1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * NSA Security-Enhanced Linux (SELinux) security module 4 * 5 * This file contains the SELinux hook function implementations. 6 * 7 * Authors: Stephen Smalley, <sds@tycho.nsa.gov> 8 * Chris Vance, <cvance@nai.com> 9 * Wayne Salamon, <wsalamon@nai.com> 10 * James Morris <jmorris@redhat.com> 11 * 12 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 13 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com> 14 * Eric Paris <eparis@redhat.com> 15 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 16 * <dgoeddel@trustedcs.com> 17 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P. 18 * Paul Moore <paul@paul-moore.com> 19 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. 20 * Yuichi Nakamura <ynakam@hitachisoft.jp> 21 * Copyright (C) 2016 Mellanox Technologies 22 */ 23 24 #include <linux/init.h> 25 #include <linux/kd.h> 26 #include <linux/kernel.h> 27 #include <linux/kernel_read_file.h> 28 #include <linux/tracehook.h> 29 #include <linux/errno.h> 30 #include <linux/sched/signal.h> 31 #include <linux/sched/task.h> 32 #include <linux/lsm_hooks.h> 33 #include <linux/xattr.h> 34 #include <linux/capability.h> 35 #include <linux/unistd.h> 36 #include <linux/mm.h> 37 #include <linux/mman.h> 38 #include <linux/slab.h> 39 #include <linux/pagemap.h> 40 #include <linux/proc_fs.h> 41 #include <linux/swap.h> 42 #include <linux/spinlock.h> 43 #include <linux/syscalls.h> 44 #include <linux/dcache.h> 45 #include <linux/file.h> 46 #include <linux/fdtable.h> 47 #include <linux/namei.h> 48 #include <linux/mount.h> 49 #include <linux/fs_context.h> 50 #include <linux/fs_parser.h> 51 #include <linux/netfilter_ipv4.h> 52 #include <linux/netfilter_ipv6.h> 53 #include <linux/tty.h> 54 #include <net/icmp.h> 55 #include <net/ip.h> /* for local_port_range[] */ 56 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 57 #include <net/inet_connection_sock.h> 58 #include <net/net_namespace.h> 59 #include <net/netlabel.h> 60 #include <linux/uaccess.h> 61 #include <asm/ioctls.h> 62 #include <linux/atomic.h> 63 #include <linux/bitops.h> 64 #include <linux/interrupt.h> 65 #include <linux/netdevice.h> /* for network interface checks */ 66 #include <net/netlink.h> 67 #include <linux/tcp.h> 68 #include <linux/udp.h> 69 #include <linux/dccp.h> 70 #include <linux/sctp.h> 71 #include <net/sctp/structs.h> 72 #include <linux/quota.h> 73 #include <linux/un.h> /* for Unix socket types */ 74 #include <net/af_unix.h> /* for Unix socket types */ 75 #include <linux/parser.h> 76 #include <linux/nfs_mount.h> 77 #include <net/ipv6.h> 78 #include <linux/hugetlb.h> 79 #include <linux/personality.h> 80 #include <linux/audit.h> 81 #include <linux/string.h> 82 #include <linux/mutex.h> 83 #include <linux/posix-timers.h> 84 #include <linux/syslog.h> 85 #include <linux/user_namespace.h> 86 #include <linux/export.h> 87 #include <linux/msg.h> 88 #include <linux/shm.h> 89 #include <linux/bpf.h> 90 #include <linux/kernfs.h> 91 #include <linux/stringhash.h> /* for hashlen_string() */ 92 #include <uapi/linux/mount.h> 93 #include <linux/fsnotify.h> 94 #include <linux/fanotify.h> 95 96 #include "avc.h" 97 #include "objsec.h" 98 #include "netif.h" 99 #include "netnode.h" 100 #include "netport.h" 101 #include "ibpkey.h" 102 #include "xfrm.h" 103 #include "netlabel.h" 104 #include "audit.h" 105 #include "avc_ss.h" 106 107 struct selinux_state selinux_state; 108 109 /* SECMARK reference count */ 110 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0); 111 112 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 113 static int selinux_enforcing_boot __initdata; 114 115 static int __init enforcing_setup(char *str) 116 { 117 unsigned long enforcing; 118 if (!kstrtoul(str, 0, &enforcing)) 119 selinux_enforcing_boot = enforcing ? 1 : 0; 120 return 1; 121 } 122 __setup("enforcing=", enforcing_setup); 123 #else 124 #define selinux_enforcing_boot 1 125 #endif 126 127 int selinux_enabled_boot __initdata = 1; 128 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 129 static int __init selinux_enabled_setup(char *str) 130 { 131 unsigned long enabled; 132 if (!kstrtoul(str, 0, &enabled)) 133 selinux_enabled_boot = enabled ? 1 : 0; 134 return 1; 135 } 136 __setup("selinux=", selinux_enabled_setup); 137 #endif 138 139 static unsigned int selinux_checkreqprot_boot = 140 CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE; 141 142 static int __init checkreqprot_setup(char *str) 143 { 144 unsigned long checkreqprot; 145 146 if (!kstrtoul(str, 0, &checkreqprot)) { 147 selinux_checkreqprot_boot = checkreqprot ? 1 : 0; 148 if (checkreqprot) 149 pr_warn("SELinux: checkreqprot set to 1 via kernel parameter. This is deprecated and will be rejected in a future kernel release.\n"); 150 } 151 return 1; 152 } 153 __setup("checkreqprot=", checkreqprot_setup); 154 155 /** 156 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled 157 * 158 * Description: 159 * This function checks the SECMARK reference counter to see if any SECMARK 160 * targets are currently configured, if the reference counter is greater than 161 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is 162 * enabled, false (0) if SECMARK is disabled. If the always_check_network 163 * policy capability is enabled, SECMARK is always considered enabled. 164 * 165 */ 166 static int selinux_secmark_enabled(void) 167 { 168 return (selinux_policycap_alwaysnetwork() || 169 atomic_read(&selinux_secmark_refcount)); 170 } 171 172 /** 173 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled 174 * 175 * Description: 176 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true 177 * (1) if any are enabled or false (0) if neither are enabled. If the 178 * always_check_network policy capability is enabled, peer labeling 179 * is always considered enabled. 180 * 181 */ 182 static int selinux_peerlbl_enabled(void) 183 { 184 return (selinux_policycap_alwaysnetwork() || 185 netlbl_enabled() || selinux_xfrm_enabled()); 186 } 187 188 static int selinux_netcache_avc_callback(u32 event) 189 { 190 if (event == AVC_CALLBACK_RESET) { 191 sel_netif_flush(); 192 sel_netnode_flush(); 193 sel_netport_flush(); 194 synchronize_net(); 195 } 196 return 0; 197 } 198 199 static int selinux_lsm_notifier_avc_callback(u32 event) 200 { 201 if (event == AVC_CALLBACK_RESET) { 202 sel_ib_pkey_flush(); 203 call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL); 204 } 205 206 return 0; 207 } 208 209 /* 210 * initialise the security for the init task 211 */ 212 static void cred_init_security(void) 213 { 214 struct cred *cred = (struct cred *) current->real_cred; 215 struct task_security_struct *tsec; 216 217 tsec = selinux_cred(cred); 218 tsec->osid = tsec->sid = SECINITSID_KERNEL; 219 } 220 221 /* 222 * get the security ID of a set of credentials 223 */ 224 static inline u32 cred_sid(const struct cred *cred) 225 { 226 const struct task_security_struct *tsec; 227 228 tsec = selinux_cred(cred); 229 return tsec->sid; 230 } 231 232 /* 233 * get the subjective security ID of a task 234 */ 235 static inline u32 task_sid_subj(const struct task_struct *task) 236 { 237 u32 sid; 238 239 rcu_read_lock(); 240 sid = cred_sid(rcu_dereference(task->cred)); 241 rcu_read_unlock(); 242 return sid; 243 } 244 245 /* 246 * get the objective security ID of a task 247 */ 248 static inline u32 task_sid_obj(const struct task_struct *task) 249 { 250 u32 sid; 251 252 rcu_read_lock(); 253 sid = cred_sid(__task_cred(task)); 254 rcu_read_unlock(); 255 return sid; 256 } 257 258 /* 259 * get the security ID of a task for use with binder 260 */ 261 static inline u32 task_sid_binder(const struct task_struct *task) 262 { 263 /* 264 * In many case where this function is used we should be using the 265 * task's subjective SID, but we can't reliably access the subjective 266 * creds of a task other than our own so we must use the objective 267 * creds/SID, which are safe to access. The downside is that if a task 268 * is temporarily overriding it's creds it will not be reflected here; 269 * however, it isn't clear that binder would handle that case well 270 * anyway. 271 * 272 * If this ever changes and we can safely reference the subjective 273 * creds/SID of another task, this function will make it easier to 274 * identify the various places where we make use of the task SIDs in 275 * the binder code. It is also likely that we will need to adjust 276 * the main drivers/android binder code as well. 277 */ 278 return task_sid_obj(task); 279 } 280 281 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 282 283 /* 284 * Try reloading inode security labels that have been marked as invalid. The 285 * @may_sleep parameter indicates when sleeping and thus reloading labels is 286 * allowed; when set to false, returns -ECHILD when the label is 287 * invalid. The @dentry parameter should be set to a dentry of the inode. 288 */ 289 static int __inode_security_revalidate(struct inode *inode, 290 struct dentry *dentry, 291 bool may_sleep) 292 { 293 struct inode_security_struct *isec = selinux_inode(inode); 294 295 might_sleep_if(may_sleep); 296 297 if (selinux_initialized(&selinux_state) && 298 isec->initialized != LABEL_INITIALIZED) { 299 if (!may_sleep) 300 return -ECHILD; 301 302 /* 303 * Try reloading the inode security label. This will fail if 304 * @opt_dentry is NULL and no dentry for this inode can be 305 * found; in that case, continue using the old label. 306 */ 307 inode_doinit_with_dentry(inode, dentry); 308 } 309 return 0; 310 } 311 312 static struct inode_security_struct *inode_security_novalidate(struct inode *inode) 313 { 314 return selinux_inode(inode); 315 } 316 317 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu) 318 { 319 int error; 320 321 error = __inode_security_revalidate(inode, NULL, !rcu); 322 if (error) 323 return ERR_PTR(error); 324 return selinux_inode(inode); 325 } 326 327 /* 328 * Get the security label of an inode. 329 */ 330 static struct inode_security_struct *inode_security(struct inode *inode) 331 { 332 __inode_security_revalidate(inode, NULL, true); 333 return selinux_inode(inode); 334 } 335 336 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry) 337 { 338 struct inode *inode = d_backing_inode(dentry); 339 340 return selinux_inode(inode); 341 } 342 343 /* 344 * Get the security label of a dentry's backing inode. 345 */ 346 static struct inode_security_struct *backing_inode_security(struct dentry *dentry) 347 { 348 struct inode *inode = d_backing_inode(dentry); 349 350 __inode_security_revalidate(inode, dentry, true); 351 return selinux_inode(inode); 352 } 353 354 static void inode_free_security(struct inode *inode) 355 { 356 struct inode_security_struct *isec = selinux_inode(inode); 357 struct superblock_security_struct *sbsec; 358 359 if (!isec) 360 return; 361 sbsec = selinux_superblock(inode->i_sb); 362 /* 363 * As not all inode security structures are in a list, we check for 364 * empty list outside of the lock to make sure that we won't waste 365 * time taking a lock doing nothing. 366 * 367 * The list_del_init() function can be safely called more than once. 368 * It should not be possible for this function to be called with 369 * concurrent list_add(), but for better safety against future changes 370 * in the code, we use list_empty_careful() here. 371 */ 372 if (!list_empty_careful(&isec->list)) { 373 spin_lock(&sbsec->isec_lock); 374 list_del_init(&isec->list); 375 spin_unlock(&sbsec->isec_lock); 376 } 377 } 378 379 struct selinux_mnt_opts { 380 const char *fscontext, *context, *rootcontext, *defcontext; 381 }; 382 383 static void selinux_free_mnt_opts(void *mnt_opts) 384 { 385 struct selinux_mnt_opts *opts = mnt_opts; 386 kfree(opts->fscontext); 387 kfree(opts->context); 388 kfree(opts->rootcontext); 389 kfree(opts->defcontext); 390 kfree(opts); 391 } 392 393 enum { 394 Opt_error = -1, 395 Opt_context = 0, 396 Opt_defcontext = 1, 397 Opt_fscontext = 2, 398 Opt_rootcontext = 3, 399 Opt_seclabel = 4, 400 }; 401 402 #define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg} 403 static struct { 404 const char *name; 405 int len; 406 int opt; 407 bool has_arg; 408 } tokens[] = { 409 A(context, true), 410 A(fscontext, true), 411 A(defcontext, true), 412 A(rootcontext, true), 413 A(seclabel, false), 414 }; 415 #undef A 416 417 static int match_opt_prefix(char *s, int l, char **arg) 418 { 419 int i; 420 421 for (i = 0; i < ARRAY_SIZE(tokens); i++) { 422 size_t len = tokens[i].len; 423 if (len > l || memcmp(s, tokens[i].name, len)) 424 continue; 425 if (tokens[i].has_arg) { 426 if (len == l || s[len] != '=') 427 continue; 428 *arg = s + len + 1; 429 } else if (len != l) 430 continue; 431 return tokens[i].opt; 432 } 433 return Opt_error; 434 } 435 436 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 437 438 static int may_context_mount_sb_relabel(u32 sid, 439 struct superblock_security_struct *sbsec, 440 const struct cred *cred) 441 { 442 const struct task_security_struct *tsec = selinux_cred(cred); 443 int rc; 444 445 rc = avc_has_perm(&selinux_state, 446 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 447 FILESYSTEM__RELABELFROM, NULL); 448 if (rc) 449 return rc; 450 451 rc = avc_has_perm(&selinux_state, 452 tsec->sid, sid, SECCLASS_FILESYSTEM, 453 FILESYSTEM__RELABELTO, NULL); 454 return rc; 455 } 456 457 static int may_context_mount_inode_relabel(u32 sid, 458 struct superblock_security_struct *sbsec, 459 const struct cred *cred) 460 { 461 const struct task_security_struct *tsec = selinux_cred(cred); 462 int rc; 463 rc = avc_has_perm(&selinux_state, 464 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 465 FILESYSTEM__RELABELFROM, NULL); 466 if (rc) 467 return rc; 468 469 rc = avc_has_perm(&selinux_state, 470 sid, sbsec->sid, SECCLASS_FILESYSTEM, 471 FILESYSTEM__ASSOCIATE, NULL); 472 return rc; 473 } 474 475 static int selinux_is_genfs_special_handling(struct super_block *sb) 476 { 477 /* Special handling. Genfs but also in-core setxattr handler */ 478 return !strcmp(sb->s_type->name, "sysfs") || 479 !strcmp(sb->s_type->name, "pstore") || 480 !strcmp(sb->s_type->name, "debugfs") || 481 !strcmp(sb->s_type->name, "tracefs") || 482 !strcmp(sb->s_type->name, "rootfs") || 483 (selinux_policycap_cgroupseclabel() && 484 (!strcmp(sb->s_type->name, "cgroup") || 485 !strcmp(sb->s_type->name, "cgroup2"))); 486 } 487 488 static int selinux_is_sblabel_mnt(struct super_block *sb) 489 { 490 struct superblock_security_struct *sbsec = selinux_superblock(sb); 491 492 /* 493 * IMPORTANT: Double-check logic in this function when adding a new 494 * SECURITY_FS_USE_* definition! 495 */ 496 BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7); 497 498 switch (sbsec->behavior) { 499 case SECURITY_FS_USE_XATTR: 500 case SECURITY_FS_USE_TRANS: 501 case SECURITY_FS_USE_TASK: 502 case SECURITY_FS_USE_NATIVE: 503 return 1; 504 505 case SECURITY_FS_USE_GENFS: 506 return selinux_is_genfs_special_handling(sb); 507 508 /* Never allow relabeling on context mounts */ 509 case SECURITY_FS_USE_MNTPOINT: 510 case SECURITY_FS_USE_NONE: 511 default: 512 return 0; 513 } 514 } 515 516 static int sb_check_xattr_support(struct super_block *sb) 517 { 518 struct superblock_security_struct *sbsec = sb->s_security; 519 struct dentry *root = sb->s_root; 520 struct inode *root_inode = d_backing_inode(root); 521 u32 sid; 522 int rc; 523 524 /* 525 * Make sure that the xattr handler exists and that no 526 * error other than -ENODATA is returned by getxattr on 527 * the root directory. -ENODATA is ok, as this may be 528 * the first boot of the SELinux kernel before we have 529 * assigned xattr values to the filesystem. 530 */ 531 if (!(root_inode->i_opflags & IOP_XATTR)) { 532 pr_warn("SELinux: (dev %s, type %s) has no xattr support\n", 533 sb->s_id, sb->s_type->name); 534 goto fallback; 535 } 536 537 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0); 538 if (rc < 0 && rc != -ENODATA) { 539 if (rc == -EOPNOTSUPP) { 540 pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n", 541 sb->s_id, sb->s_type->name); 542 goto fallback; 543 } else { 544 pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n", 545 sb->s_id, sb->s_type->name, -rc); 546 return rc; 547 } 548 } 549 return 0; 550 551 fallback: 552 /* No xattr support - try to fallback to genfs if possible. */ 553 rc = security_genfs_sid(&selinux_state, sb->s_type->name, "/", 554 SECCLASS_DIR, &sid); 555 if (rc) 556 return -EOPNOTSUPP; 557 558 pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n", 559 sb->s_id, sb->s_type->name); 560 sbsec->behavior = SECURITY_FS_USE_GENFS; 561 sbsec->sid = sid; 562 return 0; 563 } 564 565 static int sb_finish_set_opts(struct super_block *sb) 566 { 567 struct superblock_security_struct *sbsec = selinux_superblock(sb); 568 struct dentry *root = sb->s_root; 569 struct inode *root_inode = d_backing_inode(root); 570 int rc = 0; 571 572 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 573 rc = sb_check_xattr_support(sb); 574 if (rc) 575 return rc; 576 } 577 578 sbsec->flags |= SE_SBINITIALIZED; 579 580 /* 581 * Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply 582 * leave the flag untouched because sb_clone_mnt_opts might be handing 583 * us a superblock that needs the flag to be cleared. 584 */ 585 if (selinux_is_sblabel_mnt(sb)) 586 sbsec->flags |= SBLABEL_MNT; 587 else 588 sbsec->flags &= ~SBLABEL_MNT; 589 590 /* Initialize the root inode. */ 591 rc = inode_doinit_with_dentry(root_inode, root); 592 593 /* Initialize any other inodes associated with the superblock, e.g. 594 inodes created prior to initial policy load or inodes created 595 during get_sb by a pseudo filesystem that directly 596 populates itself. */ 597 spin_lock(&sbsec->isec_lock); 598 while (!list_empty(&sbsec->isec_head)) { 599 struct inode_security_struct *isec = 600 list_first_entry(&sbsec->isec_head, 601 struct inode_security_struct, list); 602 struct inode *inode = isec->inode; 603 list_del_init(&isec->list); 604 spin_unlock(&sbsec->isec_lock); 605 inode = igrab(inode); 606 if (inode) { 607 if (!IS_PRIVATE(inode)) 608 inode_doinit_with_dentry(inode, NULL); 609 iput(inode); 610 } 611 spin_lock(&sbsec->isec_lock); 612 } 613 spin_unlock(&sbsec->isec_lock); 614 return rc; 615 } 616 617 static int bad_option(struct superblock_security_struct *sbsec, char flag, 618 u32 old_sid, u32 new_sid) 619 { 620 char mnt_flags = sbsec->flags & SE_MNTMASK; 621 622 /* check if the old mount command had the same options */ 623 if (sbsec->flags & SE_SBINITIALIZED) 624 if (!(sbsec->flags & flag) || 625 (old_sid != new_sid)) 626 return 1; 627 628 /* check if we were passed the same options twice, 629 * aka someone passed context=a,context=b 630 */ 631 if (!(sbsec->flags & SE_SBINITIALIZED)) 632 if (mnt_flags & flag) 633 return 1; 634 return 0; 635 } 636 637 static int parse_sid(struct super_block *sb, const char *s, u32 *sid) 638 { 639 int rc = security_context_str_to_sid(&selinux_state, s, 640 sid, GFP_KERNEL); 641 if (rc) 642 pr_warn("SELinux: security_context_str_to_sid" 643 "(%s) failed for (dev %s, type %s) errno=%d\n", 644 s, sb->s_id, sb->s_type->name, rc); 645 return rc; 646 } 647 648 /* 649 * Allow filesystems with binary mount data to explicitly set mount point 650 * labeling information. 651 */ 652 static int selinux_set_mnt_opts(struct super_block *sb, 653 void *mnt_opts, 654 unsigned long kern_flags, 655 unsigned long *set_kern_flags) 656 { 657 const struct cred *cred = current_cred(); 658 struct superblock_security_struct *sbsec = selinux_superblock(sb); 659 struct dentry *root = sb->s_root; 660 struct selinux_mnt_opts *opts = mnt_opts; 661 struct inode_security_struct *root_isec; 662 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; 663 u32 defcontext_sid = 0; 664 int rc = 0; 665 666 mutex_lock(&sbsec->lock); 667 668 if (!selinux_initialized(&selinux_state)) { 669 if (!opts) { 670 /* Defer initialization until selinux_complete_init, 671 after the initial policy is loaded and the security 672 server is ready to handle calls. */ 673 goto out; 674 } 675 rc = -EINVAL; 676 pr_warn("SELinux: Unable to set superblock options " 677 "before the security server is initialized\n"); 678 goto out; 679 } 680 if (kern_flags && !set_kern_flags) { 681 /* Specifying internal flags without providing a place to 682 * place the results is not allowed */ 683 rc = -EINVAL; 684 goto out; 685 } 686 687 /* 688 * Binary mount data FS will come through this function twice. Once 689 * from an explicit call and once from the generic calls from the vfs. 690 * Since the generic VFS calls will not contain any security mount data 691 * we need to skip the double mount verification. 692 * 693 * This does open a hole in which we will not notice if the first 694 * mount using this sb set explict options and a second mount using 695 * this sb does not set any security options. (The first options 696 * will be used for both mounts) 697 */ 698 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 699 && !opts) 700 goto out; 701 702 root_isec = backing_inode_security_novalidate(root); 703 704 /* 705 * parse the mount options, check if they are valid sids. 706 * also check if someone is trying to mount the same sb more 707 * than once with different security options. 708 */ 709 if (opts) { 710 if (opts->fscontext) { 711 rc = parse_sid(sb, opts->fscontext, &fscontext_sid); 712 if (rc) 713 goto out; 714 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 715 fscontext_sid)) 716 goto out_double_mount; 717 sbsec->flags |= FSCONTEXT_MNT; 718 } 719 if (opts->context) { 720 rc = parse_sid(sb, opts->context, &context_sid); 721 if (rc) 722 goto out; 723 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 724 context_sid)) 725 goto out_double_mount; 726 sbsec->flags |= CONTEXT_MNT; 727 } 728 if (opts->rootcontext) { 729 rc = parse_sid(sb, opts->rootcontext, &rootcontext_sid); 730 if (rc) 731 goto out; 732 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 733 rootcontext_sid)) 734 goto out_double_mount; 735 sbsec->flags |= ROOTCONTEXT_MNT; 736 } 737 if (opts->defcontext) { 738 rc = parse_sid(sb, opts->defcontext, &defcontext_sid); 739 if (rc) 740 goto out; 741 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 742 defcontext_sid)) 743 goto out_double_mount; 744 sbsec->flags |= DEFCONTEXT_MNT; 745 } 746 } 747 748 if (sbsec->flags & SE_SBINITIALIZED) { 749 /* previously mounted with options, but not on this attempt? */ 750 if ((sbsec->flags & SE_MNTMASK) && !opts) 751 goto out_double_mount; 752 rc = 0; 753 goto out; 754 } 755 756 if (strcmp(sb->s_type->name, "proc") == 0) 757 sbsec->flags |= SE_SBPROC | SE_SBGENFS; 758 759 if (!strcmp(sb->s_type->name, "debugfs") || 760 !strcmp(sb->s_type->name, "tracefs") || 761 !strcmp(sb->s_type->name, "binder") || 762 !strcmp(sb->s_type->name, "bpf") || 763 !strcmp(sb->s_type->name, "pstore")) 764 sbsec->flags |= SE_SBGENFS; 765 766 if (!strcmp(sb->s_type->name, "sysfs") || 767 !strcmp(sb->s_type->name, "cgroup") || 768 !strcmp(sb->s_type->name, "cgroup2")) 769 sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR; 770 771 if (!sbsec->behavior) { 772 /* 773 * Determine the labeling behavior to use for this 774 * filesystem type. 775 */ 776 rc = security_fs_use(&selinux_state, sb); 777 if (rc) { 778 pr_warn("%s: security_fs_use(%s) returned %d\n", 779 __func__, sb->s_type->name, rc); 780 goto out; 781 } 782 } 783 784 /* 785 * If this is a user namespace mount and the filesystem type is not 786 * explicitly whitelisted, then no contexts are allowed on the command 787 * line and security labels must be ignored. 788 */ 789 if (sb->s_user_ns != &init_user_ns && 790 strcmp(sb->s_type->name, "tmpfs") && 791 strcmp(sb->s_type->name, "ramfs") && 792 strcmp(sb->s_type->name, "devpts") && 793 strcmp(sb->s_type->name, "overlay")) { 794 if (context_sid || fscontext_sid || rootcontext_sid || 795 defcontext_sid) { 796 rc = -EACCES; 797 goto out; 798 } 799 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 800 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 801 rc = security_transition_sid(&selinux_state, 802 current_sid(), 803 current_sid(), 804 SECCLASS_FILE, NULL, 805 &sbsec->mntpoint_sid); 806 if (rc) 807 goto out; 808 } 809 goto out_set_opts; 810 } 811 812 /* sets the context of the superblock for the fs being mounted. */ 813 if (fscontext_sid) { 814 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred); 815 if (rc) 816 goto out; 817 818 sbsec->sid = fscontext_sid; 819 } 820 821 /* 822 * Switch to using mount point labeling behavior. 823 * sets the label used on all file below the mountpoint, and will set 824 * the superblock context if not already set. 825 */ 826 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) { 827 sbsec->behavior = SECURITY_FS_USE_NATIVE; 828 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 829 } 830 831 if (context_sid) { 832 if (!fscontext_sid) { 833 rc = may_context_mount_sb_relabel(context_sid, sbsec, 834 cred); 835 if (rc) 836 goto out; 837 sbsec->sid = context_sid; 838 } else { 839 rc = may_context_mount_inode_relabel(context_sid, sbsec, 840 cred); 841 if (rc) 842 goto out; 843 } 844 if (!rootcontext_sid) 845 rootcontext_sid = context_sid; 846 847 sbsec->mntpoint_sid = context_sid; 848 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 849 } 850 851 if (rootcontext_sid) { 852 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, 853 cred); 854 if (rc) 855 goto out; 856 857 root_isec->sid = rootcontext_sid; 858 root_isec->initialized = LABEL_INITIALIZED; 859 } 860 861 if (defcontext_sid) { 862 if (sbsec->behavior != SECURITY_FS_USE_XATTR && 863 sbsec->behavior != SECURITY_FS_USE_NATIVE) { 864 rc = -EINVAL; 865 pr_warn("SELinux: defcontext option is " 866 "invalid for this filesystem type\n"); 867 goto out; 868 } 869 870 if (defcontext_sid != sbsec->def_sid) { 871 rc = may_context_mount_inode_relabel(defcontext_sid, 872 sbsec, cred); 873 if (rc) 874 goto out; 875 } 876 877 sbsec->def_sid = defcontext_sid; 878 } 879 880 out_set_opts: 881 rc = sb_finish_set_opts(sb); 882 out: 883 mutex_unlock(&sbsec->lock); 884 return rc; 885 out_double_mount: 886 rc = -EINVAL; 887 pr_warn("SELinux: mount invalid. Same superblock, different " 888 "security settings for (dev %s, type %s)\n", sb->s_id, 889 sb->s_type->name); 890 goto out; 891 } 892 893 static int selinux_cmp_sb_context(const struct super_block *oldsb, 894 const struct super_block *newsb) 895 { 896 struct superblock_security_struct *old = selinux_superblock(oldsb); 897 struct superblock_security_struct *new = selinux_superblock(newsb); 898 char oldflags = old->flags & SE_MNTMASK; 899 char newflags = new->flags & SE_MNTMASK; 900 901 if (oldflags != newflags) 902 goto mismatch; 903 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid) 904 goto mismatch; 905 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid) 906 goto mismatch; 907 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid) 908 goto mismatch; 909 if (oldflags & ROOTCONTEXT_MNT) { 910 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root); 911 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root); 912 if (oldroot->sid != newroot->sid) 913 goto mismatch; 914 } 915 return 0; 916 mismatch: 917 pr_warn("SELinux: mount invalid. Same superblock, " 918 "different security settings for (dev %s, " 919 "type %s)\n", newsb->s_id, newsb->s_type->name); 920 return -EBUSY; 921 } 922 923 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb, 924 struct super_block *newsb, 925 unsigned long kern_flags, 926 unsigned long *set_kern_flags) 927 { 928 int rc = 0; 929 const struct superblock_security_struct *oldsbsec = 930 selinux_superblock(oldsb); 931 struct superblock_security_struct *newsbsec = selinux_superblock(newsb); 932 933 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); 934 int set_context = (oldsbsec->flags & CONTEXT_MNT); 935 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); 936 937 /* 938 * if the parent was able to be mounted it clearly had no special lsm 939 * mount options. thus we can safely deal with this superblock later 940 */ 941 if (!selinux_initialized(&selinux_state)) 942 return 0; 943 944 /* 945 * Specifying internal flags without providing a place to 946 * place the results is not allowed. 947 */ 948 if (kern_flags && !set_kern_flags) 949 return -EINVAL; 950 951 /* how can we clone if the old one wasn't set up?? */ 952 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED)); 953 954 /* if fs is reusing a sb, make sure that the contexts match */ 955 if (newsbsec->flags & SE_SBINITIALIZED) { 956 if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) 957 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 958 return selinux_cmp_sb_context(oldsb, newsb); 959 } 960 961 mutex_lock(&newsbsec->lock); 962 963 newsbsec->flags = oldsbsec->flags; 964 965 newsbsec->sid = oldsbsec->sid; 966 newsbsec->def_sid = oldsbsec->def_sid; 967 newsbsec->behavior = oldsbsec->behavior; 968 969 if (newsbsec->behavior == SECURITY_FS_USE_NATIVE && 970 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) { 971 rc = security_fs_use(&selinux_state, newsb); 972 if (rc) 973 goto out; 974 } 975 976 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) { 977 newsbsec->behavior = SECURITY_FS_USE_NATIVE; 978 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 979 } 980 981 if (set_context) { 982 u32 sid = oldsbsec->mntpoint_sid; 983 984 if (!set_fscontext) 985 newsbsec->sid = sid; 986 if (!set_rootcontext) { 987 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root); 988 newisec->sid = sid; 989 } 990 newsbsec->mntpoint_sid = sid; 991 } 992 if (set_rootcontext) { 993 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root); 994 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root); 995 996 newisec->sid = oldisec->sid; 997 } 998 999 sb_finish_set_opts(newsb); 1000 out: 1001 mutex_unlock(&newsbsec->lock); 1002 return rc; 1003 } 1004 1005 static int selinux_add_opt(int token, const char *s, void **mnt_opts) 1006 { 1007 struct selinux_mnt_opts *opts = *mnt_opts; 1008 1009 if (token == Opt_seclabel) /* eaten and completely ignored */ 1010 return 0; 1011 1012 if (!opts) { 1013 opts = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL); 1014 if (!opts) 1015 return -ENOMEM; 1016 *mnt_opts = opts; 1017 } 1018 if (!s) 1019 return -ENOMEM; 1020 switch (token) { 1021 case Opt_context: 1022 if (opts->context || opts->defcontext) 1023 goto Einval; 1024 opts->context = s; 1025 break; 1026 case Opt_fscontext: 1027 if (opts->fscontext) 1028 goto Einval; 1029 opts->fscontext = s; 1030 break; 1031 case Opt_rootcontext: 1032 if (opts->rootcontext) 1033 goto Einval; 1034 opts->rootcontext = s; 1035 break; 1036 case Opt_defcontext: 1037 if (opts->context || opts->defcontext) 1038 goto Einval; 1039 opts->defcontext = s; 1040 break; 1041 } 1042 return 0; 1043 Einval: 1044 pr_warn(SEL_MOUNT_FAIL_MSG); 1045 return -EINVAL; 1046 } 1047 1048 static int selinux_add_mnt_opt(const char *option, const char *val, int len, 1049 void **mnt_opts) 1050 { 1051 int token = Opt_error; 1052 int rc, i; 1053 1054 for (i = 0; i < ARRAY_SIZE(tokens); i++) { 1055 if (strcmp(option, tokens[i].name) == 0) { 1056 token = tokens[i].opt; 1057 break; 1058 } 1059 } 1060 1061 if (token == Opt_error) 1062 return -EINVAL; 1063 1064 if (token != Opt_seclabel) { 1065 val = kmemdup_nul(val, len, GFP_KERNEL); 1066 if (!val) { 1067 rc = -ENOMEM; 1068 goto free_opt; 1069 } 1070 } 1071 rc = selinux_add_opt(token, val, mnt_opts); 1072 if (unlikely(rc)) { 1073 kfree(val); 1074 goto free_opt; 1075 } 1076 return rc; 1077 1078 free_opt: 1079 if (*mnt_opts) { 1080 selinux_free_mnt_opts(*mnt_opts); 1081 *mnt_opts = NULL; 1082 } 1083 return rc; 1084 } 1085 1086 static int show_sid(struct seq_file *m, u32 sid) 1087 { 1088 char *context = NULL; 1089 u32 len; 1090 int rc; 1091 1092 rc = security_sid_to_context(&selinux_state, sid, 1093 &context, &len); 1094 if (!rc) { 1095 bool has_comma = context && strchr(context, ','); 1096 1097 seq_putc(m, '='); 1098 if (has_comma) 1099 seq_putc(m, '\"'); 1100 seq_escape(m, context, "\"\n\\"); 1101 if (has_comma) 1102 seq_putc(m, '\"'); 1103 } 1104 kfree(context); 1105 return rc; 1106 } 1107 1108 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb) 1109 { 1110 struct superblock_security_struct *sbsec = selinux_superblock(sb); 1111 int rc; 1112 1113 if (!(sbsec->flags & SE_SBINITIALIZED)) 1114 return 0; 1115 1116 if (!selinux_initialized(&selinux_state)) 1117 return 0; 1118 1119 if (sbsec->flags & FSCONTEXT_MNT) { 1120 seq_putc(m, ','); 1121 seq_puts(m, FSCONTEXT_STR); 1122 rc = show_sid(m, sbsec->sid); 1123 if (rc) 1124 return rc; 1125 } 1126 if (sbsec->flags & CONTEXT_MNT) { 1127 seq_putc(m, ','); 1128 seq_puts(m, CONTEXT_STR); 1129 rc = show_sid(m, sbsec->mntpoint_sid); 1130 if (rc) 1131 return rc; 1132 } 1133 if (sbsec->flags & DEFCONTEXT_MNT) { 1134 seq_putc(m, ','); 1135 seq_puts(m, DEFCONTEXT_STR); 1136 rc = show_sid(m, sbsec->def_sid); 1137 if (rc) 1138 return rc; 1139 } 1140 if (sbsec->flags & ROOTCONTEXT_MNT) { 1141 struct dentry *root = sb->s_root; 1142 struct inode_security_struct *isec = backing_inode_security(root); 1143 seq_putc(m, ','); 1144 seq_puts(m, ROOTCONTEXT_STR); 1145 rc = show_sid(m, isec->sid); 1146 if (rc) 1147 return rc; 1148 } 1149 if (sbsec->flags & SBLABEL_MNT) { 1150 seq_putc(m, ','); 1151 seq_puts(m, SECLABEL_STR); 1152 } 1153 return 0; 1154 } 1155 1156 static inline u16 inode_mode_to_security_class(umode_t mode) 1157 { 1158 switch (mode & S_IFMT) { 1159 case S_IFSOCK: 1160 return SECCLASS_SOCK_FILE; 1161 case S_IFLNK: 1162 return SECCLASS_LNK_FILE; 1163 case S_IFREG: 1164 return SECCLASS_FILE; 1165 case S_IFBLK: 1166 return SECCLASS_BLK_FILE; 1167 case S_IFDIR: 1168 return SECCLASS_DIR; 1169 case S_IFCHR: 1170 return SECCLASS_CHR_FILE; 1171 case S_IFIFO: 1172 return SECCLASS_FIFO_FILE; 1173 1174 } 1175 1176 return SECCLASS_FILE; 1177 } 1178 1179 static inline int default_protocol_stream(int protocol) 1180 { 1181 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP || 1182 protocol == IPPROTO_MPTCP); 1183 } 1184 1185 static inline int default_protocol_dgram(int protocol) 1186 { 1187 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 1188 } 1189 1190 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 1191 { 1192 int extsockclass = selinux_policycap_extsockclass(); 1193 1194 switch (family) { 1195 case PF_UNIX: 1196 switch (type) { 1197 case SOCK_STREAM: 1198 case SOCK_SEQPACKET: 1199 return SECCLASS_UNIX_STREAM_SOCKET; 1200 case SOCK_DGRAM: 1201 case SOCK_RAW: 1202 return SECCLASS_UNIX_DGRAM_SOCKET; 1203 } 1204 break; 1205 case PF_INET: 1206 case PF_INET6: 1207 switch (type) { 1208 case SOCK_STREAM: 1209 case SOCK_SEQPACKET: 1210 if (default_protocol_stream(protocol)) 1211 return SECCLASS_TCP_SOCKET; 1212 else if (extsockclass && protocol == IPPROTO_SCTP) 1213 return SECCLASS_SCTP_SOCKET; 1214 else 1215 return SECCLASS_RAWIP_SOCKET; 1216 case SOCK_DGRAM: 1217 if (default_protocol_dgram(protocol)) 1218 return SECCLASS_UDP_SOCKET; 1219 else if (extsockclass && (protocol == IPPROTO_ICMP || 1220 protocol == IPPROTO_ICMPV6)) 1221 return SECCLASS_ICMP_SOCKET; 1222 else 1223 return SECCLASS_RAWIP_SOCKET; 1224 case SOCK_DCCP: 1225 return SECCLASS_DCCP_SOCKET; 1226 default: 1227 return SECCLASS_RAWIP_SOCKET; 1228 } 1229 break; 1230 case PF_NETLINK: 1231 switch (protocol) { 1232 case NETLINK_ROUTE: 1233 return SECCLASS_NETLINK_ROUTE_SOCKET; 1234 case NETLINK_SOCK_DIAG: 1235 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 1236 case NETLINK_NFLOG: 1237 return SECCLASS_NETLINK_NFLOG_SOCKET; 1238 case NETLINK_XFRM: 1239 return SECCLASS_NETLINK_XFRM_SOCKET; 1240 case NETLINK_SELINUX: 1241 return SECCLASS_NETLINK_SELINUX_SOCKET; 1242 case NETLINK_ISCSI: 1243 return SECCLASS_NETLINK_ISCSI_SOCKET; 1244 case NETLINK_AUDIT: 1245 return SECCLASS_NETLINK_AUDIT_SOCKET; 1246 case NETLINK_FIB_LOOKUP: 1247 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET; 1248 case NETLINK_CONNECTOR: 1249 return SECCLASS_NETLINK_CONNECTOR_SOCKET; 1250 case NETLINK_NETFILTER: 1251 return SECCLASS_NETLINK_NETFILTER_SOCKET; 1252 case NETLINK_DNRTMSG: 1253 return SECCLASS_NETLINK_DNRT_SOCKET; 1254 case NETLINK_KOBJECT_UEVENT: 1255 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 1256 case NETLINK_GENERIC: 1257 return SECCLASS_NETLINK_GENERIC_SOCKET; 1258 case NETLINK_SCSITRANSPORT: 1259 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET; 1260 case NETLINK_RDMA: 1261 return SECCLASS_NETLINK_RDMA_SOCKET; 1262 case NETLINK_CRYPTO: 1263 return SECCLASS_NETLINK_CRYPTO_SOCKET; 1264 default: 1265 return SECCLASS_NETLINK_SOCKET; 1266 } 1267 case PF_PACKET: 1268 return SECCLASS_PACKET_SOCKET; 1269 case PF_KEY: 1270 return SECCLASS_KEY_SOCKET; 1271 case PF_APPLETALK: 1272 return SECCLASS_APPLETALK_SOCKET; 1273 } 1274 1275 if (extsockclass) { 1276 switch (family) { 1277 case PF_AX25: 1278 return SECCLASS_AX25_SOCKET; 1279 case PF_IPX: 1280 return SECCLASS_IPX_SOCKET; 1281 case PF_NETROM: 1282 return SECCLASS_NETROM_SOCKET; 1283 case PF_ATMPVC: 1284 return SECCLASS_ATMPVC_SOCKET; 1285 case PF_X25: 1286 return SECCLASS_X25_SOCKET; 1287 case PF_ROSE: 1288 return SECCLASS_ROSE_SOCKET; 1289 case PF_DECnet: 1290 return SECCLASS_DECNET_SOCKET; 1291 case PF_ATMSVC: 1292 return SECCLASS_ATMSVC_SOCKET; 1293 case PF_RDS: 1294 return SECCLASS_RDS_SOCKET; 1295 case PF_IRDA: 1296 return SECCLASS_IRDA_SOCKET; 1297 case PF_PPPOX: 1298 return SECCLASS_PPPOX_SOCKET; 1299 case PF_LLC: 1300 return SECCLASS_LLC_SOCKET; 1301 case PF_CAN: 1302 return SECCLASS_CAN_SOCKET; 1303 case PF_TIPC: 1304 return SECCLASS_TIPC_SOCKET; 1305 case PF_BLUETOOTH: 1306 return SECCLASS_BLUETOOTH_SOCKET; 1307 case PF_IUCV: 1308 return SECCLASS_IUCV_SOCKET; 1309 case PF_RXRPC: 1310 return SECCLASS_RXRPC_SOCKET; 1311 case PF_ISDN: 1312 return SECCLASS_ISDN_SOCKET; 1313 case PF_PHONET: 1314 return SECCLASS_PHONET_SOCKET; 1315 case PF_IEEE802154: 1316 return SECCLASS_IEEE802154_SOCKET; 1317 case PF_CAIF: 1318 return SECCLASS_CAIF_SOCKET; 1319 case PF_ALG: 1320 return SECCLASS_ALG_SOCKET; 1321 case PF_NFC: 1322 return SECCLASS_NFC_SOCKET; 1323 case PF_VSOCK: 1324 return SECCLASS_VSOCK_SOCKET; 1325 case PF_KCM: 1326 return SECCLASS_KCM_SOCKET; 1327 case PF_QIPCRTR: 1328 return SECCLASS_QIPCRTR_SOCKET; 1329 case PF_SMC: 1330 return SECCLASS_SMC_SOCKET; 1331 case PF_XDP: 1332 return SECCLASS_XDP_SOCKET; 1333 #if PF_MAX > 45 1334 #error New address family defined, please update this function. 1335 #endif 1336 } 1337 } 1338 1339 return SECCLASS_SOCKET; 1340 } 1341 1342 static int selinux_genfs_get_sid(struct dentry *dentry, 1343 u16 tclass, 1344 u16 flags, 1345 u32 *sid) 1346 { 1347 int rc; 1348 struct super_block *sb = dentry->d_sb; 1349 char *buffer, *path; 1350 1351 buffer = (char *)__get_free_page(GFP_KERNEL); 1352 if (!buffer) 1353 return -ENOMEM; 1354 1355 path = dentry_path_raw(dentry, buffer, PAGE_SIZE); 1356 if (IS_ERR(path)) 1357 rc = PTR_ERR(path); 1358 else { 1359 if (flags & SE_SBPROC) { 1360 /* each process gets a /proc/PID/ entry. Strip off the 1361 * PID part to get a valid selinux labeling. 1362 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */ 1363 while (path[1] >= '0' && path[1] <= '9') { 1364 path[1] = '/'; 1365 path++; 1366 } 1367 } 1368 rc = security_genfs_sid(&selinux_state, sb->s_type->name, 1369 path, tclass, sid); 1370 if (rc == -ENOENT) { 1371 /* No match in policy, mark as unlabeled. */ 1372 *sid = SECINITSID_UNLABELED; 1373 rc = 0; 1374 } 1375 } 1376 free_page((unsigned long)buffer); 1377 return rc; 1378 } 1379 1380 static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry, 1381 u32 def_sid, u32 *sid) 1382 { 1383 #define INITCONTEXTLEN 255 1384 char *context; 1385 unsigned int len; 1386 int rc; 1387 1388 len = INITCONTEXTLEN; 1389 context = kmalloc(len + 1, GFP_NOFS); 1390 if (!context) 1391 return -ENOMEM; 1392 1393 context[len] = '\0'; 1394 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len); 1395 if (rc == -ERANGE) { 1396 kfree(context); 1397 1398 /* Need a larger buffer. Query for the right size. */ 1399 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0); 1400 if (rc < 0) 1401 return rc; 1402 1403 len = rc; 1404 context = kmalloc(len + 1, GFP_NOFS); 1405 if (!context) 1406 return -ENOMEM; 1407 1408 context[len] = '\0'; 1409 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, 1410 context, len); 1411 } 1412 if (rc < 0) { 1413 kfree(context); 1414 if (rc != -ENODATA) { 1415 pr_warn("SELinux: %s: getxattr returned %d for dev=%s ino=%ld\n", 1416 __func__, -rc, inode->i_sb->s_id, inode->i_ino); 1417 return rc; 1418 } 1419 *sid = def_sid; 1420 return 0; 1421 } 1422 1423 rc = security_context_to_sid_default(&selinux_state, context, rc, sid, 1424 def_sid, GFP_NOFS); 1425 if (rc) { 1426 char *dev = inode->i_sb->s_id; 1427 unsigned long ino = inode->i_ino; 1428 1429 if (rc == -EINVAL) { 1430 pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s. This indicates you may need to relabel the inode or the filesystem in question.\n", 1431 ino, dev, context); 1432 } else { 1433 pr_warn("SELinux: %s: context_to_sid(%s) returned %d for dev=%s ino=%ld\n", 1434 __func__, context, -rc, dev, ino); 1435 } 1436 } 1437 kfree(context); 1438 return 0; 1439 } 1440 1441 /* The inode's security attributes must be initialized before first use. */ 1442 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 1443 { 1444 struct superblock_security_struct *sbsec = NULL; 1445 struct inode_security_struct *isec = selinux_inode(inode); 1446 u32 task_sid, sid = 0; 1447 u16 sclass; 1448 struct dentry *dentry; 1449 int rc = 0; 1450 1451 if (isec->initialized == LABEL_INITIALIZED) 1452 return 0; 1453 1454 spin_lock(&isec->lock); 1455 if (isec->initialized == LABEL_INITIALIZED) 1456 goto out_unlock; 1457 1458 if (isec->sclass == SECCLASS_FILE) 1459 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1460 1461 sbsec = selinux_superblock(inode->i_sb); 1462 if (!(sbsec->flags & SE_SBINITIALIZED)) { 1463 /* Defer initialization until selinux_complete_init, 1464 after the initial policy is loaded and the security 1465 server is ready to handle calls. */ 1466 spin_lock(&sbsec->isec_lock); 1467 if (list_empty(&isec->list)) 1468 list_add(&isec->list, &sbsec->isec_head); 1469 spin_unlock(&sbsec->isec_lock); 1470 goto out_unlock; 1471 } 1472 1473 sclass = isec->sclass; 1474 task_sid = isec->task_sid; 1475 sid = isec->sid; 1476 isec->initialized = LABEL_PENDING; 1477 spin_unlock(&isec->lock); 1478 1479 switch (sbsec->behavior) { 1480 case SECURITY_FS_USE_NATIVE: 1481 break; 1482 case SECURITY_FS_USE_XATTR: 1483 if (!(inode->i_opflags & IOP_XATTR)) { 1484 sid = sbsec->def_sid; 1485 break; 1486 } 1487 /* Need a dentry, since the xattr API requires one. 1488 Life would be simpler if we could just pass the inode. */ 1489 if (opt_dentry) { 1490 /* Called from d_instantiate or d_splice_alias. */ 1491 dentry = dget(opt_dentry); 1492 } else { 1493 /* 1494 * Called from selinux_complete_init, try to find a dentry. 1495 * Some filesystems really want a connected one, so try 1496 * that first. We could split SECURITY_FS_USE_XATTR in 1497 * two, depending upon that... 1498 */ 1499 dentry = d_find_alias(inode); 1500 if (!dentry) 1501 dentry = d_find_any_alias(inode); 1502 } 1503 if (!dentry) { 1504 /* 1505 * this is can be hit on boot when a file is accessed 1506 * before the policy is loaded. When we load policy we 1507 * may find inodes that have no dentry on the 1508 * sbsec->isec_head list. No reason to complain as these 1509 * will get fixed up the next time we go through 1510 * inode_doinit with a dentry, before these inodes could 1511 * be used again by userspace. 1512 */ 1513 goto out_invalid; 1514 } 1515 1516 rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid, 1517 &sid); 1518 dput(dentry); 1519 if (rc) 1520 goto out; 1521 break; 1522 case SECURITY_FS_USE_TASK: 1523 sid = task_sid; 1524 break; 1525 case SECURITY_FS_USE_TRANS: 1526 /* Default to the fs SID. */ 1527 sid = sbsec->sid; 1528 1529 /* Try to obtain a transition SID. */ 1530 rc = security_transition_sid(&selinux_state, task_sid, sid, 1531 sclass, NULL, &sid); 1532 if (rc) 1533 goto out; 1534 break; 1535 case SECURITY_FS_USE_MNTPOINT: 1536 sid = sbsec->mntpoint_sid; 1537 break; 1538 default: 1539 /* Default to the fs superblock SID. */ 1540 sid = sbsec->sid; 1541 1542 if ((sbsec->flags & SE_SBGENFS) && 1543 (!S_ISLNK(inode->i_mode) || 1544 selinux_policycap_genfs_seclabel_symlinks())) { 1545 /* We must have a dentry to determine the label on 1546 * procfs inodes */ 1547 if (opt_dentry) { 1548 /* Called from d_instantiate or 1549 * d_splice_alias. */ 1550 dentry = dget(opt_dentry); 1551 } else { 1552 /* Called from selinux_complete_init, try to 1553 * find a dentry. Some filesystems really want 1554 * a connected one, so try that first. 1555 */ 1556 dentry = d_find_alias(inode); 1557 if (!dentry) 1558 dentry = d_find_any_alias(inode); 1559 } 1560 /* 1561 * This can be hit on boot when a file is accessed 1562 * before the policy is loaded. When we load policy we 1563 * may find inodes that have no dentry on the 1564 * sbsec->isec_head list. No reason to complain as 1565 * these will get fixed up the next time we go through 1566 * inode_doinit() with a dentry, before these inodes 1567 * could be used again by userspace. 1568 */ 1569 if (!dentry) 1570 goto out_invalid; 1571 rc = selinux_genfs_get_sid(dentry, sclass, 1572 sbsec->flags, &sid); 1573 if (rc) { 1574 dput(dentry); 1575 goto out; 1576 } 1577 1578 if ((sbsec->flags & SE_SBGENFS_XATTR) && 1579 (inode->i_opflags & IOP_XATTR)) { 1580 rc = inode_doinit_use_xattr(inode, dentry, 1581 sid, &sid); 1582 if (rc) { 1583 dput(dentry); 1584 goto out; 1585 } 1586 } 1587 dput(dentry); 1588 } 1589 break; 1590 } 1591 1592 out: 1593 spin_lock(&isec->lock); 1594 if (isec->initialized == LABEL_PENDING) { 1595 if (rc) { 1596 isec->initialized = LABEL_INVALID; 1597 goto out_unlock; 1598 } 1599 isec->initialized = LABEL_INITIALIZED; 1600 isec->sid = sid; 1601 } 1602 1603 out_unlock: 1604 spin_unlock(&isec->lock); 1605 return rc; 1606 1607 out_invalid: 1608 spin_lock(&isec->lock); 1609 if (isec->initialized == LABEL_PENDING) { 1610 isec->initialized = LABEL_INVALID; 1611 isec->sid = sid; 1612 } 1613 spin_unlock(&isec->lock); 1614 return 0; 1615 } 1616 1617 /* Convert a Linux signal to an access vector. */ 1618 static inline u32 signal_to_av(int sig) 1619 { 1620 u32 perm = 0; 1621 1622 switch (sig) { 1623 case SIGCHLD: 1624 /* Commonly granted from child to parent. */ 1625 perm = PROCESS__SIGCHLD; 1626 break; 1627 case SIGKILL: 1628 /* Cannot be caught or ignored */ 1629 perm = PROCESS__SIGKILL; 1630 break; 1631 case SIGSTOP: 1632 /* Cannot be caught or ignored */ 1633 perm = PROCESS__SIGSTOP; 1634 break; 1635 default: 1636 /* All other signals. */ 1637 perm = PROCESS__SIGNAL; 1638 break; 1639 } 1640 1641 return perm; 1642 } 1643 1644 #if CAP_LAST_CAP > 63 1645 #error Fix SELinux to handle capabilities > 63. 1646 #endif 1647 1648 /* Check whether a task is allowed to use a capability. */ 1649 static int cred_has_capability(const struct cred *cred, 1650 int cap, unsigned int opts, bool initns) 1651 { 1652 struct common_audit_data ad; 1653 struct av_decision avd; 1654 u16 sclass; 1655 u32 sid = cred_sid(cred); 1656 u32 av = CAP_TO_MASK(cap); 1657 int rc; 1658 1659 ad.type = LSM_AUDIT_DATA_CAP; 1660 ad.u.cap = cap; 1661 1662 switch (CAP_TO_INDEX(cap)) { 1663 case 0: 1664 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS; 1665 break; 1666 case 1: 1667 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS; 1668 break; 1669 default: 1670 pr_err("SELinux: out of range capability %d\n", cap); 1671 BUG(); 1672 return -EINVAL; 1673 } 1674 1675 rc = avc_has_perm_noaudit(&selinux_state, 1676 sid, sid, sclass, av, 0, &avd); 1677 if (!(opts & CAP_OPT_NOAUDIT)) { 1678 int rc2 = avc_audit(&selinux_state, 1679 sid, sid, sclass, av, &avd, rc, &ad); 1680 if (rc2) 1681 return rc2; 1682 } 1683 return rc; 1684 } 1685 1686 /* Check whether a task has a particular permission to an inode. 1687 The 'adp' parameter is optional and allows other audit 1688 data to be passed (e.g. the dentry). */ 1689 static int inode_has_perm(const struct cred *cred, 1690 struct inode *inode, 1691 u32 perms, 1692 struct common_audit_data *adp) 1693 { 1694 struct inode_security_struct *isec; 1695 u32 sid; 1696 1697 validate_creds(cred); 1698 1699 if (unlikely(IS_PRIVATE(inode))) 1700 return 0; 1701 1702 sid = cred_sid(cred); 1703 isec = selinux_inode(inode); 1704 1705 return avc_has_perm(&selinux_state, 1706 sid, isec->sid, isec->sclass, perms, adp); 1707 } 1708 1709 /* Same as inode_has_perm, but pass explicit audit data containing 1710 the dentry to help the auditing code to more easily generate the 1711 pathname if needed. */ 1712 static inline int dentry_has_perm(const struct cred *cred, 1713 struct dentry *dentry, 1714 u32 av) 1715 { 1716 struct inode *inode = d_backing_inode(dentry); 1717 struct common_audit_data ad; 1718 1719 ad.type = LSM_AUDIT_DATA_DENTRY; 1720 ad.u.dentry = dentry; 1721 __inode_security_revalidate(inode, dentry, true); 1722 return inode_has_perm(cred, inode, av, &ad); 1723 } 1724 1725 /* Same as inode_has_perm, but pass explicit audit data containing 1726 the path to help the auditing code to more easily generate the 1727 pathname if needed. */ 1728 static inline int path_has_perm(const struct cred *cred, 1729 const struct path *path, 1730 u32 av) 1731 { 1732 struct inode *inode = d_backing_inode(path->dentry); 1733 struct common_audit_data ad; 1734 1735 ad.type = LSM_AUDIT_DATA_PATH; 1736 ad.u.path = *path; 1737 __inode_security_revalidate(inode, path->dentry, true); 1738 return inode_has_perm(cred, inode, av, &ad); 1739 } 1740 1741 /* Same as path_has_perm, but uses the inode from the file struct. */ 1742 static inline int file_path_has_perm(const struct cred *cred, 1743 struct file *file, 1744 u32 av) 1745 { 1746 struct common_audit_data ad; 1747 1748 ad.type = LSM_AUDIT_DATA_FILE; 1749 ad.u.file = file; 1750 return inode_has_perm(cred, file_inode(file), av, &ad); 1751 } 1752 1753 #ifdef CONFIG_BPF_SYSCALL 1754 static int bpf_fd_pass(struct file *file, u32 sid); 1755 #endif 1756 1757 /* Check whether a task can use an open file descriptor to 1758 access an inode in a given way. Check access to the 1759 descriptor itself, and then use dentry_has_perm to 1760 check a particular permission to the file. 1761 Access to the descriptor is implicitly granted if it 1762 has the same SID as the process. If av is zero, then 1763 access to the file is not checked, e.g. for cases 1764 where only the descriptor is affected like seek. */ 1765 static int file_has_perm(const struct cred *cred, 1766 struct file *file, 1767 u32 av) 1768 { 1769 struct file_security_struct *fsec = selinux_file(file); 1770 struct inode *inode = file_inode(file); 1771 struct common_audit_data ad; 1772 u32 sid = cred_sid(cred); 1773 int rc; 1774 1775 ad.type = LSM_AUDIT_DATA_FILE; 1776 ad.u.file = file; 1777 1778 if (sid != fsec->sid) { 1779 rc = avc_has_perm(&selinux_state, 1780 sid, fsec->sid, 1781 SECCLASS_FD, 1782 FD__USE, 1783 &ad); 1784 if (rc) 1785 goto out; 1786 } 1787 1788 #ifdef CONFIG_BPF_SYSCALL 1789 rc = bpf_fd_pass(file, cred_sid(cred)); 1790 if (rc) 1791 return rc; 1792 #endif 1793 1794 /* av is zero if only checking access to the descriptor. */ 1795 rc = 0; 1796 if (av) 1797 rc = inode_has_perm(cred, inode, av, &ad); 1798 1799 out: 1800 return rc; 1801 } 1802 1803 /* 1804 * Determine the label for an inode that might be unioned. 1805 */ 1806 static int 1807 selinux_determine_inode_label(const struct task_security_struct *tsec, 1808 struct inode *dir, 1809 const struct qstr *name, u16 tclass, 1810 u32 *_new_isid) 1811 { 1812 const struct superblock_security_struct *sbsec = 1813 selinux_superblock(dir->i_sb); 1814 1815 if ((sbsec->flags & SE_SBINITIALIZED) && 1816 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) { 1817 *_new_isid = sbsec->mntpoint_sid; 1818 } else if ((sbsec->flags & SBLABEL_MNT) && 1819 tsec->create_sid) { 1820 *_new_isid = tsec->create_sid; 1821 } else { 1822 const struct inode_security_struct *dsec = inode_security(dir); 1823 return security_transition_sid(&selinux_state, tsec->sid, 1824 dsec->sid, tclass, 1825 name, _new_isid); 1826 } 1827 1828 return 0; 1829 } 1830 1831 /* Check whether a task can create a file. */ 1832 static int may_create(struct inode *dir, 1833 struct dentry *dentry, 1834 u16 tclass) 1835 { 1836 const struct task_security_struct *tsec = selinux_cred(current_cred()); 1837 struct inode_security_struct *dsec; 1838 struct superblock_security_struct *sbsec; 1839 u32 sid, newsid; 1840 struct common_audit_data ad; 1841 int rc; 1842 1843 dsec = inode_security(dir); 1844 sbsec = selinux_superblock(dir->i_sb); 1845 1846 sid = tsec->sid; 1847 1848 ad.type = LSM_AUDIT_DATA_DENTRY; 1849 ad.u.dentry = dentry; 1850 1851 rc = avc_has_perm(&selinux_state, 1852 sid, dsec->sid, SECCLASS_DIR, 1853 DIR__ADD_NAME | DIR__SEARCH, 1854 &ad); 1855 if (rc) 1856 return rc; 1857 1858 rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass, 1859 &newsid); 1860 if (rc) 1861 return rc; 1862 1863 rc = avc_has_perm(&selinux_state, 1864 sid, newsid, tclass, FILE__CREATE, &ad); 1865 if (rc) 1866 return rc; 1867 1868 return avc_has_perm(&selinux_state, 1869 newsid, sbsec->sid, 1870 SECCLASS_FILESYSTEM, 1871 FILESYSTEM__ASSOCIATE, &ad); 1872 } 1873 1874 #define MAY_LINK 0 1875 #define MAY_UNLINK 1 1876 #define MAY_RMDIR 2 1877 1878 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1879 static int may_link(struct inode *dir, 1880 struct dentry *dentry, 1881 int kind) 1882 1883 { 1884 struct inode_security_struct *dsec, *isec; 1885 struct common_audit_data ad; 1886 u32 sid = current_sid(); 1887 u32 av; 1888 int rc; 1889 1890 dsec = inode_security(dir); 1891 isec = backing_inode_security(dentry); 1892 1893 ad.type = LSM_AUDIT_DATA_DENTRY; 1894 ad.u.dentry = dentry; 1895 1896 av = DIR__SEARCH; 1897 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1898 rc = avc_has_perm(&selinux_state, 1899 sid, dsec->sid, SECCLASS_DIR, av, &ad); 1900 if (rc) 1901 return rc; 1902 1903 switch (kind) { 1904 case MAY_LINK: 1905 av = FILE__LINK; 1906 break; 1907 case MAY_UNLINK: 1908 av = FILE__UNLINK; 1909 break; 1910 case MAY_RMDIR: 1911 av = DIR__RMDIR; 1912 break; 1913 default: 1914 pr_warn("SELinux: %s: unrecognized kind %d\n", 1915 __func__, kind); 1916 return 0; 1917 } 1918 1919 rc = avc_has_perm(&selinux_state, 1920 sid, isec->sid, isec->sclass, av, &ad); 1921 return rc; 1922 } 1923 1924 static inline int may_rename(struct inode *old_dir, 1925 struct dentry *old_dentry, 1926 struct inode *new_dir, 1927 struct dentry *new_dentry) 1928 { 1929 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1930 struct common_audit_data ad; 1931 u32 sid = current_sid(); 1932 u32 av; 1933 int old_is_dir, new_is_dir; 1934 int rc; 1935 1936 old_dsec = inode_security(old_dir); 1937 old_isec = backing_inode_security(old_dentry); 1938 old_is_dir = d_is_dir(old_dentry); 1939 new_dsec = inode_security(new_dir); 1940 1941 ad.type = LSM_AUDIT_DATA_DENTRY; 1942 1943 ad.u.dentry = old_dentry; 1944 rc = avc_has_perm(&selinux_state, 1945 sid, old_dsec->sid, SECCLASS_DIR, 1946 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1947 if (rc) 1948 return rc; 1949 rc = avc_has_perm(&selinux_state, 1950 sid, old_isec->sid, 1951 old_isec->sclass, FILE__RENAME, &ad); 1952 if (rc) 1953 return rc; 1954 if (old_is_dir && new_dir != old_dir) { 1955 rc = avc_has_perm(&selinux_state, 1956 sid, old_isec->sid, 1957 old_isec->sclass, DIR__REPARENT, &ad); 1958 if (rc) 1959 return rc; 1960 } 1961 1962 ad.u.dentry = new_dentry; 1963 av = DIR__ADD_NAME | DIR__SEARCH; 1964 if (d_is_positive(new_dentry)) 1965 av |= DIR__REMOVE_NAME; 1966 rc = avc_has_perm(&selinux_state, 1967 sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1968 if (rc) 1969 return rc; 1970 if (d_is_positive(new_dentry)) { 1971 new_isec = backing_inode_security(new_dentry); 1972 new_is_dir = d_is_dir(new_dentry); 1973 rc = avc_has_perm(&selinux_state, 1974 sid, new_isec->sid, 1975 new_isec->sclass, 1976 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1977 if (rc) 1978 return rc; 1979 } 1980 1981 return 0; 1982 } 1983 1984 /* Check whether a task can perform a filesystem operation. */ 1985 static int superblock_has_perm(const struct cred *cred, 1986 struct super_block *sb, 1987 u32 perms, 1988 struct common_audit_data *ad) 1989 { 1990 struct superblock_security_struct *sbsec; 1991 u32 sid = cred_sid(cred); 1992 1993 sbsec = selinux_superblock(sb); 1994 return avc_has_perm(&selinux_state, 1995 sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad); 1996 } 1997 1998 /* Convert a Linux mode and permission mask to an access vector. */ 1999 static inline u32 file_mask_to_av(int mode, int mask) 2000 { 2001 u32 av = 0; 2002 2003 if (!S_ISDIR(mode)) { 2004 if (mask & MAY_EXEC) 2005 av |= FILE__EXECUTE; 2006 if (mask & MAY_READ) 2007 av |= FILE__READ; 2008 2009 if (mask & MAY_APPEND) 2010 av |= FILE__APPEND; 2011 else if (mask & MAY_WRITE) 2012 av |= FILE__WRITE; 2013 2014 } else { 2015 if (mask & MAY_EXEC) 2016 av |= DIR__SEARCH; 2017 if (mask & MAY_WRITE) 2018 av |= DIR__WRITE; 2019 if (mask & MAY_READ) 2020 av |= DIR__READ; 2021 } 2022 2023 return av; 2024 } 2025 2026 /* Convert a Linux file to an access vector. */ 2027 static inline u32 file_to_av(struct file *file) 2028 { 2029 u32 av = 0; 2030 2031 if (file->f_mode & FMODE_READ) 2032 av |= FILE__READ; 2033 if (file->f_mode & FMODE_WRITE) { 2034 if (file->f_flags & O_APPEND) 2035 av |= FILE__APPEND; 2036 else 2037 av |= FILE__WRITE; 2038 } 2039 if (!av) { 2040 /* 2041 * Special file opened with flags 3 for ioctl-only use. 2042 */ 2043 av = FILE__IOCTL; 2044 } 2045 2046 return av; 2047 } 2048 2049 /* 2050 * Convert a file to an access vector and include the correct 2051 * open permission. 2052 */ 2053 static inline u32 open_file_to_av(struct file *file) 2054 { 2055 u32 av = file_to_av(file); 2056 struct inode *inode = file_inode(file); 2057 2058 if (selinux_policycap_openperm() && 2059 inode->i_sb->s_magic != SOCKFS_MAGIC) 2060 av |= FILE__OPEN; 2061 2062 return av; 2063 } 2064 2065 /* Hook functions begin here. */ 2066 2067 static int selinux_binder_set_context_mgr(struct task_struct *mgr) 2068 { 2069 return avc_has_perm(&selinux_state, 2070 current_sid(), task_sid_binder(mgr), SECCLASS_BINDER, 2071 BINDER__SET_CONTEXT_MGR, NULL); 2072 } 2073 2074 static int selinux_binder_transaction(struct task_struct *from, 2075 struct task_struct *to) 2076 { 2077 u32 mysid = current_sid(); 2078 u32 fromsid = task_sid_binder(from); 2079 int rc; 2080 2081 if (mysid != fromsid) { 2082 rc = avc_has_perm(&selinux_state, 2083 mysid, fromsid, SECCLASS_BINDER, 2084 BINDER__IMPERSONATE, NULL); 2085 if (rc) 2086 return rc; 2087 } 2088 2089 return avc_has_perm(&selinux_state, fromsid, task_sid_binder(to), 2090 SECCLASS_BINDER, BINDER__CALL, NULL); 2091 } 2092 2093 static int selinux_binder_transfer_binder(struct task_struct *from, 2094 struct task_struct *to) 2095 { 2096 return avc_has_perm(&selinux_state, 2097 task_sid_binder(from), task_sid_binder(to), 2098 SECCLASS_BINDER, BINDER__TRANSFER, 2099 NULL); 2100 } 2101 2102 static int selinux_binder_transfer_file(struct task_struct *from, 2103 struct task_struct *to, 2104 struct file *file) 2105 { 2106 u32 sid = task_sid_binder(to); 2107 struct file_security_struct *fsec = selinux_file(file); 2108 struct dentry *dentry = file->f_path.dentry; 2109 struct inode_security_struct *isec; 2110 struct common_audit_data ad; 2111 int rc; 2112 2113 ad.type = LSM_AUDIT_DATA_PATH; 2114 ad.u.path = file->f_path; 2115 2116 if (sid != fsec->sid) { 2117 rc = avc_has_perm(&selinux_state, 2118 sid, fsec->sid, 2119 SECCLASS_FD, 2120 FD__USE, 2121 &ad); 2122 if (rc) 2123 return rc; 2124 } 2125 2126 #ifdef CONFIG_BPF_SYSCALL 2127 rc = bpf_fd_pass(file, sid); 2128 if (rc) 2129 return rc; 2130 #endif 2131 2132 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2133 return 0; 2134 2135 isec = backing_inode_security(dentry); 2136 return avc_has_perm(&selinux_state, 2137 sid, isec->sid, isec->sclass, file_to_av(file), 2138 &ad); 2139 } 2140 2141 static int selinux_ptrace_access_check(struct task_struct *child, 2142 unsigned int mode) 2143 { 2144 u32 sid = current_sid(); 2145 u32 csid = task_sid_obj(child); 2146 2147 if (mode & PTRACE_MODE_READ) 2148 return avc_has_perm(&selinux_state, 2149 sid, csid, SECCLASS_FILE, FILE__READ, NULL); 2150 2151 return avc_has_perm(&selinux_state, 2152 sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL); 2153 } 2154 2155 static int selinux_ptrace_traceme(struct task_struct *parent) 2156 { 2157 return avc_has_perm(&selinux_state, 2158 task_sid_subj(parent), task_sid_obj(current), 2159 SECCLASS_PROCESS, PROCESS__PTRACE, NULL); 2160 } 2161 2162 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective, 2163 kernel_cap_t *inheritable, kernel_cap_t *permitted) 2164 { 2165 return avc_has_perm(&selinux_state, 2166 current_sid(), task_sid_obj(target), SECCLASS_PROCESS, 2167 PROCESS__GETCAP, NULL); 2168 } 2169 2170 static int selinux_capset(struct cred *new, const struct cred *old, 2171 const kernel_cap_t *effective, 2172 const kernel_cap_t *inheritable, 2173 const kernel_cap_t *permitted) 2174 { 2175 return avc_has_perm(&selinux_state, 2176 cred_sid(old), cred_sid(new), SECCLASS_PROCESS, 2177 PROCESS__SETCAP, NULL); 2178 } 2179 2180 /* 2181 * (This comment used to live with the selinux_task_setuid hook, 2182 * which was removed). 2183 * 2184 * Since setuid only affects the current process, and since the SELinux 2185 * controls are not based on the Linux identity attributes, SELinux does not 2186 * need to control this operation. However, SELinux does control the use of 2187 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook. 2188 */ 2189 2190 static int selinux_capable(const struct cred *cred, struct user_namespace *ns, 2191 int cap, unsigned int opts) 2192 { 2193 return cred_has_capability(cred, cap, opts, ns == &init_user_ns); 2194 } 2195 2196 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) 2197 { 2198 const struct cred *cred = current_cred(); 2199 int rc = 0; 2200 2201 if (!sb) 2202 return 0; 2203 2204 switch (cmds) { 2205 case Q_SYNC: 2206 case Q_QUOTAON: 2207 case Q_QUOTAOFF: 2208 case Q_SETINFO: 2209 case Q_SETQUOTA: 2210 case Q_XQUOTAOFF: 2211 case Q_XQUOTAON: 2212 case Q_XSETQLIM: 2213 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL); 2214 break; 2215 case Q_GETFMT: 2216 case Q_GETINFO: 2217 case Q_GETQUOTA: 2218 case Q_XGETQUOTA: 2219 case Q_XGETQSTAT: 2220 case Q_XGETQSTATV: 2221 case Q_XGETNEXTQUOTA: 2222 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL); 2223 break; 2224 default: 2225 rc = 0; /* let the kernel handle invalid cmds */ 2226 break; 2227 } 2228 return rc; 2229 } 2230 2231 static int selinux_quota_on(struct dentry *dentry) 2232 { 2233 const struct cred *cred = current_cred(); 2234 2235 return dentry_has_perm(cred, dentry, FILE__QUOTAON); 2236 } 2237 2238 static int selinux_syslog(int type) 2239 { 2240 switch (type) { 2241 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */ 2242 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */ 2243 return avc_has_perm(&selinux_state, 2244 current_sid(), SECINITSID_KERNEL, 2245 SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL); 2246 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */ 2247 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */ 2248 /* Set level of messages printed to console */ 2249 case SYSLOG_ACTION_CONSOLE_LEVEL: 2250 return avc_has_perm(&selinux_state, 2251 current_sid(), SECINITSID_KERNEL, 2252 SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE, 2253 NULL); 2254 } 2255 /* All other syslog types */ 2256 return avc_has_perm(&selinux_state, 2257 current_sid(), SECINITSID_KERNEL, 2258 SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL); 2259 } 2260 2261 /* 2262 * Check that a process has enough memory to allocate a new virtual 2263 * mapping. 0 means there is enough memory for the allocation to 2264 * succeed and -ENOMEM implies there is not. 2265 * 2266 * Do not audit the selinux permission check, as this is applied to all 2267 * processes that allocate mappings. 2268 */ 2269 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) 2270 { 2271 int rc, cap_sys_admin = 0; 2272 2273 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN, 2274 CAP_OPT_NOAUDIT, true); 2275 if (rc == 0) 2276 cap_sys_admin = 1; 2277 2278 return cap_sys_admin; 2279 } 2280 2281 /* binprm security operations */ 2282 2283 static u32 ptrace_parent_sid(void) 2284 { 2285 u32 sid = 0; 2286 struct task_struct *tracer; 2287 2288 rcu_read_lock(); 2289 tracer = ptrace_parent(current); 2290 if (tracer) 2291 sid = task_sid_obj(tracer); 2292 rcu_read_unlock(); 2293 2294 return sid; 2295 } 2296 2297 static int check_nnp_nosuid(const struct linux_binprm *bprm, 2298 const struct task_security_struct *old_tsec, 2299 const struct task_security_struct *new_tsec) 2300 { 2301 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS); 2302 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt); 2303 int rc; 2304 u32 av; 2305 2306 if (!nnp && !nosuid) 2307 return 0; /* neither NNP nor nosuid */ 2308 2309 if (new_tsec->sid == old_tsec->sid) 2310 return 0; /* No change in credentials */ 2311 2312 /* 2313 * If the policy enables the nnp_nosuid_transition policy capability, 2314 * then we permit transitions under NNP or nosuid if the 2315 * policy allows the corresponding permission between 2316 * the old and new contexts. 2317 */ 2318 if (selinux_policycap_nnp_nosuid_transition()) { 2319 av = 0; 2320 if (nnp) 2321 av |= PROCESS2__NNP_TRANSITION; 2322 if (nosuid) 2323 av |= PROCESS2__NOSUID_TRANSITION; 2324 rc = avc_has_perm(&selinux_state, 2325 old_tsec->sid, new_tsec->sid, 2326 SECCLASS_PROCESS2, av, NULL); 2327 if (!rc) 2328 return 0; 2329 } 2330 2331 /* 2332 * We also permit NNP or nosuid transitions to bounded SIDs, 2333 * i.e. SIDs that are guaranteed to only be allowed a subset 2334 * of the permissions of the current SID. 2335 */ 2336 rc = security_bounded_transition(&selinux_state, old_tsec->sid, 2337 new_tsec->sid); 2338 if (!rc) 2339 return 0; 2340 2341 /* 2342 * On failure, preserve the errno values for NNP vs nosuid. 2343 * NNP: Operation not permitted for caller. 2344 * nosuid: Permission denied to file. 2345 */ 2346 if (nnp) 2347 return -EPERM; 2348 return -EACCES; 2349 } 2350 2351 static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm) 2352 { 2353 const struct task_security_struct *old_tsec; 2354 struct task_security_struct *new_tsec; 2355 struct inode_security_struct *isec; 2356 struct common_audit_data ad; 2357 struct inode *inode = file_inode(bprm->file); 2358 int rc; 2359 2360 /* SELinux context only depends on initial program or script and not 2361 * the script interpreter */ 2362 2363 old_tsec = selinux_cred(current_cred()); 2364 new_tsec = selinux_cred(bprm->cred); 2365 isec = inode_security(inode); 2366 2367 /* Default to the current task SID. */ 2368 new_tsec->sid = old_tsec->sid; 2369 new_tsec->osid = old_tsec->sid; 2370 2371 /* Reset fs, key, and sock SIDs on execve. */ 2372 new_tsec->create_sid = 0; 2373 new_tsec->keycreate_sid = 0; 2374 new_tsec->sockcreate_sid = 0; 2375 2376 if (old_tsec->exec_sid) { 2377 new_tsec->sid = old_tsec->exec_sid; 2378 /* Reset exec SID on execve. */ 2379 new_tsec->exec_sid = 0; 2380 2381 /* Fail on NNP or nosuid if not an allowed transition. */ 2382 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2383 if (rc) 2384 return rc; 2385 } else { 2386 /* Check for a default transition on this program. */ 2387 rc = security_transition_sid(&selinux_state, old_tsec->sid, 2388 isec->sid, SECCLASS_PROCESS, NULL, 2389 &new_tsec->sid); 2390 if (rc) 2391 return rc; 2392 2393 /* 2394 * Fallback to old SID on NNP or nosuid if not an allowed 2395 * transition. 2396 */ 2397 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2398 if (rc) 2399 new_tsec->sid = old_tsec->sid; 2400 } 2401 2402 ad.type = LSM_AUDIT_DATA_FILE; 2403 ad.u.file = bprm->file; 2404 2405 if (new_tsec->sid == old_tsec->sid) { 2406 rc = avc_has_perm(&selinux_state, 2407 old_tsec->sid, isec->sid, 2408 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 2409 if (rc) 2410 return rc; 2411 } else { 2412 /* Check permissions for the transition. */ 2413 rc = avc_has_perm(&selinux_state, 2414 old_tsec->sid, new_tsec->sid, 2415 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 2416 if (rc) 2417 return rc; 2418 2419 rc = avc_has_perm(&selinux_state, 2420 new_tsec->sid, isec->sid, 2421 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 2422 if (rc) 2423 return rc; 2424 2425 /* Check for shared state */ 2426 if (bprm->unsafe & LSM_UNSAFE_SHARE) { 2427 rc = avc_has_perm(&selinux_state, 2428 old_tsec->sid, new_tsec->sid, 2429 SECCLASS_PROCESS, PROCESS__SHARE, 2430 NULL); 2431 if (rc) 2432 return -EPERM; 2433 } 2434 2435 /* Make sure that anyone attempting to ptrace over a task that 2436 * changes its SID has the appropriate permit */ 2437 if (bprm->unsafe & LSM_UNSAFE_PTRACE) { 2438 u32 ptsid = ptrace_parent_sid(); 2439 if (ptsid != 0) { 2440 rc = avc_has_perm(&selinux_state, 2441 ptsid, new_tsec->sid, 2442 SECCLASS_PROCESS, 2443 PROCESS__PTRACE, NULL); 2444 if (rc) 2445 return -EPERM; 2446 } 2447 } 2448 2449 /* Clear any possibly unsafe personality bits on exec: */ 2450 bprm->per_clear |= PER_CLEAR_ON_SETID; 2451 2452 /* Enable secure mode for SIDs transitions unless 2453 the noatsecure permission is granted between 2454 the two SIDs, i.e. ahp returns 0. */ 2455 rc = avc_has_perm(&selinux_state, 2456 old_tsec->sid, new_tsec->sid, 2457 SECCLASS_PROCESS, PROCESS__NOATSECURE, 2458 NULL); 2459 bprm->secureexec |= !!rc; 2460 } 2461 2462 return 0; 2463 } 2464 2465 static int match_file(const void *p, struct file *file, unsigned fd) 2466 { 2467 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0; 2468 } 2469 2470 /* Derived from fs/exec.c:flush_old_files. */ 2471 static inline void flush_unauthorized_files(const struct cred *cred, 2472 struct files_struct *files) 2473 { 2474 struct file *file, *devnull = NULL; 2475 struct tty_struct *tty; 2476 int drop_tty = 0; 2477 unsigned n; 2478 2479 tty = get_current_tty(); 2480 if (tty) { 2481 spin_lock(&tty->files_lock); 2482 if (!list_empty(&tty->tty_files)) { 2483 struct tty_file_private *file_priv; 2484 2485 /* Revalidate access to controlling tty. 2486 Use file_path_has_perm on the tty path directly 2487 rather than using file_has_perm, as this particular 2488 open file may belong to another process and we are 2489 only interested in the inode-based check here. */ 2490 file_priv = list_first_entry(&tty->tty_files, 2491 struct tty_file_private, list); 2492 file = file_priv->file; 2493 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE)) 2494 drop_tty = 1; 2495 } 2496 spin_unlock(&tty->files_lock); 2497 tty_kref_put(tty); 2498 } 2499 /* Reset controlling tty. */ 2500 if (drop_tty) 2501 no_tty(); 2502 2503 /* Revalidate access to inherited open files. */ 2504 n = iterate_fd(files, 0, match_file, cred); 2505 if (!n) /* none found? */ 2506 return; 2507 2508 devnull = dentry_open(&selinux_null, O_RDWR, cred); 2509 if (IS_ERR(devnull)) 2510 devnull = NULL; 2511 /* replace all the matching ones with this */ 2512 do { 2513 replace_fd(n - 1, devnull, 0); 2514 } while ((n = iterate_fd(files, n, match_file, cred)) != 0); 2515 if (devnull) 2516 fput(devnull); 2517 } 2518 2519 /* 2520 * Prepare a process for imminent new credential changes due to exec 2521 */ 2522 static void selinux_bprm_committing_creds(struct linux_binprm *bprm) 2523 { 2524 struct task_security_struct *new_tsec; 2525 struct rlimit *rlim, *initrlim; 2526 int rc, i; 2527 2528 new_tsec = selinux_cred(bprm->cred); 2529 if (new_tsec->sid == new_tsec->osid) 2530 return; 2531 2532 /* Close files for which the new task SID is not authorized. */ 2533 flush_unauthorized_files(bprm->cred, current->files); 2534 2535 /* Always clear parent death signal on SID transitions. */ 2536 current->pdeath_signal = 0; 2537 2538 /* Check whether the new SID can inherit resource limits from the old 2539 * SID. If not, reset all soft limits to the lower of the current 2540 * task's hard limit and the init task's soft limit. 2541 * 2542 * Note that the setting of hard limits (even to lower them) can be 2543 * controlled by the setrlimit check. The inclusion of the init task's 2544 * soft limit into the computation is to avoid resetting soft limits 2545 * higher than the default soft limit for cases where the default is 2546 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK. 2547 */ 2548 rc = avc_has_perm(&selinux_state, 2549 new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS, 2550 PROCESS__RLIMITINH, NULL); 2551 if (rc) { 2552 /* protect against do_prlimit() */ 2553 task_lock(current); 2554 for (i = 0; i < RLIM_NLIMITS; i++) { 2555 rlim = current->signal->rlim + i; 2556 initrlim = init_task.signal->rlim + i; 2557 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur); 2558 } 2559 task_unlock(current); 2560 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) 2561 update_rlimit_cpu(current, rlimit(RLIMIT_CPU)); 2562 } 2563 } 2564 2565 /* 2566 * Clean up the process immediately after the installation of new credentials 2567 * due to exec 2568 */ 2569 static void selinux_bprm_committed_creds(struct linux_binprm *bprm) 2570 { 2571 const struct task_security_struct *tsec = selinux_cred(current_cred()); 2572 u32 osid, sid; 2573 int rc; 2574 2575 osid = tsec->osid; 2576 sid = tsec->sid; 2577 2578 if (sid == osid) 2579 return; 2580 2581 /* Check whether the new SID can inherit signal state from the old SID. 2582 * If not, clear itimers to avoid subsequent signal generation and 2583 * flush and unblock signals. 2584 * 2585 * This must occur _after_ the task SID has been updated so that any 2586 * kill done after the flush will be checked against the new SID. 2587 */ 2588 rc = avc_has_perm(&selinux_state, 2589 osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL); 2590 if (rc) { 2591 clear_itimer(); 2592 2593 spin_lock_irq(¤t->sighand->siglock); 2594 if (!fatal_signal_pending(current)) { 2595 flush_sigqueue(¤t->pending); 2596 flush_sigqueue(¤t->signal->shared_pending); 2597 flush_signal_handlers(current, 1); 2598 sigemptyset(¤t->blocked); 2599 recalc_sigpending(); 2600 } 2601 spin_unlock_irq(¤t->sighand->siglock); 2602 } 2603 2604 /* Wake up the parent if it is waiting so that it can recheck 2605 * wait permission to the new task SID. */ 2606 read_lock(&tasklist_lock); 2607 __wake_up_parent(current, current->real_parent); 2608 read_unlock(&tasklist_lock); 2609 } 2610 2611 /* superblock security operations */ 2612 2613 static int selinux_sb_alloc_security(struct super_block *sb) 2614 { 2615 struct superblock_security_struct *sbsec = selinux_superblock(sb); 2616 2617 mutex_init(&sbsec->lock); 2618 INIT_LIST_HEAD(&sbsec->isec_head); 2619 spin_lock_init(&sbsec->isec_lock); 2620 sbsec->sid = SECINITSID_UNLABELED; 2621 sbsec->def_sid = SECINITSID_FILE; 2622 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 2623 2624 return 0; 2625 } 2626 2627 static inline int opt_len(const char *s) 2628 { 2629 bool open_quote = false; 2630 int len; 2631 char c; 2632 2633 for (len = 0; (c = s[len]) != '\0'; len++) { 2634 if (c == '"') 2635 open_quote = !open_quote; 2636 if (c == ',' && !open_quote) 2637 break; 2638 } 2639 return len; 2640 } 2641 2642 static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts) 2643 { 2644 char *from = options; 2645 char *to = options; 2646 bool first = true; 2647 int rc; 2648 2649 while (1) { 2650 int len = opt_len(from); 2651 int token; 2652 char *arg = NULL; 2653 2654 token = match_opt_prefix(from, len, &arg); 2655 2656 if (token != Opt_error) { 2657 char *p, *q; 2658 2659 /* strip quotes */ 2660 if (arg) { 2661 for (p = q = arg; p < from + len; p++) { 2662 char c = *p; 2663 if (c != '"') 2664 *q++ = c; 2665 } 2666 arg = kmemdup_nul(arg, q - arg, GFP_KERNEL); 2667 if (!arg) { 2668 rc = -ENOMEM; 2669 goto free_opt; 2670 } 2671 } 2672 rc = selinux_add_opt(token, arg, mnt_opts); 2673 if (unlikely(rc)) { 2674 kfree(arg); 2675 goto free_opt; 2676 } 2677 } else { 2678 if (!first) { // copy with preceding comma 2679 from--; 2680 len++; 2681 } 2682 if (to != from) 2683 memmove(to, from, len); 2684 to += len; 2685 first = false; 2686 } 2687 if (!from[len]) 2688 break; 2689 from += len + 1; 2690 } 2691 *to = '\0'; 2692 return 0; 2693 2694 free_opt: 2695 if (*mnt_opts) { 2696 selinux_free_mnt_opts(*mnt_opts); 2697 *mnt_opts = NULL; 2698 } 2699 return rc; 2700 } 2701 2702 static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts) 2703 { 2704 struct selinux_mnt_opts *opts = mnt_opts; 2705 struct superblock_security_struct *sbsec = sb->s_security; 2706 u32 sid; 2707 int rc; 2708 2709 /* 2710 * Superblock not initialized (i.e. no options) - reject if any 2711 * options specified, otherwise accept. 2712 */ 2713 if (!(sbsec->flags & SE_SBINITIALIZED)) 2714 return opts ? 1 : 0; 2715 2716 /* 2717 * Superblock initialized and no options specified - reject if 2718 * superblock has any options set, otherwise accept. 2719 */ 2720 if (!opts) 2721 return (sbsec->flags & SE_MNTMASK) ? 1 : 0; 2722 2723 if (opts->fscontext) { 2724 rc = parse_sid(sb, opts->fscontext, &sid); 2725 if (rc) 2726 return 1; 2727 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid)) 2728 return 1; 2729 } 2730 if (opts->context) { 2731 rc = parse_sid(sb, opts->context, &sid); 2732 if (rc) 2733 return 1; 2734 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid)) 2735 return 1; 2736 } 2737 if (opts->rootcontext) { 2738 struct inode_security_struct *root_isec; 2739 2740 root_isec = backing_inode_security(sb->s_root); 2741 rc = parse_sid(sb, opts->rootcontext, &sid); 2742 if (rc) 2743 return 1; 2744 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid)) 2745 return 1; 2746 } 2747 if (opts->defcontext) { 2748 rc = parse_sid(sb, opts->defcontext, &sid); 2749 if (rc) 2750 return 1; 2751 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid)) 2752 return 1; 2753 } 2754 return 0; 2755 } 2756 2757 static int selinux_sb_remount(struct super_block *sb, void *mnt_opts) 2758 { 2759 struct selinux_mnt_opts *opts = mnt_opts; 2760 struct superblock_security_struct *sbsec = selinux_superblock(sb); 2761 u32 sid; 2762 int rc; 2763 2764 if (!(sbsec->flags & SE_SBINITIALIZED)) 2765 return 0; 2766 2767 if (!opts) 2768 return 0; 2769 2770 if (opts->fscontext) { 2771 rc = parse_sid(sb, opts->fscontext, &sid); 2772 if (rc) 2773 return rc; 2774 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid)) 2775 goto out_bad_option; 2776 } 2777 if (opts->context) { 2778 rc = parse_sid(sb, opts->context, &sid); 2779 if (rc) 2780 return rc; 2781 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid)) 2782 goto out_bad_option; 2783 } 2784 if (opts->rootcontext) { 2785 struct inode_security_struct *root_isec; 2786 root_isec = backing_inode_security(sb->s_root); 2787 rc = parse_sid(sb, opts->rootcontext, &sid); 2788 if (rc) 2789 return rc; 2790 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid)) 2791 goto out_bad_option; 2792 } 2793 if (opts->defcontext) { 2794 rc = parse_sid(sb, opts->defcontext, &sid); 2795 if (rc) 2796 return rc; 2797 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid)) 2798 goto out_bad_option; 2799 } 2800 return 0; 2801 2802 out_bad_option: 2803 pr_warn("SELinux: unable to change security options " 2804 "during remount (dev %s, type=%s)\n", sb->s_id, 2805 sb->s_type->name); 2806 return -EINVAL; 2807 } 2808 2809 static int selinux_sb_kern_mount(struct super_block *sb) 2810 { 2811 const struct cred *cred = current_cred(); 2812 struct common_audit_data ad; 2813 2814 ad.type = LSM_AUDIT_DATA_DENTRY; 2815 ad.u.dentry = sb->s_root; 2816 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad); 2817 } 2818 2819 static int selinux_sb_statfs(struct dentry *dentry) 2820 { 2821 const struct cred *cred = current_cred(); 2822 struct common_audit_data ad; 2823 2824 ad.type = LSM_AUDIT_DATA_DENTRY; 2825 ad.u.dentry = dentry->d_sb->s_root; 2826 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2827 } 2828 2829 static int selinux_mount(const char *dev_name, 2830 const struct path *path, 2831 const char *type, 2832 unsigned long flags, 2833 void *data) 2834 { 2835 const struct cred *cred = current_cred(); 2836 2837 if (flags & MS_REMOUNT) 2838 return superblock_has_perm(cred, path->dentry->d_sb, 2839 FILESYSTEM__REMOUNT, NULL); 2840 else 2841 return path_has_perm(cred, path, FILE__MOUNTON); 2842 } 2843 2844 static int selinux_move_mount(const struct path *from_path, 2845 const struct path *to_path) 2846 { 2847 const struct cred *cred = current_cred(); 2848 2849 return path_has_perm(cred, to_path, FILE__MOUNTON); 2850 } 2851 2852 static int selinux_umount(struct vfsmount *mnt, int flags) 2853 { 2854 const struct cred *cred = current_cred(); 2855 2856 return superblock_has_perm(cred, mnt->mnt_sb, 2857 FILESYSTEM__UNMOUNT, NULL); 2858 } 2859 2860 static int selinux_fs_context_dup(struct fs_context *fc, 2861 struct fs_context *src_fc) 2862 { 2863 const struct selinux_mnt_opts *src = src_fc->security; 2864 struct selinux_mnt_opts *opts; 2865 2866 if (!src) 2867 return 0; 2868 2869 fc->security = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL); 2870 if (!fc->security) 2871 return -ENOMEM; 2872 2873 opts = fc->security; 2874 2875 if (src->fscontext) { 2876 opts->fscontext = kstrdup(src->fscontext, GFP_KERNEL); 2877 if (!opts->fscontext) 2878 return -ENOMEM; 2879 } 2880 if (src->context) { 2881 opts->context = kstrdup(src->context, GFP_KERNEL); 2882 if (!opts->context) 2883 return -ENOMEM; 2884 } 2885 if (src->rootcontext) { 2886 opts->rootcontext = kstrdup(src->rootcontext, GFP_KERNEL); 2887 if (!opts->rootcontext) 2888 return -ENOMEM; 2889 } 2890 if (src->defcontext) { 2891 opts->defcontext = kstrdup(src->defcontext, GFP_KERNEL); 2892 if (!opts->defcontext) 2893 return -ENOMEM; 2894 } 2895 return 0; 2896 } 2897 2898 static const struct fs_parameter_spec selinux_fs_parameters[] = { 2899 fsparam_string(CONTEXT_STR, Opt_context), 2900 fsparam_string(DEFCONTEXT_STR, Opt_defcontext), 2901 fsparam_string(FSCONTEXT_STR, Opt_fscontext), 2902 fsparam_string(ROOTCONTEXT_STR, Opt_rootcontext), 2903 fsparam_flag (SECLABEL_STR, Opt_seclabel), 2904 {} 2905 }; 2906 2907 static int selinux_fs_context_parse_param(struct fs_context *fc, 2908 struct fs_parameter *param) 2909 { 2910 struct fs_parse_result result; 2911 int opt, rc; 2912 2913 opt = fs_parse(fc, selinux_fs_parameters, param, &result); 2914 if (opt < 0) 2915 return opt; 2916 2917 rc = selinux_add_opt(opt, param->string, &fc->security); 2918 if (!rc) { 2919 param->string = NULL; 2920 rc = 1; 2921 } 2922 return rc; 2923 } 2924 2925 /* inode security operations */ 2926 2927 static int selinux_inode_alloc_security(struct inode *inode) 2928 { 2929 struct inode_security_struct *isec = selinux_inode(inode); 2930 u32 sid = current_sid(); 2931 2932 spin_lock_init(&isec->lock); 2933 INIT_LIST_HEAD(&isec->list); 2934 isec->inode = inode; 2935 isec->sid = SECINITSID_UNLABELED; 2936 isec->sclass = SECCLASS_FILE; 2937 isec->task_sid = sid; 2938 isec->initialized = LABEL_INVALID; 2939 2940 return 0; 2941 } 2942 2943 static void selinux_inode_free_security(struct inode *inode) 2944 { 2945 inode_free_security(inode); 2946 } 2947 2948 static int selinux_dentry_init_security(struct dentry *dentry, int mode, 2949 const struct qstr *name, void **ctx, 2950 u32 *ctxlen) 2951 { 2952 u32 newsid; 2953 int rc; 2954 2955 rc = selinux_determine_inode_label(selinux_cred(current_cred()), 2956 d_inode(dentry->d_parent), name, 2957 inode_mode_to_security_class(mode), 2958 &newsid); 2959 if (rc) 2960 return rc; 2961 2962 return security_sid_to_context(&selinux_state, newsid, (char **)ctx, 2963 ctxlen); 2964 } 2965 2966 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode, 2967 struct qstr *name, 2968 const struct cred *old, 2969 struct cred *new) 2970 { 2971 u32 newsid; 2972 int rc; 2973 struct task_security_struct *tsec; 2974 2975 rc = selinux_determine_inode_label(selinux_cred(old), 2976 d_inode(dentry->d_parent), name, 2977 inode_mode_to_security_class(mode), 2978 &newsid); 2979 if (rc) 2980 return rc; 2981 2982 tsec = selinux_cred(new); 2983 tsec->create_sid = newsid; 2984 return 0; 2985 } 2986 2987 static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 2988 const struct qstr *qstr, 2989 const char **name, 2990 void **value, size_t *len) 2991 { 2992 const struct task_security_struct *tsec = selinux_cred(current_cred()); 2993 struct superblock_security_struct *sbsec; 2994 u32 newsid, clen; 2995 int rc; 2996 char *context; 2997 2998 sbsec = selinux_superblock(dir->i_sb); 2999 3000 newsid = tsec->create_sid; 3001 3002 rc = selinux_determine_inode_label(tsec, dir, qstr, 3003 inode_mode_to_security_class(inode->i_mode), 3004 &newsid); 3005 if (rc) 3006 return rc; 3007 3008 /* Possibly defer initialization to selinux_complete_init. */ 3009 if (sbsec->flags & SE_SBINITIALIZED) { 3010 struct inode_security_struct *isec = selinux_inode(inode); 3011 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3012 isec->sid = newsid; 3013 isec->initialized = LABEL_INITIALIZED; 3014 } 3015 3016 if (!selinux_initialized(&selinux_state) || 3017 !(sbsec->flags & SBLABEL_MNT)) 3018 return -EOPNOTSUPP; 3019 3020 if (name) 3021 *name = XATTR_SELINUX_SUFFIX; 3022 3023 if (value && len) { 3024 rc = security_sid_to_context_force(&selinux_state, newsid, 3025 &context, &clen); 3026 if (rc) 3027 return rc; 3028 *value = context; 3029 *len = clen; 3030 } 3031 3032 return 0; 3033 } 3034 3035 static int selinux_inode_init_security_anon(struct inode *inode, 3036 const struct qstr *name, 3037 const struct inode *context_inode) 3038 { 3039 const struct task_security_struct *tsec = selinux_cred(current_cred()); 3040 struct common_audit_data ad; 3041 struct inode_security_struct *isec; 3042 int rc; 3043 3044 if (unlikely(!selinux_initialized(&selinux_state))) 3045 return 0; 3046 3047 isec = selinux_inode(inode); 3048 3049 /* 3050 * We only get here once per ephemeral inode. The inode has 3051 * been initialized via inode_alloc_security but is otherwise 3052 * untouched. 3053 */ 3054 3055 if (context_inode) { 3056 struct inode_security_struct *context_isec = 3057 selinux_inode(context_inode); 3058 if (context_isec->initialized != LABEL_INITIALIZED) { 3059 pr_err("SELinux: context_inode is not initialized"); 3060 return -EACCES; 3061 } 3062 3063 isec->sclass = context_isec->sclass; 3064 isec->sid = context_isec->sid; 3065 } else { 3066 isec->sclass = SECCLASS_ANON_INODE; 3067 rc = security_transition_sid( 3068 &selinux_state, tsec->sid, tsec->sid, 3069 isec->sclass, name, &isec->sid); 3070 if (rc) 3071 return rc; 3072 } 3073 3074 isec->initialized = LABEL_INITIALIZED; 3075 /* 3076 * Now that we've initialized security, check whether we're 3077 * allowed to actually create this type of anonymous inode. 3078 */ 3079 3080 ad.type = LSM_AUDIT_DATA_INODE; 3081 ad.u.inode = inode; 3082 3083 return avc_has_perm(&selinux_state, 3084 tsec->sid, 3085 isec->sid, 3086 isec->sclass, 3087 FILE__CREATE, 3088 &ad); 3089 } 3090 3091 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 3092 { 3093 return may_create(dir, dentry, SECCLASS_FILE); 3094 } 3095 3096 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 3097 { 3098 return may_link(dir, old_dentry, MAY_LINK); 3099 } 3100 3101 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 3102 { 3103 return may_link(dir, dentry, MAY_UNLINK); 3104 } 3105 3106 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 3107 { 3108 return may_create(dir, dentry, SECCLASS_LNK_FILE); 3109 } 3110 3111 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask) 3112 { 3113 return may_create(dir, dentry, SECCLASS_DIR); 3114 } 3115 3116 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 3117 { 3118 return may_link(dir, dentry, MAY_RMDIR); 3119 } 3120 3121 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3122 { 3123 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 3124 } 3125 3126 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 3127 struct inode *new_inode, struct dentry *new_dentry) 3128 { 3129 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 3130 } 3131 3132 static int selinux_inode_readlink(struct dentry *dentry) 3133 { 3134 const struct cred *cred = current_cred(); 3135 3136 return dentry_has_perm(cred, dentry, FILE__READ); 3137 } 3138 3139 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode, 3140 bool rcu) 3141 { 3142 const struct cred *cred = current_cred(); 3143 struct common_audit_data ad; 3144 struct inode_security_struct *isec; 3145 u32 sid; 3146 3147 validate_creds(cred); 3148 3149 ad.type = LSM_AUDIT_DATA_DENTRY; 3150 ad.u.dentry = dentry; 3151 sid = cred_sid(cred); 3152 isec = inode_security_rcu(inode, rcu); 3153 if (IS_ERR(isec)) 3154 return PTR_ERR(isec); 3155 3156 return avc_has_perm(&selinux_state, 3157 sid, isec->sid, isec->sclass, FILE__READ, &ad); 3158 } 3159 3160 static noinline int audit_inode_permission(struct inode *inode, 3161 u32 perms, u32 audited, u32 denied, 3162 int result) 3163 { 3164 struct common_audit_data ad; 3165 struct inode_security_struct *isec = selinux_inode(inode); 3166 3167 ad.type = LSM_AUDIT_DATA_INODE; 3168 ad.u.inode = inode; 3169 3170 return slow_avc_audit(&selinux_state, 3171 current_sid(), isec->sid, isec->sclass, perms, 3172 audited, denied, result, &ad); 3173 } 3174 3175 static int selinux_inode_permission(struct inode *inode, int mask) 3176 { 3177 const struct cred *cred = current_cred(); 3178 u32 perms; 3179 bool from_access; 3180 bool no_block = mask & MAY_NOT_BLOCK; 3181 struct inode_security_struct *isec; 3182 u32 sid; 3183 struct av_decision avd; 3184 int rc, rc2; 3185 u32 audited, denied; 3186 3187 from_access = mask & MAY_ACCESS; 3188 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND); 3189 3190 /* No permission to check. Existence test. */ 3191 if (!mask) 3192 return 0; 3193 3194 validate_creds(cred); 3195 3196 if (unlikely(IS_PRIVATE(inode))) 3197 return 0; 3198 3199 perms = file_mask_to_av(inode->i_mode, mask); 3200 3201 sid = cred_sid(cred); 3202 isec = inode_security_rcu(inode, no_block); 3203 if (IS_ERR(isec)) 3204 return PTR_ERR(isec); 3205 3206 rc = avc_has_perm_noaudit(&selinux_state, 3207 sid, isec->sid, isec->sclass, perms, 0, 3208 &avd); 3209 audited = avc_audit_required(perms, &avd, rc, 3210 from_access ? FILE__AUDIT_ACCESS : 0, 3211 &denied); 3212 if (likely(!audited)) 3213 return rc; 3214 3215 rc2 = audit_inode_permission(inode, perms, audited, denied, rc); 3216 if (rc2) 3217 return rc2; 3218 return rc; 3219 } 3220 3221 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) 3222 { 3223 const struct cred *cred = current_cred(); 3224 struct inode *inode = d_backing_inode(dentry); 3225 unsigned int ia_valid = iattr->ia_valid; 3226 __u32 av = FILE__WRITE; 3227 3228 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */ 3229 if (ia_valid & ATTR_FORCE) { 3230 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE | 3231 ATTR_FORCE); 3232 if (!ia_valid) 3233 return 0; 3234 } 3235 3236 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 3237 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET)) 3238 return dentry_has_perm(cred, dentry, FILE__SETATTR); 3239 3240 if (selinux_policycap_openperm() && 3241 inode->i_sb->s_magic != SOCKFS_MAGIC && 3242 (ia_valid & ATTR_SIZE) && 3243 !(ia_valid & ATTR_FILE)) 3244 av |= FILE__OPEN; 3245 3246 return dentry_has_perm(cred, dentry, av); 3247 } 3248 3249 static int selinux_inode_getattr(const struct path *path) 3250 { 3251 return path_has_perm(current_cred(), path, FILE__GETATTR); 3252 } 3253 3254 static bool has_cap_mac_admin(bool audit) 3255 { 3256 const struct cred *cred = current_cred(); 3257 unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT; 3258 3259 if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts)) 3260 return false; 3261 if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true)) 3262 return false; 3263 return true; 3264 } 3265 3266 static int selinux_inode_setxattr(struct user_namespace *mnt_userns, 3267 struct dentry *dentry, const char *name, 3268 const void *value, size_t size, int flags) 3269 { 3270 struct inode *inode = d_backing_inode(dentry); 3271 struct inode_security_struct *isec; 3272 struct superblock_security_struct *sbsec; 3273 struct common_audit_data ad; 3274 u32 newsid, sid = current_sid(); 3275 int rc = 0; 3276 3277 if (strcmp(name, XATTR_NAME_SELINUX)) { 3278 rc = cap_inode_setxattr(dentry, name, value, size, flags); 3279 if (rc) 3280 return rc; 3281 3282 /* Not an attribute we recognize, so just check the 3283 ordinary setattr permission. */ 3284 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); 3285 } 3286 3287 if (!selinux_initialized(&selinux_state)) 3288 return (inode_owner_or_capable(mnt_userns, inode) ? 0 : -EPERM); 3289 3290 sbsec = selinux_superblock(inode->i_sb); 3291 if (!(sbsec->flags & SBLABEL_MNT)) 3292 return -EOPNOTSUPP; 3293 3294 if (!inode_owner_or_capable(mnt_userns, inode)) 3295 return -EPERM; 3296 3297 ad.type = LSM_AUDIT_DATA_DENTRY; 3298 ad.u.dentry = dentry; 3299 3300 isec = backing_inode_security(dentry); 3301 rc = avc_has_perm(&selinux_state, 3302 sid, isec->sid, isec->sclass, 3303 FILE__RELABELFROM, &ad); 3304 if (rc) 3305 return rc; 3306 3307 rc = security_context_to_sid(&selinux_state, value, size, &newsid, 3308 GFP_KERNEL); 3309 if (rc == -EINVAL) { 3310 if (!has_cap_mac_admin(true)) { 3311 struct audit_buffer *ab; 3312 size_t audit_size; 3313 3314 /* We strip a nul only if it is at the end, otherwise the 3315 * context contains a nul and we should audit that */ 3316 if (value) { 3317 const char *str = value; 3318 3319 if (str[size - 1] == '\0') 3320 audit_size = size - 1; 3321 else 3322 audit_size = size; 3323 } else { 3324 audit_size = 0; 3325 } 3326 ab = audit_log_start(audit_context(), 3327 GFP_ATOMIC, AUDIT_SELINUX_ERR); 3328 audit_log_format(ab, "op=setxattr invalid_context="); 3329 audit_log_n_untrustedstring(ab, value, audit_size); 3330 audit_log_end(ab); 3331 3332 return rc; 3333 } 3334 rc = security_context_to_sid_force(&selinux_state, value, 3335 size, &newsid); 3336 } 3337 if (rc) 3338 return rc; 3339 3340 rc = avc_has_perm(&selinux_state, 3341 sid, newsid, isec->sclass, 3342 FILE__RELABELTO, &ad); 3343 if (rc) 3344 return rc; 3345 3346 rc = security_validate_transition(&selinux_state, isec->sid, newsid, 3347 sid, isec->sclass); 3348 if (rc) 3349 return rc; 3350 3351 return avc_has_perm(&selinux_state, 3352 newsid, 3353 sbsec->sid, 3354 SECCLASS_FILESYSTEM, 3355 FILESYSTEM__ASSOCIATE, 3356 &ad); 3357 } 3358 3359 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name, 3360 const void *value, size_t size, 3361 int flags) 3362 { 3363 struct inode *inode = d_backing_inode(dentry); 3364 struct inode_security_struct *isec; 3365 u32 newsid; 3366 int rc; 3367 3368 if (strcmp(name, XATTR_NAME_SELINUX)) { 3369 /* Not an attribute we recognize, so nothing to do. */ 3370 return; 3371 } 3372 3373 if (!selinux_initialized(&selinux_state)) { 3374 /* If we haven't even been initialized, then we can't validate 3375 * against a policy, so leave the label as invalid. It may 3376 * resolve to a valid label on the next revalidation try if 3377 * we've since initialized. 3378 */ 3379 return; 3380 } 3381 3382 rc = security_context_to_sid_force(&selinux_state, value, size, 3383 &newsid); 3384 if (rc) { 3385 pr_err("SELinux: unable to map context to SID" 3386 "for (%s, %lu), rc=%d\n", 3387 inode->i_sb->s_id, inode->i_ino, -rc); 3388 return; 3389 } 3390 3391 isec = backing_inode_security(dentry); 3392 spin_lock(&isec->lock); 3393 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3394 isec->sid = newsid; 3395 isec->initialized = LABEL_INITIALIZED; 3396 spin_unlock(&isec->lock); 3397 3398 return; 3399 } 3400 3401 static int selinux_inode_getxattr(struct dentry *dentry, const char *name) 3402 { 3403 const struct cred *cred = current_cred(); 3404 3405 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3406 } 3407 3408 static int selinux_inode_listxattr(struct dentry *dentry) 3409 { 3410 const struct cred *cred = current_cred(); 3411 3412 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3413 } 3414 3415 static int selinux_inode_removexattr(struct user_namespace *mnt_userns, 3416 struct dentry *dentry, const char *name) 3417 { 3418 if (strcmp(name, XATTR_NAME_SELINUX)) { 3419 int rc = cap_inode_removexattr(mnt_userns, dentry, name); 3420 if (rc) 3421 return rc; 3422 3423 /* Not an attribute we recognize, so just check the 3424 ordinary setattr permission. */ 3425 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); 3426 } 3427 3428 if (!selinux_initialized(&selinux_state)) 3429 return 0; 3430 3431 /* No one is allowed to remove a SELinux security label. 3432 You can change the label, but all data must be labeled. */ 3433 return -EACCES; 3434 } 3435 3436 static int selinux_path_notify(const struct path *path, u64 mask, 3437 unsigned int obj_type) 3438 { 3439 int ret; 3440 u32 perm; 3441 3442 struct common_audit_data ad; 3443 3444 ad.type = LSM_AUDIT_DATA_PATH; 3445 ad.u.path = *path; 3446 3447 /* 3448 * Set permission needed based on the type of mark being set. 3449 * Performs an additional check for sb watches. 3450 */ 3451 switch (obj_type) { 3452 case FSNOTIFY_OBJ_TYPE_VFSMOUNT: 3453 perm = FILE__WATCH_MOUNT; 3454 break; 3455 case FSNOTIFY_OBJ_TYPE_SB: 3456 perm = FILE__WATCH_SB; 3457 ret = superblock_has_perm(current_cred(), path->dentry->d_sb, 3458 FILESYSTEM__WATCH, &ad); 3459 if (ret) 3460 return ret; 3461 break; 3462 case FSNOTIFY_OBJ_TYPE_INODE: 3463 perm = FILE__WATCH; 3464 break; 3465 default: 3466 return -EINVAL; 3467 } 3468 3469 /* blocking watches require the file:watch_with_perm permission */ 3470 if (mask & (ALL_FSNOTIFY_PERM_EVENTS)) 3471 perm |= FILE__WATCH_WITH_PERM; 3472 3473 /* watches on read-like events need the file:watch_reads permission */ 3474 if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE)) 3475 perm |= FILE__WATCH_READS; 3476 3477 return path_has_perm(current_cred(), path, perm); 3478 } 3479 3480 /* 3481 * Copy the inode security context value to the user. 3482 * 3483 * Permission check is handled by selinux_inode_getxattr hook. 3484 */ 3485 static int selinux_inode_getsecurity(struct user_namespace *mnt_userns, 3486 struct inode *inode, const char *name, 3487 void **buffer, bool alloc) 3488 { 3489 u32 size; 3490 int error; 3491 char *context = NULL; 3492 struct inode_security_struct *isec; 3493 3494 /* 3495 * If we're not initialized yet, then we can't validate contexts, so 3496 * just let vfs_getxattr fall back to using the on-disk xattr. 3497 */ 3498 if (!selinux_initialized(&selinux_state) || 3499 strcmp(name, XATTR_SELINUX_SUFFIX)) 3500 return -EOPNOTSUPP; 3501 3502 /* 3503 * If the caller has CAP_MAC_ADMIN, then get the raw context 3504 * value even if it is not defined by current policy; otherwise, 3505 * use the in-core value under current policy. 3506 * Use the non-auditing forms of the permission checks since 3507 * getxattr may be called by unprivileged processes commonly 3508 * and lack of permission just means that we fall back to the 3509 * in-core context value, not a denial. 3510 */ 3511 isec = inode_security(inode); 3512 if (has_cap_mac_admin(false)) 3513 error = security_sid_to_context_force(&selinux_state, 3514 isec->sid, &context, 3515 &size); 3516 else 3517 error = security_sid_to_context(&selinux_state, isec->sid, 3518 &context, &size); 3519 if (error) 3520 return error; 3521 error = size; 3522 if (alloc) { 3523 *buffer = context; 3524 goto out_nofree; 3525 } 3526 kfree(context); 3527 out_nofree: 3528 return error; 3529 } 3530 3531 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 3532 const void *value, size_t size, int flags) 3533 { 3534 struct inode_security_struct *isec = inode_security_novalidate(inode); 3535 struct superblock_security_struct *sbsec; 3536 u32 newsid; 3537 int rc; 3538 3539 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 3540 return -EOPNOTSUPP; 3541 3542 sbsec = selinux_superblock(inode->i_sb); 3543 if (!(sbsec->flags & SBLABEL_MNT)) 3544 return -EOPNOTSUPP; 3545 3546 if (!value || !size) 3547 return -EACCES; 3548 3549 rc = security_context_to_sid(&selinux_state, value, size, &newsid, 3550 GFP_KERNEL); 3551 if (rc) 3552 return rc; 3553 3554 spin_lock(&isec->lock); 3555 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3556 isec->sid = newsid; 3557 isec->initialized = LABEL_INITIALIZED; 3558 spin_unlock(&isec->lock); 3559 return 0; 3560 } 3561 3562 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 3563 { 3564 const int len = sizeof(XATTR_NAME_SELINUX); 3565 3566 if (!selinux_initialized(&selinux_state)) 3567 return 0; 3568 3569 if (buffer && len <= buffer_size) 3570 memcpy(buffer, XATTR_NAME_SELINUX, len); 3571 return len; 3572 } 3573 3574 static void selinux_inode_getsecid(struct inode *inode, u32 *secid) 3575 { 3576 struct inode_security_struct *isec = inode_security_novalidate(inode); 3577 *secid = isec->sid; 3578 } 3579 3580 static int selinux_inode_copy_up(struct dentry *src, struct cred **new) 3581 { 3582 u32 sid; 3583 struct task_security_struct *tsec; 3584 struct cred *new_creds = *new; 3585 3586 if (new_creds == NULL) { 3587 new_creds = prepare_creds(); 3588 if (!new_creds) 3589 return -ENOMEM; 3590 } 3591 3592 tsec = selinux_cred(new_creds); 3593 /* Get label from overlay inode and set it in create_sid */ 3594 selinux_inode_getsecid(d_inode(src), &sid); 3595 tsec->create_sid = sid; 3596 *new = new_creds; 3597 return 0; 3598 } 3599 3600 static int selinux_inode_copy_up_xattr(const char *name) 3601 { 3602 /* The copy_up hook above sets the initial context on an inode, but we 3603 * don't then want to overwrite it by blindly copying all the lower 3604 * xattrs up. Instead, we have to filter out SELinux-related xattrs. 3605 */ 3606 if (strcmp(name, XATTR_NAME_SELINUX) == 0) 3607 return 1; /* Discard */ 3608 /* 3609 * Any other attribute apart from SELINUX is not claimed, supported 3610 * by selinux. 3611 */ 3612 return -EOPNOTSUPP; 3613 } 3614 3615 /* kernfs node operations */ 3616 3617 static int selinux_kernfs_init_security(struct kernfs_node *kn_dir, 3618 struct kernfs_node *kn) 3619 { 3620 const struct task_security_struct *tsec = selinux_cred(current_cred()); 3621 u32 parent_sid, newsid, clen; 3622 int rc; 3623 char *context; 3624 3625 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0); 3626 if (rc == -ENODATA) 3627 return 0; 3628 else if (rc < 0) 3629 return rc; 3630 3631 clen = (u32)rc; 3632 context = kmalloc(clen, GFP_KERNEL); 3633 if (!context) 3634 return -ENOMEM; 3635 3636 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen); 3637 if (rc < 0) { 3638 kfree(context); 3639 return rc; 3640 } 3641 3642 rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid, 3643 GFP_KERNEL); 3644 kfree(context); 3645 if (rc) 3646 return rc; 3647 3648 if (tsec->create_sid) { 3649 newsid = tsec->create_sid; 3650 } else { 3651 u16 secclass = inode_mode_to_security_class(kn->mode); 3652 struct qstr q; 3653 3654 q.name = kn->name; 3655 q.hash_len = hashlen_string(kn_dir, kn->name); 3656 3657 rc = security_transition_sid(&selinux_state, tsec->sid, 3658 parent_sid, secclass, &q, 3659 &newsid); 3660 if (rc) 3661 return rc; 3662 } 3663 3664 rc = security_sid_to_context_force(&selinux_state, newsid, 3665 &context, &clen); 3666 if (rc) 3667 return rc; 3668 3669 rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen, 3670 XATTR_CREATE); 3671 kfree(context); 3672 return rc; 3673 } 3674 3675 3676 /* file security operations */ 3677 3678 static int selinux_revalidate_file_permission(struct file *file, int mask) 3679 { 3680 const struct cred *cred = current_cred(); 3681 struct inode *inode = file_inode(file); 3682 3683 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 3684 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 3685 mask |= MAY_APPEND; 3686 3687 return file_has_perm(cred, file, 3688 file_mask_to_av(inode->i_mode, mask)); 3689 } 3690 3691 static int selinux_file_permission(struct file *file, int mask) 3692 { 3693 struct inode *inode = file_inode(file); 3694 struct file_security_struct *fsec = selinux_file(file); 3695 struct inode_security_struct *isec; 3696 u32 sid = current_sid(); 3697 3698 if (!mask) 3699 /* No permission to check. Existence test. */ 3700 return 0; 3701 3702 isec = inode_security(inode); 3703 if (sid == fsec->sid && fsec->isid == isec->sid && 3704 fsec->pseqno == avc_policy_seqno(&selinux_state)) 3705 /* No change since file_open check. */ 3706 return 0; 3707 3708 return selinux_revalidate_file_permission(file, mask); 3709 } 3710 3711 static int selinux_file_alloc_security(struct file *file) 3712 { 3713 struct file_security_struct *fsec = selinux_file(file); 3714 u32 sid = current_sid(); 3715 3716 fsec->sid = sid; 3717 fsec->fown_sid = sid; 3718 3719 return 0; 3720 } 3721 3722 /* 3723 * Check whether a task has the ioctl permission and cmd 3724 * operation to an inode. 3725 */ 3726 static int ioctl_has_perm(const struct cred *cred, struct file *file, 3727 u32 requested, u16 cmd) 3728 { 3729 struct common_audit_data ad; 3730 struct file_security_struct *fsec = selinux_file(file); 3731 struct inode *inode = file_inode(file); 3732 struct inode_security_struct *isec; 3733 struct lsm_ioctlop_audit ioctl; 3734 u32 ssid = cred_sid(cred); 3735 int rc; 3736 u8 driver = cmd >> 8; 3737 u8 xperm = cmd & 0xff; 3738 3739 ad.type = LSM_AUDIT_DATA_IOCTL_OP; 3740 ad.u.op = &ioctl; 3741 ad.u.op->cmd = cmd; 3742 ad.u.op->path = file->f_path; 3743 3744 if (ssid != fsec->sid) { 3745 rc = avc_has_perm(&selinux_state, 3746 ssid, fsec->sid, 3747 SECCLASS_FD, 3748 FD__USE, 3749 &ad); 3750 if (rc) 3751 goto out; 3752 } 3753 3754 if (unlikely(IS_PRIVATE(inode))) 3755 return 0; 3756 3757 isec = inode_security(inode); 3758 rc = avc_has_extended_perms(&selinux_state, 3759 ssid, isec->sid, isec->sclass, 3760 requested, driver, xperm, &ad); 3761 out: 3762 return rc; 3763 } 3764 3765 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 3766 unsigned long arg) 3767 { 3768 const struct cred *cred = current_cred(); 3769 int error = 0; 3770 3771 switch (cmd) { 3772 case FIONREAD: 3773 case FIBMAP: 3774 case FIGETBSZ: 3775 case FS_IOC_GETFLAGS: 3776 case FS_IOC_GETVERSION: 3777 error = file_has_perm(cred, file, FILE__GETATTR); 3778 break; 3779 3780 case FS_IOC_SETFLAGS: 3781 case FS_IOC_SETVERSION: 3782 error = file_has_perm(cred, file, FILE__SETATTR); 3783 break; 3784 3785 /* sys_ioctl() checks */ 3786 case FIONBIO: 3787 case FIOASYNC: 3788 error = file_has_perm(cred, file, 0); 3789 break; 3790 3791 case KDSKBENT: 3792 case KDSKBSENT: 3793 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG, 3794 CAP_OPT_NONE, true); 3795 break; 3796 3797 /* default case assumes that the command will go 3798 * to the file's ioctl() function. 3799 */ 3800 default: 3801 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd); 3802 } 3803 return error; 3804 } 3805 3806 static int default_noexec __ro_after_init; 3807 3808 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 3809 { 3810 const struct cred *cred = current_cred(); 3811 u32 sid = cred_sid(cred); 3812 int rc = 0; 3813 3814 if (default_noexec && 3815 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) || 3816 (!shared && (prot & PROT_WRITE)))) { 3817 /* 3818 * We are making executable an anonymous mapping or a 3819 * private file mapping that will also be writable. 3820 * This has an additional check. 3821 */ 3822 rc = avc_has_perm(&selinux_state, 3823 sid, sid, SECCLASS_PROCESS, 3824 PROCESS__EXECMEM, NULL); 3825 if (rc) 3826 goto error; 3827 } 3828 3829 if (file) { 3830 /* read access is always possible with a mapping */ 3831 u32 av = FILE__READ; 3832 3833 /* write access only matters if the mapping is shared */ 3834 if (shared && (prot & PROT_WRITE)) 3835 av |= FILE__WRITE; 3836 3837 if (prot & PROT_EXEC) 3838 av |= FILE__EXECUTE; 3839 3840 return file_has_perm(cred, file, av); 3841 } 3842 3843 error: 3844 return rc; 3845 } 3846 3847 static int selinux_mmap_addr(unsigned long addr) 3848 { 3849 int rc = 0; 3850 3851 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) { 3852 u32 sid = current_sid(); 3853 rc = avc_has_perm(&selinux_state, 3854 sid, sid, SECCLASS_MEMPROTECT, 3855 MEMPROTECT__MMAP_ZERO, NULL); 3856 } 3857 3858 return rc; 3859 } 3860 3861 static int selinux_mmap_file(struct file *file, unsigned long reqprot, 3862 unsigned long prot, unsigned long flags) 3863 { 3864 struct common_audit_data ad; 3865 int rc; 3866 3867 if (file) { 3868 ad.type = LSM_AUDIT_DATA_FILE; 3869 ad.u.file = file; 3870 rc = inode_has_perm(current_cred(), file_inode(file), 3871 FILE__MAP, &ad); 3872 if (rc) 3873 return rc; 3874 } 3875 3876 if (checkreqprot_get(&selinux_state)) 3877 prot = reqprot; 3878 3879 return file_map_prot_check(file, prot, 3880 (flags & MAP_TYPE) == MAP_SHARED); 3881 } 3882 3883 static int selinux_file_mprotect(struct vm_area_struct *vma, 3884 unsigned long reqprot, 3885 unsigned long prot) 3886 { 3887 const struct cred *cred = current_cred(); 3888 u32 sid = cred_sid(cred); 3889 3890 if (checkreqprot_get(&selinux_state)) 3891 prot = reqprot; 3892 3893 if (default_noexec && 3894 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 3895 int rc = 0; 3896 if (vma->vm_start >= vma->vm_mm->start_brk && 3897 vma->vm_end <= vma->vm_mm->brk) { 3898 rc = avc_has_perm(&selinux_state, 3899 sid, sid, SECCLASS_PROCESS, 3900 PROCESS__EXECHEAP, NULL); 3901 } else if (!vma->vm_file && 3902 ((vma->vm_start <= vma->vm_mm->start_stack && 3903 vma->vm_end >= vma->vm_mm->start_stack) || 3904 vma_is_stack_for_current(vma))) { 3905 rc = avc_has_perm(&selinux_state, 3906 sid, sid, SECCLASS_PROCESS, 3907 PROCESS__EXECSTACK, NULL); 3908 } else if (vma->vm_file && vma->anon_vma) { 3909 /* 3910 * We are making executable a file mapping that has 3911 * had some COW done. Since pages might have been 3912 * written, check ability to execute the possibly 3913 * modified content. This typically should only 3914 * occur for text relocations. 3915 */ 3916 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD); 3917 } 3918 if (rc) 3919 return rc; 3920 } 3921 3922 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 3923 } 3924 3925 static int selinux_file_lock(struct file *file, unsigned int cmd) 3926 { 3927 const struct cred *cred = current_cred(); 3928 3929 return file_has_perm(cred, file, FILE__LOCK); 3930 } 3931 3932 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 3933 unsigned long arg) 3934 { 3935 const struct cred *cred = current_cred(); 3936 int err = 0; 3937 3938 switch (cmd) { 3939 case F_SETFL: 3940 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 3941 err = file_has_perm(cred, file, FILE__WRITE); 3942 break; 3943 } 3944 fallthrough; 3945 case F_SETOWN: 3946 case F_SETSIG: 3947 case F_GETFL: 3948 case F_GETOWN: 3949 case F_GETSIG: 3950 case F_GETOWNER_UIDS: 3951 /* Just check FD__USE permission */ 3952 err = file_has_perm(cred, file, 0); 3953 break; 3954 case F_GETLK: 3955 case F_SETLK: 3956 case F_SETLKW: 3957 case F_OFD_GETLK: 3958 case F_OFD_SETLK: 3959 case F_OFD_SETLKW: 3960 #if BITS_PER_LONG == 32 3961 case F_GETLK64: 3962 case F_SETLK64: 3963 case F_SETLKW64: 3964 #endif 3965 err = file_has_perm(cred, file, FILE__LOCK); 3966 break; 3967 } 3968 3969 return err; 3970 } 3971 3972 static void selinux_file_set_fowner(struct file *file) 3973 { 3974 struct file_security_struct *fsec; 3975 3976 fsec = selinux_file(file); 3977 fsec->fown_sid = current_sid(); 3978 } 3979 3980 static int selinux_file_send_sigiotask(struct task_struct *tsk, 3981 struct fown_struct *fown, int signum) 3982 { 3983 struct file *file; 3984 u32 sid = task_sid_obj(tsk); 3985 u32 perm; 3986 struct file_security_struct *fsec; 3987 3988 /* struct fown_struct is never outside the context of a struct file */ 3989 file = container_of(fown, struct file, f_owner); 3990 3991 fsec = selinux_file(file); 3992 3993 if (!signum) 3994 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 3995 else 3996 perm = signal_to_av(signum); 3997 3998 return avc_has_perm(&selinux_state, 3999 fsec->fown_sid, sid, 4000 SECCLASS_PROCESS, perm, NULL); 4001 } 4002 4003 static int selinux_file_receive(struct file *file) 4004 { 4005 const struct cred *cred = current_cred(); 4006 4007 return file_has_perm(cred, file, file_to_av(file)); 4008 } 4009 4010 static int selinux_file_open(struct file *file) 4011 { 4012 struct file_security_struct *fsec; 4013 struct inode_security_struct *isec; 4014 4015 fsec = selinux_file(file); 4016 isec = inode_security(file_inode(file)); 4017 /* 4018 * Save inode label and policy sequence number 4019 * at open-time so that selinux_file_permission 4020 * can determine whether revalidation is necessary. 4021 * Task label is already saved in the file security 4022 * struct as its SID. 4023 */ 4024 fsec->isid = isec->sid; 4025 fsec->pseqno = avc_policy_seqno(&selinux_state); 4026 /* 4027 * Since the inode label or policy seqno may have changed 4028 * between the selinux_inode_permission check and the saving 4029 * of state above, recheck that access is still permitted. 4030 * Otherwise, access might never be revalidated against the 4031 * new inode label or new policy. 4032 * This check is not redundant - do not remove. 4033 */ 4034 return file_path_has_perm(file->f_cred, file, open_file_to_av(file)); 4035 } 4036 4037 /* task security operations */ 4038 4039 static int selinux_task_alloc(struct task_struct *task, 4040 unsigned long clone_flags) 4041 { 4042 u32 sid = current_sid(); 4043 4044 return avc_has_perm(&selinux_state, 4045 sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL); 4046 } 4047 4048 /* 4049 * prepare a new set of credentials for modification 4050 */ 4051 static int selinux_cred_prepare(struct cred *new, const struct cred *old, 4052 gfp_t gfp) 4053 { 4054 const struct task_security_struct *old_tsec = selinux_cred(old); 4055 struct task_security_struct *tsec = selinux_cred(new); 4056 4057 *tsec = *old_tsec; 4058 return 0; 4059 } 4060 4061 /* 4062 * transfer the SELinux data to a blank set of creds 4063 */ 4064 static void selinux_cred_transfer(struct cred *new, const struct cred *old) 4065 { 4066 const struct task_security_struct *old_tsec = selinux_cred(old); 4067 struct task_security_struct *tsec = selinux_cred(new); 4068 4069 *tsec = *old_tsec; 4070 } 4071 4072 static void selinux_cred_getsecid(const struct cred *c, u32 *secid) 4073 { 4074 *secid = cred_sid(c); 4075 } 4076 4077 /* 4078 * set the security data for a kernel service 4079 * - all the creation contexts are set to unlabelled 4080 */ 4081 static int selinux_kernel_act_as(struct cred *new, u32 secid) 4082 { 4083 struct task_security_struct *tsec = selinux_cred(new); 4084 u32 sid = current_sid(); 4085 int ret; 4086 4087 ret = avc_has_perm(&selinux_state, 4088 sid, secid, 4089 SECCLASS_KERNEL_SERVICE, 4090 KERNEL_SERVICE__USE_AS_OVERRIDE, 4091 NULL); 4092 if (ret == 0) { 4093 tsec->sid = secid; 4094 tsec->create_sid = 0; 4095 tsec->keycreate_sid = 0; 4096 tsec->sockcreate_sid = 0; 4097 } 4098 return ret; 4099 } 4100 4101 /* 4102 * set the file creation context in a security record to the same as the 4103 * objective context of the specified inode 4104 */ 4105 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode) 4106 { 4107 struct inode_security_struct *isec = inode_security(inode); 4108 struct task_security_struct *tsec = selinux_cred(new); 4109 u32 sid = current_sid(); 4110 int ret; 4111 4112 ret = avc_has_perm(&selinux_state, 4113 sid, isec->sid, 4114 SECCLASS_KERNEL_SERVICE, 4115 KERNEL_SERVICE__CREATE_FILES_AS, 4116 NULL); 4117 4118 if (ret == 0) 4119 tsec->create_sid = isec->sid; 4120 return ret; 4121 } 4122 4123 static int selinux_kernel_module_request(char *kmod_name) 4124 { 4125 struct common_audit_data ad; 4126 4127 ad.type = LSM_AUDIT_DATA_KMOD; 4128 ad.u.kmod_name = kmod_name; 4129 4130 return avc_has_perm(&selinux_state, 4131 current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM, 4132 SYSTEM__MODULE_REQUEST, &ad); 4133 } 4134 4135 static int selinux_kernel_module_from_file(struct file *file) 4136 { 4137 struct common_audit_data ad; 4138 struct inode_security_struct *isec; 4139 struct file_security_struct *fsec; 4140 u32 sid = current_sid(); 4141 int rc; 4142 4143 /* init_module */ 4144 if (file == NULL) 4145 return avc_has_perm(&selinux_state, 4146 sid, sid, SECCLASS_SYSTEM, 4147 SYSTEM__MODULE_LOAD, NULL); 4148 4149 /* finit_module */ 4150 4151 ad.type = LSM_AUDIT_DATA_FILE; 4152 ad.u.file = file; 4153 4154 fsec = selinux_file(file); 4155 if (sid != fsec->sid) { 4156 rc = avc_has_perm(&selinux_state, 4157 sid, fsec->sid, SECCLASS_FD, FD__USE, &ad); 4158 if (rc) 4159 return rc; 4160 } 4161 4162 isec = inode_security(file_inode(file)); 4163 return avc_has_perm(&selinux_state, 4164 sid, isec->sid, SECCLASS_SYSTEM, 4165 SYSTEM__MODULE_LOAD, &ad); 4166 } 4167 4168 static int selinux_kernel_read_file(struct file *file, 4169 enum kernel_read_file_id id, 4170 bool contents) 4171 { 4172 int rc = 0; 4173 4174 switch (id) { 4175 case READING_MODULE: 4176 rc = selinux_kernel_module_from_file(contents ? file : NULL); 4177 break; 4178 default: 4179 break; 4180 } 4181 4182 return rc; 4183 } 4184 4185 static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents) 4186 { 4187 int rc = 0; 4188 4189 switch (id) { 4190 case LOADING_MODULE: 4191 rc = selinux_kernel_module_from_file(NULL); 4192 break; 4193 default: 4194 break; 4195 } 4196 4197 return rc; 4198 } 4199 4200 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 4201 { 4202 return avc_has_perm(&selinux_state, 4203 current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4204 PROCESS__SETPGID, NULL); 4205 } 4206 4207 static int selinux_task_getpgid(struct task_struct *p) 4208 { 4209 return avc_has_perm(&selinux_state, 4210 current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4211 PROCESS__GETPGID, NULL); 4212 } 4213 4214 static int selinux_task_getsid(struct task_struct *p) 4215 { 4216 return avc_has_perm(&selinux_state, 4217 current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4218 PROCESS__GETSESSION, NULL); 4219 } 4220 4221 static void selinux_task_getsecid_subj(struct task_struct *p, u32 *secid) 4222 { 4223 *secid = task_sid_subj(p); 4224 } 4225 4226 static void selinux_task_getsecid_obj(struct task_struct *p, u32 *secid) 4227 { 4228 *secid = task_sid_obj(p); 4229 } 4230 4231 static int selinux_task_setnice(struct task_struct *p, int nice) 4232 { 4233 return avc_has_perm(&selinux_state, 4234 current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4235 PROCESS__SETSCHED, NULL); 4236 } 4237 4238 static int selinux_task_setioprio(struct task_struct *p, int ioprio) 4239 { 4240 return avc_has_perm(&selinux_state, 4241 current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4242 PROCESS__SETSCHED, NULL); 4243 } 4244 4245 static int selinux_task_getioprio(struct task_struct *p) 4246 { 4247 return avc_has_perm(&selinux_state, 4248 current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4249 PROCESS__GETSCHED, NULL); 4250 } 4251 4252 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred, 4253 unsigned int flags) 4254 { 4255 u32 av = 0; 4256 4257 if (!flags) 4258 return 0; 4259 if (flags & LSM_PRLIMIT_WRITE) 4260 av |= PROCESS__SETRLIMIT; 4261 if (flags & LSM_PRLIMIT_READ) 4262 av |= PROCESS__GETRLIMIT; 4263 return avc_has_perm(&selinux_state, 4264 cred_sid(cred), cred_sid(tcred), 4265 SECCLASS_PROCESS, av, NULL); 4266 } 4267 4268 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource, 4269 struct rlimit *new_rlim) 4270 { 4271 struct rlimit *old_rlim = p->signal->rlim + resource; 4272 4273 /* Control the ability to change the hard limit (whether 4274 lowering or raising it), so that the hard limit can 4275 later be used as a safe reset point for the soft limit 4276 upon context transitions. See selinux_bprm_committing_creds. */ 4277 if (old_rlim->rlim_max != new_rlim->rlim_max) 4278 return avc_has_perm(&selinux_state, 4279 current_sid(), task_sid_obj(p), 4280 SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL); 4281 4282 return 0; 4283 } 4284 4285 static int selinux_task_setscheduler(struct task_struct *p) 4286 { 4287 return avc_has_perm(&selinux_state, 4288 current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4289 PROCESS__SETSCHED, NULL); 4290 } 4291 4292 static int selinux_task_getscheduler(struct task_struct *p) 4293 { 4294 return avc_has_perm(&selinux_state, 4295 current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4296 PROCESS__GETSCHED, NULL); 4297 } 4298 4299 static int selinux_task_movememory(struct task_struct *p) 4300 { 4301 return avc_has_perm(&selinux_state, 4302 current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4303 PROCESS__SETSCHED, NULL); 4304 } 4305 4306 static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info, 4307 int sig, const struct cred *cred) 4308 { 4309 u32 secid; 4310 u32 perm; 4311 4312 if (!sig) 4313 perm = PROCESS__SIGNULL; /* null signal; existence test */ 4314 else 4315 perm = signal_to_av(sig); 4316 if (!cred) 4317 secid = current_sid(); 4318 else 4319 secid = cred_sid(cred); 4320 return avc_has_perm(&selinux_state, 4321 secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL); 4322 } 4323 4324 static void selinux_task_to_inode(struct task_struct *p, 4325 struct inode *inode) 4326 { 4327 struct inode_security_struct *isec = selinux_inode(inode); 4328 u32 sid = task_sid_obj(p); 4329 4330 spin_lock(&isec->lock); 4331 isec->sclass = inode_mode_to_security_class(inode->i_mode); 4332 isec->sid = sid; 4333 isec->initialized = LABEL_INITIALIZED; 4334 spin_unlock(&isec->lock); 4335 } 4336 4337 /* Returns error only if unable to parse addresses */ 4338 static int selinux_parse_skb_ipv4(struct sk_buff *skb, 4339 struct common_audit_data *ad, u8 *proto) 4340 { 4341 int offset, ihlen, ret = -EINVAL; 4342 struct iphdr _iph, *ih; 4343 4344 offset = skb_network_offset(skb); 4345 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 4346 if (ih == NULL) 4347 goto out; 4348 4349 ihlen = ih->ihl * 4; 4350 if (ihlen < sizeof(_iph)) 4351 goto out; 4352 4353 ad->u.net->v4info.saddr = ih->saddr; 4354 ad->u.net->v4info.daddr = ih->daddr; 4355 ret = 0; 4356 4357 if (proto) 4358 *proto = ih->protocol; 4359 4360 switch (ih->protocol) { 4361 case IPPROTO_TCP: { 4362 struct tcphdr _tcph, *th; 4363 4364 if (ntohs(ih->frag_off) & IP_OFFSET) 4365 break; 4366 4367 offset += ihlen; 4368 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 4369 if (th == NULL) 4370 break; 4371 4372 ad->u.net->sport = th->source; 4373 ad->u.net->dport = th->dest; 4374 break; 4375 } 4376 4377 case IPPROTO_UDP: { 4378 struct udphdr _udph, *uh; 4379 4380 if (ntohs(ih->frag_off) & IP_OFFSET) 4381 break; 4382 4383 offset += ihlen; 4384 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 4385 if (uh == NULL) 4386 break; 4387 4388 ad->u.net->sport = uh->source; 4389 ad->u.net->dport = uh->dest; 4390 break; 4391 } 4392 4393 case IPPROTO_DCCP: { 4394 struct dccp_hdr _dccph, *dh; 4395 4396 if (ntohs(ih->frag_off) & IP_OFFSET) 4397 break; 4398 4399 offset += ihlen; 4400 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 4401 if (dh == NULL) 4402 break; 4403 4404 ad->u.net->sport = dh->dccph_sport; 4405 ad->u.net->dport = dh->dccph_dport; 4406 break; 4407 } 4408 4409 #if IS_ENABLED(CONFIG_IP_SCTP) 4410 case IPPROTO_SCTP: { 4411 struct sctphdr _sctph, *sh; 4412 4413 if (ntohs(ih->frag_off) & IP_OFFSET) 4414 break; 4415 4416 offset += ihlen; 4417 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph); 4418 if (sh == NULL) 4419 break; 4420 4421 ad->u.net->sport = sh->source; 4422 ad->u.net->dport = sh->dest; 4423 break; 4424 } 4425 #endif 4426 default: 4427 break; 4428 } 4429 out: 4430 return ret; 4431 } 4432 4433 #if IS_ENABLED(CONFIG_IPV6) 4434 4435 /* Returns error only if unable to parse addresses */ 4436 static int selinux_parse_skb_ipv6(struct sk_buff *skb, 4437 struct common_audit_data *ad, u8 *proto) 4438 { 4439 u8 nexthdr; 4440 int ret = -EINVAL, offset; 4441 struct ipv6hdr _ipv6h, *ip6; 4442 __be16 frag_off; 4443 4444 offset = skb_network_offset(skb); 4445 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 4446 if (ip6 == NULL) 4447 goto out; 4448 4449 ad->u.net->v6info.saddr = ip6->saddr; 4450 ad->u.net->v6info.daddr = ip6->daddr; 4451 ret = 0; 4452 4453 nexthdr = ip6->nexthdr; 4454 offset += sizeof(_ipv6h); 4455 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off); 4456 if (offset < 0) 4457 goto out; 4458 4459 if (proto) 4460 *proto = nexthdr; 4461 4462 switch (nexthdr) { 4463 case IPPROTO_TCP: { 4464 struct tcphdr _tcph, *th; 4465 4466 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 4467 if (th == NULL) 4468 break; 4469 4470 ad->u.net->sport = th->source; 4471 ad->u.net->dport = th->dest; 4472 break; 4473 } 4474 4475 case IPPROTO_UDP: { 4476 struct udphdr _udph, *uh; 4477 4478 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 4479 if (uh == NULL) 4480 break; 4481 4482 ad->u.net->sport = uh->source; 4483 ad->u.net->dport = uh->dest; 4484 break; 4485 } 4486 4487 case IPPROTO_DCCP: { 4488 struct dccp_hdr _dccph, *dh; 4489 4490 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 4491 if (dh == NULL) 4492 break; 4493 4494 ad->u.net->sport = dh->dccph_sport; 4495 ad->u.net->dport = dh->dccph_dport; 4496 break; 4497 } 4498 4499 #if IS_ENABLED(CONFIG_IP_SCTP) 4500 case IPPROTO_SCTP: { 4501 struct sctphdr _sctph, *sh; 4502 4503 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph); 4504 if (sh == NULL) 4505 break; 4506 4507 ad->u.net->sport = sh->source; 4508 ad->u.net->dport = sh->dest; 4509 break; 4510 } 4511 #endif 4512 /* includes fragments */ 4513 default: 4514 break; 4515 } 4516 out: 4517 return ret; 4518 } 4519 4520 #endif /* IPV6 */ 4521 4522 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad, 4523 char **_addrp, int src, u8 *proto) 4524 { 4525 char *addrp; 4526 int ret; 4527 4528 switch (ad->u.net->family) { 4529 case PF_INET: 4530 ret = selinux_parse_skb_ipv4(skb, ad, proto); 4531 if (ret) 4532 goto parse_error; 4533 addrp = (char *)(src ? &ad->u.net->v4info.saddr : 4534 &ad->u.net->v4info.daddr); 4535 goto okay; 4536 4537 #if IS_ENABLED(CONFIG_IPV6) 4538 case PF_INET6: 4539 ret = selinux_parse_skb_ipv6(skb, ad, proto); 4540 if (ret) 4541 goto parse_error; 4542 addrp = (char *)(src ? &ad->u.net->v6info.saddr : 4543 &ad->u.net->v6info.daddr); 4544 goto okay; 4545 #endif /* IPV6 */ 4546 default: 4547 addrp = NULL; 4548 goto okay; 4549 } 4550 4551 parse_error: 4552 pr_warn( 4553 "SELinux: failure in selinux_parse_skb()," 4554 " unable to parse packet\n"); 4555 return ret; 4556 4557 okay: 4558 if (_addrp) 4559 *_addrp = addrp; 4560 return 0; 4561 } 4562 4563 /** 4564 * selinux_skb_peerlbl_sid - Determine the peer label of a packet 4565 * @skb: the packet 4566 * @family: protocol family 4567 * @sid: the packet's peer label SID 4568 * 4569 * Description: 4570 * Check the various different forms of network peer labeling and determine 4571 * the peer label/SID for the packet; most of the magic actually occurs in 4572 * the security server function security_net_peersid_cmp(). The function 4573 * returns zero if the value in @sid is valid (although it may be SECSID_NULL) 4574 * or -EACCES if @sid is invalid due to inconsistencies with the different 4575 * peer labels. 4576 * 4577 */ 4578 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid) 4579 { 4580 int err; 4581 u32 xfrm_sid; 4582 u32 nlbl_sid; 4583 u32 nlbl_type; 4584 4585 err = selinux_xfrm_skb_sid(skb, &xfrm_sid); 4586 if (unlikely(err)) 4587 return -EACCES; 4588 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid); 4589 if (unlikely(err)) 4590 return -EACCES; 4591 4592 err = security_net_peersid_resolve(&selinux_state, nlbl_sid, 4593 nlbl_type, xfrm_sid, sid); 4594 if (unlikely(err)) { 4595 pr_warn( 4596 "SELinux: failure in selinux_skb_peerlbl_sid()," 4597 " unable to determine packet's peer label\n"); 4598 return -EACCES; 4599 } 4600 4601 return 0; 4602 } 4603 4604 /** 4605 * selinux_conn_sid - Determine the child socket label for a connection 4606 * @sk_sid: the parent socket's SID 4607 * @skb_sid: the packet's SID 4608 * @conn_sid: the resulting connection SID 4609 * 4610 * If @skb_sid is valid then the user:role:type information from @sk_sid is 4611 * combined with the MLS information from @skb_sid in order to create 4612 * @conn_sid. If @skb_sid is not valid then @conn_sid is simply a copy 4613 * of @sk_sid. Returns zero on success, negative values on failure. 4614 * 4615 */ 4616 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid) 4617 { 4618 int err = 0; 4619 4620 if (skb_sid != SECSID_NULL) 4621 err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid, 4622 conn_sid); 4623 else 4624 *conn_sid = sk_sid; 4625 4626 return err; 4627 } 4628 4629 /* socket security operations */ 4630 4631 static int socket_sockcreate_sid(const struct task_security_struct *tsec, 4632 u16 secclass, u32 *socksid) 4633 { 4634 if (tsec->sockcreate_sid > SECSID_NULL) { 4635 *socksid = tsec->sockcreate_sid; 4636 return 0; 4637 } 4638 4639 return security_transition_sid(&selinux_state, tsec->sid, tsec->sid, 4640 secclass, NULL, socksid); 4641 } 4642 4643 static int sock_has_perm(struct sock *sk, u32 perms) 4644 { 4645 struct sk_security_struct *sksec = sk->sk_security; 4646 struct common_audit_data ad; 4647 struct lsm_network_audit net = {0,}; 4648 4649 if (sksec->sid == SECINITSID_KERNEL) 4650 return 0; 4651 4652 ad.type = LSM_AUDIT_DATA_NET; 4653 ad.u.net = &net; 4654 ad.u.net->sk = sk; 4655 4656 return avc_has_perm(&selinux_state, 4657 current_sid(), sksec->sid, sksec->sclass, perms, 4658 &ad); 4659 } 4660 4661 static int selinux_socket_create(int family, int type, 4662 int protocol, int kern) 4663 { 4664 const struct task_security_struct *tsec = selinux_cred(current_cred()); 4665 u32 newsid; 4666 u16 secclass; 4667 int rc; 4668 4669 if (kern) 4670 return 0; 4671 4672 secclass = socket_type_to_security_class(family, type, protocol); 4673 rc = socket_sockcreate_sid(tsec, secclass, &newsid); 4674 if (rc) 4675 return rc; 4676 4677 return avc_has_perm(&selinux_state, 4678 tsec->sid, newsid, secclass, SOCKET__CREATE, NULL); 4679 } 4680 4681 static int selinux_socket_post_create(struct socket *sock, int family, 4682 int type, int protocol, int kern) 4683 { 4684 const struct task_security_struct *tsec = selinux_cred(current_cred()); 4685 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock)); 4686 struct sk_security_struct *sksec; 4687 u16 sclass = socket_type_to_security_class(family, type, protocol); 4688 u32 sid = SECINITSID_KERNEL; 4689 int err = 0; 4690 4691 if (!kern) { 4692 err = socket_sockcreate_sid(tsec, sclass, &sid); 4693 if (err) 4694 return err; 4695 } 4696 4697 isec->sclass = sclass; 4698 isec->sid = sid; 4699 isec->initialized = LABEL_INITIALIZED; 4700 4701 if (sock->sk) { 4702 sksec = sock->sk->sk_security; 4703 sksec->sclass = sclass; 4704 sksec->sid = sid; 4705 /* Allows detection of the first association on this socket */ 4706 if (sksec->sclass == SECCLASS_SCTP_SOCKET) 4707 sksec->sctp_assoc_state = SCTP_ASSOC_UNSET; 4708 4709 err = selinux_netlbl_socket_post_create(sock->sk, family); 4710 } 4711 4712 return err; 4713 } 4714 4715 static int selinux_socket_socketpair(struct socket *socka, 4716 struct socket *sockb) 4717 { 4718 struct sk_security_struct *sksec_a = socka->sk->sk_security; 4719 struct sk_security_struct *sksec_b = sockb->sk->sk_security; 4720 4721 sksec_a->peer_sid = sksec_b->sid; 4722 sksec_b->peer_sid = sksec_a->sid; 4723 4724 return 0; 4725 } 4726 4727 /* Range of port numbers used to automatically bind. 4728 Need to determine whether we should perform a name_bind 4729 permission check between the socket and the port number. */ 4730 4731 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 4732 { 4733 struct sock *sk = sock->sk; 4734 struct sk_security_struct *sksec = sk->sk_security; 4735 u16 family; 4736 int err; 4737 4738 err = sock_has_perm(sk, SOCKET__BIND); 4739 if (err) 4740 goto out; 4741 4742 /* If PF_INET or PF_INET6, check name_bind permission for the port. */ 4743 family = sk->sk_family; 4744 if (family == PF_INET || family == PF_INET6) { 4745 char *addrp; 4746 struct common_audit_data ad; 4747 struct lsm_network_audit net = {0,}; 4748 struct sockaddr_in *addr4 = NULL; 4749 struct sockaddr_in6 *addr6 = NULL; 4750 u16 family_sa; 4751 unsigned short snum; 4752 u32 sid, node_perm; 4753 4754 /* 4755 * sctp_bindx(3) calls via selinux_sctp_bind_connect() 4756 * that validates multiple binding addresses. Because of this 4757 * need to check address->sa_family as it is possible to have 4758 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET. 4759 */ 4760 if (addrlen < offsetofend(struct sockaddr, sa_family)) 4761 return -EINVAL; 4762 family_sa = address->sa_family; 4763 switch (family_sa) { 4764 case AF_UNSPEC: 4765 case AF_INET: 4766 if (addrlen < sizeof(struct sockaddr_in)) 4767 return -EINVAL; 4768 addr4 = (struct sockaddr_in *)address; 4769 if (family_sa == AF_UNSPEC) { 4770 /* see __inet_bind(), we only want to allow 4771 * AF_UNSPEC if the address is INADDR_ANY 4772 */ 4773 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY)) 4774 goto err_af; 4775 family_sa = AF_INET; 4776 } 4777 snum = ntohs(addr4->sin_port); 4778 addrp = (char *)&addr4->sin_addr.s_addr; 4779 break; 4780 case AF_INET6: 4781 if (addrlen < SIN6_LEN_RFC2133) 4782 return -EINVAL; 4783 addr6 = (struct sockaddr_in6 *)address; 4784 snum = ntohs(addr6->sin6_port); 4785 addrp = (char *)&addr6->sin6_addr.s6_addr; 4786 break; 4787 default: 4788 goto err_af; 4789 } 4790 4791 ad.type = LSM_AUDIT_DATA_NET; 4792 ad.u.net = &net; 4793 ad.u.net->sport = htons(snum); 4794 ad.u.net->family = family_sa; 4795 4796 if (snum) { 4797 int low, high; 4798 4799 inet_get_local_port_range(sock_net(sk), &low, &high); 4800 4801 if (inet_port_requires_bind_service(sock_net(sk), snum) || 4802 snum < low || snum > high) { 4803 err = sel_netport_sid(sk->sk_protocol, 4804 snum, &sid); 4805 if (err) 4806 goto out; 4807 err = avc_has_perm(&selinux_state, 4808 sksec->sid, sid, 4809 sksec->sclass, 4810 SOCKET__NAME_BIND, &ad); 4811 if (err) 4812 goto out; 4813 } 4814 } 4815 4816 switch (sksec->sclass) { 4817 case SECCLASS_TCP_SOCKET: 4818 node_perm = TCP_SOCKET__NODE_BIND; 4819 break; 4820 4821 case SECCLASS_UDP_SOCKET: 4822 node_perm = UDP_SOCKET__NODE_BIND; 4823 break; 4824 4825 case SECCLASS_DCCP_SOCKET: 4826 node_perm = DCCP_SOCKET__NODE_BIND; 4827 break; 4828 4829 case SECCLASS_SCTP_SOCKET: 4830 node_perm = SCTP_SOCKET__NODE_BIND; 4831 break; 4832 4833 default: 4834 node_perm = RAWIP_SOCKET__NODE_BIND; 4835 break; 4836 } 4837 4838 err = sel_netnode_sid(addrp, family_sa, &sid); 4839 if (err) 4840 goto out; 4841 4842 if (family_sa == AF_INET) 4843 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr; 4844 else 4845 ad.u.net->v6info.saddr = addr6->sin6_addr; 4846 4847 err = avc_has_perm(&selinux_state, 4848 sksec->sid, sid, 4849 sksec->sclass, node_perm, &ad); 4850 if (err) 4851 goto out; 4852 } 4853 out: 4854 return err; 4855 err_af: 4856 /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */ 4857 if (sksec->sclass == SECCLASS_SCTP_SOCKET) 4858 return -EINVAL; 4859 return -EAFNOSUPPORT; 4860 } 4861 4862 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3) 4863 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst 4864 */ 4865 static int selinux_socket_connect_helper(struct socket *sock, 4866 struct sockaddr *address, int addrlen) 4867 { 4868 struct sock *sk = sock->sk; 4869 struct sk_security_struct *sksec = sk->sk_security; 4870 int err; 4871 4872 err = sock_has_perm(sk, SOCKET__CONNECT); 4873 if (err) 4874 return err; 4875 if (addrlen < offsetofend(struct sockaddr, sa_family)) 4876 return -EINVAL; 4877 4878 /* connect(AF_UNSPEC) has special handling, as it is a documented 4879 * way to disconnect the socket 4880 */ 4881 if (address->sa_family == AF_UNSPEC) 4882 return 0; 4883 4884 /* 4885 * If a TCP, DCCP or SCTP socket, check name_connect permission 4886 * for the port. 4887 */ 4888 if (sksec->sclass == SECCLASS_TCP_SOCKET || 4889 sksec->sclass == SECCLASS_DCCP_SOCKET || 4890 sksec->sclass == SECCLASS_SCTP_SOCKET) { 4891 struct common_audit_data ad; 4892 struct lsm_network_audit net = {0,}; 4893 struct sockaddr_in *addr4 = NULL; 4894 struct sockaddr_in6 *addr6 = NULL; 4895 unsigned short snum; 4896 u32 sid, perm; 4897 4898 /* sctp_connectx(3) calls via selinux_sctp_bind_connect() 4899 * that validates multiple connect addresses. Because of this 4900 * need to check address->sa_family as it is possible to have 4901 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET. 4902 */ 4903 switch (address->sa_family) { 4904 case AF_INET: 4905 addr4 = (struct sockaddr_in *)address; 4906 if (addrlen < sizeof(struct sockaddr_in)) 4907 return -EINVAL; 4908 snum = ntohs(addr4->sin_port); 4909 break; 4910 case AF_INET6: 4911 addr6 = (struct sockaddr_in6 *)address; 4912 if (addrlen < SIN6_LEN_RFC2133) 4913 return -EINVAL; 4914 snum = ntohs(addr6->sin6_port); 4915 break; 4916 default: 4917 /* Note that SCTP services expect -EINVAL, whereas 4918 * others expect -EAFNOSUPPORT. 4919 */ 4920 if (sksec->sclass == SECCLASS_SCTP_SOCKET) 4921 return -EINVAL; 4922 else 4923 return -EAFNOSUPPORT; 4924 } 4925 4926 err = sel_netport_sid(sk->sk_protocol, snum, &sid); 4927 if (err) 4928 return err; 4929 4930 switch (sksec->sclass) { 4931 case SECCLASS_TCP_SOCKET: 4932 perm = TCP_SOCKET__NAME_CONNECT; 4933 break; 4934 case SECCLASS_DCCP_SOCKET: 4935 perm = DCCP_SOCKET__NAME_CONNECT; 4936 break; 4937 case SECCLASS_SCTP_SOCKET: 4938 perm = SCTP_SOCKET__NAME_CONNECT; 4939 break; 4940 } 4941 4942 ad.type = LSM_AUDIT_DATA_NET; 4943 ad.u.net = &net; 4944 ad.u.net->dport = htons(snum); 4945 ad.u.net->family = address->sa_family; 4946 err = avc_has_perm(&selinux_state, 4947 sksec->sid, sid, sksec->sclass, perm, &ad); 4948 if (err) 4949 return err; 4950 } 4951 4952 return 0; 4953 } 4954 4955 /* Supports connect(2), see comments in selinux_socket_connect_helper() */ 4956 static int selinux_socket_connect(struct socket *sock, 4957 struct sockaddr *address, int addrlen) 4958 { 4959 int err; 4960 struct sock *sk = sock->sk; 4961 4962 err = selinux_socket_connect_helper(sock, address, addrlen); 4963 if (err) 4964 return err; 4965 4966 return selinux_netlbl_socket_connect(sk, address); 4967 } 4968 4969 static int selinux_socket_listen(struct socket *sock, int backlog) 4970 { 4971 return sock_has_perm(sock->sk, SOCKET__LISTEN); 4972 } 4973 4974 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 4975 { 4976 int err; 4977 struct inode_security_struct *isec; 4978 struct inode_security_struct *newisec; 4979 u16 sclass; 4980 u32 sid; 4981 4982 err = sock_has_perm(sock->sk, SOCKET__ACCEPT); 4983 if (err) 4984 return err; 4985 4986 isec = inode_security_novalidate(SOCK_INODE(sock)); 4987 spin_lock(&isec->lock); 4988 sclass = isec->sclass; 4989 sid = isec->sid; 4990 spin_unlock(&isec->lock); 4991 4992 newisec = inode_security_novalidate(SOCK_INODE(newsock)); 4993 newisec->sclass = sclass; 4994 newisec->sid = sid; 4995 newisec->initialized = LABEL_INITIALIZED; 4996 4997 return 0; 4998 } 4999 5000 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 5001 int size) 5002 { 5003 return sock_has_perm(sock->sk, SOCKET__WRITE); 5004 } 5005 5006 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 5007 int size, int flags) 5008 { 5009 return sock_has_perm(sock->sk, SOCKET__READ); 5010 } 5011 5012 static int selinux_socket_getsockname(struct socket *sock) 5013 { 5014 return sock_has_perm(sock->sk, SOCKET__GETATTR); 5015 } 5016 5017 static int selinux_socket_getpeername(struct socket *sock) 5018 { 5019 return sock_has_perm(sock->sk, SOCKET__GETATTR); 5020 } 5021 5022 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname) 5023 { 5024 int err; 5025 5026 err = sock_has_perm(sock->sk, SOCKET__SETOPT); 5027 if (err) 5028 return err; 5029 5030 return selinux_netlbl_socket_setsockopt(sock, level, optname); 5031 } 5032 5033 static int selinux_socket_getsockopt(struct socket *sock, int level, 5034 int optname) 5035 { 5036 return sock_has_perm(sock->sk, SOCKET__GETOPT); 5037 } 5038 5039 static int selinux_socket_shutdown(struct socket *sock, int how) 5040 { 5041 return sock_has_perm(sock->sk, SOCKET__SHUTDOWN); 5042 } 5043 5044 static int selinux_socket_unix_stream_connect(struct sock *sock, 5045 struct sock *other, 5046 struct sock *newsk) 5047 { 5048 struct sk_security_struct *sksec_sock = sock->sk_security; 5049 struct sk_security_struct *sksec_other = other->sk_security; 5050 struct sk_security_struct *sksec_new = newsk->sk_security; 5051 struct common_audit_data ad; 5052 struct lsm_network_audit net = {0,}; 5053 int err; 5054 5055 ad.type = LSM_AUDIT_DATA_NET; 5056 ad.u.net = &net; 5057 ad.u.net->sk = other; 5058 5059 err = avc_has_perm(&selinux_state, 5060 sksec_sock->sid, sksec_other->sid, 5061 sksec_other->sclass, 5062 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 5063 if (err) 5064 return err; 5065 5066 /* server child socket */ 5067 sksec_new->peer_sid = sksec_sock->sid; 5068 err = security_sid_mls_copy(&selinux_state, sksec_other->sid, 5069 sksec_sock->sid, &sksec_new->sid); 5070 if (err) 5071 return err; 5072 5073 /* connecting socket */ 5074 sksec_sock->peer_sid = sksec_new->sid; 5075 5076 return 0; 5077 } 5078 5079 static int selinux_socket_unix_may_send(struct socket *sock, 5080 struct socket *other) 5081 { 5082 struct sk_security_struct *ssec = sock->sk->sk_security; 5083 struct sk_security_struct *osec = other->sk->sk_security; 5084 struct common_audit_data ad; 5085 struct lsm_network_audit net = {0,}; 5086 5087 ad.type = LSM_AUDIT_DATA_NET; 5088 ad.u.net = &net; 5089 ad.u.net->sk = other->sk; 5090 5091 return avc_has_perm(&selinux_state, 5092 ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO, 5093 &ad); 5094 } 5095 5096 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex, 5097 char *addrp, u16 family, u32 peer_sid, 5098 struct common_audit_data *ad) 5099 { 5100 int err; 5101 u32 if_sid; 5102 u32 node_sid; 5103 5104 err = sel_netif_sid(ns, ifindex, &if_sid); 5105 if (err) 5106 return err; 5107 err = avc_has_perm(&selinux_state, 5108 peer_sid, if_sid, 5109 SECCLASS_NETIF, NETIF__INGRESS, ad); 5110 if (err) 5111 return err; 5112 5113 err = sel_netnode_sid(addrp, family, &node_sid); 5114 if (err) 5115 return err; 5116 return avc_has_perm(&selinux_state, 5117 peer_sid, node_sid, 5118 SECCLASS_NODE, NODE__RECVFROM, ad); 5119 } 5120 5121 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 5122 u16 family) 5123 { 5124 int err = 0; 5125 struct sk_security_struct *sksec = sk->sk_security; 5126 u32 sk_sid = sksec->sid; 5127 struct common_audit_data ad; 5128 struct lsm_network_audit net = {0,}; 5129 char *addrp; 5130 5131 ad.type = LSM_AUDIT_DATA_NET; 5132 ad.u.net = &net; 5133 ad.u.net->netif = skb->skb_iif; 5134 ad.u.net->family = family; 5135 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 5136 if (err) 5137 return err; 5138 5139 if (selinux_secmark_enabled()) { 5140 err = avc_has_perm(&selinux_state, 5141 sk_sid, skb->secmark, SECCLASS_PACKET, 5142 PACKET__RECV, &ad); 5143 if (err) 5144 return err; 5145 } 5146 5147 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad); 5148 if (err) 5149 return err; 5150 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad); 5151 5152 return err; 5153 } 5154 5155 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 5156 { 5157 int err; 5158 struct sk_security_struct *sksec = sk->sk_security; 5159 u16 family = sk->sk_family; 5160 u32 sk_sid = sksec->sid; 5161 struct common_audit_data ad; 5162 struct lsm_network_audit net = {0,}; 5163 char *addrp; 5164 u8 secmark_active; 5165 u8 peerlbl_active; 5166 5167 if (family != PF_INET && family != PF_INET6) 5168 return 0; 5169 5170 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 5171 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 5172 family = PF_INET; 5173 5174 /* If any sort of compatibility mode is enabled then handoff processing 5175 * to the selinux_sock_rcv_skb_compat() function to deal with the 5176 * special handling. We do this in an attempt to keep this function 5177 * as fast and as clean as possible. */ 5178 if (!selinux_policycap_netpeer()) 5179 return selinux_sock_rcv_skb_compat(sk, skb, family); 5180 5181 secmark_active = selinux_secmark_enabled(); 5182 peerlbl_active = selinux_peerlbl_enabled(); 5183 if (!secmark_active && !peerlbl_active) 5184 return 0; 5185 5186 ad.type = LSM_AUDIT_DATA_NET; 5187 ad.u.net = &net; 5188 ad.u.net->netif = skb->skb_iif; 5189 ad.u.net->family = family; 5190 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 5191 if (err) 5192 return err; 5193 5194 if (peerlbl_active) { 5195 u32 peer_sid; 5196 5197 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 5198 if (err) 5199 return err; 5200 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif, 5201 addrp, family, peer_sid, &ad); 5202 if (err) { 5203 selinux_netlbl_err(skb, family, err, 0); 5204 return err; 5205 } 5206 err = avc_has_perm(&selinux_state, 5207 sk_sid, peer_sid, SECCLASS_PEER, 5208 PEER__RECV, &ad); 5209 if (err) { 5210 selinux_netlbl_err(skb, family, err, 0); 5211 return err; 5212 } 5213 } 5214 5215 if (secmark_active) { 5216 err = avc_has_perm(&selinux_state, 5217 sk_sid, skb->secmark, SECCLASS_PACKET, 5218 PACKET__RECV, &ad); 5219 if (err) 5220 return err; 5221 } 5222 5223 return err; 5224 } 5225 5226 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval, 5227 int __user *optlen, unsigned len) 5228 { 5229 int err = 0; 5230 char *scontext; 5231 u32 scontext_len; 5232 struct sk_security_struct *sksec = sock->sk->sk_security; 5233 u32 peer_sid = SECSID_NULL; 5234 5235 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 5236 sksec->sclass == SECCLASS_TCP_SOCKET || 5237 sksec->sclass == SECCLASS_SCTP_SOCKET) 5238 peer_sid = sksec->peer_sid; 5239 if (peer_sid == SECSID_NULL) 5240 return -ENOPROTOOPT; 5241 5242 err = security_sid_to_context(&selinux_state, peer_sid, &scontext, 5243 &scontext_len); 5244 if (err) 5245 return err; 5246 5247 if (scontext_len > len) { 5248 err = -ERANGE; 5249 goto out_len; 5250 } 5251 5252 if (copy_to_user(optval, scontext, scontext_len)) 5253 err = -EFAULT; 5254 5255 out_len: 5256 if (put_user(scontext_len, optlen)) 5257 err = -EFAULT; 5258 kfree(scontext); 5259 return err; 5260 } 5261 5262 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 5263 { 5264 u32 peer_secid = SECSID_NULL; 5265 u16 family; 5266 struct inode_security_struct *isec; 5267 5268 if (skb && skb->protocol == htons(ETH_P_IP)) 5269 family = PF_INET; 5270 else if (skb && skb->protocol == htons(ETH_P_IPV6)) 5271 family = PF_INET6; 5272 else if (sock) 5273 family = sock->sk->sk_family; 5274 else 5275 goto out; 5276 5277 if (sock && family == PF_UNIX) { 5278 isec = inode_security_novalidate(SOCK_INODE(sock)); 5279 peer_secid = isec->sid; 5280 } else if (skb) 5281 selinux_skb_peerlbl_sid(skb, family, &peer_secid); 5282 5283 out: 5284 *secid = peer_secid; 5285 if (peer_secid == SECSID_NULL) 5286 return -EINVAL; 5287 return 0; 5288 } 5289 5290 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 5291 { 5292 struct sk_security_struct *sksec; 5293 5294 sksec = kzalloc(sizeof(*sksec), priority); 5295 if (!sksec) 5296 return -ENOMEM; 5297 5298 sksec->peer_sid = SECINITSID_UNLABELED; 5299 sksec->sid = SECINITSID_UNLABELED; 5300 sksec->sclass = SECCLASS_SOCKET; 5301 selinux_netlbl_sk_security_reset(sksec); 5302 sk->sk_security = sksec; 5303 5304 return 0; 5305 } 5306 5307 static void selinux_sk_free_security(struct sock *sk) 5308 { 5309 struct sk_security_struct *sksec = sk->sk_security; 5310 5311 sk->sk_security = NULL; 5312 selinux_netlbl_sk_security_free(sksec); 5313 kfree(sksec); 5314 } 5315 5316 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 5317 { 5318 struct sk_security_struct *sksec = sk->sk_security; 5319 struct sk_security_struct *newsksec = newsk->sk_security; 5320 5321 newsksec->sid = sksec->sid; 5322 newsksec->peer_sid = sksec->peer_sid; 5323 newsksec->sclass = sksec->sclass; 5324 5325 selinux_netlbl_sk_security_reset(newsksec); 5326 } 5327 5328 static void selinux_sk_getsecid(struct sock *sk, u32 *secid) 5329 { 5330 if (!sk) 5331 *secid = SECINITSID_ANY_SOCKET; 5332 else { 5333 struct sk_security_struct *sksec = sk->sk_security; 5334 5335 *secid = sksec->sid; 5336 } 5337 } 5338 5339 static void selinux_sock_graft(struct sock *sk, struct socket *parent) 5340 { 5341 struct inode_security_struct *isec = 5342 inode_security_novalidate(SOCK_INODE(parent)); 5343 struct sk_security_struct *sksec = sk->sk_security; 5344 5345 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 5346 sk->sk_family == PF_UNIX) 5347 isec->sid = sksec->sid; 5348 sksec->sclass = isec->sclass; 5349 } 5350 5351 /* Called whenever SCTP receives an INIT chunk. This happens when an incoming 5352 * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association 5353 * already present). 5354 */ 5355 static int selinux_sctp_assoc_request(struct sctp_endpoint *ep, 5356 struct sk_buff *skb) 5357 { 5358 struct sk_security_struct *sksec = ep->base.sk->sk_security; 5359 struct common_audit_data ad; 5360 struct lsm_network_audit net = {0,}; 5361 u8 peerlbl_active; 5362 u32 peer_sid = SECINITSID_UNLABELED; 5363 u32 conn_sid; 5364 int err = 0; 5365 5366 if (!selinux_policycap_extsockclass()) 5367 return 0; 5368 5369 peerlbl_active = selinux_peerlbl_enabled(); 5370 5371 if (peerlbl_active) { 5372 /* This will return peer_sid = SECSID_NULL if there are 5373 * no peer labels, see security_net_peersid_resolve(). 5374 */ 5375 err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family, 5376 &peer_sid); 5377 if (err) 5378 return err; 5379 5380 if (peer_sid == SECSID_NULL) 5381 peer_sid = SECINITSID_UNLABELED; 5382 } 5383 5384 if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) { 5385 sksec->sctp_assoc_state = SCTP_ASSOC_SET; 5386 5387 /* Here as first association on socket. As the peer SID 5388 * was allowed by peer recv (and the netif/node checks), 5389 * then it is approved by policy and used as the primary 5390 * peer SID for getpeercon(3). 5391 */ 5392 sksec->peer_sid = peer_sid; 5393 } else if (sksec->peer_sid != peer_sid) { 5394 /* Other association peer SIDs are checked to enforce 5395 * consistency among the peer SIDs. 5396 */ 5397 ad.type = LSM_AUDIT_DATA_NET; 5398 ad.u.net = &net; 5399 ad.u.net->sk = ep->base.sk; 5400 err = avc_has_perm(&selinux_state, 5401 sksec->peer_sid, peer_sid, sksec->sclass, 5402 SCTP_SOCKET__ASSOCIATION, &ad); 5403 if (err) 5404 return err; 5405 } 5406 5407 /* Compute the MLS component for the connection and store 5408 * the information in ep. This will be used by SCTP TCP type 5409 * sockets and peeled off connections as they cause a new 5410 * socket to be generated. selinux_sctp_sk_clone() will then 5411 * plug this into the new socket. 5412 */ 5413 err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid); 5414 if (err) 5415 return err; 5416 5417 ep->secid = conn_sid; 5418 ep->peer_secid = peer_sid; 5419 5420 /* Set any NetLabel labels including CIPSO/CALIPSO options. */ 5421 return selinux_netlbl_sctp_assoc_request(ep, skb); 5422 } 5423 5424 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting 5425 * based on their @optname. 5426 */ 5427 static int selinux_sctp_bind_connect(struct sock *sk, int optname, 5428 struct sockaddr *address, 5429 int addrlen) 5430 { 5431 int len, err = 0, walk_size = 0; 5432 void *addr_buf; 5433 struct sockaddr *addr; 5434 struct socket *sock; 5435 5436 if (!selinux_policycap_extsockclass()) 5437 return 0; 5438 5439 /* Process one or more addresses that may be IPv4 or IPv6 */ 5440 sock = sk->sk_socket; 5441 addr_buf = address; 5442 5443 while (walk_size < addrlen) { 5444 if (walk_size + sizeof(sa_family_t) > addrlen) 5445 return -EINVAL; 5446 5447 addr = addr_buf; 5448 switch (addr->sa_family) { 5449 case AF_UNSPEC: 5450 case AF_INET: 5451 len = sizeof(struct sockaddr_in); 5452 break; 5453 case AF_INET6: 5454 len = sizeof(struct sockaddr_in6); 5455 break; 5456 default: 5457 return -EINVAL; 5458 } 5459 5460 if (walk_size + len > addrlen) 5461 return -EINVAL; 5462 5463 err = -EINVAL; 5464 switch (optname) { 5465 /* Bind checks */ 5466 case SCTP_PRIMARY_ADDR: 5467 case SCTP_SET_PEER_PRIMARY_ADDR: 5468 case SCTP_SOCKOPT_BINDX_ADD: 5469 err = selinux_socket_bind(sock, addr, len); 5470 break; 5471 /* Connect checks */ 5472 case SCTP_SOCKOPT_CONNECTX: 5473 case SCTP_PARAM_SET_PRIMARY: 5474 case SCTP_PARAM_ADD_IP: 5475 case SCTP_SENDMSG_CONNECT: 5476 err = selinux_socket_connect_helper(sock, addr, len); 5477 if (err) 5478 return err; 5479 5480 /* As selinux_sctp_bind_connect() is called by the 5481 * SCTP protocol layer, the socket is already locked, 5482 * therefore selinux_netlbl_socket_connect_locked() 5483 * is called here. The situations handled are: 5484 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2), 5485 * whenever a new IP address is added or when a new 5486 * primary address is selected. 5487 * Note that an SCTP connect(2) call happens before 5488 * the SCTP protocol layer and is handled via 5489 * selinux_socket_connect(). 5490 */ 5491 err = selinux_netlbl_socket_connect_locked(sk, addr); 5492 break; 5493 } 5494 5495 if (err) 5496 return err; 5497 5498 addr_buf += len; 5499 walk_size += len; 5500 } 5501 5502 return 0; 5503 } 5504 5505 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */ 5506 static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk, 5507 struct sock *newsk) 5508 { 5509 struct sk_security_struct *sksec = sk->sk_security; 5510 struct sk_security_struct *newsksec = newsk->sk_security; 5511 5512 /* If policy does not support SECCLASS_SCTP_SOCKET then call 5513 * the non-sctp clone version. 5514 */ 5515 if (!selinux_policycap_extsockclass()) 5516 return selinux_sk_clone_security(sk, newsk); 5517 5518 newsksec->sid = ep->secid; 5519 newsksec->peer_sid = ep->peer_secid; 5520 newsksec->sclass = sksec->sclass; 5521 selinux_netlbl_sctp_sk_clone(sk, newsk); 5522 } 5523 5524 static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb, 5525 struct request_sock *req) 5526 { 5527 struct sk_security_struct *sksec = sk->sk_security; 5528 int err; 5529 u16 family = req->rsk_ops->family; 5530 u32 connsid; 5531 u32 peersid; 5532 5533 err = selinux_skb_peerlbl_sid(skb, family, &peersid); 5534 if (err) 5535 return err; 5536 err = selinux_conn_sid(sksec->sid, peersid, &connsid); 5537 if (err) 5538 return err; 5539 req->secid = connsid; 5540 req->peer_secid = peersid; 5541 5542 return selinux_netlbl_inet_conn_request(req, family); 5543 } 5544 5545 static void selinux_inet_csk_clone(struct sock *newsk, 5546 const struct request_sock *req) 5547 { 5548 struct sk_security_struct *newsksec = newsk->sk_security; 5549 5550 newsksec->sid = req->secid; 5551 newsksec->peer_sid = req->peer_secid; 5552 /* NOTE: Ideally, we should also get the isec->sid for the 5553 new socket in sync, but we don't have the isec available yet. 5554 So we will wait until sock_graft to do it, by which 5555 time it will have been created and available. */ 5556 5557 /* We don't need to take any sort of lock here as we are the only 5558 * thread with access to newsksec */ 5559 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family); 5560 } 5561 5562 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb) 5563 { 5564 u16 family = sk->sk_family; 5565 struct sk_security_struct *sksec = sk->sk_security; 5566 5567 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 5568 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 5569 family = PF_INET; 5570 5571 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid); 5572 } 5573 5574 static int selinux_secmark_relabel_packet(u32 sid) 5575 { 5576 const struct task_security_struct *__tsec; 5577 u32 tsid; 5578 5579 __tsec = selinux_cred(current_cred()); 5580 tsid = __tsec->sid; 5581 5582 return avc_has_perm(&selinux_state, 5583 tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, 5584 NULL); 5585 } 5586 5587 static void selinux_secmark_refcount_inc(void) 5588 { 5589 atomic_inc(&selinux_secmark_refcount); 5590 } 5591 5592 static void selinux_secmark_refcount_dec(void) 5593 { 5594 atomic_dec(&selinux_secmark_refcount); 5595 } 5596 5597 static void selinux_req_classify_flow(const struct request_sock *req, 5598 struct flowi_common *flic) 5599 { 5600 flic->flowic_secid = req->secid; 5601 } 5602 5603 static int selinux_tun_dev_alloc_security(void **security) 5604 { 5605 struct tun_security_struct *tunsec; 5606 5607 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL); 5608 if (!tunsec) 5609 return -ENOMEM; 5610 tunsec->sid = current_sid(); 5611 5612 *security = tunsec; 5613 return 0; 5614 } 5615 5616 static void selinux_tun_dev_free_security(void *security) 5617 { 5618 kfree(security); 5619 } 5620 5621 static int selinux_tun_dev_create(void) 5622 { 5623 u32 sid = current_sid(); 5624 5625 /* we aren't taking into account the "sockcreate" SID since the socket 5626 * that is being created here is not a socket in the traditional sense, 5627 * instead it is a private sock, accessible only to the kernel, and 5628 * representing a wide range of network traffic spanning multiple 5629 * connections unlike traditional sockets - check the TUN driver to 5630 * get a better understanding of why this socket is special */ 5631 5632 return avc_has_perm(&selinux_state, 5633 sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE, 5634 NULL); 5635 } 5636 5637 static int selinux_tun_dev_attach_queue(void *security) 5638 { 5639 struct tun_security_struct *tunsec = security; 5640 5641 return avc_has_perm(&selinux_state, 5642 current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET, 5643 TUN_SOCKET__ATTACH_QUEUE, NULL); 5644 } 5645 5646 static int selinux_tun_dev_attach(struct sock *sk, void *security) 5647 { 5648 struct tun_security_struct *tunsec = security; 5649 struct sk_security_struct *sksec = sk->sk_security; 5650 5651 /* we don't currently perform any NetLabel based labeling here and it 5652 * isn't clear that we would want to do so anyway; while we could apply 5653 * labeling without the support of the TUN user the resulting labeled 5654 * traffic from the other end of the connection would almost certainly 5655 * cause confusion to the TUN user that had no idea network labeling 5656 * protocols were being used */ 5657 5658 sksec->sid = tunsec->sid; 5659 sksec->sclass = SECCLASS_TUN_SOCKET; 5660 5661 return 0; 5662 } 5663 5664 static int selinux_tun_dev_open(void *security) 5665 { 5666 struct tun_security_struct *tunsec = security; 5667 u32 sid = current_sid(); 5668 int err; 5669 5670 err = avc_has_perm(&selinux_state, 5671 sid, tunsec->sid, SECCLASS_TUN_SOCKET, 5672 TUN_SOCKET__RELABELFROM, NULL); 5673 if (err) 5674 return err; 5675 err = avc_has_perm(&selinux_state, 5676 sid, sid, SECCLASS_TUN_SOCKET, 5677 TUN_SOCKET__RELABELTO, NULL); 5678 if (err) 5679 return err; 5680 tunsec->sid = sid; 5681 5682 return 0; 5683 } 5684 5685 #ifdef CONFIG_NETFILTER 5686 5687 static unsigned int selinux_ip_forward(struct sk_buff *skb, 5688 const struct net_device *indev, 5689 u16 family) 5690 { 5691 int err; 5692 char *addrp; 5693 u32 peer_sid; 5694 struct common_audit_data ad; 5695 struct lsm_network_audit net = {0,}; 5696 u8 secmark_active; 5697 u8 netlbl_active; 5698 u8 peerlbl_active; 5699 5700 if (!selinux_policycap_netpeer()) 5701 return NF_ACCEPT; 5702 5703 secmark_active = selinux_secmark_enabled(); 5704 netlbl_active = netlbl_enabled(); 5705 peerlbl_active = selinux_peerlbl_enabled(); 5706 if (!secmark_active && !peerlbl_active) 5707 return NF_ACCEPT; 5708 5709 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0) 5710 return NF_DROP; 5711 5712 ad.type = LSM_AUDIT_DATA_NET; 5713 ad.u.net = &net; 5714 ad.u.net->netif = indev->ifindex; 5715 ad.u.net->family = family; 5716 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0) 5717 return NF_DROP; 5718 5719 if (peerlbl_active) { 5720 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex, 5721 addrp, family, peer_sid, &ad); 5722 if (err) { 5723 selinux_netlbl_err(skb, family, err, 1); 5724 return NF_DROP; 5725 } 5726 } 5727 5728 if (secmark_active) 5729 if (avc_has_perm(&selinux_state, 5730 peer_sid, skb->secmark, 5731 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad)) 5732 return NF_DROP; 5733 5734 if (netlbl_active) 5735 /* we do this in the FORWARD path and not the POST_ROUTING 5736 * path because we want to make sure we apply the necessary 5737 * labeling before IPsec is applied so we can leverage AH 5738 * protection */ 5739 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0) 5740 return NF_DROP; 5741 5742 return NF_ACCEPT; 5743 } 5744 5745 static unsigned int selinux_ipv4_forward(void *priv, 5746 struct sk_buff *skb, 5747 const struct nf_hook_state *state) 5748 { 5749 return selinux_ip_forward(skb, state->in, PF_INET); 5750 } 5751 5752 #if IS_ENABLED(CONFIG_IPV6) 5753 static unsigned int selinux_ipv6_forward(void *priv, 5754 struct sk_buff *skb, 5755 const struct nf_hook_state *state) 5756 { 5757 return selinux_ip_forward(skb, state->in, PF_INET6); 5758 } 5759 #endif /* IPV6 */ 5760 5761 static unsigned int selinux_ip_output(struct sk_buff *skb, 5762 u16 family) 5763 { 5764 struct sock *sk; 5765 u32 sid; 5766 5767 if (!netlbl_enabled()) 5768 return NF_ACCEPT; 5769 5770 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path 5771 * because we want to make sure we apply the necessary labeling 5772 * before IPsec is applied so we can leverage AH protection */ 5773 sk = skb->sk; 5774 if (sk) { 5775 struct sk_security_struct *sksec; 5776 5777 if (sk_listener(sk)) 5778 /* if the socket is the listening state then this 5779 * packet is a SYN-ACK packet which means it needs to 5780 * be labeled based on the connection/request_sock and 5781 * not the parent socket. unfortunately, we can't 5782 * lookup the request_sock yet as it isn't queued on 5783 * the parent socket until after the SYN-ACK is sent. 5784 * the "solution" is to simply pass the packet as-is 5785 * as any IP option based labeling should be copied 5786 * from the initial connection request (in the IP 5787 * layer). it is far from ideal, but until we get a 5788 * security label in the packet itself this is the 5789 * best we can do. */ 5790 return NF_ACCEPT; 5791 5792 /* standard practice, label using the parent socket */ 5793 sksec = sk->sk_security; 5794 sid = sksec->sid; 5795 } else 5796 sid = SECINITSID_KERNEL; 5797 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0) 5798 return NF_DROP; 5799 5800 return NF_ACCEPT; 5801 } 5802 5803 static unsigned int selinux_ipv4_output(void *priv, 5804 struct sk_buff *skb, 5805 const struct nf_hook_state *state) 5806 { 5807 return selinux_ip_output(skb, PF_INET); 5808 } 5809 5810 #if IS_ENABLED(CONFIG_IPV6) 5811 static unsigned int selinux_ipv6_output(void *priv, 5812 struct sk_buff *skb, 5813 const struct nf_hook_state *state) 5814 { 5815 return selinux_ip_output(skb, PF_INET6); 5816 } 5817 #endif /* IPV6 */ 5818 5819 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb, 5820 int ifindex, 5821 u16 family) 5822 { 5823 struct sock *sk = skb_to_full_sk(skb); 5824 struct sk_security_struct *sksec; 5825 struct common_audit_data ad; 5826 struct lsm_network_audit net = {0,}; 5827 char *addrp; 5828 u8 proto; 5829 5830 if (sk == NULL) 5831 return NF_ACCEPT; 5832 sksec = sk->sk_security; 5833 5834 ad.type = LSM_AUDIT_DATA_NET; 5835 ad.u.net = &net; 5836 ad.u.net->netif = ifindex; 5837 ad.u.net->family = family; 5838 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto)) 5839 return NF_DROP; 5840 5841 if (selinux_secmark_enabled()) 5842 if (avc_has_perm(&selinux_state, 5843 sksec->sid, skb->secmark, 5844 SECCLASS_PACKET, PACKET__SEND, &ad)) 5845 return NF_DROP_ERR(-ECONNREFUSED); 5846 5847 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto)) 5848 return NF_DROP_ERR(-ECONNREFUSED); 5849 5850 return NF_ACCEPT; 5851 } 5852 5853 static unsigned int selinux_ip_postroute(struct sk_buff *skb, 5854 const struct net_device *outdev, 5855 u16 family) 5856 { 5857 u32 secmark_perm; 5858 u32 peer_sid; 5859 int ifindex = outdev->ifindex; 5860 struct sock *sk; 5861 struct common_audit_data ad; 5862 struct lsm_network_audit net = {0,}; 5863 char *addrp; 5864 u8 secmark_active; 5865 u8 peerlbl_active; 5866 5867 /* If any sort of compatibility mode is enabled then handoff processing 5868 * to the selinux_ip_postroute_compat() function to deal with the 5869 * special handling. We do this in an attempt to keep this function 5870 * as fast and as clean as possible. */ 5871 if (!selinux_policycap_netpeer()) 5872 return selinux_ip_postroute_compat(skb, ifindex, family); 5873 5874 secmark_active = selinux_secmark_enabled(); 5875 peerlbl_active = selinux_peerlbl_enabled(); 5876 if (!secmark_active && !peerlbl_active) 5877 return NF_ACCEPT; 5878 5879 sk = skb_to_full_sk(skb); 5880 5881 #ifdef CONFIG_XFRM 5882 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec 5883 * packet transformation so allow the packet to pass without any checks 5884 * since we'll have another chance to perform access control checks 5885 * when the packet is on it's final way out. 5886 * NOTE: there appear to be some IPv6 multicast cases where skb->dst 5887 * is NULL, in this case go ahead and apply access control. 5888 * NOTE: if this is a local socket (skb->sk != NULL) that is in the 5889 * TCP listening state we cannot wait until the XFRM processing 5890 * is done as we will miss out on the SA label if we do; 5891 * unfortunately, this means more work, but it is only once per 5892 * connection. */ 5893 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL && 5894 !(sk && sk_listener(sk))) 5895 return NF_ACCEPT; 5896 #endif 5897 5898 if (sk == NULL) { 5899 /* Without an associated socket the packet is either coming 5900 * from the kernel or it is being forwarded; check the packet 5901 * to determine which and if the packet is being forwarded 5902 * query the packet directly to determine the security label. */ 5903 if (skb->skb_iif) { 5904 secmark_perm = PACKET__FORWARD_OUT; 5905 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid)) 5906 return NF_DROP; 5907 } else { 5908 secmark_perm = PACKET__SEND; 5909 peer_sid = SECINITSID_KERNEL; 5910 } 5911 } else if (sk_listener(sk)) { 5912 /* Locally generated packet but the associated socket is in the 5913 * listening state which means this is a SYN-ACK packet. In 5914 * this particular case the correct security label is assigned 5915 * to the connection/request_sock but unfortunately we can't 5916 * query the request_sock as it isn't queued on the parent 5917 * socket until after the SYN-ACK packet is sent; the only 5918 * viable choice is to regenerate the label like we do in 5919 * selinux_inet_conn_request(). See also selinux_ip_output() 5920 * for similar problems. */ 5921 u32 skb_sid; 5922 struct sk_security_struct *sksec; 5923 5924 sksec = sk->sk_security; 5925 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid)) 5926 return NF_DROP; 5927 /* At this point, if the returned skb peerlbl is SECSID_NULL 5928 * and the packet has been through at least one XFRM 5929 * transformation then we must be dealing with the "final" 5930 * form of labeled IPsec packet; since we've already applied 5931 * all of our access controls on this packet we can safely 5932 * pass the packet. */ 5933 if (skb_sid == SECSID_NULL) { 5934 switch (family) { 5935 case PF_INET: 5936 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED) 5937 return NF_ACCEPT; 5938 break; 5939 case PF_INET6: 5940 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED) 5941 return NF_ACCEPT; 5942 break; 5943 default: 5944 return NF_DROP_ERR(-ECONNREFUSED); 5945 } 5946 } 5947 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid)) 5948 return NF_DROP; 5949 secmark_perm = PACKET__SEND; 5950 } else { 5951 /* Locally generated packet, fetch the security label from the 5952 * associated socket. */ 5953 struct sk_security_struct *sksec = sk->sk_security; 5954 peer_sid = sksec->sid; 5955 secmark_perm = PACKET__SEND; 5956 } 5957 5958 ad.type = LSM_AUDIT_DATA_NET; 5959 ad.u.net = &net; 5960 ad.u.net->netif = ifindex; 5961 ad.u.net->family = family; 5962 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL)) 5963 return NF_DROP; 5964 5965 if (secmark_active) 5966 if (avc_has_perm(&selinux_state, 5967 peer_sid, skb->secmark, 5968 SECCLASS_PACKET, secmark_perm, &ad)) 5969 return NF_DROP_ERR(-ECONNREFUSED); 5970 5971 if (peerlbl_active) { 5972 u32 if_sid; 5973 u32 node_sid; 5974 5975 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid)) 5976 return NF_DROP; 5977 if (avc_has_perm(&selinux_state, 5978 peer_sid, if_sid, 5979 SECCLASS_NETIF, NETIF__EGRESS, &ad)) 5980 return NF_DROP_ERR(-ECONNREFUSED); 5981 5982 if (sel_netnode_sid(addrp, family, &node_sid)) 5983 return NF_DROP; 5984 if (avc_has_perm(&selinux_state, 5985 peer_sid, node_sid, 5986 SECCLASS_NODE, NODE__SENDTO, &ad)) 5987 return NF_DROP_ERR(-ECONNREFUSED); 5988 } 5989 5990 return NF_ACCEPT; 5991 } 5992 5993 static unsigned int selinux_ipv4_postroute(void *priv, 5994 struct sk_buff *skb, 5995 const struct nf_hook_state *state) 5996 { 5997 return selinux_ip_postroute(skb, state->out, PF_INET); 5998 } 5999 6000 #if IS_ENABLED(CONFIG_IPV6) 6001 static unsigned int selinux_ipv6_postroute(void *priv, 6002 struct sk_buff *skb, 6003 const struct nf_hook_state *state) 6004 { 6005 return selinux_ip_postroute(skb, state->out, PF_INET6); 6006 } 6007 #endif /* IPV6 */ 6008 6009 #endif /* CONFIG_NETFILTER */ 6010 6011 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 6012 { 6013 int rc = 0; 6014 unsigned int msg_len; 6015 unsigned int data_len = skb->len; 6016 unsigned char *data = skb->data; 6017 struct nlmsghdr *nlh; 6018 struct sk_security_struct *sksec = sk->sk_security; 6019 u16 sclass = sksec->sclass; 6020 u32 perm; 6021 6022 while (data_len >= nlmsg_total_size(0)) { 6023 nlh = (struct nlmsghdr *)data; 6024 6025 /* NOTE: the nlmsg_len field isn't reliably set by some netlink 6026 * users which means we can't reject skb's with bogus 6027 * length fields; our solution is to follow what 6028 * netlink_rcv_skb() does and simply skip processing at 6029 * messages with length fields that are clearly junk 6030 */ 6031 if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len) 6032 return 0; 6033 6034 rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm); 6035 if (rc == 0) { 6036 rc = sock_has_perm(sk, perm); 6037 if (rc) 6038 return rc; 6039 } else if (rc == -EINVAL) { 6040 /* -EINVAL is a missing msg/perm mapping */ 6041 pr_warn_ratelimited("SELinux: unrecognized netlink" 6042 " message: protocol=%hu nlmsg_type=%hu sclass=%s" 6043 " pid=%d comm=%s\n", 6044 sk->sk_protocol, nlh->nlmsg_type, 6045 secclass_map[sclass - 1].name, 6046 task_pid_nr(current), current->comm); 6047 if (enforcing_enabled(&selinux_state) && 6048 !security_get_allow_unknown(&selinux_state)) 6049 return rc; 6050 rc = 0; 6051 } else if (rc == -ENOENT) { 6052 /* -ENOENT is a missing socket/class mapping, ignore */ 6053 rc = 0; 6054 } else { 6055 return rc; 6056 } 6057 6058 /* move to the next message after applying netlink padding */ 6059 msg_len = NLMSG_ALIGN(nlh->nlmsg_len); 6060 if (msg_len >= data_len) 6061 return 0; 6062 data_len -= msg_len; 6063 data += msg_len; 6064 } 6065 6066 return rc; 6067 } 6068 6069 static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass) 6070 { 6071 isec->sclass = sclass; 6072 isec->sid = current_sid(); 6073 } 6074 6075 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 6076 u32 perms) 6077 { 6078 struct ipc_security_struct *isec; 6079 struct common_audit_data ad; 6080 u32 sid = current_sid(); 6081 6082 isec = selinux_ipc(ipc_perms); 6083 6084 ad.type = LSM_AUDIT_DATA_IPC; 6085 ad.u.ipc_id = ipc_perms->key; 6086 6087 return avc_has_perm(&selinux_state, 6088 sid, isec->sid, isec->sclass, perms, &ad); 6089 } 6090 6091 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 6092 { 6093 struct msg_security_struct *msec; 6094 6095 msec = selinux_msg_msg(msg); 6096 msec->sid = SECINITSID_UNLABELED; 6097 6098 return 0; 6099 } 6100 6101 /* message queue security operations */ 6102 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq) 6103 { 6104 struct ipc_security_struct *isec; 6105 struct common_audit_data ad; 6106 u32 sid = current_sid(); 6107 int rc; 6108 6109 isec = selinux_ipc(msq); 6110 ipc_init_security(isec, SECCLASS_MSGQ); 6111 6112 ad.type = LSM_AUDIT_DATA_IPC; 6113 ad.u.ipc_id = msq->key; 6114 6115 rc = avc_has_perm(&selinux_state, 6116 sid, isec->sid, SECCLASS_MSGQ, 6117 MSGQ__CREATE, &ad); 6118 return rc; 6119 } 6120 6121 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 6122 { 6123 struct ipc_security_struct *isec; 6124 struct common_audit_data ad; 6125 u32 sid = current_sid(); 6126 6127 isec = selinux_ipc(msq); 6128 6129 ad.type = LSM_AUDIT_DATA_IPC; 6130 ad.u.ipc_id = msq->key; 6131 6132 return avc_has_perm(&selinux_state, 6133 sid, isec->sid, SECCLASS_MSGQ, 6134 MSGQ__ASSOCIATE, &ad); 6135 } 6136 6137 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 6138 { 6139 int err; 6140 int perms; 6141 6142 switch (cmd) { 6143 case IPC_INFO: 6144 case MSG_INFO: 6145 /* No specific object, just general system-wide information. */ 6146 return avc_has_perm(&selinux_state, 6147 current_sid(), SECINITSID_KERNEL, 6148 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 6149 case IPC_STAT: 6150 case MSG_STAT: 6151 case MSG_STAT_ANY: 6152 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 6153 break; 6154 case IPC_SET: 6155 perms = MSGQ__SETATTR; 6156 break; 6157 case IPC_RMID: 6158 perms = MSGQ__DESTROY; 6159 break; 6160 default: 6161 return 0; 6162 } 6163 6164 err = ipc_has_perm(msq, perms); 6165 return err; 6166 } 6167 6168 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg) 6169 { 6170 struct ipc_security_struct *isec; 6171 struct msg_security_struct *msec; 6172 struct common_audit_data ad; 6173 u32 sid = current_sid(); 6174 int rc; 6175 6176 isec = selinux_ipc(msq); 6177 msec = selinux_msg_msg(msg); 6178 6179 /* 6180 * First time through, need to assign label to the message 6181 */ 6182 if (msec->sid == SECINITSID_UNLABELED) { 6183 /* 6184 * Compute new sid based on current process and 6185 * message queue this message will be stored in 6186 */ 6187 rc = security_transition_sid(&selinux_state, sid, isec->sid, 6188 SECCLASS_MSG, NULL, &msec->sid); 6189 if (rc) 6190 return rc; 6191 } 6192 6193 ad.type = LSM_AUDIT_DATA_IPC; 6194 ad.u.ipc_id = msq->key; 6195 6196 /* Can this process write to the queue? */ 6197 rc = avc_has_perm(&selinux_state, 6198 sid, isec->sid, SECCLASS_MSGQ, 6199 MSGQ__WRITE, &ad); 6200 if (!rc) 6201 /* Can this process send the message */ 6202 rc = avc_has_perm(&selinux_state, 6203 sid, msec->sid, SECCLASS_MSG, 6204 MSG__SEND, &ad); 6205 if (!rc) 6206 /* Can the message be put in the queue? */ 6207 rc = avc_has_perm(&selinux_state, 6208 msec->sid, isec->sid, SECCLASS_MSGQ, 6209 MSGQ__ENQUEUE, &ad); 6210 6211 return rc; 6212 } 6213 6214 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 6215 struct task_struct *target, 6216 long type, int mode) 6217 { 6218 struct ipc_security_struct *isec; 6219 struct msg_security_struct *msec; 6220 struct common_audit_data ad; 6221 u32 sid = task_sid_subj(target); 6222 int rc; 6223 6224 isec = selinux_ipc(msq); 6225 msec = selinux_msg_msg(msg); 6226 6227 ad.type = LSM_AUDIT_DATA_IPC; 6228 ad.u.ipc_id = msq->key; 6229 6230 rc = avc_has_perm(&selinux_state, 6231 sid, isec->sid, 6232 SECCLASS_MSGQ, MSGQ__READ, &ad); 6233 if (!rc) 6234 rc = avc_has_perm(&selinux_state, 6235 sid, msec->sid, 6236 SECCLASS_MSG, MSG__RECEIVE, &ad); 6237 return rc; 6238 } 6239 6240 /* Shared Memory security operations */ 6241 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp) 6242 { 6243 struct ipc_security_struct *isec; 6244 struct common_audit_data ad; 6245 u32 sid = current_sid(); 6246 int rc; 6247 6248 isec = selinux_ipc(shp); 6249 ipc_init_security(isec, SECCLASS_SHM); 6250 6251 ad.type = LSM_AUDIT_DATA_IPC; 6252 ad.u.ipc_id = shp->key; 6253 6254 rc = avc_has_perm(&selinux_state, 6255 sid, isec->sid, SECCLASS_SHM, 6256 SHM__CREATE, &ad); 6257 return rc; 6258 } 6259 6260 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg) 6261 { 6262 struct ipc_security_struct *isec; 6263 struct common_audit_data ad; 6264 u32 sid = current_sid(); 6265 6266 isec = selinux_ipc(shp); 6267 6268 ad.type = LSM_AUDIT_DATA_IPC; 6269 ad.u.ipc_id = shp->key; 6270 6271 return avc_has_perm(&selinux_state, 6272 sid, isec->sid, SECCLASS_SHM, 6273 SHM__ASSOCIATE, &ad); 6274 } 6275 6276 /* Note, at this point, shp is locked down */ 6277 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 6278 { 6279 int perms; 6280 int err; 6281 6282 switch (cmd) { 6283 case IPC_INFO: 6284 case SHM_INFO: 6285 /* No specific object, just general system-wide information. */ 6286 return avc_has_perm(&selinux_state, 6287 current_sid(), SECINITSID_KERNEL, 6288 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 6289 case IPC_STAT: 6290 case SHM_STAT: 6291 case SHM_STAT_ANY: 6292 perms = SHM__GETATTR | SHM__ASSOCIATE; 6293 break; 6294 case IPC_SET: 6295 perms = SHM__SETATTR; 6296 break; 6297 case SHM_LOCK: 6298 case SHM_UNLOCK: 6299 perms = SHM__LOCK; 6300 break; 6301 case IPC_RMID: 6302 perms = SHM__DESTROY; 6303 break; 6304 default: 6305 return 0; 6306 } 6307 6308 err = ipc_has_perm(shp, perms); 6309 return err; 6310 } 6311 6312 static int selinux_shm_shmat(struct kern_ipc_perm *shp, 6313 char __user *shmaddr, int shmflg) 6314 { 6315 u32 perms; 6316 6317 if (shmflg & SHM_RDONLY) 6318 perms = SHM__READ; 6319 else 6320 perms = SHM__READ | SHM__WRITE; 6321 6322 return ipc_has_perm(shp, perms); 6323 } 6324 6325 /* Semaphore security operations */ 6326 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma) 6327 { 6328 struct ipc_security_struct *isec; 6329 struct common_audit_data ad; 6330 u32 sid = current_sid(); 6331 int rc; 6332 6333 isec = selinux_ipc(sma); 6334 ipc_init_security(isec, SECCLASS_SEM); 6335 6336 ad.type = LSM_AUDIT_DATA_IPC; 6337 ad.u.ipc_id = sma->key; 6338 6339 rc = avc_has_perm(&selinux_state, 6340 sid, isec->sid, SECCLASS_SEM, 6341 SEM__CREATE, &ad); 6342 return rc; 6343 } 6344 6345 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg) 6346 { 6347 struct ipc_security_struct *isec; 6348 struct common_audit_data ad; 6349 u32 sid = current_sid(); 6350 6351 isec = selinux_ipc(sma); 6352 6353 ad.type = LSM_AUDIT_DATA_IPC; 6354 ad.u.ipc_id = sma->key; 6355 6356 return avc_has_perm(&selinux_state, 6357 sid, isec->sid, SECCLASS_SEM, 6358 SEM__ASSOCIATE, &ad); 6359 } 6360 6361 /* Note, at this point, sma is locked down */ 6362 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd) 6363 { 6364 int err; 6365 u32 perms; 6366 6367 switch (cmd) { 6368 case IPC_INFO: 6369 case SEM_INFO: 6370 /* No specific object, just general system-wide information. */ 6371 return avc_has_perm(&selinux_state, 6372 current_sid(), SECINITSID_KERNEL, 6373 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 6374 case GETPID: 6375 case GETNCNT: 6376 case GETZCNT: 6377 perms = SEM__GETATTR; 6378 break; 6379 case GETVAL: 6380 case GETALL: 6381 perms = SEM__READ; 6382 break; 6383 case SETVAL: 6384 case SETALL: 6385 perms = SEM__WRITE; 6386 break; 6387 case IPC_RMID: 6388 perms = SEM__DESTROY; 6389 break; 6390 case IPC_SET: 6391 perms = SEM__SETATTR; 6392 break; 6393 case IPC_STAT: 6394 case SEM_STAT: 6395 case SEM_STAT_ANY: 6396 perms = SEM__GETATTR | SEM__ASSOCIATE; 6397 break; 6398 default: 6399 return 0; 6400 } 6401 6402 err = ipc_has_perm(sma, perms); 6403 return err; 6404 } 6405 6406 static int selinux_sem_semop(struct kern_ipc_perm *sma, 6407 struct sembuf *sops, unsigned nsops, int alter) 6408 { 6409 u32 perms; 6410 6411 if (alter) 6412 perms = SEM__READ | SEM__WRITE; 6413 else 6414 perms = SEM__READ; 6415 6416 return ipc_has_perm(sma, perms); 6417 } 6418 6419 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 6420 { 6421 u32 av = 0; 6422 6423 av = 0; 6424 if (flag & S_IRUGO) 6425 av |= IPC__UNIX_READ; 6426 if (flag & S_IWUGO) 6427 av |= IPC__UNIX_WRITE; 6428 6429 if (av == 0) 6430 return 0; 6431 6432 return ipc_has_perm(ipcp, av); 6433 } 6434 6435 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 6436 { 6437 struct ipc_security_struct *isec = selinux_ipc(ipcp); 6438 *secid = isec->sid; 6439 } 6440 6441 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode) 6442 { 6443 if (inode) 6444 inode_doinit_with_dentry(inode, dentry); 6445 } 6446 6447 static int selinux_getprocattr(struct task_struct *p, 6448 char *name, char **value) 6449 { 6450 const struct task_security_struct *__tsec; 6451 u32 sid; 6452 int error; 6453 unsigned len; 6454 6455 rcu_read_lock(); 6456 __tsec = selinux_cred(__task_cred(p)); 6457 6458 if (current != p) { 6459 error = avc_has_perm(&selinux_state, 6460 current_sid(), __tsec->sid, 6461 SECCLASS_PROCESS, PROCESS__GETATTR, NULL); 6462 if (error) 6463 goto bad; 6464 } 6465 6466 if (!strcmp(name, "current")) 6467 sid = __tsec->sid; 6468 else if (!strcmp(name, "prev")) 6469 sid = __tsec->osid; 6470 else if (!strcmp(name, "exec")) 6471 sid = __tsec->exec_sid; 6472 else if (!strcmp(name, "fscreate")) 6473 sid = __tsec->create_sid; 6474 else if (!strcmp(name, "keycreate")) 6475 sid = __tsec->keycreate_sid; 6476 else if (!strcmp(name, "sockcreate")) 6477 sid = __tsec->sockcreate_sid; 6478 else { 6479 error = -EINVAL; 6480 goto bad; 6481 } 6482 rcu_read_unlock(); 6483 6484 if (!sid) 6485 return 0; 6486 6487 error = security_sid_to_context(&selinux_state, sid, value, &len); 6488 if (error) 6489 return error; 6490 return len; 6491 6492 bad: 6493 rcu_read_unlock(); 6494 return error; 6495 } 6496 6497 static int selinux_setprocattr(const char *name, void *value, size_t size) 6498 { 6499 struct task_security_struct *tsec; 6500 struct cred *new; 6501 u32 mysid = current_sid(), sid = 0, ptsid; 6502 int error; 6503 char *str = value; 6504 6505 /* 6506 * Basic control over ability to set these attributes at all. 6507 */ 6508 if (!strcmp(name, "exec")) 6509 error = avc_has_perm(&selinux_state, 6510 mysid, mysid, SECCLASS_PROCESS, 6511 PROCESS__SETEXEC, NULL); 6512 else if (!strcmp(name, "fscreate")) 6513 error = avc_has_perm(&selinux_state, 6514 mysid, mysid, SECCLASS_PROCESS, 6515 PROCESS__SETFSCREATE, NULL); 6516 else if (!strcmp(name, "keycreate")) 6517 error = avc_has_perm(&selinux_state, 6518 mysid, mysid, SECCLASS_PROCESS, 6519 PROCESS__SETKEYCREATE, NULL); 6520 else if (!strcmp(name, "sockcreate")) 6521 error = avc_has_perm(&selinux_state, 6522 mysid, mysid, SECCLASS_PROCESS, 6523 PROCESS__SETSOCKCREATE, NULL); 6524 else if (!strcmp(name, "current")) 6525 error = avc_has_perm(&selinux_state, 6526 mysid, mysid, SECCLASS_PROCESS, 6527 PROCESS__SETCURRENT, NULL); 6528 else 6529 error = -EINVAL; 6530 if (error) 6531 return error; 6532 6533 /* Obtain a SID for the context, if one was specified. */ 6534 if (size && str[0] && str[0] != '\n') { 6535 if (str[size-1] == '\n') { 6536 str[size-1] = 0; 6537 size--; 6538 } 6539 error = security_context_to_sid(&selinux_state, value, size, 6540 &sid, GFP_KERNEL); 6541 if (error == -EINVAL && !strcmp(name, "fscreate")) { 6542 if (!has_cap_mac_admin(true)) { 6543 struct audit_buffer *ab; 6544 size_t audit_size; 6545 6546 /* We strip a nul only if it is at the end, otherwise the 6547 * context contains a nul and we should audit that */ 6548 if (str[size - 1] == '\0') 6549 audit_size = size - 1; 6550 else 6551 audit_size = size; 6552 ab = audit_log_start(audit_context(), 6553 GFP_ATOMIC, 6554 AUDIT_SELINUX_ERR); 6555 audit_log_format(ab, "op=fscreate invalid_context="); 6556 audit_log_n_untrustedstring(ab, value, audit_size); 6557 audit_log_end(ab); 6558 6559 return error; 6560 } 6561 error = security_context_to_sid_force( 6562 &selinux_state, 6563 value, size, &sid); 6564 } 6565 if (error) 6566 return error; 6567 } 6568 6569 new = prepare_creds(); 6570 if (!new) 6571 return -ENOMEM; 6572 6573 /* Permission checking based on the specified context is 6574 performed during the actual operation (execve, 6575 open/mkdir/...), when we know the full context of the 6576 operation. See selinux_bprm_creds_for_exec for the execve 6577 checks and may_create for the file creation checks. The 6578 operation will then fail if the context is not permitted. */ 6579 tsec = selinux_cred(new); 6580 if (!strcmp(name, "exec")) { 6581 tsec->exec_sid = sid; 6582 } else if (!strcmp(name, "fscreate")) { 6583 tsec->create_sid = sid; 6584 } else if (!strcmp(name, "keycreate")) { 6585 if (sid) { 6586 error = avc_has_perm(&selinux_state, mysid, sid, 6587 SECCLASS_KEY, KEY__CREATE, NULL); 6588 if (error) 6589 goto abort_change; 6590 } 6591 tsec->keycreate_sid = sid; 6592 } else if (!strcmp(name, "sockcreate")) { 6593 tsec->sockcreate_sid = sid; 6594 } else if (!strcmp(name, "current")) { 6595 error = -EINVAL; 6596 if (sid == 0) 6597 goto abort_change; 6598 6599 /* Only allow single threaded processes to change context */ 6600 error = -EPERM; 6601 if (!current_is_single_threaded()) { 6602 error = security_bounded_transition(&selinux_state, 6603 tsec->sid, sid); 6604 if (error) 6605 goto abort_change; 6606 } 6607 6608 /* Check permissions for the transition. */ 6609 error = avc_has_perm(&selinux_state, 6610 tsec->sid, sid, SECCLASS_PROCESS, 6611 PROCESS__DYNTRANSITION, NULL); 6612 if (error) 6613 goto abort_change; 6614 6615 /* Check for ptracing, and update the task SID if ok. 6616 Otherwise, leave SID unchanged and fail. */ 6617 ptsid = ptrace_parent_sid(); 6618 if (ptsid != 0) { 6619 error = avc_has_perm(&selinux_state, 6620 ptsid, sid, SECCLASS_PROCESS, 6621 PROCESS__PTRACE, NULL); 6622 if (error) 6623 goto abort_change; 6624 } 6625 6626 tsec->sid = sid; 6627 } else { 6628 error = -EINVAL; 6629 goto abort_change; 6630 } 6631 6632 commit_creds(new); 6633 return size; 6634 6635 abort_change: 6636 abort_creds(new); 6637 return error; 6638 } 6639 6640 static int selinux_ismaclabel(const char *name) 6641 { 6642 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0); 6643 } 6644 6645 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 6646 { 6647 return security_sid_to_context(&selinux_state, secid, 6648 secdata, seclen); 6649 } 6650 6651 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 6652 { 6653 return security_context_to_sid(&selinux_state, secdata, seclen, 6654 secid, GFP_KERNEL); 6655 } 6656 6657 static void selinux_release_secctx(char *secdata, u32 seclen) 6658 { 6659 kfree(secdata); 6660 } 6661 6662 static void selinux_inode_invalidate_secctx(struct inode *inode) 6663 { 6664 struct inode_security_struct *isec = selinux_inode(inode); 6665 6666 spin_lock(&isec->lock); 6667 isec->initialized = LABEL_INVALID; 6668 spin_unlock(&isec->lock); 6669 } 6670 6671 /* 6672 * called with inode->i_mutex locked 6673 */ 6674 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 6675 { 6676 int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, 6677 ctx, ctxlen, 0); 6678 /* Do not return error when suppressing label (SBLABEL_MNT not set). */ 6679 return rc == -EOPNOTSUPP ? 0 : rc; 6680 } 6681 6682 /* 6683 * called with inode->i_mutex locked 6684 */ 6685 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 6686 { 6687 return __vfs_setxattr_noperm(&init_user_ns, dentry, XATTR_NAME_SELINUX, 6688 ctx, ctxlen, 0); 6689 } 6690 6691 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 6692 { 6693 int len = 0; 6694 len = selinux_inode_getsecurity(&init_user_ns, inode, 6695 XATTR_SELINUX_SUFFIX, ctx, true); 6696 if (len < 0) 6697 return len; 6698 *ctxlen = len; 6699 return 0; 6700 } 6701 #ifdef CONFIG_KEYS 6702 6703 static int selinux_key_alloc(struct key *k, const struct cred *cred, 6704 unsigned long flags) 6705 { 6706 const struct task_security_struct *tsec; 6707 struct key_security_struct *ksec; 6708 6709 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); 6710 if (!ksec) 6711 return -ENOMEM; 6712 6713 tsec = selinux_cred(cred); 6714 if (tsec->keycreate_sid) 6715 ksec->sid = tsec->keycreate_sid; 6716 else 6717 ksec->sid = tsec->sid; 6718 6719 k->security = ksec; 6720 return 0; 6721 } 6722 6723 static void selinux_key_free(struct key *k) 6724 { 6725 struct key_security_struct *ksec = k->security; 6726 6727 k->security = NULL; 6728 kfree(ksec); 6729 } 6730 6731 static int selinux_key_permission(key_ref_t key_ref, 6732 const struct cred *cred, 6733 enum key_need_perm need_perm) 6734 { 6735 struct key *key; 6736 struct key_security_struct *ksec; 6737 u32 perm, sid; 6738 6739 switch (need_perm) { 6740 case KEY_NEED_VIEW: 6741 perm = KEY__VIEW; 6742 break; 6743 case KEY_NEED_READ: 6744 perm = KEY__READ; 6745 break; 6746 case KEY_NEED_WRITE: 6747 perm = KEY__WRITE; 6748 break; 6749 case KEY_NEED_SEARCH: 6750 perm = KEY__SEARCH; 6751 break; 6752 case KEY_NEED_LINK: 6753 perm = KEY__LINK; 6754 break; 6755 case KEY_NEED_SETATTR: 6756 perm = KEY__SETATTR; 6757 break; 6758 case KEY_NEED_UNLINK: 6759 case KEY_SYSADMIN_OVERRIDE: 6760 case KEY_AUTHTOKEN_OVERRIDE: 6761 case KEY_DEFER_PERM_CHECK: 6762 return 0; 6763 default: 6764 WARN_ON(1); 6765 return -EPERM; 6766 6767 } 6768 6769 sid = cred_sid(cred); 6770 key = key_ref_to_ptr(key_ref); 6771 ksec = key->security; 6772 6773 return avc_has_perm(&selinux_state, 6774 sid, ksec->sid, SECCLASS_KEY, perm, NULL); 6775 } 6776 6777 static int selinux_key_getsecurity(struct key *key, char **_buffer) 6778 { 6779 struct key_security_struct *ksec = key->security; 6780 char *context = NULL; 6781 unsigned len; 6782 int rc; 6783 6784 rc = security_sid_to_context(&selinux_state, ksec->sid, 6785 &context, &len); 6786 if (!rc) 6787 rc = len; 6788 *_buffer = context; 6789 return rc; 6790 } 6791 6792 #ifdef CONFIG_KEY_NOTIFICATIONS 6793 static int selinux_watch_key(struct key *key) 6794 { 6795 struct key_security_struct *ksec = key->security; 6796 u32 sid = current_sid(); 6797 6798 return avc_has_perm(&selinux_state, 6799 sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL); 6800 } 6801 #endif 6802 #endif 6803 6804 #ifdef CONFIG_SECURITY_INFINIBAND 6805 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val) 6806 { 6807 struct common_audit_data ad; 6808 int err; 6809 u32 sid = 0; 6810 struct ib_security_struct *sec = ib_sec; 6811 struct lsm_ibpkey_audit ibpkey; 6812 6813 err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid); 6814 if (err) 6815 return err; 6816 6817 ad.type = LSM_AUDIT_DATA_IBPKEY; 6818 ibpkey.subnet_prefix = subnet_prefix; 6819 ibpkey.pkey = pkey_val; 6820 ad.u.ibpkey = &ibpkey; 6821 return avc_has_perm(&selinux_state, 6822 sec->sid, sid, 6823 SECCLASS_INFINIBAND_PKEY, 6824 INFINIBAND_PKEY__ACCESS, &ad); 6825 } 6826 6827 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name, 6828 u8 port_num) 6829 { 6830 struct common_audit_data ad; 6831 int err; 6832 u32 sid = 0; 6833 struct ib_security_struct *sec = ib_sec; 6834 struct lsm_ibendport_audit ibendport; 6835 6836 err = security_ib_endport_sid(&selinux_state, dev_name, port_num, 6837 &sid); 6838 6839 if (err) 6840 return err; 6841 6842 ad.type = LSM_AUDIT_DATA_IBENDPORT; 6843 ibendport.dev_name = dev_name; 6844 ibendport.port = port_num; 6845 ad.u.ibendport = &ibendport; 6846 return avc_has_perm(&selinux_state, 6847 sec->sid, sid, 6848 SECCLASS_INFINIBAND_ENDPORT, 6849 INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad); 6850 } 6851 6852 static int selinux_ib_alloc_security(void **ib_sec) 6853 { 6854 struct ib_security_struct *sec; 6855 6856 sec = kzalloc(sizeof(*sec), GFP_KERNEL); 6857 if (!sec) 6858 return -ENOMEM; 6859 sec->sid = current_sid(); 6860 6861 *ib_sec = sec; 6862 return 0; 6863 } 6864 6865 static void selinux_ib_free_security(void *ib_sec) 6866 { 6867 kfree(ib_sec); 6868 } 6869 #endif 6870 6871 #ifdef CONFIG_BPF_SYSCALL 6872 static int selinux_bpf(int cmd, union bpf_attr *attr, 6873 unsigned int size) 6874 { 6875 u32 sid = current_sid(); 6876 int ret; 6877 6878 switch (cmd) { 6879 case BPF_MAP_CREATE: 6880 ret = avc_has_perm(&selinux_state, 6881 sid, sid, SECCLASS_BPF, BPF__MAP_CREATE, 6882 NULL); 6883 break; 6884 case BPF_PROG_LOAD: 6885 ret = avc_has_perm(&selinux_state, 6886 sid, sid, SECCLASS_BPF, BPF__PROG_LOAD, 6887 NULL); 6888 break; 6889 default: 6890 ret = 0; 6891 break; 6892 } 6893 6894 return ret; 6895 } 6896 6897 static u32 bpf_map_fmode_to_av(fmode_t fmode) 6898 { 6899 u32 av = 0; 6900 6901 if (fmode & FMODE_READ) 6902 av |= BPF__MAP_READ; 6903 if (fmode & FMODE_WRITE) 6904 av |= BPF__MAP_WRITE; 6905 return av; 6906 } 6907 6908 /* This function will check the file pass through unix socket or binder to see 6909 * if it is a bpf related object. And apply correspinding checks on the bpf 6910 * object based on the type. The bpf maps and programs, not like other files and 6911 * socket, are using a shared anonymous inode inside the kernel as their inode. 6912 * So checking that inode cannot identify if the process have privilege to 6913 * access the bpf object and that's why we have to add this additional check in 6914 * selinux_file_receive and selinux_binder_transfer_files. 6915 */ 6916 static int bpf_fd_pass(struct file *file, u32 sid) 6917 { 6918 struct bpf_security_struct *bpfsec; 6919 struct bpf_prog *prog; 6920 struct bpf_map *map; 6921 int ret; 6922 6923 if (file->f_op == &bpf_map_fops) { 6924 map = file->private_data; 6925 bpfsec = map->security; 6926 ret = avc_has_perm(&selinux_state, 6927 sid, bpfsec->sid, SECCLASS_BPF, 6928 bpf_map_fmode_to_av(file->f_mode), NULL); 6929 if (ret) 6930 return ret; 6931 } else if (file->f_op == &bpf_prog_fops) { 6932 prog = file->private_data; 6933 bpfsec = prog->aux->security; 6934 ret = avc_has_perm(&selinux_state, 6935 sid, bpfsec->sid, SECCLASS_BPF, 6936 BPF__PROG_RUN, NULL); 6937 if (ret) 6938 return ret; 6939 } 6940 return 0; 6941 } 6942 6943 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode) 6944 { 6945 u32 sid = current_sid(); 6946 struct bpf_security_struct *bpfsec; 6947 6948 bpfsec = map->security; 6949 return avc_has_perm(&selinux_state, 6950 sid, bpfsec->sid, SECCLASS_BPF, 6951 bpf_map_fmode_to_av(fmode), NULL); 6952 } 6953 6954 static int selinux_bpf_prog(struct bpf_prog *prog) 6955 { 6956 u32 sid = current_sid(); 6957 struct bpf_security_struct *bpfsec; 6958 6959 bpfsec = prog->aux->security; 6960 return avc_has_perm(&selinux_state, 6961 sid, bpfsec->sid, SECCLASS_BPF, 6962 BPF__PROG_RUN, NULL); 6963 } 6964 6965 static int selinux_bpf_map_alloc(struct bpf_map *map) 6966 { 6967 struct bpf_security_struct *bpfsec; 6968 6969 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL); 6970 if (!bpfsec) 6971 return -ENOMEM; 6972 6973 bpfsec->sid = current_sid(); 6974 map->security = bpfsec; 6975 6976 return 0; 6977 } 6978 6979 static void selinux_bpf_map_free(struct bpf_map *map) 6980 { 6981 struct bpf_security_struct *bpfsec = map->security; 6982 6983 map->security = NULL; 6984 kfree(bpfsec); 6985 } 6986 6987 static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux) 6988 { 6989 struct bpf_security_struct *bpfsec; 6990 6991 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL); 6992 if (!bpfsec) 6993 return -ENOMEM; 6994 6995 bpfsec->sid = current_sid(); 6996 aux->security = bpfsec; 6997 6998 return 0; 6999 } 7000 7001 static void selinux_bpf_prog_free(struct bpf_prog_aux *aux) 7002 { 7003 struct bpf_security_struct *bpfsec = aux->security; 7004 7005 aux->security = NULL; 7006 kfree(bpfsec); 7007 } 7008 #endif 7009 7010 static int selinux_lockdown(enum lockdown_reason what) 7011 { 7012 struct common_audit_data ad; 7013 u32 sid = current_sid(); 7014 int invalid_reason = (what <= LOCKDOWN_NONE) || 7015 (what == LOCKDOWN_INTEGRITY_MAX) || 7016 (what >= LOCKDOWN_CONFIDENTIALITY_MAX); 7017 7018 if (WARN(invalid_reason, "Invalid lockdown reason")) { 7019 audit_log(audit_context(), 7020 GFP_ATOMIC, AUDIT_SELINUX_ERR, 7021 "lockdown_reason=invalid"); 7022 return -EINVAL; 7023 } 7024 7025 ad.type = LSM_AUDIT_DATA_LOCKDOWN; 7026 ad.u.reason = what; 7027 7028 if (what <= LOCKDOWN_INTEGRITY_MAX) 7029 return avc_has_perm(&selinux_state, 7030 sid, sid, SECCLASS_LOCKDOWN, 7031 LOCKDOWN__INTEGRITY, &ad); 7032 else 7033 return avc_has_perm(&selinux_state, 7034 sid, sid, SECCLASS_LOCKDOWN, 7035 LOCKDOWN__CONFIDENTIALITY, &ad); 7036 } 7037 7038 struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = { 7039 .lbs_cred = sizeof(struct task_security_struct), 7040 .lbs_file = sizeof(struct file_security_struct), 7041 .lbs_inode = sizeof(struct inode_security_struct), 7042 .lbs_ipc = sizeof(struct ipc_security_struct), 7043 .lbs_msg_msg = sizeof(struct msg_security_struct), 7044 .lbs_superblock = sizeof(struct superblock_security_struct), 7045 }; 7046 7047 #ifdef CONFIG_PERF_EVENTS 7048 static int selinux_perf_event_open(struct perf_event_attr *attr, int type) 7049 { 7050 u32 requested, sid = current_sid(); 7051 7052 if (type == PERF_SECURITY_OPEN) 7053 requested = PERF_EVENT__OPEN; 7054 else if (type == PERF_SECURITY_CPU) 7055 requested = PERF_EVENT__CPU; 7056 else if (type == PERF_SECURITY_KERNEL) 7057 requested = PERF_EVENT__KERNEL; 7058 else if (type == PERF_SECURITY_TRACEPOINT) 7059 requested = PERF_EVENT__TRACEPOINT; 7060 else 7061 return -EINVAL; 7062 7063 return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PERF_EVENT, 7064 requested, NULL); 7065 } 7066 7067 static int selinux_perf_event_alloc(struct perf_event *event) 7068 { 7069 struct perf_event_security_struct *perfsec; 7070 7071 perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL); 7072 if (!perfsec) 7073 return -ENOMEM; 7074 7075 perfsec->sid = current_sid(); 7076 event->security = perfsec; 7077 7078 return 0; 7079 } 7080 7081 static void selinux_perf_event_free(struct perf_event *event) 7082 { 7083 struct perf_event_security_struct *perfsec = event->security; 7084 7085 event->security = NULL; 7086 kfree(perfsec); 7087 } 7088 7089 static int selinux_perf_event_read(struct perf_event *event) 7090 { 7091 struct perf_event_security_struct *perfsec = event->security; 7092 u32 sid = current_sid(); 7093 7094 return avc_has_perm(&selinux_state, sid, perfsec->sid, 7095 SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL); 7096 } 7097 7098 static int selinux_perf_event_write(struct perf_event *event) 7099 { 7100 struct perf_event_security_struct *perfsec = event->security; 7101 u32 sid = current_sid(); 7102 7103 return avc_has_perm(&selinux_state, sid, perfsec->sid, 7104 SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL); 7105 } 7106 #endif 7107 7108 /* 7109 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order: 7110 * 1. any hooks that don't belong to (2.) or (3.) below, 7111 * 2. hooks that both access structures allocated by other hooks, and allocate 7112 * structures that can be later accessed by other hooks (mostly "cloning" 7113 * hooks), 7114 * 3. hooks that only allocate structures that can be later accessed by other 7115 * hooks ("allocating" hooks). 7116 * 7117 * Please follow block comment delimiters in the list to keep this order. 7118 * 7119 * This ordering is needed for SELinux runtime disable to work at least somewhat 7120 * safely. Breaking the ordering rules above might lead to NULL pointer derefs 7121 * when disabling SELinux at runtime. 7122 */ 7123 static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = { 7124 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr), 7125 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction), 7126 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder), 7127 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file), 7128 7129 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check), 7130 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme), 7131 LSM_HOOK_INIT(capget, selinux_capget), 7132 LSM_HOOK_INIT(capset, selinux_capset), 7133 LSM_HOOK_INIT(capable, selinux_capable), 7134 LSM_HOOK_INIT(quotactl, selinux_quotactl), 7135 LSM_HOOK_INIT(quota_on, selinux_quota_on), 7136 LSM_HOOK_INIT(syslog, selinux_syslog), 7137 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory), 7138 7139 LSM_HOOK_INIT(netlink_send, selinux_netlink_send), 7140 7141 LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec), 7142 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds), 7143 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds), 7144 7145 LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts), 7146 LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat), 7147 LSM_HOOK_INIT(sb_remount, selinux_sb_remount), 7148 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount), 7149 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options), 7150 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs), 7151 LSM_HOOK_INIT(sb_mount, selinux_mount), 7152 LSM_HOOK_INIT(sb_umount, selinux_umount), 7153 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts), 7154 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts), 7155 7156 LSM_HOOK_INIT(move_mount, selinux_move_mount), 7157 7158 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security), 7159 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as), 7160 7161 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security), 7162 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security), 7163 LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon), 7164 LSM_HOOK_INIT(inode_create, selinux_inode_create), 7165 LSM_HOOK_INIT(inode_link, selinux_inode_link), 7166 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink), 7167 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink), 7168 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir), 7169 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir), 7170 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod), 7171 LSM_HOOK_INIT(inode_rename, selinux_inode_rename), 7172 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink), 7173 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link), 7174 LSM_HOOK_INIT(inode_permission, selinux_inode_permission), 7175 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr), 7176 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr), 7177 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr), 7178 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr), 7179 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr), 7180 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr), 7181 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr), 7182 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity), 7183 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity), 7184 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity), 7185 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid), 7186 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up), 7187 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr), 7188 LSM_HOOK_INIT(path_notify, selinux_path_notify), 7189 7190 LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security), 7191 7192 LSM_HOOK_INIT(file_permission, selinux_file_permission), 7193 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security), 7194 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl), 7195 LSM_HOOK_INIT(mmap_file, selinux_mmap_file), 7196 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr), 7197 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect), 7198 LSM_HOOK_INIT(file_lock, selinux_file_lock), 7199 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl), 7200 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner), 7201 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask), 7202 LSM_HOOK_INIT(file_receive, selinux_file_receive), 7203 7204 LSM_HOOK_INIT(file_open, selinux_file_open), 7205 7206 LSM_HOOK_INIT(task_alloc, selinux_task_alloc), 7207 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare), 7208 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer), 7209 LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid), 7210 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as), 7211 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as), 7212 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request), 7213 LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data), 7214 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file), 7215 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid), 7216 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid), 7217 LSM_HOOK_INIT(task_getsid, selinux_task_getsid), 7218 LSM_HOOK_INIT(task_getsecid_subj, selinux_task_getsecid_subj), 7219 LSM_HOOK_INIT(task_getsecid_obj, selinux_task_getsecid_obj), 7220 LSM_HOOK_INIT(task_setnice, selinux_task_setnice), 7221 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio), 7222 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio), 7223 LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit), 7224 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit), 7225 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler), 7226 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler), 7227 LSM_HOOK_INIT(task_movememory, selinux_task_movememory), 7228 LSM_HOOK_INIT(task_kill, selinux_task_kill), 7229 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode), 7230 7231 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission), 7232 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid), 7233 7234 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate), 7235 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl), 7236 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd), 7237 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv), 7238 7239 LSM_HOOK_INIT(shm_associate, selinux_shm_associate), 7240 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl), 7241 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat), 7242 7243 LSM_HOOK_INIT(sem_associate, selinux_sem_associate), 7244 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl), 7245 LSM_HOOK_INIT(sem_semop, selinux_sem_semop), 7246 7247 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate), 7248 7249 LSM_HOOK_INIT(getprocattr, selinux_getprocattr), 7250 LSM_HOOK_INIT(setprocattr, selinux_setprocattr), 7251 7252 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel), 7253 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid), 7254 LSM_HOOK_INIT(release_secctx, selinux_release_secctx), 7255 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx), 7256 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx), 7257 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx), 7258 7259 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect), 7260 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send), 7261 7262 LSM_HOOK_INIT(socket_create, selinux_socket_create), 7263 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create), 7264 LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair), 7265 LSM_HOOK_INIT(socket_bind, selinux_socket_bind), 7266 LSM_HOOK_INIT(socket_connect, selinux_socket_connect), 7267 LSM_HOOK_INIT(socket_listen, selinux_socket_listen), 7268 LSM_HOOK_INIT(socket_accept, selinux_socket_accept), 7269 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg), 7270 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg), 7271 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname), 7272 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername), 7273 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt), 7274 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt), 7275 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown), 7276 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb), 7277 LSM_HOOK_INIT(socket_getpeersec_stream, 7278 selinux_socket_getpeersec_stream), 7279 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram), 7280 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security), 7281 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security), 7282 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid), 7283 LSM_HOOK_INIT(sock_graft, selinux_sock_graft), 7284 LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request), 7285 LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone), 7286 LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect), 7287 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request), 7288 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone), 7289 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established), 7290 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet), 7291 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc), 7292 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec), 7293 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow), 7294 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security), 7295 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create), 7296 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue), 7297 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach), 7298 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open), 7299 #ifdef CONFIG_SECURITY_INFINIBAND 7300 LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access), 7301 LSM_HOOK_INIT(ib_endport_manage_subnet, 7302 selinux_ib_endport_manage_subnet), 7303 LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security), 7304 #endif 7305 #ifdef CONFIG_SECURITY_NETWORK_XFRM 7306 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free), 7307 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete), 7308 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free), 7309 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete), 7310 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup), 7311 LSM_HOOK_INIT(xfrm_state_pol_flow_match, 7312 selinux_xfrm_state_pol_flow_match), 7313 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session), 7314 #endif 7315 7316 #ifdef CONFIG_KEYS 7317 LSM_HOOK_INIT(key_free, selinux_key_free), 7318 LSM_HOOK_INIT(key_permission, selinux_key_permission), 7319 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity), 7320 #ifdef CONFIG_KEY_NOTIFICATIONS 7321 LSM_HOOK_INIT(watch_key, selinux_watch_key), 7322 #endif 7323 #endif 7324 7325 #ifdef CONFIG_AUDIT 7326 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known), 7327 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match), 7328 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free), 7329 #endif 7330 7331 #ifdef CONFIG_BPF_SYSCALL 7332 LSM_HOOK_INIT(bpf, selinux_bpf), 7333 LSM_HOOK_INIT(bpf_map, selinux_bpf_map), 7334 LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog), 7335 LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free), 7336 LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free), 7337 #endif 7338 7339 #ifdef CONFIG_PERF_EVENTS 7340 LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open), 7341 LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free), 7342 LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read), 7343 LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write), 7344 #endif 7345 7346 LSM_HOOK_INIT(locked_down, selinux_lockdown), 7347 7348 /* 7349 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE 7350 */ 7351 LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup), 7352 LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param), 7353 LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts), 7354 LSM_HOOK_INIT(sb_add_mnt_opt, selinux_add_mnt_opt), 7355 #ifdef CONFIG_SECURITY_NETWORK_XFRM 7356 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone), 7357 #endif 7358 7359 /* 7360 * PUT "ALLOCATING" HOOKS HERE 7361 */ 7362 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security), 7363 LSM_HOOK_INIT(msg_queue_alloc_security, 7364 selinux_msg_queue_alloc_security), 7365 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security), 7366 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security), 7367 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security), 7368 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security), 7369 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx), 7370 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx), 7371 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security), 7372 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security), 7373 #ifdef CONFIG_SECURITY_INFINIBAND 7374 LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security), 7375 #endif 7376 #ifdef CONFIG_SECURITY_NETWORK_XFRM 7377 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc), 7378 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc), 7379 LSM_HOOK_INIT(xfrm_state_alloc_acquire, 7380 selinux_xfrm_state_alloc_acquire), 7381 #endif 7382 #ifdef CONFIG_KEYS 7383 LSM_HOOK_INIT(key_alloc, selinux_key_alloc), 7384 #endif 7385 #ifdef CONFIG_AUDIT 7386 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init), 7387 #endif 7388 #ifdef CONFIG_BPF_SYSCALL 7389 LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc), 7390 LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc), 7391 #endif 7392 #ifdef CONFIG_PERF_EVENTS 7393 LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc), 7394 #endif 7395 }; 7396 7397 static __init int selinux_init(void) 7398 { 7399 pr_info("SELinux: Initializing.\n"); 7400 7401 memset(&selinux_state, 0, sizeof(selinux_state)); 7402 enforcing_set(&selinux_state, selinux_enforcing_boot); 7403 checkreqprot_set(&selinux_state, selinux_checkreqprot_boot); 7404 selinux_avc_init(&selinux_state.avc); 7405 mutex_init(&selinux_state.status_lock); 7406 mutex_init(&selinux_state.policy_mutex); 7407 7408 /* Set the security state for the initial task. */ 7409 cred_init_security(); 7410 7411 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC); 7412 7413 avc_init(); 7414 7415 avtab_cache_init(); 7416 7417 ebitmap_cache_init(); 7418 7419 hashtab_cache_init(); 7420 7421 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux"); 7422 7423 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET)) 7424 panic("SELinux: Unable to register AVC netcache callback\n"); 7425 7426 if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET)) 7427 panic("SELinux: Unable to register AVC LSM notifier callback\n"); 7428 7429 if (selinux_enforcing_boot) 7430 pr_debug("SELinux: Starting in enforcing mode\n"); 7431 else 7432 pr_debug("SELinux: Starting in permissive mode\n"); 7433 7434 fs_validate_description("selinux", selinux_fs_parameters); 7435 7436 return 0; 7437 } 7438 7439 static void delayed_superblock_init(struct super_block *sb, void *unused) 7440 { 7441 selinux_set_mnt_opts(sb, NULL, 0, NULL); 7442 } 7443 7444 void selinux_complete_init(void) 7445 { 7446 pr_debug("SELinux: Completing initialization.\n"); 7447 7448 /* Set up any superblocks initialized prior to the policy load. */ 7449 pr_debug("SELinux: Setting up existing superblocks.\n"); 7450 iterate_supers(delayed_superblock_init, NULL); 7451 } 7452 7453 /* SELinux requires early initialization in order to label 7454 all processes and objects when they are created. */ 7455 DEFINE_LSM(selinux) = { 7456 .name = "selinux", 7457 .flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE, 7458 .enabled = &selinux_enabled_boot, 7459 .blobs = &selinux_blob_sizes, 7460 .init = selinux_init, 7461 }; 7462 7463 #if defined(CONFIG_NETFILTER) 7464 7465 static const struct nf_hook_ops selinux_nf_ops[] = { 7466 { 7467 .hook = selinux_ipv4_postroute, 7468 .pf = NFPROTO_IPV4, 7469 .hooknum = NF_INET_POST_ROUTING, 7470 .priority = NF_IP_PRI_SELINUX_LAST, 7471 }, 7472 { 7473 .hook = selinux_ipv4_forward, 7474 .pf = NFPROTO_IPV4, 7475 .hooknum = NF_INET_FORWARD, 7476 .priority = NF_IP_PRI_SELINUX_FIRST, 7477 }, 7478 { 7479 .hook = selinux_ipv4_output, 7480 .pf = NFPROTO_IPV4, 7481 .hooknum = NF_INET_LOCAL_OUT, 7482 .priority = NF_IP_PRI_SELINUX_FIRST, 7483 }, 7484 #if IS_ENABLED(CONFIG_IPV6) 7485 { 7486 .hook = selinux_ipv6_postroute, 7487 .pf = NFPROTO_IPV6, 7488 .hooknum = NF_INET_POST_ROUTING, 7489 .priority = NF_IP6_PRI_SELINUX_LAST, 7490 }, 7491 { 7492 .hook = selinux_ipv6_forward, 7493 .pf = NFPROTO_IPV6, 7494 .hooknum = NF_INET_FORWARD, 7495 .priority = NF_IP6_PRI_SELINUX_FIRST, 7496 }, 7497 { 7498 .hook = selinux_ipv6_output, 7499 .pf = NFPROTO_IPV6, 7500 .hooknum = NF_INET_LOCAL_OUT, 7501 .priority = NF_IP6_PRI_SELINUX_FIRST, 7502 }, 7503 #endif /* IPV6 */ 7504 }; 7505 7506 static int __net_init selinux_nf_register(struct net *net) 7507 { 7508 return nf_register_net_hooks(net, selinux_nf_ops, 7509 ARRAY_SIZE(selinux_nf_ops)); 7510 } 7511 7512 static void __net_exit selinux_nf_unregister(struct net *net) 7513 { 7514 nf_unregister_net_hooks(net, selinux_nf_ops, 7515 ARRAY_SIZE(selinux_nf_ops)); 7516 } 7517 7518 static struct pernet_operations selinux_net_ops = { 7519 .init = selinux_nf_register, 7520 .exit = selinux_nf_unregister, 7521 }; 7522 7523 static int __init selinux_nf_ip_init(void) 7524 { 7525 int err; 7526 7527 if (!selinux_enabled_boot) 7528 return 0; 7529 7530 pr_debug("SELinux: Registering netfilter hooks\n"); 7531 7532 err = register_pernet_subsys(&selinux_net_ops); 7533 if (err) 7534 panic("SELinux: register_pernet_subsys: error %d\n", err); 7535 7536 return 0; 7537 } 7538 __initcall(selinux_nf_ip_init); 7539 7540 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 7541 static void selinux_nf_ip_exit(void) 7542 { 7543 pr_debug("SELinux: Unregistering netfilter hooks\n"); 7544 7545 unregister_pernet_subsys(&selinux_net_ops); 7546 } 7547 #endif 7548 7549 #else /* CONFIG_NETFILTER */ 7550 7551 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 7552 #define selinux_nf_ip_exit() 7553 #endif 7554 7555 #endif /* CONFIG_NETFILTER */ 7556 7557 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 7558 int selinux_disable(struct selinux_state *state) 7559 { 7560 if (selinux_initialized(state)) { 7561 /* Not permitted after initial policy load. */ 7562 return -EINVAL; 7563 } 7564 7565 if (selinux_disabled(state)) { 7566 /* Only do this once. */ 7567 return -EINVAL; 7568 } 7569 7570 selinux_mark_disabled(state); 7571 7572 pr_info("SELinux: Disabled at runtime.\n"); 7573 7574 /* 7575 * Unregister netfilter hooks. 7576 * Must be done before security_delete_hooks() to avoid breaking 7577 * runtime disable. 7578 */ 7579 selinux_nf_ip_exit(); 7580 7581 security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks)); 7582 7583 /* Try to destroy the avc node cache */ 7584 avc_disable(); 7585 7586 /* Unregister selinuxfs. */ 7587 exit_sel_fs(); 7588 7589 return 0; 7590 } 7591 #endif 7592