1 /* 2 * NSA Security-Enhanced Linux (SELinux) security module 3 * 4 * This file contains the SELinux hook function implementations. 5 * 6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil> 7 * Chris Vance, <cvance@nai.com> 8 * Wayne Salamon, <wsalamon@nai.com> 9 * James Morris <jmorris@redhat.com> 10 * 11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com> 13 * Eric Paris <eparis@redhat.com> 14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 15 * <dgoeddel@trustedcs.com> 16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P. 17 * Paul Moore <paul@paul-moore.com> 18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. 19 * Yuichi Nakamura <ynakam@hitachisoft.jp> 20 * 21 * This program is free software; you can redistribute it and/or modify 22 * it under the terms of the GNU General Public License version 2, 23 * as published by the Free Software Foundation. 24 */ 25 26 #include <linux/init.h> 27 #include <linux/kd.h> 28 #include <linux/kernel.h> 29 #include <linux/tracehook.h> 30 #include <linux/errno.h> 31 #include <linux/sched.h> 32 #include <linux/security.h> 33 #include <linux/xattr.h> 34 #include <linux/capability.h> 35 #include <linux/unistd.h> 36 #include <linux/mm.h> 37 #include <linux/mman.h> 38 #include <linux/slab.h> 39 #include <linux/pagemap.h> 40 #include <linux/proc_fs.h> 41 #include <linux/swap.h> 42 #include <linux/spinlock.h> 43 #include <linux/syscalls.h> 44 #include <linux/dcache.h> 45 #include <linux/file.h> 46 #include <linux/fdtable.h> 47 #include <linux/namei.h> 48 #include <linux/mount.h> 49 #include <linux/netfilter_ipv4.h> 50 #include <linux/netfilter_ipv6.h> 51 #include <linux/tty.h> 52 #include <net/icmp.h> 53 #include <net/ip.h> /* for local_port_range[] */ 54 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 55 #include <net/net_namespace.h> 56 #include <net/netlabel.h> 57 #include <linux/uaccess.h> 58 #include <asm/ioctls.h> 59 #include <linux/atomic.h> 60 #include <linux/bitops.h> 61 #include <linux/interrupt.h> 62 #include <linux/netdevice.h> /* for network interface checks */ 63 #include <linux/netlink.h> 64 #include <linux/tcp.h> 65 #include <linux/udp.h> 66 #include <linux/dccp.h> 67 #include <linux/quota.h> 68 #include <linux/un.h> /* for Unix socket types */ 69 #include <net/af_unix.h> /* for Unix socket types */ 70 #include <linux/parser.h> 71 #include <linux/nfs_mount.h> 72 #include <net/ipv6.h> 73 #include <linux/hugetlb.h> 74 #include <linux/personality.h> 75 #include <linux/audit.h> 76 #include <linux/string.h> 77 #include <linux/selinux.h> 78 #include <linux/mutex.h> 79 #include <linux/posix-timers.h> 80 #include <linux/syslog.h> 81 #include <linux/user_namespace.h> 82 #include <linux/export.h> 83 #include <linux/msg.h> 84 #include <linux/shm.h> 85 86 #include "avc.h" 87 #include "objsec.h" 88 #include "netif.h" 89 #include "netnode.h" 90 #include "netport.h" 91 #include "xfrm.h" 92 #include "netlabel.h" 93 #include "audit.h" 94 #include "avc_ss.h" 95 96 #define NUM_SEL_MNT_OPTS 5 97 98 extern struct security_operations *security_ops; 99 100 /* SECMARK reference count */ 101 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0); 102 103 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 104 int selinux_enforcing; 105 106 static int __init enforcing_setup(char *str) 107 { 108 unsigned long enforcing; 109 if (!strict_strtoul(str, 0, &enforcing)) 110 selinux_enforcing = enforcing ? 1 : 0; 111 return 1; 112 } 113 __setup("enforcing=", enforcing_setup); 114 #endif 115 116 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 117 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE; 118 119 static int __init selinux_enabled_setup(char *str) 120 { 121 unsigned long enabled; 122 if (!strict_strtoul(str, 0, &enabled)) 123 selinux_enabled = enabled ? 1 : 0; 124 return 1; 125 } 126 __setup("selinux=", selinux_enabled_setup); 127 #else 128 int selinux_enabled = 1; 129 #endif 130 131 static struct kmem_cache *sel_inode_cache; 132 133 /** 134 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled 135 * 136 * Description: 137 * This function checks the SECMARK reference counter to see if any SECMARK 138 * targets are currently configured, if the reference counter is greater than 139 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is 140 * enabled, false (0) if SECMARK is disabled. 141 * 142 */ 143 static int selinux_secmark_enabled(void) 144 { 145 return (atomic_read(&selinux_secmark_refcount) > 0); 146 } 147 148 /* 149 * initialise the security for the init task 150 */ 151 static void cred_init_security(void) 152 { 153 struct cred *cred = (struct cred *) current->real_cred; 154 struct task_security_struct *tsec; 155 156 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL); 157 if (!tsec) 158 panic("SELinux: Failed to initialize initial task.\n"); 159 160 tsec->osid = tsec->sid = SECINITSID_KERNEL; 161 cred->security = tsec; 162 } 163 164 /* 165 * get the security ID of a set of credentials 166 */ 167 static inline u32 cred_sid(const struct cred *cred) 168 { 169 const struct task_security_struct *tsec; 170 171 tsec = cred->security; 172 return tsec->sid; 173 } 174 175 /* 176 * get the objective security ID of a task 177 */ 178 static inline u32 task_sid(const struct task_struct *task) 179 { 180 u32 sid; 181 182 rcu_read_lock(); 183 sid = cred_sid(__task_cred(task)); 184 rcu_read_unlock(); 185 return sid; 186 } 187 188 /* 189 * get the subjective security ID of the current task 190 */ 191 static inline u32 current_sid(void) 192 { 193 const struct task_security_struct *tsec = current_security(); 194 195 return tsec->sid; 196 } 197 198 /* Allocate and free functions for each kind of security blob. */ 199 200 static int inode_alloc_security(struct inode *inode) 201 { 202 struct inode_security_struct *isec; 203 u32 sid = current_sid(); 204 205 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS); 206 if (!isec) 207 return -ENOMEM; 208 209 mutex_init(&isec->lock); 210 INIT_LIST_HEAD(&isec->list); 211 isec->inode = inode; 212 isec->sid = SECINITSID_UNLABELED; 213 isec->sclass = SECCLASS_FILE; 214 isec->task_sid = sid; 215 inode->i_security = isec; 216 217 return 0; 218 } 219 220 static void inode_free_security(struct inode *inode) 221 { 222 struct inode_security_struct *isec = inode->i_security; 223 struct superblock_security_struct *sbsec = inode->i_sb->s_security; 224 225 spin_lock(&sbsec->isec_lock); 226 if (!list_empty(&isec->list)) 227 list_del_init(&isec->list); 228 spin_unlock(&sbsec->isec_lock); 229 230 inode->i_security = NULL; 231 kmem_cache_free(sel_inode_cache, isec); 232 } 233 234 static int file_alloc_security(struct file *file) 235 { 236 struct file_security_struct *fsec; 237 u32 sid = current_sid(); 238 239 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL); 240 if (!fsec) 241 return -ENOMEM; 242 243 fsec->sid = sid; 244 fsec->fown_sid = sid; 245 file->f_security = fsec; 246 247 return 0; 248 } 249 250 static void file_free_security(struct file *file) 251 { 252 struct file_security_struct *fsec = file->f_security; 253 file->f_security = NULL; 254 kfree(fsec); 255 } 256 257 static int superblock_alloc_security(struct super_block *sb) 258 { 259 struct superblock_security_struct *sbsec; 260 261 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL); 262 if (!sbsec) 263 return -ENOMEM; 264 265 mutex_init(&sbsec->lock); 266 INIT_LIST_HEAD(&sbsec->isec_head); 267 spin_lock_init(&sbsec->isec_lock); 268 sbsec->sb = sb; 269 sbsec->sid = SECINITSID_UNLABELED; 270 sbsec->def_sid = SECINITSID_FILE; 271 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 272 sb->s_security = sbsec; 273 274 return 0; 275 } 276 277 static void superblock_free_security(struct super_block *sb) 278 { 279 struct superblock_security_struct *sbsec = sb->s_security; 280 sb->s_security = NULL; 281 kfree(sbsec); 282 } 283 284 /* The file system's label must be initialized prior to use. */ 285 286 static const char *labeling_behaviors[6] = { 287 "uses xattr", 288 "uses transition SIDs", 289 "uses task SIDs", 290 "uses genfs_contexts", 291 "not configured for labeling", 292 "uses mountpoint labeling", 293 }; 294 295 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 296 297 static inline int inode_doinit(struct inode *inode) 298 { 299 return inode_doinit_with_dentry(inode, NULL); 300 } 301 302 enum { 303 Opt_error = -1, 304 Opt_context = 1, 305 Opt_fscontext = 2, 306 Opt_defcontext = 3, 307 Opt_rootcontext = 4, 308 Opt_labelsupport = 5, 309 }; 310 311 static const match_table_t tokens = { 312 {Opt_context, CONTEXT_STR "%s"}, 313 {Opt_fscontext, FSCONTEXT_STR "%s"}, 314 {Opt_defcontext, DEFCONTEXT_STR "%s"}, 315 {Opt_rootcontext, ROOTCONTEXT_STR "%s"}, 316 {Opt_labelsupport, LABELSUPP_STR}, 317 {Opt_error, NULL}, 318 }; 319 320 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 321 322 static int may_context_mount_sb_relabel(u32 sid, 323 struct superblock_security_struct *sbsec, 324 const struct cred *cred) 325 { 326 const struct task_security_struct *tsec = cred->security; 327 int rc; 328 329 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 330 FILESYSTEM__RELABELFROM, NULL); 331 if (rc) 332 return rc; 333 334 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM, 335 FILESYSTEM__RELABELTO, NULL); 336 return rc; 337 } 338 339 static int may_context_mount_inode_relabel(u32 sid, 340 struct superblock_security_struct *sbsec, 341 const struct cred *cred) 342 { 343 const struct task_security_struct *tsec = cred->security; 344 int rc; 345 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 346 FILESYSTEM__RELABELFROM, NULL); 347 if (rc) 348 return rc; 349 350 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, 351 FILESYSTEM__ASSOCIATE, NULL); 352 return rc; 353 } 354 355 static int sb_finish_set_opts(struct super_block *sb) 356 { 357 struct superblock_security_struct *sbsec = sb->s_security; 358 struct dentry *root = sb->s_root; 359 struct inode *root_inode = root->d_inode; 360 int rc = 0; 361 362 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 363 /* Make sure that the xattr handler exists and that no 364 error other than -ENODATA is returned by getxattr on 365 the root directory. -ENODATA is ok, as this may be 366 the first boot of the SELinux kernel before we have 367 assigned xattr values to the filesystem. */ 368 if (!root_inode->i_op->getxattr) { 369 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no " 370 "xattr support\n", sb->s_id, sb->s_type->name); 371 rc = -EOPNOTSUPP; 372 goto out; 373 } 374 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0); 375 if (rc < 0 && rc != -ENODATA) { 376 if (rc == -EOPNOTSUPP) 377 printk(KERN_WARNING "SELinux: (dev %s, type " 378 "%s) has no security xattr handler\n", 379 sb->s_id, sb->s_type->name); 380 else 381 printk(KERN_WARNING "SELinux: (dev %s, type " 382 "%s) getxattr errno %d\n", sb->s_id, 383 sb->s_type->name, -rc); 384 goto out; 385 } 386 } 387 388 sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP); 389 390 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) 391 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n", 392 sb->s_id, sb->s_type->name); 393 else 394 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n", 395 sb->s_id, sb->s_type->name, 396 labeling_behaviors[sbsec->behavior-1]); 397 398 if (sbsec->behavior == SECURITY_FS_USE_GENFS || 399 sbsec->behavior == SECURITY_FS_USE_MNTPOINT || 400 sbsec->behavior == SECURITY_FS_USE_NONE || 401 sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) 402 sbsec->flags &= ~SE_SBLABELSUPP; 403 404 /* Special handling for sysfs. Is genfs but also has setxattr handler*/ 405 if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0) 406 sbsec->flags |= SE_SBLABELSUPP; 407 408 /* Initialize the root inode. */ 409 rc = inode_doinit_with_dentry(root_inode, root); 410 411 /* Initialize any other inodes associated with the superblock, e.g. 412 inodes created prior to initial policy load or inodes created 413 during get_sb by a pseudo filesystem that directly 414 populates itself. */ 415 spin_lock(&sbsec->isec_lock); 416 next_inode: 417 if (!list_empty(&sbsec->isec_head)) { 418 struct inode_security_struct *isec = 419 list_entry(sbsec->isec_head.next, 420 struct inode_security_struct, list); 421 struct inode *inode = isec->inode; 422 spin_unlock(&sbsec->isec_lock); 423 inode = igrab(inode); 424 if (inode) { 425 if (!IS_PRIVATE(inode)) 426 inode_doinit(inode); 427 iput(inode); 428 } 429 spin_lock(&sbsec->isec_lock); 430 list_del_init(&isec->list); 431 goto next_inode; 432 } 433 spin_unlock(&sbsec->isec_lock); 434 out: 435 return rc; 436 } 437 438 /* 439 * This function should allow an FS to ask what it's mount security 440 * options were so it can use those later for submounts, displaying 441 * mount options, or whatever. 442 */ 443 static int selinux_get_mnt_opts(const struct super_block *sb, 444 struct security_mnt_opts *opts) 445 { 446 int rc = 0, i; 447 struct superblock_security_struct *sbsec = sb->s_security; 448 char *context = NULL; 449 u32 len; 450 char tmp; 451 452 security_init_mnt_opts(opts); 453 454 if (!(sbsec->flags & SE_SBINITIALIZED)) 455 return -EINVAL; 456 457 if (!ss_initialized) 458 return -EINVAL; 459 460 tmp = sbsec->flags & SE_MNTMASK; 461 /* count the number of mount options for this sb */ 462 for (i = 0; i < 8; i++) { 463 if (tmp & 0x01) 464 opts->num_mnt_opts++; 465 tmp >>= 1; 466 } 467 /* Check if the Label support flag is set */ 468 if (sbsec->flags & SE_SBLABELSUPP) 469 opts->num_mnt_opts++; 470 471 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC); 472 if (!opts->mnt_opts) { 473 rc = -ENOMEM; 474 goto out_free; 475 } 476 477 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC); 478 if (!opts->mnt_opts_flags) { 479 rc = -ENOMEM; 480 goto out_free; 481 } 482 483 i = 0; 484 if (sbsec->flags & FSCONTEXT_MNT) { 485 rc = security_sid_to_context(sbsec->sid, &context, &len); 486 if (rc) 487 goto out_free; 488 opts->mnt_opts[i] = context; 489 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT; 490 } 491 if (sbsec->flags & CONTEXT_MNT) { 492 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len); 493 if (rc) 494 goto out_free; 495 opts->mnt_opts[i] = context; 496 opts->mnt_opts_flags[i++] = CONTEXT_MNT; 497 } 498 if (sbsec->flags & DEFCONTEXT_MNT) { 499 rc = security_sid_to_context(sbsec->def_sid, &context, &len); 500 if (rc) 501 goto out_free; 502 opts->mnt_opts[i] = context; 503 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT; 504 } 505 if (sbsec->flags & ROOTCONTEXT_MNT) { 506 struct inode *root = sbsec->sb->s_root->d_inode; 507 struct inode_security_struct *isec = root->i_security; 508 509 rc = security_sid_to_context(isec->sid, &context, &len); 510 if (rc) 511 goto out_free; 512 opts->mnt_opts[i] = context; 513 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT; 514 } 515 if (sbsec->flags & SE_SBLABELSUPP) { 516 opts->mnt_opts[i] = NULL; 517 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP; 518 } 519 520 BUG_ON(i != opts->num_mnt_opts); 521 522 return 0; 523 524 out_free: 525 security_free_mnt_opts(opts); 526 return rc; 527 } 528 529 static int bad_option(struct superblock_security_struct *sbsec, char flag, 530 u32 old_sid, u32 new_sid) 531 { 532 char mnt_flags = sbsec->flags & SE_MNTMASK; 533 534 /* check if the old mount command had the same options */ 535 if (sbsec->flags & SE_SBINITIALIZED) 536 if (!(sbsec->flags & flag) || 537 (old_sid != new_sid)) 538 return 1; 539 540 /* check if we were passed the same options twice, 541 * aka someone passed context=a,context=b 542 */ 543 if (!(sbsec->flags & SE_SBINITIALIZED)) 544 if (mnt_flags & flag) 545 return 1; 546 return 0; 547 } 548 549 /* 550 * Allow filesystems with binary mount data to explicitly set mount point 551 * labeling information. 552 */ 553 static int selinux_set_mnt_opts(struct super_block *sb, 554 struct security_mnt_opts *opts) 555 { 556 const struct cred *cred = current_cred(); 557 int rc = 0, i; 558 struct superblock_security_struct *sbsec = sb->s_security; 559 const char *name = sb->s_type->name; 560 struct inode *inode = sbsec->sb->s_root->d_inode; 561 struct inode_security_struct *root_isec = inode->i_security; 562 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; 563 u32 defcontext_sid = 0; 564 char **mount_options = opts->mnt_opts; 565 int *flags = opts->mnt_opts_flags; 566 int num_opts = opts->num_mnt_opts; 567 568 mutex_lock(&sbsec->lock); 569 570 if (!ss_initialized) { 571 if (!num_opts) { 572 /* Defer initialization until selinux_complete_init, 573 after the initial policy is loaded and the security 574 server is ready to handle calls. */ 575 goto out; 576 } 577 rc = -EINVAL; 578 printk(KERN_WARNING "SELinux: Unable to set superblock options " 579 "before the security server is initialized\n"); 580 goto out; 581 } 582 583 /* 584 * Binary mount data FS will come through this function twice. Once 585 * from an explicit call and once from the generic calls from the vfs. 586 * Since the generic VFS calls will not contain any security mount data 587 * we need to skip the double mount verification. 588 * 589 * This does open a hole in which we will not notice if the first 590 * mount using this sb set explict options and a second mount using 591 * this sb does not set any security options. (The first options 592 * will be used for both mounts) 593 */ 594 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 595 && (num_opts == 0)) 596 goto out; 597 598 /* 599 * parse the mount options, check if they are valid sids. 600 * also check if someone is trying to mount the same sb more 601 * than once with different security options. 602 */ 603 for (i = 0; i < num_opts; i++) { 604 u32 sid; 605 606 if (flags[i] == SE_SBLABELSUPP) 607 continue; 608 rc = security_context_to_sid(mount_options[i], 609 strlen(mount_options[i]), &sid); 610 if (rc) { 611 printk(KERN_WARNING "SELinux: security_context_to_sid" 612 "(%s) failed for (dev %s, type %s) errno=%d\n", 613 mount_options[i], sb->s_id, name, rc); 614 goto out; 615 } 616 switch (flags[i]) { 617 case FSCONTEXT_MNT: 618 fscontext_sid = sid; 619 620 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 621 fscontext_sid)) 622 goto out_double_mount; 623 624 sbsec->flags |= FSCONTEXT_MNT; 625 break; 626 case CONTEXT_MNT: 627 context_sid = sid; 628 629 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 630 context_sid)) 631 goto out_double_mount; 632 633 sbsec->flags |= CONTEXT_MNT; 634 break; 635 case ROOTCONTEXT_MNT: 636 rootcontext_sid = sid; 637 638 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 639 rootcontext_sid)) 640 goto out_double_mount; 641 642 sbsec->flags |= ROOTCONTEXT_MNT; 643 644 break; 645 case DEFCONTEXT_MNT: 646 defcontext_sid = sid; 647 648 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 649 defcontext_sid)) 650 goto out_double_mount; 651 652 sbsec->flags |= DEFCONTEXT_MNT; 653 654 break; 655 default: 656 rc = -EINVAL; 657 goto out; 658 } 659 } 660 661 if (sbsec->flags & SE_SBINITIALIZED) { 662 /* previously mounted with options, but not on this attempt? */ 663 if ((sbsec->flags & SE_MNTMASK) && !num_opts) 664 goto out_double_mount; 665 rc = 0; 666 goto out; 667 } 668 669 if (strcmp(sb->s_type->name, "proc") == 0) 670 sbsec->flags |= SE_SBPROC; 671 672 /* Determine the labeling behavior to use for this filesystem type. */ 673 rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid); 674 if (rc) { 675 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n", 676 __func__, sb->s_type->name, rc); 677 goto out; 678 } 679 680 /* sets the context of the superblock for the fs being mounted. */ 681 if (fscontext_sid) { 682 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred); 683 if (rc) 684 goto out; 685 686 sbsec->sid = fscontext_sid; 687 } 688 689 /* 690 * Switch to using mount point labeling behavior. 691 * sets the label used on all file below the mountpoint, and will set 692 * the superblock context if not already set. 693 */ 694 if (context_sid) { 695 if (!fscontext_sid) { 696 rc = may_context_mount_sb_relabel(context_sid, sbsec, 697 cred); 698 if (rc) 699 goto out; 700 sbsec->sid = context_sid; 701 } else { 702 rc = may_context_mount_inode_relabel(context_sid, sbsec, 703 cred); 704 if (rc) 705 goto out; 706 } 707 if (!rootcontext_sid) 708 rootcontext_sid = context_sid; 709 710 sbsec->mntpoint_sid = context_sid; 711 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 712 } 713 714 if (rootcontext_sid) { 715 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, 716 cred); 717 if (rc) 718 goto out; 719 720 root_isec->sid = rootcontext_sid; 721 root_isec->initialized = 1; 722 } 723 724 if (defcontext_sid) { 725 if (sbsec->behavior != SECURITY_FS_USE_XATTR) { 726 rc = -EINVAL; 727 printk(KERN_WARNING "SELinux: defcontext option is " 728 "invalid for this filesystem type\n"); 729 goto out; 730 } 731 732 if (defcontext_sid != sbsec->def_sid) { 733 rc = may_context_mount_inode_relabel(defcontext_sid, 734 sbsec, cred); 735 if (rc) 736 goto out; 737 } 738 739 sbsec->def_sid = defcontext_sid; 740 } 741 742 rc = sb_finish_set_opts(sb); 743 out: 744 mutex_unlock(&sbsec->lock); 745 return rc; 746 out_double_mount: 747 rc = -EINVAL; 748 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different " 749 "security settings for (dev %s, type %s)\n", sb->s_id, name); 750 goto out; 751 } 752 753 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb, 754 struct super_block *newsb) 755 { 756 const struct superblock_security_struct *oldsbsec = oldsb->s_security; 757 struct superblock_security_struct *newsbsec = newsb->s_security; 758 759 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); 760 int set_context = (oldsbsec->flags & CONTEXT_MNT); 761 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); 762 763 /* 764 * if the parent was able to be mounted it clearly had no special lsm 765 * mount options. thus we can safely deal with this superblock later 766 */ 767 if (!ss_initialized) 768 return; 769 770 /* how can we clone if the old one wasn't set up?? */ 771 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED)); 772 773 /* if fs is reusing a sb, just let its options stand... */ 774 if (newsbsec->flags & SE_SBINITIALIZED) 775 return; 776 777 mutex_lock(&newsbsec->lock); 778 779 newsbsec->flags = oldsbsec->flags; 780 781 newsbsec->sid = oldsbsec->sid; 782 newsbsec->def_sid = oldsbsec->def_sid; 783 newsbsec->behavior = oldsbsec->behavior; 784 785 if (set_context) { 786 u32 sid = oldsbsec->mntpoint_sid; 787 788 if (!set_fscontext) 789 newsbsec->sid = sid; 790 if (!set_rootcontext) { 791 struct inode *newinode = newsb->s_root->d_inode; 792 struct inode_security_struct *newisec = newinode->i_security; 793 newisec->sid = sid; 794 } 795 newsbsec->mntpoint_sid = sid; 796 } 797 if (set_rootcontext) { 798 const struct inode *oldinode = oldsb->s_root->d_inode; 799 const struct inode_security_struct *oldisec = oldinode->i_security; 800 struct inode *newinode = newsb->s_root->d_inode; 801 struct inode_security_struct *newisec = newinode->i_security; 802 803 newisec->sid = oldisec->sid; 804 } 805 806 sb_finish_set_opts(newsb); 807 mutex_unlock(&newsbsec->lock); 808 } 809 810 static int selinux_parse_opts_str(char *options, 811 struct security_mnt_opts *opts) 812 { 813 char *p; 814 char *context = NULL, *defcontext = NULL; 815 char *fscontext = NULL, *rootcontext = NULL; 816 int rc, num_mnt_opts = 0; 817 818 opts->num_mnt_opts = 0; 819 820 /* Standard string-based options. */ 821 while ((p = strsep(&options, "|")) != NULL) { 822 int token; 823 substring_t args[MAX_OPT_ARGS]; 824 825 if (!*p) 826 continue; 827 828 token = match_token(p, tokens, args); 829 830 switch (token) { 831 case Opt_context: 832 if (context || defcontext) { 833 rc = -EINVAL; 834 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 835 goto out_err; 836 } 837 context = match_strdup(&args[0]); 838 if (!context) { 839 rc = -ENOMEM; 840 goto out_err; 841 } 842 break; 843 844 case Opt_fscontext: 845 if (fscontext) { 846 rc = -EINVAL; 847 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 848 goto out_err; 849 } 850 fscontext = match_strdup(&args[0]); 851 if (!fscontext) { 852 rc = -ENOMEM; 853 goto out_err; 854 } 855 break; 856 857 case Opt_rootcontext: 858 if (rootcontext) { 859 rc = -EINVAL; 860 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 861 goto out_err; 862 } 863 rootcontext = match_strdup(&args[0]); 864 if (!rootcontext) { 865 rc = -ENOMEM; 866 goto out_err; 867 } 868 break; 869 870 case Opt_defcontext: 871 if (context || defcontext) { 872 rc = -EINVAL; 873 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 874 goto out_err; 875 } 876 defcontext = match_strdup(&args[0]); 877 if (!defcontext) { 878 rc = -ENOMEM; 879 goto out_err; 880 } 881 break; 882 case Opt_labelsupport: 883 break; 884 default: 885 rc = -EINVAL; 886 printk(KERN_WARNING "SELinux: unknown mount option\n"); 887 goto out_err; 888 889 } 890 } 891 892 rc = -ENOMEM; 893 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC); 894 if (!opts->mnt_opts) 895 goto out_err; 896 897 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC); 898 if (!opts->mnt_opts_flags) { 899 kfree(opts->mnt_opts); 900 goto out_err; 901 } 902 903 if (fscontext) { 904 opts->mnt_opts[num_mnt_opts] = fscontext; 905 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT; 906 } 907 if (context) { 908 opts->mnt_opts[num_mnt_opts] = context; 909 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT; 910 } 911 if (rootcontext) { 912 opts->mnt_opts[num_mnt_opts] = rootcontext; 913 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT; 914 } 915 if (defcontext) { 916 opts->mnt_opts[num_mnt_opts] = defcontext; 917 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT; 918 } 919 920 opts->num_mnt_opts = num_mnt_opts; 921 return 0; 922 923 out_err: 924 kfree(context); 925 kfree(defcontext); 926 kfree(fscontext); 927 kfree(rootcontext); 928 return rc; 929 } 930 /* 931 * string mount options parsing and call set the sbsec 932 */ 933 static int superblock_doinit(struct super_block *sb, void *data) 934 { 935 int rc = 0; 936 char *options = data; 937 struct security_mnt_opts opts; 938 939 security_init_mnt_opts(&opts); 940 941 if (!data) 942 goto out; 943 944 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA); 945 946 rc = selinux_parse_opts_str(options, &opts); 947 if (rc) 948 goto out_err; 949 950 out: 951 rc = selinux_set_mnt_opts(sb, &opts); 952 953 out_err: 954 security_free_mnt_opts(&opts); 955 return rc; 956 } 957 958 static void selinux_write_opts(struct seq_file *m, 959 struct security_mnt_opts *opts) 960 { 961 int i; 962 char *prefix; 963 964 for (i = 0; i < opts->num_mnt_opts; i++) { 965 char *has_comma; 966 967 if (opts->mnt_opts[i]) 968 has_comma = strchr(opts->mnt_opts[i], ','); 969 else 970 has_comma = NULL; 971 972 switch (opts->mnt_opts_flags[i]) { 973 case CONTEXT_MNT: 974 prefix = CONTEXT_STR; 975 break; 976 case FSCONTEXT_MNT: 977 prefix = FSCONTEXT_STR; 978 break; 979 case ROOTCONTEXT_MNT: 980 prefix = ROOTCONTEXT_STR; 981 break; 982 case DEFCONTEXT_MNT: 983 prefix = DEFCONTEXT_STR; 984 break; 985 case SE_SBLABELSUPP: 986 seq_putc(m, ','); 987 seq_puts(m, LABELSUPP_STR); 988 continue; 989 default: 990 BUG(); 991 return; 992 }; 993 /* we need a comma before each option */ 994 seq_putc(m, ','); 995 seq_puts(m, prefix); 996 if (has_comma) 997 seq_putc(m, '\"'); 998 seq_puts(m, opts->mnt_opts[i]); 999 if (has_comma) 1000 seq_putc(m, '\"'); 1001 } 1002 } 1003 1004 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb) 1005 { 1006 struct security_mnt_opts opts; 1007 int rc; 1008 1009 rc = selinux_get_mnt_opts(sb, &opts); 1010 if (rc) { 1011 /* before policy load we may get EINVAL, don't show anything */ 1012 if (rc == -EINVAL) 1013 rc = 0; 1014 return rc; 1015 } 1016 1017 selinux_write_opts(m, &opts); 1018 1019 security_free_mnt_opts(&opts); 1020 1021 return rc; 1022 } 1023 1024 static inline u16 inode_mode_to_security_class(umode_t mode) 1025 { 1026 switch (mode & S_IFMT) { 1027 case S_IFSOCK: 1028 return SECCLASS_SOCK_FILE; 1029 case S_IFLNK: 1030 return SECCLASS_LNK_FILE; 1031 case S_IFREG: 1032 return SECCLASS_FILE; 1033 case S_IFBLK: 1034 return SECCLASS_BLK_FILE; 1035 case S_IFDIR: 1036 return SECCLASS_DIR; 1037 case S_IFCHR: 1038 return SECCLASS_CHR_FILE; 1039 case S_IFIFO: 1040 return SECCLASS_FIFO_FILE; 1041 1042 } 1043 1044 return SECCLASS_FILE; 1045 } 1046 1047 static inline int default_protocol_stream(int protocol) 1048 { 1049 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP); 1050 } 1051 1052 static inline int default_protocol_dgram(int protocol) 1053 { 1054 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 1055 } 1056 1057 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 1058 { 1059 switch (family) { 1060 case PF_UNIX: 1061 switch (type) { 1062 case SOCK_STREAM: 1063 case SOCK_SEQPACKET: 1064 return SECCLASS_UNIX_STREAM_SOCKET; 1065 case SOCK_DGRAM: 1066 return SECCLASS_UNIX_DGRAM_SOCKET; 1067 } 1068 break; 1069 case PF_INET: 1070 case PF_INET6: 1071 switch (type) { 1072 case SOCK_STREAM: 1073 if (default_protocol_stream(protocol)) 1074 return SECCLASS_TCP_SOCKET; 1075 else 1076 return SECCLASS_RAWIP_SOCKET; 1077 case SOCK_DGRAM: 1078 if (default_protocol_dgram(protocol)) 1079 return SECCLASS_UDP_SOCKET; 1080 else 1081 return SECCLASS_RAWIP_SOCKET; 1082 case SOCK_DCCP: 1083 return SECCLASS_DCCP_SOCKET; 1084 default: 1085 return SECCLASS_RAWIP_SOCKET; 1086 } 1087 break; 1088 case PF_NETLINK: 1089 switch (protocol) { 1090 case NETLINK_ROUTE: 1091 return SECCLASS_NETLINK_ROUTE_SOCKET; 1092 case NETLINK_FIREWALL: 1093 return SECCLASS_NETLINK_FIREWALL_SOCKET; 1094 case NETLINK_SOCK_DIAG: 1095 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 1096 case NETLINK_NFLOG: 1097 return SECCLASS_NETLINK_NFLOG_SOCKET; 1098 case NETLINK_XFRM: 1099 return SECCLASS_NETLINK_XFRM_SOCKET; 1100 case NETLINK_SELINUX: 1101 return SECCLASS_NETLINK_SELINUX_SOCKET; 1102 case NETLINK_AUDIT: 1103 return SECCLASS_NETLINK_AUDIT_SOCKET; 1104 case NETLINK_IP6_FW: 1105 return SECCLASS_NETLINK_IP6FW_SOCKET; 1106 case NETLINK_DNRTMSG: 1107 return SECCLASS_NETLINK_DNRT_SOCKET; 1108 case NETLINK_KOBJECT_UEVENT: 1109 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 1110 default: 1111 return SECCLASS_NETLINK_SOCKET; 1112 } 1113 case PF_PACKET: 1114 return SECCLASS_PACKET_SOCKET; 1115 case PF_KEY: 1116 return SECCLASS_KEY_SOCKET; 1117 case PF_APPLETALK: 1118 return SECCLASS_APPLETALK_SOCKET; 1119 } 1120 1121 return SECCLASS_SOCKET; 1122 } 1123 1124 #ifdef CONFIG_PROC_FS 1125 static int selinux_proc_get_sid(struct dentry *dentry, 1126 u16 tclass, 1127 u32 *sid) 1128 { 1129 int rc; 1130 char *buffer, *path; 1131 1132 buffer = (char *)__get_free_page(GFP_KERNEL); 1133 if (!buffer) 1134 return -ENOMEM; 1135 1136 path = dentry_path_raw(dentry, buffer, PAGE_SIZE); 1137 if (IS_ERR(path)) 1138 rc = PTR_ERR(path); 1139 else { 1140 /* each process gets a /proc/PID/ entry. Strip off the 1141 * PID part to get a valid selinux labeling. 1142 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */ 1143 while (path[1] >= '0' && path[1] <= '9') { 1144 path[1] = '/'; 1145 path++; 1146 } 1147 rc = security_genfs_sid("proc", path, tclass, sid); 1148 } 1149 free_page((unsigned long)buffer); 1150 return rc; 1151 } 1152 #else 1153 static int selinux_proc_get_sid(struct dentry *dentry, 1154 u16 tclass, 1155 u32 *sid) 1156 { 1157 return -EINVAL; 1158 } 1159 #endif 1160 1161 /* The inode's security attributes must be initialized before first use. */ 1162 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 1163 { 1164 struct superblock_security_struct *sbsec = NULL; 1165 struct inode_security_struct *isec = inode->i_security; 1166 u32 sid; 1167 struct dentry *dentry; 1168 #define INITCONTEXTLEN 255 1169 char *context = NULL; 1170 unsigned len = 0; 1171 int rc = 0; 1172 1173 if (isec->initialized) 1174 goto out; 1175 1176 mutex_lock(&isec->lock); 1177 if (isec->initialized) 1178 goto out_unlock; 1179 1180 sbsec = inode->i_sb->s_security; 1181 if (!(sbsec->flags & SE_SBINITIALIZED)) { 1182 /* Defer initialization until selinux_complete_init, 1183 after the initial policy is loaded and the security 1184 server is ready to handle calls. */ 1185 spin_lock(&sbsec->isec_lock); 1186 if (list_empty(&isec->list)) 1187 list_add(&isec->list, &sbsec->isec_head); 1188 spin_unlock(&sbsec->isec_lock); 1189 goto out_unlock; 1190 } 1191 1192 switch (sbsec->behavior) { 1193 case SECURITY_FS_USE_XATTR: 1194 if (!inode->i_op->getxattr) { 1195 isec->sid = sbsec->def_sid; 1196 break; 1197 } 1198 1199 /* Need a dentry, since the xattr API requires one. 1200 Life would be simpler if we could just pass the inode. */ 1201 if (opt_dentry) { 1202 /* Called from d_instantiate or d_splice_alias. */ 1203 dentry = dget(opt_dentry); 1204 } else { 1205 /* Called from selinux_complete_init, try to find a dentry. */ 1206 dentry = d_find_alias(inode); 1207 } 1208 if (!dentry) { 1209 /* 1210 * this is can be hit on boot when a file is accessed 1211 * before the policy is loaded. When we load policy we 1212 * may find inodes that have no dentry on the 1213 * sbsec->isec_head list. No reason to complain as these 1214 * will get fixed up the next time we go through 1215 * inode_doinit with a dentry, before these inodes could 1216 * be used again by userspace. 1217 */ 1218 goto out_unlock; 1219 } 1220 1221 len = INITCONTEXTLEN; 1222 context = kmalloc(len+1, GFP_NOFS); 1223 if (!context) { 1224 rc = -ENOMEM; 1225 dput(dentry); 1226 goto out_unlock; 1227 } 1228 context[len] = '\0'; 1229 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1230 context, len); 1231 if (rc == -ERANGE) { 1232 kfree(context); 1233 1234 /* Need a larger buffer. Query for the right size. */ 1235 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1236 NULL, 0); 1237 if (rc < 0) { 1238 dput(dentry); 1239 goto out_unlock; 1240 } 1241 len = rc; 1242 context = kmalloc(len+1, GFP_NOFS); 1243 if (!context) { 1244 rc = -ENOMEM; 1245 dput(dentry); 1246 goto out_unlock; 1247 } 1248 context[len] = '\0'; 1249 rc = inode->i_op->getxattr(dentry, 1250 XATTR_NAME_SELINUX, 1251 context, len); 1252 } 1253 dput(dentry); 1254 if (rc < 0) { 1255 if (rc != -ENODATA) { 1256 printk(KERN_WARNING "SELinux: %s: getxattr returned " 1257 "%d for dev=%s ino=%ld\n", __func__, 1258 -rc, inode->i_sb->s_id, inode->i_ino); 1259 kfree(context); 1260 goto out_unlock; 1261 } 1262 /* Map ENODATA to the default file SID */ 1263 sid = sbsec->def_sid; 1264 rc = 0; 1265 } else { 1266 rc = security_context_to_sid_default(context, rc, &sid, 1267 sbsec->def_sid, 1268 GFP_NOFS); 1269 if (rc) { 1270 char *dev = inode->i_sb->s_id; 1271 unsigned long ino = inode->i_ino; 1272 1273 if (rc == -EINVAL) { 1274 if (printk_ratelimit()) 1275 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid " 1276 "context=%s. This indicates you may need to relabel the inode or the " 1277 "filesystem in question.\n", ino, dev, context); 1278 } else { 1279 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) " 1280 "returned %d for dev=%s ino=%ld\n", 1281 __func__, context, -rc, dev, ino); 1282 } 1283 kfree(context); 1284 /* Leave with the unlabeled SID */ 1285 rc = 0; 1286 break; 1287 } 1288 } 1289 kfree(context); 1290 isec->sid = sid; 1291 break; 1292 case SECURITY_FS_USE_TASK: 1293 isec->sid = isec->task_sid; 1294 break; 1295 case SECURITY_FS_USE_TRANS: 1296 /* Default to the fs SID. */ 1297 isec->sid = sbsec->sid; 1298 1299 /* Try to obtain a transition SID. */ 1300 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1301 rc = security_transition_sid(isec->task_sid, sbsec->sid, 1302 isec->sclass, NULL, &sid); 1303 if (rc) 1304 goto out_unlock; 1305 isec->sid = sid; 1306 break; 1307 case SECURITY_FS_USE_MNTPOINT: 1308 isec->sid = sbsec->mntpoint_sid; 1309 break; 1310 default: 1311 /* Default to the fs superblock SID. */ 1312 isec->sid = sbsec->sid; 1313 1314 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) { 1315 if (opt_dentry) { 1316 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1317 rc = selinux_proc_get_sid(opt_dentry, 1318 isec->sclass, 1319 &sid); 1320 if (rc) 1321 goto out_unlock; 1322 isec->sid = sid; 1323 } 1324 } 1325 break; 1326 } 1327 1328 isec->initialized = 1; 1329 1330 out_unlock: 1331 mutex_unlock(&isec->lock); 1332 out: 1333 if (isec->sclass == SECCLASS_FILE) 1334 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1335 return rc; 1336 } 1337 1338 /* Convert a Linux signal to an access vector. */ 1339 static inline u32 signal_to_av(int sig) 1340 { 1341 u32 perm = 0; 1342 1343 switch (sig) { 1344 case SIGCHLD: 1345 /* Commonly granted from child to parent. */ 1346 perm = PROCESS__SIGCHLD; 1347 break; 1348 case SIGKILL: 1349 /* Cannot be caught or ignored */ 1350 perm = PROCESS__SIGKILL; 1351 break; 1352 case SIGSTOP: 1353 /* Cannot be caught or ignored */ 1354 perm = PROCESS__SIGSTOP; 1355 break; 1356 default: 1357 /* All other signals. */ 1358 perm = PROCESS__SIGNAL; 1359 break; 1360 } 1361 1362 return perm; 1363 } 1364 1365 /* 1366 * Check permission between a pair of credentials 1367 * fork check, ptrace check, etc. 1368 */ 1369 static int cred_has_perm(const struct cred *actor, 1370 const struct cred *target, 1371 u32 perms) 1372 { 1373 u32 asid = cred_sid(actor), tsid = cred_sid(target); 1374 1375 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL); 1376 } 1377 1378 /* 1379 * Check permission between a pair of tasks, e.g. signal checks, 1380 * fork check, ptrace check, etc. 1381 * tsk1 is the actor and tsk2 is the target 1382 * - this uses the default subjective creds of tsk1 1383 */ 1384 static int task_has_perm(const struct task_struct *tsk1, 1385 const struct task_struct *tsk2, 1386 u32 perms) 1387 { 1388 const struct task_security_struct *__tsec1, *__tsec2; 1389 u32 sid1, sid2; 1390 1391 rcu_read_lock(); 1392 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid; 1393 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid; 1394 rcu_read_unlock(); 1395 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL); 1396 } 1397 1398 /* 1399 * Check permission between current and another task, e.g. signal checks, 1400 * fork check, ptrace check, etc. 1401 * current is the actor and tsk2 is the target 1402 * - this uses current's subjective creds 1403 */ 1404 static int current_has_perm(const struct task_struct *tsk, 1405 u32 perms) 1406 { 1407 u32 sid, tsid; 1408 1409 sid = current_sid(); 1410 tsid = task_sid(tsk); 1411 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL); 1412 } 1413 1414 #if CAP_LAST_CAP > 63 1415 #error Fix SELinux to handle capabilities > 63. 1416 #endif 1417 1418 /* Check whether a task is allowed to use a capability. */ 1419 static int cred_has_capability(const struct cred *cred, 1420 int cap, int audit) 1421 { 1422 struct common_audit_data ad; 1423 struct selinux_audit_data sad = {0,}; 1424 struct av_decision avd; 1425 u16 sclass; 1426 u32 sid = cred_sid(cred); 1427 u32 av = CAP_TO_MASK(cap); 1428 int rc; 1429 1430 COMMON_AUDIT_DATA_INIT(&ad, CAP); 1431 ad.selinux_audit_data = &sad; 1432 ad.tsk = current; 1433 ad.u.cap = cap; 1434 1435 switch (CAP_TO_INDEX(cap)) { 1436 case 0: 1437 sclass = SECCLASS_CAPABILITY; 1438 break; 1439 case 1: 1440 sclass = SECCLASS_CAPABILITY2; 1441 break; 1442 default: 1443 printk(KERN_ERR 1444 "SELinux: out of range capability %d\n", cap); 1445 BUG(); 1446 return -EINVAL; 1447 } 1448 1449 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd); 1450 if (audit == SECURITY_CAP_AUDIT) { 1451 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0); 1452 if (rc2) 1453 return rc2; 1454 } 1455 return rc; 1456 } 1457 1458 /* Check whether a task is allowed to use a system operation. */ 1459 static int task_has_system(struct task_struct *tsk, 1460 u32 perms) 1461 { 1462 u32 sid = task_sid(tsk); 1463 1464 return avc_has_perm(sid, SECINITSID_KERNEL, 1465 SECCLASS_SYSTEM, perms, NULL); 1466 } 1467 1468 /* Check whether a task has a particular permission to an inode. 1469 The 'adp' parameter is optional and allows other audit 1470 data to be passed (e.g. the dentry). */ 1471 static int inode_has_perm(const struct cred *cred, 1472 struct inode *inode, 1473 u32 perms, 1474 struct common_audit_data *adp, 1475 unsigned flags) 1476 { 1477 struct inode_security_struct *isec; 1478 u32 sid; 1479 1480 validate_creds(cred); 1481 1482 if (unlikely(IS_PRIVATE(inode))) 1483 return 0; 1484 1485 sid = cred_sid(cred); 1486 isec = inode->i_security; 1487 1488 return avc_has_perm_flags(sid, isec->sid, isec->sclass, perms, adp, flags); 1489 } 1490 1491 static int inode_has_perm_noadp(const struct cred *cred, 1492 struct inode *inode, 1493 u32 perms, 1494 unsigned flags) 1495 { 1496 struct common_audit_data ad; 1497 struct selinux_audit_data sad = {0,}; 1498 1499 COMMON_AUDIT_DATA_INIT(&ad, INODE); 1500 ad.u.inode = inode; 1501 ad.selinux_audit_data = &sad; 1502 return inode_has_perm(cred, inode, perms, &ad, flags); 1503 } 1504 1505 /* Same as inode_has_perm, but pass explicit audit data containing 1506 the dentry to help the auditing code to more easily generate the 1507 pathname if needed. */ 1508 static inline int dentry_has_perm(const struct cred *cred, 1509 struct dentry *dentry, 1510 u32 av) 1511 { 1512 struct inode *inode = dentry->d_inode; 1513 struct common_audit_data ad; 1514 struct selinux_audit_data sad = {0,}; 1515 1516 COMMON_AUDIT_DATA_INIT(&ad, DENTRY); 1517 ad.u.dentry = dentry; 1518 ad.selinux_audit_data = &sad; 1519 return inode_has_perm(cred, inode, av, &ad, 0); 1520 } 1521 1522 /* Same as inode_has_perm, but pass explicit audit data containing 1523 the path to help the auditing code to more easily generate the 1524 pathname if needed. */ 1525 static inline int path_has_perm(const struct cred *cred, 1526 struct path *path, 1527 u32 av) 1528 { 1529 struct inode *inode = path->dentry->d_inode; 1530 struct common_audit_data ad; 1531 struct selinux_audit_data sad = {0,}; 1532 1533 COMMON_AUDIT_DATA_INIT(&ad, PATH); 1534 ad.u.path = *path; 1535 ad.selinux_audit_data = &sad; 1536 return inode_has_perm(cred, inode, av, &ad, 0); 1537 } 1538 1539 /* Check whether a task can use an open file descriptor to 1540 access an inode in a given way. Check access to the 1541 descriptor itself, and then use dentry_has_perm to 1542 check a particular permission to the file. 1543 Access to the descriptor is implicitly granted if it 1544 has the same SID as the process. If av is zero, then 1545 access to the file is not checked, e.g. for cases 1546 where only the descriptor is affected like seek. */ 1547 static int file_has_perm(const struct cred *cred, 1548 struct file *file, 1549 u32 av) 1550 { 1551 struct file_security_struct *fsec = file->f_security; 1552 struct inode *inode = file->f_path.dentry->d_inode; 1553 struct common_audit_data ad; 1554 struct selinux_audit_data sad = {0,}; 1555 u32 sid = cred_sid(cred); 1556 int rc; 1557 1558 COMMON_AUDIT_DATA_INIT(&ad, PATH); 1559 ad.u.path = file->f_path; 1560 ad.selinux_audit_data = &sad; 1561 1562 if (sid != fsec->sid) { 1563 rc = avc_has_perm(sid, fsec->sid, 1564 SECCLASS_FD, 1565 FD__USE, 1566 &ad); 1567 if (rc) 1568 goto out; 1569 } 1570 1571 /* av is zero if only checking access to the descriptor. */ 1572 rc = 0; 1573 if (av) 1574 rc = inode_has_perm(cred, inode, av, &ad, 0); 1575 1576 out: 1577 return rc; 1578 } 1579 1580 /* Check whether a task can create a file. */ 1581 static int may_create(struct inode *dir, 1582 struct dentry *dentry, 1583 u16 tclass) 1584 { 1585 const struct task_security_struct *tsec = current_security(); 1586 struct inode_security_struct *dsec; 1587 struct superblock_security_struct *sbsec; 1588 u32 sid, newsid; 1589 struct common_audit_data ad; 1590 struct selinux_audit_data sad = {0,}; 1591 int rc; 1592 1593 dsec = dir->i_security; 1594 sbsec = dir->i_sb->s_security; 1595 1596 sid = tsec->sid; 1597 newsid = tsec->create_sid; 1598 1599 COMMON_AUDIT_DATA_INIT(&ad, DENTRY); 1600 ad.u.dentry = dentry; 1601 ad.selinux_audit_data = &sad; 1602 1603 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, 1604 DIR__ADD_NAME | DIR__SEARCH, 1605 &ad); 1606 if (rc) 1607 return rc; 1608 1609 if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) { 1610 rc = security_transition_sid(sid, dsec->sid, tclass, 1611 &dentry->d_name, &newsid); 1612 if (rc) 1613 return rc; 1614 } 1615 1616 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad); 1617 if (rc) 1618 return rc; 1619 1620 return avc_has_perm(newsid, sbsec->sid, 1621 SECCLASS_FILESYSTEM, 1622 FILESYSTEM__ASSOCIATE, &ad); 1623 } 1624 1625 /* Check whether a task can create a key. */ 1626 static int may_create_key(u32 ksid, 1627 struct task_struct *ctx) 1628 { 1629 u32 sid = task_sid(ctx); 1630 1631 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL); 1632 } 1633 1634 #define MAY_LINK 0 1635 #define MAY_UNLINK 1 1636 #define MAY_RMDIR 2 1637 1638 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1639 static int may_link(struct inode *dir, 1640 struct dentry *dentry, 1641 int kind) 1642 1643 { 1644 struct inode_security_struct *dsec, *isec; 1645 struct common_audit_data ad; 1646 struct selinux_audit_data sad = {0,}; 1647 u32 sid = current_sid(); 1648 u32 av; 1649 int rc; 1650 1651 dsec = dir->i_security; 1652 isec = dentry->d_inode->i_security; 1653 1654 COMMON_AUDIT_DATA_INIT(&ad, DENTRY); 1655 ad.u.dentry = dentry; 1656 ad.selinux_audit_data = &sad; 1657 1658 av = DIR__SEARCH; 1659 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1660 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad); 1661 if (rc) 1662 return rc; 1663 1664 switch (kind) { 1665 case MAY_LINK: 1666 av = FILE__LINK; 1667 break; 1668 case MAY_UNLINK: 1669 av = FILE__UNLINK; 1670 break; 1671 case MAY_RMDIR: 1672 av = DIR__RMDIR; 1673 break; 1674 default: 1675 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n", 1676 __func__, kind); 1677 return 0; 1678 } 1679 1680 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad); 1681 return rc; 1682 } 1683 1684 static inline int may_rename(struct inode *old_dir, 1685 struct dentry *old_dentry, 1686 struct inode *new_dir, 1687 struct dentry *new_dentry) 1688 { 1689 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1690 struct common_audit_data ad; 1691 struct selinux_audit_data sad = {0,}; 1692 u32 sid = current_sid(); 1693 u32 av; 1694 int old_is_dir, new_is_dir; 1695 int rc; 1696 1697 old_dsec = old_dir->i_security; 1698 old_isec = old_dentry->d_inode->i_security; 1699 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 1700 new_dsec = new_dir->i_security; 1701 1702 COMMON_AUDIT_DATA_INIT(&ad, DENTRY); 1703 ad.selinux_audit_data = &sad; 1704 1705 ad.u.dentry = old_dentry; 1706 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR, 1707 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1708 if (rc) 1709 return rc; 1710 rc = avc_has_perm(sid, old_isec->sid, 1711 old_isec->sclass, FILE__RENAME, &ad); 1712 if (rc) 1713 return rc; 1714 if (old_is_dir && new_dir != old_dir) { 1715 rc = avc_has_perm(sid, old_isec->sid, 1716 old_isec->sclass, DIR__REPARENT, &ad); 1717 if (rc) 1718 return rc; 1719 } 1720 1721 ad.u.dentry = new_dentry; 1722 av = DIR__ADD_NAME | DIR__SEARCH; 1723 if (new_dentry->d_inode) 1724 av |= DIR__REMOVE_NAME; 1725 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1726 if (rc) 1727 return rc; 1728 if (new_dentry->d_inode) { 1729 new_isec = new_dentry->d_inode->i_security; 1730 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode); 1731 rc = avc_has_perm(sid, new_isec->sid, 1732 new_isec->sclass, 1733 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1734 if (rc) 1735 return rc; 1736 } 1737 1738 return 0; 1739 } 1740 1741 /* Check whether a task can perform a filesystem operation. */ 1742 static int superblock_has_perm(const struct cred *cred, 1743 struct super_block *sb, 1744 u32 perms, 1745 struct common_audit_data *ad) 1746 { 1747 struct superblock_security_struct *sbsec; 1748 u32 sid = cred_sid(cred); 1749 1750 sbsec = sb->s_security; 1751 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad); 1752 } 1753 1754 /* Convert a Linux mode and permission mask to an access vector. */ 1755 static inline u32 file_mask_to_av(int mode, int mask) 1756 { 1757 u32 av = 0; 1758 1759 if (!S_ISDIR(mode)) { 1760 if (mask & MAY_EXEC) 1761 av |= FILE__EXECUTE; 1762 if (mask & MAY_READ) 1763 av |= FILE__READ; 1764 1765 if (mask & MAY_APPEND) 1766 av |= FILE__APPEND; 1767 else if (mask & MAY_WRITE) 1768 av |= FILE__WRITE; 1769 1770 } else { 1771 if (mask & MAY_EXEC) 1772 av |= DIR__SEARCH; 1773 if (mask & MAY_WRITE) 1774 av |= DIR__WRITE; 1775 if (mask & MAY_READ) 1776 av |= DIR__READ; 1777 } 1778 1779 return av; 1780 } 1781 1782 /* Convert a Linux file to an access vector. */ 1783 static inline u32 file_to_av(struct file *file) 1784 { 1785 u32 av = 0; 1786 1787 if (file->f_mode & FMODE_READ) 1788 av |= FILE__READ; 1789 if (file->f_mode & FMODE_WRITE) { 1790 if (file->f_flags & O_APPEND) 1791 av |= FILE__APPEND; 1792 else 1793 av |= FILE__WRITE; 1794 } 1795 if (!av) { 1796 /* 1797 * Special file opened with flags 3 for ioctl-only use. 1798 */ 1799 av = FILE__IOCTL; 1800 } 1801 1802 return av; 1803 } 1804 1805 /* 1806 * Convert a file to an access vector and include the correct open 1807 * open permission. 1808 */ 1809 static inline u32 open_file_to_av(struct file *file) 1810 { 1811 u32 av = file_to_av(file); 1812 1813 if (selinux_policycap_openperm) 1814 av |= FILE__OPEN; 1815 1816 return av; 1817 } 1818 1819 /* Hook functions begin here. */ 1820 1821 static int selinux_ptrace_access_check(struct task_struct *child, 1822 unsigned int mode) 1823 { 1824 int rc; 1825 1826 rc = cap_ptrace_access_check(child, mode); 1827 if (rc) 1828 return rc; 1829 1830 if (mode & PTRACE_MODE_READ) { 1831 u32 sid = current_sid(); 1832 u32 csid = task_sid(child); 1833 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL); 1834 } 1835 1836 return current_has_perm(child, PROCESS__PTRACE); 1837 } 1838 1839 static int selinux_ptrace_traceme(struct task_struct *parent) 1840 { 1841 int rc; 1842 1843 rc = cap_ptrace_traceme(parent); 1844 if (rc) 1845 return rc; 1846 1847 return task_has_perm(parent, current, PROCESS__PTRACE); 1848 } 1849 1850 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective, 1851 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1852 { 1853 int error; 1854 1855 error = current_has_perm(target, PROCESS__GETCAP); 1856 if (error) 1857 return error; 1858 1859 return cap_capget(target, effective, inheritable, permitted); 1860 } 1861 1862 static int selinux_capset(struct cred *new, const struct cred *old, 1863 const kernel_cap_t *effective, 1864 const kernel_cap_t *inheritable, 1865 const kernel_cap_t *permitted) 1866 { 1867 int error; 1868 1869 error = cap_capset(new, old, 1870 effective, inheritable, permitted); 1871 if (error) 1872 return error; 1873 1874 return cred_has_perm(old, new, PROCESS__SETCAP); 1875 } 1876 1877 /* 1878 * (This comment used to live with the selinux_task_setuid hook, 1879 * which was removed). 1880 * 1881 * Since setuid only affects the current process, and since the SELinux 1882 * controls are not based on the Linux identity attributes, SELinux does not 1883 * need to control this operation. However, SELinux does control the use of 1884 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook. 1885 */ 1886 1887 static int selinux_capable(const struct cred *cred, struct user_namespace *ns, 1888 int cap, int audit) 1889 { 1890 int rc; 1891 1892 rc = cap_capable(cred, ns, cap, audit); 1893 if (rc) 1894 return rc; 1895 1896 return cred_has_capability(cred, cap, audit); 1897 } 1898 1899 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) 1900 { 1901 const struct cred *cred = current_cred(); 1902 int rc = 0; 1903 1904 if (!sb) 1905 return 0; 1906 1907 switch (cmds) { 1908 case Q_SYNC: 1909 case Q_QUOTAON: 1910 case Q_QUOTAOFF: 1911 case Q_SETINFO: 1912 case Q_SETQUOTA: 1913 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL); 1914 break; 1915 case Q_GETFMT: 1916 case Q_GETINFO: 1917 case Q_GETQUOTA: 1918 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL); 1919 break; 1920 default: 1921 rc = 0; /* let the kernel handle invalid cmds */ 1922 break; 1923 } 1924 return rc; 1925 } 1926 1927 static int selinux_quota_on(struct dentry *dentry) 1928 { 1929 const struct cred *cred = current_cred(); 1930 1931 return dentry_has_perm(cred, dentry, FILE__QUOTAON); 1932 } 1933 1934 static int selinux_syslog(int type) 1935 { 1936 int rc; 1937 1938 switch (type) { 1939 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */ 1940 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */ 1941 rc = task_has_system(current, SYSTEM__SYSLOG_READ); 1942 break; 1943 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */ 1944 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */ 1945 /* Set level of messages printed to console */ 1946 case SYSLOG_ACTION_CONSOLE_LEVEL: 1947 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE); 1948 break; 1949 case SYSLOG_ACTION_CLOSE: /* Close log */ 1950 case SYSLOG_ACTION_OPEN: /* Open log */ 1951 case SYSLOG_ACTION_READ: /* Read from log */ 1952 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */ 1953 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */ 1954 default: 1955 rc = task_has_system(current, SYSTEM__SYSLOG_MOD); 1956 break; 1957 } 1958 return rc; 1959 } 1960 1961 /* 1962 * Check that a process has enough memory to allocate a new virtual 1963 * mapping. 0 means there is enough memory for the allocation to 1964 * succeed and -ENOMEM implies there is not. 1965 * 1966 * Do not audit the selinux permission check, as this is applied to all 1967 * processes that allocate mappings. 1968 */ 1969 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) 1970 { 1971 int rc, cap_sys_admin = 0; 1972 1973 rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN, 1974 SECURITY_CAP_NOAUDIT); 1975 if (rc == 0) 1976 cap_sys_admin = 1; 1977 1978 return __vm_enough_memory(mm, pages, cap_sys_admin); 1979 } 1980 1981 /* binprm security operations */ 1982 1983 static int selinux_bprm_set_creds(struct linux_binprm *bprm) 1984 { 1985 const struct task_security_struct *old_tsec; 1986 struct task_security_struct *new_tsec; 1987 struct inode_security_struct *isec; 1988 struct common_audit_data ad; 1989 struct selinux_audit_data sad = {0,}; 1990 struct inode *inode = bprm->file->f_path.dentry->d_inode; 1991 int rc; 1992 1993 rc = cap_bprm_set_creds(bprm); 1994 if (rc) 1995 return rc; 1996 1997 /* SELinux context only depends on initial program or script and not 1998 * the script interpreter */ 1999 if (bprm->cred_prepared) 2000 return 0; 2001 2002 old_tsec = current_security(); 2003 new_tsec = bprm->cred->security; 2004 isec = inode->i_security; 2005 2006 /* Default to the current task SID. */ 2007 new_tsec->sid = old_tsec->sid; 2008 new_tsec->osid = old_tsec->sid; 2009 2010 /* Reset fs, key, and sock SIDs on execve. */ 2011 new_tsec->create_sid = 0; 2012 new_tsec->keycreate_sid = 0; 2013 new_tsec->sockcreate_sid = 0; 2014 2015 if (old_tsec->exec_sid) { 2016 new_tsec->sid = old_tsec->exec_sid; 2017 /* Reset exec SID on execve. */ 2018 new_tsec->exec_sid = 0; 2019 } else { 2020 /* Check for a default transition on this program. */ 2021 rc = security_transition_sid(old_tsec->sid, isec->sid, 2022 SECCLASS_PROCESS, NULL, 2023 &new_tsec->sid); 2024 if (rc) 2025 return rc; 2026 } 2027 2028 COMMON_AUDIT_DATA_INIT(&ad, PATH); 2029 ad.selinux_audit_data = &sad; 2030 ad.u.path = bprm->file->f_path; 2031 2032 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) 2033 new_tsec->sid = old_tsec->sid; 2034 2035 if (new_tsec->sid == old_tsec->sid) { 2036 rc = avc_has_perm(old_tsec->sid, isec->sid, 2037 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 2038 if (rc) 2039 return rc; 2040 } else { 2041 /* Check permissions for the transition. */ 2042 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2043 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 2044 if (rc) 2045 return rc; 2046 2047 rc = avc_has_perm(new_tsec->sid, isec->sid, 2048 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 2049 if (rc) 2050 return rc; 2051 2052 /* Check for shared state */ 2053 if (bprm->unsafe & LSM_UNSAFE_SHARE) { 2054 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2055 SECCLASS_PROCESS, PROCESS__SHARE, 2056 NULL); 2057 if (rc) 2058 return -EPERM; 2059 } 2060 2061 /* Make sure that anyone attempting to ptrace over a task that 2062 * changes its SID has the appropriate permit */ 2063 if (bprm->unsafe & 2064 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) { 2065 struct task_struct *tracer; 2066 struct task_security_struct *sec; 2067 u32 ptsid = 0; 2068 2069 rcu_read_lock(); 2070 tracer = ptrace_parent(current); 2071 if (likely(tracer != NULL)) { 2072 sec = __task_cred(tracer)->security; 2073 ptsid = sec->sid; 2074 } 2075 rcu_read_unlock(); 2076 2077 if (ptsid != 0) { 2078 rc = avc_has_perm(ptsid, new_tsec->sid, 2079 SECCLASS_PROCESS, 2080 PROCESS__PTRACE, NULL); 2081 if (rc) 2082 return -EPERM; 2083 } 2084 } 2085 2086 /* Clear any possibly unsafe personality bits on exec: */ 2087 bprm->per_clear |= PER_CLEAR_ON_SETID; 2088 } 2089 2090 return 0; 2091 } 2092 2093 static int selinux_bprm_secureexec(struct linux_binprm *bprm) 2094 { 2095 const struct task_security_struct *tsec = current_security(); 2096 u32 sid, osid; 2097 int atsecure = 0; 2098 2099 sid = tsec->sid; 2100 osid = tsec->osid; 2101 2102 if (osid != sid) { 2103 /* Enable secure mode for SIDs transitions unless 2104 the noatsecure permission is granted between 2105 the two SIDs, i.e. ahp returns 0. */ 2106 atsecure = avc_has_perm(osid, sid, 2107 SECCLASS_PROCESS, 2108 PROCESS__NOATSECURE, NULL); 2109 } 2110 2111 return (atsecure || cap_bprm_secureexec(bprm)); 2112 } 2113 2114 /* Derived from fs/exec.c:flush_old_files. */ 2115 static inline void flush_unauthorized_files(const struct cred *cred, 2116 struct files_struct *files) 2117 { 2118 struct common_audit_data ad; 2119 struct selinux_audit_data sad = {0,}; 2120 struct file *file, *devnull = NULL; 2121 struct tty_struct *tty; 2122 struct fdtable *fdt; 2123 long j = -1; 2124 int drop_tty = 0; 2125 2126 tty = get_current_tty(); 2127 if (tty) { 2128 spin_lock(&tty_files_lock); 2129 if (!list_empty(&tty->tty_files)) { 2130 struct tty_file_private *file_priv; 2131 struct inode *inode; 2132 2133 /* Revalidate access to controlling tty. 2134 Use inode_has_perm on the tty inode directly rather 2135 than using file_has_perm, as this particular open 2136 file may belong to another process and we are only 2137 interested in the inode-based check here. */ 2138 file_priv = list_first_entry(&tty->tty_files, 2139 struct tty_file_private, list); 2140 file = file_priv->file; 2141 inode = file->f_path.dentry->d_inode; 2142 if (inode_has_perm_noadp(cred, inode, 2143 FILE__READ | FILE__WRITE, 0)) { 2144 drop_tty = 1; 2145 } 2146 } 2147 spin_unlock(&tty_files_lock); 2148 tty_kref_put(tty); 2149 } 2150 /* Reset controlling tty. */ 2151 if (drop_tty) 2152 no_tty(); 2153 2154 /* Revalidate access to inherited open files. */ 2155 2156 COMMON_AUDIT_DATA_INIT(&ad, INODE); 2157 ad.selinux_audit_data = &sad; 2158 2159 spin_lock(&files->file_lock); 2160 for (;;) { 2161 unsigned long set, i; 2162 int fd; 2163 2164 j++; 2165 i = j * __NFDBITS; 2166 fdt = files_fdtable(files); 2167 if (i >= fdt->max_fds) 2168 break; 2169 set = fdt->open_fds[j]; 2170 if (!set) 2171 continue; 2172 spin_unlock(&files->file_lock); 2173 for ( ; set ; i++, set >>= 1) { 2174 if (set & 1) { 2175 file = fget(i); 2176 if (!file) 2177 continue; 2178 if (file_has_perm(cred, 2179 file, 2180 file_to_av(file))) { 2181 sys_close(i); 2182 fd = get_unused_fd(); 2183 if (fd != i) { 2184 if (fd >= 0) 2185 put_unused_fd(fd); 2186 fput(file); 2187 continue; 2188 } 2189 if (devnull) { 2190 get_file(devnull); 2191 } else { 2192 devnull = dentry_open( 2193 dget(selinux_null), 2194 mntget(selinuxfs_mount), 2195 O_RDWR, cred); 2196 if (IS_ERR(devnull)) { 2197 devnull = NULL; 2198 put_unused_fd(fd); 2199 fput(file); 2200 continue; 2201 } 2202 } 2203 fd_install(fd, devnull); 2204 } 2205 fput(file); 2206 } 2207 } 2208 spin_lock(&files->file_lock); 2209 2210 } 2211 spin_unlock(&files->file_lock); 2212 } 2213 2214 /* 2215 * Prepare a process for imminent new credential changes due to exec 2216 */ 2217 static void selinux_bprm_committing_creds(struct linux_binprm *bprm) 2218 { 2219 struct task_security_struct *new_tsec; 2220 struct rlimit *rlim, *initrlim; 2221 int rc, i; 2222 2223 new_tsec = bprm->cred->security; 2224 if (new_tsec->sid == new_tsec->osid) 2225 return; 2226 2227 /* Close files for which the new task SID is not authorized. */ 2228 flush_unauthorized_files(bprm->cred, current->files); 2229 2230 /* Always clear parent death signal on SID transitions. */ 2231 current->pdeath_signal = 0; 2232 2233 /* Check whether the new SID can inherit resource limits from the old 2234 * SID. If not, reset all soft limits to the lower of the current 2235 * task's hard limit and the init task's soft limit. 2236 * 2237 * Note that the setting of hard limits (even to lower them) can be 2238 * controlled by the setrlimit check. The inclusion of the init task's 2239 * soft limit into the computation is to avoid resetting soft limits 2240 * higher than the default soft limit for cases where the default is 2241 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK. 2242 */ 2243 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS, 2244 PROCESS__RLIMITINH, NULL); 2245 if (rc) { 2246 /* protect against do_prlimit() */ 2247 task_lock(current); 2248 for (i = 0; i < RLIM_NLIMITS; i++) { 2249 rlim = current->signal->rlim + i; 2250 initrlim = init_task.signal->rlim + i; 2251 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur); 2252 } 2253 task_unlock(current); 2254 update_rlimit_cpu(current, rlimit(RLIMIT_CPU)); 2255 } 2256 } 2257 2258 /* 2259 * Clean up the process immediately after the installation of new credentials 2260 * due to exec 2261 */ 2262 static void selinux_bprm_committed_creds(struct linux_binprm *bprm) 2263 { 2264 const struct task_security_struct *tsec = current_security(); 2265 struct itimerval itimer; 2266 u32 osid, sid; 2267 int rc, i; 2268 2269 osid = tsec->osid; 2270 sid = tsec->sid; 2271 2272 if (sid == osid) 2273 return; 2274 2275 /* Check whether the new SID can inherit signal state from the old SID. 2276 * If not, clear itimers to avoid subsequent signal generation and 2277 * flush and unblock signals. 2278 * 2279 * This must occur _after_ the task SID has been updated so that any 2280 * kill done after the flush will be checked against the new SID. 2281 */ 2282 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL); 2283 if (rc) { 2284 memset(&itimer, 0, sizeof itimer); 2285 for (i = 0; i < 3; i++) 2286 do_setitimer(i, &itimer, NULL); 2287 spin_lock_irq(¤t->sighand->siglock); 2288 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) { 2289 __flush_signals(current); 2290 flush_signal_handlers(current, 1); 2291 sigemptyset(¤t->blocked); 2292 } 2293 spin_unlock_irq(¤t->sighand->siglock); 2294 } 2295 2296 /* Wake up the parent if it is waiting so that it can recheck 2297 * wait permission to the new task SID. */ 2298 read_lock(&tasklist_lock); 2299 __wake_up_parent(current, current->real_parent); 2300 read_unlock(&tasklist_lock); 2301 } 2302 2303 /* superblock security operations */ 2304 2305 static int selinux_sb_alloc_security(struct super_block *sb) 2306 { 2307 return superblock_alloc_security(sb); 2308 } 2309 2310 static void selinux_sb_free_security(struct super_block *sb) 2311 { 2312 superblock_free_security(sb); 2313 } 2314 2315 static inline int match_prefix(char *prefix, int plen, char *option, int olen) 2316 { 2317 if (plen > olen) 2318 return 0; 2319 2320 return !memcmp(prefix, option, plen); 2321 } 2322 2323 static inline int selinux_option(char *option, int len) 2324 { 2325 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) || 2326 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) || 2327 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) || 2328 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) || 2329 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len)); 2330 } 2331 2332 static inline void take_option(char **to, char *from, int *first, int len) 2333 { 2334 if (!*first) { 2335 **to = ','; 2336 *to += 1; 2337 } else 2338 *first = 0; 2339 memcpy(*to, from, len); 2340 *to += len; 2341 } 2342 2343 static inline void take_selinux_option(char **to, char *from, int *first, 2344 int len) 2345 { 2346 int current_size = 0; 2347 2348 if (!*first) { 2349 **to = '|'; 2350 *to += 1; 2351 } else 2352 *first = 0; 2353 2354 while (current_size < len) { 2355 if (*from != '"') { 2356 **to = *from; 2357 *to += 1; 2358 } 2359 from += 1; 2360 current_size += 1; 2361 } 2362 } 2363 2364 static int selinux_sb_copy_data(char *orig, char *copy) 2365 { 2366 int fnosec, fsec, rc = 0; 2367 char *in_save, *in_curr, *in_end; 2368 char *sec_curr, *nosec_save, *nosec; 2369 int open_quote = 0; 2370 2371 in_curr = orig; 2372 sec_curr = copy; 2373 2374 nosec = (char *)get_zeroed_page(GFP_KERNEL); 2375 if (!nosec) { 2376 rc = -ENOMEM; 2377 goto out; 2378 } 2379 2380 nosec_save = nosec; 2381 fnosec = fsec = 1; 2382 in_save = in_end = orig; 2383 2384 do { 2385 if (*in_end == '"') 2386 open_quote = !open_quote; 2387 if ((*in_end == ',' && open_quote == 0) || 2388 *in_end == '\0') { 2389 int len = in_end - in_curr; 2390 2391 if (selinux_option(in_curr, len)) 2392 take_selinux_option(&sec_curr, in_curr, &fsec, len); 2393 else 2394 take_option(&nosec, in_curr, &fnosec, len); 2395 2396 in_curr = in_end + 1; 2397 } 2398 } while (*in_end++); 2399 2400 strcpy(in_save, nosec_save); 2401 free_page((unsigned long)nosec_save); 2402 out: 2403 return rc; 2404 } 2405 2406 static int selinux_sb_remount(struct super_block *sb, void *data) 2407 { 2408 int rc, i, *flags; 2409 struct security_mnt_opts opts; 2410 char *secdata, **mount_options; 2411 struct superblock_security_struct *sbsec = sb->s_security; 2412 2413 if (!(sbsec->flags & SE_SBINITIALIZED)) 2414 return 0; 2415 2416 if (!data) 2417 return 0; 2418 2419 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 2420 return 0; 2421 2422 security_init_mnt_opts(&opts); 2423 secdata = alloc_secdata(); 2424 if (!secdata) 2425 return -ENOMEM; 2426 rc = selinux_sb_copy_data(data, secdata); 2427 if (rc) 2428 goto out_free_secdata; 2429 2430 rc = selinux_parse_opts_str(secdata, &opts); 2431 if (rc) 2432 goto out_free_secdata; 2433 2434 mount_options = opts.mnt_opts; 2435 flags = opts.mnt_opts_flags; 2436 2437 for (i = 0; i < opts.num_mnt_opts; i++) { 2438 u32 sid; 2439 size_t len; 2440 2441 if (flags[i] == SE_SBLABELSUPP) 2442 continue; 2443 len = strlen(mount_options[i]); 2444 rc = security_context_to_sid(mount_options[i], len, &sid); 2445 if (rc) { 2446 printk(KERN_WARNING "SELinux: security_context_to_sid" 2447 "(%s) failed for (dev %s, type %s) errno=%d\n", 2448 mount_options[i], sb->s_id, sb->s_type->name, rc); 2449 goto out_free_opts; 2450 } 2451 rc = -EINVAL; 2452 switch (flags[i]) { 2453 case FSCONTEXT_MNT: 2454 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid)) 2455 goto out_bad_option; 2456 break; 2457 case CONTEXT_MNT: 2458 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid)) 2459 goto out_bad_option; 2460 break; 2461 case ROOTCONTEXT_MNT: { 2462 struct inode_security_struct *root_isec; 2463 root_isec = sb->s_root->d_inode->i_security; 2464 2465 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid)) 2466 goto out_bad_option; 2467 break; 2468 } 2469 case DEFCONTEXT_MNT: 2470 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid)) 2471 goto out_bad_option; 2472 break; 2473 default: 2474 goto out_free_opts; 2475 } 2476 } 2477 2478 rc = 0; 2479 out_free_opts: 2480 security_free_mnt_opts(&opts); 2481 out_free_secdata: 2482 free_secdata(secdata); 2483 return rc; 2484 out_bad_option: 2485 printk(KERN_WARNING "SELinux: unable to change security options " 2486 "during remount (dev %s, type=%s)\n", sb->s_id, 2487 sb->s_type->name); 2488 goto out_free_opts; 2489 } 2490 2491 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data) 2492 { 2493 const struct cred *cred = current_cred(); 2494 struct common_audit_data ad; 2495 struct selinux_audit_data sad = {0,}; 2496 int rc; 2497 2498 rc = superblock_doinit(sb, data); 2499 if (rc) 2500 return rc; 2501 2502 /* Allow all mounts performed by the kernel */ 2503 if (flags & MS_KERNMOUNT) 2504 return 0; 2505 2506 COMMON_AUDIT_DATA_INIT(&ad, DENTRY); 2507 ad.selinux_audit_data = &sad; 2508 ad.u.dentry = sb->s_root; 2509 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad); 2510 } 2511 2512 static int selinux_sb_statfs(struct dentry *dentry) 2513 { 2514 const struct cred *cred = current_cred(); 2515 struct common_audit_data ad; 2516 struct selinux_audit_data sad = {0,}; 2517 2518 COMMON_AUDIT_DATA_INIT(&ad, DENTRY); 2519 ad.selinux_audit_data = &sad; 2520 ad.u.dentry = dentry->d_sb->s_root; 2521 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2522 } 2523 2524 static int selinux_mount(char *dev_name, 2525 struct path *path, 2526 char *type, 2527 unsigned long flags, 2528 void *data) 2529 { 2530 const struct cred *cred = current_cred(); 2531 2532 if (flags & MS_REMOUNT) 2533 return superblock_has_perm(cred, path->dentry->d_sb, 2534 FILESYSTEM__REMOUNT, NULL); 2535 else 2536 return path_has_perm(cred, path, FILE__MOUNTON); 2537 } 2538 2539 static int selinux_umount(struct vfsmount *mnt, int flags) 2540 { 2541 const struct cred *cred = current_cred(); 2542 2543 return superblock_has_perm(cred, mnt->mnt_sb, 2544 FILESYSTEM__UNMOUNT, NULL); 2545 } 2546 2547 /* inode security operations */ 2548 2549 static int selinux_inode_alloc_security(struct inode *inode) 2550 { 2551 return inode_alloc_security(inode); 2552 } 2553 2554 static void selinux_inode_free_security(struct inode *inode) 2555 { 2556 inode_free_security(inode); 2557 } 2558 2559 static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 2560 const struct qstr *qstr, char **name, 2561 void **value, size_t *len) 2562 { 2563 const struct task_security_struct *tsec = current_security(); 2564 struct inode_security_struct *dsec; 2565 struct superblock_security_struct *sbsec; 2566 u32 sid, newsid, clen; 2567 int rc; 2568 char *namep = NULL, *context; 2569 2570 dsec = dir->i_security; 2571 sbsec = dir->i_sb->s_security; 2572 2573 sid = tsec->sid; 2574 newsid = tsec->create_sid; 2575 2576 if ((sbsec->flags & SE_SBINITIALIZED) && 2577 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) 2578 newsid = sbsec->mntpoint_sid; 2579 else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) { 2580 rc = security_transition_sid(sid, dsec->sid, 2581 inode_mode_to_security_class(inode->i_mode), 2582 qstr, &newsid); 2583 if (rc) { 2584 printk(KERN_WARNING "%s: " 2585 "security_transition_sid failed, rc=%d (dev=%s " 2586 "ino=%ld)\n", 2587 __func__, 2588 -rc, inode->i_sb->s_id, inode->i_ino); 2589 return rc; 2590 } 2591 } 2592 2593 /* Possibly defer initialization to selinux_complete_init. */ 2594 if (sbsec->flags & SE_SBINITIALIZED) { 2595 struct inode_security_struct *isec = inode->i_security; 2596 isec->sclass = inode_mode_to_security_class(inode->i_mode); 2597 isec->sid = newsid; 2598 isec->initialized = 1; 2599 } 2600 2601 if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP)) 2602 return -EOPNOTSUPP; 2603 2604 if (name) { 2605 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS); 2606 if (!namep) 2607 return -ENOMEM; 2608 *name = namep; 2609 } 2610 2611 if (value && len) { 2612 rc = security_sid_to_context_force(newsid, &context, &clen); 2613 if (rc) { 2614 kfree(namep); 2615 return rc; 2616 } 2617 *value = context; 2618 *len = clen; 2619 } 2620 2621 return 0; 2622 } 2623 2624 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 2625 { 2626 return may_create(dir, dentry, SECCLASS_FILE); 2627 } 2628 2629 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2630 { 2631 return may_link(dir, old_dentry, MAY_LINK); 2632 } 2633 2634 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 2635 { 2636 return may_link(dir, dentry, MAY_UNLINK); 2637 } 2638 2639 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 2640 { 2641 return may_create(dir, dentry, SECCLASS_LNK_FILE); 2642 } 2643 2644 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask) 2645 { 2646 return may_create(dir, dentry, SECCLASS_DIR); 2647 } 2648 2649 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 2650 { 2651 return may_link(dir, dentry, MAY_RMDIR); 2652 } 2653 2654 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2655 { 2656 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 2657 } 2658 2659 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 2660 struct inode *new_inode, struct dentry *new_dentry) 2661 { 2662 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 2663 } 2664 2665 static int selinux_inode_readlink(struct dentry *dentry) 2666 { 2667 const struct cred *cred = current_cred(); 2668 2669 return dentry_has_perm(cred, dentry, FILE__READ); 2670 } 2671 2672 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata) 2673 { 2674 const struct cred *cred = current_cred(); 2675 2676 return dentry_has_perm(cred, dentry, FILE__READ); 2677 } 2678 2679 static int selinux_inode_permission(struct inode *inode, int mask) 2680 { 2681 const struct cred *cred = current_cred(); 2682 struct common_audit_data ad; 2683 struct selinux_audit_data sad = {0,}; 2684 u32 perms; 2685 bool from_access; 2686 unsigned flags = mask & MAY_NOT_BLOCK; 2687 2688 from_access = mask & MAY_ACCESS; 2689 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND); 2690 2691 /* No permission to check. Existence test. */ 2692 if (!mask) 2693 return 0; 2694 2695 COMMON_AUDIT_DATA_INIT(&ad, INODE); 2696 ad.selinux_audit_data = &sad; 2697 ad.u.inode = inode; 2698 2699 if (from_access) 2700 ad.selinux_audit_data->auditdeny |= FILE__AUDIT_ACCESS; 2701 2702 perms = file_mask_to_av(inode->i_mode, mask); 2703 2704 return inode_has_perm(cred, inode, perms, &ad, flags); 2705 } 2706 2707 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) 2708 { 2709 const struct cred *cred = current_cred(); 2710 unsigned int ia_valid = iattr->ia_valid; 2711 2712 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */ 2713 if (ia_valid & ATTR_FORCE) { 2714 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE | 2715 ATTR_FORCE); 2716 if (!ia_valid) 2717 return 0; 2718 } 2719 2720 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 2721 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET)) 2722 return dentry_has_perm(cred, dentry, FILE__SETATTR); 2723 2724 return dentry_has_perm(cred, dentry, FILE__WRITE); 2725 } 2726 2727 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 2728 { 2729 const struct cred *cred = current_cred(); 2730 struct path path; 2731 2732 path.dentry = dentry; 2733 path.mnt = mnt; 2734 2735 return path_has_perm(cred, &path, FILE__GETATTR); 2736 } 2737 2738 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name) 2739 { 2740 const struct cred *cred = current_cred(); 2741 2742 if (!strncmp(name, XATTR_SECURITY_PREFIX, 2743 sizeof XATTR_SECURITY_PREFIX - 1)) { 2744 if (!strcmp(name, XATTR_NAME_CAPS)) { 2745 if (!capable(CAP_SETFCAP)) 2746 return -EPERM; 2747 } else if (!capable(CAP_SYS_ADMIN)) { 2748 /* A different attribute in the security namespace. 2749 Restrict to administrator. */ 2750 return -EPERM; 2751 } 2752 } 2753 2754 /* Not an attribute we recognize, so just check the 2755 ordinary setattr permission. */ 2756 return dentry_has_perm(cred, dentry, FILE__SETATTR); 2757 } 2758 2759 static int selinux_inode_setxattr(struct dentry *dentry, const char *name, 2760 const void *value, size_t size, int flags) 2761 { 2762 struct inode *inode = dentry->d_inode; 2763 struct inode_security_struct *isec = inode->i_security; 2764 struct superblock_security_struct *sbsec; 2765 struct common_audit_data ad; 2766 struct selinux_audit_data sad = {0,}; 2767 u32 newsid, sid = current_sid(); 2768 int rc = 0; 2769 2770 if (strcmp(name, XATTR_NAME_SELINUX)) 2771 return selinux_inode_setotherxattr(dentry, name); 2772 2773 sbsec = inode->i_sb->s_security; 2774 if (!(sbsec->flags & SE_SBLABELSUPP)) 2775 return -EOPNOTSUPP; 2776 2777 if (!inode_owner_or_capable(inode)) 2778 return -EPERM; 2779 2780 COMMON_AUDIT_DATA_INIT(&ad, DENTRY); 2781 ad.selinux_audit_data = &sad; 2782 ad.u.dentry = dentry; 2783 2784 rc = avc_has_perm(sid, isec->sid, isec->sclass, 2785 FILE__RELABELFROM, &ad); 2786 if (rc) 2787 return rc; 2788 2789 rc = security_context_to_sid(value, size, &newsid); 2790 if (rc == -EINVAL) { 2791 if (!capable(CAP_MAC_ADMIN)) 2792 return rc; 2793 rc = security_context_to_sid_force(value, size, &newsid); 2794 } 2795 if (rc) 2796 return rc; 2797 2798 rc = avc_has_perm(sid, newsid, isec->sclass, 2799 FILE__RELABELTO, &ad); 2800 if (rc) 2801 return rc; 2802 2803 rc = security_validate_transition(isec->sid, newsid, sid, 2804 isec->sclass); 2805 if (rc) 2806 return rc; 2807 2808 return avc_has_perm(newsid, 2809 sbsec->sid, 2810 SECCLASS_FILESYSTEM, 2811 FILESYSTEM__ASSOCIATE, 2812 &ad); 2813 } 2814 2815 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name, 2816 const void *value, size_t size, 2817 int flags) 2818 { 2819 struct inode *inode = dentry->d_inode; 2820 struct inode_security_struct *isec = inode->i_security; 2821 u32 newsid; 2822 int rc; 2823 2824 if (strcmp(name, XATTR_NAME_SELINUX)) { 2825 /* Not an attribute we recognize, so nothing to do. */ 2826 return; 2827 } 2828 2829 rc = security_context_to_sid_force(value, size, &newsid); 2830 if (rc) { 2831 printk(KERN_ERR "SELinux: unable to map context to SID" 2832 "for (%s, %lu), rc=%d\n", 2833 inode->i_sb->s_id, inode->i_ino, -rc); 2834 return; 2835 } 2836 2837 isec->sid = newsid; 2838 return; 2839 } 2840 2841 static int selinux_inode_getxattr(struct dentry *dentry, const char *name) 2842 { 2843 const struct cred *cred = current_cred(); 2844 2845 return dentry_has_perm(cred, dentry, FILE__GETATTR); 2846 } 2847 2848 static int selinux_inode_listxattr(struct dentry *dentry) 2849 { 2850 const struct cred *cred = current_cred(); 2851 2852 return dentry_has_perm(cred, dentry, FILE__GETATTR); 2853 } 2854 2855 static int selinux_inode_removexattr(struct dentry *dentry, const char *name) 2856 { 2857 if (strcmp(name, XATTR_NAME_SELINUX)) 2858 return selinux_inode_setotherxattr(dentry, name); 2859 2860 /* No one is allowed to remove a SELinux security label. 2861 You can change the label, but all data must be labeled. */ 2862 return -EACCES; 2863 } 2864 2865 /* 2866 * Copy the inode security context value to the user. 2867 * 2868 * Permission check is handled by selinux_inode_getxattr hook. 2869 */ 2870 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 2871 { 2872 u32 size; 2873 int error; 2874 char *context = NULL; 2875 struct inode_security_struct *isec = inode->i_security; 2876 2877 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 2878 return -EOPNOTSUPP; 2879 2880 /* 2881 * If the caller has CAP_MAC_ADMIN, then get the raw context 2882 * value even if it is not defined by current policy; otherwise, 2883 * use the in-core value under current policy. 2884 * Use the non-auditing forms of the permission checks since 2885 * getxattr may be called by unprivileged processes commonly 2886 * and lack of permission just means that we fall back to the 2887 * in-core context value, not a denial. 2888 */ 2889 error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN, 2890 SECURITY_CAP_NOAUDIT); 2891 if (!error) 2892 error = security_sid_to_context_force(isec->sid, &context, 2893 &size); 2894 else 2895 error = security_sid_to_context(isec->sid, &context, &size); 2896 if (error) 2897 return error; 2898 error = size; 2899 if (alloc) { 2900 *buffer = context; 2901 goto out_nofree; 2902 } 2903 kfree(context); 2904 out_nofree: 2905 return error; 2906 } 2907 2908 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 2909 const void *value, size_t size, int flags) 2910 { 2911 struct inode_security_struct *isec = inode->i_security; 2912 u32 newsid; 2913 int rc; 2914 2915 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 2916 return -EOPNOTSUPP; 2917 2918 if (!value || !size) 2919 return -EACCES; 2920 2921 rc = security_context_to_sid((void *)value, size, &newsid); 2922 if (rc) 2923 return rc; 2924 2925 isec->sid = newsid; 2926 isec->initialized = 1; 2927 return 0; 2928 } 2929 2930 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 2931 { 2932 const int len = sizeof(XATTR_NAME_SELINUX); 2933 if (buffer && len <= buffer_size) 2934 memcpy(buffer, XATTR_NAME_SELINUX, len); 2935 return len; 2936 } 2937 2938 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid) 2939 { 2940 struct inode_security_struct *isec = inode->i_security; 2941 *secid = isec->sid; 2942 } 2943 2944 /* file security operations */ 2945 2946 static int selinux_revalidate_file_permission(struct file *file, int mask) 2947 { 2948 const struct cred *cred = current_cred(); 2949 struct inode *inode = file->f_path.dentry->d_inode; 2950 2951 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 2952 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 2953 mask |= MAY_APPEND; 2954 2955 return file_has_perm(cred, file, 2956 file_mask_to_av(inode->i_mode, mask)); 2957 } 2958 2959 static int selinux_file_permission(struct file *file, int mask) 2960 { 2961 struct inode *inode = file->f_path.dentry->d_inode; 2962 struct file_security_struct *fsec = file->f_security; 2963 struct inode_security_struct *isec = inode->i_security; 2964 u32 sid = current_sid(); 2965 2966 if (!mask) 2967 /* No permission to check. Existence test. */ 2968 return 0; 2969 2970 if (sid == fsec->sid && fsec->isid == isec->sid && 2971 fsec->pseqno == avc_policy_seqno()) 2972 /* No change since dentry_open check. */ 2973 return 0; 2974 2975 return selinux_revalidate_file_permission(file, mask); 2976 } 2977 2978 static int selinux_file_alloc_security(struct file *file) 2979 { 2980 return file_alloc_security(file); 2981 } 2982 2983 static void selinux_file_free_security(struct file *file) 2984 { 2985 file_free_security(file); 2986 } 2987 2988 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 2989 unsigned long arg) 2990 { 2991 const struct cred *cred = current_cred(); 2992 int error = 0; 2993 2994 switch (cmd) { 2995 case FIONREAD: 2996 /* fall through */ 2997 case FIBMAP: 2998 /* fall through */ 2999 case FIGETBSZ: 3000 /* fall through */ 3001 case FS_IOC_GETFLAGS: 3002 /* fall through */ 3003 case FS_IOC_GETVERSION: 3004 error = file_has_perm(cred, file, FILE__GETATTR); 3005 break; 3006 3007 case FS_IOC_SETFLAGS: 3008 /* fall through */ 3009 case FS_IOC_SETVERSION: 3010 error = file_has_perm(cred, file, FILE__SETATTR); 3011 break; 3012 3013 /* sys_ioctl() checks */ 3014 case FIONBIO: 3015 /* fall through */ 3016 case FIOASYNC: 3017 error = file_has_perm(cred, file, 0); 3018 break; 3019 3020 case KDSKBENT: 3021 case KDSKBSENT: 3022 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG, 3023 SECURITY_CAP_AUDIT); 3024 break; 3025 3026 /* default case assumes that the command will go 3027 * to the file's ioctl() function. 3028 */ 3029 default: 3030 error = file_has_perm(cred, file, FILE__IOCTL); 3031 } 3032 return error; 3033 } 3034 3035 static int default_noexec; 3036 3037 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 3038 { 3039 const struct cred *cred = current_cred(); 3040 int rc = 0; 3041 3042 if (default_noexec && 3043 (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) { 3044 /* 3045 * We are making executable an anonymous mapping or a 3046 * private file mapping that will also be writable. 3047 * This has an additional check. 3048 */ 3049 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM); 3050 if (rc) 3051 goto error; 3052 } 3053 3054 if (file) { 3055 /* read access is always possible with a mapping */ 3056 u32 av = FILE__READ; 3057 3058 /* write access only matters if the mapping is shared */ 3059 if (shared && (prot & PROT_WRITE)) 3060 av |= FILE__WRITE; 3061 3062 if (prot & PROT_EXEC) 3063 av |= FILE__EXECUTE; 3064 3065 return file_has_perm(cred, file, av); 3066 } 3067 3068 error: 3069 return rc; 3070 } 3071 3072 static int selinux_file_mmap(struct file *file, unsigned long reqprot, 3073 unsigned long prot, unsigned long flags, 3074 unsigned long addr, unsigned long addr_only) 3075 { 3076 int rc = 0; 3077 u32 sid = current_sid(); 3078 3079 /* 3080 * notice that we are intentionally putting the SELinux check before 3081 * the secondary cap_file_mmap check. This is such a likely attempt 3082 * at bad behaviour/exploit that we always want to get the AVC, even 3083 * if DAC would have also denied the operation. 3084 */ 3085 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) { 3086 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT, 3087 MEMPROTECT__MMAP_ZERO, NULL); 3088 if (rc) 3089 return rc; 3090 } 3091 3092 /* do DAC check on address space usage */ 3093 rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only); 3094 if (rc || addr_only) 3095 return rc; 3096 3097 if (selinux_checkreqprot) 3098 prot = reqprot; 3099 3100 return file_map_prot_check(file, prot, 3101 (flags & MAP_TYPE) == MAP_SHARED); 3102 } 3103 3104 static int selinux_file_mprotect(struct vm_area_struct *vma, 3105 unsigned long reqprot, 3106 unsigned long prot) 3107 { 3108 const struct cred *cred = current_cred(); 3109 3110 if (selinux_checkreqprot) 3111 prot = reqprot; 3112 3113 if (default_noexec && 3114 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 3115 int rc = 0; 3116 if (vma->vm_start >= vma->vm_mm->start_brk && 3117 vma->vm_end <= vma->vm_mm->brk) { 3118 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP); 3119 } else if (!vma->vm_file && 3120 vma->vm_start <= vma->vm_mm->start_stack && 3121 vma->vm_end >= vma->vm_mm->start_stack) { 3122 rc = current_has_perm(current, PROCESS__EXECSTACK); 3123 } else if (vma->vm_file && vma->anon_vma) { 3124 /* 3125 * We are making executable a file mapping that has 3126 * had some COW done. Since pages might have been 3127 * written, check ability to execute the possibly 3128 * modified content. This typically should only 3129 * occur for text relocations. 3130 */ 3131 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD); 3132 } 3133 if (rc) 3134 return rc; 3135 } 3136 3137 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 3138 } 3139 3140 static int selinux_file_lock(struct file *file, unsigned int cmd) 3141 { 3142 const struct cred *cred = current_cred(); 3143 3144 return file_has_perm(cred, file, FILE__LOCK); 3145 } 3146 3147 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 3148 unsigned long arg) 3149 { 3150 const struct cred *cred = current_cred(); 3151 int err = 0; 3152 3153 switch (cmd) { 3154 case F_SETFL: 3155 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) { 3156 err = -EINVAL; 3157 break; 3158 } 3159 3160 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 3161 err = file_has_perm(cred, file, FILE__WRITE); 3162 break; 3163 } 3164 /* fall through */ 3165 case F_SETOWN: 3166 case F_SETSIG: 3167 case F_GETFL: 3168 case F_GETOWN: 3169 case F_GETSIG: 3170 /* Just check FD__USE permission */ 3171 err = file_has_perm(cred, file, 0); 3172 break; 3173 case F_GETLK: 3174 case F_SETLK: 3175 case F_SETLKW: 3176 #if BITS_PER_LONG == 32 3177 case F_GETLK64: 3178 case F_SETLK64: 3179 case F_SETLKW64: 3180 #endif 3181 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) { 3182 err = -EINVAL; 3183 break; 3184 } 3185 err = file_has_perm(cred, file, FILE__LOCK); 3186 break; 3187 } 3188 3189 return err; 3190 } 3191 3192 static int selinux_file_set_fowner(struct file *file) 3193 { 3194 struct file_security_struct *fsec; 3195 3196 fsec = file->f_security; 3197 fsec->fown_sid = current_sid(); 3198 3199 return 0; 3200 } 3201 3202 static int selinux_file_send_sigiotask(struct task_struct *tsk, 3203 struct fown_struct *fown, int signum) 3204 { 3205 struct file *file; 3206 u32 sid = task_sid(tsk); 3207 u32 perm; 3208 struct file_security_struct *fsec; 3209 3210 /* struct fown_struct is never outside the context of a struct file */ 3211 file = container_of(fown, struct file, f_owner); 3212 3213 fsec = file->f_security; 3214 3215 if (!signum) 3216 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 3217 else 3218 perm = signal_to_av(signum); 3219 3220 return avc_has_perm(fsec->fown_sid, sid, 3221 SECCLASS_PROCESS, perm, NULL); 3222 } 3223 3224 static int selinux_file_receive(struct file *file) 3225 { 3226 const struct cred *cred = current_cred(); 3227 3228 return file_has_perm(cred, file, file_to_av(file)); 3229 } 3230 3231 static int selinux_dentry_open(struct file *file, const struct cred *cred) 3232 { 3233 struct file_security_struct *fsec; 3234 struct inode *inode; 3235 struct inode_security_struct *isec; 3236 3237 inode = file->f_path.dentry->d_inode; 3238 fsec = file->f_security; 3239 isec = inode->i_security; 3240 /* 3241 * Save inode label and policy sequence number 3242 * at open-time so that selinux_file_permission 3243 * can determine whether revalidation is necessary. 3244 * Task label is already saved in the file security 3245 * struct as its SID. 3246 */ 3247 fsec->isid = isec->sid; 3248 fsec->pseqno = avc_policy_seqno(); 3249 /* 3250 * Since the inode label or policy seqno may have changed 3251 * between the selinux_inode_permission check and the saving 3252 * of state above, recheck that access is still permitted. 3253 * Otherwise, access might never be revalidated against the 3254 * new inode label or new policy. 3255 * This check is not redundant - do not remove. 3256 */ 3257 return inode_has_perm_noadp(cred, inode, open_file_to_av(file), 0); 3258 } 3259 3260 /* task security operations */ 3261 3262 static int selinux_task_create(unsigned long clone_flags) 3263 { 3264 return current_has_perm(current, PROCESS__FORK); 3265 } 3266 3267 /* 3268 * allocate the SELinux part of blank credentials 3269 */ 3270 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp) 3271 { 3272 struct task_security_struct *tsec; 3273 3274 tsec = kzalloc(sizeof(struct task_security_struct), gfp); 3275 if (!tsec) 3276 return -ENOMEM; 3277 3278 cred->security = tsec; 3279 return 0; 3280 } 3281 3282 /* 3283 * detach and free the LSM part of a set of credentials 3284 */ 3285 static void selinux_cred_free(struct cred *cred) 3286 { 3287 struct task_security_struct *tsec = cred->security; 3288 3289 /* 3290 * cred->security == NULL if security_cred_alloc_blank() or 3291 * security_prepare_creds() returned an error. 3292 */ 3293 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE); 3294 cred->security = (void *) 0x7UL; 3295 kfree(tsec); 3296 } 3297 3298 /* 3299 * prepare a new set of credentials for modification 3300 */ 3301 static int selinux_cred_prepare(struct cred *new, const struct cred *old, 3302 gfp_t gfp) 3303 { 3304 const struct task_security_struct *old_tsec; 3305 struct task_security_struct *tsec; 3306 3307 old_tsec = old->security; 3308 3309 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp); 3310 if (!tsec) 3311 return -ENOMEM; 3312 3313 new->security = tsec; 3314 return 0; 3315 } 3316 3317 /* 3318 * transfer the SELinux data to a blank set of creds 3319 */ 3320 static void selinux_cred_transfer(struct cred *new, const struct cred *old) 3321 { 3322 const struct task_security_struct *old_tsec = old->security; 3323 struct task_security_struct *tsec = new->security; 3324 3325 *tsec = *old_tsec; 3326 } 3327 3328 /* 3329 * set the security data for a kernel service 3330 * - all the creation contexts are set to unlabelled 3331 */ 3332 static int selinux_kernel_act_as(struct cred *new, u32 secid) 3333 { 3334 struct task_security_struct *tsec = new->security; 3335 u32 sid = current_sid(); 3336 int ret; 3337 3338 ret = avc_has_perm(sid, secid, 3339 SECCLASS_KERNEL_SERVICE, 3340 KERNEL_SERVICE__USE_AS_OVERRIDE, 3341 NULL); 3342 if (ret == 0) { 3343 tsec->sid = secid; 3344 tsec->create_sid = 0; 3345 tsec->keycreate_sid = 0; 3346 tsec->sockcreate_sid = 0; 3347 } 3348 return ret; 3349 } 3350 3351 /* 3352 * set the file creation context in a security record to the same as the 3353 * objective context of the specified inode 3354 */ 3355 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode) 3356 { 3357 struct inode_security_struct *isec = inode->i_security; 3358 struct task_security_struct *tsec = new->security; 3359 u32 sid = current_sid(); 3360 int ret; 3361 3362 ret = avc_has_perm(sid, isec->sid, 3363 SECCLASS_KERNEL_SERVICE, 3364 KERNEL_SERVICE__CREATE_FILES_AS, 3365 NULL); 3366 3367 if (ret == 0) 3368 tsec->create_sid = isec->sid; 3369 return ret; 3370 } 3371 3372 static int selinux_kernel_module_request(char *kmod_name) 3373 { 3374 u32 sid; 3375 struct common_audit_data ad; 3376 struct selinux_audit_data sad = {0,}; 3377 3378 sid = task_sid(current); 3379 3380 COMMON_AUDIT_DATA_INIT(&ad, KMOD); 3381 ad.selinux_audit_data = &sad; 3382 ad.u.kmod_name = kmod_name; 3383 3384 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM, 3385 SYSTEM__MODULE_REQUEST, &ad); 3386 } 3387 3388 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 3389 { 3390 return current_has_perm(p, PROCESS__SETPGID); 3391 } 3392 3393 static int selinux_task_getpgid(struct task_struct *p) 3394 { 3395 return current_has_perm(p, PROCESS__GETPGID); 3396 } 3397 3398 static int selinux_task_getsid(struct task_struct *p) 3399 { 3400 return current_has_perm(p, PROCESS__GETSESSION); 3401 } 3402 3403 static void selinux_task_getsecid(struct task_struct *p, u32 *secid) 3404 { 3405 *secid = task_sid(p); 3406 } 3407 3408 static int selinux_task_setnice(struct task_struct *p, int nice) 3409 { 3410 int rc; 3411 3412 rc = cap_task_setnice(p, nice); 3413 if (rc) 3414 return rc; 3415 3416 return current_has_perm(p, PROCESS__SETSCHED); 3417 } 3418 3419 static int selinux_task_setioprio(struct task_struct *p, int ioprio) 3420 { 3421 int rc; 3422 3423 rc = cap_task_setioprio(p, ioprio); 3424 if (rc) 3425 return rc; 3426 3427 return current_has_perm(p, PROCESS__SETSCHED); 3428 } 3429 3430 static int selinux_task_getioprio(struct task_struct *p) 3431 { 3432 return current_has_perm(p, PROCESS__GETSCHED); 3433 } 3434 3435 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource, 3436 struct rlimit *new_rlim) 3437 { 3438 struct rlimit *old_rlim = p->signal->rlim + resource; 3439 3440 /* Control the ability to change the hard limit (whether 3441 lowering or raising it), so that the hard limit can 3442 later be used as a safe reset point for the soft limit 3443 upon context transitions. See selinux_bprm_committing_creds. */ 3444 if (old_rlim->rlim_max != new_rlim->rlim_max) 3445 return current_has_perm(p, PROCESS__SETRLIMIT); 3446 3447 return 0; 3448 } 3449 3450 static int selinux_task_setscheduler(struct task_struct *p) 3451 { 3452 int rc; 3453 3454 rc = cap_task_setscheduler(p); 3455 if (rc) 3456 return rc; 3457 3458 return current_has_perm(p, PROCESS__SETSCHED); 3459 } 3460 3461 static int selinux_task_getscheduler(struct task_struct *p) 3462 { 3463 return current_has_perm(p, PROCESS__GETSCHED); 3464 } 3465 3466 static int selinux_task_movememory(struct task_struct *p) 3467 { 3468 return current_has_perm(p, PROCESS__SETSCHED); 3469 } 3470 3471 static int selinux_task_kill(struct task_struct *p, struct siginfo *info, 3472 int sig, u32 secid) 3473 { 3474 u32 perm; 3475 int rc; 3476 3477 if (!sig) 3478 perm = PROCESS__SIGNULL; /* null signal; existence test */ 3479 else 3480 perm = signal_to_av(sig); 3481 if (secid) 3482 rc = avc_has_perm(secid, task_sid(p), 3483 SECCLASS_PROCESS, perm, NULL); 3484 else 3485 rc = current_has_perm(p, perm); 3486 return rc; 3487 } 3488 3489 static int selinux_task_wait(struct task_struct *p) 3490 { 3491 return task_has_perm(p, current, PROCESS__SIGCHLD); 3492 } 3493 3494 static void selinux_task_to_inode(struct task_struct *p, 3495 struct inode *inode) 3496 { 3497 struct inode_security_struct *isec = inode->i_security; 3498 u32 sid = task_sid(p); 3499 3500 isec->sid = sid; 3501 isec->initialized = 1; 3502 } 3503 3504 /* Returns error only if unable to parse addresses */ 3505 static int selinux_parse_skb_ipv4(struct sk_buff *skb, 3506 struct common_audit_data *ad, u8 *proto) 3507 { 3508 int offset, ihlen, ret = -EINVAL; 3509 struct iphdr _iph, *ih; 3510 3511 offset = skb_network_offset(skb); 3512 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 3513 if (ih == NULL) 3514 goto out; 3515 3516 ihlen = ih->ihl * 4; 3517 if (ihlen < sizeof(_iph)) 3518 goto out; 3519 3520 ad->u.net->v4info.saddr = ih->saddr; 3521 ad->u.net->v4info.daddr = ih->daddr; 3522 ret = 0; 3523 3524 if (proto) 3525 *proto = ih->protocol; 3526 3527 switch (ih->protocol) { 3528 case IPPROTO_TCP: { 3529 struct tcphdr _tcph, *th; 3530 3531 if (ntohs(ih->frag_off) & IP_OFFSET) 3532 break; 3533 3534 offset += ihlen; 3535 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3536 if (th == NULL) 3537 break; 3538 3539 ad->u.net->sport = th->source; 3540 ad->u.net->dport = th->dest; 3541 break; 3542 } 3543 3544 case IPPROTO_UDP: { 3545 struct udphdr _udph, *uh; 3546 3547 if (ntohs(ih->frag_off) & IP_OFFSET) 3548 break; 3549 3550 offset += ihlen; 3551 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3552 if (uh == NULL) 3553 break; 3554 3555 ad->u.net->sport = uh->source; 3556 ad->u.net->dport = uh->dest; 3557 break; 3558 } 3559 3560 case IPPROTO_DCCP: { 3561 struct dccp_hdr _dccph, *dh; 3562 3563 if (ntohs(ih->frag_off) & IP_OFFSET) 3564 break; 3565 3566 offset += ihlen; 3567 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3568 if (dh == NULL) 3569 break; 3570 3571 ad->u.net->sport = dh->dccph_sport; 3572 ad->u.net->dport = dh->dccph_dport; 3573 break; 3574 } 3575 3576 default: 3577 break; 3578 } 3579 out: 3580 return ret; 3581 } 3582 3583 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3584 3585 /* Returns error only if unable to parse addresses */ 3586 static int selinux_parse_skb_ipv6(struct sk_buff *skb, 3587 struct common_audit_data *ad, u8 *proto) 3588 { 3589 u8 nexthdr; 3590 int ret = -EINVAL, offset; 3591 struct ipv6hdr _ipv6h, *ip6; 3592 __be16 frag_off; 3593 3594 offset = skb_network_offset(skb); 3595 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 3596 if (ip6 == NULL) 3597 goto out; 3598 3599 ad->u.net->v6info.saddr = ip6->saddr; 3600 ad->u.net->v6info.daddr = ip6->daddr; 3601 ret = 0; 3602 3603 nexthdr = ip6->nexthdr; 3604 offset += sizeof(_ipv6h); 3605 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off); 3606 if (offset < 0) 3607 goto out; 3608 3609 if (proto) 3610 *proto = nexthdr; 3611 3612 switch (nexthdr) { 3613 case IPPROTO_TCP: { 3614 struct tcphdr _tcph, *th; 3615 3616 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3617 if (th == NULL) 3618 break; 3619 3620 ad->u.net->sport = th->source; 3621 ad->u.net->dport = th->dest; 3622 break; 3623 } 3624 3625 case IPPROTO_UDP: { 3626 struct udphdr _udph, *uh; 3627 3628 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3629 if (uh == NULL) 3630 break; 3631 3632 ad->u.net->sport = uh->source; 3633 ad->u.net->dport = uh->dest; 3634 break; 3635 } 3636 3637 case IPPROTO_DCCP: { 3638 struct dccp_hdr _dccph, *dh; 3639 3640 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3641 if (dh == NULL) 3642 break; 3643 3644 ad->u.net->sport = dh->dccph_sport; 3645 ad->u.net->dport = dh->dccph_dport; 3646 break; 3647 } 3648 3649 /* includes fragments */ 3650 default: 3651 break; 3652 } 3653 out: 3654 return ret; 3655 } 3656 3657 #endif /* IPV6 */ 3658 3659 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad, 3660 char **_addrp, int src, u8 *proto) 3661 { 3662 char *addrp; 3663 int ret; 3664 3665 switch (ad->u.net->family) { 3666 case PF_INET: 3667 ret = selinux_parse_skb_ipv4(skb, ad, proto); 3668 if (ret) 3669 goto parse_error; 3670 addrp = (char *)(src ? &ad->u.net->v4info.saddr : 3671 &ad->u.net->v4info.daddr); 3672 goto okay; 3673 3674 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3675 case PF_INET6: 3676 ret = selinux_parse_skb_ipv6(skb, ad, proto); 3677 if (ret) 3678 goto parse_error; 3679 addrp = (char *)(src ? &ad->u.net->v6info.saddr : 3680 &ad->u.net->v6info.daddr); 3681 goto okay; 3682 #endif /* IPV6 */ 3683 default: 3684 addrp = NULL; 3685 goto okay; 3686 } 3687 3688 parse_error: 3689 printk(KERN_WARNING 3690 "SELinux: failure in selinux_parse_skb()," 3691 " unable to parse packet\n"); 3692 return ret; 3693 3694 okay: 3695 if (_addrp) 3696 *_addrp = addrp; 3697 return 0; 3698 } 3699 3700 /** 3701 * selinux_skb_peerlbl_sid - Determine the peer label of a packet 3702 * @skb: the packet 3703 * @family: protocol family 3704 * @sid: the packet's peer label SID 3705 * 3706 * Description: 3707 * Check the various different forms of network peer labeling and determine 3708 * the peer label/SID for the packet; most of the magic actually occurs in 3709 * the security server function security_net_peersid_cmp(). The function 3710 * returns zero if the value in @sid is valid (although it may be SECSID_NULL) 3711 * or -EACCES if @sid is invalid due to inconsistencies with the different 3712 * peer labels. 3713 * 3714 */ 3715 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid) 3716 { 3717 int err; 3718 u32 xfrm_sid; 3719 u32 nlbl_sid; 3720 u32 nlbl_type; 3721 3722 selinux_skb_xfrm_sid(skb, &xfrm_sid); 3723 selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid); 3724 3725 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid); 3726 if (unlikely(err)) { 3727 printk(KERN_WARNING 3728 "SELinux: failure in selinux_skb_peerlbl_sid()," 3729 " unable to determine packet's peer label\n"); 3730 return -EACCES; 3731 } 3732 3733 return 0; 3734 } 3735 3736 /* socket security operations */ 3737 3738 static int socket_sockcreate_sid(const struct task_security_struct *tsec, 3739 u16 secclass, u32 *socksid) 3740 { 3741 if (tsec->sockcreate_sid > SECSID_NULL) { 3742 *socksid = tsec->sockcreate_sid; 3743 return 0; 3744 } 3745 3746 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL, 3747 socksid); 3748 } 3749 3750 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms) 3751 { 3752 struct sk_security_struct *sksec = sk->sk_security; 3753 struct common_audit_data ad; 3754 struct selinux_audit_data sad = {0,}; 3755 struct lsm_network_audit net = {0,}; 3756 u32 tsid = task_sid(task); 3757 3758 if (sksec->sid == SECINITSID_KERNEL) 3759 return 0; 3760 3761 COMMON_AUDIT_DATA_INIT(&ad, NET); 3762 ad.selinux_audit_data = &sad; 3763 ad.u.net = &net; 3764 ad.u.net->sk = sk; 3765 3766 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad); 3767 } 3768 3769 static int selinux_socket_create(int family, int type, 3770 int protocol, int kern) 3771 { 3772 const struct task_security_struct *tsec = current_security(); 3773 u32 newsid; 3774 u16 secclass; 3775 int rc; 3776 3777 if (kern) 3778 return 0; 3779 3780 secclass = socket_type_to_security_class(family, type, protocol); 3781 rc = socket_sockcreate_sid(tsec, secclass, &newsid); 3782 if (rc) 3783 return rc; 3784 3785 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL); 3786 } 3787 3788 static int selinux_socket_post_create(struct socket *sock, int family, 3789 int type, int protocol, int kern) 3790 { 3791 const struct task_security_struct *tsec = current_security(); 3792 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security; 3793 struct sk_security_struct *sksec; 3794 int err = 0; 3795 3796 isec->sclass = socket_type_to_security_class(family, type, protocol); 3797 3798 if (kern) 3799 isec->sid = SECINITSID_KERNEL; 3800 else { 3801 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid)); 3802 if (err) 3803 return err; 3804 } 3805 3806 isec->initialized = 1; 3807 3808 if (sock->sk) { 3809 sksec = sock->sk->sk_security; 3810 sksec->sid = isec->sid; 3811 sksec->sclass = isec->sclass; 3812 err = selinux_netlbl_socket_post_create(sock->sk, family); 3813 } 3814 3815 return err; 3816 } 3817 3818 /* Range of port numbers used to automatically bind. 3819 Need to determine whether we should perform a name_bind 3820 permission check between the socket and the port number. */ 3821 3822 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 3823 { 3824 struct sock *sk = sock->sk; 3825 u16 family; 3826 int err; 3827 3828 err = sock_has_perm(current, sk, SOCKET__BIND); 3829 if (err) 3830 goto out; 3831 3832 /* 3833 * If PF_INET or PF_INET6, check name_bind permission for the port. 3834 * Multiple address binding for SCTP is not supported yet: we just 3835 * check the first address now. 3836 */ 3837 family = sk->sk_family; 3838 if (family == PF_INET || family == PF_INET6) { 3839 char *addrp; 3840 struct sk_security_struct *sksec = sk->sk_security; 3841 struct common_audit_data ad; 3842 struct selinux_audit_data sad = {0,}; 3843 struct lsm_network_audit net = {0,}; 3844 struct sockaddr_in *addr4 = NULL; 3845 struct sockaddr_in6 *addr6 = NULL; 3846 unsigned short snum; 3847 u32 sid, node_perm; 3848 3849 if (family == PF_INET) { 3850 addr4 = (struct sockaddr_in *)address; 3851 snum = ntohs(addr4->sin_port); 3852 addrp = (char *)&addr4->sin_addr.s_addr; 3853 } else { 3854 addr6 = (struct sockaddr_in6 *)address; 3855 snum = ntohs(addr6->sin6_port); 3856 addrp = (char *)&addr6->sin6_addr.s6_addr; 3857 } 3858 3859 if (snum) { 3860 int low, high; 3861 3862 inet_get_local_port_range(&low, &high); 3863 3864 if (snum < max(PROT_SOCK, low) || snum > high) { 3865 err = sel_netport_sid(sk->sk_protocol, 3866 snum, &sid); 3867 if (err) 3868 goto out; 3869 COMMON_AUDIT_DATA_INIT(&ad, NET); 3870 ad.selinux_audit_data = &sad; 3871 ad.u.net = &net; 3872 ad.u.net->sport = htons(snum); 3873 ad.u.net->family = family; 3874 err = avc_has_perm(sksec->sid, sid, 3875 sksec->sclass, 3876 SOCKET__NAME_BIND, &ad); 3877 if (err) 3878 goto out; 3879 } 3880 } 3881 3882 switch (sksec->sclass) { 3883 case SECCLASS_TCP_SOCKET: 3884 node_perm = TCP_SOCKET__NODE_BIND; 3885 break; 3886 3887 case SECCLASS_UDP_SOCKET: 3888 node_perm = UDP_SOCKET__NODE_BIND; 3889 break; 3890 3891 case SECCLASS_DCCP_SOCKET: 3892 node_perm = DCCP_SOCKET__NODE_BIND; 3893 break; 3894 3895 default: 3896 node_perm = RAWIP_SOCKET__NODE_BIND; 3897 break; 3898 } 3899 3900 err = sel_netnode_sid(addrp, family, &sid); 3901 if (err) 3902 goto out; 3903 3904 COMMON_AUDIT_DATA_INIT(&ad, NET); 3905 ad.selinux_audit_data = &sad; 3906 ad.u.net = &net; 3907 ad.u.net->sport = htons(snum); 3908 ad.u.net->family = family; 3909 3910 if (family == PF_INET) 3911 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr; 3912 else 3913 ad.u.net->v6info.saddr = addr6->sin6_addr; 3914 3915 err = avc_has_perm(sksec->sid, sid, 3916 sksec->sclass, node_perm, &ad); 3917 if (err) 3918 goto out; 3919 } 3920 out: 3921 return err; 3922 } 3923 3924 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 3925 { 3926 struct sock *sk = sock->sk; 3927 struct sk_security_struct *sksec = sk->sk_security; 3928 int err; 3929 3930 err = sock_has_perm(current, sk, SOCKET__CONNECT); 3931 if (err) 3932 return err; 3933 3934 /* 3935 * If a TCP or DCCP socket, check name_connect permission for the port. 3936 */ 3937 if (sksec->sclass == SECCLASS_TCP_SOCKET || 3938 sksec->sclass == SECCLASS_DCCP_SOCKET) { 3939 struct common_audit_data ad; 3940 struct selinux_audit_data sad = {0,}; 3941 struct lsm_network_audit net = {0,}; 3942 struct sockaddr_in *addr4 = NULL; 3943 struct sockaddr_in6 *addr6 = NULL; 3944 unsigned short snum; 3945 u32 sid, perm; 3946 3947 if (sk->sk_family == PF_INET) { 3948 addr4 = (struct sockaddr_in *)address; 3949 if (addrlen < sizeof(struct sockaddr_in)) 3950 return -EINVAL; 3951 snum = ntohs(addr4->sin_port); 3952 } else { 3953 addr6 = (struct sockaddr_in6 *)address; 3954 if (addrlen < SIN6_LEN_RFC2133) 3955 return -EINVAL; 3956 snum = ntohs(addr6->sin6_port); 3957 } 3958 3959 err = sel_netport_sid(sk->sk_protocol, snum, &sid); 3960 if (err) 3961 goto out; 3962 3963 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ? 3964 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT; 3965 3966 COMMON_AUDIT_DATA_INIT(&ad, NET); 3967 ad.selinux_audit_data = &sad; 3968 ad.u.net = &net; 3969 ad.u.net->dport = htons(snum); 3970 ad.u.net->family = sk->sk_family; 3971 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad); 3972 if (err) 3973 goto out; 3974 } 3975 3976 err = selinux_netlbl_socket_connect(sk, address); 3977 3978 out: 3979 return err; 3980 } 3981 3982 static int selinux_socket_listen(struct socket *sock, int backlog) 3983 { 3984 return sock_has_perm(current, sock->sk, SOCKET__LISTEN); 3985 } 3986 3987 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 3988 { 3989 int err; 3990 struct inode_security_struct *isec; 3991 struct inode_security_struct *newisec; 3992 3993 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT); 3994 if (err) 3995 return err; 3996 3997 newisec = SOCK_INODE(newsock)->i_security; 3998 3999 isec = SOCK_INODE(sock)->i_security; 4000 newisec->sclass = isec->sclass; 4001 newisec->sid = isec->sid; 4002 newisec->initialized = 1; 4003 4004 return 0; 4005 } 4006 4007 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 4008 int size) 4009 { 4010 return sock_has_perm(current, sock->sk, SOCKET__WRITE); 4011 } 4012 4013 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 4014 int size, int flags) 4015 { 4016 return sock_has_perm(current, sock->sk, SOCKET__READ); 4017 } 4018 4019 static int selinux_socket_getsockname(struct socket *sock) 4020 { 4021 return sock_has_perm(current, sock->sk, SOCKET__GETATTR); 4022 } 4023 4024 static int selinux_socket_getpeername(struct socket *sock) 4025 { 4026 return sock_has_perm(current, sock->sk, SOCKET__GETATTR); 4027 } 4028 4029 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname) 4030 { 4031 int err; 4032 4033 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT); 4034 if (err) 4035 return err; 4036 4037 return selinux_netlbl_socket_setsockopt(sock, level, optname); 4038 } 4039 4040 static int selinux_socket_getsockopt(struct socket *sock, int level, 4041 int optname) 4042 { 4043 return sock_has_perm(current, sock->sk, SOCKET__GETOPT); 4044 } 4045 4046 static int selinux_socket_shutdown(struct socket *sock, int how) 4047 { 4048 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN); 4049 } 4050 4051 static int selinux_socket_unix_stream_connect(struct sock *sock, 4052 struct sock *other, 4053 struct sock *newsk) 4054 { 4055 struct sk_security_struct *sksec_sock = sock->sk_security; 4056 struct sk_security_struct *sksec_other = other->sk_security; 4057 struct sk_security_struct *sksec_new = newsk->sk_security; 4058 struct common_audit_data ad; 4059 struct selinux_audit_data sad = {0,}; 4060 struct lsm_network_audit net = {0,}; 4061 int err; 4062 4063 COMMON_AUDIT_DATA_INIT(&ad, NET); 4064 ad.selinux_audit_data = &sad; 4065 ad.u.net = &net; 4066 ad.u.net->sk = other; 4067 4068 err = avc_has_perm(sksec_sock->sid, sksec_other->sid, 4069 sksec_other->sclass, 4070 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 4071 if (err) 4072 return err; 4073 4074 /* server child socket */ 4075 sksec_new->peer_sid = sksec_sock->sid; 4076 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid, 4077 &sksec_new->sid); 4078 if (err) 4079 return err; 4080 4081 /* connecting socket */ 4082 sksec_sock->peer_sid = sksec_new->sid; 4083 4084 return 0; 4085 } 4086 4087 static int selinux_socket_unix_may_send(struct socket *sock, 4088 struct socket *other) 4089 { 4090 struct sk_security_struct *ssec = sock->sk->sk_security; 4091 struct sk_security_struct *osec = other->sk->sk_security; 4092 struct common_audit_data ad; 4093 struct selinux_audit_data sad = {0,}; 4094 struct lsm_network_audit net = {0,}; 4095 4096 COMMON_AUDIT_DATA_INIT(&ad, NET); 4097 ad.selinux_audit_data = &sad; 4098 ad.u.net = &net; 4099 ad.u.net->sk = other->sk; 4100 4101 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO, 4102 &ad); 4103 } 4104 4105 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family, 4106 u32 peer_sid, 4107 struct common_audit_data *ad) 4108 { 4109 int err; 4110 u32 if_sid; 4111 u32 node_sid; 4112 4113 err = sel_netif_sid(ifindex, &if_sid); 4114 if (err) 4115 return err; 4116 err = avc_has_perm(peer_sid, if_sid, 4117 SECCLASS_NETIF, NETIF__INGRESS, ad); 4118 if (err) 4119 return err; 4120 4121 err = sel_netnode_sid(addrp, family, &node_sid); 4122 if (err) 4123 return err; 4124 return avc_has_perm(peer_sid, node_sid, 4125 SECCLASS_NODE, NODE__RECVFROM, ad); 4126 } 4127 4128 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 4129 u16 family) 4130 { 4131 int err = 0; 4132 struct sk_security_struct *sksec = sk->sk_security; 4133 u32 sk_sid = sksec->sid; 4134 struct common_audit_data ad; 4135 struct selinux_audit_data sad = {0,}; 4136 struct lsm_network_audit net = {0,}; 4137 char *addrp; 4138 4139 COMMON_AUDIT_DATA_INIT(&ad, NET); 4140 ad.selinux_audit_data = &sad; 4141 ad.u.net = &net; 4142 ad.u.net->netif = skb->skb_iif; 4143 ad.u.net->family = family; 4144 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4145 if (err) 4146 return err; 4147 4148 if (selinux_secmark_enabled()) { 4149 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4150 PACKET__RECV, &ad); 4151 if (err) 4152 return err; 4153 } 4154 4155 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad); 4156 if (err) 4157 return err; 4158 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad); 4159 4160 return err; 4161 } 4162 4163 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4164 { 4165 int err; 4166 struct sk_security_struct *sksec = sk->sk_security; 4167 u16 family = sk->sk_family; 4168 u32 sk_sid = sksec->sid; 4169 struct common_audit_data ad; 4170 struct selinux_audit_data sad = {0,}; 4171 struct lsm_network_audit net = {0,}; 4172 char *addrp; 4173 u8 secmark_active; 4174 u8 peerlbl_active; 4175 4176 if (family != PF_INET && family != PF_INET6) 4177 return 0; 4178 4179 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 4180 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4181 family = PF_INET; 4182 4183 /* If any sort of compatibility mode is enabled then handoff processing 4184 * to the selinux_sock_rcv_skb_compat() function to deal with the 4185 * special handling. We do this in an attempt to keep this function 4186 * as fast and as clean as possible. */ 4187 if (!selinux_policycap_netpeer) 4188 return selinux_sock_rcv_skb_compat(sk, skb, family); 4189 4190 secmark_active = selinux_secmark_enabled(); 4191 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled(); 4192 if (!secmark_active && !peerlbl_active) 4193 return 0; 4194 4195 COMMON_AUDIT_DATA_INIT(&ad, NET); 4196 ad.selinux_audit_data = &sad; 4197 ad.u.net = &net; 4198 ad.u.net->netif = skb->skb_iif; 4199 ad.u.net->family = family; 4200 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4201 if (err) 4202 return err; 4203 4204 if (peerlbl_active) { 4205 u32 peer_sid; 4206 4207 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 4208 if (err) 4209 return err; 4210 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family, 4211 peer_sid, &ad); 4212 if (err) { 4213 selinux_netlbl_err(skb, err, 0); 4214 return err; 4215 } 4216 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER, 4217 PEER__RECV, &ad); 4218 if (err) 4219 selinux_netlbl_err(skb, err, 0); 4220 } 4221 4222 if (secmark_active) { 4223 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4224 PACKET__RECV, &ad); 4225 if (err) 4226 return err; 4227 } 4228 4229 return err; 4230 } 4231 4232 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval, 4233 int __user *optlen, unsigned len) 4234 { 4235 int err = 0; 4236 char *scontext; 4237 u32 scontext_len; 4238 struct sk_security_struct *sksec = sock->sk->sk_security; 4239 u32 peer_sid = SECSID_NULL; 4240 4241 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 4242 sksec->sclass == SECCLASS_TCP_SOCKET) 4243 peer_sid = sksec->peer_sid; 4244 if (peer_sid == SECSID_NULL) 4245 return -ENOPROTOOPT; 4246 4247 err = security_sid_to_context(peer_sid, &scontext, &scontext_len); 4248 if (err) 4249 return err; 4250 4251 if (scontext_len > len) { 4252 err = -ERANGE; 4253 goto out_len; 4254 } 4255 4256 if (copy_to_user(optval, scontext, scontext_len)) 4257 err = -EFAULT; 4258 4259 out_len: 4260 if (put_user(scontext_len, optlen)) 4261 err = -EFAULT; 4262 kfree(scontext); 4263 return err; 4264 } 4265 4266 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 4267 { 4268 u32 peer_secid = SECSID_NULL; 4269 u16 family; 4270 4271 if (skb && skb->protocol == htons(ETH_P_IP)) 4272 family = PF_INET; 4273 else if (skb && skb->protocol == htons(ETH_P_IPV6)) 4274 family = PF_INET6; 4275 else if (sock) 4276 family = sock->sk->sk_family; 4277 else 4278 goto out; 4279 4280 if (sock && family == PF_UNIX) 4281 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid); 4282 else if (skb) 4283 selinux_skb_peerlbl_sid(skb, family, &peer_secid); 4284 4285 out: 4286 *secid = peer_secid; 4287 if (peer_secid == SECSID_NULL) 4288 return -EINVAL; 4289 return 0; 4290 } 4291 4292 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 4293 { 4294 struct sk_security_struct *sksec; 4295 4296 sksec = kzalloc(sizeof(*sksec), priority); 4297 if (!sksec) 4298 return -ENOMEM; 4299 4300 sksec->peer_sid = SECINITSID_UNLABELED; 4301 sksec->sid = SECINITSID_UNLABELED; 4302 selinux_netlbl_sk_security_reset(sksec); 4303 sk->sk_security = sksec; 4304 4305 return 0; 4306 } 4307 4308 static void selinux_sk_free_security(struct sock *sk) 4309 { 4310 struct sk_security_struct *sksec = sk->sk_security; 4311 4312 sk->sk_security = NULL; 4313 selinux_netlbl_sk_security_free(sksec); 4314 kfree(sksec); 4315 } 4316 4317 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 4318 { 4319 struct sk_security_struct *sksec = sk->sk_security; 4320 struct sk_security_struct *newsksec = newsk->sk_security; 4321 4322 newsksec->sid = sksec->sid; 4323 newsksec->peer_sid = sksec->peer_sid; 4324 newsksec->sclass = sksec->sclass; 4325 4326 selinux_netlbl_sk_security_reset(newsksec); 4327 } 4328 4329 static void selinux_sk_getsecid(struct sock *sk, u32 *secid) 4330 { 4331 if (!sk) 4332 *secid = SECINITSID_ANY_SOCKET; 4333 else { 4334 struct sk_security_struct *sksec = sk->sk_security; 4335 4336 *secid = sksec->sid; 4337 } 4338 } 4339 4340 static void selinux_sock_graft(struct sock *sk, struct socket *parent) 4341 { 4342 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security; 4343 struct sk_security_struct *sksec = sk->sk_security; 4344 4345 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 4346 sk->sk_family == PF_UNIX) 4347 isec->sid = sksec->sid; 4348 sksec->sclass = isec->sclass; 4349 } 4350 4351 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb, 4352 struct request_sock *req) 4353 { 4354 struct sk_security_struct *sksec = sk->sk_security; 4355 int err; 4356 u16 family = sk->sk_family; 4357 u32 newsid; 4358 u32 peersid; 4359 4360 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 4361 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4362 family = PF_INET; 4363 4364 err = selinux_skb_peerlbl_sid(skb, family, &peersid); 4365 if (err) 4366 return err; 4367 if (peersid == SECSID_NULL) { 4368 req->secid = sksec->sid; 4369 req->peer_secid = SECSID_NULL; 4370 } else { 4371 err = security_sid_mls_copy(sksec->sid, peersid, &newsid); 4372 if (err) 4373 return err; 4374 req->secid = newsid; 4375 req->peer_secid = peersid; 4376 } 4377 4378 return selinux_netlbl_inet_conn_request(req, family); 4379 } 4380 4381 static void selinux_inet_csk_clone(struct sock *newsk, 4382 const struct request_sock *req) 4383 { 4384 struct sk_security_struct *newsksec = newsk->sk_security; 4385 4386 newsksec->sid = req->secid; 4387 newsksec->peer_sid = req->peer_secid; 4388 /* NOTE: Ideally, we should also get the isec->sid for the 4389 new socket in sync, but we don't have the isec available yet. 4390 So we will wait until sock_graft to do it, by which 4391 time it will have been created and available. */ 4392 4393 /* We don't need to take any sort of lock here as we are the only 4394 * thread with access to newsksec */ 4395 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family); 4396 } 4397 4398 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb) 4399 { 4400 u16 family = sk->sk_family; 4401 struct sk_security_struct *sksec = sk->sk_security; 4402 4403 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 4404 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4405 family = PF_INET; 4406 4407 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid); 4408 } 4409 4410 static int selinux_secmark_relabel_packet(u32 sid) 4411 { 4412 const struct task_security_struct *__tsec; 4413 u32 tsid; 4414 4415 __tsec = current_security(); 4416 tsid = __tsec->sid; 4417 4418 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL); 4419 } 4420 4421 static void selinux_secmark_refcount_inc(void) 4422 { 4423 atomic_inc(&selinux_secmark_refcount); 4424 } 4425 4426 static void selinux_secmark_refcount_dec(void) 4427 { 4428 atomic_dec(&selinux_secmark_refcount); 4429 } 4430 4431 static void selinux_req_classify_flow(const struct request_sock *req, 4432 struct flowi *fl) 4433 { 4434 fl->flowi_secid = req->secid; 4435 } 4436 4437 static int selinux_tun_dev_create(void) 4438 { 4439 u32 sid = current_sid(); 4440 4441 /* we aren't taking into account the "sockcreate" SID since the socket 4442 * that is being created here is not a socket in the traditional sense, 4443 * instead it is a private sock, accessible only to the kernel, and 4444 * representing a wide range of network traffic spanning multiple 4445 * connections unlike traditional sockets - check the TUN driver to 4446 * get a better understanding of why this socket is special */ 4447 4448 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE, 4449 NULL); 4450 } 4451 4452 static void selinux_tun_dev_post_create(struct sock *sk) 4453 { 4454 struct sk_security_struct *sksec = sk->sk_security; 4455 4456 /* we don't currently perform any NetLabel based labeling here and it 4457 * isn't clear that we would want to do so anyway; while we could apply 4458 * labeling without the support of the TUN user the resulting labeled 4459 * traffic from the other end of the connection would almost certainly 4460 * cause confusion to the TUN user that had no idea network labeling 4461 * protocols were being used */ 4462 4463 /* see the comments in selinux_tun_dev_create() about why we don't use 4464 * the sockcreate SID here */ 4465 4466 sksec->sid = current_sid(); 4467 sksec->sclass = SECCLASS_TUN_SOCKET; 4468 } 4469 4470 static int selinux_tun_dev_attach(struct sock *sk) 4471 { 4472 struct sk_security_struct *sksec = sk->sk_security; 4473 u32 sid = current_sid(); 4474 int err; 4475 4476 err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET, 4477 TUN_SOCKET__RELABELFROM, NULL); 4478 if (err) 4479 return err; 4480 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, 4481 TUN_SOCKET__RELABELTO, NULL); 4482 if (err) 4483 return err; 4484 4485 sksec->sid = sid; 4486 4487 return 0; 4488 } 4489 4490 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb) 4491 { 4492 int err = 0; 4493 u32 perm; 4494 struct nlmsghdr *nlh; 4495 struct sk_security_struct *sksec = sk->sk_security; 4496 4497 if (skb->len < NLMSG_SPACE(0)) { 4498 err = -EINVAL; 4499 goto out; 4500 } 4501 nlh = nlmsg_hdr(skb); 4502 4503 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm); 4504 if (err) { 4505 if (err == -EINVAL) { 4506 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR, 4507 "SELinux: unrecognized netlink message" 4508 " type=%hu for sclass=%hu\n", 4509 nlh->nlmsg_type, sksec->sclass); 4510 if (!selinux_enforcing || security_get_allow_unknown()) 4511 err = 0; 4512 } 4513 4514 /* Ignore */ 4515 if (err == -ENOENT) 4516 err = 0; 4517 goto out; 4518 } 4519 4520 err = sock_has_perm(current, sk, perm); 4521 out: 4522 return err; 4523 } 4524 4525 #ifdef CONFIG_NETFILTER 4526 4527 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex, 4528 u16 family) 4529 { 4530 int err; 4531 char *addrp; 4532 u32 peer_sid; 4533 struct common_audit_data ad; 4534 struct selinux_audit_data sad = {0,}; 4535 struct lsm_network_audit net = {0,}; 4536 u8 secmark_active; 4537 u8 netlbl_active; 4538 u8 peerlbl_active; 4539 4540 if (!selinux_policycap_netpeer) 4541 return NF_ACCEPT; 4542 4543 secmark_active = selinux_secmark_enabled(); 4544 netlbl_active = netlbl_enabled(); 4545 peerlbl_active = netlbl_active || selinux_xfrm_enabled(); 4546 if (!secmark_active && !peerlbl_active) 4547 return NF_ACCEPT; 4548 4549 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0) 4550 return NF_DROP; 4551 4552 COMMON_AUDIT_DATA_INIT(&ad, NET); 4553 ad.selinux_audit_data = &sad; 4554 ad.u.net = &net; 4555 ad.u.net->netif = ifindex; 4556 ad.u.net->family = family; 4557 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0) 4558 return NF_DROP; 4559 4560 if (peerlbl_active) { 4561 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family, 4562 peer_sid, &ad); 4563 if (err) { 4564 selinux_netlbl_err(skb, err, 1); 4565 return NF_DROP; 4566 } 4567 } 4568 4569 if (secmark_active) 4570 if (avc_has_perm(peer_sid, skb->secmark, 4571 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad)) 4572 return NF_DROP; 4573 4574 if (netlbl_active) 4575 /* we do this in the FORWARD path and not the POST_ROUTING 4576 * path because we want to make sure we apply the necessary 4577 * labeling before IPsec is applied so we can leverage AH 4578 * protection */ 4579 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0) 4580 return NF_DROP; 4581 4582 return NF_ACCEPT; 4583 } 4584 4585 static unsigned int selinux_ipv4_forward(unsigned int hooknum, 4586 struct sk_buff *skb, 4587 const struct net_device *in, 4588 const struct net_device *out, 4589 int (*okfn)(struct sk_buff *)) 4590 { 4591 return selinux_ip_forward(skb, in->ifindex, PF_INET); 4592 } 4593 4594 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4595 static unsigned int selinux_ipv6_forward(unsigned int hooknum, 4596 struct sk_buff *skb, 4597 const struct net_device *in, 4598 const struct net_device *out, 4599 int (*okfn)(struct sk_buff *)) 4600 { 4601 return selinux_ip_forward(skb, in->ifindex, PF_INET6); 4602 } 4603 #endif /* IPV6 */ 4604 4605 static unsigned int selinux_ip_output(struct sk_buff *skb, 4606 u16 family) 4607 { 4608 u32 sid; 4609 4610 if (!netlbl_enabled()) 4611 return NF_ACCEPT; 4612 4613 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path 4614 * because we want to make sure we apply the necessary labeling 4615 * before IPsec is applied so we can leverage AH protection */ 4616 if (skb->sk) { 4617 struct sk_security_struct *sksec = skb->sk->sk_security; 4618 sid = sksec->sid; 4619 } else 4620 sid = SECINITSID_KERNEL; 4621 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0) 4622 return NF_DROP; 4623 4624 return NF_ACCEPT; 4625 } 4626 4627 static unsigned int selinux_ipv4_output(unsigned int hooknum, 4628 struct sk_buff *skb, 4629 const struct net_device *in, 4630 const struct net_device *out, 4631 int (*okfn)(struct sk_buff *)) 4632 { 4633 return selinux_ip_output(skb, PF_INET); 4634 } 4635 4636 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb, 4637 int ifindex, 4638 u16 family) 4639 { 4640 struct sock *sk = skb->sk; 4641 struct sk_security_struct *sksec; 4642 struct common_audit_data ad; 4643 struct selinux_audit_data sad = {0,}; 4644 struct lsm_network_audit net = {0,}; 4645 char *addrp; 4646 u8 proto; 4647 4648 if (sk == NULL) 4649 return NF_ACCEPT; 4650 sksec = sk->sk_security; 4651 4652 COMMON_AUDIT_DATA_INIT(&ad, NET); 4653 ad.selinux_audit_data = &sad; 4654 ad.u.net = &net; 4655 ad.u.net->netif = ifindex; 4656 ad.u.net->family = family; 4657 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto)) 4658 return NF_DROP; 4659 4660 if (selinux_secmark_enabled()) 4661 if (avc_has_perm(sksec->sid, skb->secmark, 4662 SECCLASS_PACKET, PACKET__SEND, &ad)) 4663 return NF_DROP_ERR(-ECONNREFUSED); 4664 4665 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto)) 4666 return NF_DROP_ERR(-ECONNREFUSED); 4667 4668 return NF_ACCEPT; 4669 } 4670 4671 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex, 4672 u16 family) 4673 { 4674 u32 secmark_perm; 4675 u32 peer_sid; 4676 struct sock *sk; 4677 struct common_audit_data ad; 4678 struct selinux_audit_data sad = {0,}; 4679 struct lsm_network_audit net = {0,}; 4680 char *addrp; 4681 u8 secmark_active; 4682 u8 peerlbl_active; 4683 4684 /* If any sort of compatibility mode is enabled then handoff processing 4685 * to the selinux_ip_postroute_compat() function to deal with the 4686 * special handling. We do this in an attempt to keep this function 4687 * as fast and as clean as possible. */ 4688 if (!selinux_policycap_netpeer) 4689 return selinux_ip_postroute_compat(skb, ifindex, family); 4690 #ifdef CONFIG_XFRM 4691 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec 4692 * packet transformation so allow the packet to pass without any checks 4693 * since we'll have another chance to perform access control checks 4694 * when the packet is on it's final way out. 4695 * NOTE: there appear to be some IPv6 multicast cases where skb->dst 4696 * is NULL, in this case go ahead and apply access control. */ 4697 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL) 4698 return NF_ACCEPT; 4699 #endif 4700 secmark_active = selinux_secmark_enabled(); 4701 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled(); 4702 if (!secmark_active && !peerlbl_active) 4703 return NF_ACCEPT; 4704 4705 /* if the packet is being forwarded then get the peer label from the 4706 * packet itself; otherwise check to see if it is from a local 4707 * application or the kernel, if from an application get the peer label 4708 * from the sending socket, otherwise use the kernel's sid */ 4709 sk = skb->sk; 4710 if (sk == NULL) { 4711 if (skb->skb_iif) { 4712 secmark_perm = PACKET__FORWARD_OUT; 4713 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid)) 4714 return NF_DROP; 4715 } else { 4716 secmark_perm = PACKET__SEND; 4717 peer_sid = SECINITSID_KERNEL; 4718 } 4719 } else { 4720 struct sk_security_struct *sksec = sk->sk_security; 4721 peer_sid = sksec->sid; 4722 secmark_perm = PACKET__SEND; 4723 } 4724 4725 COMMON_AUDIT_DATA_INIT(&ad, NET); 4726 ad.selinux_audit_data = &sad; 4727 ad.u.net = &net; 4728 ad.u.net->netif = ifindex; 4729 ad.u.net->family = family; 4730 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL)) 4731 return NF_DROP; 4732 4733 if (secmark_active) 4734 if (avc_has_perm(peer_sid, skb->secmark, 4735 SECCLASS_PACKET, secmark_perm, &ad)) 4736 return NF_DROP_ERR(-ECONNREFUSED); 4737 4738 if (peerlbl_active) { 4739 u32 if_sid; 4740 u32 node_sid; 4741 4742 if (sel_netif_sid(ifindex, &if_sid)) 4743 return NF_DROP; 4744 if (avc_has_perm(peer_sid, if_sid, 4745 SECCLASS_NETIF, NETIF__EGRESS, &ad)) 4746 return NF_DROP_ERR(-ECONNREFUSED); 4747 4748 if (sel_netnode_sid(addrp, family, &node_sid)) 4749 return NF_DROP; 4750 if (avc_has_perm(peer_sid, node_sid, 4751 SECCLASS_NODE, NODE__SENDTO, &ad)) 4752 return NF_DROP_ERR(-ECONNREFUSED); 4753 } 4754 4755 return NF_ACCEPT; 4756 } 4757 4758 static unsigned int selinux_ipv4_postroute(unsigned int hooknum, 4759 struct sk_buff *skb, 4760 const struct net_device *in, 4761 const struct net_device *out, 4762 int (*okfn)(struct sk_buff *)) 4763 { 4764 return selinux_ip_postroute(skb, out->ifindex, PF_INET); 4765 } 4766 4767 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4768 static unsigned int selinux_ipv6_postroute(unsigned int hooknum, 4769 struct sk_buff *skb, 4770 const struct net_device *in, 4771 const struct net_device *out, 4772 int (*okfn)(struct sk_buff *)) 4773 { 4774 return selinux_ip_postroute(skb, out->ifindex, PF_INET6); 4775 } 4776 #endif /* IPV6 */ 4777 4778 #endif /* CONFIG_NETFILTER */ 4779 4780 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 4781 { 4782 int err; 4783 4784 err = cap_netlink_send(sk, skb); 4785 if (err) 4786 return err; 4787 4788 return selinux_nlmsg_perm(sk, skb); 4789 } 4790 4791 static int ipc_alloc_security(struct task_struct *task, 4792 struct kern_ipc_perm *perm, 4793 u16 sclass) 4794 { 4795 struct ipc_security_struct *isec; 4796 u32 sid; 4797 4798 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL); 4799 if (!isec) 4800 return -ENOMEM; 4801 4802 sid = task_sid(task); 4803 isec->sclass = sclass; 4804 isec->sid = sid; 4805 perm->security = isec; 4806 4807 return 0; 4808 } 4809 4810 static void ipc_free_security(struct kern_ipc_perm *perm) 4811 { 4812 struct ipc_security_struct *isec = perm->security; 4813 perm->security = NULL; 4814 kfree(isec); 4815 } 4816 4817 static int msg_msg_alloc_security(struct msg_msg *msg) 4818 { 4819 struct msg_security_struct *msec; 4820 4821 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL); 4822 if (!msec) 4823 return -ENOMEM; 4824 4825 msec->sid = SECINITSID_UNLABELED; 4826 msg->security = msec; 4827 4828 return 0; 4829 } 4830 4831 static void msg_msg_free_security(struct msg_msg *msg) 4832 { 4833 struct msg_security_struct *msec = msg->security; 4834 4835 msg->security = NULL; 4836 kfree(msec); 4837 } 4838 4839 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 4840 u32 perms) 4841 { 4842 struct ipc_security_struct *isec; 4843 struct common_audit_data ad; 4844 struct selinux_audit_data sad = {0,}; 4845 u32 sid = current_sid(); 4846 4847 isec = ipc_perms->security; 4848 4849 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4850 ad.selinux_audit_data = &sad; 4851 ad.u.ipc_id = ipc_perms->key; 4852 4853 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad); 4854 } 4855 4856 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 4857 { 4858 return msg_msg_alloc_security(msg); 4859 } 4860 4861 static void selinux_msg_msg_free_security(struct msg_msg *msg) 4862 { 4863 msg_msg_free_security(msg); 4864 } 4865 4866 /* message queue security operations */ 4867 static int selinux_msg_queue_alloc_security(struct msg_queue *msq) 4868 { 4869 struct ipc_security_struct *isec; 4870 struct common_audit_data ad; 4871 struct selinux_audit_data sad = {0,}; 4872 u32 sid = current_sid(); 4873 int rc; 4874 4875 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ); 4876 if (rc) 4877 return rc; 4878 4879 isec = msq->q_perm.security; 4880 4881 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4882 ad.selinux_audit_data = &sad; 4883 ad.u.ipc_id = msq->q_perm.key; 4884 4885 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 4886 MSGQ__CREATE, &ad); 4887 if (rc) { 4888 ipc_free_security(&msq->q_perm); 4889 return rc; 4890 } 4891 return 0; 4892 } 4893 4894 static void selinux_msg_queue_free_security(struct msg_queue *msq) 4895 { 4896 ipc_free_security(&msq->q_perm); 4897 } 4898 4899 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg) 4900 { 4901 struct ipc_security_struct *isec; 4902 struct common_audit_data ad; 4903 struct selinux_audit_data sad = {0,}; 4904 u32 sid = current_sid(); 4905 4906 isec = msq->q_perm.security; 4907 4908 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4909 ad.selinux_audit_data = &sad; 4910 ad.u.ipc_id = msq->q_perm.key; 4911 4912 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 4913 MSGQ__ASSOCIATE, &ad); 4914 } 4915 4916 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd) 4917 { 4918 int err; 4919 int perms; 4920 4921 switch (cmd) { 4922 case IPC_INFO: 4923 case MSG_INFO: 4924 /* No specific object, just general system-wide information. */ 4925 return task_has_system(current, SYSTEM__IPC_INFO); 4926 case IPC_STAT: 4927 case MSG_STAT: 4928 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 4929 break; 4930 case IPC_SET: 4931 perms = MSGQ__SETATTR; 4932 break; 4933 case IPC_RMID: 4934 perms = MSGQ__DESTROY; 4935 break; 4936 default: 4937 return 0; 4938 } 4939 4940 err = ipc_has_perm(&msq->q_perm, perms); 4941 return err; 4942 } 4943 4944 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg) 4945 { 4946 struct ipc_security_struct *isec; 4947 struct msg_security_struct *msec; 4948 struct common_audit_data ad; 4949 struct selinux_audit_data sad = {0,}; 4950 u32 sid = current_sid(); 4951 int rc; 4952 4953 isec = msq->q_perm.security; 4954 msec = msg->security; 4955 4956 /* 4957 * First time through, need to assign label to the message 4958 */ 4959 if (msec->sid == SECINITSID_UNLABELED) { 4960 /* 4961 * Compute new sid based on current process and 4962 * message queue this message will be stored in 4963 */ 4964 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG, 4965 NULL, &msec->sid); 4966 if (rc) 4967 return rc; 4968 } 4969 4970 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4971 ad.selinux_audit_data = &sad; 4972 ad.u.ipc_id = msq->q_perm.key; 4973 4974 /* Can this process write to the queue? */ 4975 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 4976 MSGQ__WRITE, &ad); 4977 if (!rc) 4978 /* Can this process send the message */ 4979 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG, 4980 MSG__SEND, &ad); 4981 if (!rc) 4982 /* Can the message be put in the queue? */ 4983 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ, 4984 MSGQ__ENQUEUE, &ad); 4985 4986 return rc; 4987 } 4988 4989 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 4990 struct task_struct *target, 4991 long type, int mode) 4992 { 4993 struct ipc_security_struct *isec; 4994 struct msg_security_struct *msec; 4995 struct common_audit_data ad; 4996 struct selinux_audit_data sad = {0,}; 4997 u32 sid = task_sid(target); 4998 int rc; 4999 5000 isec = msq->q_perm.security; 5001 msec = msg->security; 5002 5003 COMMON_AUDIT_DATA_INIT(&ad, IPC); 5004 ad.selinux_audit_data = &sad; 5005 ad.u.ipc_id = msq->q_perm.key; 5006 5007 rc = avc_has_perm(sid, isec->sid, 5008 SECCLASS_MSGQ, MSGQ__READ, &ad); 5009 if (!rc) 5010 rc = avc_has_perm(sid, msec->sid, 5011 SECCLASS_MSG, MSG__RECEIVE, &ad); 5012 return rc; 5013 } 5014 5015 /* Shared Memory security operations */ 5016 static int selinux_shm_alloc_security(struct shmid_kernel *shp) 5017 { 5018 struct ipc_security_struct *isec; 5019 struct common_audit_data ad; 5020 struct selinux_audit_data sad = {0,}; 5021 u32 sid = current_sid(); 5022 int rc; 5023 5024 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM); 5025 if (rc) 5026 return rc; 5027 5028 isec = shp->shm_perm.security; 5029 5030 COMMON_AUDIT_DATA_INIT(&ad, IPC); 5031 ad.selinux_audit_data = &sad; 5032 ad.u.ipc_id = shp->shm_perm.key; 5033 5034 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM, 5035 SHM__CREATE, &ad); 5036 if (rc) { 5037 ipc_free_security(&shp->shm_perm); 5038 return rc; 5039 } 5040 return 0; 5041 } 5042 5043 static void selinux_shm_free_security(struct shmid_kernel *shp) 5044 { 5045 ipc_free_security(&shp->shm_perm); 5046 } 5047 5048 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg) 5049 { 5050 struct ipc_security_struct *isec; 5051 struct common_audit_data ad; 5052 struct selinux_audit_data sad = {0,}; 5053 u32 sid = current_sid(); 5054 5055 isec = shp->shm_perm.security; 5056 5057 COMMON_AUDIT_DATA_INIT(&ad, IPC); 5058 ad.selinux_audit_data = &sad; 5059 ad.u.ipc_id = shp->shm_perm.key; 5060 5061 return avc_has_perm(sid, isec->sid, SECCLASS_SHM, 5062 SHM__ASSOCIATE, &ad); 5063 } 5064 5065 /* Note, at this point, shp is locked down */ 5066 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd) 5067 { 5068 int perms; 5069 int err; 5070 5071 switch (cmd) { 5072 case IPC_INFO: 5073 case SHM_INFO: 5074 /* No specific object, just general system-wide information. */ 5075 return task_has_system(current, SYSTEM__IPC_INFO); 5076 case IPC_STAT: 5077 case SHM_STAT: 5078 perms = SHM__GETATTR | SHM__ASSOCIATE; 5079 break; 5080 case IPC_SET: 5081 perms = SHM__SETATTR; 5082 break; 5083 case SHM_LOCK: 5084 case SHM_UNLOCK: 5085 perms = SHM__LOCK; 5086 break; 5087 case IPC_RMID: 5088 perms = SHM__DESTROY; 5089 break; 5090 default: 5091 return 0; 5092 } 5093 5094 err = ipc_has_perm(&shp->shm_perm, perms); 5095 return err; 5096 } 5097 5098 static int selinux_shm_shmat(struct shmid_kernel *shp, 5099 char __user *shmaddr, int shmflg) 5100 { 5101 u32 perms; 5102 5103 if (shmflg & SHM_RDONLY) 5104 perms = SHM__READ; 5105 else 5106 perms = SHM__READ | SHM__WRITE; 5107 5108 return ipc_has_perm(&shp->shm_perm, perms); 5109 } 5110 5111 /* Semaphore security operations */ 5112 static int selinux_sem_alloc_security(struct sem_array *sma) 5113 { 5114 struct ipc_security_struct *isec; 5115 struct common_audit_data ad; 5116 struct selinux_audit_data sad = {0,}; 5117 u32 sid = current_sid(); 5118 int rc; 5119 5120 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM); 5121 if (rc) 5122 return rc; 5123 5124 isec = sma->sem_perm.security; 5125 5126 COMMON_AUDIT_DATA_INIT(&ad, IPC); 5127 ad.selinux_audit_data = &sad; 5128 ad.u.ipc_id = sma->sem_perm.key; 5129 5130 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM, 5131 SEM__CREATE, &ad); 5132 if (rc) { 5133 ipc_free_security(&sma->sem_perm); 5134 return rc; 5135 } 5136 return 0; 5137 } 5138 5139 static void selinux_sem_free_security(struct sem_array *sma) 5140 { 5141 ipc_free_security(&sma->sem_perm); 5142 } 5143 5144 static int selinux_sem_associate(struct sem_array *sma, int semflg) 5145 { 5146 struct ipc_security_struct *isec; 5147 struct common_audit_data ad; 5148 struct selinux_audit_data sad = {0,}; 5149 u32 sid = current_sid(); 5150 5151 isec = sma->sem_perm.security; 5152 5153 COMMON_AUDIT_DATA_INIT(&ad, IPC); 5154 ad.selinux_audit_data = &sad; 5155 ad.u.ipc_id = sma->sem_perm.key; 5156 5157 return avc_has_perm(sid, isec->sid, SECCLASS_SEM, 5158 SEM__ASSOCIATE, &ad); 5159 } 5160 5161 /* Note, at this point, sma is locked down */ 5162 static int selinux_sem_semctl(struct sem_array *sma, int cmd) 5163 { 5164 int err; 5165 u32 perms; 5166 5167 switch (cmd) { 5168 case IPC_INFO: 5169 case SEM_INFO: 5170 /* No specific object, just general system-wide information. */ 5171 return task_has_system(current, SYSTEM__IPC_INFO); 5172 case GETPID: 5173 case GETNCNT: 5174 case GETZCNT: 5175 perms = SEM__GETATTR; 5176 break; 5177 case GETVAL: 5178 case GETALL: 5179 perms = SEM__READ; 5180 break; 5181 case SETVAL: 5182 case SETALL: 5183 perms = SEM__WRITE; 5184 break; 5185 case IPC_RMID: 5186 perms = SEM__DESTROY; 5187 break; 5188 case IPC_SET: 5189 perms = SEM__SETATTR; 5190 break; 5191 case IPC_STAT: 5192 case SEM_STAT: 5193 perms = SEM__GETATTR | SEM__ASSOCIATE; 5194 break; 5195 default: 5196 return 0; 5197 } 5198 5199 err = ipc_has_perm(&sma->sem_perm, perms); 5200 return err; 5201 } 5202 5203 static int selinux_sem_semop(struct sem_array *sma, 5204 struct sembuf *sops, unsigned nsops, int alter) 5205 { 5206 u32 perms; 5207 5208 if (alter) 5209 perms = SEM__READ | SEM__WRITE; 5210 else 5211 perms = SEM__READ; 5212 5213 return ipc_has_perm(&sma->sem_perm, perms); 5214 } 5215 5216 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 5217 { 5218 u32 av = 0; 5219 5220 av = 0; 5221 if (flag & S_IRUGO) 5222 av |= IPC__UNIX_READ; 5223 if (flag & S_IWUGO) 5224 av |= IPC__UNIX_WRITE; 5225 5226 if (av == 0) 5227 return 0; 5228 5229 return ipc_has_perm(ipcp, av); 5230 } 5231 5232 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 5233 { 5234 struct ipc_security_struct *isec = ipcp->security; 5235 *secid = isec->sid; 5236 } 5237 5238 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode) 5239 { 5240 if (inode) 5241 inode_doinit_with_dentry(inode, dentry); 5242 } 5243 5244 static int selinux_getprocattr(struct task_struct *p, 5245 char *name, char **value) 5246 { 5247 const struct task_security_struct *__tsec; 5248 u32 sid; 5249 int error; 5250 unsigned len; 5251 5252 if (current != p) { 5253 error = current_has_perm(p, PROCESS__GETATTR); 5254 if (error) 5255 return error; 5256 } 5257 5258 rcu_read_lock(); 5259 __tsec = __task_cred(p)->security; 5260 5261 if (!strcmp(name, "current")) 5262 sid = __tsec->sid; 5263 else if (!strcmp(name, "prev")) 5264 sid = __tsec->osid; 5265 else if (!strcmp(name, "exec")) 5266 sid = __tsec->exec_sid; 5267 else if (!strcmp(name, "fscreate")) 5268 sid = __tsec->create_sid; 5269 else if (!strcmp(name, "keycreate")) 5270 sid = __tsec->keycreate_sid; 5271 else if (!strcmp(name, "sockcreate")) 5272 sid = __tsec->sockcreate_sid; 5273 else 5274 goto invalid; 5275 rcu_read_unlock(); 5276 5277 if (!sid) 5278 return 0; 5279 5280 error = security_sid_to_context(sid, value, &len); 5281 if (error) 5282 return error; 5283 return len; 5284 5285 invalid: 5286 rcu_read_unlock(); 5287 return -EINVAL; 5288 } 5289 5290 static int selinux_setprocattr(struct task_struct *p, 5291 char *name, void *value, size_t size) 5292 { 5293 struct task_security_struct *tsec; 5294 struct task_struct *tracer; 5295 struct cred *new; 5296 u32 sid = 0, ptsid; 5297 int error; 5298 char *str = value; 5299 5300 if (current != p) { 5301 /* SELinux only allows a process to change its own 5302 security attributes. */ 5303 return -EACCES; 5304 } 5305 5306 /* 5307 * Basic control over ability to set these attributes at all. 5308 * current == p, but we'll pass them separately in case the 5309 * above restriction is ever removed. 5310 */ 5311 if (!strcmp(name, "exec")) 5312 error = current_has_perm(p, PROCESS__SETEXEC); 5313 else if (!strcmp(name, "fscreate")) 5314 error = current_has_perm(p, PROCESS__SETFSCREATE); 5315 else if (!strcmp(name, "keycreate")) 5316 error = current_has_perm(p, PROCESS__SETKEYCREATE); 5317 else if (!strcmp(name, "sockcreate")) 5318 error = current_has_perm(p, PROCESS__SETSOCKCREATE); 5319 else if (!strcmp(name, "current")) 5320 error = current_has_perm(p, PROCESS__SETCURRENT); 5321 else 5322 error = -EINVAL; 5323 if (error) 5324 return error; 5325 5326 /* Obtain a SID for the context, if one was specified. */ 5327 if (size && str[1] && str[1] != '\n') { 5328 if (str[size-1] == '\n') { 5329 str[size-1] = 0; 5330 size--; 5331 } 5332 error = security_context_to_sid(value, size, &sid); 5333 if (error == -EINVAL && !strcmp(name, "fscreate")) { 5334 if (!capable(CAP_MAC_ADMIN)) 5335 return error; 5336 error = security_context_to_sid_force(value, size, 5337 &sid); 5338 } 5339 if (error) 5340 return error; 5341 } 5342 5343 new = prepare_creds(); 5344 if (!new) 5345 return -ENOMEM; 5346 5347 /* Permission checking based on the specified context is 5348 performed during the actual operation (execve, 5349 open/mkdir/...), when we know the full context of the 5350 operation. See selinux_bprm_set_creds for the execve 5351 checks and may_create for the file creation checks. The 5352 operation will then fail if the context is not permitted. */ 5353 tsec = new->security; 5354 if (!strcmp(name, "exec")) { 5355 tsec->exec_sid = sid; 5356 } else if (!strcmp(name, "fscreate")) { 5357 tsec->create_sid = sid; 5358 } else if (!strcmp(name, "keycreate")) { 5359 error = may_create_key(sid, p); 5360 if (error) 5361 goto abort_change; 5362 tsec->keycreate_sid = sid; 5363 } else if (!strcmp(name, "sockcreate")) { 5364 tsec->sockcreate_sid = sid; 5365 } else if (!strcmp(name, "current")) { 5366 error = -EINVAL; 5367 if (sid == 0) 5368 goto abort_change; 5369 5370 /* Only allow single threaded processes to change context */ 5371 error = -EPERM; 5372 if (!current_is_single_threaded()) { 5373 error = security_bounded_transition(tsec->sid, sid); 5374 if (error) 5375 goto abort_change; 5376 } 5377 5378 /* Check permissions for the transition. */ 5379 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 5380 PROCESS__DYNTRANSITION, NULL); 5381 if (error) 5382 goto abort_change; 5383 5384 /* Check for ptracing, and update the task SID if ok. 5385 Otherwise, leave SID unchanged and fail. */ 5386 ptsid = 0; 5387 task_lock(p); 5388 tracer = ptrace_parent(p); 5389 if (tracer) 5390 ptsid = task_sid(tracer); 5391 task_unlock(p); 5392 5393 if (tracer) { 5394 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS, 5395 PROCESS__PTRACE, NULL); 5396 if (error) 5397 goto abort_change; 5398 } 5399 5400 tsec->sid = sid; 5401 } else { 5402 error = -EINVAL; 5403 goto abort_change; 5404 } 5405 5406 commit_creds(new); 5407 return size; 5408 5409 abort_change: 5410 abort_creds(new); 5411 return error; 5412 } 5413 5414 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 5415 { 5416 return security_sid_to_context(secid, secdata, seclen); 5417 } 5418 5419 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 5420 { 5421 return security_context_to_sid(secdata, seclen, secid); 5422 } 5423 5424 static void selinux_release_secctx(char *secdata, u32 seclen) 5425 { 5426 kfree(secdata); 5427 } 5428 5429 /* 5430 * called with inode->i_mutex locked 5431 */ 5432 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 5433 { 5434 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0); 5435 } 5436 5437 /* 5438 * called with inode->i_mutex locked 5439 */ 5440 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 5441 { 5442 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0); 5443 } 5444 5445 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 5446 { 5447 int len = 0; 5448 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX, 5449 ctx, true); 5450 if (len < 0) 5451 return len; 5452 *ctxlen = len; 5453 return 0; 5454 } 5455 #ifdef CONFIG_KEYS 5456 5457 static int selinux_key_alloc(struct key *k, const struct cred *cred, 5458 unsigned long flags) 5459 { 5460 const struct task_security_struct *tsec; 5461 struct key_security_struct *ksec; 5462 5463 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); 5464 if (!ksec) 5465 return -ENOMEM; 5466 5467 tsec = cred->security; 5468 if (tsec->keycreate_sid) 5469 ksec->sid = tsec->keycreate_sid; 5470 else 5471 ksec->sid = tsec->sid; 5472 5473 k->security = ksec; 5474 return 0; 5475 } 5476 5477 static void selinux_key_free(struct key *k) 5478 { 5479 struct key_security_struct *ksec = k->security; 5480 5481 k->security = NULL; 5482 kfree(ksec); 5483 } 5484 5485 static int selinux_key_permission(key_ref_t key_ref, 5486 const struct cred *cred, 5487 key_perm_t perm) 5488 { 5489 struct key *key; 5490 struct key_security_struct *ksec; 5491 u32 sid; 5492 5493 /* if no specific permissions are requested, we skip the 5494 permission check. No serious, additional covert channels 5495 appear to be created. */ 5496 if (perm == 0) 5497 return 0; 5498 5499 sid = cred_sid(cred); 5500 5501 key = key_ref_to_ptr(key_ref); 5502 ksec = key->security; 5503 5504 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL); 5505 } 5506 5507 static int selinux_key_getsecurity(struct key *key, char **_buffer) 5508 { 5509 struct key_security_struct *ksec = key->security; 5510 char *context = NULL; 5511 unsigned len; 5512 int rc; 5513 5514 rc = security_sid_to_context(ksec->sid, &context, &len); 5515 if (!rc) 5516 rc = len; 5517 *_buffer = context; 5518 return rc; 5519 } 5520 5521 #endif 5522 5523 static struct security_operations selinux_ops = { 5524 .name = "selinux", 5525 5526 .ptrace_access_check = selinux_ptrace_access_check, 5527 .ptrace_traceme = selinux_ptrace_traceme, 5528 .capget = selinux_capget, 5529 .capset = selinux_capset, 5530 .capable = selinux_capable, 5531 .quotactl = selinux_quotactl, 5532 .quota_on = selinux_quota_on, 5533 .syslog = selinux_syslog, 5534 .vm_enough_memory = selinux_vm_enough_memory, 5535 5536 .netlink_send = selinux_netlink_send, 5537 5538 .bprm_set_creds = selinux_bprm_set_creds, 5539 .bprm_committing_creds = selinux_bprm_committing_creds, 5540 .bprm_committed_creds = selinux_bprm_committed_creds, 5541 .bprm_secureexec = selinux_bprm_secureexec, 5542 5543 .sb_alloc_security = selinux_sb_alloc_security, 5544 .sb_free_security = selinux_sb_free_security, 5545 .sb_copy_data = selinux_sb_copy_data, 5546 .sb_remount = selinux_sb_remount, 5547 .sb_kern_mount = selinux_sb_kern_mount, 5548 .sb_show_options = selinux_sb_show_options, 5549 .sb_statfs = selinux_sb_statfs, 5550 .sb_mount = selinux_mount, 5551 .sb_umount = selinux_umount, 5552 .sb_set_mnt_opts = selinux_set_mnt_opts, 5553 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts, 5554 .sb_parse_opts_str = selinux_parse_opts_str, 5555 5556 5557 .inode_alloc_security = selinux_inode_alloc_security, 5558 .inode_free_security = selinux_inode_free_security, 5559 .inode_init_security = selinux_inode_init_security, 5560 .inode_create = selinux_inode_create, 5561 .inode_link = selinux_inode_link, 5562 .inode_unlink = selinux_inode_unlink, 5563 .inode_symlink = selinux_inode_symlink, 5564 .inode_mkdir = selinux_inode_mkdir, 5565 .inode_rmdir = selinux_inode_rmdir, 5566 .inode_mknod = selinux_inode_mknod, 5567 .inode_rename = selinux_inode_rename, 5568 .inode_readlink = selinux_inode_readlink, 5569 .inode_follow_link = selinux_inode_follow_link, 5570 .inode_permission = selinux_inode_permission, 5571 .inode_setattr = selinux_inode_setattr, 5572 .inode_getattr = selinux_inode_getattr, 5573 .inode_setxattr = selinux_inode_setxattr, 5574 .inode_post_setxattr = selinux_inode_post_setxattr, 5575 .inode_getxattr = selinux_inode_getxattr, 5576 .inode_listxattr = selinux_inode_listxattr, 5577 .inode_removexattr = selinux_inode_removexattr, 5578 .inode_getsecurity = selinux_inode_getsecurity, 5579 .inode_setsecurity = selinux_inode_setsecurity, 5580 .inode_listsecurity = selinux_inode_listsecurity, 5581 .inode_getsecid = selinux_inode_getsecid, 5582 5583 .file_permission = selinux_file_permission, 5584 .file_alloc_security = selinux_file_alloc_security, 5585 .file_free_security = selinux_file_free_security, 5586 .file_ioctl = selinux_file_ioctl, 5587 .file_mmap = selinux_file_mmap, 5588 .file_mprotect = selinux_file_mprotect, 5589 .file_lock = selinux_file_lock, 5590 .file_fcntl = selinux_file_fcntl, 5591 .file_set_fowner = selinux_file_set_fowner, 5592 .file_send_sigiotask = selinux_file_send_sigiotask, 5593 .file_receive = selinux_file_receive, 5594 5595 .dentry_open = selinux_dentry_open, 5596 5597 .task_create = selinux_task_create, 5598 .cred_alloc_blank = selinux_cred_alloc_blank, 5599 .cred_free = selinux_cred_free, 5600 .cred_prepare = selinux_cred_prepare, 5601 .cred_transfer = selinux_cred_transfer, 5602 .kernel_act_as = selinux_kernel_act_as, 5603 .kernel_create_files_as = selinux_kernel_create_files_as, 5604 .kernel_module_request = selinux_kernel_module_request, 5605 .task_setpgid = selinux_task_setpgid, 5606 .task_getpgid = selinux_task_getpgid, 5607 .task_getsid = selinux_task_getsid, 5608 .task_getsecid = selinux_task_getsecid, 5609 .task_setnice = selinux_task_setnice, 5610 .task_setioprio = selinux_task_setioprio, 5611 .task_getioprio = selinux_task_getioprio, 5612 .task_setrlimit = selinux_task_setrlimit, 5613 .task_setscheduler = selinux_task_setscheduler, 5614 .task_getscheduler = selinux_task_getscheduler, 5615 .task_movememory = selinux_task_movememory, 5616 .task_kill = selinux_task_kill, 5617 .task_wait = selinux_task_wait, 5618 .task_to_inode = selinux_task_to_inode, 5619 5620 .ipc_permission = selinux_ipc_permission, 5621 .ipc_getsecid = selinux_ipc_getsecid, 5622 5623 .msg_msg_alloc_security = selinux_msg_msg_alloc_security, 5624 .msg_msg_free_security = selinux_msg_msg_free_security, 5625 5626 .msg_queue_alloc_security = selinux_msg_queue_alloc_security, 5627 .msg_queue_free_security = selinux_msg_queue_free_security, 5628 .msg_queue_associate = selinux_msg_queue_associate, 5629 .msg_queue_msgctl = selinux_msg_queue_msgctl, 5630 .msg_queue_msgsnd = selinux_msg_queue_msgsnd, 5631 .msg_queue_msgrcv = selinux_msg_queue_msgrcv, 5632 5633 .shm_alloc_security = selinux_shm_alloc_security, 5634 .shm_free_security = selinux_shm_free_security, 5635 .shm_associate = selinux_shm_associate, 5636 .shm_shmctl = selinux_shm_shmctl, 5637 .shm_shmat = selinux_shm_shmat, 5638 5639 .sem_alloc_security = selinux_sem_alloc_security, 5640 .sem_free_security = selinux_sem_free_security, 5641 .sem_associate = selinux_sem_associate, 5642 .sem_semctl = selinux_sem_semctl, 5643 .sem_semop = selinux_sem_semop, 5644 5645 .d_instantiate = selinux_d_instantiate, 5646 5647 .getprocattr = selinux_getprocattr, 5648 .setprocattr = selinux_setprocattr, 5649 5650 .secid_to_secctx = selinux_secid_to_secctx, 5651 .secctx_to_secid = selinux_secctx_to_secid, 5652 .release_secctx = selinux_release_secctx, 5653 .inode_notifysecctx = selinux_inode_notifysecctx, 5654 .inode_setsecctx = selinux_inode_setsecctx, 5655 .inode_getsecctx = selinux_inode_getsecctx, 5656 5657 .unix_stream_connect = selinux_socket_unix_stream_connect, 5658 .unix_may_send = selinux_socket_unix_may_send, 5659 5660 .socket_create = selinux_socket_create, 5661 .socket_post_create = selinux_socket_post_create, 5662 .socket_bind = selinux_socket_bind, 5663 .socket_connect = selinux_socket_connect, 5664 .socket_listen = selinux_socket_listen, 5665 .socket_accept = selinux_socket_accept, 5666 .socket_sendmsg = selinux_socket_sendmsg, 5667 .socket_recvmsg = selinux_socket_recvmsg, 5668 .socket_getsockname = selinux_socket_getsockname, 5669 .socket_getpeername = selinux_socket_getpeername, 5670 .socket_getsockopt = selinux_socket_getsockopt, 5671 .socket_setsockopt = selinux_socket_setsockopt, 5672 .socket_shutdown = selinux_socket_shutdown, 5673 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb, 5674 .socket_getpeersec_stream = selinux_socket_getpeersec_stream, 5675 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram, 5676 .sk_alloc_security = selinux_sk_alloc_security, 5677 .sk_free_security = selinux_sk_free_security, 5678 .sk_clone_security = selinux_sk_clone_security, 5679 .sk_getsecid = selinux_sk_getsecid, 5680 .sock_graft = selinux_sock_graft, 5681 .inet_conn_request = selinux_inet_conn_request, 5682 .inet_csk_clone = selinux_inet_csk_clone, 5683 .inet_conn_established = selinux_inet_conn_established, 5684 .secmark_relabel_packet = selinux_secmark_relabel_packet, 5685 .secmark_refcount_inc = selinux_secmark_refcount_inc, 5686 .secmark_refcount_dec = selinux_secmark_refcount_dec, 5687 .req_classify_flow = selinux_req_classify_flow, 5688 .tun_dev_create = selinux_tun_dev_create, 5689 .tun_dev_post_create = selinux_tun_dev_post_create, 5690 .tun_dev_attach = selinux_tun_dev_attach, 5691 5692 #ifdef CONFIG_SECURITY_NETWORK_XFRM 5693 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc, 5694 .xfrm_policy_clone_security = selinux_xfrm_policy_clone, 5695 .xfrm_policy_free_security = selinux_xfrm_policy_free, 5696 .xfrm_policy_delete_security = selinux_xfrm_policy_delete, 5697 .xfrm_state_alloc_security = selinux_xfrm_state_alloc, 5698 .xfrm_state_free_security = selinux_xfrm_state_free, 5699 .xfrm_state_delete_security = selinux_xfrm_state_delete, 5700 .xfrm_policy_lookup = selinux_xfrm_policy_lookup, 5701 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match, 5702 .xfrm_decode_session = selinux_xfrm_decode_session, 5703 #endif 5704 5705 #ifdef CONFIG_KEYS 5706 .key_alloc = selinux_key_alloc, 5707 .key_free = selinux_key_free, 5708 .key_permission = selinux_key_permission, 5709 .key_getsecurity = selinux_key_getsecurity, 5710 #endif 5711 5712 #ifdef CONFIG_AUDIT 5713 .audit_rule_init = selinux_audit_rule_init, 5714 .audit_rule_known = selinux_audit_rule_known, 5715 .audit_rule_match = selinux_audit_rule_match, 5716 .audit_rule_free = selinux_audit_rule_free, 5717 #endif 5718 }; 5719 5720 static __init int selinux_init(void) 5721 { 5722 if (!security_module_enable(&selinux_ops)) { 5723 selinux_enabled = 0; 5724 return 0; 5725 } 5726 5727 if (!selinux_enabled) { 5728 printk(KERN_INFO "SELinux: Disabled at boot.\n"); 5729 return 0; 5730 } 5731 5732 printk(KERN_INFO "SELinux: Initializing.\n"); 5733 5734 /* Set the security state for the initial task. */ 5735 cred_init_security(); 5736 5737 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC); 5738 5739 sel_inode_cache = kmem_cache_create("selinux_inode_security", 5740 sizeof(struct inode_security_struct), 5741 0, SLAB_PANIC, NULL); 5742 avc_init(); 5743 5744 if (register_security(&selinux_ops)) 5745 panic("SELinux: Unable to register with kernel.\n"); 5746 5747 if (selinux_enforcing) 5748 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n"); 5749 else 5750 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n"); 5751 5752 return 0; 5753 } 5754 5755 static void delayed_superblock_init(struct super_block *sb, void *unused) 5756 { 5757 superblock_doinit(sb, NULL); 5758 } 5759 5760 void selinux_complete_init(void) 5761 { 5762 printk(KERN_DEBUG "SELinux: Completing initialization.\n"); 5763 5764 /* Set up any superblocks initialized prior to the policy load. */ 5765 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n"); 5766 iterate_supers(delayed_superblock_init, NULL); 5767 } 5768 5769 /* SELinux requires early initialization in order to label 5770 all processes and objects when they are created. */ 5771 security_initcall(selinux_init); 5772 5773 #if defined(CONFIG_NETFILTER) 5774 5775 static struct nf_hook_ops selinux_ipv4_ops[] = { 5776 { 5777 .hook = selinux_ipv4_postroute, 5778 .owner = THIS_MODULE, 5779 .pf = PF_INET, 5780 .hooknum = NF_INET_POST_ROUTING, 5781 .priority = NF_IP_PRI_SELINUX_LAST, 5782 }, 5783 { 5784 .hook = selinux_ipv4_forward, 5785 .owner = THIS_MODULE, 5786 .pf = PF_INET, 5787 .hooknum = NF_INET_FORWARD, 5788 .priority = NF_IP_PRI_SELINUX_FIRST, 5789 }, 5790 { 5791 .hook = selinux_ipv4_output, 5792 .owner = THIS_MODULE, 5793 .pf = PF_INET, 5794 .hooknum = NF_INET_LOCAL_OUT, 5795 .priority = NF_IP_PRI_SELINUX_FIRST, 5796 } 5797 }; 5798 5799 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5800 5801 static struct nf_hook_ops selinux_ipv6_ops[] = { 5802 { 5803 .hook = selinux_ipv6_postroute, 5804 .owner = THIS_MODULE, 5805 .pf = PF_INET6, 5806 .hooknum = NF_INET_POST_ROUTING, 5807 .priority = NF_IP6_PRI_SELINUX_LAST, 5808 }, 5809 { 5810 .hook = selinux_ipv6_forward, 5811 .owner = THIS_MODULE, 5812 .pf = PF_INET6, 5813 .hooknum = NF_INET_FORWARD, 5814 .priority = NF_IP6_PRI_SELINUX_FIRST, 5815 } 5816 }; 5817 5818 #endif /* IPV6 */ 5819 5820 static int __init selinux_nf_ip_init(void) 5821 { 5822 int err = 0; 5823 5824 if (!selinux_enabled) 5825 goto out; 5826 5827 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n"); 5828 5829 err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops)); 5830 if (err) 5831 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err); 5832 5833 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5834 err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops)); 5835 if (err) 5836 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err); 5837 #endif /* IPV6 */ 5838 5839 out: 5840 return err; 5841 } 5842 5843 __initcall(selinux_nf_ip_init); 5844 5845 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5846 static void selinux_nf_ip_exit(void) 5847 { 5848 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n"); 5849 5850 nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops)); 5851 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5852 nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops)); 5853 #endif /* IPV6 */ 5854 } 5855 #endif 5856 5857 #else /* CONFIG_NETFILTER */ 5858 5859 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5860 #define selinux_nf_ip_exit() 5861 #endif 5862 5863 #endif /* CONFIG_NETFILTER */ 5864 5865 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5866 static int selinux_disabled; 5867 5868 int selinux_disable(void) 5869 { 5870 if (ss_initialized) { 5871 /* Not permitted after initial policy load. */ 5872 return -EINVAL; 5873 } 5874 5875 if (selinux_disabled) { 5876 /* Only do this once. */ 5877 return -EINVAL; 5878 } 5879 5880 printk(KERN_INFO "SELinux: Disabled at runtime.\n"); 5881 5882 selinux_disabled = 1; 5883 selinux_enabled = 0; 5884 5885 reset_security_ops(); 5886 5887 /* Try to destroy the avc node cache */ 5888 avc_disable(); 5889 5890 /* Unregister netfilter hooks. */ 5891 selinux_nf_ip_exit(); 5892 5893 /* Unregister selinuxfs. */ 5894 exit_sel_fs(); 5895 5896 return 0; 5897 } 5898 #endif 5899