xref: /openbmc/linux/security/selinux/hooks.c (revision 95c96174)
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *	      Chris Vance, <cvance@nai.com>
8  *	      Wayne Salamon, <wsalamon@nai.com>
9  *	      James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *					   Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *			    <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *	Paul Moore <paul@paul-moore.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *	This program is free software; you can redistribute it and/or modify
22  *	it under the terms of the GNU General Public License version 2,
23  *	as published by the Free Software Foundation.
24  */
25 
26 #include <linux/init.h>
27 #include <linux/kd.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/sched.h>
32 #include <linux/security.h>
33 #include <linux/xattr.h>
34 #include <linux/capability.h>
35 #include <linux/unistd.h>
36 #include <linux/mm.h>
37 #include <linux/mman.h>
38 #include <linux/slab.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/swap.h>
42 #include <linux/spinlock.h>
43 #include <linux/syscalls.h>
44 #include <linux/dcache.h>
45 #include <linux/file.h>
46 #include <linux/fdtable.h>
47 #include <linux/namei.h>
48 #include <linux/mount.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <linux/netfilter_ipv6.h>
51 #include <linux/tty.h>
52 #include <net/icmp.h>
53 #include <net/ip.h>		/* for local_port_range[] */
54 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
55 #include <net/net_namespace.h>
56 #include <net/netlabel.h>
57 #include <linux/uaccess.h>
58 #include <asm/ioctls.h>
59 #include <linux/atomic.h>
60 #include <linux/bitops.h>
61 #include <linux/interrupt.h>
62 #include <linux/netdevice.h>	/* for network interface checks */
63 #include <linux/netlink.h>
64 #include <linux/tcp.h>
65 #include <linux/udp.h>
66 #include <linux/dccp.h>
67 #include <linux/quota.h>
68 #include <linux/un.h>		/* for Unix socket types */
69 #include <net/af_unix.h>	/* for Unix socket types */
70 #include <linux/parser.h>
71 #include <linux/nfs_mount.h>
72 #include <net/ipv6.h>
73 #include <linux/hugetlb.h>
74 #include <linux/personality.h>
75 #include <linux/audit.h>
76 #include <linux/string.h>
77 #include <linux/selinux.h>
78 #include <linux/mutex.h>
79 #include <linux/posix-timers.h>
80 #include <linux/syslog.h>
81 #include <linux/user_namespace.h>
82 #include <linux/export.h>
83 #include <linux/msg.h>
84 #include <linux/shm.h>
85 
86 #include "avc.h"
87 #include "objsec.h"
88 #include "netif.h"
89 #include "netnode.h"
90 #include "netport.h"
91 #include "xfrm.h"
92 #include "netlabel.h"
93 #include "audit.h"
94 #include "avc_ss.h"
95 
96 #define NUM_SEL_MNT_OPTS 5
97 
98 extern struct security_operations *security_ops;
99 
100 /* SECMARK reference count */
101 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
102 
103 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
104 int selinux_enforcing;
105 
106 static int __init enforcing_setup(char *str)
107 {
108 	unsigned long enforcing;
109 	if (!strict_strtoul(str, 0, &enforcing))
110 		selinux_enforcing = enforcing ? 1 : 0;
111 	return 1;
112 }
113 __setup("enforcing=", enforcing_setup);
114 #endif
115 
116 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
117 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
118 
119 static int __init selinux_enabled_setup(char *str)
120 {
121 	unsigned long enabled;
122 	if (!strict_strtoul(str, 0, &enabled))
123 		selinux_enabled = enabled ? 1 : 0;
124 	return 1;
125 }
126 __setup("selinux=", selinux_enabled_setup);
127 #else
128 int selinux_enabled = 1;
129 #endif
130 
131 static struct kmem_cache *sel_inode_cache;
132 
133 /**
134  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
135  *
136  * Description:
137  * This function checks the SECMARK reference counter to see if any SECMARK
138  * targets are currently configured, if the reference counter is greater than
139  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
140  * enabled, false (0) if SECMARK is disabled.
141  *
142  */
143 static int selinux_secmark_enabled(void)
144 {
145 	return (atomic_read(&selinux_secmark_refcount) > 0);
146 }
147 
148 /*
149  * initialise the security for the init task
150  */
151 static void cred_init_security(void)
152 {
153 	struct cred *cred = (struct cred *) current->real_cred;
154 	struct task_security_struct *tsec;
155 
156 	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
157 	if (!tsec)
158 		panic("SELinux:  Failed to initialize initial task.\n");
159 
160 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
161 	cred->security = tsec;
162 }
163 
164 /*
165  * get the security ID of a set of credentials
166  */
167 static inline u32 cred_sid(const struct cred *cred)
168 {
169 	const struct task_security_struct *tsec;
170 
171 	tsec = cred->security;
172 	return tsec->sid;
173 }
174 
175 /*
176  * get the objective security ID of a task
177  */
178 static inline u32 task_sid(const struct task_struct *task)
179 {
180 	u32 sid;
181 
182 	rcu_read_lock();
183 	sid = cred_sid(__task_cred(task));
184 	rcu_read_unlock();
185 	return sid;
186 }
187 
188 /*
189  * get the subjective security ID of the current task
190  */
191 static inline u32 current_sid(void)
192 {
193 	const struct task_security_struct *tsec = current_security();
194 
195 	return tsec->sid;
196 }
197 
198 /* Allocate and free functions for each kind of security blob. */
199 
200 static int inode_alloc_security(struct inode *inode)
201 {
202 	struct inode_security_struct *isec;
203 	u32 sid = current_sid();
204 
205 	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
206 	if (!isec)
207 		return -ENOMEM;
208 
209 	mutex_init(&isec->lock);
210 	INIT_LIST_HEAD(&isec->list);
211 	isec->inode = inode;
212 	isec->sid = SECINITSID_UNLABELED;
213 	isec->sclass = SECCLASS_FILE;
214 	isec->task_sid = sid;
215 	inode->i_security = isec;
216 
217 	return 0;
218 }
219 
220 static void inode_free_security(struct inode *inode)
221 {
222 	struct inode_security_struct *isec = inode->i_security;
223 	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
224 
225 	spin_lock(&sbsec->isec_lock);
226 	if (!list_empty(&isec->list))
227 		list_del_init(&isec->list);
228 	spin_unlock(&sbsec->isec_lock);
229 
230 	inode->i_security = NULL;
231 	kmem_cache_free(sel_inode_cache, isec);
232 }
233 
234 static int file_alloc_security(struct file *file)
235 {
236 	struct file_security_struct *fsec;
237 	u32 sid = current_sid();
238 
239 	fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
240 	if (!fsec)
241 		return -ENOMEM;
242 
243 	fsec->sid = sid;
244 	fsec->fown_sid = sid;
245 	file->f_security = fsec;
246 
247 	return 0;
248 }
249 
250 static void file_free_security(struct file *file)
251 {
252 	struct file_security_struct *fsec = file->f_security;
253 	file->f_security = NULL;
254 	kfree(fsec);
255 }
256 
257 static int superblock_alloc_security(struct super_block *sb)
258 {
259 	struct superblock_security_struct *sbsec;
260 
261 	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
262 	if (!sbsec)
263 		return -ENOMEM;
264 
265 	mutex_init(&sbsec->lock);
266 	INIT_LIST_HEAD(&sbsec->isec_head);
267 	spin_lock_init(&sbsec->isec_lock);
268 	sbsec->sb = sb;
269 	sbsec->sid = SECINITSID_UNLABELED;
270 	sbsec->def_sid = SECINITSID_FILE;
271 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
272 	sb->s_security = sbsec;
273 
274 	return 0;
275 }
276 
277 static void superblock_free_security(struct super_block *sb)
278 {
279 	struct superblock_security_struct *sbsec = sb->s_security;
280 	sb->s_security = NULL;
281 	kfree(sbsec);
282 }
283 
284 /* The file system's label must be initialized prior to use. */
285 
286 static const char *labeling_behaviors[6] = {
287 	"uses xattr",
288 	"uses transition SIDs",
289 	"uses task SIDs",
290 	"uses genfs_contexts",
291 	"not configured for labeling",
292 	"uses mountpoint labeling",
293 };
294 
295 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
296 
297 static inline int inode_doinit(struct inode *inode)
298 {
299 	return inode_doinit_with_dentry(inode, NULL);
300 }
301 
302 enum {
303 	Opt_error = -1,
304 	Opt_context = 1,
305 	Opt_fscontext = 2,
306 	Opt_defcontext = 3,
307 	Opt_rootcontext = 4,
308 	Opt_labelsupport = 5,
309 };
310 
311 static const match_table_t tokens = {
312 	{Opt_context, CONTEXT_STR "%s"},
313 	{Opt_fscontext, FSCONTEXT_STR "%s"},
314 	{Opt_defcontext, DEFCONTEXT_STR "%s"},
315 	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
316 	{Opt_labelsupport, LABELSUPP_STR},
317 	{Opt_error, NULL},
318 };
319 
320 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
321 
322 static int may_context_mount_sb_relabel(u32 sid,
323 			struct superblock_security_struct *sbsec,
324 			const struct cred *cred)
325 {
326 	const struct task_security_struct *tsec = cred->security;
327 	int rc;
328 
329 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
330 			  FILESYSTEM__RELABELFROM, NULL);
331 	if (rc)
332 		return rc;
333 
334 	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
335 			  FILESYSTEM__RELABELTO, NULL);
336 	return rc;
337 }
338 
339 static int may_context_mount_inode_relabel(u32 sid,
340 			struct superblock_security_struct *sbsec,
341 			const struct cred *cred)
342 {
343 	const struct task_security_struct *tsec = cred->security;
344 	int rc;
345 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
346 			  FILESYSTEM__RELABELFROM, NULL);
347 	if (rc)
348 		return rc;
349 
350 	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
351 			  FILESYSTEM__ASSOCIATE, NULL);
352 	return rc;
353 }
354 
355 static int sb_finish_set_opts(struct super_block *sb)
356 {
357 	struct superblock_security_struct *sbsec = sb->s_security;
358 	struct dentry *root = sb->s_root;
359 	struct inode *root_inode = root->d_inode;
360 	int rc = 0;
361 
362 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
363 		/* Make sure that the xattr handler exists and that no
364 		   error other than -ENODATA is returned by getxattr on
365 		   the root directory.  -ENODATA is ok, as this may be
366 		   the first boot of the SELinux kernel before we have
367 		   assigned xattr values to the filesystem. */
368 		if (!root_inode->i_op->getxattr) {
369 			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
370 			       "xattr support\n", sb->s_id, sb->s_type->name);
371 			rc = -EOPNOTSUPP;
372 			goto out;
373 		}
374 		rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
375 		if (rc < 0 && rc != -ENODATA) {
376 			if (rc == -EOPNOTSUPP)
377 				printk(KERN_WARNING "SELinux: (dev %s, type "
378 				       "%s) has no security xattr handler\n",
379 				       sb->s_id, sb->s_type->name);
380 			else
381 				printk(KERN_WARNING "SELinux: (dev %s, type "
382 				       "%s) getxattr errno %d\n", sb->s_id,
383 				       sb->s_type->name, -rc);
384 			goto out;
385 		}
386 	}
387 
388 	sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
389 
390 	if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
391 		printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
392 		       sb->s_id, sb->s_type->name);
393 	else
394 		printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
395 		       sb->s_id, sb->s_type->name,
396 		       labeling_behaviors[sbsec->behavior-1]);
397 
398 	if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
399 	    sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
400 	    sbsec->behavior == SECURITY_FS_USE_NONE ||
401 	    sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
402 		sbsec->flags &= ~SE_SBLABELSUPP;
403 
404 	/* Special handling for sysfs. Is genfs but also has setxattr handler*/
405 	if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
406 		sbsec->flags |= SE_SBLABELSUPP;
407 
408 	/* Initialize the root inode. */
409 	rc = inode_doinit_with_dentry(root_inode, root);
410 
411 	/* Initialize any other inodes associated with the superblock, e.g.
412 	   inodes created prior to initial policy load or inodes created
413 	   during get_sb by a pseudo filesystem that directly
414 	   populates itself. */
415 	spin_lock(&sbsec->isec_lock);
416 next_inode:
417 	if (!list_empty(&sbsec->isec_head)) {
418 		struct inode_security_struct *isec =
419 				list_entry(sbsec->isec_head.next,
420 					   struct inode_security_struct, list);
421 		struct inode *inode = isec->inode;
422 		spin_unlock(&sbsec->isec_lock);
423 		inode = igrab(inode);
424 		if (inode) {
425 			if (!IS_PRIVATE(inode))
426 				inode_doinit(inode);
427 			iput(inode);
428 		}
429 		spin_lock(&sbsec->isec_lock);
430 		list_del_init(&isec->list);
431 		goto next_inode;
432 	}
433 	spin_unlock(&sbsec->isec_lock);
434 out:
435 	return rc;
436 }
437 
438 /*
439  * This function should allow an FS to ask what it's mount security
440  * options were so it can use those later for submounts, displaying
441  * mount options, or whatever.
442  */
443 static int selinux_get_mnt_opts(const struct super_block *sb,
444 				struct security_mnt_opts *opts)
445 {
446 	int rc = 0, i;
447 	struct superblock_security_struct *sbsec = sb->s_security;
448 	char *context = NULL;
449 	u32 len;
450 	char tmp;
451 
452 	security_init_mnt_opts(opts);
453 
454 	if (!(sbsec->flags & SE_SBINITIALIZED))
455 		return -EINVAL;
456 
457 	if (!ss_initialized)
458 		return -EINVAL;
459 
460 	tmp = sbsec->flags & SE_MNTMASK;
461 	/* count the number of mount options for this sb */
462 	for (i = 0; i < 8; i++) {
463 		if (tmp & 0x01)
464 			opts->num_mnt_opts++;
465 		tmp >>= 1;
466 	}
467 	/* Check if the Label support flag is set */
468 	if (sbsec->flags & SE_SBLABELSUPP)
469 		opts->num_mnt_opts++;
470 
471 	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
472 	if (!opts->mnt_opts) {
473 		rc = -ENOMEM;
474 		goto out_free;
475 	}
476 
477 	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
478 	if (!opts->mnt_opts_flags) {
479 		rc = -ENOMEM;
480 		goto out_free;
481 	}
482 
483 	i = 0;
484 	if (sbsec->flags & FSCONTEXT_MNT) {
485 		rc = security_sid_to_context(sbsec->sid, &context, &len);
486 		if (rc)
487 			goto out_free;
488 		opts->mnt_opts[i] = context;
489 		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
490 	}
491 	if (sbsec->flags & CONTEXT_MNT) {
492 		rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
493 		if (rc)
494 			goto out_free;
495 		opts->mnt_opts[i] = context;
496 		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
497 	}
498 	if (sbsec->flags & DEFCONTEXT_MNT) {
499 		rc = security_sid_to_context(sbsec->def_sid, &context, &len);
500 		if (rc)
501 			goto out_free;
502 		opts->mnt_opts[i] = context;
503 		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
504 	}
505 	if (sbsec->flags & ROOTCONTEXT_MNT) {
506 		struct inode *root = sbsec->sb->s_root->d_inode;
507 		struct inode_security_struct *isec = root->i_security;
508 
509 		rc = security_sid_to_context(isec->sid, &context, &len);
510 		if (rc)
511 			goto out_free;
512 		opts->mnt_opts[i] = context;
513 		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
514 	}
515 	if (sbsec->flags & SE_SBLABELSUPP) {
516 		opts->mnt_opts[i] = NULL;
517 		opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
518 	}
519 
520 	BUG_ON(i != opts->num_mnt_opts);
521 
522 	return 0;
523 
524 out_free:
525 	security_free_mnt_opts(opts);
526 	return rc;
527 }
528 
529 static int bad_option(struct superblock_security_struct *sbsec, char flag,
530 		      u32 old_sid, u32 new_sid)
531 {
532 	char mnt_flags = sbsec->flags & SE_MNTMASK;
533 
534 	/* check if the old mount command had the same options */
535 	if (sbsec->flags & SE_SBINITIALIZED)
536 		if (!(sbsec->flags & flag) ||
537 		    (old_sid != new_sid))
538 			return 1;
539 
540 	/* check if we were passed the same options twice,
541 	 * aka someone passed context=a,context=b
542 	 */
543 	if (!(sbsec->flags & SE_SBINITIALIZED))
544 		if (mnt_flags & flag)
545 			return 1;
546 	return 0;
547 }
548 
549 /*
550  * Allow filesystems with binary mount data to explicitly set mount point
551  * labeling information.
552  */
553 static int selinux_set_mnt_opts(struct super_block *sb,
554 				struct security_mnt_opts *opts)
555 {
556 	const struct cred *cred = current_cred();
557 	int rc = 0, i;
558 	struct superblock_security_struct *sbsec = sb->s_security;
559 	const char *name = sb->s_type->name;
560 	struct inode *inode = sbsec->sb->s_root->d_inode;
561 	struct inode_security_struct *root_isec = inode->i_security;
562 	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
563 	u32 defcontext_sid = 0;
564 	char **mount_options = opts->mnt_opts;
565 	int *flags = opts->mnt_opts_flags;
566 	int num_opts = opts->num_mnt_opts;
567 
568 	mutex_lock(&sbsec->lock);
569 
570 	if (!ss_initialized) {
571 		if (!num_opts) {
572 			/* Defer initialization until selinux_complete_init,
573 			   after the initial policy is loaded and the security
574 			   server is ready to handle calls. */
575 			goto out;
576 		}
577 		rc = -EINVAL;
578 		printk(KERN_WARNING "SELinux: Unable to set superblock options "
579 			"before the security server is initialized\n");
580 		goto out;
581 	}
582 
583 	/*
584 	 * Binary mount data FS will come through this function twice.  Once
585 	 * from an explicit call and once from the generic calls from the vfs.
586 	 * Since the generic VFS calls will not contain any security mount data
587 	 * we need to skip the double mount verification.
588 	 *
589 	 * This does open a hole in which we will not notice if the first
590 	 * mount using this sb set explict options and a second mount using
591 	 * this sb does not set any security options.  (The first options
592 	 * will be used for both mounts)
593 	 */
594 	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
595 	    && (num_opts == 0))
596 		goto out;
597 
598 	/*
599 	 * parse the mount options, check if they are valid sids.
600 	 * also check if someone is trying to mount the same sb more
601 	 * than once with different security options.
602 	 */
603 	for (i = 0; i < num_opts; i++) {
604 		u32 sid;
605 
606 		if (flags[i] == SE_SBLABELSUPP)
607 			continue;
608 		rc = security_context_to_sid(mount_options[i],
609 					     strlen(mount_options[i]), &sid);
610 		if (rc) {
611 			printk(KERN_WARNING "SELinux: security_context_to_sid"
612 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
613 			       mount_options[i], sb->s_id, name, rc);
614 			goto out;
615 		}
616 		switch (flags[i]) {
617 		case FSCONTEXT_MNT:
618 			fscontext_sid = sid;
619 
620 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
621 					fscontext_sid))
622 				goto out_double_mount;
623 
624 			sbsec->flags |= FSCONTEXT_MNT;
625 			break;
626 		case CONTEXT_MNT:
627 			context_sid = sid;
628 
629 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
630 					context_sid))
631 				goto out_double_mount;
632 
633 			sbsec->flags |= CONTEXT_MNT;
634 			break;
635 		case ROOTCONTEXT_MNT:
636 			rootcontext_sid = sid;
637 
638 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
639 					rootcontext_sid))
640 				goto out_double_mount;
641 
642 			sbsec->flags |= ROOTCONTEXT_MNT;
643 
644 			break;
645 		case DEFCONTEXT_MNT:
646 			defcontext_sid = sid;
647 
648 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
649 					defcontext_sid))
650 				goto out_double_mount;
651 
652 			sbsec->flags |= DEFCONTEXT_MNT;
653 
654 			break;
655 		default:
656 			rc = -EINVAL;
657 			goto out;
658 		}
659 	}
660 
661 	if (sbsec->flags & SE_SBINITIALIZED) {
662 		/* previously mounted with options, but not on this attempt? */
663 		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
664 			goto out_double_mount;
665 		rc = 0;
666 		goto out;
667 	}
668 
669 	if (strcmp(sb->s_type->name, "proc") == 0)
670 		sbsec->flags |= SE_SBPROC;
671 
672 	/* Determine the labeling behavior to use for this filesystem type. */
673 	rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
674 	if (rc) {
675 		printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
676 		       __func__, sb->s_type->name, rc);
677 		goto out;
678 	}
679 
680 	/* sets the context of the superblock for the fs being mounted. */
681 	if (fscontext_sid) {
682 		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
683 		if (rc)
684 			goto out;
685 
686 		sbsec->sid = fscontext_sid;
687 	}
688 
689 	/*
690 	 * Switch to using mount point labeling behavior.
691 	 * sets the label used on all file below the mountpoint, and will set
692 	 * the superblock context if not already set.
693 	 */
694 	if (context_sid) {
695 		if (!fscontext_sid) {
696 			rc = may_context_mount_sb_relabel(context_sid, sbsec,
697 							  cred);
698 			if (rc)
699 				goto out;
700 			sbsec->sid = context_sid;
701 		} else {
702 			rc = may_context_mount_inode_relabel(context_sid, sbsec,
703 							     cred);
704 			if (rc)
705 				goto out;
706 		}
707 		if (!rootcontext_sid)
708 			rootcontext_sid = context_sid;
709 
710 		sbsec->mntpoint_sid = context_sid;
711 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
712 	}
713 
714 	if (rootcontext_sid) {
715 		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
716 						     cred);
717 		if (rc)
718 			goto out;
719 
720 		root_isec->sid = rootcontext_sid;
721 		root_isec->initialized = 1;
722 	}
723 
724 	if (defcontext_sid) {
725 		if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
726 			rc = -EINVAL;
727 			printk(KERN_WARNING "SELinux: defcontext option is "
728 			       "invalid for this filesystem type\n");
729 			goto out;
730 		}
731 
732 		if (defcontext_sid != sbsec->def_sid) {
733 			rc = may_context_mount_inode_relabel(defcontext_sid,
734 							     sbsec, cred);
735 			if (rc)
736 				goto out;
737 		}
738 
739 		sbsec->def_sid = defcontext_sid;
740 	}
741 
742 	rc = sb_finish_set_opts(sb);
743 out:
744 	mutex_unlock(&sbsec->lock);
745 	return rc;
746 out_double_mount:
747 	rc = -EINVAL;
748 	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
749 	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
750 	goto out;
751 }
752 
753 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
754 					struct super_block *newsb)
755 {
756 	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
757 	struct superblock_security_struct *newsbsec = newsb->s_security;
758 
759 	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
760 	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
761 	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
762 
763 	/*
764 	 * if the parent was able to be mounted it clearly had no special lsm
765 	 * mount options.  thus we can safely deal with this superblock later
766 	 */
767 	if (!ss_initialized)
768 		return;
769 
770 	/* how can we clone if the old one wasn't set up?? */
771 	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
772 
773 	/* if fs is reusing a sb, just let its options stand... */
774 	if (newsbsec->flags & SE_SBINITIALIZED)
775 		return;
776 
777 	mutex_lock(&newsbsec->lock);
778 
779 	newsbsec->flags = oldsbsec->flags;
780 
781 	newsbsec->sid = oldsbsec->sid;
782 	newsbsec->def_sid = oldsbsec->def_sid;
783 	newsbsec->behavior = oldsbsec->behavior;
784 
785 	if (set_context) {
786 		u32 sid = oldsbsec->mntpoint_sid;
787 
788 		if (!set_fscontext)
789 			newsbsec->sid = sid;
790 		if (!set_rootcontext) {
791 			struct inode *newinode = newsb->s_root->d_inode;
792 			struct inode_security_struct *newisec = newinode->i_security;
793 			newisec->sid = sid;
794 		}
795 		newsbsec->mntpoint_sid = sid;
796 	}
797 	if (set_rootcontext) {
798 		const struct inode *oldinode = oldsb->s_root->d_inode;
799 		const struct inode_security_struct *oldisec = oldinode->i_security;
800 		struct inode *newinode = newsb->s_root->d_inode;
801 		struct inode_security_struct *newisec = newinode->i_security;
802 
803 		newisec->sid = oldisec->sid;
804 	}
805 
806 	sb_finish_set_opts(newsb);
807 	mutex_unlock(&newsbsec->lock);
808 }
809 
810 static int selinux_parse_opts_str(char *options,
811 				  struct security_mnt_opts *opts)
812 {
813 	char *p;
814 	char *context = NULL, *defcontext = NULL;
815 	char *fscontext = NULL, *rootcontext = NULL;
816 	int rc, num_mnt_opts = 0;
817 
818 	opts->num_mnt_opts = 0;
819 
820 	/* Standard string-based options. */
821 	while ((p = strsep(&options, "|")) != NULL) {
822 		int token;
823 		substring_t args[MAX_OPT_ARGS];
824 
825 		if (!*p)
826 			continue;
827 
828 		token = match_token(p, tokens, args);
829 
830 		switch (token) {
831 		case Opt_context:
832 			if (context || defcontext) {
833 				rc = -EINVAL;
834 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
835 				goto out_err;
836 			}
837 			context = match_strdup(&args[0]);
838 			if (!context) {
839 				rc = -ENOMEM;
840 				goto out_err;
841 			}
842 			break;
843 
844 		case Opt_fscontext:
845 			if (fscontext) {
846 				rc = -EINVAL;
847 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
848 				goto out_err;
849 			}
850 			fscontext = match_strdup(&args[0]);
851 			if (!fscontext) {
852 				rc = -ENOMEM;
853 				goto out_err;
854 			}
855 			break;
856 
857 		case Opt_rootcontext:
858 			if (rootcontext) {
859 				rc = -EINVAL;
860 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
861 				goto out_err;
862 			}
863 			rootcontext = match_strdup(&args[0]);
864 			if (!rootcontext) {
865 				rc = -ENOMEM;
866 				goto out_err;
867 			}
868 			break;
869 
870 		case Opt_defcontext:
871 			if (context || defcontext) {
872 				rc = -EINVAL;
873 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
874 				goto out_err;
875 			}
876 			defcontext = match_strdup(&args[0]);
877 			if (!defcontext) {
878 				rc = -ENOMEM;
879 				goto out_err;
880 			}
881 			break;
882 		case Opt_labelsupport:
883 			break;
884 		default:
885 			rc = -EINVAL;
886 			printk(KERN_WARNING "SELinux:  unknown mount option\n");
887 			goto out_err;
888 
889 		}
890 	}
891 
892 	rc = -ENOMEM;
893 	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
894 	if (!opts->mnt_opts)
895 		goto out_err;
896 
897 	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
898 	if (!opts->mnt_opts_flags) {
899 		kfree(opts->mnt_opts);
900 		goto out_err;
901 	}
902 
903 	if (fscontext) {
904 		opts->mnt_opts[num_mnt_opts] = fscontext;
905 		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
906 	}
907 	if (context) {
908 		opts->mnt_opts[num_mnt_opts] = context;
909 		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
910 	}
911 	if (rootcontext) {
912 		opts->mnt_opts[num_mnt_opts] = rootcontext;
913 		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
914 	}
915 	if (defcontext) {
916 		opts->mnt_opts[num_mnt_opts] = defcontext;
917 		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
918 	}
919 
920 	opts->num_mnt_opts = num_mnt_opts;
921 	return 0;
922 
923 out_err:
924 	kfree(context);
925 	kfree(defcontext);
926 	kfree(fscontext);
927 	kfree(rootcontext);
928 	return rc;
929 }
930 /*
931  * string mount options parsing and call set the sbsec
932  */
933 static int superblock_doinit(struct super_block *sb, void *data)
934 {
935 	int rc = 0;
936 	char *options = data;
937 	struct security_mnt_opts opts;
938 
939 	security_init_mnt_opts(&opts);
940 
941 	if (!data)
942 		goto out;
943 
944 	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
945 
946 	rc = selinux_parse_opts_str(options, &opts);
947 	if (rc)
948 		goto out_err;
949 
950 out:
951 	rc = selinux_set_mnt_opts(sb, &opts);
952 
953 out_err:
954 	security_free_mnt_opts(&opts);
955 	return rc;
956 }
957 
958 static void selinux_write_opts(struct seq_file *m,
959 			       struct security_mnt_opts *opts)
960 {
961 	int i;
962 	char *prefix;
963 
964 	for (i = 0; i < opts->num_mnt_opts; i++) {
965 		char *has_comma;
966 
967 		if (opts->mnt_opts[i])
968 			has_comma = strchr(opts->mnt_opts[i], ',');
969 		else
970 			has_comma = NULL;
971 
972 		switch (opts->mnt_opts_flags[i]) {
973 		case CONTEXT_MNT:
974 			prefix = CONTEXT_STR;
975 			break;
976 		case FSCONTEXT_MNT:
977 			prefix = FSCONTEXT_STR;
978 			break;
979 		case ROOTCONTEXT_MNT:
980 			prefix = ROOTCONTEXT_STR;
981 			break;
982 		case DEFCONTEXT_MNT:
983 			prefix = DEFCONTEXT_STR;
984 			break;
985 		case SE_SBLABELSUPP:
986 			seq_putc(m, ',');
987 			seq_puts(m, LABELSUPP_STR);
988 			continue;
989 		default:
990 			BUG();
991 			return;
992 		};
993 		/* we need a comma before each option */
994 		seq_putc(m, ',');
995 		seq_puts(m, prefix);
996 		if (has_comma)
997 			seq_putc(m, '\"');
998 		seq_puts(m, opts->mnt_opts[i]);
999 		if (has_comma)
1000 			seq_putc(m, '\"');
1001 	}
1002 }
1003 
1004 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1005 {
1006 	struct security_mnt_opts opts;
1007 	int rc;
1008 
1009 	rc = selinux_get_mnt_opts(sb, &opts);
1010 	if (rc) {
1011 		/* before policy load we may get EINVAL, don't show anything */
1012 		if (rc == -EINVAL)
1013 			rc = 0;
1014 		return rc;
1015 	}
1016 
1017 	selinux_write_opts(m, &opts);
1018 
1019 	security_free_mnt_opts(&opts);
1020 
1021 	return rc;
1022 }
1023 
1024 static inline u16 inode_mode_to_security_class(umode_t mode)
1025 {
1026 	switch (mode & S_IFMT) {
1027 	case S_IFSOCK:
1028 		return SECCLASS_SOCK_FILE;
1029 	case S_IFLNK:
1030 		return SECCLASS_LNK_FILE;
1031 	case S_IFREG:
1032 		return SECCLASS_FILE;
1033 	case S_IFBLK:
1034 		return SECCLASS_BLK_FILE;
1035 	case S_IFDIR:
1036 		return SECCLASS_DIR;
1037 	case S_IFCHR:
1038 		return SECCLASS_CHR_FILE;
1039 	case S_IFIFO:
1040 		return SECCLASS_FIFO_FILE;
1041 
1042 	}
1043 
1044 	return SECCLASS_FILE;
1045 }
1046 
1047 static inline int default_protocol_stream(int protocol)
1048 {
1049 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1050 }
1051 
1052 static inline int default_protocol_dgram(int protocol)
1053 {
1054 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1055 }
1056 
1057 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1058 {
1059 	switch (family) {
1060 	case PF_UNIX:
1061 		switch (type) {
1062 		case SOCK_STREAM:
1063 		case SOCK_SEQPACKET:
1064 			return SECCLASS_UNIX_STREAM_SOCKET;
1065 		case SOCK_DGRAM:
1066 			return SECCLASS_UNIX_DGRAM_SOCKET;
1067 		}
1068 		break;
1069 	case PF_INET:
1070 	case PF_INET6:
1071 		switch (type) {
1072 		case SOCK_STREAM:
1073 			if (default_protocol_stream(protocol))
1074 				return SECCLASS_TCP_SOCKET;
1075 			else
1076 				return SECCLASS_RAWIP_SOCKET;
1077 		case SOCK_DGRAM:
1078 			if (default_protocol_dgram(protocol))
1079 				return SECCLASS_UDP_SOCKET;
1080 			else
1081 				return SECCLASS_RAWIP_SOCKET;
1082 		case SOCK_DCCP:
1083 			return SECCLASS_DCCP_SOCKET;
1084 		default:
1085 			return SECCLASS_RAWIP_SOCKET;
1086 		}
1087 		break;
1088 	case PF_NETLINK:
1089 		switch (protocol) {
1090 		case NETLINK_ROUTE:
1091 			return SECCLASS_NETLINK_ROUTE_SOCKET;
1092 		case NETLINK_FIREWALL:
1093 			return SECCLASS_NETLINK_FIREWALL_SOCKET;
1094 		case NETLINK_SOCK_DIAG:
1095 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1096 		case NETLINK_NFLOG:
1097 			return SECCLASS_NETLINK_NFLOG_SOCKET;
1098 		case NETLINK_XFRM:
1099 			return SECCLASS_NETLINK_XFRM_SOCKET;
1100 		case NETLINK_SELINUX:
1101 			return SECCLASS_NETLINK_SELINUX_SOCKET;
1102 		case NETLINK_AUDIT:
1103 			return SECCLASS_NETLINK_AUDIT_SOCKET;
1104 		case NETLINK_IP6_FW:
1105 			return SECCLASS_NETLINK_IP6FW_SOCKET;
1106 		case NETLINK_DNRTMSG:
1107 			return SECCLASS_NETLINK_DNRT_SOCKET;
1108 		case NETLINK_KOBJECT_UEVENT:
1109 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1110 		default:
1111 			return SECCLASS_NETLINK_SOCKET;
1112 		}
1113 	case PF_PACKET:
1114 		return SECCLASS_PACKET_SOCKET;
1115 	case PF_KEY:
1116 		return SECCLASS_KEY_SOCKET;
1117 	case PF_APPLETALK:
1118 		return SECCLASS_APPLETALK_SOCKET;
1119 	}
1120 
1121 	return SECCLASS_SOCKET;
1122 }
1123 
1124 #ifdef CONFIG_PROC_FS
1125 static int selinux_proc_get_sid(struct dentry *dentry,
1126 				u16 tclass,
1127 				u32 *sid)
1128 {
1129 	int rc;
1130 	char *buffer, *path;
1131 
1132 	buffer = (char *)__get_free_page(GFP_KERNEL);
1133 	if (!buffer)
1134 		return -ENOMEM;
1135 
1136 	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1137 	if (IS_ERR(path))
1138 		rc = PTR_ERR(path);
1139 	else {
1140 		/* each process gets a /proc/PID/ entry. Strip off the
1141 		 * PID part to get a valid selinux labeling.
1142 		 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1143 		while (path[1] >= '0' && path[1] <= '9') {
1144 			path[1] = '/';
1145 			path++;
1146 		}
1147 		rc = security_genfs_sid("proc", path, tclass, sid);
1148 	}
1149 	free_page((unsigned long)buffer);
1150 	return rc;
1151 }
1152 #else
1153 static int selinux_proc_get_sid(struct dentry *dentry,
1154 				u16 tclass,
1155 				u32 *sid)
1156 {
1157 	return -EINVAL;
1158 }
1159 #endif
1160 
1161 /* The inode's security attributes must be initialized before first use. */
1162 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1163 {
1164 	struct superblock_security_struct *sbsec = NULL;
1165 	struct inode_security_struct *isec = inode->i_security;
1166 	u32 sid;
1167 	struct dentry *dentry;
1168 #define INITCONTEXTLEN 255
1169 	char *context = NULL;
1170 	unsigned len = 0;
1171 	int rc = 0;
1172 
1173 	if (isec->initialized)
1174 		goto out;
1175 
1176 	mutex_lock(&isec->lock);
1177 	if (isec->initialized)
1178 		goto out_unlock;
1179 
1180 	sbsec = inode->i_sb->s_security;
1181 	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1182 		/* Defer initialization until selinux_complete_init,
1183 		   after the initial policy is loaded and the security
1184 		   server is ready to handle calls. */
1185 		spin_lock(&sbsec->isec_lock);
1186 		if (list_empty(&isec->list))
1187 			list_add(&isec->list, &sbsec->isec_head);
1188 		spin_unlock(&sbsec->isec_lock);
1189 		goto out_unlock;
1190 	}
1191 
1192 	switch (sbsec->behavior) {
1193 	case SECURITY_FS_USE_XATTR:
1194 		if (!inode->i_op->getxattr) {
1195 			isec->sid = sbsec->def_sid;
1196 			break;
1197 		}
1198 
1199 		/* Need a dentry, since the xattr API requires one.
1200 		   Life would be simpler if we could just pass the inode. */
1201 		if (opt_dentry) {
1202 			/* Called from d_instantiate or d_splice_alias. */
1203 			dentry = dget(opt_dentry);
1204 		} else {
1205 			/* Called from selinux_complete_init, try to find a dentry. */
1206 			dentry = d_find_alias(inode);
1207 		}
1208 		if (!dentry) {
1209 			/*
1210 			 * this is can be hit on boot when a file is accessed
1211 			 * before the policy is loaded.  When we load policy we
1212 			 * may find inodes that have no dentry on the
1213 			 * sbsec->isec_head list.  No reason to complain as these
1214 			 * will get fixed up the next time we go through
1215 			 * inode_doinit with a dentry, before these inodes could
1216 			 * be used again by userspace.
1217 			 */
1218 			goto out_unlock;
1219 		}
1220 
1221 		len = INITCONTEXTLEN;
1222 		context = kmalloc(len+1, GFP_NOFS);
1223 		if (!context) {
1224 			rc = -ENOMEM;
1225 			dput(dentry);
1226 			goto out_unlock;
1227 		}
1228 		context[len] = '\0';
1229 		rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1230 					   context, len);
1231 		if (rc == -ERANGE) {
1232 			kfree(context);
1233 
1234 			/* Need a larger buffer.  Query for the right size. */
1235 			rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1236 						   NULL, 0);
1237 			if (rc < 0) {
1238 				dput(dentry);
1239 				goto out_unlock;
1240 			}
1241 			len = rc;
1242 			context = kmalloc(len+1, GFP_NOFS);
1243 			if (!context) {
1244 				rc = -ENOMEM;
1245 				dput(dentry);
1246 				goto out_unlock;
1247 			}
1248 			context[len] = '\0';
1249 			rc = inode->i_op->getxattr(dentry,
1250 						   XATTR_NAME_SELINUX,
1251 						   context, len);
1252 		}
1253 		dput(dentry);
1254 		if (rc < 0) {
1255 			if (rc != -ENODATA) {
1256 				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1257 				       "%d for dev=%s ino=%ld\n", __func__,
1258 				       -rc, inode->i_sb->s_id, inode->i_ino);
1259 				kfree(context);
1260 				goto out_unlock;
1261 			}
1262 			/* Map ENODATA to the default file SID */
1263 			sid = sbsec->def_sid;
1264 			rc = 0;
1265 		} else {
1266 			rc = security_context_to_sid_default(context, rc, &sid,
1267 							     sbsec->def_sid,
1268 							     GFP_NOFS);
1269 			if (rc) {
1270 				char *dev = inode->i_sb->s_id;
1271 				unsigned long ino = inode->i_ino;
1272 
1273 				if (rc == -EINVAL) {
1274 					if (printk_ratelimit())
1275 						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1276 							"context=%s.  This indicates you may need to relabel the inode or the "
1277 							"filesystem in question.\n", ino, dev, context);
1278 				} else {
1279 					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1280 					       "returned %d for dev=%s ino=%ld\n",
1281 					       __func__, context, -rc, dev, ino);
1282 				}
1283 				kfree(context);
1284 				/* Leave with the unlabeled SID */
1285 				rc = 0;
1286 				break;
1287 			}
1288 		}
1289 		kfree(context);
1290 		isec->sid = sid;
1291 		break;
1292 	case SECURITY_FS_USE_TASK:
1293 		isec->sid = isec->task_sid;
1294 		break;
1295 	case SECURITY_FS_USE_TRANS:
1296 		/* Default to the fs SID. */
1297 		isec->sid = sbsec->sid;
1298 
1299 		/* Try to obtain a transition SID. */
1300 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1301 		rc = security_transition_sid(isec->task_sid, sbsec->sid,
1302 					     isec->sclass, NULL, &sid);
1303 		if (rc)
1304 			goto out_unlock;
1305 		isec->sid = sid;
1306 		break;
1307 	case SECURITY_FS_USE_MNTPOINT:
1308 		isec->sid = sbsec->mntpoint_sid;
1309 		break;
1310 	default:
1311 		/* Default to the fs superblock SID. */
1312 		isec->sid = sbsec->sid;
1313 
1314 		if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1315 			if (opt_dentry) {
1316 				isec->sclass = inode_mode_to_security_class(inode->i_mode);
1317 				rc = selinux_proc_get_sid(opt_dentry,
1318 							  isec->sclass,
1319 							  &sid);
1320 				if (rc)
1321 					goto out_unlock;
1322 				isec->sid = sid;
1323 			}
1324 		}
1325 		break;
1326 	}
1327 
1328 	isec->initialized = 1;
1329 
1330 out_unlock:
1331 	mutex_unlock(&isec->lock);
1332 out:
1333 	if (isec->sclass == SECCLASS_FILE)
1334 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1335 	return rc;
1336 }
1337 
1338 /* Convert a Linux signal to an access vector. */
1339 static inline u32 signal_to_av(int sig)
1340 {
1341 	u32 perm = 0;
1342 
1343 	switch (sig) {
1344 	case SIGCHLD:
1345 		/* Commonly granted from child to parent. */
1346 		perm = PROCESS__SIGCHLD;
1347 		break;
1348 	case SIGKILL:
1349 		/* Cannot be caught or ignored */
1350 		perm = PROCESS__SIGKILL;
1351 		break;
1352 	case SIGSTOP:
1353 		/* Cannot be caught or ignored */
1354 		perm = PROCESS__SIGSTOP;
1355 		break;
1356 	default:
1357 		/* All other signals. */
1358 		perm = PROCESS__SIGNAL;
1359 		break;
1360 	}
1361 
1362 	return perm;
1363 }
1364 
1365 /*
1366  * Check permission between a pair of credentials
1367  * fork check, ptrace check, etc.
1368  */
1369 static int cred_has_perm(const struct cred *actor,
1370 			 const struct cred *target,
1371 			 u32 perms)
1372 {
1373 	u32 asid = cred_sid(actor), tsid = cred_sid(target);
1374 
1375 	return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1376 }
1377 
1378 /*
1379  * Check permission between a pair of tasks, e.g. signal checks,
1380  * fork check, ptrace check, etc.
1381  * tsk1 is the actor and tsk2 is the target
1382  * - this uses the default subjective creds of tsk1
1383  */
1384 static int task_has_perm(const struct task_struct *tsk1,
1385 			 const struct task_struct *tsk2,
1386 			 u32 perms)
1387 {
1388 	const struct task_security_struct *__tsec1, *__tsec2;
1389 	u32 sid1, sid2;
1390 
1391 	rcu_read_lock();
1392 	__tsec1 = __task_cred(tsk1)->security;	sid1 = __tsec1->sid;
1393 	__tsec2 = __task_cred(tsk2)->security;	sid2 = __tsec2->sid;
1394 	rcu_read_unlock();
1395 	return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1396 }
1397 
1398 /*
1399  * Check permission between current and another task, e.g. signal checks,
1400  * fork check, ptrace check, etc.
1401  * current is the actor and tsk2 is the target
1402  * - this uses current's subjective creds
1403  */
1404 static int current_has_perm(const struct task_struct *tsk,
1405 			    u32 perms)
1406 {
1407 	u32 sid, tsid;
1408 
1409 	sid = current_sid();
1410 	tsid = task_sid(tsk);
1411 	return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1412 }
1413 
1414 #if CAP_LAST_CAP > 63
1415 #error Fix SELinux to handle capabilities > 63.
1416 #endif
1417 
1418 /* Check whether a task is allowed to use a capability. */
1419 static int cred_has_capability(const struct cred *cred,
1420 			       int cap, int audit)
1421 {
1422 	struct common_audit_data ad;
1423 	struct selinux_audit_data sad = {0,};
1424 	struct av_decision avd;
1425 	u16 sclass;
1426 	u32 sid = cred_sid(cred);
1427 	u32 av = CAP_TO_MASK(cap);
1428 	int rc;
1429 
1430 	COMMON_AUDIT_DATA_INIT(&ad, CAP);
1431 	ad.selinux_audit_data = &sad;
1432 	ad.tsk = current;
1433 	ad.u.cap = cap;
1434 
1435 	switch (CAP_TO_INDEX(cap)) {
1436 	case 0:
1437 		sclass = SECCLASS_CAPABILITY;
1438 		break;
1439 	case 1:
1440 		sclass = SECCLASS_CAPABILITY2;
1441 		break;
1442 	default:
1443 		printk(KERN_ERR
1444 		       "SELinux:  out of range capability %d\n", cap);
1445 		BUG();
1446 		return -EINVAL;
1447 	}
1448 
1449 	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1450 	if (audit == SECURITY_CAP_AUDIT) {
1451 		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1452 		if (rc2)
1453 			return rc2;
1454 	}
1455 	return rc;
1456 }
1457 
1458 /* Check whether a task is allowed to use a system operation. */
1459 static int task_has_system(struct task_struct *tsk,
1460 			   u32 perms)
1461 {
1462 	u32 sid = task_sid(tsk);
1463 
1464 	return avc_has_perm(sid, SECINITSID_KERNEL,
1465 			    SECCLASS_SYSTEM, perms, NULL);
1466 }
1467 
1468 /* Check whether a task has a particular permission to an inode.
1469    The 'adp' parameter is optional and allows other audit
1470    data to be passed (e.g. the dentry). */
1471 static int inode_has_perm(const struct cred *cred,
1472 			  struct inode *inode,
1473 			  u32 perms,
1474 			  struct common_audit_data *adp,
1475 			  unsigned flags)
1476 {
1477 	struct inode_security_struct *isec;
1478 	u32 sid;
1479 
1480 	validate_creds(cred);
1481 
1482 	if (unlikely(IS_PRIVATE(inode)))
1483 		return 0;
1484 
1485 	sid = cred_sid(cred);
1486 	isec = inode->i_security;
1487 
1488 	return avc_has_perm_flags(sid, isec->sid, isec->sclass, perms, adp, flags);
1489 }
1490 
1491 static int inode_has_perm_noadp(const struct cred *cred,
1492 				struct inode *inode,
1493 				u32 perms,
1494 				unsigned flags)
1495 {
1496 	struct common_audit_data ad;
1497 	struct selinux_audit_data sad = {0,};
1498 
1499 	COMMON_AUDIT_DATA_INIT(&ad, INODE);
1500 	ad.u.inode = inode;
1501 	ad.selinux_audit_data = &sad;
1502 	return inode_has_perm(cred, inode, perms, &ad, flags);
1503 }
1504 
1505 /* Same as inode_has_perm, but pass explicit audit data containing
1506    the dentry to help the auditing code to more easily generate the
1507    pathname if needed. */
1508 static inline int dentry_has_perm(const struct cred *cred,
1509 				  struct dentry *dentry,
1510 				  u32 av)
1511 {
1512 	struct inode *inode = dentry->d_inode;
1513 	struct common_audit_data ad;
1514 	struct selinux_audit_data sad = {0,};
1515 
1516 	COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1517 	ad.u.dentry = dentry;
1518 	ad.selinux_audit_data = &sad;
1519 	return inode_has_perm(cred, inode, av, &ad, 0);
1520 }
1521 
1522 /* Same as inode_has_perm, but pass explicit audit data containing
1523    the path to help the auditing code to more easily generate the
1524    pathname if needed. */
1525 static inline int path_has_perm(const struct cred *cred,
1526 				struct path *path,
1527 				u32 av)
1528 {
1529 	struct inode *inode = path->dentry->d_inode;
1530 	struct common_audit_data ad;
1531 	struct selinux_audit_data sad = {0,};
1532 
1533 	COMMON_AUDIT_DATA_INIT(&ad, PATH);
1534 	ad.u.path = *path;
1535 	ad.selinux_audit_data = &sad;
1536 	return inode_has_perm(cred, inode, av, &ad, 0);
1537 }
1538 
1539 /* Check whether a task can use an open file descriptor to
1540    access an inode in a given way.  Check access to the
1541    descriptor itself, and then use dentry_has_perm to
1542    check a particular permission to the file.
1543    Access to the descriptor is implicitly granted if it
1544    has the same SID as the process.  If av is zero, then
1545    access to the file is not checked, e.g. for cases
1546    where only the descriptor is affected like seek. */
1547 static int file_has_perm(const struct cred *cred,
1548 			 struct file *file,
1549 			 u32 av)
1550 {
1551 	struct file_security_struct *fsec = file->f_security;
1552 	struct inode *inode = file->f_path.dentry->d_inode;
1553 	struct common_audit_data ad;
1554 	struct selinux_audit_data sad = {0,};
1555 	u32 sid = cred_sid(cred);
1556 	int rc;
1557 
1558 	COMMON_AUDIT_DATA_INIT(&ad, PATH);
1559 	ad.u.path = file->f_path;
1560 	ad.selinux_audit_data = &sad;
1561 
1562 	if (sid != fsec->sid) {
1563 		rc = avc_has_perm(sid, fsec->sid,
1564 				  SECCLASS_FD,
1565 				  FD__USE,
1566 				  &ad);
1567 		if (rc)
1568 			goto out;
1569 	}
1570 
1571 	/* av is zero if only checking access to the descriptor. */
1572 	rc = 0;
1573 	if (av)
1574 		rc = inode_has_perm(cred, inode, av, &ad, 0);
1575 
1576 out:
1577 	return rc;
1578 }
1579 
1580 /* Check whether a task can create a file. */
1581 static int may_create(struct inode *dir,
1582 		      struct dentry *dentry,
1583 		      u16 tclass)
1584 {
1585 	const struct task_security_struct *tsec = current_security();
1586 	struct inode_security_struct *dsec;
1587 	struct superblock_security_struct *sbsec;
1588 	u32 sid, newsid;
1589 	struct common_audit_data ad;
1590 	struct selinux_audit_data sad = {0,};
1591 	int rc;
1592 
1593 	dsec = dir->i_security;
1594 	sbsec = dir->i_sb->s_security;
1595 
1596 	sid = tsec->sid;
1597 	newsid = tsec->create_sid;
1598 
1599 	COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1600 	ad.u.dentry = dentry;
1601 	ad.selinux_audit_data = &sad;
1602 
1603 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1604 			  DIR__ADD_NAME | DIR__SEARCH,
1605 			  &ad);
1606 	if (rc)
1607 		return rc;
1608 
1609 	if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1610 		rc = security_transition_sid(sid, dsec->sid, tclass,
1611 					     &dentry->d_name, &newsid);
1612 		if (rc)
1613 			return rc;
1614 	}
1615 
1616 	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1617 	if (rc)
1618 		return rc;
1619 
1620 	return avc_has_perm(newsid, sbsec->sid,
1621 			    SECCLASS_FILESYSTEM,
1622 			    FILESYSTEM__ASSOCIATE, &ad);
1623 }
1624 
1625 /* Check whether a task can create a key. */
1626 static int may_create_key(u32 ksid,
1627 			  struct task_struct *ctx)
1628 {
1629 	u32 sid = task_sid(ctx);
1630 
1631 	return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1632 }
1633 
1634 #define MAY_LINK	0
1635 #define MAY_UNLINK	1
1636 #define MAY_RMDIR	2
1637 
1638 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1639 static int may_link(struct inode *dir,
1640 		    struct dentry *dentry,
1641 		    int kind)
1642 
1643 {
1644 	struct inode_security_struct *dsec, *isec;
1645 	struct common_audit_data ad;
1646 	struct selinux_audit_data sad = {0,};
1647 	u32 sid = current_sid();
1648 	u32 av;
1649 	int rc;
1650 
1651 	dsec = dir->i_security;
1652 	isec = dentry->d_inode->i_security;
1653 
1654 	COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1655 	ad.u.dentry = dentry;
1656 	ad.selinux_audit_data = &sad;
1657 
1658 	av = DIR__SEARCH;
1659 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1660 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1661 	if (rc)
1662 		return rc;
1663 
1664 	switch (kind) {
1665 	case MAY_LINK:
1666 		av = FILE__LINK;
1667 		break;
1668 	case MAY_UNLINK:
1669 		av = FILE__UNLINK;
1670 		break;
1671 	case MAY_RMDIR:
1672 		av = DIR__RMDIR;
1673 		break;
1674 	default:
1675 		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1676 			__func__, kind);
1677 		return 0;
1678 	}
1679 
1680 	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1681 	return rc;
1682 }
1683 
1684 static inline int may_rename(struct inode *old_dir,
1685 			     struct dentry *old_dentry,
1686 			     struct inode *new_dir,
1687 			     struct dentry *new_dentry)
1688 {
1689 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1690 	struct common_audit_data ad;
1691 	struct selinux_audit_data sad = {0,};
1692 	u32 sid = current_sid();
1693 	u32 av;
1694 	int old_is_dir, new_is_dir;
1695 	int rc;
1696 
1697 	old_dsec = old_dir->i_security;
1698 	old_isec = old_dentry->d_inode->i_security;
1699 	old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1700 	new_dsec = new_dir->i_security;
1701 
1702 	COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1703 	ad.selinux_audit_data = &sad;
1704 
1705 	ad.u.dentry = old_dentry;
1706 	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1707 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1708 	if (rc)
1709 		return rc;
1710 	rc = avc_has_perm(sid, old_isec->sid,
1711 			  old_isec->sclass, FILE__RENAME, &ad);
1712 	if (rc)
1713 		return rc;
1714 	if (old_is_dir && new_dir != old_dir) {
1715 		rc = avc_has_perm(sid, old_isec->sid,
1716 				  old_isec->sclass, DIR__REPARENT, &ad);
1717 		if (rc)
1718 			return rc;
1719 	}
1720 
1721 	ad.u.dentry = new_dentry;
1722 	av = DIR__ADD_NAME | DIR__SEARCH;
1723 	if (new_dentry->d_inode)
1724 		av |= DIR__REMOVE_NAME;
1725 	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1726 	if (rc)
1727 		return rc;
1728 	if (new_dentry->d_inode) {
1729 		new_isec = new_dentry->d_inode->i_security;
1730 		new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1731 		rc = avc_has_perm(sid, new_isec->sid,
1732 				  new_isec->sclass,
1733 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1734 		if (rc)
1735 			return rc;
1736 	}
1737 
1738 	return 0;
1739 }
1740 
1741 /* Check whether a task can perform a filesystem operation. */
1742 static int superblock_has_perm(const struct cred *cred,
1743 			       struct super_block *sb,
1744 			       u32 perms,
1745 			       struct common_audit_data *ad)
1746 {
1747 	struct superblock_security_struct *sbsec;
1748 	u32 sid = cred_sid(cred);
1749 
1750 	sbsec = sb->s_security;
1751 	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1752 }
1753 
1754 /* Convert a Linux mode and permission mask to an access vector. */
1755 static inline u32 file_mask_to_av(int mode, int mask)
1756 {
1757 	u32 av = 0;
1758 
1759 	if (!S_ISDIR(mode)) {
1760 		if (mask & MAY_EXEC)
1761 			av |= FILE__EXECUTE;
1762 		if (mask & MAY_READ)
1763 			av |= FILE__READ;
1764 
1765 		if (mask & MAY_APPEND)
1766 			av |= FILE__APPEND;
1767 		else if (mask & MAY_WRITE)
1768 			av |= FILE__WRITE;
1769 
1770 	} else {
1771 		if (mask & MAY_EXEC)
1772 			av |= DIR__SEARCH;
1773 		if (mask & MAY_WRITE)
1774 			av |= DIR__WRITE;
1775 		if (mask & MAY_READ)
1776 			av |= DIR__READ;
1777 	}
1778 
1779 	return av;
1780 }
1781 
1782 /* Convert a Linux file to an access vector. */
1783 static inline u32 file_to_av(struct file *file)
1784 {
1785 	u32 av = 0;
1786 
1787 	if (file->f_mode & FMODE_READ)
1788 		av |= FILE__READ;
1789 	if (file->f_mode & FMODE_WRITE) {
1790 		if (file->f_flags & O_APPEND)
1791 			av |= FILE__APPEND;
1792 		else
1793 			av |= FILE__WRITE;
1794 	}
1795 	if (!av) {
1796 		/*
1797 		 * Special file opened with flags 3 for ioctl-only use.
1798 		 */
1799 		av = FILE__IOCTL;
1800 	}
1801 
1802 	return av;
1803 }
1804 
1805 /*
1806  * Convert a file to an access vector and include the correct open
1807  * open permission.
1808  */
1809 static inline u32 open_file_to_av(struct file *file)
1810 {
1811 	u32 av = file_to_av(file);
1812 
1813 	if (selinux_policycap_openperm)
1814 		av |= FILE__OPEN;
1815 
1816 	return av;
1817 }
1818 
1819 /* Hook functions begin here. */
1820 
1821 static int selinux_ptrace_access_check(struct task_struct *child,
1822 				     unsigned int mode)
1823 {
1824 	int rc;
1825 
1826 	rc = cap_ptrace_access_check(child, mode);
1827 	if (rc)
1828 		return rc;
1829 
1830 	if (mode & PTRACE_MODE_READ) {
1831 		u32 sid = current_sid();
1832 		u32 csid = task_sid(child);
1833 		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1834 	}
1835 
1836 	return current_has_perm(child, PROCESS__PTRACE);
1837 }
1838 
1839 static int selinux_ptrace_traceme(struct task_struct *parent)
1840 {
1841 	int rc;
1842 
1843 	rc = cap_ptrace_traceme(parent);
1844 	if (rc)
1845 		return rc;
1846 
1847 	return task_has_perm(parent, current, PROCESS__PTRACE);
1848 }
1849 
1850 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1851 			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
1852 {
1853 	int error;
1854 
1855 	error = current_has_perm(target, PROCESS__GETCAP);
1856 	if (error)
1857 		return error;
1858 
1859 	return cap_capget(target, effective, inheritable, permitted);
1860 }
1861 
1862 static int selinux_capset(struct cred *new, const struct cred *old,
1863 			  const kernel_cap_t *effective,
1864 			  const kernel_cap_t *inheritable,
1865 			  const kernel_cap_t *permitted)
1866 {
1867 	int error;
1868 
1869 	error = cap_capset(new, old,
1870 				      effective, inheritable, permitted);
1871 	if (error)
1872 		return error;
1873 
1874 	return cred_has_perm(old, new, PROCESS__SETCAP);
1875 }
1876 
1877 /*
1878  * (This comment used to live with the selinux_task_setuid hook,
1879  * which was removed).
1880  *
1881  * Since setuid only affects the current process, and since the SELinux
1882  * controls are not based on the Linux identity attributes, SELinux does not
1883  * need to control this operation.  However, SELinux does control the use of
1884  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1885  */
1886 
1887 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
1888 			   int cap, int audit)
1889 {
1890 	int rc;
1891 
1892 	rc = cap_capable(cred, ns, cap, audit);
1893 	if (rc)
1894 		return rc;
1895 
1896 	return cred_has_capability(cred, cap, audit);
1897 }
1898 
1899 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1900 {
1901 	const struct cred *cred = current_cred();
1902 	int rc = 0;
1903 
1904 	if (!sb)
1905 		return 0;
1906 
1907 	switch (cmds) {
1908 	case Q_SYNC:
1909 	case Q_QUOTAON:
1910 	case Q_QUOTAOFF:
1911 	case Q_SETINFO:
1912 	case Q_SETQUOTA:
1913 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1914 		break;
1915 	case Q_GETFMT:
1916 	case Q_GETINFO:
1917 	case Q_GETQUOTA:
1918 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1919 		break;
1920 	default:
1921 		rc = 0;  /* let the kernel handle invalid cmds */
1922 		break;
1923 	}
1924 	return rc;
1925 }
1926 
1927 static int selinux_quota_on(struct dentry *dentry)
1928 {
1929 	const struct cred *cred = current_cred();
1930 
1931 	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
1932 }
1933 
1934 static int selinux_syslog(int type)
1935 {
1936 	int rc;
1937 
1938 	switch (type) {
1939 	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
1940 	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
1941 		rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1942 		break;
1943 	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
1944 	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
1945 	/* Set level of messages printed to console */
1946 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1947 		rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1948 		break;
1949 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1950 	case SYSLOG_ACTION_OPEN:	/* Open log */
1951 	case SYSLOG_ACTION_READ:	/* Read from log */
1952 	case SYSLOG_ACTION_READ_CLEAR:	/* Read/clear last kernel messages */
1953 	case SYSLOG_ACTION_CLEAR:	/* Clear ring buffer */
1954 	default:
1955 		rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1956 		break;
1957 	}
1958 	return rc;
1959 }
1960 
1961 /*
1962  * Check that a process has enough memory to allocate a new virtual
1963  * mapping. 0 means there is enough memory for the allocation to
1964  * succeed and -ENOMEM implies there is not.
1965  *
1966  * Do not audit the selinux permission check, as this is applied to all
1967  * processes that allocate mappings.
1968  */
1969 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1970 {
1971 	int rc, cap_sys_admin = 0;
1972 
1973 	rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
1974 			     SECURITY_CAP_NOAUDIT);
1975 	if (rc == 0)
1976 		cap_sys_admin = 1;
1977 
1978 	return __vm_enough_memory(mm, pages, cap_sys_admin);
1979 }
1980 
1981 /* binprm security operations */
1982 
1983 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
1984 {
1985 	const struct task_security_struct *old_tsec;
1986 	struct task_security_struct *new_tsec;
1987 	struct inode_security_struct *isec;
1988 	struct common_audit_data ad;
1989 	struct selinux_audit_data sad = {0,};
1990 	struct inode *inode = bprm->file->f_path.dentry->d_inode;
1991 	int rc;
1992 
1993 	rc = cap_bprm_set_creds(bprm);
1994 	if (rc)
1995 		return rc;
1996 
1997 	/* SELinux context only depends on initial program or script and not
1998 	 * the script interpreter */
1999 	if (bprm->cred_prepared)
2000 		return 0;
2001 
2002 	old_tsec = current_security();
2003 	new_tsec = bprm->cred->security;
2004 	isec = inode->i_security;
2005 
2006 	/* Default to the current task SID. */
2007 	new_tsec->sid = old_tsec->sid;
2008 	new_tsec->osid = old_tsec->sid;
2009 
2010 	/* Reset fs, key, and sock SIDs on execve. */
2011 	new_tsec->create_sid = 0;
2012 	new_tsec->keycreate_sid = 0;
2013 	new_tsec->sockcreate_sid = 0;
2014 
2015 	if (old_tsec->exec_sid) {
2016 		new_tsec->sid = old_tsec->exec_sid;
2017 		/* Reset exec SID on execve. */
2018 		new_tsec->exec_sid = 0;
2019 	} else {
2020 		/* Check for a default transition on this program. */
2021 		rc = security_transition_sid(old_tsec->sid, isec->sid,
2022 					     SECCLASS_PROCESS, NULL,
2023 					     &new_tsec->sid);
2024 		if (rc)
2025 			return rc;
2026 	}
2027 
2028 	COMMON_AUDIT_DATA_INIT(&ad, PATH);
2029 	ad.selinux_audit_data = &sad;
2030 	ad.u.path = bprm->file->f_path;
2031 
2032 	if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2033 		new_tsec->sid = old_tsec->sid;
2034 
2035 	if (new_tsec->sid == old_tsec->sid) {
2036 		rc = avc_has_perm(old_tsec->sid, isec->sid,
2037 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2038 		if (rc)
2039 			return rc;
2040 	} else {
2041 		/* Check permissions for the transition. */
2042 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2043 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2044 		if (rc)
2045 			return rc;
2046 
2047 		rc = avc_has_perm(new_tsec->sid, isec->sid,
2048 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2049 		if (rc)
2050 			return rc;
2051 
2052 		/* Check for shared state */
2053 		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2054 			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2055 					  SECCLASS_PROCESS, PROCESS__SHARE,
2056 					  NULL);
2057 			if (rc)
2058 				return -EPERM;
2059 		}
2060 
2061 		/* Make sure that anyone attempting to ptrace over a task that
2062 		 * changes its SID has the appropriate permit */
2063 		if (bprm->unsafe &
2064 		    (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2065 			struct task_struct *tracer;
2066 			struct task_security_struct *sec;
2067 			u32 ptsid = 0;
2068 
2069 			rcu_read_lock();
2070 			tracer = ptrace_parent(current);
2071 			if (likely(tracer != NULL)) {
2072 				sec = __task_cred(tracer)->security;
2073 				ptsid = sec->sid;
2074 			}
2075 			rcu_read_unlock();
2076 
2077 			if (ptsid != 0) {
2078 				rc = avc_has_perm(ptsid, new_tsec->sid,
2079 						  SECCLASS_PROCESS,
2080 						  PROCESS__PTRACE, NULL);
2081 				if (rc)
2082 					return -EPERM;
2083 			}
2084 		}
2085 
2086 		/* Clear any possibly unsafe personality bits on exec: */
2087 		bprm->per_clear |= PER_CLEAR_ON_SETID;
2088 	}
2089 
2090 	return 0;
2091 }
2092 
2093 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2094 {
2095 	const struct task_security_struct *tsec = current_security();
2096 	u32 sid, osid;
2097 	int atsecure = 0;
2098 
2099 	sid = tsec->sid;
2100 	osid = tsec->osid;
2101 
2102 	if (osid != sid) {
2103 		/* Enable secure mode for SIDs transitions unless
2104 		   the noatsecure permission is granted between
2105 		   the two SIDs, i.e. ahp returns 0. */
2106 		atsecure = avc_has_perm(osid, sid,
2107 					SECCLASS_PROCESS,
2108 					PROCESS__NOATSECURE, NULL);
2109 	}
2110 
2111 	return (atsecure || cap_bprm_secureexec(bprm));
2112 }
2113 
2114 /* Derived from fs/exec.c:flush_old_files. */
2115 static inline void flush_unauthorized_files(const struct cred *cred,
2116 					    struct files_struct *files)
2117 {
2118 	struct common_audit_data ad;
2119 	struct selinux_audit_data sad = {0,};
2120 	struct file *file, *devnull = NULL;
2121 	struct tty_struct *tty;
2122 	struct fdtable *fdt;
2123 	long j = -1;
2124 	int drop_tty = 0;
2125 
2126 	tty = get_current_tty();
2127 	if (tty) {
2128 		spin_lock(&tty_files_lock);
2129 		if (!list_empty(&tty->tty_files)) {
2130 			struct tty_file_private *file_priv;
2131 			struct inode *inode;
2132 
2133 			/* Revalidate access to controlling tty.
2134 			   Use inode_has_perm on the tty inode directly rather
2135 			   than using file_has_perm, as this particular open
2136 			   file may belong to another process and we are only
2137 			   interested in the inode-based check here. */
2138 			file_priv = list_first_entry(&tty->tty_files,
2139 						struct tty_file_private, list);
2140 			file = file_priv->file;
2141 			inode = file->f_path.dentry->d_inode;
2142 			if (inode_has_perm_noadp(cred, inode,
2143 					   FILE__READ | FILE__WRITE, 0)) {
2144 				drop_tty = 1;
2145 			}
2146 		}
2147 		spin_unlock(&tty_files_lock);
2148 		tty_kref_put(tty);
2149 	}
2150 	/* Reset controlling tty. */
2151 	if (drop_tty)
2152 		no_tty();
2153 
2154 	/* Revalidate access to inherited open files. */
2155 
2156 	COMMON_AUDIT_DATA_INIT(&ad, INODE);
2157 	ad.selinux_audit_data = &sad;
2158 
2159 	spin_lock(&files->file_lock);
2160 	for (;;) {
2161 		unsigned long set, i;
2162 		int fd;
2163 
2164 		j++;
2165 		i = j * __NFDBITS;
2166 		fdt = files_fdtable(files);
2167 		if (i >= fdt->max_fds)
2168 			break;
2169 		set = fdt->open_fds[j];
2170 		if (!set)
2171 			continue;
2172 		spin_unlock(&files->file_lock);
2173 		for ( ; set ; i++, set >>= 1) {
2174 			if (set & 1) {
2175 				file = fget(i);
2176 				if (!file)
2177 					continue;
2178 				if (file_has_perm(cred,
2179 						  file,
2180 						  file_to_av(file))) {
2181 					sys_close(i);
2182 					fd = get_unused_fd();
2183 					if (fd != i) {
2184 						if (fd >= 0)
2185 							put_unused_fd(fd);
2186 						fput(file);
2187 						continue;
2188 					}
2189 					if (devnull) {
2190 						get_file(devnull);
2191 					} else {
2192 						devnull = dentry_open(
2193 							dget(selinux_null),
2194 							mntget(selinuxfs_mount),
2195 							O_RDWR, cred);
2196 						if (IS_ERR(devnull)) {
2197 							devnull = NULL;
2198 							put_unused_fd(fd);
2199 							fput(file);
2200 							continue;
2201 						}
2202 					}
2203 					fd_install(fd, devnull);
2204 				}
2205 				fput(file);
2206 			}
2207 		}
2208 		spin_lock(&files->file_lock);
2209 
2210 	}
2211 	spin_unlock(&files->file_lock);
2212 }
2213 
2214 /*
2215  * Prepare a process for imminent new credential changes due to exec
2216  */
2217 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2218 {
2219 	struct task_security_struct *new_tsec;
2220 	struct rlimit *rlim, *initrlim;
2221 	int rc, i;
2222 
2223 	new_tsec = bprm->cred->security;
2224 	if (new_tsec->sid == new_tsec->osid)
2225 		return;
2226 
2227 	/* Close files for which the new task SID is not authorized. */
2228 	flush_unauthorized_files(bprm->cred, current->files);
2229 
2230 	/* Always clear parent death signal on SID transitions. */
2231 	current->pdeath_signal = 0;
2232 
2233 	/* Check whether the new SID can inherit resource limits from the old
2234 	 * SID.  If not, reset all soft limits to the lower of the current
2235 	 * task's hard limit and the init task's soft limit.
2236 	 *
2237 	 * Note that the setting of hard limits (even to lower them) can be
2238 	 * controlled by the setrlimit check.  The inclusion of the init task's
2239 	 * soft limit into the computation is to avoid resetting soft limits
2240 	 * higher than the default soft limit for cases where the default is
2241 	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2242 	 */
2243 	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2244 			  PROCESS__RLIMITINH, NULL);
2245 	if (rc) {
2246 		/* protect against do_prlimit() */
2247 		task_lock(current);
2248 		for (i = 0; i < RLIM_NLIMITS; i++) {
2249 			rlim = current->signal->rlim + i;
2250 			initrlim = init_task.signal->rlim + i;
2251 			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2252 		}
2253 		task_unlock(current);
2254 		update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2255 	}
2256 }
2257 
2258 /*
2259  * Clean up the process immediately after the installation of new credentials
2260  * due to exec
2261  */
2262 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2263 {
2264 	const struct task_security_struct *tsec = current_security();
2265 	struct itimerval itimer;
2266 	u32 osid, sid;
2267 	int rc, i;
2268 
2269 	osid = tsec->osid;
2270 	sid = tsec->sid;
2271 
2272 	if (sid == osid)
2273 		return;
2274 
2275 	/* Check whether the new SID can inherit signal state from the old SID.
2276 	 * If not, clear itimers to avoid subsequent signal generation and
2277 	 * flush and unblock signals.
2278 	 *
2279 	 * This must occur _after_ the task SID has been updated so that any
2280 	 * kill done after the flush will be checked against the new SID.
2281 	 */
2282 	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2283 	if (rc) {
2284 		memset(&itimer, 0, sizeof itimer);
2285 		for (i = 0; i < 3; i++)
2286 			do_setitimer(i, &itimer, NULL);
2287 		spin_lock_irq(&current->sighand->siglock);
2288 		if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2289 			__flush_signals(current);
2290 			flush_signal_handlers(current, 1);
2291 			sigemptyset(&current->blocked);
2292 		}
2293 		spin_unlock_irq(&current->sighand->siglock);
2294 	}
2295 
2296 	/* Wake up the parent if it is waiting so that it can recheck
2297 	 * wait permission to the new task SID. */
2298 	read_lock(&tasklist_lock);
2299 	__wake_up_parent(current, current->real_parent);
2300 	read_unlock(&tasklist_lock);
2301 }
2302 
2303 /* superblock security operations */
2304 
2305 static int selinux_sb_alloc_security(struct super_block *sb)
2306 {
2307 	return superblock_alloc_security(sb);
2308 }
2309 
2310 static void selinux_sb_free_security(struct super_block *sb)
2311 {
2312 	superblock_free_security(sb);
2313 }
2314 
2315 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2316 {
2317 	if (plen > olen)
2318 		return 0;
2319 
2320 	return !memcmp(prefix, option, plen);
2321 }
2322 
2323 static inline int selinux_option(char *option, int len)
2324 {
2325 	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2326 		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2327 		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2328 		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2329 		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2330 }
2331 
2332 static inline void take_option(char **to, char *from, int *first, int len)
2333 {
2334 	if (!*first) {
2335 		**to = ',';
2336 		*to += 1;
2337 	} else
2338 		*first = 0;
2339 	memcpy(*to, from, len);
2340 	*to += len;
2341 }
2342 
2343 static inline void take_selinux_option(char **to, char *from, int *first,
2344 				       int len)
2345 {
2346 	int current_size = 0;
2347 
2348 	if (!*first) {
2349 		**to = '|';
2350 		*to += 1;
2351 	} else
2352 		*first = 0;
2353 
2354 	while (current_size < len) {
2355 		if (*from != '"') {
2356 			**to = *from;
2357 			*to += 1;
2358 		}
2359 		from += 1;
2360 		current_size += 1;
2361 	}
2362 }
2363 
2364 static int selinux_sb_copy_data(char *orig, char *copy)
2365 {
2366 	int fnosec, fsec, rc = 0;
2367 	char *in_save, *in_curr, *in_end;
2368 	char *sec_curr, *nosec_save, *nosec;
2369 	int open_quote = 0;
2370 
2371 	in_curr = orig;
2372 	sec_curr = copy;
2373 
2374 	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2375 	if (!nosec) {
2376 		rc = -ENOMEM;
2377 		goto out;
2378 	}
2379 
2380 	nosec_save = nosec;
2381 	fnosec = fsec = 1;
2382 	in_save = in_end = orig;
2383 
2384 	do {
2385 		if (*in_end == '"')
2386 			open_quote = !open_quote;
2387 		if ((*in_end == ',' && open_quote == 0) ||
2388 				*in_end == '\0') {
2389 			int len = in_end - in_curr;
2390 
2391 			if (selinux_option(in_curr, len))
2392 				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2393 			else
2394 				take_option(&nosec, in_curr, &fnosec, len);
2395 
2396 			in_curr = in_end + 1;
2397 		}
2398 	} while (*in_end++);
2399 
2400 	strcpy(in_save, nosec_save);
2401 	free_page((unsigned long)nosec_save);
2402 out:
2403 	return rc;
2404 }
2405 
2406 static int selinux_sb_remount(struct super_block *sb, void *data)
2407 {
2408 	int rc, i, *flags;
2409 	struct security_mnt_opts opts;
2410 	char *secdata, **mount_options;
2411 	struct superblock_security_struct *sbsec = sb->s_security;
2412 
2413 	if (!(sbsec->flags & SE_SBINITIALIZED))
2414 		return 0;
2415 
2416 	if (!data)
2417 		return 0;
2418 
2419 	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2420 		return 0;
2421 
2422 	security_init_mnt_opts(&opts);
2423 	secdata = alloc_secdata();
2424 	if (!secdata)
2425 		return -ENOMEM;
2426 	rc = selinux_sb_copy_data(data, secdata);
2427 	if (rc)
2428 		goto out_free_secdata;
2429 
2430 	rc = selinux_parse_opts_str(secdata, &opts);
2431 	if (rc)
2432 		goto out_free_secdata;
2433 
2434 	mount_options = opts.mnt_opts;
2435 	flags = opts.mnt_opts_flags;
2436 
2437 	for (i = 0; i < opts.num_mnt_opts; i++) {
2438 		u32 sid;
2439 		size_t len;
2440 
2441 		if (flags[i] == SE_SBLABELSUPP)
2442 			continue;
2443 		len = strlen(mount_options[i]);
2444 		rc = security_context_to_sid(mount_options[i], len, &sid);
2445 		if (rc) {
2446 			printk(KERN_WARNING "SELinux: security_context_to_sid"
2447 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
2448 			       mount_options[i], sb->s_id, sb->s_type->name, rc);
2449 			goto out_free_opts;
2450 		}
2451 		rc = -EINVAL;
2452 		switch (flags[i]) {
2453 		case FSCONTEXT_MNT:
2454 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2455 				goto out_bad_option;
2456 			break;
2457 		case CONTEXT_MNT:
2458 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2459 				goto out_bad_option;
2460 			break;
2461 		case ROOTCONTEXT_MNT: {
2462 			struct inode_security_struct *root_isec;
2463 			root_isec = sb->s_root->d_inode->i_security;
2464 
2465 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2466 				goto out_bad_option;
2467 			break;
2468 		}
2469 		case DEFCONTEXT_MNT:
2470 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2471 				goto out_bad_option;
2472 			break;
2473 		default:
2474 			goto out_free_opts;
2475 		}
2476 	}
2477 
2478 	rc = 0;
2479 out_free_opts:
2480 	security_free_mnt_opts(&opts);
2481 out_free_secdata:
2482 	free_secdata(secdata);
2483 	return rc;
2484 out_bad_option:
2485 	printk(KERN_WARNING "SELinux: unable to change security options "
2486 	       "during remount (dev %s, type=%s)\n", sb->s_id,
2487 	       sb->s_type->name);
2488 	goto out_free_opts;
2489 }
2490 
2491 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2492 {
2493 	const struct cred *cred = current_cred();
2494 	struct common_audit_data ad;
2495 	struct selinux_audit_data sad = {0,};
2496 	int rc;
2497 
2498 	rc = superblock_doinit(sb, data);
2499 	if (rc)
2500 		return rc;
2501 
2502 	/* Allow all mounts performed by the kernel */
2503 	if (flags & MS_KERNMOUNT)
2504 		return 0;
2505 
2506 	COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
2507 	ad.selinux_audit_data = &sad;
2508 	ad.u.dentry = sb->s_root;
2509 	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2510 }
2511 
2512 static int selinux_sb_statfs(struct dentry *dentry)
2513 {
2514 	const struct cred *cred = current_cred();
2515 	struct common_audit_data ad;
2516 	struct selinux_audit_data sad = {0,};
2517 
2518 	COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
2519 	ad.selinux_audit_data = &sad;
2520 	ad.u.dentry = dentry->d_sb->s_root;
2521 	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2522 }
2523 
2524 static int selinux_mount(char *dev_name,
2525 			 struct path *path,
2526 			 char *type,
2527 			 unsigned long flags,
2528 			 void *data)
2529 {
2530 	const struct cred *cred = current_cred();
2531 
2532 	if (flags & MS_REMOUNT)
2533 		return superblock_has_perm(cred, path->dentry->d_sb,
2534 					   FILESYSTEM__REMOUNT, NULL);
2535 	else
2536 		return path_has_perm(cred, path, FILE__MOUNTON);
2537 }
2538 
2539 static int selinux_umount(struct vfsmount *mnt, int flags)
2540 {
2541 	const struct cred *cred = current_cred();
2542 
2543 	return superblock_has_perm(cred, mnt->mnt_sb,
2544 				   FILESYSTEM__UNMOUNT, NULL);
2545 }
2546 
2547 /* inode security operations */
2548 
2549 static int selinux_inode_alloc_security(struct inode *inode)
2550 {
2551 	return inode_alloc_security(inode);
2552 }
2553 
2554 static void selinux_inode_free_security(struct inode *inode)
2555 {
2556 	inode_free_security(inode);
2557 }
2558 
2559 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2560 				       const struct qstr *qstr, char **name,
2561 				       void **value, size_t *len)
2562 {
2563 	const struct task_security_struct *tsec = current_security();
2564 	struct inode_security_struct *dsec;
2565 	struct superblock_security_struct *sbsec;
2566 	u32 sid, newsid, clen;
2567 	int rc;
2568 	char *namep = NULL, *context;
2569 
2570 	dsec = dir->i_security;
2571 	sbsec = dir->i_sb->s_security;
2572 
2573 	sid = tsec->sid;
2574 	newsid = tsec->create_sid;
2575 
2576 	if ((sbsec->flags & SE_SBINITIALIZED) &&
2577 	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2578 		newsid = sbsec->mntpoint_sid;
2579 	else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2580 		rc = security_transition_sid(sid, dsec->sid,
2581 					     inode_mode_to_security_class(inode->i_mode),
2582 					     qstr, &newsid);
2583 		if (rc) {
2584 			printk(KERN_WARNING "%s:  "
2585 			       "security_transition_sid failed, rc=%d (dev=%s "
2586 			       "ino=%ld)\n",
2587 			       __func__,
2588 			       -rc, inode->i_sb->s_id, inode->i_ino);
2589 			return rc;
2590 		}
2591 	}
2592 
2593 	/* Possibly defer initialization to selinux_complete_init. */
2594 	if (sbsec->flags & SE_SBINITIALIZED) {
2595 		struct inode_security_struct *isec = inode->i_security;
2596 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2597 		isec->sid = newsid;
2598 		isec->initialized = 1;
2599 	}
2600 
2601 	if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2602 		return -EOPNOTSUPP;
2603 
2604 	if (name) {
2605 		namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2606 		if (!namep)
2607 			return -ENOMEM;
2608 		*name = namep;
2609 	}
2610 
2611 	if (value && len) {
2612 		rc = security_sid_to_context_force(newsid, &context, &clen);
2613 		if (rc) {
2614 			kfree(namep);
2615 			return rc;
2616 		}
2617 		*value = context;
2618 		*len = clen;
2619 	}
2620 
2621 	return 0;
2622 }
2623 
2624 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2625 {
2626 	return may_create(dir, dentry, SECCLASS_FILE);
2627 }
2628 
2629 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2630 {
2631 	return may_link(dir, old_dentry, MAY_LINK);
2632 }
2633 
2634 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2635 {
2636 	return may_link(dir, dentry, MAY_UNLINK);
2637 }
2638 
2639 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2640 {
2641 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2642 }
2643 
2644 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2645 {
2646 	return may_create(dir, dentry, SECCLASS_DIR);
2647 }
2648 
2649 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2650 {
2651 	return may_link(dir, dentry, MAY_RMDIR);
2652 }
2653 
2654 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2655 {
2656 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2657 }
2658 
2659 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2660 				struct inode *new_inode, struct dentry *new_dentry)
2661 {
2662 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2663 }
2664 
2665 static int selinux_inode_readlink(struct dentry *dentry)
2666 {
2667 	const struct cred *cred = current_cred();
2668 
2669 	return dentry_has_perm(cred, dentry, FILE__READ);
2670 }
2671 
2672 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2673 {
2674 	const struct cred *cred = current_cred();
2675 
2676 	return dentry_has_perm(cred, dentry, FILE__READ);
2677 }
2678 
2679 static int selinux_inode_permission(struct inode *inode, int mask)
2680 {
2681 	const struct cred *cred = current_cred();
2682 	struct common_audit_data ad;
2683 	struct selinux_audit_data sad = {0,};
2684 	u32 perms;
2685 	bool from_access;
2686 	unsigned flags = mask & MAY_NOT_BLOCK;
2687 
2688 	from_access = mask & MAY_ACCESS;
2689 	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2690 
2691 	/* No permission to check.  Existence test. */
2692 	if (!mask)
2693 		return 0;
2694 
2695 	COMMON_AUDIT_DATA_INIT(&ad, INODE);
2696 	ad.selinux_audit_data = &sad;
2697 	ad.u.inode = inode;
2698 
2699 	if (from_access)
2700 		ad.selinux_audit_data->auditdeny |= FILE__AUDIT_ACCESS;
2701 
2702 	perms = file_mask_to_av(inode->i_mode, mask);
2703 
2704 	return inode_has_perm(cred, inode, perms, &ad, flags);
2705 }
2706 
2707 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2708 {
2709 	const struct cred *cred = current_cred();
2710 	unsigned int ia_valid = iattr->ia_valid;
2711 
2712 	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2713 	if (ia_valid & ATTR_FORCE) {
2714 		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2715 			      ATTR_FORCE);
2716 		if (!ia_valid)
2717 			return 0;
2718 	}
2719 
2720 	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2721 			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2722 		return dentry_has_perm(cred, dentry, FILE__SETATTR);
2723 
2724 	return dentry_has_perm(cred, dentry, FILE__WRITE);
2725 }
2726 
2727 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2728 {
2729 	const struct cred *cred = current_cred();
2730 	struct path path;
2731 
2732 	path.dentry = dentry;
2733 	path.mnt = mnt;
2734 
2735 	return path_has_perm(cred, &path, FILE__GETATTR);
2736 }
2737 
2738 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2739 {
2740 	const struct cred *cred = current_cred();
2741 
2742 	if (!strncmp(name, XATTR_SECURITY_PREFIX,
2743 		     sizeof XATTR_SECURITY_PREFIX - 1)) {
2744 		if (!strcmp(name, XATTR_NAME_CAPS)) {
2745 			if (!capable(CAP_SETFCAP))
2746 				return -EPERM;
2747 		} else if (!capable(CAP_SYS_ADMIN)) {
2748 			/* A different attribute in the security namespace.
2749 			   Restrict to administrator. */
2750 			return -EPERM;
2751 		}
2752 	}
2753 
2754 	/* Not an attribute we recognize, so just check the
2755 	   ordinary setattr permission. */
2756 	return dentry_has_perm(cred, dentry, FILE__SETATTR);
2757 }
2758 
2759 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2760 				  const void *value, size_t size, int flags)
2761 {
2762 	struct inode *inode = dentry->d_inode;
2763 	struct inode_security_struct *isec = inode->i_security;
2764 	struct superblock_security_struct *sbsec;
2765 	struct common_audit_data ad;
2766 	struct selinux_audit_data sad = {0,};
2767 	u32 newsid, sid = current_sid();
2768 	int rc = 0;
2769 
2770 	if (strcmp(name, XATTR_NAME_SELINUX))
2771 		return selinux_inode_setotherxattr(dentry, name);
2772 
2773 	sbsec = inode->i_sb->s_security;
2774 	if (!(sbsec->flags & SE_SBLABELSUPP))
2775 		return -EOPNOTSUPP;
2776 
2777 	if (!inode_owner_or_capable(inode))
2778 		return -EPERM;
2779 
2780 	COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
2781 	ad.selinux_audit_data = &sad;
2782 	ad.u.dentry = dentry;
2783 
2784 	rc = avc_has_perm(sid, isec->sid, isec->sclass,
2785 			  FILE__RELABELFROM, &ad);
2786 	if (rc)
2787 		return rc;
2788 
2789 	rc = security_context_to_sid(value, size, &newsid);
2790 	if (rc == -EINVAL) {
2791 		if (!capable(CAP_MAC_ADMIN))
2792 			return rc;
2793 		rc = security_context_to_sid_force(value, size, &newsid);
2794 	}
2795 	if (rc)
2796 		return rc;
2797 
2798 	rc = avc_has_perm(sid, newsid, isec->sclass,
2799 			  FILE__RELABELTO, &ad);
2800 	if (rc)
2801 		return rc;
2802 
2803 	rc = security_validate_transition(isec->sid, newsid, sid,
2804 					  isec->sclass);
2805 	if (rc)
2806 		return rc;
2807 
2808 	return avc_has_perm(newsid,
2809 			    sbsec->sid,
2810 			    SECCLASS_FILESYSTEM,
2811 			    FILESYSTEM__ASSOCIATE,
2812 			    &ad);
2813 }
2814 
2815 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2816 					const void *value, size_t size,
2817 					int flags)
2818 {
2819 	struct inode *inode = dentry->d_inode;
2820 	struct inode_security_struct *isec = inode->i_security;
2821 	u32 newsid;
2822 	int rc;
2823 
2824 	if (strcmp(name, XATTR_NAME_SELINUX)) {
2825 		/* Not an attribute we recognize, so nothing to do. */
2826 		return;
2827 	}
2828 
2829 	rc = security_context_to_sid_force(value, size, &newsid);
2830 	if (rc) {
2831 		printk(KERN_ERR "SELinux:  unable to map context to SID"
2832 		       "for (%s, %lu), rc=%d\n",
2833 		       inode->i_sb->s_id, inode->i_ino, -rc);
2834 		return;
2835 	}
2836 
2837 	isec->sid = newsid;
2838 	return;
2839 }
2840 
2841 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2842 {
2843 	const struct cred *cred = current_cred();
2844 
2845 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
2846 }
2847 
2848 static int selinux_inode_listxattr(struct dentry *dentry)
2849 {
2850 	const struct cred *cred = current_cred();
2851 
2852 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
2853 }
2854 
2855 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2856 {
2857 	if (strcmp(name, XATTR_NAME_SELINUX))
2858 		return selinux_inode_setotherxattr(dentry, name);
2859 
2860 	/* No one is allowed to remove a SELinux security label.
2861 	   You can change the label, but all data must be labeled. */
2862 	return -EACCES;
2863 }
2864 
2865 /*
2866  * Copy the inode security context value to the user.
2867  *
2868  * Permission check is handled by selinux_inode_getxattr hook.
2869  */
2870 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2871 {
2872 	u32 size;
2873 	int error;
2874 	char *context = NULL;
2875 	struct inode_security_struct *isec = inode->i_security;
2876 
2877 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2878 		return -EOPNOTSUPP;
2879 
2880 	/*
2881 	 * If the caller has CAP_MAC_ADMIN, then get the raw context
2882 	 * value even if it is not defined by current policy; otherwise,
2883 	 * use the in-core value under current policy.
2884 	 * Use the non-auditing forms of the permission checks since
2885 	 * getxattr may be called by unprivileged processes commonly
2886 	 * and lack of permission just means that we fall back to the
2887 	 * in-core context value, not a denial.
2888 	 */
2889 	error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
2890 				SECURITY_CAP_NOAUDIT);
2891 	if (!error)
2892 		error = security_sid_to_context_force(isec->sid, &context,
2893 						      &size);
2894 	else
2895 		error = security_sid_to_context(isec->sid, &context, &size);
2896 	if (error)
2897 		return error;
2898 	error = size;
2899 	if (alloc) {
2900 		*buffer = context;
2901 		goto out_nofree;
2902 	}
2903 	kfree(context);
2904 out_nofree:
2905 	return error;
2906 }
2907 
2908 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2909 				     const void *value, size_t size, int flags)
2910 {
2911 	struct inode_security_struct *isec = inode->i_security;
2912 	u32 newsid;
2913 	int rc;
2914 
2915 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2916 		return -EOPNOTSUPP;
2917 
2918 	if (!value || !size)
2919 		return -EACCES;
2920 
2921 	rc = security_context_to_sid((void *)value, size, &newsid);
2922 	if (rc)
2923 		return rc;
2924 
2925 	isec->sid = newsid;
2926 	isec->initialized = 1;
2927 	return 0;
2928 }
2929 
2930 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2931 {
2932 	const int len = sizeof(XATTR_NAME_SELINUX);
2933 	if (buffer && len <= buffer_size)
2934 		memcpy(buffer, XATTR_NAME_SELINUX, len);
2935 	return len;
2936 }
2937 
2938 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2939 {
2940 	struct inode_security_struct *isec = inode->i_security;
2941 	*secid = isec->sid;
2942 }
2943 
2944 /* file security operations */
2945 
2946 static int selinux_revalidate_file_permission(struct file *file, int mask)
2947 {
2948 	const struct cred *cred = current_cred();
2949 	struct inode *inode = file->f_path.dentry->d_inode;
2950 
2951 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2952 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2953 		mask |= MAY_APPEND;
2954 
2955 	return file_has_perm(cred, file,
2956 			     file_mask_to_av(inode->i_mode, mask));
2957 }
2958 
2959 static int selinux_file_permission(struct file *file, int mask)
2960 {
2961 	struct inode *inode = file->f_path.dentry->d_inode;
2962 	struct file_security_struct *fsec = file->f_security;
2963 	struct inode_security_struct *isec = inode->i_security;
2964 	u32 sid = current_sid();
2965 
2966 	if (!mask)
2967 		/* No permission to check.  Existence test. */
2968 		return 0;
2969 
2970 	if (sid == fsec->sid && fsec->isid == isec->sid &&
2971 	    fsec->pseqno == avc_policy_seqno())
2972 		/* No change since dentry_open check. */
2973 		return 0;
2974 
2975 	return selinux_revalidate_file_permission(file, mask);
2976 }
2977 
2978 static int selinux_file_alloc_security(struct file *file)
2979 {
2980 	return file_alloc_security(file);
2981 }
2982 
2983 static void selinux_file_free_security(struct file *file)
2984 {
2985 	file_free_security(file);
2986 }
2987 
2988 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2989 			      unsigned long arg)
2990 {
2991 	const struct cred *cred = current_cred();
2992 	int error = 0;
2993 
2994 	switch (cmd) {
2995 	case FIONREAD:
2996 	/* fall through */
2997 	case FIBMAP:
2998 	/* fall through */
2999 	case FIGETBSZ:
3000 	/* fall through */
3001 	case FS_IOC_GETFLAGS:
3002 	/* fall through */
3003 	case FS_IOC_GETVERSION:
3004 		error = file_has_perm(cred, file, FILE__GETATTR);
3005 		break;
3006 
3007 	case FS_IOC_SETFLAGS:
3008 	/* fall through */
3009 	case FS_IOC_SETVERSION:
3010 		error = file_has_perm(cred, file, FILE__SETATTR);
3011 		break;
3012 
3013 	/* sys_ioctl() checks */
3014 	case FIONBIO:
3015 	/* fall through */
3016 	case FIOASYNC:
3017 		error = file_has_perm(cred, file, 0);
3018 		break;
3019 
3020 	case KDSKBENT:
3021 	case KDSKBSENT:
3022 		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3023 					    SECURITY_CAP_AUDIT);
3024 		break;
3025 
3026 	/* default case assumes that the command will go
3027 	 * to the file's ioctl() function.
3028 	 */
3029 	default:
3030 		error = file_has_perm(cred, file, FILE__IOCTL);
3031 	}
3032 	return error;
3033 }
3034 
3035 static int default_noexec;
3036 
3037 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3038 {
3039 	const struct cred *cred = current_cred();
3040 	int rc = 0;
3041 
3042 	if (default_noexec &&
3043 	    (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3044 		/*
3045 		 * We are making executable an anonymous mapping or a
3046 		 * private file mapping that will also be writable.
3047 		 * This has an additional check.
3048 		 */
3049 		rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3050 		if (rc)
3051 			goto error;
3052 	}
3053 
3054 	if (file) {
3055 		/* read access is always possible with a mapping */
3056 		u32 av = FILE__READ;
3057 
3058 		/* write access only matters if the mapping is shared */
3059 		if (shared && (prot & PROT_WRITE))
3060 			av |= FILE__WRITE;
3061 
3062 		if (prot & PROT_EXEC)
3063 			av |= FILE__EXECUTE;
3064 
3065 		return file_has_perm(cred, file, av);
3066 	}
3067 
3068 error:
3069 	return rc;
3070 }
3071 
3072 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3073 			     unsigned long prot, unsigned long flags,
3074 			     unsigned long addr, unsigned long addr_only)
3075 {
3076 	int rc = 0;
3077 	u32 sid = current_sid();
3078 
3079 	/*
3080 	 * notice that we are intentionally putting the SELinux check before
3081 	 * the secondary cap_file_mmap check.  This is such a likely attempt
3082 	 * at bad behaviour/exploit that we always want to get the AVC, even
3083 	 * if DAC would have also denied the operation.
3084 	 */
3085 	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3086 		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3087 				  MEMPROTECT__MMAP_ZERO, NULL);
3088 		if (rc)
3089 			return rc;
3090 	}
3091 
3092 	/* do DAC check on address space usage */
3093 	rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only);
3094 	if (rc || addr_only)
3095 		return rc;
3096 
3097 	if (selinux_checkreqprot)
3098 		prot = reqprot;
3099 
3100 	return file_map_prot_check(file, prot,
3101 				   (flags & MAP_TYPE) == MAP_SHARED);
3102 }
3103 
3104 static int selinux_file_mprotect(struct vm_area_struct *vma,
3105 				 unsigned long reqprot,
3106 				 unsigned long prot)
3107 {
3108 	const struct cred *cred = current_cred();
3109 
3110 	if (selinux_checkreqprot)
3111 		prot = reqprot;
3112 
3113 	if (default_noexec &&
3114 	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3115 		int rc = 0;
3116 		if (vma->vm_start >= vma->vm_mm->start_brk &&
3117 		    vma->vm_end <= vma->vm_mm->brk) {
3118 			rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3119 		} else if (!vma->vm_file &&
3120 			   vma->vm_start <= vma->vm_mm->start_stack &&
3121 			   vma->vm_end >= vma->vm_mm->start_stack) {
3122 			rc = current_has_perm(current, PROCESS__EXECSTACK);
3123 		} else if (vma->vm_file && vma->anon_vma) {
3124 			/*
3125 			 * We are making executable a file mapping that has
3126 			 * had some COW done. Since pages might have been
3127 			 * written, check ability to execute the possibly
3128 			 * modified content.  This typically should only
3129 			 * occur for text relocations.
3130 			 */
3131 			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3132 		}
3133 		if (rc)
3134 			return rc;
3135 	}
3136 
3137 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3138 }
3139 
3140 static int selinux_file_lock(struct file *file, unsigned int cmd)
3141 {
3142 	const struct cred *cred = current_cred();
3143 
3144 	return file_has_perm(cred, file, FILE__LOCK);
3145 }
3146 
3147 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3148 			      unsigned long arg)
3149 {
3150 	const struct cred *cred = current_cred();
3151 	int err = 0;
3152 
3153 	switch (cmd) {
3154 	case F_SETFL:
3155 		if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3156 			err = -EINVAL;
3157 			break;
3158 		}
3159 
3160 		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3161 			err = file_has_perm(cred, file, FILE__WRITE);
3162 			break;
3163 		}
3164 		/* fall through */
3165 	case F_SETOWN:
3166 	case F_SETSIG:
3167 	case F_GETFL:
3168 	case F_GETOWN:
3169 	case F_GETSIG:
3170 		/* Just check FD__USE permission */
3171 		err = file_has_perm(cred, file, 0);
3172 		break;
3173 	case F_GETLK:
3174 	case F_SETLK:
3175 	case F_SETLKW:
3176 #if BITS_PER_LONG == 32
3177 	case F_GETLK64:
3178 	case F_SETLK64:
3179 	case F_SETLKW64:
3180 #endif
3181 		if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3182 			err = -EINVAL;
3183 			break;
3184 		}
3185 		err = file_has_perm(cred, file, FILE__LOCK);
3186 		break;
3187 	}
3188 
3189 	return err;
3190 }
3191 
3192 static int selinux_file_set_fowner(struct file *file)
3193 {
3194 	struct file_security_struct *fsec;
3195 
3196 	fsec = file->f_security;
3197 	fsec->fown_sid = current_sid();
3198 
3199 	return 0;
3200 }
3201 
3202 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3203 				       struct fown_struct *fown, int signum)
3204 {
3205 	struct file *file;
3206 	u32 sid = task_sid(tsk);
3207 	u32 perm;
3208 	struct file_security_struct *fsec;
3209 
3210 	/* struct fown_struct is never outside the context of a struct file */
3211 	file = container_of(fown, struct file, f_owner);
3212 
3213 	fsec = file->f_security;
3214 
3215 	if (!signum)
3216 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3217 	else
3218 		perm = signal_to_av(signum);
3219 
3220 	return avc_has_perm(fsec->fown_sid, sid,
3221 			    SECCLASS_PROCESS, perm, NULL);
3222 }
3223 
3224 static int selinux_file_receive(struct file *file)
3225 {
3226 	const struct cred *cred = current_cred();
3227 
3228 	return file_has_perm(cred, file, file_to_av(file));
3229 }
3230 
3231 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3232 {
3233 	struct file_security_struct *fsec;
3234 	struct inode *inode;
3235 	struct inode_security_struct *isec;
3236 
3237 	inode = file->f_path.dentry->d_inode;
3238 	fsec = file->f_security;
3239 	isec = inode->i_security;
3240 	/*
3241 	 * Save inode label and policy sequence number
3242 	 * at open-time so that selinux_file_permission
3243 	 * can determine whether revalidation is necessary.
3244 	 * Task label is already saved in the file security
3245 	 * struct as its SID.
3246 	 */
3247 	fsec->isid = isec->sid;
3248 	fsec->pseqno = avc_policy_seqno();
3249 	/*
3250 	 * Since the inode label or policy seqno may have changed
3251 	 * between the selinux_inode_permission check and the saving
3252 	 * of state above, recheck that access is still permitted.
3253 	 * Otherwise, access might never be revalidated against the
3254 	 * new inode label or new policy.
3255 	 * This check is not redundant - do not remove.
3256 	 */
3257 	return inode_has_perm_noadp(cred, inode, open_file_to_av(file), 0);
3258 }
3259 
3260 /* task security operations */
3261 
3262 static int selinux_task_create(unsigned long clone_flags)
3263 {
3264 	return current_has_perm(current, PROCESS__FORK);
3265 }
3266 
3267 /*
3268  * allocate the SELinux part of blank credentials
3269  */
3270 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3271 {
3272 	struct task_security_struct *tsec;
3273 
3274 	tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3275 	if (!tsec)
3276 		return -ENOMEM;
3277 
3278 	cred->security = tsec;
3279 	return 0;
3280 }
3281 
3282 /*
3283  * detach and free the LSM part of a set of credentials
3284  */
3285 static void selinux_cred_free(struct cred *cred)
3286 {
3287 	struct task_security_struct *tsec = cred->security;
3288 
3289 	/*
3290 	 * cred->security == NULL if security_cred_alloc_blank() or
3291 	 * security_prepare_creds() returned an error.
3292 	 */
3293 	BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3294 	cred->security = (void *) 0x7UL;
3295 	kfree(tsec);
3296 }
3297 
3298 /*
3299  * prepare a new set of credentials for modification
3300  */
3301 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3302 				gfp_t gfp)
3303 {
3304 	const struct task_security_struct *old_tsec;
3305 	struct task_security_struct *tsec;
3306 
3307 	old_tsec = old->security;
3308 
3309 	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3310 	if (!tsec)
3311 		return -ENOMEM;
3312 
3313 	new->security = tsec;
3314 	return 0;
3315 }
3316 
3317 /*
3318  * transfer the SELinux data to a blank set of creds
3319  */
3320 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3321 {
3322 	const struct task_security_struct *old_tsec = old->security;
3323 	struct task_security_struct *tsec = new->security;
3324 
3325 	*tsec = *old_tsec;
3326 }
3327 
3328 /*
3329  * set the security data for a kernel service
3330  * - all the creation contexts are set to unlabelled
3331  */
3332 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3333 {
3334 	struct task_security_struct *tsec = new->security;
3335 	u32 sid = current_sid();
3336 	int ret;
3337 
3338 	ret = avc_has_perm(sid, secid,
3339 			   SECCLASS_KERNEL_SERVICE,
3340 			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3341 			   NULL);
3342 	if (ret == 0) {
3343 		tsec->sid = secid;
3344 		tsec->create_sid = 0;
3345 		tsec->keycreate_sid = 0;
3346 		tsec->sockcreate_sid = 0;
3347 	}
3348 	return ret;
3349 }
3350 
3351 /*
3352  * set the file creation context in a security record to the same as the
3353  * objective context of the specified inode
3354  */
3355 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3356 {
3357 	struct inode_security_struct *isec = inode->i_security;
3358 	struct task_security_struct *tsec = new->security;
3359 	u32 sid = current_sid();
3360 	int ret;
3361 
3362 	ret = avc_has_perm(sid, isec->sid,
3363 			   SECCLASS_KERNEL_SERVICE,
3364 			   KERNEL_SERVICE__CREATE_FILES_AS,
3365 			   NULL);
3366 
3367 	if (ret == 0)
3368 		tsec->create_sid = isec->sid;
3369 	return ret;
3370 }
3371 
3372 static int selinux_kernel_module_request(char *kmod_name)
3373 {
3374 	u32 sid;
3375 	struct common_audit_data ad;
3376 	struct selinux_audit_data sad = {0,};
3377 
3378 	sid = task_sid(current);
3379 
3380 	COMMON_AUDIT_DATA_INIT(&ad, KMOD);
3381 	ad.selinux_audit_data = &sad;
3382 	ad.u.kmod_name = kmod_name;
3383 
3384 	return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3385 			    SYSTEM__MODULE_REQUEST, &ad);
3386 }
3387 
3388 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3389 {
3390 	return current_has_perm(p, PROCESS__SETPGID);
3391 }
3392 
3393 static int selinux_task_getpgid(struct task_struct *p)
3394 {
3395 	return current_has_perm(p, PROCESS__GETPGID);
3396 }
3397 
3398 static int selinux_task_getsid(struct task_struct *p)
3399 {
3400 	return current_has_perm(p, PROCESS__GETSESSION);
3401 }
3402 
3403 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3404 {
3405 	*secid = task_sid(p);
3406 }
3407 
3408 static int selinux_task_setnice(struct task_struct *p, int nice)
3409 {
3410 	int rc;
3411 
3412 	rc = cap_task_setnice(p, nice);
3413 	if (rc)
3414 		return rc;
3415 
3416 	return current_has_perm(p, PROCESS__SETSCHED);
3417 }
3418 
3419 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3420 {
3421 	int rc;
3422 
3423 	rc = cap_task_setioprio(p, ioprio);
3424 	if (rc)
3425 		return rc;
3426 
3427 	return current_has_perm(p, PROCESS__SETSCHED);
3428 }
3429 
3430 static int selinux_task_getioprio(struct task_struct *p)
3431 {
3432 	return current_has_perm(p, PROCESS__GETSCHED);
3433 }
3434 
3435 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3436 		struct rlimit *new_rlim)
3437 {
3438 	struct rlimit *old_rlim = p->signal->rlim + resource;
3439 
3440 	/* Control the ability to change the hard limit (whether
3441 	   lowering or raising it), so that the hard limit can
3442 	   later be used as a safe reset point for the soft limit
3443 	   upon context transitions.  See selinux_bprm_committing_creds. */
3444 	if (old_rlim->rlim_max != new_rlim->rlim_max)
3445 		return current_has_perm(p, PROCESS__SETRLIMIT);
3446 
3447 	return 0;
3448 }
3449 
3450 static int selinux_task_setscheduler(struct task_struct *p)
3451 {
3452 	int rc;
3453 
3454 	rc = cap_task_setscheduler(p);
3455 	if (rc)
3456 		return rc;
3457 
3458 	return current_has_perm(p, PROCESS__SETSCHED);
3459 }
3460 
3461 static int selinux_task_getscheduler(struct task_struct *p)
3462 {
3463 	return current_has_perm(p, PROCESS__GETSCHED);
3464 }
3465 
3466 static int selinux_task_movememory(struct task_struct *p)
3467 {
3468 	return current_has_perm(p, PROCESS__SETSCHED);
3469 }
3470 
3471 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3472 				int sig, u32 secid)
3473 {
3474 	u32 perm;
3475 	int rc;
3476 
3477 	if (!sig)
3478 		perm = PROCESS__SIGNULL; /* null signal; existence test */
3479 	else
3480 		perm = signal_to_av(sig);
3481 	if (secid)
3482 		rc = avc_has_perm(secid, task_sid(p),
3483 				  SECCLASS_PROCESS, perm, NULL);
3484 	else
3485 		rc = current_has_perm(p, perm);
3486 	return rc;
3487 }
3488 
3489 static int selinux_task_wait(struct task_struct *p)
3490 {
3491 	return task_has_perm(p, current, PROCESS__SIGCHLD);
3492 }
3493 
3494 static void selinux_task_to_inode(struct task_struct *p,
3495 				  struct inode *inode)
3496 {
3497 	struct inode_security_struct *isec = inode->i_security;
3498 	u32 sid = task_sid(p);
3499 
3500 	isec->sid = sid;
3501 	isec->initialized = 1;
3502 }
3503 
3504 /* Returns error only if unable to parse addresses */
3505 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3506 			struct common_audit_data *ad, u8 *proto)
3507 {
3508 	int offset, ihlen, ret = -EINVAL;
3509 	struct iphdr _iph, *ih;
3510 
3511 	offset = skb_network_offset(skb);
3512 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3513 	if (ih == NULL)
3514 		goto out;
3515 
3516 	ihlen = ih->ihl * 4;
3517 	if (ihlen < sizeof(_iph))
3518 		goto out;
3519 
3520 	ad->u.net->v4info.saddr = ih->saddr;
3521 	ad->u.net->v4info.daddr = ih->daddr;
3522 	ret = 0;
3523 
3524 	if (proto)
3525 		*proto = ih->protocol;
3526 
3527 	switch (ih->protocol) {
3528 	case IPPROTO_TCP: {
3529 		struct tcphdr _tcph, *th;
3530 
3531 		if (ntohs(ih->frag_off) & IP_OFFSET)
3532 			break;
3533 
3534 		offset += ihlen;
3535 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3536 		if (th == NULL)
3537 			break;
3538 
3539 		ad->u.net->sport = th->source;
3540 		ad->u.net->dport = th->dest;
3541 		break;
3542 	}
3543 
3544 	case IPPROTO_UDP: {
3545 		struct udphdr _udph, *uh;
3546 
3547 		if (ntohs(ih->frag_off) & IP_OFFSET)
3548 			break;
3549 
3550 		offset += ihlen;
3551 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3552 		if (uh == NULL)
3553 			break;
3554 
3555 		ad->u.net->sport = uh->source;
3556 		ad->u.net->dport = uh->dest;
3557 		break;
3558 	}
3559 
3560 	case IPPROTO_DCCP: {
3561 		struct dccp_hdr _dccph, *dh;
3562 
3563 		if (ntohs(ih->frag_off) & IP_OFFSET)
3564 			break;
3565 
3566 		offset += ihlen;
3567 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3568 		if (dh == NULL)
3569 			break;
3570 
3571 		ad->u.net->sport = dh->dccph_sport;
3572 		ad->u.net->dport = dh->dccph_dport;
3573 		break;
3574 	}
3575 
3576 	default:
3577 		break;
3578 	}
3579 out:
3580 	return ret;
3581 }
3582 
3583 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3584 
3585 /* Returns error only if unable to parse addresses */
3586 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3587 			struct common_audit_data *ad, u8 *proto)
3588 {
3589 	u8 nexthdr;
3590 	int ret = -EINVAL, offset;
3591 	struct ipv6hdr _ipv6h, *ip6;
3592 	__be16 frag_off;
3593 
3594 	offset = skb_network_offset(skb);
3595 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3596 	if (ip6 == NULL)
3597 		goto out;
3598 
3599 	ad->u.net->v6info.saddr = ip6->saddr;
3600 	ad->u.net->v6info.daddr = ip6->daddr;
3601 	ret = 0;
3602 
3603 	nexthdr = ip6->nexthdr;
3604 	offset += sizeof(_ipv6h);
3605 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3606 	if (offset < 0)
3607 		goto out;
3608 
3609 	if (proto)
3610 		*proto = nexthdr;
3611 
3612 	switch (nexthdr) {
3613 	case IPPROTO_TCP: {
3614 		struct tcphdr _tcph, *th;
3615 
3616 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3617 		if (th == NULL)
3618 			break;
3619 
3620 		ad->u.net->sport = th->source;
3621 		ad->u.net->dport = th->dest;
3622 		break;
3623 	}
3624 
3625 	case IPPROTO_UDP: {
3626 		struct udphdr _udph, *uh;
3627 
3628 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3629 		if (uh == NULL)
3630 			break;
3631 
3632 		ad->u.net->sport = uh->source;
3633 		ad->u.net->dport = uh->dest;
3634 		break;
3635 	}
3636 
3637 	case IPPROTO_DCCP: {
3638 		struct dccp_hdr _dccph, *dh;
3639 
3640 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3641 		if (dh == NULL)
3642 			break;
3643 
3644 		ad->u.net->sport = dh->dccph_sport;
3645 		ad->u.net->dport = dh->dccph_dport;
3646 		break;
3647 	}
3648 
3649 	/* includes fragments */
3650 	default:
3651 		break;
3652 	}
3653 out:
3654 	return ret;
3655 }
3656 
3657 #endif /* IPV6 */
3658 
3659 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3660 			     char **_addrp, int src, u8 *proto)
3661 {
3662 	char *addrp;
3663 	int ret;
3664 
3665 	switch (ad->u.net->family) {
3666 	case PF_INET:
3667 		ret = selinux_parse_skb_ipv4(skb, ad, proto);
3668 		if (ret)
3669 			goto parse_error;
3670 		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3671 				       &ad->u.net->v4info.daddr);
3672 		goto okay;
3673 
3674 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3675 	case PF_INET6:
3676 		ret = selinux_parse_skb_ipv6(skb, ad, proto);
3677 		if (ret)
3678 			goto parse_error;
3679 		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3680 				       &ad->u.net->v6info.daddr);
3681 		goto okay;
3682 #endif	/* IPV6 */
3683 	default:
3684 		addrp = NULL;
3685 		goto okay;
3686 	}
3687 
3688 parse_error:
3689 	printk(KERN_WARNING
3690 	       "SELinux: failure in selinux_parse_skb(),"
3691 	       " unable to parse packet\n");
3692 	return ret;
3693 
3694 okay:
3695 	if (_addrp)
3696 		*_addrp = addrp;
3697 	return 0;
3698 }
3699 
3700 /**
3701  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3702  * @skb: the packet
3703  * @family: protocol family
3704  * @sid: the packet's peer label SID
3705  *
3706  * Description:
3707  * Check the various different forms of network peer labeling and determine
3708  * the peer label/SID for the packet; most of the magic actually occurs in
3709  * the security server function security_net_peersid_cmp().  The function
3710  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3711  * or -EACCES if @sid is invalid due to inconsistencies with the different
3712  * peer labels.
3713  *
3714  */
3715 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3716 {
3717 	int err;
3718 	u32 xfrm_sid;
3719 	u32 nlbl_sid;
3720 	u32 nlbl_type;
3721 
3722 	selinux_skb_xfrm_sid(skb, &xfrm_sid);
3723 	selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3724 
3725 	err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3726 	if (unlikely(err)) {
3727 		printk(KERN_WARNING
3728 		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
3729 		       " unable to determine packet's peer label\n");
3730 		return -EACCES;
3731 	}
3732 
3733 	return 0;
3734 }
3735 
3736 /* socket security operations */
3737 
3738 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3739 				 u16 secclass, u32 *socksid)
3740 {
3741 	if (tsec->sockcreate_sid > SECSID_NULL) {
3742 		*socksid = tsec->sockcreate_sid;
3743 		return 0;
3744 	}
3745 
3746 	return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3747 				       socksid);
3748 }
3749 
3750 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3751 {
3752 	struct sk_security_struct *sksec = sk->sk_security;
3753 	struct common_audit_data ad;
3754 	struct selinux_audit_data sad = {0,};
3755 	struct lsm_network_audit net = {0,};
3756 	u32 tsid = task_sid(task);
3757 
3758 	if (sksec->sid == SECINITSID_KERNEL)
3759 		return 0;
3760 
3761 	COMMON_AUDIT_DATA_INIT(&ad, NET);
3762 	ad.selinux_audit_data = &sad;
3763 	ad.u.net = &net;
3764 	ad.u.net->sk = sk;
3765 
3766 	return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3767 }
3768 
3769 static int selinux_socket_create(int family, int type,
3770 				 int protocol, int kern)
3771 {
3772 	const struct task_security_struct *tsec = current_security();
3773 	u32 newsid;
3774 	u16 secclass;
3775 	int rc;
3776 
3777 	if (kern)
3778 		return 0;
3779 
3780 	secclass = socket_type_to_security_class(family, type, protocol);
3781 	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3782 	if (rc)
3783 		return rc;
3784 
3785 	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3786 }
3787 
3788 static int selinux_socket_post_create(struct socket *sock, int family,
3789 				      int type, int protocol, int kern)
3790 {
3791 	const struct task_security_struct *tsec = current_security();
3792 	struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3793 	struct sk_security_struct *sksec;
3794 	int err = 0;
3795 
3796 	isec->sclass = socket_type_to_security_class(family, type, protocol);
3797 
3798 	if (kern)
3799 		isec->sid = SECINITSID_KERNEL;
3800 	else {
3801 		err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3802 		if (err)
3803 			return err;
3804 	}
3805 
3806 	isec->initialized = 1;
3807 
3808 	if (sock->sk) {
3809 		sksec = sock->sk->sk_security;
3810 		sksec->sid = isec->sid;
3811 		sksec->sclass = isec->sclass;
3812 		err = selinux_netlbl_socket_post_create(sock->sk, family);
3813 	}
3814 
3815 	return err;
3816 }
3817 
3818 /* Range of port numbers used to automatically bind.
3819    Need to determine whether we should perform a name_bind
3820    permission check between the socket and the port number. */
3821 
3822 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3823 {
3824 	struct sock *sk = sock->sk;
3825 	u16 family;
3826 	int err;
3827 
3828 	err = sock_has_perm(current, sk, SOCKET__BIND);
3829 	if (err)
3830 		goto out;
3831 
3832 	/*
3833 	 * If PF_INET or PF_INET6, check name_bind permission for the port.
3834 	 * Multiple address binding for SCTP is not supported yet: we just
3835 	 * check the first address now.
3836 	 */
3837 	family = sk->sk_family;
3838 	if (family == PF_INET || family == PF_INET6) {
3839 		char *addrp;
3840 		struct sk_security_struct *sksec = sk->sk_security;
3841 		struct common_audit_data ad;
3842 		struct selinux_audit_data sad = {0,};
3843 		struct lsm_network_audit net = {0,};
3844 		struct sockaddr_in *addr4 = NULL;
3845 		struct sockaddr_in6 *addr6 = NULL;
3846 		unsigned short snum;
3847 		u32 sid, node_perm;
3848 
3849 		if (family == PF_INET) {
3850 			addr4 = (struct sockaddr_in *)address;
3851 			snum = ntohs(addr4->sin_port);
3852 			addrp = (char *)&addr4->sin_addr.s_addr;
3853 		} else {
3854 			addr6 = (struct sockaddr_in6 *)address;
3855 			snum = ntohs(addr6->sin6_port);
3856 			addrp = (char *)&addr6->sin6_addr.s6_addr;
3857 		}
3858 
3859 		if (snum) {
3860 			int low, high;
3861 
3862 			inet_get_local_port_range(&low, &high);
3863 
3864 			if (snum < max(PROT_SOCK, low) || snum > high) {
3865 				err = sel_netport_sid(sk->sk_protocol,
3866 						      snum, &sid);
3867 				if (err)
3868 					goto out;
3869 				COMMON_AUDIT_DATA_INIT(&ad, NET);
3870 				ad.selinux_audit_data = &sad;
3871 				ad.u.net = &net;
3872 				ad.u.net->sport = htons(snum);
3873 				ad.u.net->family = family;
3874 				err = avc_has_perm(sksec->sid, sid,
3875 						   sksec->sclass,
3876 						   SOCKET__NAME_BIND, &ad);
3877 				if (err)
3878 					goto out;
3879 			}
3880 		}
3881 
3882 		switch (sksec->sclass) {
3883 		case SECCLASS_TCP_SOCKET:
3884 			node_perm = TCP_SOCKET__NODE_BIND;
3885 			break;
3886 
3887 		case SECCLASS_UDP_SOCKET:
3888 			node_perm = UDP_SOCKET__NODE_BIND;
3889 			break;
3890 
3891 		case SECCLASS_DCCP_SOCKET:
3892 			node_perm = DCCP_SOCKET__NODE_BIND;
3893 			break;
3894 
3895 		default:
3896 			node_perm = RAWIP_SOCKET__NODE_BIND;
3897 			break;
3898 		}
3899 
3900 		err = sel_netnode_sid(addrp, family, &sid);
3901 		if (err)
3902 			goto out;
3903 
3904 		COMMON_AUDIT_DATA_INIT(&ad, NET);
3905 		ad.selinux_audit_data = &sad;
3906 		ad.u.net = &net;
3907 		ad.u.net->sport = htons(snum);
3908 		ad.u.net->family = family;
3909 
3910 		if (family == PF_INET)
3911 			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
3912 		else
3913 			ad.u.net->v6info.saddr = addr6->sin6_addr;
3914 
3915 		err = avc_has_perm(sksec->sid, sid,
3916 				   sksec->sclass, node_perm, &ad);
3917 		if (err)
3918 			goto out;
3919 	}
3920 out:
3921 	return err;
3922 }
3923 
3924 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3925 {
3926 	struct sock *sk = sock->sk;
3927 	struct sk_security_struct *sksec = sk->sk_security;
3928 	int err;
3929 
3930 	err = sock_has_perm(current, sk, SOCKET__CONNECT);
3931 	if (err)
3932 		return err;
3933 
3934 	/*
3935 	 * If a TCP or DCCP socket, check name_connect permission for the port.
3936 	 */
3937 	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
3938 	    sksec->sclass == SECCLASS_DCCP_SOCKET) {
3939 		struct common_audit_data ad;
3940 		struct selinux_audit_data sad = {0,};
3941 		struct lsm_network_audit net = {0,};
3942 		struct sockaddr_in *addr4 = NULL;
3943 		struct sockaddr_in6 *addr6 = NULL;
3944 		unsigned short snum;
3945 		u32 sid, perm;
3946 
3947 		if (sk->sk_family == PF_INET) {
3948 			addr4 = (struct sockaddr_in *)address;
3949 			if (addrlen < sizeof(struct sockaddr_in))
3950 				return -EINVAL;
3951 			snum = ntohs(addr4->sin_port);
3952 		} else {
3953 			addr6 = (struct sockaddr_in6 *)address;
3954 			if (addrlen < SIN6_LEN_RFC2133)
3955 				return -EINVAL;
3956 			snum = ntohs(addr6->sin6_port);
3957 		}
3958 
3959 		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3960 		if (err)
3961 			goto out;
3962 
3963 		perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
3964 		       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3965 
3966 		COMMON_AUDIT_DATA_INIT(&ad, NET);
3967 		ad.selinux_audit_data = &sad;
3968 		ad.u.net = &net;
3969 		ad.u.net->dport = htons(snum);
3970 		ad.u.net->family = sk->sk_family;
3971 		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
3972 		if (err)
3973 			goto out;
3974 	}
3975 
3976 	err = selinux_netlbl_socket_connect(sk, address);
3977 
3978 out:
3979 	return err;
3980 }
3981 
3982 static int selinux_socket_listen(struct socket *sock, int backlog)
3983 {
3984 	return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
3985 }
3986 
3987 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3988 {
3989 	int err;
3990 	struct inode_security_struct *isec;
3991 	struct inode_security_struct *newisec;
3992 
3993 	err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
3994 	if (err)
3995 		return err;
3996 
3997 	newisec = SOCK_INODE(newsock)->i_security;
3998 
3999 	isec = SOCK_INODE(sock)->i_security;
4000 	newisec->sclass = isec->sclass;
4001 	newisec->sid = isec->sid;
4002 	newisec->initialized = 1;
4003 
4004 	return 0;
4005 }
4006 
4007 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4008 				  int size)
4009 {
4010 	return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4011 }
4012 
4013 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4014 				  int size, int flags)
4015 {
4016 	return sock_has_perm(current, sock->sk, SOCKET__READ);
4017 }
4018 
4019 static int selinux_socket_getsockname(struct socket *sock)
4020 {
4021 	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4022 }
4023 
4024 static int selinux_socket_getpeername(struct socket *sock)
4025 {
4026 	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4027 }
4028 
4029 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4030 {
4031 	int err;
4032 
4033 	err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4034 	if (err)
4035 		return err;
4036 
4037 	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4038 }
4039 
4040 static int selinux_socket_getsockopt(struct socket *sock, int level,
4041 				     int optname)
4042 {
4043 	return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4044 }
4045 
4046 static int selinux_socket_shutdown(struct socket *sock, int how)
4047 {
4048 	return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4049 }
4050 
4051 static int selinux_socket_unix_stream_connect(struct sock *sock,
4052 					      struct sock *other,
4053 					      struct sock *newsk)
4054 {
4055 	struct sk_security_struct *sksec_sock = sock->sk_security;
4056 	struct sk_security_struct *sksec_other = other->sk_security;
4057 	struct sk_security_struct *sksec_new = newsk->sk_security;
4058 	struct common_audit_data ad;
4059 	struct selinux_audit_data sad = {0,};
4060 	struct lsm_network_audit net = {0,};
4061 	int err;
4062 
4063 	COMMON_AUDIT_DATA_INIT(&ad, NET);
4064 	ad.selinux_audit_data = &sad;
4065 	ad.u.net = &net;
4066 	ad.u.net->sk = other;
4067 
4068 	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4069 			   sksec_other->sclass,
4070 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4071 	if (err)
4072 		return err;
4073 
4074 	/* server child socket */
4075 	sksec_new->peer_sid = sksec_sock->sid;
4076 	err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4077 				    &sksec_new->sid);
4078 	if (err)
4079 		return err;
4080 
4081 	/* connecting socket */
4082 	sksec_sock->peer_sid = sksec_new->sid;
4083 
4084 	return 0;
4085 }
4086 
4087 static int selinux_socket_unix_may_send(struct socket *sock,
4088 					struct socket *other)
4089 {
4090 	struct sk_security_struct *ssec = sock->sk->sk_security;
4091 	struct sk_security_struct *osec = other->sk->sk_security;
4092 	struct common_audit_data ad;
4093 	struct selinux_audit_data sad = {0,};
4094 	struct lsm_network_audit net = {0,};
4095 
4096 	COMMON_AUDIT_DATA_INIT(&ad, NET);
4097 	ad.selinux_audit_data = &sad;
4098 	ad.u.net = &net;
4099 	ad.u.net->sk = other->sk;
4100 
4101 	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4102 			    &ad);
4103 }
4104 
4105 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4106 				    u32 peer_sid,
4107 				    struct common_audit_data *ad)
4108 {
4109 	int err;
4110 	u32 if_sid;
4111 	u32 node_sid;
4112 
4113 	err = sel_netif_sid(ifindex, &if_sid);
4114 	if (err)
4115 		return err;
4116 	err = avc_has_perm(peer_sid, if_sid,
4117 			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4118 	if (err)
4119 		return err;
4120 
4121 	err = sel_netnode_sid(addrp, family, &node_sid);
4122 	if (err)
4123 		return err;
4124 	return avc_has_perm(peer_sid, node_sid,
4125 			    SECCLASS_NODE, NODE__RECVFROM, ad);
4126 }
4127 
4128 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4129 				       u16 family)
4130 {
4131 	int err = 0;
4132 	struct sk_security_struct *sksec = sk->sk_security;
4133 	u32 sk_sid = sksec->sid;
4134 	struct common_audit_data ad;
4135 	struct selinux_audit_data sad = {0,};
4136 	struct lsm_network_audit net = {0,};
4137 	char *addrp;
4138 
4139 	COMMON_AUDIT_DATA_INIT(&ad, NET);
4140 	ad.selinux_audit_data = &sad;
4141 	ad.u.net = &net;
4142 	ad.u.net->netif = skb->skb_iif;
4143 	ad.u.net->family = family;
4144 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4145 	if (err)
4146 		return err;
4147 
4148 	if (selinux_secmark_enabled()) {
4149 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4150 				   PACKET__RECV, &ad);
4151 		if (err)
4152 			return err;
4153 	}
4154 
4155 	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4156 	if (err)
4157 		return err;
4158 	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4159 
4160 	return err;
4161 }
4162 
4163 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4164 {
4165 	int err;
4166 	struct sk_security_struct *sksec = sk->sk_security;
4167 	u16 family = sk->sk_family;
4168 	u32 sk_sid = sksec->sid;
4169 	struct common_audit_data ad;
4170 	struct selinux_audit_data sad = {0,};
4171 	struct lsm_network_audit net = {0,};
4172 	char *addrp;
4173 	u8 secmark_active;
4174 	u8 peerlbl_active;
4175 
4176 	if (family != PF_INET && family != PF_INET6)
4177 		return 0;
4178 
4179 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4180 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4181 		family = PF_INET;
4182 
4183 	/* If any sort of compatibility mode is enabled then handoff processing
4184 	 * to the selinux_sock_rcv_skb_compat() function to deal with the
4185 	 * special handling.  We do this in an attempt to keep this function
4186 	 * as fast and as clean as possible. */
4187 	if (!selinux_policycap_netpeer)
4188 		return selinux_sock_rcv_skb_compat(sk, skb, family);
4189 
4190 	secmark_active = selinux_secmark_enabled();
4191 	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4192 	if (!secmark_active && !peerlbl_active)
4193 		return 0;
4194 
4195 	COMMON_AUDIT_DATA_INIT(&ad, NET);
4196 	ad.selinux_audit_data = &sad;
4197 	ad.u.net = &net;
4198 	ad.u.net->netif = skb->skb_iif;
4199 	ad.u.net->family = family;
4200 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4201 	if (err)
4202 		return err;
4203 
4204 	if (peerlbl_active) {
4205 		u32 peer_sid;
4206 
4207 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4208 		if (err)
4209 			return err;
4210 		err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4211 					       peer_sid, &ad);
4212 		if (err) {
4213 			selinux_netlbl_err(skb, err, 0);
4214 			return err;
4215 		}
4216 		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4217 				   PEER__RECV, &ad);
4218 		if (err)
4219 			selinux_netlbl_err(skb, err, 0);
4220 	}
4221 
4222 	if (secmark_active) {
4223 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4224 				   PACKET__RECV, &ad);
4225 		if (err)
4226 			return err;
4227 	}
4228 
4229 	return err;
4230 }
4231 
4232 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4233 					    int __user *optlen, unsigned len)
4234 {
4235 	int err = 0;
4236 	char *scontext;
4237 	u32 scontext_len;
4238 	struct sk_security_struct *sksec = sock->sk->sk_security;
4239 	u32 peer_sid = SECSID_NULL;
4240 
4241 	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4242 	    sksec->sclass == SECCLASS_TCP_SOCKET)
4243 		peer_sid = sksec->peer_sid;
4244 	if (peer_sid == SECSID_NULL)
4245 		return -ENOPROTOOPT;
4246 
4247 	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4248 	if (err)
4249 		return err;
4250 
4251 	if (scontext_len > len) {
4252 		err = -ERANGE;
4253 		goto out_len;
4254 	}
4255 
4256 	if (copy_to_user(optval, scontext, scontext_len))
4257 		err = -EFAULT;
4258 
4259 out_len:
4260 	if (put_user(scontext_len, optlen))
4261 		err = -EFAULT;
4262 	kfree(scontext);
4263 	return err;
4264 }
4265 
4266 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4267 {
4268 	u32 peer_secid = SECSID_NULL;
4269 	u16 family;
4270 
4271 	if (skb && skb->protocol == htons(ETH_P_IP))
4272 		family = PF_INET;
4273 	else if (skb && skb->protocol == htons(ETH_P_IPV6))
4274 		family = PF_INET6;
4275 	else if (sock)
4276 		family = sock->sk->sk_family;
4277 	else
4278 		goto out;
4279 
4280 	if (sock && family == PF_UNIX)
4281 		selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4282 	else if (skb)
4283 		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4284 
4285 out:
4286 	*secid = peer_secid;
4287 	if (peer_secid == SECSID_NULL)
4288 		return -EINVAL;
4289 	return 0;
4290 }
4291 
4292 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4293 {
4294 	struct sk_security_struct *sksec;
4295 
4296 	sksec = kzalloc(sizeof(*sksec), priority);
4297 	if (!sksec)
4298 		return -ENOMEM;
4299 
4300 	sksec->peer_sid = SECINITSID_UNLABELED;
4301 	sksec->sid = SECINITSID_UNLABELED;
4302 	selinux_netlbl_sk_security_reset(sksec);
4303 	sk->sk_security = sksec;
4304 
4305 	return 0;
4306 }
4307 
4308 static void selinux_sk_free_security(struct sock *sk)
4309 {
4310 	struct sk_security_struct *sksec = sk->sk_security;
4311 
4312 	sk->sk_security = NULL;
4313 	selinux_netlbl_sk_security_free(sksec);
4314 	kfree(sksec);
4315 }
4316 
4317 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4318 {
4319 	struct sk_security_struct *sksec = sk->sk_security;
4320 	struct sk_security_struct *newsksec = newsk->sk_security;
4321 
4322 	newsksec->sid = sksec->sid;
4323 	newsksec->peer_sid = sksec->peer_sid;
4324 	newsksec->sclass = sksec->sclass;
4325 
4326 	selinux_netlbl_sk_security_reset(newsksec);
4327 }
4328 
4329 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4330 {
4331 	if (!sk)
4332 		*secid = SECINITSID_ANY_SOCKET;
4333 	else {
4334 		struct sk_security_struct *sksec = sk->sk_security;
4335 
4336 		*secid = sksec->sid;
4337 	}
4338 }
4339 
4340 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4341 {
4342 	struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4343 	struct sk_security_struct *sksec = sk->sk_security;
4344 
4345 	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4346 	    sk->sk_family == PF_UNIX)
4347 		isec->sid = sksec->sid;
4348 	sksec->sclass = isec->sclass;
4349 }
4350 
4351 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4352 				     struct request_sock *req)
4353 {
4354 	struct sk_security_struct *sksec = sk->sk_security;
4355 	int err;
4356 	u16 family = sk->sk_family;
4357 	u32 newsid;
4358 	u32 peersid;
4359 
4360 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4361 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4362 		family = PF_INET;
4363 
4364 	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4365 	if (err)
4366 		return err;
4367 	if (peersid == SECSID_NULL) {
4368 		req->secid = sksec->sid;
4369 		req->peer_secid = SECSID_NULL;
4370 	} else {
4371 		err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4372 		if (err)
4373 			return err;
4374 		req->secid = newsid;
4375 		req->peer_secid = peersid;
4376 	}
4377 
4378 	return selinux_netlbl_inet_conn_request(req, family);
4379 }
4380 
4381 static void selinux_inet_csk_clone(struct sock *newsk,
4382 				   const struct request_sock *req)
4383 {
4384 	struct sk_security_struct *newsksec = newsk->sk_security;
4385 
4386 	newsksec->sid = req->secid;
4387 	newsksec->peer_sid = req->peer_secid;
4388 	/* NOTE: Ideally, we should also get the isec->sid for the
4389 	   new socket in sync, but we don't have the isec available yet.
4390 	   So we will wait until sock_graft to do it, by which
4391 	   time it will have been created and available. */
4392 
4393 	/* We don't need to take any sort of lock here as we are the only
4394 	 * thread with access to newsksec */
4395 	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4396 }
4397 
4398 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4399 {
4400 	u16 family = sk->sk_family;
4401 	struct sk_security_struct *sksec = sk->sk_security;
4402 
4403 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4404 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4405 		family = PF_INET;
4406 
4407 	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4408 }
4409 
4410 static int selinux_secmark_relabel_packet(u32 sid)
4411 {
4412 	const struct task_security_struct *__tsec;
4413 	u32 tsid;
4414 
4415 	__tsec = current_security();
4416 	tsid = __tsec->sid;
4417 
4418 	return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4419 }
4420 
4421 static void selinux_secmark_refcount_inc(void)
4422 {
4423 	atomic_inc(&selinux_secmark_refcount);
4424 }
4425 
4426 static void selinux_secmark_refcount_dec(void)
4427 {
4428 	atomic_dec(&selinux_secmark_refcount);
4429 }
4430 
4431 static void selinux_req_classify_flow(const struct request_sock *req,
4432 				      struct flowi *fl)
4433 {
4434 	fl->flowi_secid = req->secid;
4435 }
4436 
4437 static int selinux_tun_dev_create(void)
4438 {
4439 	u32 sid = current_sid();
4440 
4441 	/* we aren't taking into account the "sockcreate" SID since the socket
4442 	 * that is being created here is not a socket in the traditional sense,
4443 	 * instead it is a private sock, accessible only to the kernel, and
4444 	 * representing a wide range of network traffic spanning multiple
4445 	 * connections unlike traditional sockets - check the TUN driver to
4446 	 * get a better understanding of why this socket is special */
4447 
4448 	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4449 			    NULL);
4450 }
4451 
4452 static void selinux_tun_dev_post_create(struct sock *sk)
4453 {
4454 	struct sk_security_struct *sksec = sk->sk_security;
4455 
4456 	/* we don't currently perform any NetLabel based labeling here and it
4457 	 * isn't clear that we would want to do so anyway; while we could apply
4458 	 * labeling without the support of the TUN user the resulting labeled
4459 	 * traffic from the other end of the connection would almost certainly
4460 	 * cause confusion to the TUN user that had no idea network labeling
4461 	 * protocols were being used */
4462 
4463 	/* see the comments in selinux_tun_dev_create() about why we don't use
4464 	 * the sockcreate SID here */
4465 
4466 	sksec->sid = current_sid();
4467 	sksec->sclass = SECCLASS_TUN_SOCKET;
4468 }
4469 
4470 static int selinux_tun_dev_attach(struct sock *sk)
4471 {
4472 	struct sk_security_struct *sksec = sk->sk_security;
4473 	u32 sid = current_sid();
4474 	int err;
4475 
4476 	err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
4477 			   TUN_SOCKET__RELABELFROM, NULL);
4478 	if (err)
4479 		return err;
4480 	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4481 			   TUN_SOCKET__RELABELTO, NULL);
4482 	if (err)
4483 		return err;
4484 
4485 	sksec->sid = sid;
4486 
4487 	return 0;
4488 }
4489 
4490 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4491 {
4492 	int err = 0;
4493 	u32 perm;
4494 	struct nlmsghdr *nlh;
4495 	struct sk_security_struct *sksec = sk->sk_security;
4496 
4497 	if (skb->len < NLMSG_SPACE(0)) {
4498 		err = -EINVAL;
4499 		goto out;
4500 	}
4501 	nlh = nlmsg_hdr(skb);
4502 
4503 	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4504 	if (err) {
4505 		if (err == -EINVAL) {
4506 			audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4507 				  "SELinux:  unrecognized netlink message"
4508 				  " type=%hu for sclass=%hu\n",
4509 				  nlh->nlmsg_type, sksec->sclass);
4510 			if (!selinux_enforcing || security_get_allow_unknown())
4511 				err = 0;
4512 		}
4513 
4514 		/* Ignore */
4515 		if (err == -ENOENT)
4516 			err = 0;
4517 		goto out;
4518 	}
4519 
4520 	err = sock_has_perm(current, sk, perm);
4521 out:
4522 	return err;
4523 }
4524 
4525 #ifdef CONFIG_NETFILTER
4526 
4527 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4528 				       u16 family)
4529 {
4530 	int err;
4531 	char *addrp;
4532 	u32 peer_sid;
4533 	struct common_audit_data ad;
4534 	struct selinux_audit_data sad = {0,};
4535 	struct lsm_network_audit net = {0,};
4536 	u8 secmark_active;
4537 	u8 netlbl_active;
4538 	u8 peerlbl_active;
4539 
4540 	if (!selinux_policycap_netpeer)
4541 		return NF_ACCEPT;
4542 
4543 	secmark_active = selinux_secmark_enabled();
4544 	netlbl_active = netlbl_enabled();
4545 	peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4546 	if (!secmark_active && !peerlbl_active)
4547 		return NF_ACCEPT;
4548 
4549 	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4550 		return NF_DROP;
4551 
4552 	COMMON_AUDIT_DATA_INIT(&ad, NET);
4553 	ad.selinux_audit_data = &sad;
4554 	ad.u.net = &net;
4555 	ad.u.net->netif = ifindex;
4556 	ad.u.net->family = family;
4557 	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4558 		return NF_DROP;
4559 
4560 	if (peerlbl_active) {
4561 		err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4562 					       peer_sid, &ad);
4563 		if (err) {
4564 			selinux_netlbl_err(skb, err, 1);
4565 			return NF_DROP;
4566 		}
4567 	}
4568 
4569 	if (secmark_active)
4570 		if (avc_has_perm(peer_sid, skb->secmark,
4571 				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4572 			return NF_DROP;
4573 
4574 	if (netlbl_active)
4575 		/* we do this in the FORWARD path and not the POST_ROUTING
4576 		 * path because we want to make sure we apply the necessary
4577 		 * labeling before IPsec is applied so we can leverage AH
4578 		 * protection */
4579 		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4580 			return NF_DROP;
4581 
4582 	return NF_ACCEPT;
4583 }
4584 
4585 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4586 					 struct sk_buff *skb,
4587 					 const struct net_device *in,
4588 					 const struct net_device *out,
4589 					 int (*okfn)(struct sk_buff *))
4590 {
4591 	return selinux_ip_forward(skb, in->ifindex, PF_INET);
4592 }
4593 
4594 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4595 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4596 					 struct sk_buff *skb,
4597 					 const struct net_device *in,
4598 					 const struct net_device *out,
4599 					 int (*okfn)(struct sk_buff *))
4600 {
4601 	return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4602 }
4603 #endif	/* IPV6 */
4604 
4605 static unsigned int selinux_ip_output(struct sk_buff *skb,
4606 				      u16 family)
4607 {
4608 	u32 sid;
4609 
4610 	if (!netlbl_enabled())
4611 		return NF_ACCEPT;
4612 
4613 	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4614 	 * because we want to make sure we apply the necessary labeling
4615 	 * before IPsec is applied so we can leverage AH protection */
4616 	if (skb->sk) {
4617 		struct sk_security_struct *sksec = skb->sk->sk_security;
4618 		sid = sksec->sid;
4619 	} else
4620 		sid = SECINITSID_KERNEL;
4621 	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4622 		return NF_DROP;
4623 
4624 	return NF_ACCEPT;
4625 }
4626 
4627 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4628 					struct sk_buff *skb,
4629 					const struct net_device *in,
4630 					const struct net_device *out,
4631 					int (*okfn)(struct sk_buff *))
4632 {
4633 	return selinux_ip_output(skb, PF_INET);
4634 }
4635 
4636 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4637 						int ifindex,
4638 						u16 family)
4639 {
4640 	struct sock *sk = skb->sk;
4641 	struct sk_security_struct *sksec;
4642 	struct common_audit_data ad;
4643 	struct selinux_audit_data sad = {0,};
4644 	struct lsm_network_audit net = {0,};
4645 	char *addrp;
4646 	u8 proto;
4647 
4648 	if (sk == NULL)
4649 		return NF_ACCEPT;
4650 	sksec = sk->sk_security;
4651 
4652 	COMMON_AUDIT_DATA_INIT(&ad, NET);
4653 	ad.selinux_audit_data = &sad;
4654 	ad.u.net = &net;
4655 	ad.u.net->netif = ifindex;
4656 	ad.u.net->family = family;
4657 	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4658 		return NF_DROP;
4659 
4660 	if (selinux_secmark_enabled())
4661 		if (avc_has_perm(sksec->sid, skb->secmark,
4662 				 SECCLASS_PACKET, PACKET__SEND, &ad))
4663 			return NF_DROP_ERR(-ECONNREFUSED);
4664 
4665 	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4666 		return NF_DROP_ERR(-ECONNREFUSED);
4667 
4668 	return NF_ACCEPT;
4669 }
4670 
4671 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4672 					 u16 family)
4673 {
4674 	u32 secmark_perm;
4675 	u32 peer_sid;
4676 	struct sock *sk;
4677 	struct common_audit_data ad;
4678 	struct selinux_audit_data sad = {0,};
4679 	struct lsm_network_audit net = {0,};
4680 	char *addrp;
4681 	u8 secmark_active;
4682 	u8 peerlbl_active;
4683 
4684 	/* If any sort of compatibility mode is enabled then handoff processing
4685 	 * to the selinux_ip_postroute_compat() function to deal with the
4686 	 * special handling.  We do this in an attempt to keep this function
4687 	 * as fast and as clean as possible. */
4688 	if (!selinux_policycap_netpeer)
4689 		return selinux_ip_postroute_compat(skb, ifindex, family);
4690 #ifdef CONFIG_XFRM
4691 	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4692 	 * packet transformation so allow the packet to pass without any checks
4693 	 * since we'll have another chance to perform access control checks
4694 	 * when the packet is on it's final way out.
4695 	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4696 	 *       is NULL, in this case go ahead and apply access control. */
4697 	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4698 		return NF_ACCEPT;
4699 #endif
4700 	secmark_active = selinux_secmark_enabled();
4701 	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4702 	if (!secmark_active && !peerlbl_active)
4703 		return NF_ACCEPT;
4704 
4705 	/* if the packet is being forwarded then get the peer label from the
4706 	 * packet itself; otherwise check to see if it is from a local
4707 	 * application or the kernel, if from an application get the peer label
4708 	 * from the sending socket, otherwise use the kernel's sid */
4709 	sk = skb->sk;
4710 	if (sk == NULL) {
4711 		if (skb->skb_iif) {
4712 			secmark_perm = PACKET__FORWARD_OUT;
4713 			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4714 				return NF_DROP;
4715 		} else {
4716 			secmark_perm = PACKET__SEND;
4717 			peer_sid = SECINITSID_KERNEL;
4718 		}
4719 	} else {
4720 		struct sk_security_struct *sksec = sk->sk_security;
4721 		peer_sid = sksec->sid;
4722 		secmark_perm = PACKET__SEND;
4723 	}
4724 
4725 	COMMON_AUDIT_DATA_INIT(&ad, NET);
4726 	ad.selinux_audit_data = &sad;
4727 	ad.u.net = &net;
4728 	ad.u.net->netif = ifindex;
4729 	ad.u.net->family = family;
4730 	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4731 		return NF_DROP;
4732 
4733 	if (secmark_active)
4734 		if (avc_has_perm(peer_sid, skb->secmark,
4735 				 SECCLASS_PACKET, secmark_perm, &ad))
4736 			return NF_DROP_ERR(-ECONNREFUSED);
4737 
4738 	if (peerlbl_active) {
4739 		u32 if_sid;
4740 		u32 node_sid;
4741 
4742 		if (sel_netif_sid(ifindex, &if_sid))
4743 			return NF_DROP;
4744 		if (avc_has_perm(peer_sid, if_sid,
4745 				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4746 			return NF_DROP_ERR(-ECONNREFUSED);
4747 
4748 		if (sel_netnode_sid(addrp, family, &node_sid))
4749 			return NF_DROP;
4750 		if (avc_has_perm(peer_sid, node_sid,
4751 				 SECCLASS_NODE, NODE__SENDTO, &ad))
4752 			return NF_DROP_ERR(-ECONNREFUSED);
4753 	}
4754 
4755 	return NF_ACCEPT;
4756 }
4757 
4758 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4759 					   struct sk_buff *skb,
4760 					   const struct net_device *in,
4761 					   const struct net_device *out,
4762 					   int (*okfn)(struct sk_buff *))
4763 {
4764 	return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4765 }
4766 
4767 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4768 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4769 					   struct sk_buff *skb,
4770 					   const struct net_device *in,
4771 					   const struct net_device *out,
4772 					   int (*okfn)(struct sk_buff *))
4773 {
4774 	return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4775 }
4776 #endif	/* IPV6 */
4777 
4778 #endif	/* CONFIG_NETFILTER */
4779 
4780 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4781 {
4782 	int err;
4783 
4784 	err = cap_netlink_send(sk, skb);
4785 	if (err)
4786 		return err;
4787 
4788 	return selinux_nlmsg_perm(sk, skb);
4789 }
4790 
4791 static int ipc_alloc_security(struct task_struct *task,
4792 			      struct kern_ipc_perm *perm,
4793 			      u16 sclass)
4794 {
4795 	struct ipc_security_struct *isec;
4796 	u32 sid;
4797 
4798 	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4799 	if (!isec)
4800 		return -ENOMEM;
4801 
4802 	sid = task_sid(task);
4803 	isec->sclass = sclass;
4804 	isec->sid = sid;
4805 	perm->security = isec;
4806 
4807 	return 0;
4808 }
4809 
4810 static void ipc_free_security(struct kern_ipc_perm *perm)
4811 {
4812 	struct ipc_security_struct *isec = perm->security;
4813 	perm->security = NULL;
4814 	kfree(isec);
4815 }
4816 
4817 static int msg_msg_alloc_security(struct msg_msg *msg)
4818 {
4819 	struct msg_security_struct *msec;
4820 
4821 	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4822 	if (!msec)
4823 		return -ENOMEM;
4824 
4825 	msec->sid = SECINITSID_UNLABELED;
4826 	msg->security = msec;
4827 
4828 	return 0;
4829 }
4830 
4831 static void msg_msg_free_security(struct msg_msg *msg)
4832 {
4833 	struct msg_security_struct *msec = msg->security;
4834 
4835 	msg->security = NULL;
4836 	kfree(msec);
4837 }
4838 
4839 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4840 			u32 perms)
4841 {
4842 	struct ipc_security_struct *isec;
4843 	struct common_audit_data ad;
4844 	struct selinux_audit_data sad = {0,};
4845 	u32 sid = current_sid();
4846 
4847 	isec = ipc_perms->security;
4848 
4849 	COMMON_AUDIT_DATA_INIT(&ad, IPC);
4850 	ad.selinux_audit_data = &sad;
4851 	ad.u.ipc_id = ipc_perms->key;
4852 
4853 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4854 }
4855 
4856 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4857 {
4858 	return msg_msg_alloc_security(msg);
4859 }
4860 
4861 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4862 {
4863 	msg_msg_free_security(msg);
4864 }
4865 
4866 /* message queue security operations */
4867 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4868 {
4869 	struct ipc_security_struct *isec;
4870 	struct common_audit_data ad;
4871 	struct selinux_audit_data sad = {0,};
4872 	u32 sid = current_sid();
4873 	int rc;
4874 
4875 	rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4876 	if (rc)
4877 		return rc;
4878 
4879 	isec = msq->q_perm.security;
4880 
4881 	COMMON_AUDIT_DATA_INIT(&ad, IPC);
4882 	ad.selinux_audit_data = &sad;
4883 	ad.u.ipc_id = msq->q_perm.key;
4884 
4885 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4886 			  MSGQ__CREATE, &ad);
4887 	if (rc) {
4888 		ipc_free_security(&msq->q_perm);
4889 		return rc;
4890 	}
4891 	return 0;
4892 }
4893 
4894 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4895 {
4896 	ipc_free_security(&msq->q_perm);
4897 }
4898 
4899 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4900 {
4901 	struct ipc_security_struct *isec;
4902 	struct common_audit_data ad;
4903 	struct selinux_audit_data sad = {0,};
4904 	u32 sid = current_sid();
4905 
4906 	isec = msq->q_perm.security;
4907 
4908 	COMMON_AUDIT_DATA_INIT(&ad, IPC);
4909 	ad.selinux_audit_data = &sad;
4910 	ad.u.ipc_id = msq->q_perm.key;
4911 
4912 	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4913 			    MSGQ__ASSOCIATE, &ad);
4914 }
4915 
4916 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4917 {
4918 	int err;
4919 	int perms;
4920 
4921 	switch (cmd) {
4922 	case IPC_INFO:
4923 	case MSG_INFO:
4924 		/* No specific object, just general system-wide information. */
4925 		return task_has_system(current, SYSTEM__IPC_INFO);
4926 	case IPC_STAT:
4927 	case MSG_STAT:
4928 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4929 		break;
4930 	case IPC_SET:
4931 		perms = MSGQ__SETATTR;
4932 		break;
4933 	case IPC_RMID:
4934 		perms = MSGQ__DESTROY;
4935 		break;
4936 	default:
4937 		return 0;
4938 	}
4939 
4940 	err = ipc_has_perm(&msq->q_perm, perms);
4941 	return err;
4942 }
4943 
4944 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4945 {
4946 	struct ipc_security_struct *isec;
4947 	struct msg_security_struct *msec;
4948 	struct common_audit_data ad;
4949 	struct selinux_audit_data sad = {0,};
4950 	u32 sid = current_sid();
4951 	int rc;
4952 
4953 	isec = msq->q_perm.security;
4954 	msec = msg->security;
4955 
4956 	/*
4957 	 * First time through, need to assign label to the message
4958 	 */
4959 	if (msec->sid == SECINITSID_UNLABELED) {
4960 		/*
4961 		 * Compute new sid based on current process and
4962 		 * message queue this message will be stored in
4963 		 */
4964 		rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4965 					     NULL, &msec->sid);
4966 		if (rc)
4967 			return rc;
4968 	}
4969 
4970 	COMMON_AUDIT_DATA_INIT(&ad, IPC);
4971 	ad.selinux_audit_data = &sad;
4972 	ad.u.ipc_id = msq->q_perm.key;
4973 
4974 	/* Can this process write to the queue? */
4975 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4976 			  MSGQ__WRITE, &ad);
4977 	if (!rc)
4978 		/* Can this process send the message */
4979 		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4980 				  MSG__SEND, &ad);
4981 	if (!rc)
4982 		/* Can the message be put in the queue? */
4983 		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4984 				  MSGQ__ENQUEUE, &ad);
4985 
4986 	return rc;
4987 }
4988 
4989 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4990 				    struct task_struct *target,
4991 				    long type, int mode)
4992 {
4993 	struct ipc_security_struct *isec;
4994 	struct msg_security_struct *msec;
4995 	struct common_audit_data ad;
4996 	struct selinux_audit_data sad = {0,};
4997 	u32 sid = task_sid(target);
4998 	int rc;
4999 
5000 	isec = msq->q_perm.security;
5001 	msec = msg->security;
5002 
5003 	COMMON_AUDIT_DATA_INIT(&ad, IPC);
5004 	ad.selinux_audit_data = &sad;
5005 	ad.u.ipc_id = msq->q_perm.key;
5006 
5007 	rc = avc_has_perm(sid, isec->sid,
5008 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
5009 	if (!rc)
5010 		rc = avc_has_perm(sid, msec->sid,
5011 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
5012 	return rc;
5013 }
5014 
5015 /* Shared Memory security operations */
5016 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5017 {
5018 	struct ipc_security_struct *isec;
5019 	struct common_audit_data ad;
5020 	struct selinux_audit_data sad = {0,};
5021 	u32 sid = current_sid();
5022 	int rc;
5023 
5024 	rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5025 	if (rc)
5026 		return rc;
5027 
5028 	isec = shp->shm_perm.security;
5029 
5030 	COMMON_AUDIT_DATA_INIT(&ad, IPC);
5031 	ad.selinux_audit_data = &sad;
5032 	ad.u.ipc_id = shp->shm_perm.key;
5033 
5034 	rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5035 			  SHM__CREATE, &ad);
5036 	if (rc) {
5037 		ipc_free_security(&shp->shm_perm);
5038 		return rc;
5039 	}
5040 	return 0;
5041 }
5042 
5043 static void selinux_shm_free_security(struct shmid_kernel *shp)
5044 {
5045 	ipc_free_security(&shp->shm_perm);
5046 }
5047 
5048 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5049 {
5050 	struct ipc_security_struct *isec;
5051 	struct common_audit_data ad;
5052 	struct selinux_audit_data sad = {0,};
5053 	u32 sid = current_sid();
5054 
5055 	isec = shp->shm_perm.security;
5056 
5057 	COMMON_AUDIT_DATA_INIT(&ad, IPC);
5058 	ad.selinux_audit_data = &sad;
5059 	ad.u.ipc_id = shp->shm_perm.key;
5060 
5061 	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5062 			    SHM__ASSOCIATE, &ad);
5063 }
5064 
5065 /* Note, at this point, shp is locked down */
5066 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5067 {
5068 	int perms;
5069 	int err;
5070 
5071 	switch (cmd) {
5072 	case IPC_INFO:
5073 	case SHM_INFO:
5074 		/* No specific object, just general system-wide information. */
5075 		return task_has_system(current, SYSTEM__IPC_INFO);
5076 	case IPC_STAT:
5077 	case SHM_STAT:
5078 		perms = SHM__GETATTR | SHM__ASSOCIATE;
5079 		break;
5080 	case IPC_SET:
5081 		perms = SHM__SETATTR;
5082 		break;
5083 	case SHM_LOCK:
5084 	case SHM_UNLOCK:
5085 		perms = SHM__LOCK;
5086 		break;
5087 	case IPC_RMID:
5088 		perms = SHM__DESTROY;
5089 		break;
5090 	default:
5091 		return 0;
5092 	}
5093 
5094 	err = ipc_has_perm(&shp->shm_perm, perms);
5095 	return err;
5096 }
5097 
5098 static int selinux_shm_shmat(struct shmid_kernel *shp,
5099 			     char __user *shmaddr, int shmflg)
5100 {
5101 	u32 perms;
5102 
5103 	if (shmflg & SHM_RDONLY)
5104 		perms = SHM__READ;
5105 	else
5106 		perms = SHM__READ | SHM__WRITE;
5107 
5108 	return ipc_has_perm(&shp->shm_perm, perms);
5109 }
5110 
5111 /* Semaphore security operations */
5112 static int selinux_sem_alloc_security(struct sem_array *sma)
5113 {
5114 	struct ipc_security_struct *isec;
5115 	struct common_audit_data ad;
5116 	struct selinux_audit_data sad = {0,};
5117 	u32 sid = current_sid();
5118 	int rc;
5119 
5120 	rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5121 	if (rc)
5122 		return rc;
5123 
5124 	isec = sma->sem_perm.security;
5125 
5126 	COMMON_AUDIT_DATA_INIT(&ad, IPC);
5127 	ad.selinux_audit_data = &sad;
5128 	ad.u.ipc_id = sma->sem_perm.key;
5129 
5130 	rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5131 			  SEM__CREATE, &ad);
5132 	if (rc) {
5133 		ipc_free_security(&sma->sem_perm);
5134 		return rc;
5135 	}
5136 	return 0;
5137 }
5138 
5139 static void selinux_sem_free_security(struct sem_array *sma)
5140 {
5141 	ipc_free_security(&sma->sem_perm);
5142 }
5143 
5144 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5145 {
5146 	struct ipc_security_struct *isec;
5147 	struct common_audit_data ad;
5148 	struct selinux_audit_data sad = {0,};
5149 	u32 sid = current_sid();
5150 
5151 	isec = sma->sem_perm.security;
5152 
5153 	COMMON_AUDIT_DATA_INIT(&ad, IPC);
5154 	ad.selinux_audit_data = &sad;
5155 	ad.u.ipc_id = sma->sem_perm.key;
5156 
5157 	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5158 			    SEM__ASSOCIATE, &ad);
5159 }
5160 
5161 /* Note, at this point, sma is locked down */
5162 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5163 {
5164 	int err;
5165 	u32 perms;
5166 
5167 	switch (cmd) {
5168 	case IPC_INFO:
5169 	case SEM_INFO:
5170 		/* No specific object, just general system-wide information. */
5171 		return task_has_system(current, SYSTEM__IPC_INFO);
5172 	case GETPID:
5173 	case GETNCNT:
5174 	case GETZCNT:
5175 		perms = SEM__GETATTR;
5176 		break;
5177 	case GETVAL:
5178 	case GETALL:
5179 		perms = SEM__READ;
5180 		break;
5181 	case SETVAL:
5182 	case SETALL:
5183 		perms = SEM__WRITE;
5184 		break;
5185 	case IPC_RMID:
5186 		perms = SEM__DESTROY;
5187 		break;
5188 	case IPC_SET:
5189 		perms = SEM__SETATTR;
5190 		break;
5191 	case IPC_STAT:
5192 	case SEM_STAT:
5193 		perms = SEM__GETATTR | SEM__ASSOCIATE;
5194 		break;
5195 	default:
5196 		return 0;
5197 	}
5198 
5199 	err = ipc_has_perm(&sma->sem_perm, perms);
5200 	return err;
5201 }
5202 
5203 static int selinux_sem_semop(struct sem_array *sma,
5204 			     struct sembuf *sops, unsigned nsops, int alter)
5205 {
5206 	u32 perms;
5207 
5208 	if (alter)
5209 		perms = SEM__READ | SEM__WRITE;
5210 	else
5211 		perms = SEM__READ;
5212 
5213 	return ipc_has_perm(&sma->sem_perm, perms);
5214 }
5215 
5216 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5217 {
5218 	u32 av = 0;
5219 
5220 	av = 0;
5221 	if (flag & S_IRUGO)
5222 		av |= IPC__UNIX_READ;
5223 	if (flag & S_IWUGO)
5224 		av |= IPC__UNIX_WRITE;
5225 
5226 	if (av == 0)
5227 		return 0;
5228 
5229 	return ipc_has_perm(ipcp, av);
5230 }
5231 
5232 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5233 {
5234 	struct ipc_security_struct *isec = ipcp->security;
5235 	*secid = isec->sid;
5236 }
5237 
5238 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5239 {
5240 	if (inode)
5241 		inode_doinit_with_dentry(inode, dentry);
5242 }
5243 
5244 static int selinux_getprocattr(struct task_struct *p,
5245 			       char *name, char **value)
5246 {
5247 	const struct task_security_struct *__tsec;
5248 	u32 sid;
5249 	int error;
5250 	unsigned len;
5251 
5252 	if (current != p) {
5253 		error = current_has_perm(p, PROCESS__GETATTR);
5254 		if (error)
5255 			return error;
5256 	}
5257 
5258 	rcu_read_lock();
5259 	__tsec = __task_cred(p)->security;
5260 
5261 	if (!strcmp(name, "current"))
5262 		sid = __tsec->sid;
5263 	else if (!strcmp(name, "prev"))
5264 		sid = __tsec->osid;
5265 	else if (!strcmp(name, "exec"))
5266 		sid = __tsec->exec_sid;
5267 	else if (!strcmp(name, "fscreate"))
5268 		sid = __tsec->create_sid;
5269 	else if (!strcmp(name, "keycreate"))
5270 		sid = __tsec->keycreate_sid;
5271 	else if (!strcmp(name, "sockcreate"))
5272 		sid = __tsec->sockcreate_sid;
5273 	else
5274 		goto invalid;
5275 	rcu_read_unlock();
5276 
5277 	if (!sid)
5278 		return 0;
5279 
5280 	error = security_sid_to_context(sid, value, &len);
5281 	if (error)
5282 		return error;
5283 	return len;
5284 
5285 invalid:
5286 	rcu_read_unlock();
5287 	return -EINVAL;
5288 }
5289 
5290 static int selinux_setprocattr(struct task_struct *p,
5291 			       char *name, void *value, size_t size)
5292 {
5293 	struct task_security_struct *tsec;
5294 	struct task_struct *tracer;
5295 	struct cred *new;
5296 	u32 sid = 0, ptsid;
5297 	int error;
5298 	char *str = value;
5299 
5300 	if (current != p) {
5301 		/* SELinux only allows a process to change its own
5302 		   security attributes. */
5303 		return -EACCES;
5304 	}
5305 
5306 	/*
5307 	 * Basic control over ability to set these attributes at all.
5308 	 * current == p, but we'll pass them separately in case the
5309 	 * above restriction is ever removed.
5310 	 */
5311 	if (!strcmp(name, "exec"))
5312 		error = current_has_perm(p, PROCESS__SETEXEC);
5313 	else if (!strcmp(name, "fscreate"))
5314 		error = current_has_perm(p, PROCESS__SETFSCREATE);
5315 	else if (!strcmp(name, "keycreate"))
5316 		error = current_has_perm(p, PROCESS__SETKEYCREATE);
5317 	else if (!strcmp(name, "sockcreate"))
5318 		error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5319 	else if (!strcmp(name, "current"))
5320 		error = current_has_perm(p, PROCESS__SETCURRENT);
5321 	else
5322 		error = -EINVAL;
5323 	if (error)
5324 		return error;
5325 
5326 	/* Obtain a SID for the context, if one was specified. */
5327 	if (size && str[1] && str[1] != '\n') {
5328 		if (str[size-1] == '\n') {
5329 			str[size-1] = 0;
5330 			size--;
5331 		}
5332 		error = security_context_to_sid(value, size, &sid);
5333 		if (error == -EINVAL && !strcmp(name, "fscreate")) {
5334 			if (!capable(CAP_MAC_ADMIN))
5335 				return error;
5336 			error = security_context_to_sid_force(value, size,
5337 							      &sid);
5338 		}
5339 		if (error)
5340 			return error;
5341 	}
5342 
5343 	new = prepare_creds();
5344 	if (!new)
5345 		return -ENOMEM;
5346 
5347 	/* Permission checking based on the specified context is
5348 	   performed during the actual operation (execve,
5349 	   open/mkdir/...), when we know the full context of the
5350 	   operation.  See selinux_bprm_set_creds for the execve
5351 	   checks and may_create for the file creation checks. The
5352 	   operation will then fail if the context is not permitted. */
5353 	tsec = new->security;
5354 	if (!strcmp(name, "exec")) {
5355 		tsec->exec_sid = sid;
5356 	} else if (!strcmp(name, "fscreate")) {
5357 		tsec->create_sid = sid;
5358 	} else if (!strcmp(name, "keycreate")) {
5359 		error = may_create_key(sid, p);
5360 		if (error)
5361 			goto abort_change;
5362 		tsec->keycreate_sid = sid;
5363 	} else if (!strcmp(name, "sockcreate")) {
5364 		tsec->sockcreate_sid = sid;
5365 	} else if (!strcmp(name, "current")) {
5366 		error = -EINVAL;
5367 		if (sid == 0)
5368 			goto abort_change;
5369 
5370 		/* Only allow single threaded processes to change context */
5371 		error = -EPERM;
5372 		if (!current_is_single_threaded()) {
5373 			error = security_bounded_transition(tsec->sid, sid);
5374 			if (error)
5375 				goto abort_change;
5376 		}
5377 
5378 		/* Check permissions for the transition. */
5379 		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5380 				     PROCESS__DYNTRANSITION, NULL);
5381 		if (error)
5382 			goto abort_change;
5383 
5384 		/* Check for ptracing, and update the task SID if ok.
5385 		   Otherwise, leave SID unchanged and fail. */
5386 		ptsid = 0;
5387 		task_lock(p);
5388 		tracer = ptrace_parent(p);
5389 		if (tracer)
5390 			ptsid = task_sid(tracer);
5391 		task_unlock(p);
5392 
5393 		if (tracer) {
5394 			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5395 					     PROCESS__PTRACE, NULL);
5396 			if (error)
5397 				goto abort_change;
5398 		}
5399 
5400 		tsec->sid = sid;
5401 	} else {
5402 		error = -EINVAL;
5403 		goto abort_change;
5404 	}
5405 
5406 	commit_creds(new);
5407 	return size;
5408 
5409 abort_change:
5410 	abort_creds(new);
5411 	return error;
5412 }
5413 
5414 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5415 {
5416 	return security_sid_to_context(secid, secdata, seclen);
5417 }
5418 
5419 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5420 {
5421 	return security_context_to_sid(secdata, seclen, secid);
5422 }
5423 
5424 static void selinux_release_secctx(char *secdata, u32 seclen)
5425 {
5426 	kfree(secdata);
5427 }
5428 
5429 /*
5430  *	called with inode->i_mutex locked
5431  */
5432 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5433 {
5434 	return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5435 }
5436 
5437 /*
5438  *	called with inode->i_mutex locked
5439  */
5440 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5441 {
5442 	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5443 }
5444 
5445 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5446 {
5447 	int len = 0;
5448 	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5449 						ctx, true);
5450 	if (len < 0)
5451 		return len;
5452 	*ctxlen = len;
5453 	return 0;
5454 }
5455 #ifdef CONFIG_KEYS
5456 
5457 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5458 			     unsigned long flags)
5459 {
5460 	const struct task_security_struct *tsec;
5461 	struct key_security_struct *ksec;
5462 
5463 	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5464 	if (!ksec)
5465 		return -ENOMEM;
5466 
5467 	tsec = cred->security;
5468 	if (tsec->keycreate_sid)
5469 		ksec->sid = tsec->keycreate_sid;
5470 	else
5471 		ksec->sid = tsec->sid;
5472 
5473 	k->security = ksec;
5474 	return 0;
5475 }
5476 
5477 static void selinux_key_free(struct key *k)
5478 {
5479 	struct key_security_struct *ksec = k->security;
5480 
5481 	k->security = NULL;
5482 	kfree(ksec);
5483 }
5484 
5485 static int selinux_key_permission(key_ref_t key_ref,
5486 				  const struct cred *cred,
5487 				  key_perm_t perm)
5488 {
5489 	struct key *key;
5490 	struct key_security_struct *ksec;
5491 	u32 sid;
5492 
5493 	/* if no specific permissions are requested, we skip the
5494 	   permission check. No serious, additional covert channels
5495 	   appear to be created. */
5496 	if (perm == 0)
5497 		return 0;
5498 
5499 	sid = cred_sid(cred);
5500 
5501 	key = key_ref_to_ptr(key_ref);
5502 	ksec = key->security;
5503 
5504 	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5505 }
5506 
5507 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5508 {
5509 	struct key_security_struct *ksec = key->security;
5510 	char *context = NULL;
5511 	unsigned len;
5512 	int rc;
5513 
5514 	rc = security_sid_to_context(ksec->sid, &context, &len);
5515 	if (!rc)
5516 		rc = len;
5517 	*_buffer = context;
5518 	return rc;
5519 }
5520 
5521 #endif
5522 
5523 static struct security_operations selinux_ops = {
5524 	.name =				"selinux",
5525 
5526 	.ptrace_access_check =		selinux_ptrace_access_check,
5527 	.ptrace_traceme =		selinux_ptrace_traceme,
5528 	.capget =			selinux_capget,
5529 	.capset =			selinux_capset,
5530 	.capable =			selinux_capable,
5531 	.quotactl =			selinux_quotactl,
5532 	.quota_on =			selinux_quota_on,
5533 	.syslog =			selinux_syslog,
5534 	.vm_enough_memory =		selinux_vm_enough_memory,
5535 
5536 	.netlink_send =			selinux_netlink_send,
5537 
5538 	.bprm_set_creds =		selinux_bprm_set_creds,
5539 	.bprm_committing_creds =	selinux_bprm_committing_creds,
5540 	.bprm_committed_creds =		selinux_bprm_committed_creds,
5541 	.bprm_secureexec =		selinux_bprm_secureexec,
5542 
5543 	.sb_alloc_security =		selinux_sb_alloc_security,
5544 	.sb_free_security =		selinux_sb_free_security,
5545 	.sb_copy_data =			selinux_sb_copy_data,
5546 	.sb_remount =			selinux_sb_remount,
5547 	.sb_kern_mount =		selinux_sb_kern_mount,
5548 	.sb_show_options =		selinux_sb_show_options,
5549 	.sb_statfs =			selinux_sb_statfs,
5550 	.sb_mount =			selinux_mount,
5551 	.sb_umount =			selinux_umount,
5552 	.sb_set_mnt_opts =		selinux_set_mnt_opts,
5553 	.sb_clone_mnt_opts =		selinux_sb_clone_mnt_opts,
5554 	.sb_parse_opts_str = 		selinux_parse_opts_str,
5555 
5556 
5557 	.inode_alloc_security =		selinux_inode_alloc_security,
5558 	.inode_free_security =		selinux_inode_free_security,
5559 	.inode_init_security =		selinux_inode_init_security,
5560 	.inode_create =			selinux_inode_create,
5561 	.inode_link =			selinux_inode_link,
5562 	.inode_unlink =			selinux_inode_unlink,
5563 	.inode_symlink =		selinux_inode_symlink,
5564 	.inode_mkdir =			selinux_inode_mkdir,
5565 	.inode_rmdir =			selinux_inode_rmdir,
5566 	.inode_mknod =			selinux_inode_mknod,
5567 	.inode_rename =			selinux_inode_rename,
5568 	.inode_readlink =		selinux_inode_readlink,
5569 	.inode_follow_link =		selinux_inode_follow_link,
5570 	.inode_permission =		selinux_inode_permission,
5571 	.inode_setattr =		selinux_inode_setattr,
5572 	.inode_getattr =		selinux_inode_getattr,
5573 	.inode_setxattr =		selinux_inode_setxattr,
5574 	.inode_post_setxattr =		selinux_inode_post_setxattr,
5575 	.inode_getxattr =		selinux_inode_getxattr,
5576 	.inode_listxattr =		selinux_inode_listxattr,
5577 	.inode_removexattr =		selinux_inode_removexattr,
5578 	.inode_getsecurity =		selinux_inode_getsecurity,
5579 	.inode_setsecurity =		selinux_inode_setsecurity,
5580 	.inode_listsecurity =		selinux_inode_listsecurity,
5581 	.inode_getsecid =		selinux_inode_getsecid,
5582 
5583 	.file_permission =		selinux_file_permission,
5584 	.file_alloc_security =		selinux_file_alloc_security,
5585 	.file_free_security =		selinux_file_free_security,
5586 	.file_ioctl =			selinux_file_ioctl,
5587 	.file_mmap =			selinux_file_mmap,
5588 	.file_mprotect =		selinux_file_mprotect,
5589 	.file_lock =			selinux_file_lock,
5590 	.file_fcntl =			selinux_file_fcntl,
5591 	.file_set_fowner =		selinux_file_set_fowner,
5592 	.file_send_sigiotask =		selinux_file_send_sigiotask,
5593 	.file_receive =			selinux_file_receive,
5594 
5595 	.dentry_open =			selinux_dentry_open,
5596 
5597 	.task_create =			selinux_task_create,
5598 	.cred_alloc_blank =		selinux_cred_alloc_blank,
5599 	.cred_free =			selinux_cred_free,
5600 	.cred_prepare =			selinux_cred_prepare,
5601 	.cred_transfer =		selinux_cred_transfer,
5602 	.kernel_act_as =		selinux_kernel_act_as,
5603 	.kernel_create_files_as =	selinux_kernel_create_files_as,
5604 	.kernel_module_request =	selinux_kernel_module_request,
5605 	.task_setpgid =			selinux_task_setpgid,
5606 	.task_getpgid =			selinux_task_getpgid,
5607 	.task_getsid =			selinux_task_getsid,
5608 	.task_getsecid =		selinux_task_getsecid,
5609 	.task_setnice =			selinux_task_setnice,
5610 	.task_setioprio =		selinux_task_setioprio,
5611 	.task_getioprio =		selinux_task_getioprio,
5612 	.task_setrlimit =		selinux_task_setrlimit,
5613 	.task_setscheduler =		selinux_task_setscheduler,
5614 	.task_getscheduler =		selinux_task_getscheduler,
5615 	.task_movememory =		selinux_task_movememory,
5616 	.task_kill =			selinux_task_kill,
5617 	.task_wait =			selinux_task_wait,
5618 	.task_to_inode =		selinux_task_to_inode,
5619 
5620 	.ipc_permission =		selinux_ipc_permission,
5621 	.ipc_getsecid =			selinux_ipc_getsecid,
5622 
5623 	.msg_msg_alloc_security =	selinux_msg_msg_alloc_security,
5624 	.msg_msg_free_security =	selinux_msg_msg_free_security,
5625 
5626 	.msg_queue_alloc_security =	selinux_msg_queue_alloc_security,
5627 	.msg_queue_free_security =	selinux_msg_queue_free_security,
5628 	.msg_queue_associate =		selinux_msg_queue_associate,
5629 	.msg_queue_msgctl =		selinux_msg_queue_msgctl,
5630 	.msg_queue_msgsnd =		selinux_msg_queue_msgsnd,
5631 	.msg_queue_msgrcv =		selinux_msg_queue_msgrcv,
5632 
5633 	.shm_alloc_security =		selinux_shm_alloc_security,
5634 	.shm_free_security =		selinux_shm_free_security,
5635 	.shm_associate =		selinux_shm_associate,
5636 	.shm_shmctl =			selinux_shm_shmctl,
5637 	.shm_shmat =			selinux_shm_shmat,
5638 
5639 	.sem_alloc_security =		selinux_sem_alloc_security,
5640 	.sem_free_security =		selinux_sem_free_security,
5641 	.sem_associate =		selinux_sem_associate,
5642 	.sem_semctl =			selinux_sem_semctl,
5643 	.sem_semop =			selinux_sem_semop,
5644 
5645 	.d_instantiate =		selinux_d_instantiate,
5646 
5647 	.getprocattr =			selinux_getprocattr,
5648 	.setprocattr =			selinux_setprocattr,
5649 
5650 	.secid_to_secctx =		selinux_secid_to_secctx,
5651 	.secctx_to_secid =		selinux_secctx_to_secid,
5652 	.release_secctx =		selinux_release_secctx,
5653 	.inode_notifysecctx =		selinux_inode_notifysecctx,
5654 	.inode_setsecctx =		selinux_inode_setsecctx,
5655 	.inode_getsecctx =		selinux_inode_getsecctx,
5656 
5657 	.unix_stream_connect =		selinux_socket_unix_stream_connect,
5658 	.unix_may_send =		selinux_socket_unix_may_send,
5659 
5660 	.socket_create =		selinux_socket_create,
5661 	.socket_post_create =		selinux_socket_post_create,
5662 	.socket_bind =			selinux_socket_bind,
5663 	.socket_connect =		selinux_socket_connect,
5664 	.socket_listen =		selinux_socket_listen,
5665 	.socket_accept =		selinux_socket_accept,
5666 	.socket_sendmsg =		selinux_socket_sendmsg,
5667 	.socket_recvmsg =		selinux_socket_recvmsg,
5668 	.socket_getsockname =		selinux_socket_getsockname,
5669 	.socket_getpeername =		selinux_socket_getpeername,
5670 	.socket_getsockopt =		selinux_socket_getsockopt,
5671 	.socket_setsockopt =		selinux_socket_setsockopt,
5672 	.socket_shutdown =		selinux_socket_shutdown,
5673 	.socket_sock_rcv_skb =		selinux_socket_sock_rcv_skb,
5674 	.socket_getpeersec_stream =	selinux_socket_getpeersec_stream,
5675 	.socket_getpeersec_dgram =	selinux_socket_getpeersec_dgram,
5676 	.sk_alloc_security =		selinux_sk_alloc_security,
5677 	.sk_free_security =		selinux_sk_free_security,
5678 	.sk_clone_security =		selinux_sk_clone_security,
5679 	.sk_getsecid =			selinux_sk_getsecid,
5680 	.sock_graft =			selinux_sock_graft,
5681 	.inet_conn_request =		selinux_inet_conn_request,
5682 	.inet_csk_clone =		selinux_inet_csk_clone,
5683 	.inet_conn_established =	selinux_inet_conn_established,
5684 	.secmark_relabel_packet =	selinux_secmark_relabel_packet,
5685 	.secmark_refcount_inc =		selinux_secmark_refcount_inc,
5686 	.secmark_refcount_dec =		selinux_secmark_refcount_dec,
5687 	.req_classify_flow =		selinux_req_classify_flow,
5688 	.tun_dev_create =		selinux_tun_dev_create,
5689 	.tun_dev_post_create = 		selinux_tun_dev_post_create,
5690 	.tun_dev_attach =		selinux_tun_dev_attach,
5691 
5692 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5693 	.xfrm_policy_alloc_security =	selinux_xfrm_policy_alloc,
5694 	.xfrm_policy_clone_security =	selinux_xfrm_policy_clone,
5695 	.xfrm_policy_free_security =	selinux_xfrm_policy_free,
5696 	.xfrm_policy_delete_security =	selinux_xfrm_policy_delete,
5697 	.xfrm_state_alloc_security =	selinux_xfrm_state_alloc,
5698 	.xfrm_state_free_security =	selinux_xfrm_state_free,
5699 	.xfrm_state_delete_security =	selinux_xfrm_state_delete,
5700 	.xfrm_policy_lookup =		selinux_xfrm_policy_lookup,
5701 	.xfrm_state_pol_flow_match =	selinux_xfrm_state_pol_flow_match,
5702 	.xfrm_decode_session =		selinux_xfrm_decode_session,
5703 #endif
5704 
5705 #ifdef CONFIG_KEYS
5706 	.key_alloc =			selinux_key_alloc,
5707 	.key_free =			selinux_key_free,
5708 	.key_permission =		selinux_key_permission,
5709 	.key_getsecurity =		selinux_key_getsecurity,
5710 #endif
5711 
5712 #ifdef CONFIG_AUDIT
5713 	.audit_rule_init =		selinux_audit_rule_init,
5714 	.audit_rule_known =		selinux_audit_rule_known,
5715 	.audit_rule_match =		selinux_audit_rule_match,
5716 	.audit_rule_free =		selinux_audit_rule_free,
5717 #endif
5718 };
5719 
5720 static __init int selinux_init(void)
5721 {
5722 	if (!security_module_enable(&selinux_ops)) {
5723 		selinux_enabled = 0;
5724 		return 0;
5725 	}
5726 
5727 	if (!selinux_enabled) {
5728 		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5729 		return 0;
5730 	}
5731 
5732 	printk(KERN_INFO "SELinux:  Initializing.\n");
5733 
5734 	/* Set the security state for the initial task. */
5735 	cred_init_security();
5736 
5737 	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5738 
5739 	sel_inode_cache = kmem_cache_create("selinux_inode_security",
5740 					    sizeof(struct inode_security_struct),
5741 					    0, SLAB_PANIC, NULL);
5742 	avc_init();
5743 
5744 	if (register_security(&selinux_ops))
5745 		panic("SELinux: Unable to register with kernel.\n");
5746 
5747 	if (selinux_enforcing)
5748 		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5749 	else
5750 		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5751 
5752 	return 0;
5753 }
5754 
5755 static void delayed_superblock_init(struct super_block *sb, void *unused)
5756 {
5757 	superblock_doinit(sb, NULL);
5758 }
5759 
5760 void selinux_complete_init(void)
5761 {
5762 	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5763 
5764 	/* Set up any superblocks initialized prior to the policy load. */
5765 	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5766 	iterate_supers(delayed_superblock_init, NULL);
5767 }
5768 
5769 /* SELinux requires early initialization in order to label
5770    all processes and objects when they are created. */
5771 security_initcall(selinux_init);
5772 
5773 #if defined(CONFIG_NETFILTER)
5774 
5775 static struct nf_hook_ops selinux_ipv4_ops[] = {
5776 	{
5777 		.hook =		selinux_ipv4_postroute,
5778 		.owner =	THIS_MODULE,
5779 		.pf =		PF_INET,
5780 		.hooknum =	NF_INET_POST_ROUTING,
5781 		.priority =	NF_IP_PRI_SELINUX_LAST,
5782 	},
5783 	{
5784 		.hook =		selinux_ipv4_forward,
5785 		.owner =	THIS_MODULE,
5786 		.pf =		PF_INET,
5787 		.hooknum =	NF_INET_FORWARD,
5788 		.priority =	NF_IP_PRI_SELINUX_FIRST,
5789 	},
5790 	{
5791 		.hook =		selinux_ipv4_output,
5792 		.owner =	THIS_MODULE,
5793 		.pf =		PF_INET,
5794 		.hooknum =	NF_INET_LOCAL_OUT,
5795 		.priority =	NF_IP_PRI_SELINUX_FIRST,
5796 	}
5797 };
5798 
5799 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5800 
5801 static struct nf_hook_ops selinux_ipv6_ops[] = {
5802 	{
5803 		.hook =		selinux_ipv6_postroute,
5804 		.owner =	THIS_MODULE,
5805 		.pf =		PF_INET6,
5806 		.hooknum =	NF_INET_POST_ROUTING,
5807 		.priority =	NF_IP6_PRI_SELINUX_LAST,
5808 	},
5809 	{
5810 		.hook =		selinux_ipv6_forward,
5811 		.owner =	THIS_MODULE,
5812 		.pf =		PF_INET6,
5813 		.hooknum =	NF_INET_FORWARD,
5814 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
5815 	}
5816 };
5817 
5818 #endif	/* IPV6 */
5819 
5820 static int __init selinux_nf_ip_init(void)
5821 {
5822 	int err = 0;
5823 
5824 	if (!selinux_enabled)
5825 		goto out;
5826 
5827 	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5828 
5829 	err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5830 	if (err)
5831 		panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5832 
5833 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5834 	err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5835 	if (err)
5836 		panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5837 #endif	/* IPV6 */
5838 
5839 out:
5840 	return err;
5841 }
5842 
5843 __initcall(selinux_nf_ip_init);
5844 
5845 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5846 static void selinux_nf_ip_exit(void)
5847 {
5848 	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5849 
5850 	nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5851 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5852 	nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5853 #endif	/* IPV6 */
5854 }
5855 #endif
5856 
5857 #else /* CONFIG_NETFILTER */
5858 
5859 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5860 #define selinux_nf_ip_exit()
5861 #endif
5862 
5863 #endif /* CONFIG_NETFILTER */
5864 
5865 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5866 static int selinux_disabled;
5867 
5868 int selinux_disable(void)
5869 {
5870 	if (ss_initialized) {
5871 		/* Not permitted after initial policy load. */
5872 		return -EINVAL;
5873 	}
5874 
5875 	if (selinux_disabled) {
5876 		/* Only do this once. */
5877 		return -EINVAL;
5878 	}
5879 
5880 	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5881 
5882 	selinux_disabled = 1;
5883 	selinux_enabled = 0;
5884 
5885 	reset_security_ops();
5886 
5887 	/* Try to destroy the avc node cache */
5888 	avc_disable();
5889 
5890 	/* Unregister netfilter hooks. */
5891 	selinux_nf_ip_exit();
5892 
5893 	/* Unregister selinuxfs. */
5894 	exit_sel_fs();
5895 
5896 	return 0;
5897 }
5898 #endif
5899