_empty(&tty->tty_files)) { 2410 struct tty_file_private *file_priv; 2411 2412 /* Revalidate access to controlling tty. 2413 Use file_path_has_perm on the tty path directly 2414 rather than using file_has_perm, as this particular 2415 open file may belong to another process and we are 2416 only interested in the inode-based check here. */ 2417 file_priv = list_first_entry(&tty->tty_files, 2418 struct tty_file_private, list); 2419 file = file_priv->file; 2420 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE)) 2421 drop_tty = 1; 2422 } 2423 spin_unlock(&tty->files_lock); 2424 tty_kref_put(tty); 2425 } 2426 /* Reset controlling tty. */ 2427 if (drop_tty) 2428 no_tty(); 2429 2430 /* Revalidate access to inherited open files. */ 2431 n = iterate_fd(files, 0, match_file, cred); 2432 if (!n) /* none found? */ 2433 return; 2434 2435 devnull = dentry_open(&selinux_null, O_RDWR, cred); 2436 if (IS_ERR(devnull)) 2437 devnull = NULL; 2438 /* replace all the matching ones with this */ 2439 do { 2440 replace_fd(n - 1, devnull, 0); 2441 } while ((n = iterate_fd(files, n, match_file, cred)) != 0); 2442 if (devnull) 2443 fput(devnull); 2444 } 2445 2446 /* 2447 * Prepare a process for imminent new credential changes due to exec 2448 */ 2449 static void selinux_bprm_committing_creds(struct linux_binprm *bprm) 2450 { 2451 struct task_security_struct *new_tsec; 2452 struct rlimit *rlim, *initrlim; 2453 int rc, i; 2454 2455 new_tsec = selinux_cred(bprm->cred); 2456 if (new_tsec->sid == new_tsec->osid) 2457 return; 2458 2459 /* Close files for which the new task SID is not authorized. */ 2460 flush_unauthorized_files(bprm->cred, current->files); 2461 2462 /* Always clear parent death signal on SID transitions. */ 2463 current->pdeath_signal = 0; 2464 2465 /* Check whether the new SID can inherit resource limits from the old 2466 * SID. If not, reset all soft limits to the lower of the current 2467 * task's hard limit and the init task's soft limit. 2468 * 2469 * Note that the setting of hard limits (even to lower them) can be 2470 * controlled by the setrlimit check. The inclusion of the init task's 2471 * soft limit into the computation is to avoid resetting soft limits 2472 * higher than the default soft limit for cases where the default is 2473 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK. 2474 */ 2475 rc = avc_has_perm(&selinux_state, 2476 new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS, 2477 PROCESS__RLIMITINH, NULL); 2478 if (rc) { 2479 /* protect against do_prlimit() */ 2480 task_lock(current); 2481 for (i = 0; i < RLIM_NLIMITS; i++) { 2482 rlim = current->signal->rlim + i; 2483 initrlim = init_task.signal->rlim + i; 2484 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur); 2485 } 2486 task_unlock(current); 2487 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) 2488 update_rlimit_cpu(current, rlimit(RLIMIT_CPU)); 2489 } 2490 } 2491 2492 /* 2493 * Clean up the process immediately after the installation of new credentials 2494 * due to exec 2495 */ 2496 static void selinux_bprm_committed_creds(struct linux_binprm *bprm) 2497 { 2498 const struct task_security_struct *tsec = selinux_cred(current_cred()); 2499 u32 osid, sid; 2500 int rc; 2501 2502 osid = tsec->osid; 2503 sid = tsec->sid; 2504 2505 if (sid == osid) 2506 return; 2507 2508 /* Check whether the new SID can inherit signal state from the old SID. 2509 * If not, clear itimers to avoid subsequent signal generation and 2510 * flush and unblock signals. 2511 * 2512 * This must occur _after_ the task SID has been updated so that any 2513 * kill done after the flush will be checked against the new SID. 2514 */ 2515 rc = avc_has_perm(&selinux_state, 2516 osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL); 2517 if (rc) { 2518 clear_itimer(); 2519 2520 spin_lock_irq(¤t->sighand->siglock); 2521 if (!fatal_signal_pending(current)) { 2522 flush_sigqueue(¤t->pending); 2523 flush_sigqueue(¤t->signal->shared_pending); 2524 flush_signal_handlers(current, 1); 2525 sigemptyset(¤t->blocked); 2526 recalc_sigpending(); 2527 } 2528 spin_unlock_irq(¤t->sighand->siglock); 2529 } 2530 2531 /* Wake up the parent if it is waiting so that it can recheck 2532 * wait permission to the new task SID. */ 2533 read_lock(&tasklist_lock); 2534 __wake_up_parent(current, current->real_parent); 2535 read_unlock(&tasklist_lock); 2536 } 2537 2538 /* superblock security operations */ 2539 2540 static int selinux_sb_alloc_security(struct super_block *sb) 2541 { 2542 struct superblock_security_struct *sbsec; 2543 2544 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL); 2545 if (!sbsec) 2546 return -ENOMEM; 2547 2548 mutex_init(&sbsec->lock); 2549 INIT_LIST_HEAD(&sbsec->isec_head); 2550 spin_lock_init(&sbsec->isec_lock); 2551 sbsec->sb = sb; 2552 sbsec->sid = SECINITSID_UNLABELED; 2553 sbsec->def_sid = SECINITSID_FILE; 2554 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 2555 sb->s_security = sbsec; 2556 2557 return 0; 2558 } 2559 2560 static void selinux_sb_free_security(struct super_block *sb) 2561 { 2562 superblock_free_security(sb); 2563 } 2564 2565 static inline int opt_len(const char *s) 2566 { 2567 bool open_quote = false; 2568 int len; 2569 char c; 2570 2571 for (len = 0; (c = s[len]) != '\0'; len++) { 2572 if (c == '"') 2573 open_quote = !open_quote; 2574 if (c == ',' && !open_quote) 2575 break; 2576 } 2577 return len; 2578 } 2579 2580 static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts) 2581 { 2582 char *from = options; 2583 char *to = options; 2584 bool first = true; 2585 int rc; 2586 2587 while (1) { 2588 int len = opt_len(from); 2589 int token; 2590 char *arg = NULL; 2591 2592 token = match_opt_prefix(from, len, &arg); 2593 2594 if (token != Opt_error) { 2595 char *p, *q; 2596 2597 /* strip quotes */ 2598 if (arg) { 2599 for (p = q = arg; p < from + len; p++) { 2600 char c = *p; 2601 if (c != '"') 2602 *q++ = c; 2603 } 2604 arg = kmemdup_nul(arg, q - arg, GFP_KERNEL); 2605 if (!arg) { 2606 rc = -ENOMEM; 2607 goto free_opt; 2608 } 2609 } 2610 rc = selinux_add_opt(token, arg, mnt_opts); 2611 if (unlikely(rc)) { 2612 kfree(arg); 2613 goto free_opt; 2614 } 2615 } else { 2616 if (!first) { // copy with preceding comma 2617 from--; 2618 len++; 2619 } 2620 if (to != from) 2621 memmove(to, from, len); 2622 to += len; 2623 first = false; 2624 } 2625 if (!from[len]) 2626 break; 2627 from += len + 1; 2628 } 2629 *to = '\0'; 2630 return 0; 2631 2632 free_opt: 2633 if (*mnt_opts) { 2634 selinux_free_mnt_opts(*mnt_opts); 2635 *mnt_opts = NULL; 2636 } 2637 return rc; 2638 } 2639 2640 static int selinux_sb_remount(struct super_block *sb, void *mnt_opts) 2641 { 2642 struct selinux_mnt_opts *opts = mnt_opts; 2643 struct superblock_security_struct *sbsec = sb->s_security; 2644 u32 sid; 2645 int rc; 2646 2647 if (!(sbsec->flags & SE_SBINITIALIZED)) 2648 return 0; 2649 2650 if (!opts) 2651 return 0; 2652 2653 if (opts->fscontext) { 2654 rc = parse_sid(sb, opts->fscontext, &sid); 2655 if (rc) 2656 return rc; 2657 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid)) 2658 goto out_bad_option; 2659 } 2660 if (opts->context) { 2661 rc = parse_sid(sb, opts->context, &sid); 2662 if (rc) 2663 return rc; 2664 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid)) 2665 goto out_bad_option; 2666 } 2667 if (opts->rootcontext) { 2668 struct inode_security_struct *root_isec; 2669 root_isec = backing_inode_security(sb->s_root); 2670 rc = parse_sid(sb, opts->rootcontext, &sid); 2671 if (rc) 2672 return rc; 2673 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid)) 2674 goto out_bad_option; 2675 } 2676 if (opts->defcontext) { 2677 rc = parse_sid(sb, opts->defcontext, &sid); 2678 if (rc) 2679 return rc; 2680 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid)) 2681 goto out_bad_option; 2682 } 2683 return 0; 2684 2685 out_bad_option: 2686 pr_warn("SELinux: unable to change security options " 2687 "during remount (dev %s, type=%s)\n", sb->s_id, 2688 sb->s_type->name); 2689 return -EINVAL; 2690 } 2691 2692 static int selinux_sb_kern_mount(struct super_block *sb) 2693 { 2694 const struct cred *cred = current_cred(); 2695 struct common_audit_data ad; 2696 2697 ad.type = LSM_AUDIT_DATA_DENTRY; 2698 ad.u.dentry = sb->s_root; 2699 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad); 2700 } 2701 2702 static int selinux_sb_statfs(struct dentry *dentry) 2703 { 2704 const struct cred *cred = current_cred(); 2705 struct common_audit_data ad; 2706 2707 ad.type = LSM_AUDIT_DATA_DENTRY; 2708 ad.u.dentry = dentry->d_sb->s_root; 2709 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2710 } 2711 2712 static int selinux_mount(const char *dev_name, 2713 const struct path *path, 2714 const char *type, 2715 unsigned long flags, 2716 void *data) 2717 { 2718 const struct cred *cred = current_cred(); 2719 2720 if (flags & MS_REMOUNT) 2721 return superblock_has_perm(cred, path->dentry->d_sb, 2722 FILESYSTEM__REMOUNT, NULL); 2723 else 2724 return path_has_perm(cred, path, FILE__MOUNTON); 2725 } 2726 2727 static int selinux_move_mount(const struct path *from_path, 2728 const struct path *to_path) 2729 { 2730 const struct cred *cred = current_cred(); 2731 2732 return path_has_perm(cred, to_path, FILE__MOUNTON); 2733 } 2734 2735 static int selinux_umount(struct vfsmount *mnt, int flags) 2736 { 2737 const struct cred *cred = current_cred(); 2738 2739 return superblock_has_perm(cred, mnt->mnt_sb, 2740 FILESYSTEM__UNMOUNT, NULL); 2741 } 2742 2743 static int selinux_fs_context_dup(struct fs_context *fc, 2744 struct fs_context *src_fc) 2745 { 2746 const struct selinux_mnt_opts *src = src_fc->security; 2747 struct selinux_mnt_opts *opts; 2748 2749 if (!src) 2750 return 0; 2751 2752 fc->security = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL); 2753 if (!fc->security) 2754 return -ENOMEM; 2755 2756 opts = fc->security; 2757 2758 if (src->fscontext) { 2759 opts->fscontext = kstrdup(src->fscontext, GFP_KERNEL); 2760 if (!opts->fscontext) 2761 return -ENOMEM; 2762 } 2763 if (src->context) { 2764 opts->context = kstrdup(src->context, GFP_KERNEL); 2765 if (!opts->context) 2766 return -ENOMEM; 2767 } 2768 if (src->rootcontext) { 2769 opts->rootcontext = kstrdup(src->rootcontext, GFP_KERNEL); 2770 if (!opts->rootcontext) 2771 return -ENOMEM; 2772 } 2773 if (src->defcontext) { 2774 opts->defcontext = kstrdup(src->defcontext, GFP_KERNEL); 2775 if (!opts->defcontext) 2776 return -ENOMEM; 2777 } 2778 return 0; 2779 } 2780 2781 static const struct fs_parameter_spec selinux_param_specs[] = { 2782 fsparam_string(CONTEXT_STR, Opt_context), 2783 fsparam_string(DEFCONTEXT_STR, Opt_defcontext), 2784 fsparam_string(FSCONTEXT_STR, Opt_fscontext), 2785 fsparam_string(ROOTCONTEXT_STR, Opt_rootcontext), 2786 fsparam_flag (SECLABEL_STR, Opt_seclabel), 2787 {} 2788 }; 2789 2790 static const struct fs_parameter_description selinux_fs_parameters = { 2791 .name = "SELinux", 2792 .specs = selinux_param_specs, 2793 }; 2794 2795 static int selinux_fs_context_parse_param(struct fs_context *fc, 2796 struct fs_parameter *param) 2797 { 2798 struct fs_parse_result result; 2799 int opt, rc; 2800 2801 opt = fs_parse(fc, &selinux_fs_parameters, param, &result); 2802 if (opt < 0) 2803 return opt; 2804 2805 rc = selinux_add_opt(opt, param->string, &fc->security); 2806 if (!rc) { 2807 param->string = NULL; 2808 rc = 1; 2809 } 2810 return rc; 2811 } 2812 2813 /* inode security operations */ 2814 2815 static int selinux_inode_alloc_security(struct inode *inode) 2816 { 2817 struct inode_security_struct *isec = selinux_inode(inode); 2818 u32 sid = current_sid(); 2819 2820 spin_lock_init(&isec->lock); 2821 INIT_LIST_HEAD(&isec->list); 2822 isec->inode = inode; 2823 isec->sid = SECINITSID_UNLABELED; 2824 isec->sclass = SECCLASS_FILE; 2825 isec->task_sid = sid; 2826 isec->initialized = LABEL_INVALID; 2827 2828 return 0; 2829 } 2830 2831 static void selinux_inode_free_security(struct inode *inode) 2832 { 2833 inode_free_security(inode); 2834 } 2835 2836 static int selinux_dentry_init_security(struct dentry *dentry, int mode, 2837 const struct qstr *name, void **ctx, 2838 u32 *ctxlen) 2839 { 2840 u32 newsid; 2841 int rc; 2842 2843 rc = selinux_determine_inode_label(selinux_cred(current_cred()), 2844 d_inode(dentry->d_parent), name, 2845 inode_mode_to_security_class(mode), 2846 &newsid); 2847 if (rc) 2848 return rc; 2849 2850 return security_sid_to_context(&selinux_state, newsid, (char **)ctx, 2851 ctxlen); 2852 } 2853 2854 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode, 2855 struct qstr *name, 2856 const struct cred *old, 2857 struct cred *new) 2858 { 2859 u32 newsid; 2860 int rc; 2861 struct task_security_struct *tsec; 2862 2863 rc = selinux_determine_inode_label(selinux_cred(old), 2864 d_inode(dentry->d_parent), name, 2865 inode_mode_to_security_class(mode), 2866 &newsid); 2867 if (rc) 2868 return rc; 2869 2870 tsec = selinux_cred(new); 2871 tsec->create_sid = newsid; 2872 return 0; 2873 } 2874 2875 static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 2876 const struct qstr *qstr, 2877 const char **name, 2878 void **value, size_t *len) 2879 { 2880 const struct task_security_struct *tsec = selinux_cred(current_cred()); 2881 struct superblock_security_struct *sbsec; 2882 u32 newsid, clen; 2883 int rc; 2884 char *context; 2885 2886 sbsec = dir->i_sb->s_security; 2887 2888 newsid = tsec->create_sid; 2889 2890 rc = selinux_determine_inode_label(tsec, dir, qstr, 2891 inode_mode_to_security_class(inode->i_mode), 2892 &newsid); 2893 if (rc) 2894 return rc; 2895 2896 /* Possibly defer initialization to selinux_complete_init. */ 2897 if (sbsec->flags & SE_SBINITIALIZED) { 2898 struct inode_security_struct *isec = selinux_inode(inode); 2899 isec->sclass = inode_mode_to_security_class(inode->i_mode); 2900 isec->sid = newsid; 2901 isec->initialized = LABEL_INITIALIZED; 2902 } 2903 2904 if (!selinux_initialized(&selinux_state) || 2905 !(sbsec->flags & SBLABEL_MNT)) 2906 return -EOPNOTSUPP; 2907 2908 if (name) 2909 *name = XATTR_SELINUX_SUFFIX; 2910 2911 if (value && len) { 2912 rc = security_sid_to_context_force(&selinux_state, newsid, 2913 &context, &clen); 2914 if (rc) 2915 return rc; 2916 *value = context; 2917 *len = clen; 2918 } 2919 2920 return 0; 2921 } 2922 2923 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 2924 { 2925 return may_create(dir, dentry, SECCLASS_FILE); 2926 } 2927 2928 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2929 { 2930 return may_link(dir, old_dentry, MAY_LINK); 2931 } 2932 2933 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 2934 { 2935 return may_link(dir, dentry, MAY_UNLINK); 2936 } 2937 2938 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 2939 { 2940 return may_create(dir, dentry, SECCLASS_LNK_FILE); 2941 } 2942 2943 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask) 2944 { 2945 return may_create(dir, dentry, SECCLASS_DIR); 2946 } 2947 2948 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 2949 { 2950 return may_link(dir, dentry, MAY_RMDIR); 2951 } 2952 2953 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2954 { 2955 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 2956 } 2957 2958 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 2959 struct inode *new_inode, struct dentry *new_dentry) 2960 { 2961 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 2962 } 2963 2964 static int selinux_inode_readlink(struct dentry *dentry) 2965 { 2966 const struct cred *cred = current_cred(); 2967 2968 return dentry_has_perm(cred, dentry, FILE__READ); 2969 } 2970 2971 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode, 2972 bool rcu) 2973 { 2974 const struct cred *cred = current_cred(); 2975 struct common_audit_data ad; 2976 struct inode_security_struct *isec; 2977 u32 sid; 2978 2979 validate_creds(cred); 2980 2981 ad.type = LSM_AUDIT_DATA_DENTRY; 2982 ad.u.dentry = dentry; 2983 sid = cred_sid(cred); 2984 isec = inode_security_rcu(inode, rcu); 2985 if (IS_ERR(isec)) 2986 return PTR_ERR(isec); 2987 2988 return avc_has_perm_flags(&selinux_state, 2989 sid, isec->sid, isec->sclass, FILE__READ, &ad, 2990 rcu ? MAY_NOT_BLOCK : 0); 2991 } 2992 2993 static noinline int audit_inode_permission(struct inode *inode, 2994 u32 perms, u32 audited, u32 denied, 2995 int result) 2996 { 2997 struct common_audit_data ad; 2998 struct inode_security_struct *isec = selinux_inode(inode); 2999 int rc; 3000 3001 ad.type = LSM_AUDIT_DATA_INODE; 3002 ad.u.inode = inode; 3003 3004 rc = slow_avc_audit(&selinux_state, 3005 current_sid(), isec->sid, isec->sclass, perms, 3006 audited, denied, result, &ad); 3007 if (rc) 3008 return rc; 3009 return 0; 3010 } 3011 3012 static int selinux_inode_permission(struct inode *inode, int mask) 3013 { 3014 const struct cred *cred = current_cred(); 3015 u32 perms; 3016 bool from_access; 3017 bool no_block = mask & MAY_NOT_BLOCK; 3018 struct inode_security_struct *isec; 3019 u32 sid; 3020 struct av_decision avd; 3021 int rc, rc2; 3022 u32 audited, denied; 3023 3024 from_access = mask & MAY_ACCESS; 3025 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND); 3026 3027 /* No permission to check. Existence test. */ 3028 if (!mask) 3029 return 0; 3030 3031 validate_creds(cred); 3032 3033 if (unlikely(IS_PRIVATE(inode))) 3034 return 0; 3035 3036 perms = file_mask_to_av(inode->i_mode, mask); 3037 3038 sid = cred_sid(cred); 3039 isec = inode_security_rcu(inode, no_block); 3040 if (IS_ERR(isec)) 3041 return PTR_ERR(isec); 3042 3043 rc = avc_has_perm_noaudit(&selinux_state, 3044 sid, isec->sid, isec->sclass, perms, 3045 no_block ? AVC_NONBLOCKING : 0, 3046 &avd); 3047 audited = avc_audit_required(perms, &avd, rc, 3048 from_access ? FILE__AUDIT_ACCESS : 0, 3049 &denied); 3050 if (likely(!audited)) 3051 return rc; 3052 3053 /* fall back to ref-walk if we have to generate audit */ 3054 if (no_block) 3055 return -ECHILD; 3056 3057 rc2 = audit_inode_permission(inode, perms, audited, denied, rc); 3058 if (rc2) 3059 return rc2; 3060 return rc; 3061 } 3062 3063 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) 3064 { 3065 const struct cred *cred = current_cred(); 3066 struct inode *inode = d_backing_inode(dentry); 3067 unsigned int ia_valid = iattr->ia_valid; 3068 __u32 av = FILE__WRITE; 3069 3070 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */ 3071 if (ia_valid & ATTR_FORCE) { 3072 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE | 3073 ATTR_FORCE); 3074 if (!ia_valid) 3075 return 0; 3076 } 3077 3078 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 3079 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET)) 3080 return dentry_has_perm(cred, dentry, FILE__SETATTR); 3081 3082 if (selinux_policycap_openperm() && 3083 inode->i_sb->s_magic != SOCKFS_MAGIC && 3084 (ia_valid & ATTR_SIZE) && 3085 !(ia_valid & ATTR_FILE)) 3086 av |= FILE__OPEN; 3087 3088 return dentry_has_perm(cred, dentry, av); 3089 } 3090 3091 static int selinux_inode_getattr(const struct path *path) 3092 { 3093 return path_has_perm(current_cred(), path, FILE__GETATTR); 3094 } 3095 3096 static bool has_cap_mac_admin(bool audit) 3097 { 3098 const struct cred *cred = current_cred(); 3099 unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT; 3100 3101 if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts)) 3102 return false; 3103 if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true)) 3104 return false; 3105 return true; 3106 } 3107 3108 static int selinux_inode_setxattr(struct dentry *dentry, const char *name, 3109 const void *value, size_t size, int flags) 3110 { 3111 struct inode *inode = d_backing_inode(dentry); 3112 struct inode_security_struct *isec; 3113 struct superblock_security_struct *sbsec; 3114 struct common_audit_data ad; 3115 u32 newsid, sid = current_sid(); 3116 int rc = 0; 3117 3118 if (strcmp(name, XATTR_NAME_SELINUX)) { 3119 rc = cap_inode_setxattr(dentry, name, value, size, flags); 3120 if (rc) 3121 return rc; 3122 3123 /* Not an attribute we recognize, so just check the 3124 ordinary setattr permission. */ 3125 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); 3126 } 3127 3128 if (!selinux_initialized(&selinux_state)) 3129 return (inode_owner_or_capable(inode) ? 0 : -EPERM); 3130 3131 sbsec = inode->i_sb->s_security; 3132 if (!(sbsec->flags & SBLABEL_MNT)) 3133 return -EOPNOTSUPP; 3134 3135 if (!inode_owner_or_capable(inode)) 3136 return -EPERM; 3137 3138 ad.type = LSM_AUDIT_DATA_DENTRY; 3139 ad.u.dentry = dentry; 3140 3141 isec = backing_inode_security(dentry); 3142 rc = avc_has_perm(&selinux_state, 3143 sid, isec->sid, isec->sclass, 3144 FILE__RELABELFROM, &ad); 3145 if (rc) 3146 return rc; 3147 3148 rc = security_context_to_sid(&selinux_state, value, size, &newsid, 3149 GFP_KERNEL); 3150 if (rc == -EINVAL) { 3151 if (!has_cap_mac_admin(true)) { 3152 struct audit_buffer *ab; 3153 size_t audit_size; 3154 3155 /* We strip a nul only if it is at the end, otherwise the 3156 * context contains a nul and we should audit that */ 3157 if (value) { 3158 const char *str = value; 3159 3160 if (str[size - 1] == '\0') 3161 audit_size = size - 1; 3162 else 3163 audit_size = size; 3164 } else { 3165 audit_size = 0; 3166 } 3167 ab = audit_log_start(audit_context(), 3168 GFP_ATOMIC, AUDIT_SELINUX_ERR); 3169 audit_log_format(ab, "op=setxattr invalid_context="); 3170 audit_log_n_untrustedstring(ab, value, audit_size); 3171 audit_log_end(ab); 3172 3173 return rc; 3174 } 3175 rc = security_context_to_sid_force(&selinux_state, value, 3176 size, &newsid); 3177 } 3178 if (rc) 3179 return rc; 3180 3181 rc = avc_has_perm(&selinux_state, 3182 sid, newsid, isec->sclass, 3183 FILE__RELABELTO, &ad); 3184 if (rc) 3185 return rc; 3186 3187 rc = security_validate_transition(&selinux_state, isec->sid, newsid, 3188 sid, isec->sclass); 3189 if (rc) 3190 return rc; 3191 3192 return avc_has_perm(&selinux_state, 3193 newsid, 3194 sbsec->sid, 3195 SECCLASS_FILESYSTEM, 3196 FILESYSTEM__ASSOCIATE, 3197 &ad); 3198 } 3199 3200 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name, 3201 const void *value, size_t size, 3202 int flags) 3203 { 3204 struct inode *inode = d_backing_inode(dentry); 3205 struct inode_security_struct *isec; 3206 u32 newsid; 3207 int rc; 3208 3209 if (strcmp(name, XATTR_NAME_SELINUX)) { 3210 /* Not an attribute we recognize, so nothing to do. */ 3211 return; 3212 } 3213 3214 if (!selinux_initialized(&selinux_state)) { 3215 /* If we haven't even been initialized, then we can't validate 3216 * against a policy, so leave the label as invalid. It may 3217 * resolve to a valid label on the next revalidation try if 3218 * we've since initialized. 3219 */ 3220 return; 3221 } 3222 3223 rc = security_context_to_sid_force(&selinux_state, value, size, 3224 &newsid); 3225 if (rc) { 3226 pr_err("SELinux: unable to map context to SID" 3227 "for (%s, %lu), rc=%d\n", 3228 inode->i_sb->s_id, inode->i_ino, -rc); 3229 return; 3230 } 3231 3232 isec = backing_inode_security(dentry); 3233 spin_lock(&isec->lock); 3234 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3235 isec->sid = newsid; 3236 isec->initialized = LABEL_INITIALIZED; 3237 spin_unlock(&isec->lock); 3238 3239 return; 3240 } 3241 3242 static int selinux_inode_getxattr(struct dentry *dentry, const char *name) 3243 { 3244 const struct cred *cred = current_cred(); 3245 3246 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3247 } 3248 3249 static int selinux_inode_listxattr(struct dentry *dentry) 3250 { 3251 const struct cred *cred = current_cred(); 3252 3253 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3254 } 3255 3256 static int selinux_inode_removexattr(struct dentry *dentry, const char *name) 3257 { 3258 if (strcmp(name, XATTR_NAME_SELINUX)) { 3259 int rc = cap_inode_removexattr(dentry, name); 3260 if (rc) 3261 return rc; 3262 3263 /* Not an attribute we recognize, so just check the 3264 ordinary setattr permission. */ 3265 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); 3266 } 3267 3268 /* No one is allowed to remove a SELinux security label. 3269 You can change the label, but all data must be labeled. */ 3270 return -EACCES; 3271 } 3272 3273 static int selinux_path_notify(const struct path *path, u64 mask, 3274 unsigned int obj_type) 3275 { 3276 int ret; 3277 u32 perm; 3278 3279 struct common_audit_data ad; 3280 3281 ad.type = LSM_AUDIT_DATA_PATH; 3282 ad.u.path = *path; 3283 3284 /* 3285 * Set permission needed based on the type of mark being set. 3286 * Performs an additional check for sb watches. 3287 */ 3288 switch (obj_type) { 3289 case FSNOTIFY_OBJ_TYPE_VFSMOUNT: 3290 perm = FILE__WATCH_MOUNT; 3291 break; 3292 case FSNOTIFY_OBJ_TYPE_SB: 3293 perm = FILE__WATCH_SB; 3294 ret = superblock_has_perm(current_cred(), path->dentry->d_sb, 3295 FILESYSTEM__WATCH, &ad); 3296 if (ret) 3297 return ret; 3298 break; 3299 case FSNOTIFY_OBJ_TYPE_INODE: 3300 perm = FILE__WATCH; 3301 break; 3302 default: 3303 return -EINVAL; 3304 } 3305 3306 /* blocking watches require the file:watch_with_perm permission */ 3307 if (mask & (ALL_FSNOTIFY_PERM_EVENTS)) 3308 perm |= FILE__WATCH_WITH_PERM; 3309 3310 /* watches on read-like events need the file:watch_reads permission */ 3311 if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE)) 3312 perm |= FILE__WATCH_READS; 3313 3314 return path_has_perm(current_cred(), path, perm); 3315 } 3316 3317 /* 3318 * Copy the inode security context value to the user. 3319 * 3320 * Permission check is handled by selinux_inode_getxattr hook. 3321 */ 3322 static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc) 3323 { 3324 u32 size; 3325 int error; 3326 char *context = NULL; 3327 struct inode_security_struct *isec; 3328 3329 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 3330 return -EOPNOTSUPP; 3331 3332 /* 3333 * If the caller has CAP_MAC_ADMIN, then get the raw context 3334 * value even if it is not defined by current policy; otherwise, 3335 * use the in-core value under current policy. 3336 * Use the non-auditing forms of the permission checks since 3337 * getxattr may be called by unprivileged processes commonly 3338 * and lack of permission just means that we fall back to the 3339 * in-core context value, not a denial. 3340 */ 3341 isec = inode_security(inode); 3342 if (has_cap_mac_admin(false)) 3343 error = security_sid_to_context_force(&selinux_state, 3344 isec->sid, &context, 3345 &size); 3346 else 3347 error = security_sid_to_context(&selinux_state, isec->sid, 3348 &context, &size); 3349 if (error) 3350 return error; 3351 error = size; 3352 if (alloc) { 3353 *buffer = context; 3354 goto out_nofree; 3355 } 3356 kfree(context); 3357 out_nofree: 3358 return error; 3359 } 3360 3361 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 3362 const void *value, size_t size, int flags) 3363 { 3364 struct inode_security_struct *isec = inode_security_novalidate(inode); 3365 struct superblock_security_struct *sbsec = inode->i_sb->s_security; 3366 u32 newsid; 3367 int rc; 3368 3369 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 3370 return -EOPNOTSUPP; 3371 3372 if (!(sbsec->flags & SBLABEL_MNT)) 3373 return -EOPNOTSUPP; 3374 3375 if (!value || !size) 3376 return -EACCES; 3377 3378 rc = security_context_to_sid(&selinux_state, value, size, &newsid, 3379 GFP_KERNEL); 3380 if (rc) 3381 return rc; 3382 3383 spin_lock(&isec->lock); 3384 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3385 isec->sid = newsid; 3386 isec->initialized = LABEL_INITIALIZED; 3387 spin_unlock(&isec->lock); 3388 return 0; 3389 } 3390 3391 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 3392 { 3393 const int len = sizeof(XATTR_NAME_SELINUX); 3394 if (buffer && len <= buffer_size) 3395 memcpy(buffer, XATTR_NAME_SELINUX, len); 3396 return len; 3397 } 3398 3399 static void selinux_inode_getsecid(struct inode *inode, u32 *secid) 3400 { 3401 struct inode_security_struct *isec = inode_security_novalidate(inode); 3402 *secid = isec->sid; 3403 } 3404 3405 static int selinux_inode_copy_up(struct dentry *src, struct cred **new) 3406 { 3407 u32 sid; 3408 struct task_security_struct *tsec; 3409 struct cred *new_creds = *new; 3410 3411 if (new_creds == NULL) { 3412 new_creds = prepare_creds(); 3413 if (!new_creds) 3414 return -ENOMEM; 3415 } 3416 3417 tsec = selinux_cred(new_creds); 3418 /* Get label from overlay inode and set it in create_sid */ 3419 selinux_inode_getsecid(d_inode(src), &sid); 3420 tsec->create_sid = sid; 3421 *new = new_creds; 3422 return 0; 3423 } 3424 3425 static int selinux_inode_copy_up_xattr(const char *name) 3426 { 3427 /* The copy_up hook above sets the initial context on an inode, but we 3428 * don't then want to overwrite it by blindly copying all the lower 3429 * xattrs up. Instead, we have to filter out SELinux-related xattrs. 3430 */ 3431 if (strcmp(name, XATTR_NAME_SELINUX) == 0) 3432 return 1; /* Discard */ 3433 /* 3434 * Any other attribute apart from SELINUX is not claimed, supported 3435 * by selinux. 3436 */ 3437 return -EOPNOTSUPP; 3438 } 3439 3440 /* kernfs node operations */ 3441 3442 static int selinux_kernfs_init_security(struct kernfs_node *kn_dir, 3443 struct kernfs_node *kn) 3444 { 3445 const struct task_security_struct *tsec = selinux_cred(current_cred()); 3446 u32 parent_sid, newsid, clen; 3447 int rc; 3448 char *context; 3449 3450 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0); 3451 if (rc == -ENODATA) 3452 return 0; 3453 else if (rc < 0) 3454 return rc; 3455 3456 clen = (u32)rc; 3457 context = kmalloc(clen, GFP_KERNEL); 3458 if (!context) 3459 return -ENOMEM; 3460 3461 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen); 3462 if (rc < 0) { 3463 kfree(context); 3464 return rc; 3465 } 3466 3467 rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid, 3468 GFP_KERNEL); 3469 kfree(context); 3470 if (rc) 3471 return rc; 3472 3473 if (tsec->create_sid) { 3474 newsid = tsec->create_sid; 3475 } else { 3476 u16 secclass = inode_mode_to_security_class(kn->mode); 3477 struct qstr q; 3478 3479 q.name = kn->name; 3480 q.hash_len = hashlen_string(kn_dir, kn->name); 3481 3482 rc = security_transition_sid(&selinux_state, tsec->sid, 3483 parent_sid, secclass, &q, 3484 &newsid); 3485 if (rc) 3486 return rc; 3487 } 3488 3489 rc = security_sid_to_context_force(&selinux_state, newsid, 3490 &context, &clen); 3491 if (rc) 3492 return rc; 3493 3494 rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen, 3495 XATTR_CREATE); 3496 kfree(context); 3497 return rc; 3498 } 3499 3500 3501 /* file security operations */ 3502 3503 static int selinux_revalidate_file_permission(struct file *file, int mask) 3504 { 3505 const struct cred *cred = current_cred(); 3506 struct inode *inode = file_inode(file); 3507 3508 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 3509 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 3510 mask |= MAY_APPEND; 3511 3512 return file_has_perm(cred, file, 3513 file_mask_to_av(inode->i_mode, mask)); 3514 } 3515 3516 static int selinux_file_permission(struct file *file, int mask) 3517 { 3518 struct inode *inode = file_inode(file); 3519 struct file_security_struct *fsec = selinux_file(file); 3520 struct inode_security_struct *isec; 3521 u32 sid = current_sid(); 3522 3523 if (!mask) 3524 /* No permission to check. Existence test. */ 3525 return 0; 3526 3527 isec = inode_security(inode); 3528 if (sid == fsec->sid && fsec->isid == isec->sid && 3529 fsec->pseqno == avc_policy_seqno(&selinux_state)) 3530 /* No change since file_open check. */ 3531 return 0; 3532 3533 return selinux_revalidate_file_permission(file, mask); 3534 } 3535 3536 static int selinux_file_alloc_security(struct file *file) 3537 { 3538 struct file_security_struct *fsec = selinux_file(file); 3539 u32 sid = current_sid(); 3540 3541 fsec->sid = sid; 3542 fsec->fown_sid = sid; 3543 3544 return 0; 3545 } 3546 3547 /* 3548 * Check whether a task has the ioctl permission and cmd 3549 * operation to an inode. 3550 */ 3551 static int ioctl_has_perm(const struct cred *cred, struct file *file, 3552 u32 requested, u16 cmd) 3553 { 3554 struct common_audit_data ad; 3555 struct file_security_struct *fsec = selinux_file(file); 3556 struct inode *inode = file_inode(file); 3557 struct inode_security_struct *isec; 3558 struct lsm_ioctlop_audit ioctl; 3559 u32 ssid = cred_sid(cred); 3560 int rc; 3561 u8 driver = cmd >> 8; 3562 u8 xperm = cmd & 0xff; 3563 3564 ad.type = LSM_AUDIT_DATA_IOCTL_OP; 3565 ad.u.op = &ioctl; 3566 ad.u.op->cmd = cmd; 3567 ad.u.op->path = file->f_path; 3568 3569 if (ssid != fsec->sid) { 3570 rc = avc_has_perm(&selinux_state, 3571 ssid, fsec->sid, 3572 SECCLASS_FD, 3573 FD__USE, 3574 &ad); 3575 if (rc) 3576 goto out; 3577 } 3578 3579 if (unlikely(IS_PRIVATE(inode))) 3580 return 0; 3581 3582 isec = inode_security(inode); 3583 rc = avc_has_extended_perms(&selinux_state, 3584 ssid, isec->sid, isec->sclass, 3585 requested, driver, xperm, &ad); 3586 out: 3587 return rc; 3588 } 3589 3590 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 3591 unsigned long arg) 3592 { 3593 const struct cred *cred = current_cred(); 3594 int error = 0; 3595 3596 switch (cmd) { 3597 case FIONREAD: 3598 /* fall through */ 3599 case FIBMAP: 3600 /* fall through */ 3601 case FIGETBSZ: 3602 /* fall through */ 3603 case FS_IOC_GETFLAGS: 3604 /* fall through */ 3605 case FS_IOC_GETVERSION: 3606 error = file_has_perm(cred, file, FILE__GETATTR); 3607 break; 3608 3609 case FS_IOC_SETFLAGS: 3610 /* fall through */ 3611 case FS_IOC_SETVERSION: 3612 error = file_has_perm(cred, file, FILE__SETATTR); 3613 break; 3614 3615 /* sys_ioctl() checks */ 3616 case FIONBIO: 3617 /* fall through */ 3618 case FIOASYNC: 3619 error = file_has_perm(cred, file, 0); 3620 break; 3621 3622 case KDSKBENT: 3623 case KDSKBSENT: 3624 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG, 3625 CAP_OPT_NONE, true); 3626 break; 3627 3628 /* default case assumes that the command will go 3629 * to the file's ioctl() function. 3630 */ 3631 default: 3632 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd); 3633 } 3634 return error; 3635 } 3636 3637 static int default_noexec __ro_after_init; 3638 3639 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 3640 { 3641 const struct cred *cred = current_cred(); 3642 u32 sid = cred_sid(cred); 3643 int rc = 0; 3644 3645 if (default_noexec && 3646 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) || 3647 (!shared && (prot & PROT_WRITE)))) { 3648 /* 3649 * We are making executable an anonymous mapping or a 3650 * private file mapping that will also be writable. 3651 * This has an additional check. 3652 */ 3653 rc = avc_has_perm(&selinux_state, 3654 sid, sid, SECCLASS_PROCESS, 3655 PROCESS__EXECMEM, NULL); 3656 if (rc) 3657 goto error; 3658 } 3659 3660 if (file) { 3661 /* read access is always possible with a mapping */ 3662 u32 av = FILE__READ; 3663 3664 /* write access only matters if the mapping is shared */ 3665 if (shared && (prot & PROT_WRITE)) 3666 av |= FILE__WRITE; 3667 3668 if (prot & PROT_EXEC) 3669 av |= FILE__EXECUTE; 3670 3671 return file_has_perm(cred, file, av); 3672 } 3673 3674 error: 3675 return rc; 3676 } 3677 3678 static int selinux_mmap_addr(unsigned long addr) 3679 { 3680 int rc = 0; 3681 3682 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) { 3683 u32 sid = current_sid(); 3684 rc = avc_has_perm(&selinux_state, 3685 sid, sid, SECCLASS_MEMPROTECT, 3686 MEMPROTECT__MMAP_ZERO, NULL); 3687 } 3688 3689 return rc; 3690 } 3691 3692 static int selinux_mmap_file(struct file *file, unsigned long reqprot, 3693 unsigned long prot, unsigned long flags) 3694 { 3695 struct common_audit_data ad; 3696 int rc; 3697 3698 if (file) { 3699 ad.type = LSM_AUDIT_DATA_FILE; 3700 ad.u.file = file; 3701 rc = inode_has_perm(current_cred(), file_inode(file), 3702 FILE__MAP, &ad); 3703 if (rc) 3704 return rc; 3705 } 3706 3707 if (selinux_state.checkreqprot) 3708 prot = reqprot; 3709 3710 return file_map_prot_check(file, prot, 3711 (flags & MAP_TYPE) == MAP_SHARED); 3712 } 3713 3714 static int selinux_file_mprotect(struct vm_area_struct *vma, 3715 unsigned long reqprot, 3716 unsigned long prot) 3717 { 3718 const struct cred *cred = current_cred(); 3719 u32 sid = cred_sid(cred); 3720 3721 if (selinux_state.checkreqprot) 3722 prot = reqprot; 3723 3724 if (default_noexec && 3725 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 3726 int rc = 0; 3727 if (vma->vm_start >= vma->vm_mm->start_brk && 3728 vma->vm_end <= vma->vm_mm->brk) { 3729 rc = avc_has_perm(&selinux_state, 3730 sid, sid, SECCLASS_PROCESS, 3731 PROCESS__EXECHEAP, NULL); 3732 } else if (!vma->vm_file && 3733 ((vma->vm_start <= vma->vm_mm->start_stack && 3734 vma->vm_end >= vma->vm_mm->start_stack) || 3735 vma_is_stack_for_current(vma))) { 3736 rc = avc_has_perm(&selinux_state, 3737 sid, sid, SECCLASS_PROCESS, 3738 PROCESS__EXECSTACK, NULL); 3739 } else if (vma->vm_file && vma->anon_vma) { 3740 /* 3741 * We are making executable a file mapping that has 3742 * had some COW done. Since pages might have been 3743 * written, check ability to execute the possibly 3744 * modified content. This typically should only 3745 * occur for text relocations. 3746 */ 3747 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD); 3748 } 3749 if (rc) 3750 return rc; 3751 } 3752 3753 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 3754 } 3755 3756 static int selinux_file_lock(struct file *file, unsigned int cmd) 3757 { 3758 const struct cred *cred = current_cred(); 3759 3760 return file_has_perm(cred, file, FILE__LOCK); 3761 } 3762 3763 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 3764 unsigned long arg) 3765 { 3766 const struct cred *cred = current_cred(); 3767 int err = 0; 3768 3769 switch (cmd) { 3770 case F_SETFL: 3771 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 3772 err = file_has_perm(cred, file, FILE__WRITE); 3773 break; 3774 } 3775 /* fall through */ 3776 case F_SETOWN: 3777 case F_SETSIG: 3778 case F_GETFL: 3779 case F_GETOWN: 3780 case F_GETSIG: 3781 case F_GETOWNER_UIDS: 3782 /* Just check FD__USE permission */ 3783 err = file_has_perm(cred, file, 0); 3784 break; 3785 case F_GETLK: 3786 case F_SETLK: 3787 case F_SETLKW: 3788 case F_OFD_GETLK: 3789 case F_OFD_SETLK: 3790 case F_OFD_SETLKW: 3791 #if BITS_PER_LONG == 32 3792 case F_GETLK64: 3793 case F_SETLK64: 3794 case F_SETLKW64: 3795 #endif 3796 err = file_has_perm(cred, file, FILE__LOCK); 3797 break; 3798 } 3799 3800 return err; 3801 } 3802 3803 static void selinux_file_set_fowner(struct file *file) 3804 { 3805 struct file_security_struct *fsec; 3806 3807 fsec = selinux_file(file); 3808 fsec->fown_sid = current_sid(); 3809 } 3810 3811 static int selinux_file_send_sigiotask(struct task_struct *tsk, 3812 struct fown_struct *fown, int signum) 3813 { 3814 struct file *file; 3815 u32 sid = task_sid(tsk); 3816 u32 perm; 3817 struct file_security_struct *fsec; 3818 3819 /* struct fown_struct is never outside the context of a struct file */ 3820 file = container_of(fown, struct file, f_owner); 3821 3822 fsec = selinux_file(file); 3823 3824 if (!signum) 3825 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 3826 else 3827 perm = signal_to_av(signum); 3828 3829 return avc_has_perm(&selinux_state, 3830 fsec->fown_sid, sid, 3831 SECCLASS_PROCESS, perm, NULL); 3832 } 3833 3834 static int selinux_file_receive(struct file *file) 3835 { 3836 const struct cred *cred = current_cred(); 3837 3838 return file_has_perm(cred, file, file_to_av(file)); 3839 } 3840 3841 static int selinux_file_open(struct file *file) 3842 { 3843 struct file_security_struct *fsec; 3844 struct inode_security_struct *isec; 3845 3846 fsec = selinux_file(file); 3847 isec = inode_security(file_inode(file)); 3848 /* 3849 * Save inode label and policy sequence number 3850 * at open-time so that selinux_file_permission 3851 * can determine whether revalidation is necessary. 3852 * Task label is already saved in the file security 3853 * struct as its SID. 3854 */ 3855 fsec->isid = isec->sid; 3856 fsec->pseqno = avc_policy_seqno(&selinux_state); 3857 /* 3858 * Since the inode label or policy seqno may have changed 3859 * between the selinux_inode_permission check and the saving 3860 * of state above, recheck that access is still permitted. 3861 * Otherwise, access might never be revalidated against the 3862 * new inode label or new policy. 3863 * This check is not redundant - do not remove. 3864 */ 3865 return file_path_has_perm(file->f_cred, file, open_file_to_av(file)); 3866 } 3867 3868 /* task security operations */ 3869 3870 static int selinux_task_alloc(struct task_struct *task, 3871 unsigned long clone_flags) 3872 { 3873 u32 sid = current_sid(); 3874 3875 return avc_has_perm(&selinux_state, 3876 sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL); 3877 } 3878 3879 /* 3880 * prepare a new set of credentials for modification 3881 */ 3882 static int selinux_cred_prepare(struct cred *new, const struct cred *old, 3883 gfp_t gfp) 3884 { 3885 const struct task_security_struct *old_tsec = selinux_cred(old); 3886 struct task_security_struct *tsec = selinux_cred(new); 3887 3888 *tsec = *old_tsec; 3889 return 0; 3890 } 3891 3892 /* 3893 * transfer the SELinux data to a blank set of creds 3894 */ 3895 static void selinux_cred_transfer(struct cred *new, const struct cred *old) 3896 { 3897 const struct task_security_struct *old_tsec = selinux_cred(old); 3898 struct task_security_struct *tsec = selinux_cred(new); 3899 3900 *tsec = *old_tsec; 3901 } 3902 3903 static void selinux_cred_getsecid(const struct cred *c, u32 *secid) 3904 { 3905 *secid = cred_sid(c); 3906 } 3907 3908 /* 3909 * set the security data for a kernel service 3910 * - all the creation contexts are set to unlabelled 3911 */ 3912 static int selinux_kernel_act_as(struct cred *new, u32 secid) 3913 { 3914 struct task_security_struct *tsec = selinux_cred(new); 3915 u32 sid = current_sid(); 3916 int ret; 3917 3918 ret = avc_has_perm(&selinux_state, 3919 sid, secid, 3920 SECCLASS_KERNEL_SERVICE, 3921 KERNEL_SERVICE__USE_AS_OVERRIDE, 3922 NULL); 3923 if (ret == 0) { 3924 tsec->sid = secid; 3925 tsec->create_sid = 0; 3926 tsec->keycreate_sid = 0; 3927 tsec->sockcreate_sid = 0; 3928 } 3929 return ret; 3930 } 3931 3932 /* 3933 * set the file creation context in a security record to the same as the 3934 * objective context of the specified inode 3935 */ 3936 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode) 3937 { 3938 struct inode_security_struct *isec = inode_security(inode); 3939 struct task_security_struct *tsec = selinux_cred(new); 3940 u32 sid = current_sid(); 3941 int ret; 3942 3943 ret = avc_has_perm(&selinux_state, 3944 sid, isec->sid, 3945 SECCLASS_KERNEL_SERVICE, 3946 KERNEL_SERVICE__CREATE_FILES_AS, 3947 NULL); 3948 3949 if (ret == 0) 3950 tsec->create_sid = isec->sid; 3951 return ret; 3952 } 3953 3954 static int selinux_kernel_module_request(char *kmod_name) 3955 { 3956 struct common_audit_data ad; 3957 3958 ad.type = LSM_AUDIT_DATA_KMOD; 3959 ad.u.kmod_name = kmod_name; 3960 3961 return avc_has_perm(&selinux_state, 3962 current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM, 3963 SYSTEM__MODULE_REQUEST, &ad); 3964 } 3965 3966 static int selinux_kernel_module_from_file(struct file *file) 3967 { 3968 struct common_audit_data ad; 3969 struct inode_security_struct *isec; 3970 struct file_security_struct *fsec; 3971 u32 sid = current_sid(); 3972 int rc; 3973 3974 /* init_module */ 3975 if (file == NULL) 3976 return avc_has_perm(&selinux_state, 3977 sid, sid, SECCLASS_SYSTEM, 3978 SYSTEM__MODULE_LOAD, NULL); 3979 3980 /* finit_module */ 3981 3982 ad.type = LSM_AUDIT_DATA_FILE; 3983 ad.u.file = file; 3984 3985 fsec = selinux_file(file); 3986 if (sid != fsec->sid) { 3987 rc = avc_has_perm(&selinux_state, 3988 sid, fsec->sid, SECCLASS_FD, FD__USE, &ad); 3989 if (rc) 3990 return rc; 3991 } 3992 3993 isec = inode_security(file_inode(file)); 3994 return avc_has_perm(&selinux_state, 3995 sid, isec->sid, SECCLASS_SYSTEM, 3996 SYSTEM__MODULE_LOAD, &ad); 3997 } 3998 3999 static int selinux_kernel_read_file(struct file *file, 4000 enum kernel_read_file_id id) 4001 { 4002 int rc = 0; 4003 4004 switch (id) { 4005 case READING_MODULE: 4006 rc = selinux_kernel_module_from_file(file); 4007 break; 4008 default: 4009 break; 4010 } 4011 4012 return rc; 4013 } 4014 4015 static int selinux_kernel_load_data(enum kernel_load_data_id id) 4016 { 4017 int rc = 0; 4018 4019 switch (id) { 4020 case LOADING_MODULE: 4021 rc = selinux_kernel_module_from_file(NULL); 4022 default: 4023 break; 4024 } 4025 4026 return rc; 4027 } 4028 4029 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 4030 { 4031 return avc_has_perm(&selinux_state, 4032 current_sid(), task_sid(p), SECCLASS_PROCESS, 4033 PROCESS__SETPGID, NULL); 4034 } 4035 4036 static int selinux_task_getpgid(struct task_struct *p) 4037 { 4038 return avc_has_perm(&selinux_state, 4039 current_sid(), task_sid(p), SECCLASS_PROCESS, 4040 PROCESS__GETPGID, NULL); 4041 } 4042 4043 static int selinux_task_getsid(struct task_struct *p) 4044 { 4045 return avc_has_perm(&selinux_state, 4046 current_sid(), task_sid(p), SECCLASS_PROCESS, 4047 PROCESS__GETSESSION, NULL); 4048 } 4049 4050 static void selinux_task_getsecid(struct task_struct *p, u32 *secid) 4051 { 4052 *secid = task_sid(p); 4053 } 4054 4055 static int selinux_task_setnice(struct task_struct *p, int nice) 4056 { 4057 return avc_has_perm(&selinux_state, 4058 current_sid(), task_sid(p), SECCLASS_PROCESS, 4059 PROCESS__SETSCHED, NULL); 4060 } 4061 4062 static int selinux_task_setioprio(struct task_struct *p, int ioprio) 4063 { 4064 return avc_has_perm(&selinux_state, 4065 current_sid(), task_sid(p), SECCLASS_PROCESS, 4066 PROCESS__SETSCHED, NULL); 4067 } 4068 4069 static int selinux_task_getioprio(struct task_struct *p) 4070 { 4071 return avc_has_perm(&selinux_state, 4072 current_sid(), task_sid(p), SECCLASS_PROCESS, 4073 PROCESS__GETSCHED, NULL); 4074 } 4075 4076 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred, 4077 unsigned int flags) 4078 { 4079 u32 av = 0; 4080 4081 if (!flags) 4082 return 0; 4083 if (flags & LSM_PRLIMIT_WRITE) 4084 av |= PROCESS__SETRLIMIT; 4085 if (flags & LSM_PRLIMIT_READ) 4086 av |= PROCESS__GETRLIMIT; 4087 return avc_has_perm(&selinux_state, 4088 cred_sid(cred), cred_sid(tcred), 4089 SECCLASS_PROCESS, av, NULL); 4090 } 4091 4092 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource, 4093 struct rlimit *new_rlim) 4094 { 4095 struct rlimit *old_rlim = p->signal->rlim + resource; 4096 4097 /* Control the ability to change the hard limit (whether 4098 lowering or raising it), so that the hard limit can 4099 later be used as a safe reset point for the soft limit 4100 upon context transitions. See selinux_bprm_committing_creds. */ 4101 if (old_rlim->rlim_max != new_rlim->rlim_max) 4102 return avc_has_perm(&selinux_state, 4103 current_sid(), task_sid(p), 4104 SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL); 4105 4106 return 0; 4107 } 4108 4109 static int selinux_task_setscheduler(struct task_struct *p) 4110 { 4111 return avc_has_perm(&selinux_state, 4112 current_sid(), task_sid(p), SECCLASS_PROCESS, 4113 PROCESS__SETSCHED, NULL); 4114 } 4115 4116 static int selinux_task_getscheduler(struct task_struct *p) 4117 { 4118 return avc_has_perm(&selinux_state, 4119 current_sid(), task_sid(p), SECCLASS_PROCESS, 4120 PROCESS__GETSCHED, NULL); 4121 } 4122 4123 static int selinux_task_movememory(struct task_struct *p) 4124 { 4125 return avc_has_perm(&selinux_state, 4126 current_sid(), task_sid(p), SECCLASS_PROCESS, 4127 PROCESS__SETSCHED, NULL); 4128 } 4129 4130 static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info, 4131 int sig, const struct cred *cred) 4132 { 4133 u32 secid; 4134 u32 perm; 4135 4136 if (!sig) 4137 perm = PROCESS__SIGNULL; /* null signal; existence test */ 4138 else 4139 perm = signal_to_av(sig); 4140 if (!cred) 4141 secid = current_sid(); 4142 else 4143 secid = cred_sid(cred); 4144 return avc_has_perm(&selinux_state, 4145 secid, task_sid(p), SECCLASS_PROCESS, perm, NULL); 4146 } 4147 4148 static void selinux_task_to_inode(struct task_struct *p, 4149 struct inode *inode) 4150 { 4151 struct inode_security_struct *isec = selinux_inode(inode); 4152 u32 sid = task_sid(p); 4153 4154 spin_lock(&isec->lock); 4155 isec->sclass = inode_mode_to_security_class(inode->i_mode); 4156 isec->sid = sid; 4157 isec->initialized = LABEL_INITIALIZED; 4158 spin_unlock(&isec->lock); 4159 } 4160 4161 /* Returns error only if unable to parse addresses */ 4162 static int selinux_parse_skb_ipv4(struct sk_buff *skb, 4163 struct common_audit_data *ad, u8 *proto) 4164 { 4165 int offset, ihlen, ret = -EINVAL; 4166 struct iphdr _iph, *ih; 4167 4168 offset = skb_network_offset(skb); 4169 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 4170 if (ih == NULL) 4171 goto out; 4172 4173 ihlen = ih->ihl * 4; 4174 if (ihlen < sizeof(_iph)) 4175 goto out; 4176 4177 ad->u.net->v4info.saddr = ih->saddr; 4178 ad->u.net->v4info.daddr = ih->daddr; 4179 ret = 0; 4180 4181 if (proto) 4182 *proto = ih->protocol; 4183 4184 switch (ih->protocol) { 4185 case IPPROTO_TCP: { 4186 struct tcphdr _tcph, *th; 4187 4188 if (ntohs(ih->frag_off) & IP_OFFSET) 4189 break; 4190 4191 offset += ihlen; 4192 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 4193 if (th == NULL) 4194 break; 4195 4196 ad->u.net->sport = th->source; 4197 ad->u.net->dport = th->dest; 4198 break; 4199 } 4200 4201 case IPPROTO_UDP: { 4202 struct udphdr _udph, *uh; 4203 4204 if (ntohs(ih->frag_off) & IP_OFFSET) 4205 break; 4206 4207 offset += ihlen; 4208 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 4209 if (uh == NULL) 4210 break; 4211 4212 ad->u.net->sport = uh->source; 4213 ad->u.net->dport = uh->dest; 4214 break; 4215 } 4216 4217 case IPPROTO_DCCP: { 4218 struct dccp_hdr _dccph, *dh; 4219 4220 if (ntohs(ih->frag_off) & IP_OFFSET) 4221 break; 4222 4223 offset += ihlen; 4224 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 4225 if (dh == NULL) 4226 break; 4227 4228 ad->u.net->sport = dh->dccph_sport; 4229 ad->u.net->dport = dh->dccph_dport; 4230 break; 4231 } 4232 4233 #if IS_ENABLED(CONFIG_IP_SCTP) 4234 case IPPROTO_SCTP: { 4235 struct sctphdr _sctph, *sh; 4236 4237 if (ntohs(ih->frag_off) & IP_OFFSET) 4238 break; 4239 4240 offset += ihlen; 4241 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph); 4242 if (sh == NULL) 4243 break; 4244 4245 ad->u.net->sport = sh->source; 4246 ad->u.net->dport = sh->dest; 4247 break; 4248 } 4249 #endif 4250 default: 4251 break; 4252 } 4253 out: 4254 return ret; 4255 } 4256 4257 #if IS_ENABLED(CONFIG_IPV6) 4258 4259 /* Returns error only if unable to parse addresses */ 4260 static int selinux_parse_skb_ipv6(struct sk_buff *skb, 4261 struct common_audit_data *ad, u8 *proto) 4262 { 4263 u8 nexthdr; 4264 int ret = -EINVAL, offset; 4265 struct ipv6hdr _ipv6h, *ip6; 4266 __be16 frag_off; 4267 4268 offset = skb_network_offset(skb); 4269 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 4270 if (ip6 == NULL) 4271 goto out; 4272 4273 ad->u.net->v6info.saddr = ip6->saddr; 4274 ad->u.net->v6info.daddr = ip6->daddr; 4275 ret = 0; 4276 4277 nexthdr = ip6->nexthdr; 4278 offset += sizeof(_ipv6h); 4279 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off); 4280 if (offset < 0) 4281 goto out; 4282 4283 if (proto) 4284 *proto = nexthdr; 4285 4286 switch (nexthdr) { 4287 case IPPROTO_TCP: { 4288 struct tcphdr _tcph, *th; 4289 4290 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 4291 if (th == NULL) 4292 break; 4293 4294 ad->u.net->sport = th->source; 4295 ad->u.net->dport = th->dest; 4296 break; 4297 } 4298 4299 case IPPROTO_UDP: { 4300 struct udphdr _udph, *uh; 4301 4302 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 4303 if (uh == NULL) 4304 break; 4305 4306 ad->u.net->sport = uh->source; 4307 ad->u.net->dport = uh->dest; 4308 break; 4309 } 4310 4311 case IPPROTO_DCCP: { 4312 struct dccp_hdr _dccph, *dh; 4313 4314 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 4315 if (dh == NULL) 4316 break; 4317 4318 ad->u.net->sport = dh->dccph_sport; 4319 ad->u.net->dport = dh->dccph_dport; 4320 break; 4321 } 4322 4323 #if IS_ENABLED(CONFIG_IP_SCTP) 4324 case IPPROTO_SCTP: { 4325 struct sctphdr _sctph, *sh; 4326 4327 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph); 4328 if (sh == NULL) 4329 break; 4330 4331 ad->u.net->sport = sh->source; 4332 ad->u.net->dport = sh->dest; 4333 break; 4334 } 4335 #endif 4336 /* includes fragments */ 4337 default: 4338 break; 4339 } 4340 out: 4341 return ret; 4342 } 4343 4344 #endif /* IPV6 */ 4345 4346 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad, 4347 char **_addrp, int src, u8 *proto) 4348 { 4349 char *addrp; 4350 int ret; 4351 4352 switch (ad->u.net->family) { 4353 case PF_INET: 4354 ret = selinux_parse_skb_ipv4(skb, ad, proto); 4355 if (ret) 4356 goto parse_error; 4357 addrp = (char *)(src ? &ad->u.net->v4info.saddr : 4358 &ad->u.net->v4info.daddr); 4359 goto okay; 4360 4361 #if IS_ENABLED(CONFIG_IPV6) 4362 case PF_INET6: 4363 ret = selinux_parse_skb_ipv6(skb, ad, proto); 4364 if (ret) 4365 goto parse_error; 4366 addrp = (char *)(src ? &ad->u.net->v6info.saddr : 4367 &ad->u.net->v6info.daddr); 4368 goto okay; 4369 #endif /* IPV6 */ 4370 default: 4371 addrp = NULL; 4372 goto okay; 4373 } 4374 4375 parse_error: 4376 pr_warn( 4377 "SELinux: failure in selinux_parse_skb()," 4378 " unable to parse packet\n"); 4379 return ret; 4380 4381 okay: 4382 if (_addrp) 4383 *_addrp = addrp; 4384 return 0; 4385 } 4386 4387 /** 4388 * selinux_skb_peerlbl_sid - Determine the peer label of a packet 4389 * @skb: the packet 4390 * @family: protocol family 4391 * @sid: the packet's peer label SID 4392 * 4393 * Description: 4394 * Check the various different forms of network peer labeling and determine 4395 * the peer label/SID for the packet; most of the magic actually occurs in 4396 * the security server function security_net_peersid_cmp(). The function 4397 * returns zero if the value in @sid is valid (although it may be SECSID_NULL) 4398 * or -EACCES if @sid is invalid due to inconsistencies with the different 4399 * peer labels. 4400 * 4401 */ 4402 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid) 4403 { 4404 int err; 4405 u32 xfrm_sid; 4406 u32 nlbl_sid; 4407 u32 nlbl_type; 4408 4409 err = selinux_xfrm_skb_sid(skb, &xfrm_sid); 4410 if (unlikely(err)) 4411 return -EACCES; 4412 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid); 4413 if (unlikely(err)) 4414 return -EACCES; 4415 4416 err = security_net_peersid_resolve(&selinux_state, nlbl_sid, 4417 nlbl_type, xfrm_sid, sid); 4418 if (unlikely(err)) { 4419 pr_warn( 4420 "SELinux: failure in selinux_skb_peerlbl_sid()," 4421 " unable to determine packet's peer label\n"); 4422 return -EACCES; 4423 } 4424 4425 return 0; 4426 } 4427 4428 /** 4429 * selinux_conn_sid - Determine the child socket label for a connection 4430 * @sk_sid: the parent socket's SID 4431 * @skb_sid: the packet's SID 4432 * @conn_sid: the resulting connection SID 4433 * 4434 * If @skb_sid is valid then the user:role:type information from @sk_sid is 4435 * combined with the MLS information from @skb_sid in order to create 4436 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy 4437 * of @sk_sid. Returns zero on success, negative values on failure. 4438 * 4439 */ 4440 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid) 4441 { 4442 int err = 0; 4443 4444 if (skb_sid != SECSID_NULL) 4445 err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid, 4446 conn_sid); 4447 else 4448 *conn_sid = sk_sid; 4449 4450 return err; 4451 } 4452 4453 /* socket security operations */ 4454 4455 static int socket_sockcreate_sid(const struct task_security_struct *tsec, 4456 u16 secclass, u32 *socksid) 4457 { 4458 if (tsec->sockcreate_sid > SECSID_NULL) { 4459 *socksid = tsec->sockcreate_sid; 4460 return 0; 4461 } 4462 4463 return security_transition_sid(&selinux_state, tsec->sid, tsec->sid, 4464 secclass, NULL, socksid); 4465 } 4466 4467 static int sock_has_perm(struct sock *sk, u32 perms) 4468 { 4469 struct sk_security_struct *sksec = sk->sk_security; 4470 struct common_audit_data ad; 4471 struct lsm_network_audit net = {0,}; 4472 4473 if (sksec->sid == SECINITSID_KERNEL) 4474 return 0; 4475 4476 ad.type = LSM_AUDIT_DATA_NET; 4477 ad.u.net = &net; 4478 ad.u.net->sk = sk; 4479 4480 return avc_has_perm(&selinux_state, 4481 current_sid(), sksec->sid, sksec->sclass, perms, 4482 &ad); 4483 } 4484 4485 static int selinux_socket_create(int family, int type, 4486 int protocol, int kern) 4487 { 4488 const struct task_security_struct *tsec = selinux_cred(current_cred()); 4489 u32 newsid; 4490 u16 secclass; 4491 int rc; 4492 4493 if (kern) 4494 return 0; 4495 4496 secclass = socket_type_to_security_class(family, type, protocol); 4497 rc = socket_sockcreate_sid(tsec, secclass, &newsid); 4498 if (rc) 4499 return rc; 4500 4501 return avc_has_perm(&selinux_state, 4502 tsec->sid, newsid, secclass, SOCKET__CREATE, NULL); 4503 } 4504 4505 static int selinux_socket_post_create(struct socket *sock, int family, 4506 int type, int protocol, int kern) 4507 { 4508 const struct task_security_struct *tsec = selinux_cred(current_cred()); 4509 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock)); 4510 struct sk_security_struct *sksec; 4511 u16 sclass = socket_type_to_security_class(family, type, protocol); 4512 u32 sid = SECINITSID_KERNEL; 4513 int err = 0; 4514 4515 if (!kern) { 4516 err = socket_sockcreate_sid(tsec, sclass, &sid); 4517 if (err) 4518 return err; 4519 } 4520 4521 isec->sclass = sclass; 4522 isec->sid = sid; 4523 isec->initialized = LABEL_INITIALIZED; 4524 4525 if (sock->sk) { 4526 sksec = sock->sk->sk_security; 4527 sksec->sclass = sclass; 4528 sksec->sid = sid; 4529 /* Allows detection of the first association on this socket */ 4530 if (sksec->sclass == SECCLASS_SCTP_SOCKET) 4531 sksec->sctp_assoc_state = SCTP_ASSOC_UNSET; 4532 4533 err = selinux_netlbl_socket_post_create(sock->sk, family); 4534 } 4535 4536 return err; 4537 } 4538 4539 static int selinux_socket_socketpair(struct socket *socka, 4540 struct socket *sockb) 4541 { 4542 struct sk_security_struct *sksec_a = socka->sk->sk_security; 4543 struct sk_security_struct *sksec_b = sockb->sk->sk_security; 4544 4545 sksec_a->peer_sid = sksec_b->sid; 4546 sksec_b->peer_sid = sksec_a->sid; 4547 4548 return 0; 4549 } 4550 4551 /* Range of port numbers used to automatically bind. 4552 Need to determine whether we should perform a name_bind 4553 permission check between the socket and the port number. */ 4554 4555 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 4556 { 4557 struct sock *sk = sock->sk; 4558 struct sk_security_struct *sksec = sk->sk_security; 4559 u16 family; 4560 int err; 4561 4562 err = sock_has_perm(sk, SOCKET__BIND); 4563 if (err) 4564 goto out; 4565 4566 /* If PF_INET or PF_INET6, check name_bind permission for the port. */ 4567 family = sk->sk_family; 4568 if (family == PF_INET || family == PF_INET6) { 4569 char *addrp; 4570 struct common_audit_data ad; 4571 struct lsm_network_audit net = {0,}; 4572 struct sockaddr_in *addr4 = NULL; 4573 struct sockaddr_in6 *addr6 = NULL; 4574 u16 family_sa; 4575 unsigned short snum; 4576 u32 sid, node_perm; 4577 4578 /* 4579 * sctp_bindx(3) calls via selinux_sctp_bind_connect() 4580 * that validates multiple binding addresses. Because of this 4581 * need to check address->sa_family as it is possible to have 4582 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET. 4583 */ 4584 if (addrlen < offsetofend(struct sockaddr, sa_family)) 4585 return -EINVAL; 4586 family_sa = address->sa_family; 4587 switch (family_sa) { 4588 case AF_UNSPEC: 4589 case AF_INET: 4590 if (addrlen < sizeof(struct sockaddr_in)) 4591 return -EINVAL; 4592 addr4 = (struct sockaddr_in *)address; 4593 if (family_sa == AF_UNSPEC) { 4594 /* see __inet_bind(), we only want to allow 4595 * AF_UNSPEC if the address is INADDR_ANY 4596 */ 4597 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY)) 4598 goto err_af; 4599 family_sa = AF_INET; 4600 } 4601 snum = ntohs(addr4->sin_port); 4602 addrp = (char *)&addr4->sin_addr.s_addr; 4603 break; 4604 case AF_INET6: 4605 if (addrlen < SIN6_LEN_RFC2133) 4606 return -EINVAL; 4607 addr6 = (struct sockaddr_in6 *)address; 4608 snum = ntohs(addr6->sin6_port); 4609 addrp = (char *)&addr6->sin6_addr.s6_addr; 4610 break; 4611 default: 4612 goto err_af; 4613 } 4614 4615 ad.type = LSM_AUDIT_DATA_NET; 4616 ad.u.net = &net; 4617 ad.u.net->sport = htons(snum); 4618 ad.u.net->family = family_sa; 4619 4620 if (snum) { 4621 int low, high; 4622 4623 inet_get_local_port_range(sock_net(sk), &low, &high); 4624 4625 if (inet_port_requires_bind_service(sock_net(sk), snum) || 4626 snum < low || snum > high) { 4627 err = sel_netport_sid(sk->sk_protocol, 4628 snum, &sid); 4629 if (err) 4630 goto out; 4631 err = avc_has_perm(&selinux_state, 4632 sksec->sid, sid, 4633 sksec->sclass, 4634 SOCKET__NAME_BIND, &ad); 4635 if (err) 4636 goto out; 4637 } 4638 } 4639 4640 switch (sksec->sclass) { 4641 case SECCLASS_TCP_SOCKET: 4642 node_perm = TCP_SOCKET__NODE_BIND; 4643 break; 4644 4645 case SECCLASS_UDP_SOCKET: 4646 node_perm = UDP_SOCKET__NODE_BIND; 4647 break; 4648 4649 case SECCLASS_DCCP_SOCKET: 4650 node_perm = DCCP_SOCKET__NODE_BIND; 4651 break; 4652 4653 case SECCLASS_SCTP_SOCKET: 4654 node_perm = SCTP_SOCKET__NODE_BIND; 4655 break; 4656 4657 default: 4658 node_perm = RAWIP_SOCKET__NODE_BIND; 4659 break; 4660 } 4661 4662 err = sel_netnode_sid(addrp, family_sa, &sid); 4663 if (err) 4664 goto out; 4665 4666 if (family_sa == AF_INET) 4667 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr; 4668 else 4669 ad.u.net->v6info.saddr = addr6->sin6_addr; 4670 4671 err = avc_has_perm(&selinux_state, 4672 sksec->sid, sid, 4673 sksec->sclass, node_perm, &ad); 4674 if (err) 4675 goto out; 4676 } 4677 out: 4678 return err; 4679 err_af: 4680 /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */ 4681 if (sksec->sclass == SECCLASS_SCTP_SOCKET) 4682 return -EINVAL; 4683 return -EAFNOSUPPORT; 4684 } 4685 4686 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3) 4687 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst 4688 */ 4689 static int selinux_socket_connect_helper(struct socket *sock, 4690 struct sockaddr *address, int addrlen) 4691 { 4692 struct sock *sk = sock->sk; 4693 struct sk_security_struct *sksec = sk->sk_security; 4694 int err; 4695 4696 err = sock_has_perm(sk, SOCKET__CONNECT); 4697 if (err) 4698 return err; 4699 if (addrlen < offsetofend(struct sockaddr, sa_family)) 4700 return -EINVAL; 4701 4702 /* connect(AF_UNSPEC) has special handling, as it is a documented 4703 * way to disconnect the socket 4704 */ 4705 if (address->sa_family == AF_UNSPEC) 4706 return 0; 4707 4708 /* 4709 * If a TCP, DCCP or SCTP socket, check name_connect permission 4710 * for the port. 4711 */ 4712 if (sksec->sclass == SECCLASS_TCP_SOCKET || 4713 sksec->sclass == SECCLASS_DCCP_SOCKET || 4714 sksec->sclass == SECCLASS_SCTP_SOCKET) { 4715 struct common_audit_data ad; 4716 struct lsm_network_audit net = {0,}; 4717 struct sockaddr_in *addr4 = NULL; 4718 struct sockaddr_in6 *addr6 = NULL; 4719 unsigned short snum; 4720 u32 sid, perm; 4721 4722 /* sctp_connectx(3) calls via selinux_sctp_bind_connect() 4723 * that validates multiple connect addresses. Because of this 4724 * need to check address->sa_family as it is possible to have 4725 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET. 4726 */ 4727 switch (address->sa_family) { 4728 case AF_INET: 4729 addr4 = (struct sockaddr_in *)address; 4730 if (addrlen < sizeof(struct sockaddr_in)) 4731 return -EINVAL; 4732 snum = ntohs(addr4->sin_port); 4733 break; 4734 case AF_INET6: 4735 addr6 = (struct sockaddr_in6 *)address; 4736 if (addrlen < SIN6_LEN_RFC2133) 4737 return -EINVAL; 4738 snum = ntohs(addr6->sin6_port); 4739 break; 4740 default: 4741 /* Note that SCTP services expect -EINVAL, whereas 4742 * others expect -EAFNOSUPPORT. 4743 */ 4744 if (sksec->sclass == SECCLASS_SCTP_SOCKET) 4745 return -EINVAL; 4746 else 4747 return -EAFNOSUPPORT; 4748 } 4749 4750 err = sel_netport_sid(sk->sk_protocol, snum, &sid); 4751 if (err) 4752 return err; 4753 4754 switch (sksec->sclass) { 4755 case SECCLASS_TCP_SOCKET: 4756 perm = TCP_SOCKET__NAME_CONNECT; 4757 break; 4758 case SECCLASS_DCCP_SOCKET: 4759 perm = DCCP_SOCKET__NAME_CONNECT; 4760 break; 4761 case SECCLASS_SCTP_SOCKET: 4762 perm = SCTP_SOCKET__NAME_CONNECT; 4763 break; 4764 } 4765 4766 ad.type = LSM_AUDIT_DATA_NET; 4767 ad.u.net = &net; 4768 ad.u.net->dport = htons(snum); 4769 ad.u.net->family = address->sa_family; 4770 err = avc_has_perm(&selinux_state, 4771 sksec->sid, sid, sksec->sclass, perm, &ad); 4772 if (err) 4773 return err; 4774 } 4775 4776 return 0; 4777 } 4778 4779 /* Supports connect(2), see comments in selinux_socket_connect_helper() */ 4780 static int selinux_socket_connect(struct socket *sock, 4781 struct sockaddr *address, int addrlen) 4782 { 4783 int err; 4784 struct sock *sk = sock->sk; 4785 4786 err = selinux_socket_connect_helper(sock, address, addrlen); 4787 if (err) 4788 return err; 4789 4790 return selinux_netlbl_socket_connect(sk, address); 4791 } 4792 4793 static int selinux_socket_listen(struct socket *sock, int backlog) 4794 { 4795 return sock_has_perm(sock->sk, SOCKET__LISTEN); 4796 } 4797 4798 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 4799 { 4800 int err; 4801 struct inode_security_struct *isec; 4802 struct inode_security_struct *newisec; 4803 u16 sclass; 4804 u32 sid; 4805 4806 err = sock_has_perm(sock->sk, SOCKET__ACCEPT); 4807 if (err) 4808 return err; 4809 4810 isec = inode_security_novalidate(SOCK_INODE(sock)); 4811 spin_lock(&isec->lock); 4812 sclass = isec->sclass; 4813 sid = isec->sid; 4814 spin_unlock(&isec->lock); 4815 4816 newisec = inode_security_novalidate(SOCK_INODE(newsock)); 4817 newisec->sclass = sclass; 4818 newisec->sid = sid; 4819 newisec->initialized = LABEL_INITIALIZED; 4820 4821 return 0; 4822 } 4823 4824 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 4825 int size) 4826 { 4827 return sock_has_perm(sock->sk, SOCKET__WRITE); 4828 } 4829 4830 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 4831 int size, int flags) 4832 { 4833 return sock_has_perm(sock->sk, SOCKET__READ); 4834 } 4835 4836 static int selinux_socket_getsockname(struct socket *sock) 4837 { 4838 return sock_has_perm(sock->sk, SOCKET__GETATTR); 4839 } 4840 4841 static int selinux_socket_getpeername(struct socket *sock) 4842 { 4843 return sock_has_perm(sock->sk, SOCKET__GETATTR); 4844 } 4845 4846 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname) 4847 { 4848 int err; 4849 4850 err = sock_has_perm(sock->sk, SOCKET__SETOPT); 4851 if (err) 4852 return err; 4853 4854 return selinux_netlbl_socket_setsockopt(sock, level, optname); 4855 } 4856 4857 static int selinux_socket_getsockopt(struct socket *sock, int level, 4858 int optname) 4859 { 4860 return sock_has_perm(sock->sk, SOCKET__GETOPT); 4861 } 4862 4863 static int selinux_socket_shutdown(struct socket *sock, int how) 4864 { 4865 return sock_has_perm(sock->sk, SOCKET__SHUTDOWN); 4866 } 4867 4868 static int selinux_socket_unix_stream_connect(struct sock *sock, 4869 struct sock *other, 4870 struct sock *newsk) 4871 { 4872 struct sk_security_struct *sksec_sock = sock->sk_security; 4873 struct sk_security_struct *sksec_other = other->sk_security; 4874 struct sk_security_struct *sksec_new = newsk->sk_security; 4875 struct common_audit_data ad; 4876 struct lsm_network_audit net = {0,}; 4877 int err; 4878 4879 ad.type = LSM_AUDIT_DATA_NET; 4880 ad.u.net = &net; 4881 ad.u.net->sk = other; 4882 4883 err = avc_has_perm(&selinux_state, 4884 sksec_sock->sid, sksec_other->sid, 4885 sksec_other->sclass, 4886 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 4887 if (err) 4888 return err; 4889 4890 /* server child socket */ 4891 sksec_new->peer_sid = sksec_sock->sid; 4892 err = security_sid_mls_copy(&selinux_state, sksec_other->sid, 4893 sksec_sock->sid, &sksec_new->sid); 4894 if (err) 4895 return err; 4896 4897 /* connecting socket */ 4898 sksec_sock->peer_sid = sksec_new->sid; 4899 4900 return 0; 4901 } 4902 4903 static int selinux_socket_unix_may_send(struct socket *sock, 4904 struct socket *other) 4905 { 4906 struct sk_security_struct *ssec = sock->sk->sk_security; 4907 struct sk_security_struct *osec = other->sk->sk_security; 4908 struct common_audit_data ad; 4909 struct lsm_network_audit net = {0,}; 4910 4911 ad.type = LSM_AUDIT_DATA_NET; 4912 ad.u.net = &net; 4913 ad.u.net->sk = other->sk; 4914 4915 return avc_has_perm(&selinux_state, 4916 ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO, 4917 &ad); 4918 } 4919 4920 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex, 4921 char *addrp, u16 family, u32 peer_sid, 4922 struct common_audit_data *ad) 4923 { 4924 int err; 4925 u32 if_sid; 4926 u32 node_sid; 4927 4928 err = sel_netif_sid(ns, ifindex, &if_sid); 4929 if (err) 4930 return err; 4931 err = avc_has_perm(&selinux_state, 4932 peer_sid, if_sid, 4933 SECCLASS_NETIF, NETIF__INGRESS, ad); 4934 if (err) 4935 return err; 4936 4937 err = sel_netnode_sid(addrp, family, &node_sid); 4938 if (err) 4939 return err; 4940 return avc_has_perm(&selinux_state, 4941 peer_sid, node_sid, 4942 SECCLASS_NODE, NODE__RECVFROM, ad); 4943 } 4944 4945 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 4946 u16 family) 4947 { 4948 int err = 0; 4949 struct sk_security_struct *sksec = sk->sk_security; 4950 u32 sk_sid = sksec->sid; 4951 struct common_audit_data ad; 4952 struct lsm_network_audit net = {0,}; 4953 char *addrp; 4954 4955 ad.type = LSM_AUDIT_DATA_NET; 4956 ad.u.net = &net; 4957 ad.u.net->netif = skb->skb_iif; 4958 ad.u.net->family = family; 4959 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4960 if (err) 4961 return err; 4962 4963 if (selinux_secmark_enabled()) { 4964 err = avc_has_perm(&selinux_state, 4965 sk_sid, skb->secmark, SECCLASS_PACKET, 4966 PACKET__RECV, &ad); 4967 if (err) 4968 return err; 4969 } 4970 4971 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad); 4972 if (err) 4973 return err; 4974 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad); 4975 4976 return err; 4977 } 4978 4979 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4980 { 4981 int err; 4982 struct sk_security_struct *sksec = sk->sk_security; 4983 u16 family = sk->sk_family; 4984 u32 sk_sid = sksec->sid; 4985 struct common_audit_data ad; 4986 struct lsm_network_audit net = {0,}; 4987 char *addrp; 4988 u8 secmark_active; 4989 u8 peerlbl_active; 4990 4991 if (family != PF_INET && family != PF_INET6) 4992 return 0; 4993 4994 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 4995 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4996 family = PF_INET; 4997 4998 /* If any sort of compatibility mode is enabled then handoff processing 4999 * to the selinux_sock_rcv_skb_compat() function to deal with the 5000 * special handling. We do this in an attempt to keep this function 5001 * as fast and as clean as possible. */ 5002 if (!selinux_policycap_netpeer()) 5003 return selinux_sock_rcv_skb_compat(sk, skb, family); 5004 5005 secmark_active = selinux_secmark_enabled(); 5006 peerlbl_active = selinux_peerlbl_enabled(); 5007 if (!secmark_active && !peerlbl_active) 5008 return 0; 5009 5010 ad.type = LSM_AUDIT_DATA_NET; 5011 ad.u.net = &net; 5012 ad.u.net->netif = skb->skb_iif; 5013 ad.u.net->family = family; 5014 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 5015 if (err) 5016 return err; 5017 5018 if (peerlbl_active) { 5019 u32 peer_sid; 5020 5021 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 5022 if (err) 5023 return err; 5024 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif, 5025 addrp, family, peer_sid, &ad); 5026 if (err) { 5027 selinux_netlbl_err(skb, family, err, 0); 5028 return err; 5029 } 5030 err = avc_has_perm(&selinux_state, 5031 sk_sid, peer_sid, SECCLASS_PEER, 5032 PEER__RECV, &ad); 5033 if (err) { 5034 selinux_netlbl_err(skb, family, err, 0); 5035 return err; 5036 } 5037 } 5038 5039 if (secmark_active) { 5040 err = avc_has_perm(&selinux_state, 5041 sk_sid, skb->secmark, SECCLASS_PACKET, 5042 PACKET__RECV, &ad); 5043 if (err) 5044 return err; 5045 } 5046 5047 return err; 5048 } 5049 5050 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval, 5051 int __user *optlen, unsigned len) 5052 { 5053 int err = 0; 5054 char *scontext; 5055 u32 scontext_len; 5056 struct sk_security_struct *sksec = sock->sk->sk_security; 5057 u32 peer_sid = SECSID_NULL; 5058 5059 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 5060 sksec->sclass == SECCLASS_TCP_SOCKET || 5061 sksec->sclass == SECCLASS_SCTP_SOCKET) 5062 peer_sid = sksec->peer_sid; 5063 if (peer_sid == SECSID_NULL) 5064 return -ENOPROTOOPT; 5065 5066 err = security_sid_to_context(&selinux_state, peer_sid, &scontext, 5067 &scontext_len); 5068 if (err) 5069 return err; 5070 5071 if (scontext_len > len) { 5072 err = -ERANGE; 5073 goto out_len; 5074 } 5075 5076 if (copy_to_user(optval, scontext, scontext_len)) 5077 err = -EFAULT; 5078 5079 out_len: 5080 if (put_user(scontext_len, optlen)) 5081 err = -EFAULT; 5082 kfree(scontext); 5083 return err; 5084 } 5085 5086 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 5087 { 5088 u32 peer_secid = SECSID_NULL; 5089 u16 family; 5090 struct inode_security_struct *isec; 5091 5092 if (skb && skb->protocol == htons(ETH_P_IP)) 5093 family = PF_INET; 5094 else if (skb && skb->protocol == htons(ETH_P_IPV6)) 5095 family = PF_INET6; 5096 else if (sock) 5097 family = sock->sk->sk_family; 5098 else 5099 goto out; 5100 5101 if (sock && family == PF_UNIX) { 5102 isec = inode_security_novalidate(SOCK_INODE(sock)); 5103 peer_secid = isec->sid; 5104 } else if (skb) 5105 selinux_skb_peerlbl_sid(skb, family, &peer_secid); 5106 5107 out: 5108 *secid = peer_secid; 5109 if (peer_secid == SECSID_NULL) 5110 return -EINVAL; 5111 return 0; 5112 } 5113 5114 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 5115 { 5116 struct sk_security_struct *sksec; 5117 5118 sksec = kzalloc(sizeof(*sksec), priority); 5119 if (!sksec) 5120 return -ENOMEM; 5121 5122 sksec->peer_sid = SECINITSID_UNLABELED; 5123 sksec->sid = SECINITSID_UNLABELED; 5124 sksec->sclass = SECCLASS_SOCKET; 5125 selinux_netlbl_sk_security_reset(sksec); 5126 sk->sk_security = sksec; 5127 5128 return 0; 5129 } 5130 5131 static void selinux_sk_free_security(struct sock *sk) 5132 { 5133 struct sk_security_struct *sksec = sk->sk_security; 5134 5135 sk->sk_security = NULL; 5136 selinux_netlbl_sk_security_free(sksec); 5137 kfree(sksec); 5138 } 5139 5140 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 5141 { 5142 struct sk_security_struct *sksec = sk->sk_security; 5143 struct sk_security_struct *newsksec = newsk->sk_security; 5144 5145 newsksec->sid = sksec->sid; 5146 newsksec->peer_sid = sksec->peer_sid; 5147 newsksec->sclass = sksec->sclass; 5148 5149 selinux_netlbl_sk_security_reset(newsksec); 5150 } 5151 5152 static void selinux_sk_getsecid(struct sock *sk, u32 *secid) 5153 { 5154 if (!sk) 5155 *secid = SECINITSID_ANY_SOCKET; 5156 else { 5157 struct sk_security_struct *sksec = sk->sk_security; 5158 5159 *secid = sksec->sid; 5160 } 5161 } 5162 5163 static void selinux_sock_graft(struct sock *sk, struct socket *parent) 5164 { 5165 struct inode_security_struct *isec = 5166 inode_security_novalidate(SOCK_INODE(parent)); 5167 struct sk_security_struct *sksec = sk->sk_security; 5168 5169 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 5170 sk->sk_family == PF_UNIX) 5171 isec->sid = sksec->sid; 5172 sksec->sclass = isec->sclass; 5173 } 5174 5175 /* Called whenever SCTP receives an INIT chunk. This happens when an incoming 5176 * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association 5177 * already present). 5178 */ 5179 static int selinux_sctp_assoc_request(struct sctp_endpoint *ep, 5180 struct sk_buff *skb) 5181 { 5182 struct sk_security_struct *sksec = ep->base.sk->sk_security; 5183 struct common_audit_data ad; 5184 struct lsm_network_audit net = {0,}; 5185 u8 peerlbl_active; 5186 u32 peer_sid = SECINITSID_UNLABELED; 5187 u32 conn_sid; 5188 int err = 0; 5189 5190 if (!selinux_policycap_extsockclass()) 5191 return 0; 5192 5193 peerlbl_active = selinux_peerlbl_enabled(); 5194 5195 if (peerlbl_active) { 5196 /* This will return peer_sid = SECSID_NULL if there are 5197 * no peer labels, see security_net_peersid_resolve(). 5198 */ 5199 err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family, 5200 &peer_sid); 5201 if (err) 5202 return err; 5203 5204 if (peer_sid == SECSID_NULL) 5205 peer_sid = SECINITSID_UNLABELED; 5206 } 5207 5208 if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) { 5209 sksec->sctp_assoc_state = SCTP_ASSOC_SET; 5210 5211 /* Here as first association on socket. As the peer SID 5212 * was allowed by peer recv (and the netif/node checks), 5213 * then it is approved by policy and used as the primary 5214 * peer SID for getpeercon(3). 5215 */ 5216 sksec->peer_sid = peer_sid; 5217 } else if (sksec->peer_sid != peer_sid) { 5218 /* Other association peer SIDs are checked to enforce 5219 * consistency among the peer SIDs. 5220 */ 5221 ad.type = LSM_AUDIT_DATA_NET; 5222 ad.u.net = &net; 5223 ad.u.net->sk = ep->base.sk; 5224 err = avc_has_perm(&selinux_state, 5225 sksec->peer_sid, peer_sid, sksec->sclass, 5226 SCTP_SOCKET__ASSOCIATION, &ad); 5227 if (err) 5228 return err; 5229 } 5230 5231 /* Compute the MLS component for the connection and store 5232 * the information in ep. This will be used by SCTP TCP type 5233 * sockets and peeled off connections as they cause a new 5234 * socket to be generated. selinux_sctp_sk_clone() will then 5235 * plug this into the new socket. 5236 */ 5237 err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid); 5238 if (err) 5239 return err; 5240 5241 ep->secid = conn_sid; 5242 ep->peer_secid = peer_sid; 5243 5244 /* Set any NetLabel labels including CIPSO/CALIPSO options. */ 5245 return selinux_netlbl_sctp_assoc_request(ep, skb); 5246 } 5247 5248 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting 5249 * based on their @optname. 5250 */ 5251 static int selinux_sctp_bind_connect(struct sock *sk, int optname, 5252 struct sockaddr *address, 5253 int addrlen) 5254 { 5255 int len, err = 0, walk_size = 0; 5256 void *addr_buf; 5257 struct sockaddr *addr; 5258 struct socket *sock; 5259 5260 if (!selinux_policycap_extsockclass()) 5261 return 0; 5262 5263 /* Process one or more addresses that may be IPv4 or IPv6 */ 5264 sock = sk->sk_socket; 5265 addr_buf = address; 5266 5267 while (walk_size < addrlen) { 5268 if (walk_size + sizeof(sa_family_t) > addrlen) 5269 return -EINVAL; 5270 5271 addr = addr_buf; 5272 switch (addr->sa_family) { 5273 case AF_UNSPEC: 5274 case AF_INET: 5275 len = sizeof(struct sockaddr_in); 5276 break; 5277 case AF_INET6: 5278 len = sizeof(struct sockaddr_in6); 5279 break; 5280 default: 5281 return -EINVAL; 5282 } 5283 5284 if (walk_size + len > addrlen) 5285 return -EINVAL; 5286 5287 err = -EINVAL; 5288 switch (optname) { 5289 /* Bind checks */ 5290 case SCTP_PRIMARY_ADDR: 5291 case SCTP_SET_PEER_PRIMARY_ADDR: 5292 case SCTP_SOCKOPT_BINDX_ADD: 5293 err = selinux_socket_bind(sock, addr, len); 5294 break; 5295 /* Connect checks */ 5296 case SCTP_SOCKOPT_CONNECTX: 5297 case SCTP_PARAM_SET_PRIMARY: 5298 case SCTP_PARAM_ADD_IP: 5299 case SCTP_SENDMSG_CONNECT: 5300 err = selinux_socket_connect_helper(sock, addr, len); 5301 if (err) 5302 return err; 5303 5304 /* As selinux_sctp_bind_connect() is called by the 5305 * SCTP protocol layer, the socket is already locked, 5306 * therefore selinux_netlbl_socket_connect_locked() is 5307 * is called here. The situations handled are: 5308 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2), 5309 * whenever a new IP address is added or when a new 5310 * primary address is selected. 5311 * Note that an SCTP connect(2) call happens before 5312 * the SCTP protocol layer and is handled via 5313 * selinux_socket_connect(). 5314 */ 5315 err = selinux_netlbl_socket_connect_locked(sk, addr); 5316 break; 5317 } 5318 5319 if (err) 5320 return err; 5321 5322 addr_buf += len; 5323 walk_size += len; 5324 } 5325 5326 return 0; 5327 } 5328 5329 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */ 5330 static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk, 5331 struct sock *newsk) 5332 { 5333 struct sk_security_struct *sksec = sk->sk_security; 5334 struct sk_security_struct *newsksec = newsk->sk_security; 5335 5336 /* If policy does not support SECCLASS_SCTP_SOCKET then call 5337 * the non-sctp clone version. 5338 */ 5339 if (!selinux_policycap_extsockclass()) 5340 return selinux_sk_clone_security(sk, newsk); 5341 5342 newsksec->sid = ep->secid; 5343 newsksec->peer_sid = ep->peer_secid; 5344 newsksec->sclass = sksec->sclass; 5345 selinux_netlbl_sctp_sk_clone(sk, newsk); 5346 } 5347 5348 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb, 5349 struct request_sock *req) 5350 { 5351 struct sk_security_struct *sksec = sk->sk_security; 5352 int err; 5353 u16 family = req->rsk_ops->family; 5354 u32 connsid; 5355 u32 peersid; 5356 5357 err = selinux_skb_peerlbl_sid(skb, family, &peersid); 5358 if (err) 5359 return err; 5360 err = selinux_conn_sid(sksec->sid, peersid, &connsid); 5361 if (err) 5362 return err; 5363 req->secid = connsid; 5364 req->peer_secid = peersid; 5365 5366 return selinux_netlbl_inet_conn_request(req, family); 5367 } 5368 5369 static void selinux_inet_csk_clone(struct sock *newsk, 5370 const struct request_sock *req) 5371 { 5372 struct sk_security_struct *newsksec = newsk->sk_security; 5373 5374 newsksec->sid = req->secid; 5375 newsksec->peer_sid = req->peer_secid; 5376 /* NOTE: Ideally, we should also get the isec->sid for the 5377 new socket in sync, but we don't have the isec available yet. 5378 So we will wait until sock_graft to do it, by which 5379 time it will have been created and available. */ 5380 5381 /* We don't need to take any sort of lock here as we are the only 5382 * thread with access to newsksec */ 5383 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family); 5384 } 5385 5386 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb) 5387 { 5388 u16 family = sk->sk_family; 5389 struct sk_security_struct *sksec = sk->sk_security; 5390 5391 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 5392 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 5393 family = PF_INET; 5394 5395 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid); 5396 } 5397 5398 static int selinux_secmark_relabel_packet(u32 sid) 5399 { 5400 const struct task_security_struct *__tsec; 5401 u32 tsid; 5402 5403 __tsec = selinux_cred(current_cred()); 5404 tsid = __tsec->sid; 5405 5406 return avc_has_perm(&selinux_state, 5407 tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, 5408 NULL); 5409 } 5410 5411 static void selinux_secmark_refcount_inc(void) 5412 { 5413 atomic_inc(&selinux_secmark_refcount); 5414 } 5415 5416 static void selinux_secmark_refcount_dec(void) 5417 { 5418 atomic_dec(&selinux_secmark_refcount); 5419 } 5420 5421 static void selinux_req_classify_flow(const struct request_sock *req, 5422 struct flowi *fl) 5423 { 5424 fl->flowi_secid = req->secid; 5425 } 5426 5427 static int selinux_tun_dev_alloc_security(void **security) 5428 { 5429 struct tun_security_struct *tunsec; 5430 5431 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL); 5432 if (!tunsec) 5433 return -ENOMEM; 5434 tunsec->sid = current_sid(); 5435 5436 *security = tunsec; 5437 return 0; 5438 } 5439 5440 static void selinux_tun_dev_free_security(void *security) 5441 { 5442 kfree(security); 5443 } 5444 5445 static int selinux_tun_dev_create(void) 5446 { 5447 u32 sid = current_sid(); 5448 5449 /* we aren't taking into account the "sockcreate" SID since the socket 5450 * that is being created here is not a socket in the traditional sense, 5451 * instead it is a private sock, accessible only to the kernel, and 5452 * representing a wide range of network traffic spanning multiple 5453 * connections unlike traditional sockets - check the TUN driver to 5454 * get a better understanding of why this socket is special */ 5455 5456 return avc_has_perm(&selinux_state, 5457 sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE, 5458 NULL); 5459 } 5460 5461 static int selinux_tun_dev_attach_queue(void *security) 5462 { 5463 struct tun_security_struct *tunsec = security; 5464 5465 return avc_has_perm(&selinux_state, 5466 current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET, 5467 TUN_SOCKET__ATTACH_QUEUE, NULL); 5468 } 5469 5470 static int selinux_tun_dev_attach(struct sock *sk, void *security) 5471 { 5472 struct tun_security_struct *tunsec = security; 5473 struct sk_security_struct *sksec = sk->sk_security; 5474 5475 /* we don't currently perform any NetLabel based labeling here and it 5476 * isn't clear that we would want to do so anyway; while we could apply 5477 * labeling without the support of the TUN user the resulting labeled 5478 * traffic from the other end of the connection would almost certainly 5479 * cause confusion to the TUN user that had no idea network labeling 5480 * protocols were being used */ 5481 5482 sksec->sid = tunsec->sid; 5483 sksec->sclass = SECCLASS_TUN_SOCKET; 5484 5485 return 0; 5486 } 5487 5488 static int selinux_tun_dev_open(void *security) 5489 { 5490 struct tun_security_struct *tunsec = security; 5491 u32 sid = current_sid(); 5492 int err; 5493 5494 err = avc_has_perm(&selinux_state, 5495 sid, tunsec->sid, SECCLASS_TUN_SOCKET, 5496 TUN_SOCKET__RELABELFROM, NULL); 5497 if (err) 5498 return err; 5499 err = avc_has_perm(&selinux_state, 5500 sid, sid, SECCLASS_TUN_SOCKET, 5501 TUN_SOCKET__RELABELTO, NULL); 5502 if (err) 5503 return err; 5504 tunsec->sid = sid; 5505 5506 return 0; 5507 } 5508 5509 #ifdef CONFIG_NETFILTER 5510 5511 static unsigned int selinux_ip_forward(struct sk_buff *skb, 5512 const struct net_device *indev, 5513 u16 family) 5514 { 5515 int err; 5516 char *addrp; 5517 u32 peer_sid; 5518 struct common_audit_data ad; 5519 struct lsm_network_audit net = {0,}; 5520 u8 secmark_active; 5521 u8 netlbl_active; 5522 u8 peerlbl_active; 5523 5524 if (!selinux_policycap_netpeer()) 5525 return NF_ACCEPT; 5526 5527 secmark_active = selinux_secmark_enabled(); 5528 netlbl_active = netlbl_enabled(); 5529 peerlbl_active = selinux_peerlbl_enabled(); 5530 if (!secmark_active && !peerlbl_active) 5531 return NF_ACCEPT; 5532 5533 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0) 5534 return NF_DROP; 5535 5536 ad.type = LSM_AUDIT_DATA_NET; 5537 ad.u.net = &net; 5538 ad.u.net->netif = indev->ifindex; 5539 ad.u.net->family = family; 5540 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0) 5541 return NF_DROP; 5542 5543 if (peerlbl_active) { 5544 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex, 5545 addrp, family, peer_sid, &ad); 5546 if (err) { 5547 selinux_netlbl_err(skb, family, err, 1); 5548 return NF_DROP; 5549 } 5550 } 5551 5552 if (secmark_active) 5553 if (avc_has_perm(&selinux_state, 5554 peer_sid, skb->secmark, 5555 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad)) 5556 return NF_DROP; 5557 5558 if (netlbl_active) 5559 /* we do this in the FORWARD path and not the POST_ROUTING 5560 * path because we want to make sure we apply the necessary 5561 * labeling before IPsec is applied so we can leverage AH 5562 * protection */ 5563 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0) 5564 return NF_DROP; 5565 5566 return NF_ACCEPT; 5567 } 5568 5569 static unsigned int selinux_ipv4_forward(void *priv, 5570 struct sk_buff *skb, 5571 const struct nf_hook_state *state) 5572 { 5573 return selinux_ip_forward(skb, state->in, PF_INET); 5574 } 5575 5576 #if IS_ENABLED(CONFIG_IPV6) 5577 static unsigned int selinux_ipv6_forward(void *priv, 5578 struct sk_buff *skb, 5579 const struct nf_hook_state *state) 5580 { 5581 return selinux_ip_forward(skb, state->in, PF_INET6); 5582 } 5583 #endif /* IPV6 */ 5584 5585 static unsigned int selinux_ip_output(struct sk_buff *skb, 5586 u16 family) 5587 { 5588 struct sock *sk; 5589 u32 sid; 5590 5591 if (!netlbl_enabled()) 5592 return NF_ACCEPT; 5593 5594 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path 5595 * because we want to make sure we apply the necessary labeling 5596 * before IPsec is applied so we can leverage AH protection */ 5597 sk = skb->sk; 5598 if (sk) { 5599 struct sk_security_struct *sksec; 5600 5601 if (sk_listener(sk)) 5602 /* if the socket is the listening state then this 5603 * packet is a SYN-ACK packet which means it needs to 5604 * be labeled based on the connection/request_sock and 5605 * not the parent socket. unfortunately, we can't 5606 * lookup the request_sock yet as it isn't queued on 5607 * the parent socket until after the SYN-ACK is sent. 5608 * the "solution" is to simply pass the packet as-is 5609 * as any IP option based labeling should be copied 5610 * from the initial connection request (in the IP 5611 * layer). it is far from ideal, but until we get a 5612 * security label in the packet itself this is the 5613 * best we can do. */ 5614 return NF_ACCEPT; 5615 5616 /* standard practice, label using the parent socket */ 5617 sksec = sk->sk_security; 5618 sid = sksec->sid; 5619 } else 5620 sid = SECINITSID_KERNEL; 5621 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0) 5622 return NF_DROP; 5623 5624 return NF_ACCEPT; 5625 } 5626 5627 static unsigned int selinux_ipv4_output(void *priv, 5628 struct sk_buff *skb, 5629 const struct nf_hook_state *state) 5630 { 5631 return selinux_ip_output(skb, PF_INET); 5632 } 5633 5634 #if IS_ENABLED(CONFIG_IPV6) 5635 static unsigned int selinux_ipv6_output(void *priv, 5636 struct sk_buff *skb, 5637 const struct nf_hook_state *state) 5638 { 5639 return selinux_ip_output(skb, PF_INET6); 5640 } 5641 #endif /* IPV6 */ 5642 5643 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb, 5644 int ifindex, 5645 u16 family) 5646 { 5647 struct sock *sk = skb_to_full_sk(skb); 5648 struct sk_security_struct *sksec; 5649 struct common_audit_data ad; 5650 struct lsm_network_audit net = {0,}; 5651 char *addrp; 5652 u8 proto; 5653 5654 if (sk == NULL) 5655 return NF_ACCEPT; 5656 sksec = sk->sk_security; 5657 5658 ad.type = LSM_AUDIT_DATA_NET; 5659 ad.u.net = &net; 5660 ad.u.net->netif = ifindex; 5661 ad.u.net->family = family; 5662 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto)) 5663 return NF_DROP; 5664 5665 if (selinux_secmark_enabled()) 5666 if (avc_has_perm(&selinux_state, 5667 sksec->sid, skb->secmark, 5668 SECCLASS_PACKET, PACKET__SEND, &ad)) 5669 return NF_DROP_ERR(-ECONNREFUSED); 5670 5671 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto)) 5672 return NF_DROP_ERR(-ECONNREFUSED); 5673 5674 return NF_ACCEPT; 5675 } 5676 5677 static unsigned int selinux_ip_postroute(struct sk_buff *skb, 5678 const struct net_device *outdev, 5679 u16 family) 5680 { 5681 u32 secmark_perm; 5682 u32 peer_sid; 5683 int ifindex = outdev->ifindex; 5684 struct sock *sk; 5685 struct common_audit_data ad; 5686 struct lsm_network_audit net = {0,}; 5687 char *addrp; 5688 u8 secmark_active; 5689 u8 peerlbl_active; 5690 5691 /* If any sort of compatibility mode is enabled then handoff processing 5692 * to the selinux_ip_postroute_compat() function to deal with the 5693 * special handling. We do this in an attempt to keep this function 5694 * as fast and as clean as possible. */ 5695 if (!selinux_policycap_netpeer()) 5696 return selinux_ip_postroute_compat(skb, ifindex, family); 5697 5698 secmark_active = selinux_secmark_enabled(); 5699 peerlbl_active = selinux_peerlbl_enabled(); 5700 if (!secmark_active && !peerlbl_active) 5701 return NF_ACCEPT; 5702 5703 sk = skb_to_full_sk(skb); 5704 5705 #ifdef CONFIG_XFRM 5706 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec 5707 * packet transformation so allow the packet to pass without any checks 5708 * since we'll have another chance to perform access control checks 5709 * when the packet is on it's final way out. 5710 * NOTE: there appear to be some IPv6 multicast cases where skb->dst 5711 * is NULL, in this case go ahead and apply access control. 5712 * NOTE: if this is a local socket (skb->sk != NULL) that is in the 5713 * TCP listening state we cannot wait until the XFRM processing 5714 * is done as we will miss out on the SA label if we do; 5715 * unfortunately, this means more work, but it is only once per 5716 * connection. */ 5717 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL && 5718 !(sk && sk_listener(sk))) 5719 return NF_ACCEPT; 5720 #endif 5721 5722 if (sk == NULL) { 5723 /* Without an associated socket the packet is either coming 5724 * from the kernel or it is being forwarded; check the packet 5725 * to determine which and if the packet is being forwarded 5726 * query the packet directly to determine the security label. */ 5727 if (skb->skb_iif) { 5728 secmark_perm = PACKET__FORWARD_OUT; 5729 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid)) 5730 return NF_DROP; 5731 } else { 5732 secmark_perm = PACKET__SEND; 5733 peer_sid = SECINITSID_KERNEL; 5734 } 5735 } else if (sk_listener(sk)) { 5736 /* Locally generated packet but the associated socket is in the 5737 * listening state which means this is a SYN-ACK packet. In 5738 * this particular case the correct security label is assigned 5739 * to the connection/request_sock but unfortunately we can't 5740 * query the request_sock as it isn't queued on the parent 5741 * socket until after the SYN-ACK packet is sent; the only 5742 * viable choice is to regenerate the label like we do in 5743 * selinux_inet_conn_request(). See also selinux_ip_output() 5744 * for similar problems. */ 5745 u32 skb_sid; 5746 struct sk_security_struct *sksec; 5747 5748 sksec = sk->sk_security; 5749 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid)) 5750 return NF_DROP; 5751 /* At this point, if the returned skb peerlbl is SECSID_NULL 5752 * and the packet has been through at least one XFRM 5753 * transformation then we must be dealing with the "final" 5754 * form of labeled IPsec packet; since we've already applied 5755 * all of our access controls on this packet we can safely 5756 * pass the packet. */ 5757 if (skb_sid == SECSID_NULL) { 5758 switch (family) { 5759 case PF_INET: 5760 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED) 5761 return NF_ACCEPT; 5762 break; 5763 case PF_INET6: 5764 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED) 5765 return NF_ACCEPT; 5766 break; 5767 default: 5768 return NF_DROP_ERR(-ECONNREFUSED); 5769 } 5770 } 5771 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid)) 5772 return NF_DROP; 5773 secmark_perm = PACKET__SEND; 5774 } else { 5775 /* Locally generated packet, fetch the security label from the 5776 * associated socket. */ 5777 struct sk_security_struct *sksec = sk->sk_security; 5778 peer_sid = sksec->sid; 5779 secmark_perm = PACKET__SEND; 5780 } 5781 5782 ad.type = LSM_AUDIT_DATA_NET; 5783 ad.u.net = &net; 5784 ad.u.net->netif = ifindex; 5785 ad.u.net->family = family; 5786 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL)) 5787 return NF_DROP; 5788 5789 if (secmark_active) 5790 if (avc_has_perm(&selinux_state, 5791 peer_sid, skb->secmark, 5792 SECCLASS_PACKET, secmark_perm, &ad)) 5793 return NF_DROP_ERR(-ECONNREFUSED); 5794 5795 if (peerlbl_active) { 5796 u32 if_sid; 5797 u32 node_sid; 5798 5799 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid)) 5800 return NF_DROP; 5801 if (avc_has_perm(&selinux_state, 5802 peer_sid, if_sid, 5803 SECCLASS_NETIF, NETIF__EGRESS, &ad)) 5804 return NF_DROP_ERR(-ECONNREFUSED); 5805 5806 if (sel_netnode_sid(addrp, family, &node_sid)) 5807 return NF_DROP; 5808 if (avc_has_perm(&selinux_state, 5809 peer_sid, node_sid, 5810 SECCLASS_NODE, NODE__SENDTO, &ad)) 5811 return NF_DROP_ERR(-ECONNREFUSED); 5812 } 5813 5814 return NF_ACCEPT; 5815 } 5816 5817 static unsigned int selinux_ipv4_postroute(void *priv, 5818 struct sk_buff *skb, 5819 const struct nf_hook_state *state) 5820 { 5821 return selinux_ip_postroute(skb, state->out, PF_INET); 5822 } 5823 5824 #if IS_ENABLED(CONFIG_IPV6) 5825 static unsigned int selinux_ipv6_postroute(void *priv, 5826 struct sk_buff *skb, 5827 const struct nf_hook_state *state) 5828 { 5829 return selinux_ip_postroute(skb, state->out, PF_INET6); 5830 } 5831 #endif /* IPV6 */ 5832 5833 #endif /* CONFIG_NETFILTER */ 5834 5835 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 5836 { 5837 int err = 0; 5838 u32 perm; 5839 struct nlmsghdr *nlh; 5840 struct sk_security_struct *sksec = sk->sk_security; 5841 5842 if (skb->len < NLMSG_HDRLEN) { 5843 err = -EINVAL; 5844 goto out; 5845 } 5846 nlh = nlmsg_hdr(skb); 5847 5848 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm); 5849 if (err) { 5850 if (err == -EINVAL) { 5851 pr_warn_ratelimited("SELinux: unrecognized netlink" 5852 " message: protocol=%hu nlmsg_type=%hu sclass=%s" 5853 " pid=%d comm=%s\n", 5854 sk->sk_protocol, nlh->nlmsg_type, 5855 secclass_map[sksec->sclass - 1].name, 5856 task_pid_nr(current), current->comm); 5857 if (!enforcing_enabled(&selinux_state) || 5858 security_get_allow_unknown(&selinux_state)) 5859 err = 0; 5860 } 5861 5862 /* Ignore */ 5863 if (err == -ENOENT) 5864 err = 0; 5865 goto out; 5866 } 5867 5868 err = sock_has_perm(sk, perm); 5869 out: 5870 return err; 5871 } 5872 5873 static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass) 5874 { 5875 isec->sclass = sclass; 5876 isec->sid = current_sid(); 5877 } 5878 5879 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 5880 u32 perms) 5881 { 5882 struct ipc_security_struct *isec; 5883 struct common_audit_data ad; 5884 u32 sid = current_sid(); 5885 5886 isec = selinux_ipc(ipc_perms); 5887 5888 ad.type = LSM_AUDIT_DATA_IPC; 5889 ad.u.ipc_id = ipc_perms->key; 5890 5891 return avc_has_perm(&selinux_state, 5892 sid, isec->sid, isec->sclass, perms, &ad); 5893 } 5894 5895 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 5896 { 5897 struct msg_security_struct *msec; 5898 5899 msec = selinux_msg_msg(msg); 5900 msec->sid = SECINITSID_UNLABELED; 5901 5902 return 0; 5903 } 5904 5905 /* message queue security operations */ 5906 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq) 5907 { 5908 struct ipc_security_struct *isec; 5909 struct common_audit_data ad; 5910 u32 sid = current_sid(); 5911 int rc; 5912 5913 isec = selinux_ipc(msq); 5914 ipc_init_security(isec, SECCLASS_MSGQ); 5915 5916 ad.type = LSM_AUDIT_DATA_IPC; 5917 ad.u.ipc_id = msq->key; 5918 5919 rc = avc_has_perm(&selinux_state, 5920 sid, isec->sid, SECCLASS_MSGQ, 5921 MSGQ__CREATE, &ad); 5922 return rc; 5923 } 5924 5925 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 5926 { 5927 struct ipc_security_struct *isec; 5928 struct common_audit_data ad; 5929 u32 sid = current_sid(); 5930 5931 isec = selinux_ipc(msq); 5932 5933 ad.type = LSM_AUDIT_DATA_IPC; 5934 ad.u.ipc_id = msq->key; 5935 5936 return avc_has_perm(&selinux_state, 5937 sid, isec->sid, SECCLASS_MSGQ, 5938 MSGQ__ASSOCIATE, &ad); 5939 } 5940 5941 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 5942 { 5943 int err; 5944 int perms; 5945 5946 switch (cmd) { 5947 case IPC_INFO: 5948 case MSG_INFO: 5949 /* No specific object, just general system-wide information. */ 5950 return avc_has_perm(&selinux_state, 5951 current_sid(), SECINITSID_KERNEL, 5952 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 5953 case IPC_STAT: 5954 case MSG_STAT: 5955 case MSG_STAT_ANY: 5956 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 5957 break; 5958 case IPC_SET: 5959 perms = MSGQ__SETATTR; 5960 break; 5961 case IPC_RMID: 5962 perms = MSGQ__DESTROY; 5963 break; 5964 default: 5965 return 0; 5966 } 5967 5968 err = ipc_has_perm(msq, perms); 5969 return err; 5970 } 5971 5972 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg) 5973 { 5974 struct ipc_security_struct *isec; 5975 struct msg_security_struct *msec; 5976 struct common_audit_data ad; 5977 u32 sid = current_sid(); 5978 int rc; 5979 5980 isec = selinux_ipc(msq); 5981 msec = selinux_msg_msg(msg); 5982 5983 /* 5984 * First time through, need to assign label to the message 5985 */ 5986 if (msec->sid == SECINITSID_UNLABELED) { 5987 /* 5988 * Compute new sid based on current process and 5989 * message queue this message will be stored in 5990 */ 5991 rc = security_transition_sid(&selinux_state, sid, isec->sid, 5992 SECCLASS_MSG, NULL, &msec->sid); 5993 if (rc) 5994 return rc; 5995 } 5996 5997 ad.type = LSM_AUDIT_DATA_IPC; 5998 ad.u.ipc_id = msq->key; 5999 6000 /* Can this process write to the queue? */ 6001 rc = avc_has_perm(&selinux_state, 6002 sid, isec->sid, SECCLASS_MSGQ, 6003 MSGQ__WRITE, &ad); 6004 if (!rc) 6005 /* Can this process send the message */ 6006 rc = avc_has_perm(&selinux_state, 6007 sid, msec->sid, SECCLASS_MSG, 6008 MSG__SEND, &ad); 6009 if (!rc) 6010 /* Can the message be put in the queue? */ 6011 rc = avc_has_perm(&selinux_state, 6012 msec->sid, isec->sid, SECCLASS_MSGQ, 6013 MSGQ__ENQUEUE, &ad); 6014 6015 return rc; 6016 } 6017 6018 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 6019 struct task_struct *target, 6020 long type, int mode) 6021 { 6022 struct ipc_security_struct *isec; 6023 struct msg_security_struct *msec; 6024 struct common_audit_data ad; 6025 u32 sid = task_sid(target); 6026 int rc; 6027 6028 isec = selinux_ipc(msq); 6029 msec = selinux_msg_msg(msg); 6030 6031 ad.type = LSM_AUDIT_DATA_IPC; 6032 ad.u.ipc_id = msq->key; 6033 6034 rc = avc_has_perm(&selinux_state, 6035 sid, isec->sid, 6036 SECCLASS_MSGQ, MSGQ__READ, &ad); 6037 if (!rc) 6038 rc = avc_has_perm(&selinux_state, 6039 sid, msec->sid, 6040 SECCLASS_MSG, MSG__RECEIVE, &ad); 6041 return rc; 6042 } 6043 6044 /* Shared Memory security operations */ 6045 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp) 6046 { 6047 struct ipc_security_struct *isec; 6048 struct common_audit_data ad; 6049 u32 sid = current_sid(); 6050 int rc; 6051 6052 isec = selinux_ipc(shp); 6053 ipc_init_security(isec, SECCLASS_SHM); 6054 6055 ad.type = LSM_AUDIT_DATA_IPC; 6056 ad.u.ipc_id = shp->key; 6057 6058 rc = avc_has_perm(&selinux_state, 6059 sid, isec->sid, SECCLASS_SHM, 6060 SHM__CREATE, &ad); 6061 return rc; 6062 } 6063 6064 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg) 6065 { 6066 struct ipc_security_struct *isec; 6067 struct common_audit_data ad; 6068 u32 sid = current_sid(); 6069 6070 isec = selinux_ipc(shp); 6071 6072 ad.type = LSM_AUDIT_DATA_IPC; 6073 ad.u.ipc_id = shp->key; 6074 6075 return avc_has_perm(&selinux_state, 6076 sid, isec->sid, SECCLASS_SHM, 6077 SHM__ASSOCIATE, &ad); 6078 } 6079 6080 /* Note, at this point, shp is locked down */ 6081 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 6082 { 6083 int perms; 6084 int err; 6085 6086 switch (cmd) { 6087 case IPC_INFO: 6088 case SHM_INFO: 6089 /* No specific object, just general system-wide information. */ 6090 return avc_has_perm(&selinux_state, 6091 current_sid(), SECINITSID_KERNEL, 6092 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 6093 case IPC_STAT: 6094 case SHM_STAT: 6095 case SHM_STAT_ANY: 6096 perms = SHM__GETATTR | SHM__ASSOCIATE; 6097 break; 6098 case IPC_SET: 6099 perms = SHM__SETATTR; 6100 break; 6101 case SHM_LOCK: 6102 case SHM_UNLOCK: 6103 perms = SHM__LOCK; 6104 break; 6105 case IPC_RMID: 6106 perms = SHM__DESTROY; 6107 break; 6108 default: 6109 return 0; 6110 } 6111 6112 err = ipc_has_perm(shp, perms); 6113 return err; 6114 } 6115 6116 static int selinux_shm_shmat(struct kern_ipc_perm *shp, 6117 char __user *shmaddr, int shmflg) 6118 { 6119 u32 perms; 6120 6121 if (shmflg & SHM_RDONLY) 6122 perms = SHM__READ; 6123 else 6124 perms = SHM__READ | SHM__WRITE; 6125 6126 return ipc_has_perm(shp, perms); 6127 } 6128 6129 /* Semaphore security operations */ 6130 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma) 6131 { 6132 struct ipc_security_struct *isec; 6133 struct common_audit_data ad; 6134 u32 sid = current_sid(); 6135 int rc; 6136 6137 isec = selinux_ipc(sma); 6138 ipc_init_security(isec, SECCLASS_SEM); 6139 6140 ad.type = LSM_AUDIT_DATA_IPC; 6141 ad.u.ipc_id = sma->key; 6142 6143 rc = avc_has_perm(&selinux_state, 6144 sid, isec->sid, SECCLASS_SEM, 6145 SEM__CREATE, &ad); 6146 return rc; 6147 } 6148 6149 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg) 6150 { 6151 struct ipc_security_struct *isec; 6152 struct common_audit_data ad; 6153 u32 sid = current_sid(); 6154 6155 isec = selinux_ipc(sma); 6156 6157 ad.type = LSM_AUDIT_DATA_IPC; 6158 ad.u.ipc_id = sma->key; 6159 6160 return avc_has_perm(&selinux_state, 6161 sid, isec->sid, SECCLASS_SEM, 6162 SEM__ASSOCIATE, &ad); 6163 } 6164 6165 /* Note, at this point, sma is locked down */ 6166 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd) 6167 { 6168 int err; 6169 u32 perms; 6170 6171 switch (cmd) { 6172 case IPC_INFO: 6173 case SEM_INFO: 6174 /* No specific object, just general system-wide information. */ 6175 return avc_has_perm(&selinux_state, 6176 current_sid(), SECINITSID_KERNEL, 6177 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 6178 case GETPID: 6179 case GETNCNT: 6180 case GETZCNT: 6181 perms = SEM__GETATTR; 6182 break; 6183 case GETVAL: 6184 case GETALL: 6185 perms = SEM__READ; 6186 break; 6187 case SETVAL: 6188 case SETALL: 6189 perms = SEM__WRITE; 6190 break; 6191 case IPC_RMID: 6192 perms = SEM__DESTROY; 6193 break; 6194 case IPC_SET: 6195 perms = SEM__SETATTR; 6196 break; 6197 case IPC_STAT: 6198 case SEM_STAT: 6199 case SEM_STAT_ANY: 6200 perms = SEM__GETATTR | SEM__ASSOCIATE; 6201 break; 6202 default: 6203 return 0; 6204 } 6205 6206 err = ipc_has_perm(sma, perms); 6207 return err; 6208 } 6209 6210 static int selinux_sem_semop(struct kern_ipc_perm *sma, 6211 struct sembuf *sops, unsigned nsops, int alter) 6212 { 6213 u32 perms; 6214 6215 if (alter) 6216 perms = SEM__READ | SEM__WRITE; 6217 else 6218 perms = SEM__READ; 6219 6220 return ipc_has_perm(sma, perms); 6221 } 6222 6223 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 6224 { 6225 u32 av = 0; 6226 6227 av = 0; 6228 if (flag & S_IRUGO) 6229 av |= IPC__UNIX_READ; 6230 if (flag & S_IWUGO) 6231 av |= IPC__UNIX_WRITE; 6232 6233 if (av == 0) 6234 return 0; 6235 6236 return ipc_has_perm(ipcp, av); 6237 } 6238 6239 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 6240 { 6241 struct ipc_security_struct *isec = selinux_ipc(ipcp); 6242 *secid = isec->sid; 6243 } 6244 6245 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode) 6246 { 6247 if (inode) 6248 inode_doinit_with_dentry(inode, dentry); 6249 } 6250 6251 static int selinux_getprocattr(struct task_struct *p, 6252 char *name, char **value) 6253 { 6254 const struct task_security_struct *__tsec; 6255 u32 sid; 6256 int error; 6257 unsigned len; 6258 6259 rcu_read_lock(); 6260 __tsec = selinux_cred(__task_cred(p)); 6261 6262 if (current != p) { 6263 error = avc_has_perm(&selinux_state, 6264 current_sid(), __tsec->sid, 6265 SECCLASS_PROCESS, PROCESS__GETATTR, NULL); 6266 if (error) 6267 goto bad; 6268 } 6269 6270 if (!strcmp(name, "current")) 6271 sid = __tsec->sid; 6272 else if (!strcmp(name, "prev")) 6273 sid = __tsec->osid; 6274 else if (!strcmp(name, "exec")) 6275 sid = __tsec->exec_sid; 6276 else if (!strcmp(name, "fscreate")) 6277 sid = __tsec->create_sid; 6278 else if (!strcmp(name, "keycreate")) 6279 sid = __tsec->keycreate_sid; 6280 else if (!strcmp(name, "sockcreate")) 6281 sid = __tsec->sockcreate_sid; 6282 else { 6283 error = -EINVAL; 6284 goto bad; 6285 } 6286 rcu_read_unlock(); 6287 6288 if (!sid) 6289 return 0; 6290 6291 error = security_sid_to_context(&selinux_state, sid, value, &len); 6292 if (error) 6293 return error; 6294 return len; 6295 6296 bad: 6297 rcu_read_unlock(); 6298 return error; 6299 } 6300 6301 static int selinux_setprocattr(const char *name, void *value, size_t size) 6302 { 6303 struct task_security_struct *tsec; 6304 struct cred *new; 6305 u32 mysid = current_sid(), sid = 0, ptsid; 6306 int error; 6307 char *str = value; 6308 6309 /* 6310 * Basic control over ability to set these attributes at all. 6311 */ 6312 if (!strcmp(name, "exec")) 6313 error = avc_has_perm(&selinux_state, 6314 mysid, mysid, SECCLASS_PROCESS, 6315 PROCESS__SETEXEC, NULL); 6316 else if (!strcmp(name, "fscreate")) 6317 error = avc_has_perm(&selinux_state, 6318 mysid, mysid, SECCLASS_PROCESS, 6319 PROCESS__SETFSCREATE, NULL); 6320 else if (!strcmp(name, "keycreate")) 6321 error = avc_has_perm(&selinux_state, 6322 mysid, mysid, SECCLASS_PROCESS, 6323 PROCESS__SETKEYCREATE, NULL); 6324 else if (!strcmp(name, "sockcreate")) 6325 error = avc_has_perm(&selinux_state, 6326 mysid, mysid, SECCLASS_PROCESS, 6327 PROCESS__SETSOCKCREATE, NULL); 6328 else if (!strcmp(name, "current")) 6329 error = avc_has_perm(&selinux_state, 6330 mysid, mysid, SECCLASS_PROCESS, 6331 PROCESS__SETCURRENT, NULL); 6332 else 6333 error = -EINVAL; 6334 if (error) 6335 return error; 6336 6337 /* Obtain a SID for the context, if one was specified. */ 6338 if (size && str[0] && str[0] != '\n') { 6339 if (str[size-1] == '\n') { 6340 str[size-1] = 0; 6341 size--; 6342 } 6343 error = security_context_to_sid(&selinux_state, value, size, 6344 &sid, GFP_KERNEL); 6345 if (error == -EINVAL && !strcmp(name, "fscreate")) { 6346 if (!has_cap_mac_admin(true)) { 6347 struct audit_buffer *ab; 6348 size_t audit_size; 6349 6350 /* We strip a nul only if it is at the end, otherwise the 6351 * context contains a nul and we should audit that */ 6352 if (str[size - 1] == '\0') 6353 audit_size = size - 1; 6354 else 6355 audit_size = size; 6356 ab = audit_log_start(audit_context(), 6357 GFP_ATOMIC, 6358 AUDIT_SELINUX_ERR); 6359 audit_log_format(ab, "op=fscreate invalid_context="); 6360 audit_log_n_untrustedstring(ab, value, audit_size); 6361 audit_log_end(ab); 6362 6363 return error; 6364 } 6365 error = security_context_to_sid_force( 6366 &selinux_state, 6367 value, size, &sid); 6368 } 6369 if (error) 6370 return error; 6371 } 6372 6373 new = prepare_creds(); 6374 if (!new) 6375 return -ENOMEM; 6376 6377 /* Permission checking based on the specified context is 6378 performed during the actual operation (execve, 6379 open/mkdir/...), when we know the full context of the 6380 operation. See selinux_bprm_set_creds for the execve 6381 checks and may_create for the file creation checks. The 6382 operation will then fail if the context is not permitted. */ 6383 tsec = selinux_cred(new); 6384 if (!strcmp(name, "exec")) { 6385 tsec->exec_sid = sid; 6386 } else if (!strcmp(name, "fscreate")) { 6387 tsec->create_sid = sid; 6388 } else if (!strcmp(name, "keycreate")) { 6389 if (sid) { 6390 error = avc_has_perm(&selinux_state, mysid, sid, 6391 SECCLASS_KEY, KEY__CREATE, NULL); 6392 if (error) 6393 goto abort_change; 6394 } 6395 tsec->keycreate_sid = sid; 6396 } else if (!strcmp(name, "sockcreate")) { 6397 tsec->sockcreate_sid = sid; 6398 } else if (!strcmp(name, "current")) { 6399 error = -EINVAL; 6400 if (sid == 0) 6401 goto abort_change; 6402 6403 /* Only allow single threaded processes to change context */ 6404 error = -EPERM; 6405 if (!current_is_single_threaded()) { 6406 error = security_bounded_transition(&selinux_state, 6407 tsec->sid, sid); 6408 if (error) 6409 goto abort_change; 6410 } 6411 6412 /* Check permissions for the transition. */ 6413 error = avc_has_perm(&selinux_state, 6414 tsec->sid, sid, SECCLASS_PROCESS, 6415 PROCESS__DYNTRANSITION, NULL); 6416 if (error) 6417 goto abort_change; 6418 6419 /* Check for ptracing, and update the task SID if ok. 6420 Otherwise, leave SID unchanged and fail. */ 6421 ptsid = ptrace_parent_sid(); 6422 if (ptsid != 0) { 6423 error = avc_has_perm(&selinux_state, 6424 ptsid, sid, SECCLASS_PROCESS, 6425 PROCESS__PTRACE, NULL); 6426 if (error) 6427 goto abort_change; 6428 } 6429 6430 tsec->sid = sid; 6431 } else { 6432 error = -EINVAL; 6433 goto abort_change; 6434 } 6435 6436 commit_creds(new); 6437 return size; 6438 6439 abort_change: 6440 abort_creds(new); 6441 return error; 6442 } 6443 6444 static int selinux_ismaclabel(const char *name) 6445 { 6446 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0); 6447 } 6448 6449 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 6450 { 6451 return security_sid_to_context(&selinux_state, secid, 6452 secdata, seclen); 6453 } 6454 6455 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 6456 { 6457 return security_context_to_sid(&selinux_state, secdata, seclen, 6458 secid, GFP_KERNEL); 6459 } 6460 6461 static void selinux_release_secctx(char *secdata, u32 seclen) 6462 { 6463 kfree(secdata); 6464 } 6465 6466 static void selinux_inode_invalidate_secctx(struct inode *inode) 6467 { 6468 struct inode_security_struct *isec = selinux_inode(inode); 6469 6470 spin_lock(&isec->lock); 6471 isec->initialized = LABEL_INVALID; 6472 spin_unlock(&isec->lock); 6473 } 6474 6475 /* 6476 * called with inode->i_mutex locked 6477 */ 6478 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 6479 { 6480 int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, 6481 ctx, ctxlen, 0); 6482 /* Do not return error when suppressing label (SBLABEL_MNT not set). */ 6483 return rc == -EOPNOTSUPP ? 0 : rc; 6484 } 6485 6486 /* 6487 * called with inode->i_mutex locked 6488 */ 6489 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 6490 { 6491 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0); 6492 } 6493 6494 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 6495 { 6496 int len = 0; 6497 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX, 6498 ctx, true); 6499 if (len < 0) 6500 return len; 6501 *ctxlen = len; 6502 return 0; 6503 } 6504 #ifdef CONFIG_KEYS 6505 6506 static int selinux_key_alloc(struct key *k, const struct cred *cred, 6507 unsigned long flags) 6508 { 6509 const struct task_security_struct *tsec; 6510 struct key_security_struct *ksec; 6511 6512 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); 6513 if (!ksec) 6514 return -ENOMEM; 6515 6516 tsec = selinux_cred(cred); 6517 if (tsec->keycreate_sid) 6518 ksec->sid = tsec->keycreate_sid; 6519 else 6520 ksec->sid = tsec->sid; 6521 6522 k->security = ksec; 6523 return 0; 6524 } 6525 6526 static void selinux_key_free(struct key *k) 6527 { 6528 struct key_security_struct *ksec = k->security; 6529 6530 k->security = NULL; 6531 kfree(ksec); 6532 } 6533 6534 static int selinux_key_permission(key_ref_t key_ref, 6535 const struct cred *cred, 6536 unsigned perm) 6537 { 6538 struct key *key; 6539 struct key_security_struct *ksec; 6540 u32 sid; 6541 6542 /* if no specific permissions are requested, we skip the 6543 permission check. No serious, additional covert channels 6544 appear to be created. */ 6545 if (perm == 0) 6546 return 0; 6547 6548 sid = cred_sid(cred); 6549 6550 key = key_ref_to_ptr(key_ref); 6551 ksec = key->security; 6552 6553 return avc_has_perm(&selinux_state, 6554 sid, ksec->sid, SECCLASS_KEY, perm, NULL); 6555 } 6556 6557 static int selinux_key_getsecurity(struct key *key, char **_buffer) 6558 { 6559 struct key_security_struct *ksec = key->security; 6560 char *context = NULL; 6561 unsigned len; 6562 int rc; 6563 6564 rc = security_sid_to_context(&selinux_state, ksec->sid, 6565 &context, &len); 6566 if (!rc) 6567 rc = len; 6568 *_buffer = context; 6569 return rc; 6570 } 6571 #endif 6572 6573 #ifdef CONFIG_SECURITY_INFINIBAND 6574 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val) 6575 { 6576 struct common_audit_data ad; 6577 int err; 6578 u32 sid = 0; 6579 struct ib_security_struct *sec = ib_sec; 6580 struct lsm_ibpkey_audit ibpkey; 6581 6582 err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid); 6583 if (err) 6584 return err; 6585 6586 ad.type = LSM_AUDIT_DATA_IBPKEY; 6587 ibpkey.subnet_prefix = subnet_prefix; 6588 ibpkey.pkey = pkey_val; 6589 ad.u.ibpkey = &ibpkey; 6590 return avc_has_perm(&selinux_state, 6591 sec->sid, sid, 6592 SECCLASS_INFINIBAND_PKEY, 6593 INFINIBAND_PKEY__ACCESS, &ad); 6594 } 6595 6596 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name, 6597 u8 port_num) 6598 { 6599 struct common_audit_data ad; 6600 int err; 6601 u32 sid = 0; 6602 struct ib_security_struct *sec = ib_sec; 6603 struct lsm_ibendport_audit ibendport; 6604 6605 err = security_ib_endport_sid(&selinux_state, dev_name, port_num, 6606 &sid); 6607 6608 if (err) 6609 return err; 6610 6611 ad.type = LSM_AUDIT_DATA_IBENDPORT; 6612 strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name)); 6613 ibendport.port = port_num; 6614 ad.u.ibendport = &ibendport; 6615 return avc_has_perm(&selinux_state, 6616 sec->sid, sid, 6617 SECCLASS_INFINIBAND_ENDPORT, 6618 INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad); 6619 } 6620 6621 static int selinux_ib_alloc_security(void **ib_sec) 6622 { 6623 struct ib_security_struct *sec; 6624 6625 sec = kzalloc(sizeof(*sec), GFP_KERNEL); 6626 if (!sec) 6627 return -ENOMEM; 6628 sec->sid = current_sid(); 6629 6630 *ib_sec = sec; 6631 return 0; 6632 } 6633 6634 static void selinux_ib_free_security(void *ib_sec) 6635 { 6636 kfree(ib_sec); 6637 } 6638 #endif 6639 6640 #ifdef CONFIG_BPF_SYSCALL 6641 static int selinux_bpf(int cmd, union bpf_attr *attr, 6642 unsigned int size) 6643 { 6644 u32 sid = current_sid(); 6645 int ret; 6646 6647 switch (cmd) { 6648 case BPF_MAP_CREATE: 6649 ret = avc_has_perm(&selinux_state, 6650 sid, sid, SECCLASS_BPF, BPF__MAP_CREATE, 6651 NULL); 6652 break; 6653 case BPF_PROG_LOAD: 6654 ret = avc_has_perm(&selinux_state, 6655 sid, sid, SECCLASS_BPF, BPF__PROG_LOAD, 6656 NULL); 6657 break; 6658 default: 6659 ret = 0; 6660 break; 6661 } 6662 6663 return ret; 6664 } 6665 6666 static u32 bpf_map_fmode_to_av(fmode_t fmode) 6667 { 6668 u32 av = 0; 6669 6670 if (fmode & FMODE_READ) 6671 av |= BPF__MAP_READ; 6672 if (fmode & FMODE_WRITE) 6673 av |= BPF__MAP_WRITE; 6674 return av; 6675 } 6676 6677 /* This function will check the file pass through unix socket or binder to see 6678 * if it is a bpf related object. And apply correspinding checks on the bpf 6679 * object based on the type. The bpf maps and programs, not like other files and 6680 * socket, are using a shared anonymous inode inside the kernel as their inode. 6681 * So checking that inode cannot identify if the process have privilege to 6682 * access the bpf object and that's why we have to add this additional check in 6683 * selinux_file_receive and selinux_binder_transfer_files. 6684 */ 6685 static int bpf_fd_pass(struct file *file, u32 sid) 6686 { 6687 struct bpf_security_struct *bpfsec; 6688 struct bpf_prog *prog; 6689 struct bpf_map *map; 6690 int ret; 6691 6692 if (file->f_op == &bpf_map_fops) { 6693 map = file->private_data; 6694 bpfsec = map->security; 6695 ret = avc_has_perm(&selinux_state, 6696 sid, bpfsec->sid, SECCLASS_BPF, 6697 bpf_map_fmode_to_av(file->f_mode), NULL); 6698 if (ret) 6699 return ret; 6700 } else if (file->f_op == &bpf_prog_fops) { 6701 prog = file->private_data; 6702 bpfsec = prog->aux->security; 6703 ret = avc_has_perm(&selinux_state, 6704 sid, bpfsec->sid, SECCLASS_BPF, 6705 BPF__PROG_RUN, NULL); 6706 if (ret) 6707 return ret; 6708 } 6709 return 0; 6710 } 6711 6712 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode) 6713 { 6714 u32 sid = current_sid(); 6715 struct bpf_security_struct *bpfsec; 6716 6717 bpfsec = map->security; 6718 return avc_has_perm(&selinux_state, 6719 sid, bpfsec->sid, SECCLASS_BPF, 6720 bpf_map_fmode_to_av(fmode), NULL); 6721 } 6722 6723 static int selinux_bpf_prog(struct bpf_prog *prog) 6724 { 6725 u32 sid = current_sid(); 6726 struct bpf_security_struct *bpfsec; 6727 6728 bpfsec = prog->aux->security; 6729 return avc_has_perm(&selinux_state, 6730 sid, bpfsec->sid, SECCLASS_BPF, 6731 BPF__PROG_RUN, NULL); 6732 } 6733 6734 static int selinux_bpf_map_alloc(struct bpf_map *map) 6735 { 6736 struct bpf_security_struct *bpfsec; 6737 6738 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL); 6739 if (!bpfsec) 6740 return -ENOMEM; 6741 6742 bpfsec->sid = current_sid(); 6743 map->security = bpfsec; 6744 6745 return 0; 6746 } 6747 6748 static void selinux_bpf_map_free(struct bpf_map *map) 6749 { 6750 struct bpf_security_struct *bpfsec = map->security; 6751 6752 map->security = NULL; 6753 kfree(bpfsec); 6754 } 6755 6756 static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux) 6757 { 6758 struct bpf_security_struct *bpfsec; 6759 6760 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL); 6761 if (!bpfsec) 6762 return -ENOMEM; 6763 6764 bpfsec->sid = current_sid(); 6765 aux->security = bpfsec; 6766 6767 return 0; 6768 } 6769 6770 static void selinux_bpf_prog_free(struct bpf_prog_aux *aux) 6771 { 6772 struct bpf_security_struct *bpfsec = aux->security; 6773 6774 aux->security = NULL; 6775 kfree(bpfsec); 6776 } 6777 #endif 6778 6779 static int selinux_lockdown(enum lockdown_reason what) 6780 { 6781 struct common_audit_data ad; 6782 u32 sid = current_sid(); 6783 int invalid_reason = (what <= LOCKDOWN_NONE) || 6784 (what == LOCKDOWN_INTEGRITY_MAX) || 6785 (what >= LOCKDOWN_CONFIDENTIALITY_MAX); 6786 6787 if (WARN(invalid_reason, "Invalid lockdown reason")) { 6788 audit_log(audit_context(), 6789 GFP_ATOMIC, AUDIT_SELINUX_ERR, 6790 "lockdown_reason=invalid"); 6791 return -EINVAL; 6792 } 6793 6794 ad.type = LSM_AUDIT_DATA_LOCKDOWN; 6795 ad.u.reason = what; 6796 6797 if (what <= LOCKDOWN_INTEGRITY_MAX) 6798 return avc_has_perm(&selinux_state, 6799 sid, sid, SECCLASS_LOCKDOWN, 6800 LOCKDOWN__INTEGRITY, &ad); 6801 else 6802 return avc_has_perm(&selinux_state, 6803 sid, sid, SECCLASS_LOCKDOWN, 6804 LOCKDOWN__CONFIDENTIALITY, &ad); 6805 } 6806 6807 struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = { 6808 .lbs_cred = sizeof(struct task_security_struct), 6809 .lbs_file = sizeof(struct file_security_struct), 6810 .lbs_inode = sizeof(struct inode_security_struct), 6811 .lbs_ipc = sizeof(struct ipc_security_struct), 6812 .lbs_msg_msg = sizeof(struct msg_security_struct), 6813 }; 6814 6815 #ifdef CONFIG_PERF_EVENTS 6816 static int selinux_perf_event_open(struct perf_event_attr *attr, int type) 6817 { 6818 u32 requested, sid = current_sid(); 6819 6820 if (type == PERF_SECURITY_OPEN) 6821 requested = PERF_EVENT__OPEN; 6822 else if (type == PERF_SECURITY_CPU) 6823 requested = PERF_EVENT__CPU; 6824 else if (type == PERF_SECURITY_KERNEL) 6825 requested = PERF_EVENT__KERNEL; 6826 else if (type == PERF_SECURITY_TRACEPOINT) 6827 requested = PERF_EVENT__TRACEPOINT; 6828 else 6829 return -EINVAL; 6830 6831 return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PERF_EVENT, 6832 requested, NULL); 6833 } 6834 6835 static int selinux_perf_event_alloc(struct perf_event *event) 6836 { 6837 struct perf_event_security_struct *perfsec; 6838 6839 perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL); 6840 if (!perfsec) 6841 return -ENOMEM; 6842 6843 perfsec->sid = current_sid(); 6844 event->security = perfsec; 6845 6846 return 0; 6847 } 6848 6849 static void selinux_perf_event_free(struct perf_event *event) 6850 { 6851 struct perf_event_security_struct *perfsec = event->security; 6852 6853 event->security = NULL; 6854 kfree(perfsec); 6855 } 6856 6857 static int selinux_perf_event_read(struct perf_event *event) 6858 { 6859 struct perf_event_security_struct *perfsec = event->security; 6860 u32 sid = current_sid(); 6861 6862 return avc_has_perm(&selinux_state, sid, perfsec->sid, 6863 SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL); 6864 } 6865 6866 static int selinux_perf_event_write(struct perf_event *event) 6867 { 6868 struct perf_event_security_struct *perfsec = event->security; 6869 u32 sid = current_sid(); 6870 6871 return avc_has_perm(&selinux_state, sid, perfsec->sid, 6872 SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL); 6873 } 6874 #endif 6875 6876 /* 6877 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order: 6878 * 1. any hooks that don't belong to (2.) or (3.) below, 6879 * 2. hooks that both access structures allocated by other hooks, and allocate 6880 * structures that can be later accessed by other hooks (mostly "cloning" 6881 * hooks), 6882 * 3. hooks that only allocate structures that can be later accessed by other 6883 * hooks ("allocating" hooks). 6884 * 6885 * Please follow block comment delimiters in the list to keep this order. 6886 * 6887 * This ordering is needed for SELinux runtime disable to work at least somewhat 6888 * safely. Breaking the ordering rules above might lead to NULL pointer derefs 6889 * when disabling SELinux at runtime. 6890 */ 6891 static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = { 6892 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr), 6893 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction), 6894 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder), 6895 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file), 6896 6897 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check), 6898 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme), 6899 LSM_HOOK_INIT(capget, selinux_capget), 6900 LSM_HOOK_INIT(capset, selinux_capset), 6901 LSM_HOOK_INIT(capable, selinux_capable), 6902 LSM_HOOK_INIT(quotactl, selinux_quotactl), 6903 LSM_HOOK_INIT(quota_on, selinux_quota_on), 6904 LSM_HOOK_INIT(syslog, selinux_syslog), 6905 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory), 6906 6907 LSM_HOOK_INIT(netlink_send, selinux_netlink_send), 6908 6909 LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds), 6910 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds), 6911 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds), 6912 6913 LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security), 6914 LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts), 6915 LSM_HOOK_INIT(sb_remount, selinux_sb_remount), 6916 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount), 6917 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options), 6918 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs), 6919 LSM_HOOK_INIT(sb_mount, selinux_mount), 6920 LSM_HOOK_INIT(sb_umount, selinux_umount), 6921 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts), 6922 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts), 6923 6924 LSM_HOOK_INIT(move_mount, selinux_move_mount), 6925 6926 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security), 6927 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as), 6928 6929 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security), 6930 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security), 6931 LSM_HOOK_INIT(inode_create, selinux_inode_create), 6932 LSM_HOOK_INIT(inode_link, selinux_inode_link), 6933 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink), 6934 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink), 6935 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir), 6936 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir), 6937 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod), 6938 LSM_HOOK_INIT(inode_rename, selinux_inode_rename), 6939 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink), 6940 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link), 6941 LSM_HOOK_INIT(inode_permission, selinux_inode_permission), 6942 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr), 6943 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr), 6944 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr), 6945 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr), 6946 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr), 6947 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr), 6948 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr), 6949 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity), 6950 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity), 6951 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity), 6952 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid), 6953 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up), 6954 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr), 6955 LSM_HOOK_INIT(path_notify, selinux_path_notify), 6956 6957 LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security), 6958 6959 LSM_HOOK_INIT(file_permission, selinux_file_permission), 6960 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security), 6961 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl), 6962 LSM_HOOK_INIT(mmap_file, selinux_mmap_file), 6963 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr), 6964 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect), 6965 LSM_HOOK_INIT(file_lock, selinux_file_lock), 6966 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl), 6967 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner), 6968 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask), 6969 LSM_HOOK_INIT(file_receive, selinux_file_receive), 6970 6971 LSM_HOOK_INIT(file_open, selinux_file_open), 6972 6973 LSM_HOOK_INIT(task_alloc, selinux_task_alloc), 6974 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare), 6975 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer), 6976 LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid), 6977 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as), 6978 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as), 6979 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request), 6980 LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data), 6981 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file), 6982 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid), 6983 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid), 6984 LSM_HOOK_INIT(task_getsid, selinux_task_getsid), 6985 LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid), 6986 LSM_HOOK_INIT(task_setnice, selinux_task_setnice), 6987 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio), 6988 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio), 6989 LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit), 6990 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit), 6991 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler), 6992 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler), 6993 LSM_HOOK_INIT(task_movememory, selinux_task_movememory), 6994 LSM_HOOK_INIT(task_kill, selinux_task_kill), 6995 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode), 6996 6997 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission), 6998 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid), 6999 7000 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate), 7001 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl), 7002 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd), 7003 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv), 7004 7005 LSM_HOOK_INIT(shm_associate, selinux_shm_associate), 7006 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl), 7007 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat), 7008 7009 LSM_HOOK_INIT(sem_associate, selinux_sem_associate), 7010 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl), 7011 LSM_HOOK_INIT(sem_semop, selinux_sem_semop), 7012 7013 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate), 7014 7015 LSM_HOOK_INIT(getprocattr, selinux_getprocattr), 7016 LSM_HOOK_INIT(setprocattr, selinux_setprocattr), 7017 7018 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel), 7019 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid), 7020 LSM_HOOK_INIT(release_secctx, selinux_release_secctx), 7021 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx), 7022 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx), 7023 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx), 7024 7025 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect), 7026 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send), 7027 7028 LSM_HOOK_INIT(socket_create, selinux_socket_create), 7029 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create), 7030 LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair), 7031 LSM_HOOK_INIT(socket_bind, selinux_socket_bind), 7032 LSM_HOOK_INIT(socket_connect, selinux_socket_connect), 7033 LSM_HOOK_INIT(socket_listen, selinux_socket_listen), 7034 LSM_HOOK_INIT(socket_accept, selinux_socket_accept), 7035 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg), 7036 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg), 7037 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname), 7038 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername), 7039 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt), 7040 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt), 7041 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown), 7042 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb), 7043 LSM_HOOK_INIT(socket_getpeersec_stream, 7044 selinux_socket_getpeersec_stream), 7045 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram), 7046 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security), 7047 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security), 7048 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid), 7049 LSM_HOOK_INIT(sock_graft, selinux_sock_graft), 7050 LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request), 7051 LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone), 7052 LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect), 7053 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request), 7054 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone), 7055 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established), 7056 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet), 7057 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc), 7058 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec), 7059 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow), 7060 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security), 7061 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create), 7062 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue), 7063 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach), 7064 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open), 7065 #ifdef CONFIG_SECURITY_INFINIBAND 7066 LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access), 7067 LSM_HOOK_INIT(ib_endport_manage_subnet, 7068 selinux_ib_endport_manage_subnet), 7069 LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security), 7070 #endif 7071 #ifdef CONFIG_SECURITY_NETWORK_XFRM 7072 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free), 7073 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete), 7074 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free), 7075 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete), 7076 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup), 7077 LSM_HOOK_INIT(xfrm_state_pol_flow_match, 7078 selinux_xfrm_state_pol_flow_match), 7079 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session), 7080 #endif 7081 7082 #ifdef CONFIG_KEYS 7083 LSM_HOOK_INIT(key_free, selinux_key_free), 7084 LSM_HOOK_INIT(key_permission, selinux_key_permission), 7085 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity), 7086 #endif 7087 7088 #ifdef CONFIG_AUDIT 7089 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known), 7090 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match), 7091 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free), 7092 #endif 7093 7094 #ifdef CONFIG_BPF_SYSCALL 7095 LSM_HOOK_INIT(bpf, selinux_bpf), 7096 LSM_HOOK_INIT(bpf_map, selinux_bpf_map), 7097 LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog), 7098 LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free), 7099 LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free), 7100 #endif 7101 7102 #ifdef CONFIG_PERF_EVENTS 7103 LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open), 7104 LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free), 7105 LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read), 7106 LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write), 7107 #endif 7108 7109 LSM_HOOK_INIT(locked_down, selinux_lockdown), 7110 7111 /* 7112 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE 7113 */ 7114 LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup), 7115 LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param), 7116 LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts), 7117 LSM_HOOK_INIT(sb_add_mnt_opt, selinux_add_mnt_opt), 7118 #ifdef CONFIG_SECURITY_NETWORK_XFRM 7119 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone), 7120 #endif 7121 7122 /* 7123 * PUT "ALLOCATING" HOOKS HERE 7124 */ 7125 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security), 7126 LSM_HOOK_INIT(msg_queue_alloc_security, 7127 selinux_msg_queue_alloc_security), 7128 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security), 7129 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security), 7130 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security), 7131 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security), 7132 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx), 7133 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx), 7134 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security), 7135 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security), 7136 #ifdef CONFIG_SECURITY_INFINIBAND 7137 LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security), 7138 #endif 7139 #ifdef CONFIG_SECURITY_NETWORK_XFRM 7140 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc), 7141 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc), 7142 LSM_HOOK_INIT(xfrm_state_alloc_acquire, 7143 selinux_xfrm_state_alloc_acquire), 7144 #endif 7145 #ifdef CONFIG_KEYS 7146 LSM_HOOK_INIT(key_alloc, selinux_key_alloc), 7147 #endif 7148 #ifdef CONFIG_AUDIT 7149 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init), 7150 #endif 7151 #ifdef CONFIG_BPF_SYSCALL 7152 LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc), 7153 LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc), 7154 #endif 7155 #ifdef CONFIG_PERF_EVENTS 7156 LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc), 7157 #endif 7158 }; 7159 7160 static __init int selinux_init(void) 7161 { 7162 pr_info("SELinux: Initializing.\n"); 7163 7164 memset(&selinux_state, 0, sizeof(selinux_state)); 7165 enforcing_set(&selinux_state, selinux_enforcing_boot); 7166 selinux_state.checkreqprot = selinux_checkreqprot_boot; 7167 selinux_ss_init(&selinux_state.ss); 7168 selinux_avc_init(&selinux_state.avc); 7169 7170 /* Set the security state for the initial task. */ 7171 cred_init_security(); 7172 7173 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC); 7174 7175 avc_init(); 7176 7177 avtab_cache_init(); 7178 7179 ebitmap_cache_init(); 7180 7181 hashtab_cache_init(); 7182 7183 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux"); 7184 7185 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET)) 7186 panic("SELinux: Unable to register AVC netcache callback\n"); 7187 7188 if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET)) 7189 panic("SELinux: Unable to register AVC LSM notifier callback\n"); 7190 7191 if (selinux_enforcing_boot) 7192 pr_debug("SELinux: Starting in enforcing mode\n"); 7193 else 7194 pr_debug("SELinux: Starting in permissive mode\n"); 7195 7196 fs_validate_description(&selinux_fs_parameters); 7197 7198 return 0; 7199 } 7200 7201 static void delayed_superblock_init(struct super_block *sb, void *unused) 7202 { 7203 selinux_set_mnt_opts(sb, NULL, 0, NULL); 7204 } 7205 7206 void selinux_complete_init(void) 7207 { 7208 pr_debug("SELinux: Completing initialization.\n"); 7209 7210 /* Set up any superblocks initialized prior to the policy load. */ 7211 pr_debug("SELinux: Setting up existing superblocks.\n"); 7212 iterate_supers(delayed_superblock_init, NULL); 7213 } 7214 7215 /* SELinux requires early initialization in order to label 7216 all processes and objects when they are created. */ 7217 DEFINE_LSM(selinux) = { 7218 .name = "selinux", 7219 .flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE, 7220 .enabled = &selinux_enabled_boot, 7221 .blobs = &selinux_blob_sizes, 7222 .init = selinux_init, 7223 }; 7224 7225 #if defined(CONFIG_NETFILTER) 7226 7227 static const struct nf_hook_ops selinux_nf_ops[] = { 7228 { 7229 .hook = selinux_ipv4_postroute, 7230 .pf = NFPROTO_IPV4, 7231 .hooknum = NF_INET_POST_ROUTING, 7232 .priority = NF_IP_PRI_SELINUX_LAST, 7233 }, 7234 { 7235 .hook = selinux_ipv4_forward, 7236 .pf = NFPROTO_IPV4, 7237 .hooknum = NF_INET_FORWARD, 7238 .priority = NF_IP_PRI_SELINUX_FIRST, 7239 }, 7240 { 7241 .hook = selinux_ipv4_output, 7242 .pf = NFPROTO_IPV4, 7243 .hooknum = NF_INET_LOCAL_OUT, 7244 .priority = NF_IP_PRI_SELINUX_FIRST, 7245 }, 7246 #if IS_ENABLED(CONFIG_IPV6) 7247 { 7248 .hook = selinux_ipv6_postroute, 7249 .pf = NFPROTO_IPV6, 7250 .hooknum = NF_INET_POST_ROUTING, 7251 .priority = NF_IP6_PRI_SELINUX_LAST, 7252 }, 7253 { 7254 .hook = selinux_ipv6_forward, 7255 .pf = NFPROTO_IPV6, 7256 .hooknum = NF_INET_FORWARD, 7257 .priority = NF_IP6_PRI_SELINUX_FIRST, 7258 }, 7259 { 7260 .hook = selinux_ipv6_output, 7261 .pf = NFPROTO_IPV6, 7262 .hooknum = NF_INET_LOCAL_OUT, 7263 .priority = NF_IP6_PRI_SELINUX_FIRST, 7264 }, 7265 #endif /* IPV6 */ 7266 }; 7267 7268 static int __net_init selinux_nf_register(struct net *net) 7269 { 7270 return nf_register_net_hooks(net, selinux_nf_ops, 7271 ARRAY_SIZE(selinux_nf_ops)); 7272 } 7273 7274 static void __net_exit selinux_nf_unregister(struct net *net) 7275 { 7276 nf_unregister_net_hooks(net, selinux_nf_ops, 7277 ARRAY_SIZE(selinux_nf_ops)); 7278 } 7279 7280 static struct pernet_operations selinux_net_ops = { 7281 .init = selinux_nf_register, 7282 .exit = selinux_nf_unregister, 7283 }; 7284 7285 static int __init selinux_nf_ip_init(void) 7286 { 7287 int err; 7288 7289 if (!selinux_enabled_boot) 7290 return 0; 7291 7292 pr_debug("SELinux: Registering netfilter hooks\n"); 7293 7294 err = register_pernet_subsys(&selinux_net_ops); 7295 if (err) 7296 panic("SELinux: register_pernet_subsys: error %d\n", err); 7297 7298 return 0; 7299 } 7300 __initcall(selinux_nf_ip_init); 7301 7302 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 7303 static void selinux_nf_ip_exit(void) 7304 { 7305 pr_debug("SELinux: Unregistering netfilter hooks\n"); 7306 7307 unregister_pernet_subsys(&selinux_net_ops); 7308 } 7309 #endif 7310 7311 #else /* CONFIG_NETFILTER */ 7312 7313 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 7314 #define selinux_nf_ip_exit() 7315 #endif 7316 7317 #endif /* CONFIG_NETFILTER */ 7318 7319 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 7320 int selinux_disable(struct selinux_state *state) 7321 { 7322 if (selinux_initialized(state)) { 7323 /* Not permitted after initial policy load. */ 7324 return -EINVAL; 7325 } 7326 7327 if (selinux_disabled(state)) { 7328 /* Only do this once. */ 7329 return -EINVAL; 7330 } 7331 7332 selinux_mark_disabled(state); 7333 7334 pr_info("SELinux: Disabled at runtime.\n"); 7335 7336 /* 7337 * Unregister netfilter hooks. 7338 * Must be done before security_delete_hooks() to avoid breaking 7339 * runtime disable. 7340 */ 7341 selinux_nf_ip_exit(); 7342 7343 security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks)); 7344 7345 /* Try to destroy the avc node cache */ 7346 avc_disable(); 7347 7348 /* Unregister selinuxfs. */ 7349 exit_sel_fs(); 7350 7351 return 0; 7352 } 7353 #endif 7354