xref: /openbmc/linux/security/selinux/hooks.c (revision 8fe62e0c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  NSA Security-Enhanced Linux (SELinux) security module
4  *
5  *  This file contains the SELinux hook function implementations.
6  *
7  *  Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
8  *	      Chris Vance, <cvance@nai.com>
9  *	      Wayne Salamon, <wsalamon@nai.com>
10  *	      James Morris <jmorris@redhat.com>
11  *
12  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
13  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
14  *					   Eric Paris <eparis@redhat.com>
15  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16  *			    <dgoeddel@trustedcs.com>
17  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18  *	Paul Moore <paul@paul-moore.com>
19  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
20  *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
21  *  Copyright (C) 2016 Mellanox Technologies
22  */
23 
24 #include <linux/init.h>
25 #include <linux/kd.h>
26 #include <linux/kernel.h>
27 #include <linux/kernel_read_file.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched/signal.h>
31 #include <linux/sched/task.h>
32 #include <linux/lsm_hooks.h>
33 #include <linux/xattr.h>
34 #include <linux/capability.h>
35 #include <linux/unistd.h>
36 #include <linux/mm.h>
37 #include <linux/mman.h>
38 #include <linux/slab.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/swap.h>
42 #include <linux/spinlock.h>
43 #include <linux/syscalls.h>
44 #include <linux/dcache.h>
45 #include <linux/file.h>
46 #include <linux/fdtable.h>
47 #include <linux/namei.h>
48 #include <linux/mount.h>
49 #include <linux/fs_context.h>
50 #include <linux/fs_parser.h>
51 #include <linux/netfilter_ipv4.h>
52 #include <linux/netfilter_ipv6.h>
53 #include <linux/tty.h>
54 #include <net/icmp.h>
55 #include <net/ip.h>		/* for local_port_range[] */
56 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
57 #include <net/inet_connection_sock.h>
58 #include <net/net_namespace.h>
59 #include <net/netlabel.h>
60 #include <linux/uaccess.h>
61 #include <asm/ioctls.h>
62 #include <linux/atomic.h>
63 #include <linux/bitops.h>
64 #include <linux/interrupt.h>
65 #include <linux/netdevice.h>	/* for network interface checks */
66 #include <net/netlink.h>
67 #include <linux/tcp.h>
68 #include <linux/udp.h>
69 #include <linux/dccp.h>
70 #include <linux/sctp.h>
71 #include <net/sctp/structs.h>
72 #include <linux/quota.h>
73 #include <linux/un.h>		/* for Unix socket types */
74 #include <net/af_unix.h>	/* for Unix socket types */
75 #include <linux/parser.h>
76 #include <linux/nfs_mount.h>
77 #include <net/ipv6.h>
78 #include <linux/hugetlb.h>
79 #include <linux/personality.h>
80 #include <linux/audit.h>
81 #include <linux/string.h>
82 #include <linux/mutex.h>
83 #include <linux/posix-timers.h>
84 #include <linux/syslog.h>
85 #include <linux/user_namespace.h>
86 #include <linux/export.h>
87 #include <linux/msg.h>
88 #include <linux/shm.h>
89 #include <linux/bpf.h>
90 #include <linux/kernfs.h>
91 #include <linux/stringhash.h>	/* for hashlen_string() */
92 #include <uapi/linux/mount.h>
93 #include <linux/fsnotify.h>
94 #include <linux/fanotify.h>
95 
96 #include "avc.h"
97 #include "objsec.h"
98 #include "netif.h"
99 #include "netnode.h"
100 #include "netport.h"
101 #include "ibpkey.h"
102 #include "xfrm.h"
103 #include "netlabel.h"
104 #include "audit.h"
105 #include "avc_ss.h"
106 
107 struct selinux_state selinux_state;
108 
109 /* SECMARK reference count */
110 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
111 
112 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
113 static int selinux_enforcing_boot __initdata;
114 
115 static int __init enforcing_setup(char *str)
116 {
117 	unsigned long enforcing;
118 	if (!kstrtoul(str, 0, &enforcing))
119 		selinux_enforcing_boot = enforcing ? 1 : 0;
120 	return 1;
121 }
122 __setup("enforcing=", enforcing_setup);
123 #else
124 #define selinux_enforcing_boot 1
125 #endif
126 
127 int selinux_enabled_boot __initdata = 1;
128 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
129 static int __init selinux_enabled_setup(char *str)
130 {
131 	unsigned long enabled;
132 	if (!kstrtoul(str, 0, &enabled))
133 		selinux_enabled_boot = enabled ? 1 : 0;
134 	return 1;
135 }
136 __setup("selinux=", selinux_enabled_setup);
137 #endif
138 
139 static unsigned int selinux_checkreqprot_boot =
140 	CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
141 
142 static int __init checkreqprot_setup(char *str)
143 {
144 	unsigned long checkreqprot;
145 
146 	if (!kstrtoul(str, 0, &checkreqprot)) {
147 		selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
148 		if (checkreqprot)
149 			pr_warn("SELinux: checkreqprot set to 1 via kernel parameter.  This is deprecated and will be rejected in a future kernel release.\n");
150 	}
151 	return 1;
152 }
153 __setup("checkreqprot=", checkreqprot_setup);
154 
155 /**
156  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
157  *
158  * Description:
159  * This function checks the SECMARK reference counter to see if any SECMARK
160  * targets are currently configured, if the reference counter is greater than
161  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
162  * enabled, false (0) if SECMARK is disabled.  If the always_check_network
163  * policy capability is enabled, SECMARK is always considered enabled.
164  *
165  */
166 static int selinux_secmark_enabled(void)
167 {
168 	return (selinux_policycap_alwaysnetwork() ||
169 		atomic_read(&selinux_secmark_refcount));
170 }
171 
172 /**
173  * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
174  *
175  * Description:
176  * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
177  * (1) if any are enabled or false (0) if neither are enabled.  If the
178  * always_check_network policy capability is enabled, peer labeling
179  * is always considered enabled.
180  *
181  */
182 static int selinux_peerlbl_enabled(void)
183 {
184 	return (selinux_policycap_alwaysnetwork() ||
185 		netlbl_enabled() || selinux_xfrm_enabled());
186 }
187 
188 static int selinux_netcache_avc_callback(u32 event)
189 {
190 	if (event == AVC_CALLBACK_RESET) {
191 		sel_netif_flush();
192 		sel_netnode_flush();
193 		sel_netport_flush();
194 		synchronize_net();
195 	}
196 	return 0;
197 }
198 
199 static int selinux_lsm_notifier_avc_callback(u32 event)
200 {
201 	if (event == AVC_CALLBACK_RESET) {
202 		sel_ib_pkey_flush();
203 		call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
204 	}
205 
206 	return 0;
207 }
208 
209 /*
210  * initialise the security for the init task
211  */
212 static void cred_init_security(void)
213 {
214 	struct cred *cred = (struct cred *) current->real_cred;
215 	struct task_security_struct *tsec;
216 
217 	tsec = selinux_cred(cred);
218 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
219 }
220 
221 /*
222  * get the security ID of a set of credentials
223  */
224 static inline u32 cred_sid(const struct cred *cred)
225 {
226 	const struct task_security_struct *tsec;
227 
228 	tsec = selinux_cred(cred);
229 	return tsec->sid;
230 }
231 
232 /*
233  * get the objective security ID of a task
234  */
235 static inline u32 task_sid(const struct task_struct *task)
236 {
237 	u32 sid;
238 
239 	rcu_read_lock();
240 	sid = cred_sid(__task_cred(task));
241 	rcu_read_unlock();
242 	return sid;
243 }
244 
245 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
246 
247 /*
248  * Try reloading inode security labels that have been marked as invalid.  The
249  * @may_sleep parameter indicates when sleeping and thus reloading labels is
250  * allowed; when set to false, returns -ECHILD when the label is
251  * invalid.  The @dentry parameter should be set to a dentry of the inode.
252  */
253 static int __inode_security_revalidate(struct inode *inode,
254 				       struct dentry *dentry,
255 				       bool may_sleep)
256 {
257 	struct inode_security_struct *isec = selinux_inode(inode);
258 
259 	might_sleep_if(may_sleep);
260 
261 	if (selinux_initialized(&selinux_state) &&
262 	    isec->initialized != LABEL_INITIALIZED) {
263 		if (!may_sleep)
264 			return -ECHILD;
265 
266 		/*
267 		 * Try reloading the inode security label.  This will fail if
268 		 * @opt_dentry is NULL and no dentry for this inode can be
269 		 * found; in that case, continue using the old label.
270 		 */
271 		inode_doinit_with_dentry(inode, dentry);
272 	}
273 	return 0;
274 }
275 
276 static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
277 {
278 	return selinux_inode(inode);
279 }
280 
281 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
282 {
283 	int error;
284 
285 	error = __inode_security_revalidate(inode, NULL, !rcu);
286 	if (error)
287 		return ERR_PTR(error);
288 	return selinux_inode(inode);
289 }
290 
291 /*
292  * Get the security label of an inode.
293  */
294 static struct inode_security_struct *inode_security(struct inode *inode)
295 {
296 	__inode_security_revalidate(inode, NULL, true);
297 	return selinux_inode(inode);
298 }
299 
300 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
301 {
302 	struct inode *inode = d_backing_inode(dentry);
303 
304 	return selinux_inode(inode);
305 }
306 
307 /*
308  * Get the security label of a dentry's backing inode.
309  */
310 static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
311 {
312 	struct inode *inode = d_backing_inode(dentry);
313 
314 	__inode_security_revalidate(inode, dentry, true);
315 	return selinux_inode(inode);
316 }
317 
318 static void inode_free_security(struct inode *inode)
319 {
320 	struct inode_security_struct *isec = selinux_inode(inode);
321 	struct superblock_security_struct *sbsec;
322 
323 	if (!isec)
324 		return;
325 	sbsec = inode->i_sb->s_security;
326 	/*
327 	 * As not all inode security structures are in a list, we check for
328 	 * empty list outside of the lock to make sure that we won't waste
329 	 * time taking a lock doing nothing.
330 	 *
331 	 * The list_del_init() function can be safely called more than once.
332 	 * It should not be possible for this function to be called with
333 	 * concurrent list_add(), but for better safety against future changes
334 	 * in the code, we use list_empty_careful() here.
335 	 */
336 	if (!list_empty_careful(&isec->list)) {
337 		spin_lock(&sbsec->isec_lock);
338 		list_del_init(&isec->list);
339 		spin_unlock(&sbsec->isec_lock);
340 	}
341 }
342 
343 static void superblock_free_security(struct super_block *sb)
344 {
345 	struct superblock_security_struct *sbsec = sb->s_security;
346 	sb->s_security = NULL;
347 	kfree(sbsec);
348 }
349 
350 struct selinux_mnt_opts {
351 	const char *fscontext, *context, *rootcontext, *defcontext;
352 };
353 
354 static void selinux_free_mnt_opts(void *mnt_opts)
355 {
356 	struct selinux_mnt_opts *opts = mnt_opts;
357 	kfree(opts->fscontext);
358 	kfree(opts->context);
359 	kfree(opts->rootcontext);
360 	kfree(opts->defcontext);
361 	kfree(opts);
362 }
363 
364 enum {
365 	Opt_error = -1,
366 	Opt_context = 0,
367 	Opt_defcontext = 1,
368 	Opt_fscontext = 2,
369 	Opt_rootcontext = 3,
370 	Opt_seclabel = 4,
371 };
372 
373 #define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
374 static struct {
375 	const char *name;
376 	int len;
377 	int opt;
378 	bool has_arg;
379 } tokens[] = {
380 	A(context, true),
381 	A(fscontext, true),
382 	A(defcontext, true),
383 	A(rootcontext, true),
384 	A(seclabel, false),
385 };
386 #undef A
387 
388 static int match_opt_prefix(char *s, int l, char **arg)
389 {
390 	int i;
391 
392 	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
393 		size_t len = tokens[i].len;
394 		if (len > l || memcmp(s, tokens[i].name, len))
395 			continue;
396 		if (tokens[i].has_arg) {
397 			if (len == l || s[len] != '=')
398 				continue;
399 			*arg = s + len + 1;
400 		} else if (len != l)
401 			continue;
402 		return tokens[i].opt;
403 	}
404 	return Opt_error;
405 }
406 
407 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
408 
409 static int may_context_mount_sb_relabel(u32 sid,
410 			struct superblock_security_struct *sbsec,
411 			const struct cred *cred)
412 {
413 	const struct task_security_struct *tsec = selinux_cred(cred);
414 	int rc;
415 
416 	rc = avc_has_perm(&selinux_state,
417 			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
418 			  FILESYSTEM__RELABELFROM, NULL);
419 	if (rc)
420 		return rc;
421 
422 	rc = avc_has_perm(&selinux_state,
423 			  tsec->sid, sid, SECCLASS_FILESYSTEM,
424 			  FILESYSTEM__RELABELTO, NULL);
425 	return rc;
426 }
427 
428 static int may_context_mount_inode_relabel(u32 sid,
429 			struct superblock_security_struct *sbsec,
430 			const struct cred *cred)
431 {
432 	const struct task_security_struct *tsec = selinux_cred(cred);
433 	int rc;
434 	rc = avc_has_perm(&selinux_state,
435 			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
436 			  FILESYSTEM__RELABELFROM, NULL);
437 	if (rc)
438 		return rc;
439 
440 	rc = avc_has_perm(&selinux_state,
441 			  sid, sbsec->sid, SECCLASS_FILESYSTEM,
442 			  FILESYSTEM__ASSOCIATE, NULL);
443 	return rc;
444 }
445 
446 static int selinux_is_genfs_special_handling(struct super_block *sb)
447 {
448 	/* Special handling. Genfs but also in-core setxattr handler */
449 	return	!strcmp(sb->s_type->name, "sysfs") ||
450 		!strcmp(sb->s_type->name, "pstore") ||
451 		!strcmp(sb->s_type->name, "debugfs") ||
452 		!strcmp(sb->s_type->name, "tracefs") ||
453 		!strcmp(sb->s_type->name, "rootfs") ||
454 		(selinux_policycap_cgroupseclabel() &&
455 		 (!strcmp(sb->s_type->name, "cgroup") ||
456 		  !strcmp(sb->s_type->name, "cgroup2")));
457 }
458 
459 static int selinux_is_sblabel_mnt(struct super_block *sb)
460 {
461 	struct superblock_security_struct *sbsec = sb->s_security;
462 
463 	/*
464 	 * IMPORTANT: Double-check logic in this function when adding a new
465 	 * SECURITY_FS_USE_* definition!
466 	 */
467 	BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
468 
469 	switch (sbsec->behavior) {
470 	case SECURITY_FS_USE_XATTR:
471 	case SECURITY_FS_USE_TRANS:
472 	case SECURITY_FS_USE_TASK:
473 	case SECURITY_FS_USE_NATIVE:
474 		return 1;
475 
476 	case SECURITY_FS_USE_GENFS:
477 		return selinux_is_genfs_special_handling(sb);
478 
479 	/* Never allow relabeling on context mounts */
480 	case SECURITY_FS_USE_MNTPOINT:
481 	case SECURITY_FS_USE_NONE:
482 	default:
483 		return 0;
484 	}
485 }
486 
487 static int sb_finish_set_opts(struct super_block *sb)
488 {
489 	struct superblock_security_struct *sbsec = sb->s_security;
490 	struct dentry *root = sb->s_root;
491 	struct inode *root_inode = d_backing_inode(root);
492 	int rc = 0;
493 
494 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
495 		/* Make sure that the xattr handler exists and that no
496 		   error other than -ENODATA is returned by getxattr on
497 		   the root directory.  -ENODATA is ok, as this may be
498 		   the first boot of the SELinux kernel before we have
499 		   assigned xattr values to the filesystem. */
500 		if (!(root_inode->i_opflags & IOP_XATTR)) {
501 			pr_warn("SELinux: (dev %s, type %s) has no "
502 			       "xattr support\n", sb->s_id, sb->s_type->name);
503 			rc = -EOPNOTSUPP;
504 			goto out;
505 		}
506 
507 		rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
508 		if (rc < 0 && rc != -ENODATA) {
509 			if (rc == -EOPNOTSUPP)
510 				pr_warn("SELinux: (dev %s, type "
511 				       "%s) has no security xattr handler\n",
512 				       sb->s_id, sb->s_type->name);
513 			else
514 				pr_warn("SELinux: (dev %s, type "
515 				       "%s) getxattr errno %d\n", sb->s_id,
516 				       sb->s_type->name, -rc);
517 			goto out;
518 		}
519 	}
520 
521 	sbsec->flags |= SE_SBINITIALIZED;
522 
523 	/*
524 	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
525 	 * leave the flag untouched because sb_clone_mnt_opts might be handing
526 	 * us a superblock that needs the flag to be cleared.
527 	 */
528 	if (selinux_is_sblabel_mnt(sb))
529 		sbsec->flags |= SBLABEL_MNT;
530 	else
531 		sbsec->flags &= ~SBLABEL_MNT;
532 
533 	/* Initialize the root inode. */
534 	rc = inode_doinit_with_dentry(root_inode, root);
535 
536 	/* Initialize any other inodes associated with the superblock, e.g.
537 	   inodes created prior to initial policy load or inodes created
538 	   during get_sb by a pseudo filesystem that directly
539 	   populates itself. */
540 	spin_lock(&sbsec->isec_lock);
541 	while (!list_empty(&sbsec->isec_head)) {
542 		struct inode_security_struct *isec =
543 				list_first_entry(&sbsec->isec_head,
544 					   struct inode_security_struct, list);
545 		struct inode *inode = isec->inode;
546 		list_del_init(&isec->list);
547 		spin_unlock(&sbsec->isec_lock);
548 		inode = igrab(inode);
549 		if (inode) {
550 			if (!IS_PRIVATE(inode))
551 				inode_doinit_with_dentry(inode, NULL);
552 			iput(inode);
553 		}
554 		spin_lock(&sbsec->isec_lock);
555 	}
556 	spin_unlock(&sbsec->isec_lock);
557 out:
558 	return rc;
559 }
560 
561 static int bad_option(struct superblock_security_struct *sbsec, char flag,
562 		      u32 old_sid, u32 new_sid)
563 {
564 	char mnt_flags = sbsec->flags & SE_MNTMASK;
565 
566 	/* check if the old mount command had the same options */
567 	if (sbsec->flags & SE_SBINITIALIZED)
568 		if (!(sbsec->flags & flag) ||
569 		    (old_sid != new_sid))
570 			return 1;
571 
572 	/* check if we were passed the same options twice,
573 	 * aka someone passed context=a,context=b
574 	 */
575 	if (!(sbsec->flags & SE_SBINITIALIZED))
576 		if (mnt_flags & flag)
577 			return 1;
578 	return 0;
579 }
580 
581 static int parse_sid(struct super_block *sb, const char *s, u32 *sid)
582 {
583 	int rc = security_context_str_to_sid(&selinux_state, s,
584 					     sid, GFP_KERNEL);
585 	if (rc)
586 		pr_warn("SELinux: security_context_str_to_sid"
587 		       "(%s) failed for (dev %s, type %s) errno=%d\n",
588 		       s, sb->s_id, sb->s_type->name, rc);
589 	return rc;
590 }
591 
592 /*
593  * Allow filesystems with binary mount data to explicitly set mount point
594  * labeling information.
595  */
596 static int selinux_set_mnt_opts(struct super_block *sb,
597 				void *mnt_opts,
598 				unsigned long kern_flags,
599 				unsigned long *set_kern_flags)
600 {
601 	const struct cred *cred = current_cred();
602 	struct superblock_security_struct *sbsec = sb->s_security;
603 	struct dentry *root = sb->s_root;
604 	struct selinux_mnt_opts *opts = mnt_opts;
605 	struct inode_security_struct *root_isec;
606 	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
607 	u32 defcontext_sid = 0;
608 	int rc = 0;
609 
610 	mutex_lock(&sbsec->lock);
611 
612 	if (!selinux_initialized(&selinux_state)) {
613 		if (!opts) {
614 			/* Defer initialization until selinux_complete_init,
615 			   after the initial policy is loaded and the security
616 			   server is ready to handle calls. */
617 			goto out;
618 		}
619 		rc = -EINVAL;
620 		pr_warn("SELinux: Unable to set superblock options "
621 			"before the security server is initialized\n");
622 		goto out;
623 	}
624 	if (kern_flags && !set_kern_flags) {
625 		/* Specifying internal flags without providing a place to
626 		 * place the results is not allowed */
627 		rc = -EINVAL;
628 		goto out;
629 	}
630 
631 	/*
632 	 * Binary mount data FS will come through this function twice.  Once
633 	 * from an explicit call and once from the generic calls from the vfs.
634 	 * Since the generic VFS calls will not contain any security mount data
635 	 * we need to skip the double mount verification.
636 	 *
637 	 * This does open a hole in which we will not notice if the first
638 	 * mount using this sb set explict options and a second mount using
639 	 * this sb does not set any security options.  (The first options
640 	 * will be used for both mounts)
641 	 */
642 	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
643 	    && !opts)
644 		goto out;
645 
646 	root_isec = backing_inode_security_novalidate(root);
647 
648 	/*
649 	 * parse the mount options, check if they are valid sids.
650 	 * also check if someone is trying to mount the same sb more
651 	 * than once with different security options.
652 	 */
653 	if (opts) {
654 		if (opts->fscontext) {
655 			rc = parse_sid(sb, opts->fscontext, &fscontext_sid);
656 			if (rc)
657 				goto out;
658 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
659 					fscontext_sid))
660 				goto out_double_mount;
661 			sbsec->flags |= FSCONTEXT_MNT;
662 		}
663 		if (opts->context) {
664 			rc = parse_sid(sb, opts->context, &context_sid);
665 			if (rc)
666 				goto out;
667 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
668 					context_sid))
669 				goto out_double_mount;
670 			sbsec->flags |= CONTEXT_MNT;
671 		}
672 		if (opts->rootcontext) {
673 			rc = parse_sid(sb, opts->rootcontext, &rootcontext_sid);
674 			if (rc)
675 				goto out;
676 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
677 					rootcontext_sid))
678 				goto out_double_mount;
679 			sbsec->flags |= ROOTCONTEXT_MNT;
680 		}
681 		if (opts->defcontext) {
682 			rc = parse_sid(sb, opts->defcontext, &defcontext_sid);
683 			if (rc)
684 				goto out;
685 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
686 					defcontext_sid))
687 				goto out_double_mount;
688 			sbsec->flags |= DEFCONTEXT_MNT;
689 		}
690 	}
691 
692 	if (sbsec->flags & SE_SBINITIALIZED) {
693 		/* previously mounted with options, but not on this attempt? */
694 		if ((sbsec->flags & SE_MNTMASK) && !opts)
695 			goto out_double_mount;
696 		rc = 0;
697 		goto out;
698 	}
699 
700 	if (strcmp(sb->s_type->name, "proc") == 0)
701 		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
702 
703 	if (!strcmp(sb->s_type->name, "debugfs") ||
704 	    !strcmp(sb->s_type->name, "tracefs") ||
705 	    !strcmp(sb->s_type->name, "binder") ||
706 	    !strcmp(sb->s_type->name, "bpf") ||
707 	    !strcmp(sb->s_type->name, "pstore"))
708 		sbsec->flags |= SE_SBGENFS;
709 
710 	if (!strcmp(sb->s_type->name, "sysfs") ||
711 	    !strcmp(sb->s_type->name, "cgroup") ||
712 	    !strcmp(sb->s_type->name, "cgroup2"))
713 		sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
714 
715 	if (!sbsec->behavior) {
716 		/*
717 		 * Determine the labeling behavior to use for this
718 		 * filesystem type.
719 		 */
720 		rc = security_fs_use(&selinux_state, sb);
721 		if (rc) {
722 			pr_warn("%s: security_fs_use(%s) returned %d\n",
723 					__func__, sb->s_type->name, rc);
724 			goto out;
725 		}
726 	}
727 
728 	/*
729 	 * If this is a user namespace mount and the filesystem type is not
730 	 * explicitly whitelisted, then no contexts are allowed on the command
731 	 * line and security labels must be ignored.
732 	 */
733 	if (sb->s_user_ns != &init_user_ns &&
734 	    strcmp(sb->s_type->name, "tmpfs") &&
735 	    strcmp(sb->s_type->name, "ramfs") &&
736 	    strcmp(sb->s_type->name, "devpts")) {
737 		if (context_sid || fscontext_sid || rootcontext_sid ||
738 		    defcontext_sid) {
739 			rc = -EACCES;
740 			goto out;
741 		}
742 		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
743 			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
744 			rc = security_transition_sid(&selinux_state,
745 						     current_sid(),
746 						     current_sid(),
747 						     SECCLASS_FILE, NULL,
748 						     &sbsec->mntpoint_sid);
749 			if (rc)
750 				goto out;
751 		}
752 		goto out_set_opts;
753 	}
754 
755 	/* sets the context of the superblock for the fs being mounted. */
756 	if (fscontext_sid) {
757 		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
758 		if (rc)
759 			goto out;
760 
761 		sbsec->sid = fscontext_sid;
762 	}
763 
764 	/*
765 	 * Switch to using mount point labeling behavior.
766 	 * sets the label used on all file below the mountpoint, and will set
767 	 * the superblock context if not already set.
768 	 */
769 	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
770 		sbsec->behavior = SECURITY_FS_USE_NATIVE;
771 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
772 	}
773 
774 	if (context_sid) {
775 		if (!fscontext_sid) {
776 			rc = may_context_mount_sb_relabel(context_sid, sbsec,
777 							  cred);
778 			if (rc)
779 				goto out;
780 			sbsec->sid = context_sid;
781 		} else {
782 			rc = may_context_mount_inode_relabel(context_sid, sbsec,
783 							     cred);
784 			if (rc)
785 				goto out;
786 		}
787 		if (!rootcontext_sid)
788 			rootcontext_sid = context_sid;
789 
790 		sbsec->mntpoint_sid = context_sid;
791 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
792 	}
793 
794 	if (rootcontext_sid) {
795 		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
796 						     cred);
797 		if (rc)
798 			goto out;
799 
800 		root_isec->sid = rootcontext_sid;
801 		root_isec->initialized = LABEL_INITIALIZED;
802 	}
803 
804 	if (defcontext_sid) {
805 		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
806 			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
807 			rc = -EINVAL;
808 			pr_warn("SELinux: defcontext option is "
809 			       "invalid for this filesystem type\n");
810 			goto out;
811 		}
812 
813 		if (defcontext_sid != sbsec->def_sid) {
814 			rc = may_context_mount_inode_relabel(defcontext_sid,
815 							     sbsec, cred);
816 			if (rc)
817 				goto out;
818 		}
819 
820 		sbsec->def_sid = defcontext_sid;
821 	}
822 
823 out_set_opts:
824 	rc = sb_finish_set_opts(sb);
825 out:
826 	mutex_unlock(&sbsec->lock);
827 	return rc;
828 out_double_mount:
829 	rc = -EINVAL;
830 	pr_warn("SELinux: mount invalid.  Same superblock, different "
831 	       "security settings for (dev %s, type %s)\n", sb->s_id,
832 	       sb->s_type->name);
833 	goto out;
834 }
835 
836 static int selinux_cmp_sb_context(const struct super_block *oldsb,
837 				    const struct super_block *newsb)
838 {
839 	struct superblock_security_struct *old = oldsb->s_security;
840 	struct superblock_security_struct *new = newsb->s_security;
841 	char oldflags = old->flags & SE_MNTMASK;
842 	char newflags = new->flags & SE_MNTMASK;
843 
844 	if (oldflags != newflags)
845 		goto mismatch;
846 	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
847 		goto mismatch;
848 	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
849 		goto mismatch;
850 	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
851 		goto mismatch;
852 	if (oldflags & ROOTCONTEXT_MNT) {
853 		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
854 		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
855 		if (oldroot->sid != newroot->sid)
856 			goto mismatch;
857 	}
858 	return 0;
859 mismatch:
860 	pr_warn("SELinux: mount invalid.  Same superblock, "
861 			    "different security settings for (dev %s, "
862 			    "type %s)\n", newsb->s_id, newsb->s_type->name);
863 	return -EBUSY;
864 }
865 
866 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
867 					struct super_block *newsb,
868 					unsigned long kern_flags,
869 					unsigned long *set_kern_flags)
870 {
871 	int rc = 0;
872 	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
873 	struct superblock_security_struct *newsbsec = newsb->s_security;
874 
875 	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
876 	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
877 	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
878 
879 	/*
880 	 * if the parent was able to be mounted it clearly had no special lsm
881 	 * mount options.  thus we can safely deal with this superblock later
882 	 */
883 	if (!selinux_initialized(&selinux_state))
884 		return 0;
885 
886 	/*
887 	 * Specifying internal flags without providing a place to
888 	 * place the results is not allowed.
889 	 */
890 	if (kern_flags && !set_kern_flags)
891 		return -EINVAL;
892 
893 	/* how can we clone if the old one wasn't set up?? */
894 	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
895 
896 	/* if fs is reusing a sb, make sure that the contexts match */
897 	if (newsbsec->flags & SE_SBINITIALIZED) {
898 		if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
899 			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
900 		return selinux_cmp_sb_context(oldsb, newsb);
901 	}
902 
903 	mutex_lock(&newsbsec->lock);
904 
905 	newsbsec->flags = oldsbsec->flags;
906 
907 	newsbsec->sid = oldsbsec->sid;
908 	newsbsec->def_sid = oldsbsec->def_sid;
909 	newsbsec->behavior = oldsbsec->behavior;
910 
911 	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
912 		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
913 		rc = security_fs_use(&selinux_state, newsb);
914 		if (rc)
915 			goto out;
916 	}
917 
918 	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
919 		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
920 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
921 	}
922 
923 	if (set_context) {
924 		u32 sid = oldsbsec->mntpoint_sid;
925 
926 		if (!set_fscontext)
927 			newsbsec->sid = sid;
928 		if (!set_rootcontext) {
929 			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
930 			newisec->sid = sid;
931 		}
932 		newsbsec->mntpoint_sid = sid;
933 	}
934 	if (set_rootcontext) {
935 		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
936 		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
937 
938 		newisec->sid = oldisec->sid;
939 	}
940 
941 	sb_finish_set_opts(newsb);
942 out:
943 	mutex_unlock(&newsbsec->lock);
944 	return rc;
945 }
946 
947 static int selinux_add_opt(int token, const char *s, void **mnt_opts)
948 {
949 	struct selinux_mnt_opts *opts = *mnt_opts;
950 
951 	if (token == Opt_seclabel)	/* eaten and completely ignored */
952 		return 0;
953 
954 	if (!opts) {
955 		opts = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
956 		if (!opts)
957 			return -ENOMEM;
958 		*mnt_opts = opts;
959 	}
960 	if (!s)
961 		return -ENOMEM;
962 	switch (token) {
963 	case Opt_context:
964 		if (opts->context || opts->defcontext)
965 			goto Einval;
966 		opts->context = s;
967 		break;
968 	case Opt_fscontext:
969 		if (opts->fscontext)
970 			goto Einval;
971 		opts->fscontext = s;
972 		break;
973 	case Opt_rootcontext:
974 		if (opts->rootcontext)
975 			goto Einval;
976 		opts->rootcontext = s;
977 		break;
978 	case Opt_defcontext:
979 		if (opts->context || opts->defcontext)
980 			goto Einval;
981 		opts->defcontext = s;
982 		break;
983 	}
984 	return 0;
985 Einval:
986 	pr_warn(SEL_MOUNT_FAIL_MSG);
987 	return -EINVAL;
988 }
989 
990 static int selinux_add_mnt_opt(const char *option, const char *val, int len,
991 			       void **mnt_opts)
992 {
993 	int token = Opt_error;
994 	int rc, i;
995 
996 	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
997 		if (strcmp(option, tokens[i].name) == 0) {
998 			token = tokens[i].opt;
999 			break;
1000 		}
1001 	}
1002 
1003 	if (token == Opt_error)
1004 		return -EINVAL;
1005 
1006 	if (token != Opt_seclabel) {
1007 		val = kmemdup_nul(val, len, GFP_KERNEL);
1008 		if (!val) {
1009 			rc = -ENOMEM;
1010 			goto free_opt;
1011 		}
1012 	}
1013 	rc = selinux_add_opt(token, val, mnt_opts);
1014 	if (unlikely(rc)) {
1015 		kfree(val);
1016 		goto free_opt;
1017 	}
1018 	return rc;
1019 
1020 free_opt:
1021 	if (*mnt_opts) {
1022 		selinux_free_mnt_opts(*mnt_opts);
1023 		*mnt_opts = NULL;
1024 	}
1025 	return rc;
1026 }
1027 
1028 static int show_sid(struct seq_file *m, u32 sid)
1029 {
1030 	char *context = NULL;
1031 	u32 len;
1032 	int rc;
1033 
1034 	rc = security_sid_to_context(&selinux_state, sid,
1035 					     &context, &len);
1036 	if (!rc) {
1037 		bool has_comma = context && strchr(context, ',');
1038 
1039 		seq_putc(m, '=');
1040 		if (has_comma)
1041 			seq_putc(m, '\"');
1042 		seq_escape(m, context, "\"\n\\");
1043 		if (has_comma)
1044 			seq_putc(m, '\"');
1045 	}
1046 	kfree(context);
1047 	return rc;
1048 }
1049 
1050 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1051 {
1052 	struct superblock_security_struct *sbsec = sb->s_security;
1053 	int rc;
1054 
1055 	if (!(sbsec->flags & SE_SBINITIALIZED))
1056 		return 0;
1057 
1058 	if (!selinux_initialized(&selinux_state))
1059 		return 0;
1060 
1061 	if (sbsec->flags & FSCONTEXT_MNT) {
1062 		seq_putc(m, ',');
1063 		seq_puts(m, FSCONTEXT_STR);
1064 		rc = show_sid(m, sbsec->sid);
1065 		if (rc)
1066 			return rc;
1067 	}
1068 	if (sbsec->flags & CONTEXT_MNT) {
1069 		seq_putc(m, ',');
1070 		seq_puts(m, CONTEXT_STR);
1071 		rc = show_sid(m, sbsec->mntpoint_sid);
1072 		if (rc)
1073 			return rc;
1074 	}
1075 	if (sbsec->flags & DEFCONTEXT_MNT) {
1076 		seq_putc(m, ',');
1077 		seq_puts(m, DEFCONTEXT_STR);
1078 		rc = show_sid(m, sbsec->def_sid);
1079 		if (rc)
1080 			return rc;
1081 	}
1082 	if (sbsec->flags & ROOTCONTEXT_MNT) {
1083 		struct dentry *root = sb->s_root;
1084 		struct inode_security_struct *isec = backing_inode_security(root);
1085 		seq_putc(m, ',');
1086 		seq_puts(m, ROOTCONTEXT_STR);
1087 		rc = show_sid(m, isec->sid);
1088 		if (rc)
1089 			return rc;
1090 	}
1091 	if (sbsec->flags & SBLABEL_MNT) {
1092 		seq_putc(m, ',');
1093 		seq_puts(m, SECLABEL_STR);
1094 	}
1095 	return 0;
1096 }
1097 
1098 static inline u16 inode_mode_to_security_class(umode_t mode)
1099 {
1100 	switch (mode & S_IFMT) {
1101 	case S_IFSOCK:
1102 		return SECCLASS_SOCK_FILE;
1103 	case S_IFLNK:
1104 		return SECCLASS_LNK_FILE;
1105 	case S_IFREG:
1106 		return SECCLASS_FILE;
1107 	case S_IFBLK:
1108 		return SECCLASS_BLK_FILE;
1109 	case S_IFDIR:
1110 		return SECCLASS_DIR;
1111 	case S_IFCHR:
1112 		return SECCLASS_CHR_FILE;
1113 	case S_IFIFO:
1114 		return SECCLASS_FIFO_FILE;
1115 
1116 	}
1117 
1118 	return SECCLASS_FILE;
1119 }
1120 
1121 static inline int default_protocol_stream(int protocol)
1122 {
1123 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1124 }
1125 
1126 static inline int default_protocol_dgram(int protocol)
1127 {
1128 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1129 }
1130 
1131 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1132 {
1133 	int extsockclass = selinux_policycap_extsockclass();
1134 
1135 	switch (family) {
1136 	case PF_UNIX:
1137 		switch (type) {
1138 		case SOCK_STREAM:
1139 		case SOCK_SEQPACKET:
1140 			return SECCLASS_UNIX_STREAM_SOCKET;
1141 		case SOCK_DGRAM:
1142 		case SOCK_RAW:
1143 			return SECCLASS_UNIX_DGRAM_SOCKET;
1144 		}
1145 		break;
1146 	case PF_INET:
1147 	case PF_INET6:
1148 		switch (type) {
1149 		case SOCK_STREAM:
1150 		case SOCK_SEQPACKET:
1151 			if (default_protocol_stream(protocol))
1152 				return SECCLASS_TCP_SOCKET;
1153 			else if (extsockclass && protocol == IPPROTO_SCTP)
1154 				return SECCLASS_SCTP_SOCKET;
1155 			else
1156 				return SECCLASS_RAWIP_SOCKET;
1157 		case SOCK_DGRAM:
1158 			if (default_protocol_dgram(protocol))
1159 				return SECCLASS_UDP_SOCKET;
1160 			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1161 						  protocol == IPPROTO_ICMPV6))
1162 				return SECCLASS_ICMP_SOCKET;
1163 			else
1164 				return SECCLASS_RAWIP_SOCKET;
1165 		case SOCK_DCCP:
1166 			return SECCLASS_DCCP_SOCKET;
1167 		default:
1168 			return SECCLASS_RAWIP_SOCKET;
1169 		}
1170 		break;
1171 	case PF_NETLINK:
1172 		switch (protocol) {
1173 		case NETLINK_ROUTE:
1174 			return SECCLASS_NETLINK_ROUTE_SOCKET;
1175 		case NETLINK_SOCK_DIAG:
1176 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1177 		case NETLINK_NFLOG:
1178 			return SECCLASS_NETLINK_NFLOG_SOCKET;
1179 		case NETLINK_XFRM:
1180 			return SECCLASS_NETLINK_XFRM_SOCKET;
1181 		case NETLINK_SELINUX:
1182 			return SECCLASS_NETLINK_SELINUX_SOCKET;
1183 		case NETLINK_ISCSI:
1184 			return SECCLASS_NETLINK_ISCSI_SOCKET;
1185 		case NETLINK_AUDIT:
1186 			return SECCLASS_NETLINK_AUDIT_SOCKET;
1187 		case NETLINK_FIB_LOOKUP:
1188 			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1189 		case NETLINK_CONNECTOR:
1190 			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1191 		case NETLINK_NETFILTER:
1192 			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1193 		case NETLINK_DNRTMSG:
1194 			return SECCLASS_NETLINK_DNRT_SOCKET;
1195 		case NETLINK_KOBJECT_UEVENT:
1196 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1197 		case NETLINK_GENERIC:
1198 			return SECCLASS_NETLINK_GENERIC_SOCKET;
1199 		case NETLINK_SCSITRANSPORT:
1200 			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1201 		case NETLINK_RDMA:
1202 			return SECCLASS_NETLINK_RDMA_SOCKET;
1203 		case NETLINK_CRYPTO:
1204 			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1205 		default:
1206 			return SECCLASS_NETLINK_SOCKET;
1207 		}
1208 	case PF_PACKET:
1209 		return SECCLASS_PACKET_SOCKET;
1210 	case PF_KEY:
1211 		return SECCLASS_KEY_SOCKET;
1212 	case PF_APPLETALK:
1213 		return SECCLASS_APPLETALK_SOCKET;
1214 	}
1215 
1216 	if (extsockclass) {
1217 		switch (family) {
1218 		case PF_AX25:
1219 			return SECCLASS_AX25_SOCKET;
1220 		case PF_IPX:
1221 			return SECCLASS_IPX_SOCKET;
1222 		case PF_NETROM:
1223 			return SECCLASS_NETROM_SOCKET;
1224 		case PF_ATMPVC:
1225 			return SECCLASS_ATMPVC_SOCKET;
1226 		case PF_X25:
1227 			return SECCLASS_X25_SOCKET;
1228 		case PF_ROSE:
1229 			return SECCLASS_ROSE_SOCKET;
1230 		case PF_DECnet:
1231 			return SECCLASS_DECNET_SOCKET;
1232 		case PF_ATMSVC:
1233 			return SECCLASS_ATMSVC_SOCKET;
1234 		case PF_RDS:
1235 			return SECCLASS_RDS_SOCKET;
1236 		case PF_IRDA:
1237 			return SECCLASS_IRDA_SOCKET;
1238 		case PF_PPPOX:
1239 			return SECCLASS_PPPOX_SOCKET;
1240 		case PF_LLC:
1241 			return SECCLASS_LLC_SOCKET;
1242 		case PF_CAN:
1243 			return SECCLASS_CAN_SOCKET;
1244 		case PF_TIPC:
1245 			return SECCLASS_TIPC_SOCKET;
1246 		case PF_BLUETOOTH:
1247 			return SECCLASS_BLUETOOTH_SOCKET;
1248 		case PF_IUCV:
1249 			return SECCLASS_IUCV_SOCKET;
1250 		case PF_RXRPC:
1251 			return SECCLASS_RXRPC_SOCKET;
1252 		case PF_ISDN:
1253 			return SECCLASS_ISDN_SOCKET;
1254 		case PF_PHONET:
1255 			return SECCLASS_PHONET_SOCKET;
1256 		case PF_IEEE802154:
1257 			return SECCLASS_IEEE802154_SOCKET;
1258 		case PF_CAIF:
1259 			return SECCLASS_CAIF_SOCKET;
1260 		case PF_ALG:
1261 			return SECCLASS_ALG_SOCKET;
1262 		case PF_NFC:
1263 			return SECCLASS_NFC_SOCKET;
1264 		case PF_VSOCK:
1265 			return SECCLASS_VSOCK_SOCKET;
1266 		case PF_KCM:
1267 			return SECCLASS_KCM_SOCKET;
1268 		case PF_QIPCRTR:
1269 			return SECCLASS_QIPCRTR_SOCKET;
1270 		case PF_SMC:
1271 			return SECCLASS_SMC_SOCKET;
1272 		case PF_XDP:
1273 			return SECCLASS_XDP_SOCKET;
1274 #if PF_MAX > 45
1275 #error New address family defined, please update this function.
1276 #endif
1277 		}
1278 	}
1279 
1280 	return SECCLASS_SOCKET;
1281 }
1282 
1283 static int selinux_genfs_get_sid(struct dentry *dentry,
1284 				 u16 tclass,
1285 				 u16 flags,
1286 				 u32 *sid)
1287 {
1288 	int rc;
1289 	struct super_block *sb = dentry->d_sb;
1290 	char *buffer, *path;
1291 
1292 	buffer = (char *)__get_free_page(GFP_KERNEL);
1293 	if (!buffer)
1294 		return -ENOMEM;
1295 
1296 	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1297 	if (IS_ERR(path))
1298 		rc = PTR_ERR(path);
1299 	else {
1300 		if (flags & SE_SBPROC) {
1301 			/* each process gets a /proc/PID/ entry. Strip off the
1302 			 * PID part to get a valid selinux labeling.
1303 			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1304 			while (path[1] >= '0' && path[1] <= '9') {
1305 				path[1] = '/';
1306 				path++;
1307 			}
1308 		}
1309 		rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1310 					path, tclass, sid);
1311 		if (rc == -ENOENT) {
1312 			/* No match in policy, mark as unlabeled. */
1313 			*sid = SECINITSID_UNLABELED;
1314 			rc = 0;
1315 		}
1316 	}
1317 	free_page((unsigned long)buffer);
1318 	return rc;
1319 }
1320 
1321 static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1322 				  u32 def_sid, u32 *sid)
1323 {
1324 #define INITCONTEXTLEN 255
1325 	char *context;
1326 	unsigned int len;
1327 	int rc;
1328 
1329 	len = INITCONTEXTLEN;
1330 	context = kmalloc(len + 1, GFP_NOFS);
1331 	if (!context)
1332 		return -ENOMEM;
1333 
1334 	context[len] = '\0';
1335 	rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1336 	if (rc == -ERANGE) {
1337 		kfree(context);
1338 
1339 		/* Need a larger buffer.  Query for the right size. */
1340 		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1341 		if (rc < 0)
1342 			return rc;
1343 
1344 		len = rc;
1345 		context = kmalloc(len + 1, GFP_NOFS);
1346 		if (!context)
1347 			return -ENOMEM;
1348 
1349 		context[len] = '\0';
1350 		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1351 				    context, len);
1352 	}
1353 	if (rc < 0) {
1354 		kfree(context);
1355 		if (rc != -ENODATA) {
1356 			pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1357 				__func__, -rc, inode->i_sb->s_id, inode->i_ino);
1358 			return rc;
1359 		}
1360 		*sid = def_sid;
1361 		return 0;
1362 	}
1363 
1364 	rc = security_context_to_sid_default(&selinux_state, context, rc, sid,
1365 					     def_sid, GFP_NOFS);
1366 	if (rc) {
1367 		char *dev = inode->i_sb->s_id;
1368 		unsigned long ino = inode->i_ino;
1369 
1370 		if (rc == -EINVAL) {
1371 			pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1372 					      ino, dev, context);
1373 		} else {
1374 			pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1375 				__func__, context, -rc, dev, ino);
1376 		}
1377 	}
1378 	kfree(context);
1379 	return 0;
1380 }
1381 
1382 /* The inode's security attributes must be initialized before first use. */
1383 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1384 {
1385 	struct superblock_security_struct *sbsec = NULL;
1386 	struct inode_security_struct *isec = selinux_inode(inode);
1387 	u32 task_sid, sid = 0;
1388 	u16 sclass;
1389 	struct dentry *dentry;
1390 	int rc = 0;
1391 
1392 	if (isec->initialized == LABEL_INITIALIZED)
1393 		return 0;
1394 
1395 	spin_lock(&isec->lock);
1396 	if (isec->initialized == LABEL_INITIALIZED)
1397 		goto out_unlock;
1398 
1399 	if (isec->sclass == SECCLASS_FILE)
1400 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1401 
1402 	sbsec = inode->i_sb->s_security;
1403 	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1404 		/* Defer initialization until selinux_complete_init,
1405 		   after the initial policy is loaded and the security
1406 		   server is ready to handle calls. */
1407 		spin_lock(&sbsec->isec_lock);
1408 		if (list_empty(&isec->list))
1409 			list_add(&isec->list, &sbsec->isec_head);
1410 		spin_unlock(&sbsec->isec_lock);
1411 		goto out_unlock;
1412 	}
1413 
1414 	sclass = isec->sclass;
1415 	task_sid = isec->task_sid;
1416 	sid = isec->sid;
1417 	isec->initialized = LABEL_PENDING;
1418 	spin_unlock(&isec->lock);
1419 
1420 	switch (sbsec->behavior) {
1421 	case SECURITY_FS_USE_NATIVE:
1422 		break;
1423 	case SECURITY_FS_USE_XATTR:
1424 		if (!(inode->i_opflags & IOP_XATTR)) {
1425 			sid = sbsec->def_sid;
1426 			break;
1427 		}
1428 		/* Need a dentry, since the xattr API requires one.
1429 		   Life would be simpler if we could just pass the inode. */
1430 		if (opt_dentry) {
1431 			/* Called from d_instantiate or d_splice_alias. */
1432 			dentry = dget(opt_dentry);
1433 		} else {
1434 			/*
1435 			 * Called from selinux_complete_init, try to find a dentry.
1436 			 * Some filesystems really want a connected one, so try
1437 			 * that first.  We could split SECURITY_FS_USE_XATTR in
1438 			 * two, depending upon that...
1439 			 */
1440 			dentry = d_find_alias(inode);
1441 			if (!dentry)
1442 				dentry = d_find_any_alias(inode);
1443 		}
1444 		if (!dentry) {
1445 			/*
1446 			 * this is can be hit on boot when a file is accessed
1447 			 * before the policy is loaded.  When we load policy we
1448 			 * may find inodes that have no dentry on the
1449 			 * sbsec->isec_head list.  No reason to complain as these
1450 			 * will get fixed up the next time we go through
1451 			 * inode_doinit with a dentry, before these inodes could
1452 			 * be used again by userspace.
1453 			 */
1454 			goto out_invalid;
1455 		}
1456 
1457 		rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1458 					    &sid);
1459 		dput(dentry);
1460 		if (rc)
1461 			goto out;
1462 		break;
1463 	case SECURITY_FS_USE_TASK:
1464 		sid = task_sid;
1465 		break;
1466 	case SECURITY_FS_USE_TRANS:
1467 		/* Default to the fs SID. */
1468 		sid = sbsec->sid;
1469 
1470 		/* Try to obtain a transition SID. */
1471 		rc = security_transition_sid(&selinux_state, task_sid, sid,
1472 					     sclass, NULL, &sid);
1473 		if (rc)
1474 			goto out;
1475 		break;
1476 	case SECURITY_FS_USE_MNTPOINT:
1477 		sid = sbsec->mntpoint_sid;
1478 		break;
1479 	default:
1480 		/* Default to the fs superblock SID. */
1481 		sid = sbsec->sid;
1482 
1483 		if ((sbsec->flags & SE_SBGENFS) &&
1484 		     (!S_ISLNK(inode->i_mode) ||
1485 		      selinux_policycap_genfs_seclabel_symlinks())) {
1486 			/* We must have a dentry to determine the label on
1487 			 * procfs inodes */
1488 			if (opt_dentry) {
1489 				/* Called from d_instantiate or
1490 				 * d_splice_alias. */
1491 				dentry = dget(opt_dentry);
1492 			} else {
1493 				/* Called from selinux_complete_init, try to
1494 				 * find a dentry.  Some filesystems really want
1495 				 * a connected one, so try that first.
1496 				 */
1497 				dentry = d_find_alias(inode);
1498 				if (!dentry)
1499 					dentry = d_find_any_alias(inode);
1500 			}
1501 			/*
1502 			 * This can be hit on boot when a file is accessed
1503 			 * before the policy is loaded.  When we load policy we
1504 			 * may find inodes that have no dentry on the
1505 			 * sbsec->isec_head list.  No reason to complain as
1506 			 * these will get fixed up the next time we go through
1507 			 * inode_doinit() with a dentry, before these inodes
1508 			 * could be used again by userspace.
1509 			 */
1510 			if (!dentry)
1511 				goto out_invalid;
1512 			rc = selinux_genfs_get_sid(dentry, sclass,
1513 						   sbsec->flags, &sid);
1514 			if (rc) {
1515 				dput(dentry);
1516 				goto out;
1517 			}
1518 
1519 			if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1520 			    (inode->i_opflags & IOP_XATTR)) {
1521 				rc = inode_doinit_use_xattr(inode, dentry,
1522 							    sid, &sid);
1523 				if (rc) {
1524 					dput(dentry);
1525 					goto out;
1526 				}
1527 			}
1528 			dput(dentry);
1529 		}
1530 		break;
1531 	}
1532 
1533 out:
1534 	spin_lock(&isec->lock);
1535 	if (isec->initialized == LABEL_PENDING) {
1536 		if (rc) {
1537 			isec->initialized = LABEL_INVALID;
1538 			goto out_unlock;
1539 		}
1540 		isec->initialized = LABEL_INITIALIZED;
1541 		isec->sid = sid;
1542 	}
1543 
1544 out_unlock:
1545 	spin_unlock(&isec->lock);
1546 	return rc;
1547 
1548 out_invalid:
1549 	spin_lock(&isec->lock);
1550 	if (isec->initialized == LABEL_PENDING) {
1551 		isec->initialized = LABEL_INVALID;
1552 		isec->sid = sid;
1553 	}
1554 	spin_unlock(&isec->lock);
1555 	return 0;
1556 }
1557 
1558 /* Convert a Linux signal to an access vector. */
1559 static inline u32 signal_to_av(int sig)
1560 {
1561 	u32 perm = 0;
1562 
1563 	switch (sig) {
1564 	case SIGCHLD:
1565 		/* Commonly granted from child to parent. */
1566 		perm = PROCESS__SIGCHLD;
1567 		break;
1568 	case SIGKILL:
1569 		/* Cannot be caught or ignored */
1570 		perm = PROCESS__SIGKILL;
1571 		break;
1572 	case SIGSTOP:
1573 		/* Cannot be caught or ignored */
1574 		perm = PROCESS__SIGSTOP;
1575 		break;
1576 	default:
1577 		/* All other signals. */
1578 		perm = PROCESS__SIGNAL;
1579 		break;
1580 	}
1581 
1582 	return perm;
1583 }
1584 
1585 #if CAP_LAST_CAP > 63
1586 #error Fix SELinux to handle capabilities > 63.
1587 #endif
1588 
1589 /* Check whether a task is allowed to use a capability. */
1590 static int cred_has_capability(const struct cred *cred,
1591 			       int cap, unsigned int opts, bool initns)
1592 {
1593 	struct common_audit_data ad;
1594 	struct av_decision avd;
1595 	u16 sclass;
1596 	u32 sid = cred_sid(cred);
1597 	u32 av = CAP_TO_MASK(cap);
1598 	int rc;
1599 
1600 	ad.type = LSM_AUDIT_DATA_CAP;
1601 	ad.u.cap = cap;
1602 
1603 	switch (CAP_TO_INDEX(cap)) {
1604 	case 0:
1605 		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1606 		break;
1607 	case 1:
1608 		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1609 		break;
1610 	default:
1611 		pr_err("SELinux:  out of range capability %d\n", cap);
1612 		BUG();
1613 		return -EINVAL;
1614 	}
1615 
1616 	rc = avc_has_perm_noaudit(&selinux_state,
1617 				  sid, sid, sclass, av, 0, &avd);
1618 	if (!(opts & CAP_OPT_NOAUDIT)) {
1619 		int rc2 = avc_audit(&selinux_state,
1620 				    sid, sid, sclass, av, &avd, rc, &ad, 0);
1621 		if (rc2)
1622 			return rc2;
1623 	}
1624 	return rc;
1625 }
1626 
1627 /* Check whether a task has a particular permission to an inode.
1628    The 'adp' parameter is optional and allows other audit
1629    data to be passed (e.g. the dentry). */
1630 static int inode_has_perm(const struct cred *cred,
1631 			  struct inode *inode,
1632 			  u32 perms,
1633 			  struct common_audit_data *adp)
1634 {
1635 	struct inode_security_struct *isec;
1636 	u32 sid;
1637 
1638 	validate_creds(cred);
1639 
1640 	if (unlikely(IS_PRIVATE(inode)))
1641 		return 0;
1642 
1643 	sid = cred_sid(cred);
1644 	isec = selinux_inode(inode);
1645 
1646 	return avc_has_perm(&selinux_state,
1647 			    sid, isec->sid, isec->sclass, perms, adp);
1648 }
1649 
1650 /* Same as inode_has_perm, but pass explicit audit data containing
1651    the dentry to help the auditing code to more easily generate the
1652    pathname if needed. */
1653 static inline int dentry_has_perm(const struct cred *cred,
1654 				  struct dentry *dentry,
1655 				  u32 av)
1656 {
1657 	struct inode *inode = d_backing_inode(dentry);
1658 	struct common_audit_data ad;
1659 
1660 	ad.type = LSM_AUDIT_DATA_DENTRY;
1661 	ad.u.dentry = dentry;
1662 	__inode_security_revalidate(inode, dentry, true);
1663 	return inode_has_perm(cred, inode, av, &ad);
1664 }
1665 
1666 /* Same as inode_has_perm, but pass explicit audit data containing
1667    the path to help the auditing code to more easily generate the
1668    pathname if needed. */
1669 static inline int path_has_perm(const struct cred *cred,
1670 				const struct path *path,
1671 				u32 av)
1672 {
1673 	struct inode *inode = d_backing_inode(path->dentry);
1674 	struct common_audit_data ad;
1675 
1676 	ad.type = LSM_AUDIT_DATA_PATH;
1677 	ad.u.path = *path;
1678 	__inode_security_revalidate(inode, path->dentry, true);
1679 	return inode_has_perm(cred, inode, av, &ad);
1680 }
1681 
1682 /* Same as path_has_perm, but uses the inode from the file struct. */
1683 static inline int file_path_has_perm(const struct cred *cred,
1684 				     struct file *file,
1685 				     u32 av)
1686 {
1687 	struct common_audit_data ad;
1688 
1689 	ad.type = LSM_AUDIT_DATA_FILE;
1690 	ad.u.file = file;
1691 	return inode_has_perm(cred, file_inode(file), av, &ad);
1692 }
1693 
1694 #ifdef CONFIG_BPF_SYSCALL
1695 static int bpf_fd_pass(struct file *file, u32 sid);
1696 #endif
1697 
1698 /* Check whether a task can use an open file descriptor to
1699    access an inode in a given way.  Check access to the
1700    descriptor itself, and then use dentry_has_perm to
1701    check a particular permission to the file.
1702    Access to the descriptor is implicitly granted if it
1703    has the same SID as the process.  If av is zero, then
1704    access to the file is not checked, e.g. for cases
1705    where only the descriptor is affected like seek. */
1706 static int file_has_perm(const struct cred *cred,
1707 			 struct file *file,
1708 			 u32 av)
1709 {
1710 	struct file_security_struct *fsec = selinux_file(file);
1711 	struct inode *inode = file_inode(file);
1712 	struct common_audit_data ad;
1713 	u32 sid = cred_sid(cred);
1714 	int rc;
1715 
1716 	ad.type = LSM_AUDIT_DATA_FILE;
1717 	ad.u.file = file;
1718 
1719 	if (sid != fsec->sid) {
1720 		rc = avc_has_perm(&selinux_state,
1721 				  sid, fsec->sid,
1722 				  SECCLASS_FD,
1723 				  FD__USE,
1724 				  &ad);
1725 		if (rc)
1726 			goto out;
1727 	}
1728 
1729 #ifdef CONFIG_BPF_SYSCALL
1730 	rc = bpf_fd_pass(file, cred_sid(cred));
1731 	if (rc)
1732 		return rc;
1733 #endif
1734 
1735 	/* av is zero if only checking access to the descriptor. */
1736 	rc = 0;
1737 	if (av)
1738 		rc = inode_has_perm(cred, inode, av, &ad);
1739 
1740 out:
1741 	return rc;
1742 }
1743 
1744 /*
1745  * Determine the label for an inode that might be unioned.
1746  */
1747 static int
1748 selinux_determine_inode_label(const struct task_security_struct *tsec,
1749 				 struct inode *dir,
1750 				 const struct qstr *name, u16 tclass,
1751 				 u32 *_new_isid)
1752 {
1753 	const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1754 
1755 	if ((sbsec->flags & SE_SBINITIALIZED) &&
1756 	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1757 		*_new_isid = sbsec->mntpoint_sid;
1758 	} else if ((sbsec->flags & SBLABEL_MNT) &&
1759 		   tsec->create_sid) {
1760 		*_new_isid = tsec->create_sid;
1761 	} else {
1762 		const struct inode_security_struct *dsec = inode_security(dir);
1763 		return security_transition_sid(&selinux_state, tsec->sid,
1764 					       dsec->sid, tclass,
1765 					       name, _new_isid);
1766 	}
1767 
1768 	return 0;
1769 }
1770 
1771 /* Check whether a task can create a file. */
1772 static int may_create(struct inode *dir,
1773 		      struct dentry *dentry,
1774 		      u16 tclass)
1775 {
1776 	const struct task_security_struct *tsec = selinux_cred(current_cred());
1777 	struct inode_security_struct *dsec;
1778 	struct superblock_security_struct *sbsec;
1779 	u32 sid, newsid;
1780 	struct common_audit_data ad;
1781 	int rc;
1782 
1783 	dsec = inode_security(dir);
1784 	sbsec = dir->i_sb->s_security;
1785 
1786 	sid = tsec->sid;
1787 
1788 	ad.type = LSM_AUDIT_DATA_DENTRY;
1789 	ad.u.dentry = dentry;
1790 
1791 	rc = avc_has_perm(&selinux_state,
1792 			  sid, dsec->sid, SECCLASS_DIR,
1793 			  DIR__ADD_NAME | DIR__SEARCH,
1794 			  &ad);
1795 	if (rc)
1796 		return rc;
1797 
1798 	rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1799 					   &newsid);
1800 	if (rc)
1801 		return rc;
1802 
1803 	rc = avc_has_perm(&selinux_state,
1804 			  sid, newsid, tclass, FILE__CREATE, &ad);
1805 	if (rc)
1806 		return rc;
1807 
1808 	return avc_has_perm(&selinux_state,
1809 			    newsid, sbsec->sid,
1810 			    SECCLASS_FILESYSTEM,
1811 			    FILESYSTEM__ASSOCIATE, &ad);
1812 }
1813 
1814 #define MAY_LINK	0
1815 #define MAY_UNLINK	1
1816 #define MAY_RMDIR	2
1817 
1818 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1819 static int may_link(struct inode *dir,
1820 		    struct dentry *dentry,
1821 		    int kind)
1822 
1823 {
1824 	struct inode_security_struct *dsec, *isec;
1825 	struct common_audit_data ad;
1826 	u32 sid = current_sid();
1827 	u32 av;
1828 	int rc;
1829 
1830 	dsec = inode_security(dir);
1831 	isec = backing_inode_security(dentry);
1832 
1833 	ad.type = LSM_AUDIT_DATA_DENTRY;
1834 	ad.u.dentry = dentry;
1835 
1836 	av = DIR__SEARCH;
1837 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1838 	rc = avc_has_perm(&selinux_state,
1839 			  sid, dsec->sid, SECCLASS_DIR, av, &ad);
1840 	if (rc)
1841 		return rc;
1842 
1843 	switch (kind) {
1844 	case MAY_LINK:
1845 		av = FILE__LINK;
1846 		break;
1847 	case MAY_UNLINK:
1848 		av = FILE__UNLINK;
1849 		break;
1850 	case MAY_RMDIR:
1851 		av = DIR__RMDIR;
1852 		break;
1853 	default:
1854 		pr_warn("SELinux: %s:  unrecognized kind %d\n",
1855 			__func__, kind);
1856 		return 0;
1857 	}
1858 
1859 	rc = avc_has_perm(&selinux_state,
1860 			  sid, isec->sid, isec->sclass, av, &ad);
1861 	return rc;
1862 }
1863 
1864 static inline int may_rename(struct inode *old_dir,
1865 			     struct dentry *old_dentry,
1866 			     struct inode *new_dir,
1867 			     struct dentry *new_dentry)
1868 {
1869 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1870 	struct common_audit_data ad;
1871 	u32 sid = current_sid();
1872 	u32 av;
1873 	int old_is_dir, new_is_dir;
1874 	int rc;
1875 
1876 	old_dsec = inode_security(old_dir);
1877 	old_isec = backing_inode_security(old_dentry);
1878 	old_is_dir = d_is_dir(old_dentry);
1879 	new_dsec = inode_security(new_dir);
1880 
1881 	ad.type = LSM_AUDIT_DATA_DENTRY;
1882 
1883 	ad.u.dentry = old_dentry;
1884 	rc = avc_has_perm(&selinux_state,
1885 			  sid, old_dsec->sid, SECCLASS_DIR,
1886 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1887 	if (rc)
1888 		return rc;
1889 	rc = avc_has_perm(&selinux_state,
1890 			  sid, old_isec->sid,
1891 			  old_isec->sclass, FILE__RENAME, &ad);
1892 	if (rc)
1893 		return rc;
1894 	if (old_is_dir && new_dir != old_dir) {
1895 		rc = avc_has_perm(&selinux_state,
1896 				  sid, old_isec->sid,
1897 				  old_isec->sclass, DIR__REPARENT, &ad);
1898 		if (rc)
1899 			return rc;
1900 	}
1901 
1902 	ad.u.dentry = new_dentry;
1903 	av = DIR__ADD_NAME | DIR__SEARCH;
1904 	if (d_is_positive(new_dentry))
1905 		av |= DIR__REMOVE_NAME;
1906 	rc = avc_has_perm(&selinux_state,
1907 			  sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1908 	if (rc)
1909 		return rc;
1910 	if (d_is_positive(new_dentry)) {
1911 		new_isec = backing_inode_security(new_dentry);
1912 		new_is_dir = d_is_dir(new_dentry);
1913 		rc = avc_has_perm(&selinux_state,
1914 				  sid, new_isec->sid,
1915 				  new_isec->sclass,
1916 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1917 		if (rc)
1918 			return rc;
1919 	}
1920 
1921 	return 0;
1922 }
1923 
1924 /* Check whether a task can perform a filesystem operation. */
1925 static int superblock_has_perm(const struct cred *cred,
1926 			       struct super_block *sb,
1927 			       u32 perms,
1928 			       struct common_audit_data *ad)
1929 {
1930 	struct superblock_security_struct *sbsec;
1931 	u32 sid = cred_sid(cred);
1932 
1933 	sbsec = sb->s_security;
1934 	return avc_has_perm(&selinux_state,
1935 			    sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1936 }
1937 
1938 /* Convert a Linux mode and permission mask to an access vector. */
1939 static inline u32 file_mask_to_av(int mode, int mask)
1940 {
1941 	u32 av = 0;
1942 
1943 	if (!S_ISDIR(mode)) {
1944 		if (mask & MAY_EXEC)
1945 			av |= FILE__EXECUTE;
1946 		if (mask & MAY_READ)
1947 			av |= FILE__READ;
1948 
1949 		if (mask & MAY_APPEND)
1950 			av |= FILE__APPEND;
1951 		else if (mask & MAY_WRITE)
1952 			av |= FILE__WRITE;
1953 
1954 	} else {
1955 		if (mask & MAY_EXEC)
1956 			av |= DIR__SEARCH;
1957 		if (mask & MAY_WRITE)
1958 			av |= DIR__WRITE;
1959 		if (mask & MAY_READ)
1960 			av |= DIR__READ;
1961 	}
1962 
1963 	return av;
1964 }
1965 
1966 /* Convert a Linux file to an access vector. */
1967 static inline u32 file_to_av(struct file *file)
1968 {
1969 	u32 av = 0;
1970 
1971 	if (file->f_mode & FMODE_READ)
1972 		av |= FILE__READ;
1973 	if (file->f_mode & FMODE_WRITE) {
1974 		if (file->f_flags & O_APPEND)
1975 			av |= FILE__APPEND;
1976 		else
1977 			av |= FILE__WRITE;
1978 	}
1979 	if (!av) {
1980 		/*
1981 		 * Special file opened with flags 3 for ioctl-only use.
1982 		 */
1983 		av = FILE__IOCTL;
1984 	}
1985 
1986 	return av;
1987 }
1988 
1989 /*
1990  * Convert a file to an access vector and include the correct
1991  * open permission.
1992  */
1993 static inline u32 open_file_to_av(struct file *file)
1994 {
1995 	u32 av = file_to_av(file);
1996 	struct inode *inode = file_inode(file);
1997 
1998 	if (selinux_policycap_openperm() &&
1999 	    inode->i_sb->s_magic != SOCKFS_MAGIC)
2000 		av |= FILE__OPEN;
2001 
2002 	return av;
2003 }
2004 
2005 /* Hook functions begin here. */
2006 
2007 static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2008 {
2009 	u32 mysid = current_sid();
2010 	u32 mgrsid = task_sid(mgr);
2011 
2012 	return avc_has_perm(&selinux_state,
2013 			    mysid, mgrsid, SECCLASS_BINDER,
2014 			    BINDER__SET_CONTEXT_MGR, NULL);
2015 }
2016 
2017 static int selinux_binder_transaction(struct task_struct *from,
2018 				      struct task_struct *to)
2019 {
2020 	u32 mysid = current_sid();
2021 	u32 fromsid = task_sid(from);
2022 	u32 tosid = task_sid(to);
2023 	int rc;
2024 
2025 	if (mysid != fromsid) {
2026 		rc = avc_has_perm(&selinux_state,
2027 				  mysid, fromsid, SECCLASS_BINDER,
2028 				  BINDER__IMPERSONATE, NULL);
2029 		if (rc)
2030 			return rc;
2031 	}
2032 
2033 	return avc_has_perm(&selinux_state,
2034 			    fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2035 			    NULL);
2036 }
2037 
2038 static int selinux_binder_transfer_binder(struct task_struct *from,
2039 					  struct task_struct *to)
2040 {
2041 	u32 fromsid = task_sid(from);
2042 	u32 tosid = task_sid(to);
2043 
2044 	return avc_has_perm(&selinux_state,
2045 			    fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2046 			    NULL);
2047 }
2048 
2049 static int selinux_binder_transfer_file(struct task_struct *from,
2050 					struct task_struct *to,
2051 					struct file *file)
2052 {
2053 	u32 sid = task_sid(to);
2054 	struct file_security_struct *fsec = selinux_file(file);
2055 	struct dentry *dentry = file->f_path.dentry;
2056 	struct inode_security_struct *isec;
2057 	struct common_audit_data ad;
2058 	int rc;
2059 
2060 	ad.type = LSM_AUDIT_DATA_PATH;
2061 	ad.u.path = file->f_path;
2062 
2063 	if (sid != fsec->sid) {
2064 		rc = avc_has_perm(&selinux_state,
2065 				  sid, fsec->sid,
2066 				  SECCLASS_FD,
2067 				  FD__USE,
2068 				  &ad);
2069 		if (rc)
2070 			return rc;
2071 	}
2072 
2073 #ifdef CONFIG_BPF_SYSCALL
2074 	rc = bpf_fd_pass(file, sid);
2075 	if (rc)
2076 		return rc;
2077 #endif
2078 
2079 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2080 		return 0;
2081 
2082 	isec = backing_inode_security(dentry);
2083 	return avc_has_perm(&selinux_state,
2084 			    sid, isec->sid, isec->sclass, file_to_av(file),
2085 			    &ad);
2086 }
2087 
2088 static int selinux_ptrace_access_check(struct task_struct *child,
2089 				     unsigned int mode)
2090 {
2091 	u32 sid = current_sid();
2092 	u32 csid = task_sid(child);
2093 
2094 	if (mode & PTRACE_MODE_READ)
2095 		return avc_has_perm(&selinux_state,
2096 				    sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2097 
2098 	return avc_has_perm(&selinux_state,
2099 			    sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2100 }
2101 
2102 static int selinux_ptrace_traceme(struct task_struct *parent)
2103 {
2104 	return avc_has_perm(&selinux_state,
2105 			    task_sid(parent), current_sid(), SECCLASS_PROCESS,
2106 			    PROCESS__PTRACE, NULL);
2107 }
2108 
2109 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2110 			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2111 {
2112 	return avc_has_perm(&selinux_state,
2113 			    current_sid(), task_sid(target), SECCLASS_PROCESS,
2114 			    PROCESS__GETCAP, NULL);
2115 }
2116 
2117 static int selinux_capset(struct cred *new, const struct cred *old,
2118 			  const kernel_cap_t *effective,
2119 			  const kernel_cap_t *inheritable,
2120 			  const kernel_cap_t *permitted)
2121 {
2122 	return avc_has_perm(&selinux_state,
2123 			    cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2124 			    PROCESS__SETCAP, NULL);
2125 }
2126 
2127 /*
2128  * (This comment used to live with the selinux_task_setuid hook,
2129  * which was removed).
2130  *
2131  * Since setuid only affects the current process, and since the SELinux
2132  * controls are not based on the Linux identity attributes, SELinux does not
2133  * need to control this operation.  However, SELinux does control the use of
2134  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2135  */
2136 
2137 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2138 			   int cap, unsigned int opts)
2139 {
2140 	return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2141 }
2142 
2143 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2144 {
2145 	const struct cred *cred = current_cred();
2146 	int rc = 0;
2147 
2148 	if (!sb)
2149 		return 0;
2150 
2151 	switch (cmds) {
2152 	case Q_SYNC:
2153 	case Q_QUOTAON:
2154 	case Q_QUOTAOFF:
2155 	case Q_SETINFO:
2156 	case Q_SETQUOTA:
2157 	case Q_XQUOTAOFF:
2158 	case Q_XQUOTAON:
2159 	case Q_XSETQLIM:
2160 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2161 		break;
2162 	case Q_GETFMT:
2163 	case Q_GETINFO:
2164 	case Q_GETQUOTA:
2165 	case Q_XGETQUOTA:
2166 	case Q_XGETQSTAT:
2167 	case Q_XGETQSTATV:
2168 	case Q_XGETNEXTQUOTA:
2169 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2170 		break;
2171 	default:
2172 		rc = 0;  /* let the kernel handle invalid cmds */
2173 		break;
2174 	}
2175 	return rc;
2176 }
2177 
2178 static int selinux_quota_on(struct dentry *dentry)
2179 {
2180 	const struct cred *cred = current_cred();
2181 
2182 	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2183 }
2184 
2185 static int selinux_syslog(int type)
2186 {
2187 	switch (type) {
2188 	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2189 	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2190 		return avc_has_perm(&selinux_state,
2191 				    current_sid(), SECINITSID_KERNEL,
2192 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2193 	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2194 	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2195 	/* Set level of messages printed to console */
2196 	case SYSLOG_ACTION_CONSOLE_LEVEL:
2197 		return avc_has_perm(&selinux_state,
2198 				    current_sid(), SECINITSID_KERNEL,
2199 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2200 				    NULL);
2201 	}
2202 	/* All other syslog types */
2203 	return avc_has_perm(&selinux_state,
2204 			    current_sid(), SECINITSID_KERNEL,
2205 			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2206 }
2207 
2208 /*
2209  * Check that a process has enough memory to allocate a new virtual
2210  * mapping. 0 means there is enough memory for the allocation to
2211  * succeed and -ENOMEM implies there is not.
2212  *
2213  * Do not audit the selinux permission check, as this is applied to all
2214  * processes that allocate mappings.
2215  */
2216 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2217 {
2218 	int rc, cap_sys_admin = 0;
2219 
2220 	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2221 				 CAP_OPT_NOAUDIT, true);
2222 	if (rc == 0)
2223 		cap_sys_admin = 1;
2224 
2225 	return cap_sys_admin;
2226 }
2227 
2228 /* binprm security operations */
2229 
2230 static u32 ptrace_parent_sid(void)
2231 {
2232 	u32 sid = 0;
2233 	struct task_struct *tracer;
2234 
2235 	rcu_read_lock();
2236 	tracer = ptrace_parent(current);
2237 	if (tracer)
2238 		sid = task_sid(tracer);
2239 	rcu_read_unlock();
2240 
2241 	return sid;
2242 }
2243 
2244 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2245 			    const struct task_security_struct *old_tsec,
2246 			    const struct task_security_struct *new_tsec)
2247 {
2248 	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2249 	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2250 	int rc;
2251 	u32 av;
2252 
2253 	if (!nnp && !nosuid)
2254 		return 0; /* neither NNP nor nosuid */
2255 
2256 	if (new_tsec->sid == old_tsec->sid)
2257 		return 0; /* No change in credentials */
2258 
2259 	/*
2260 	 * If the policy enables the nnp_nosuid_transition policy capability,
2261 	 * then we permit transitions under NNP or nosuid if the
2262 	 * policy allows the corresponding permission between
2263 	 * the old and new contexts.
2264 	 */
2265 	if (selinux_policycap_nnp_nosuid_transition()) {
2266 		av = 0;
2267 		if (nnp)
2268 			av |= PROCESS2__NNP_TRANSITION;
2269 		if (nosuid)
2270 			av |= PROCESS2__NOSUID_TRANSITION;
2271 		rc = avc_has_perm(&selinux_state,
2272 				  old_tsec->sid, new_tsec->sid,
2273 				  SECCLASS_PROCESS2, av, NULL);
2274 		if (!rc)
2275 			return 0;
2276 	}
2277 
2278 	/*
2279 	 * We also permit NNP or nosuid transitions to bounded SIDs,
2280 	 * i.e. SIDs that are guaranteed to only be allowed a subset
2281 	 * of the permissions of the current SID.
2282 	 */
2283 	rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2284 					 new_tsec->sid);
2285 	if (!rc)
2286 		return 0;
2287 
2288 	/*
2289 	 * On failure, preserve the errno values for NNP vs nosuid.
2290 	 * NNP:  Operation not permitted for caller.
2291 	 * nosuid:  Permission denied to file.
2292 	 */
2293 	if (nnp)
2294 		return -EPERM;
2295 	return -EACCES;
2296 }
2297 
2298 static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2299 {
2300 	const struct task_security_struct *old_tsec;
2301 	struct task_security_struct *new_tsec;
2302 	struct inode_security_struct *isec;
2303 	struct common_audit_data ad;
2304 	struct inode *inode = file_inode(bprm->file);
2305 	int rc;
2306 
2307 	/* SELinux context only depends on initial program or script and not
2308 	 * the script interpreter */
2309 
2310 	old_tsec = selinux_cred(current_cred());
2311 	new_tsec = selinux_cred(bprm->cred);
2312 	isec = inode_security(inode);
2313 
2314 	/* Default to the current task SID. */
2315 	new_tsec->sid = old_tsec->sid;
2316 	new_tsec->osid = old_tsec->sid;
2317 
2318 	/* Reset fs, key, and sock SIDs on execve. */
2319 	new_tsec->create_sid = 0;
2320 	new_tsec->keycreate_sid = 0;
2321 	new_tsec->sockcreate_sid = 0;
2322 
2323 	if (old_tsec->exec_sid) {
2324 		new_tsec->sid = old_tsec->exec_sid;
2325 		/* Reset exec SID on execve. */
2326 		new_tsec->exec_sid = 0;
2327 
2328 		/* Fail on NNP or nosuid if not an allowed transition. */
2329 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2330 		if (rc)
2331 			return rc;
2332 	} else {
2333 		/* Check for a default transition on this program. */
2334 		rc = security_transition_sid(&selinux_state, old_tsec->sid,
2335 					     isec->sid, SECCLASS_PROCESS, NULL,
2336 					     &new_tsec->sid);
2337 		if (rc)
2338 			return rc;
2339 
2340 		/*
2341 		 * Fallback to old SID on NNP or nosuid if not an allowed
2342 		 * transition.
2343 		 */
2344 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2345 		if (rc)
2346 			new_tsec->sid = old_tsec->sid;
2347 	}
2348 
2349 	ad.type = LSM_AUDIT_DATA_FILE;
2350 	ad.u.file = bprm->file;
2351 
2352 	if (new_tsec->sid == old_tsec->sid) {
2353 		rc = avc_has_perm(&selinux_state,
2354 				  old_tsec->sid, isec->sid,
2355 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2356 		if (rc)
2357 			return rc;
2358 	} else {
2359 		/* Check permissions for the transition. */
2360 		rc = avc_has_perm(&selinux_state,
2361 				  old_tsec->sid, new_tsec->sid,
2362 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2363 		if (rc)
2364 			return rc;
2365 
2366 		rc = avc_has_perm(&selinux_state,
2367 				  new_tsec->sid, isec->sid,
2368 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2369 		if (rc)
2370 			return rc;
2371 
2372 		/* Check for shared state */
2373 		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2374 			rc = avc_has_perm(&selinux_state,
2375 					  old_tsec->sid, new_tsec->sid,
2376 					  SECCLASS_PROCESS, PROCESS__SHARE,
2377 					  NULL);
2378 			if (rc)
2379 				return -EPERM;
2380 		}
2381 
2382 		/* Make sure that anyone attempting to ptrace over a task that
2383 		 * changes its SID has the appropriate permit */
2384 		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2385 			u32 ptsid = ptrace_parent_sid();
2386 			if (ptsid != 0) {
2387 				rc = avc_has_perm(&selinux_state,
2388 						  ptsid, new_tsec->sid,
2389 						  SECCLASS_PROCESS,
2390 						  PROCESS__PTRACE, NULL);
2391 				if (rc)
2392 					return -EPERM;
2393 			}
2394 		}
2395 
2396 		/* Clear any possibly unsafe personality bits on exec: */
2397 		bprm->per_clear |= PER_CLEAR_ON_SETID;
2398 
2399 		/* Enable secure mode for SIDs transitions unless
2400 		   the noatsecure permission is granted between
2401 		   the two SIDs, i.e. ahp returns 0. */
2402 		rc = avc_has_perm(&selinux_state,
2403 				  old_tsec->sid, new_tsec->sid,
2404 				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2405 				  NULL);
2406 		bprm->secureexec |= !!rc;
2407 	}
2408 
2409 	return 0;
2410 }
2411 
2412 static int match_file(const void *p, struct file *file, unsigned fd)
2413 {
2414 	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2415 }
2416 
2417 /* Derived from fs/exec.c:flush_old_files. */
2418 static inline void flush_unauthorized_files(const struct cred *cred,
2419 					    struct files_struct *files)
2420 {
2421 	struct file *file, *devnull = NULL;
2422 	struct tty_struct *tty;
2423 	int drop_tty = 0;
2424 	unsigned n;
2425 
2426 	tty = get_current_tty();
2427 	if (tty) {
2428 		spin_lock(&tty->files_lock);
2429 		if (!list_empty(&tty->tty_files)) {
2430 			struct tty_file_private *file_priv;
2431 
2432 			/* Revalidate access to controlling tty.
2433 			   Use file_path_has_perm on the tty path directly
2434 			   rather than using file_has_perm, as this particular
2435 			   open file may belong to another process and we are
2436 			   only interested in the inode-based check here. */
2437 			file_priv = list_first_entry(&tty->tty_files,
2438 						struct tty_file_private, list);
2439 			file = file_priv->file;
2440 			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2441 				drop_tty = 1;
2442 		}
2443 		spin_unlock(&tty->files_lock);
2444 		tty_kref_put(tty);
2445 	}
2446 	/* Reset controlling tty. */
2447 	if (drop_tty)
2448 		no_tty();
2449 
2450 	/* Revalidate access to inherited open files. */
2451 	n = iterate_fd(files, 0, match_file, cred);
2452 	if (!n) /* none found? */
2453 		return;
2454 
2455 	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2456 	if (IS_ERR(devnull))
2457 		devnull = NULL;
2458 	/* replace all the matching ones with this */
2459 	do {
2460 		replace_fd(n - 1, devnull, 0);
2461 	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2462 	if (devnull)
2463 		fput(devnull);
2464 }
2465 
2466 /*
2467  * Prepare a process for imminent new credential changes due to exec
2468  */
2469 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2470 {
2471 	struct task_security_struct *new_tsec;
2472 	struct rlimit *rlim, *initrlim;
2473 	int rc, i;
2474 
2475 	new_tsec = selinux_cred(bprm->cred);
2476 	if (new_tsec->sid == new_tsec->osid)
2477 		return;
2478 
2479 	/* Close files for which the new task SID is not authorized. */
2480 	flush_unauthorized_files(bprm->cred, current->files);
2481 
2482 	/* Always clear parent death signal on SID transitions. */
2483 	current->pdeath_signal = 0;
2484 
2485 	/* Check whether the new SID can inherit resource limits from the old
2486 	 * SID.  If not, reset all soft limits to the lower of the current
2487 	 * task's hard limit and the init task's soft limit.
2488 	 *
2489 	 * Note that the setting of hard limits (even to lower them) can be
2490 	 * controlled by the setrlimit check.  The inclusion of the init task's
2491 	 * soft limit into the computation is to avoid resetting soft limits
2492 	 * higher than the default soft limit for cases where the default is
2493 	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2494 	 */
2495 	rc = avc_has_perm(&selinux_state,
2496 			  new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2497 			  PROCESS__RLIMITINH, NULL);
2498 	if (rc) {
2499 		/* protect against do_prlimit() */
2500 		task_lock(current);
2501 		for (i = 0; i < RLIM_NLIMITS; i++) {
2502 			rlim = current->signal->rlim + i;
2503 			initrlim = init_task.signal->rlim + i;
2504 			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2505 		}
2506 		task_unlock(current);
2507 		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2508 			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2509 	}
2510 }
2511 
2512 /*
2513  * Clean up the process immediately after the installation of new credentials
2514  * due to exec
2515  */
2516 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2517 {
2518 	const struct task_security_struct *tsec = selinux_cred(current_cred());
2519 	u32 osid, sid;
2520 	int rc;
2521 
2522 	osid = tsec->osid;
2523 	sid = tsec->sid;
2524 
2525 	if (sid == osid)
2526 		return;
2527 
2528 	/* Check whether the new SID can inherit signal state from the old SID.
2529 	 * If not, clear itimers to avoid subsequent signal generation and
2530 	 * flush and unblock signals.
2531 	 *
2532 	 * This must occur _after_ the task SID has been updated so that any
2533 	 * kill done after the flush will be checked against the new SID.
2534 	 */
2535 	rc = avc_has_perm(&selinux_state,
2536 			  osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2537 	if (rc) {
2538 		clear_itimer();
2539 
2540 		spin_lock_irq(&current->sighand->siglock);
2541 		if (!fatal_signal_pending(current)) {
2542 			flush_sigqueue(&current->pending);
2543 			flush_sigqueue(&current->signal->shared_pending);
2544 			flush_signal_handlers(current, 1);
2545 			sigemptyset(&current->blocked);
2546 			recalc_sigpending();
2547 		}
2548 		spin_unlock_irq(&current->sighand->siglock);
2549 	}
2550 
2551 	/* Wake up the parent if it is waiting so that it can recheck
2552 	 * wait permission to the new task SID. */
2553 	read_lock(&tasklist_lock);
2554 	__wake_up_parent(current, current->real_parent);
2555 	read_unlock(&tasklist_lock);
2556 }
2557 
2558 /* superblock security operations */
2559 
2560 static int selinux_sb_alloc_security(struct super_block *sb)
2561 {
2562 	struct superblock_security_struct *sbsec;
2563 
2564 	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
2565 	if (!sbsec)
2566 		return -ENOMEM;
2567 
2568 	mutex_init(&sbsec->lock);
2569 	INIT_LIST_HEAD(&sbsec->isec_head);
2570 	spin_lock_init(&sbsec->isec_lock);
2571 	sbsec->sid = SECINITSID_UNLABELED;
2572 	sbsec->def_sid = SECINITSID_FILE;
2573 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2574 	sb->s_security = sbsec;
2575 
2576 	return 0;
2577 }
2578 
2579 static void selinux_sb_free_security(struct super_block *sb)
2580 {
2581 	superblock_free_security(sb);
2582 }
2583 
2584 static inline int opt_len(const char *s)
2585 {
2586 	bool open_quote = false;
2587 	int len;
2588 	char c;
2589 
2590 	for (len = 0; (c = s[len]) != '\0'; len++) {
2591 		if (c == '"')
2592 			open_quote = !open_quote;
2593 		if (c == ',' && !open_quote)
2594 			break;
2595 	}
2596 	return len;
2597 }
2598 
2599 static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2600 {
2601 	char *from = options;
2602 	char *to = options;
2603 	bool first = true;
2604 	int rc;
2605 
2606 	while (1) {
2607 		int len = opt_len(from);
2608 		int token;
2609 		char *arg = NULL;
2610 
2611 		token = match_opt_prefix(from, len, &arg);
2612 
2613 		if (token != Opt_error) {
2614 			char *p, *q;
2615 
2616 			/* strip quotes */
2617 			if (arg) {
2618 				for (p = q = arg; p < from + len; p++) {
2619 					char c = *p;
2620 					if (c != '"')
2621 						*q++ = c;
2622 				}
2623 				arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2624 				if (!arg) {
2625 					rc = -ENOMEM;
2626 					goto free_opt;
2627 				}
2628 			}
2629 			rc = selinux_add_opt(token, arg, mnt_opts);
2630 			if (unlikely(rc)) {
2631 				kfree(arg);
2632 				goto free_opt;
2633 			}
2634 		} else {
2635 			if (!first) {	// copy with preceding comma
2636 				from--;
2637 				len++;
2638 			}
2639 			if (to != from)
2640 				memmove(to, from, len);
2641 			to += len;
2642 			first = false;
2643 		}
2644 		if (!from[len])
2645 			break;
2646 		from += len + 1;
2647 	}
2648 	*to = '\0';
2649 	return 0;
2650 
2651 free_opt:
2652 	if (*mnt_opts) {
2653 		selinux_free_mnt_opts(*mnt_opts);
2654 		*mnt_opts = NULL;
2655 	}
2656 	return rc;
2657 }
2658 
2659 static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2660 {
2661 	struct selinux_mnt_opts *opts = mnt_opts;
2662 	struct superblock_security_struct *sbsec = sb->s_security;
2663 	u32 sid;
2664 	int rc;
2665 
2666 	if (!(sbsec->flags & SE_SBINITIALIZED))
2667 		return 0;
2668 
2669 	if (!opts)
2670 		return 0;
2671 
2672 	if (opts->fscontext) {
2673 		rc = parse_sid(sb, opts->fscontext, &sid);
2674 		if (rc)
2675 			return rc;
2676 		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2677 			goto out_bad_option;
2678 	}
2679 	if (opts->context) {
2680 		rc = parse_sid(sb, opts->context, &sid);
2681 		if (rc)
2682 			return rc;
2683 		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2684 			goto out_bad_option;
2685 	}
2686 	if (opts->rootcontext) {
2687 		struct inode_security_struct *root_isec;
2688 		root_isec = backing_inode_security(sb->s_root);
2689 		rc = parse_sid(sb, opts->rootcontext, &sid);
2690 		if (rc)
2691 			return rc;
2692 		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2693 			goto out_bad_option;
2694 	}
2695 	if (opts->defcontext) {
2696 		rc = parse_sid(sb, opts->defcontext, &sid);
2697 		if (rc)
2698 			return rc;
2699 		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2700 			goto out_bad_option;
2701 	}
2702 	return 0;
2703 
2704 out_bad_option:
2705 	pr_warn("SELinux: unable to change security options "
2706 	       "during remount (dev %s, type=%s)\n", sb->s_id,
2707 	       sb->s_type->name);
2708 	return -EINVAL;
2709 }
2710 
2711 static int selinux_sb_kern_mount(struct super_block *sb)
2712 {
2713 	const struct cred *cred = current_cred();
2714 	struct common_audit_data ad;
2715 
2716 	ad.type = LSM_AUDIT_DATA_DENTRY;
2717 	ad.u.dentry = sb->s_root;
2718 	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2719 }
2720 
2721 static int selinux_sb_statfs(struct dentry *dentry)
2722 {
2723 	const struct cred *cred = current_cred();
2724 	struct common_audit_data ad;
2725 
2726 	ad.type = LSM_AUDIT_DATA_DENTRY;
2727 	ad.u.dentry = dentry->d_sb->s_root;
2728 	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2729 }
2730 
2731 static int selinux_mount(const char *dev_name,
2732 			 const struct path *path,
2733 			 const char *type,
2734 			 unsigned long flags,
2735 			 void *data)
2736 {
2737 	const struct cred *cred = current_cred();
2738 
2739 	if (flags & MS_REMOUNT)
2740 		return superblock_has_perm(cred, path->dentry->d_sb,
2741 					   FILESYSTEM__REMOUNT, NULL);
2742 	else
2743 		return path_has_perm(cred, path, FILE__MOUNTON);
2744 }
2745 
2746 static int selinux_move_mount(const struct path *from_path,
2747 			      const struct path *to_path)
2748 {
2749 	const struct cred *cred = current_cred();
2750 
2751 	return path_has_perm(cred, to_path, FILE__MOUNTON);
2752 }
2753 
2754 static int selinux_umount(struct vfsmount *mnt, int flags)
2755 {
2756 	const struct cred *cred = current_cred();
2757 
2758 	return superblock_has_perm(cred, mnt->mnt_sb,
2759 				   FILESYSTEM__UNMOUNT, NULL);
2760 }
2761 
2762 static int selinux_fs_context_dup(struct fs_context *fc,
2763 				  struct fs_context *src_fc)
2764 {
2765 	const struct selinux_mnt_opts *src = src_fc->security;
2766 	struct selinux_mnt_opts *opts;
2767 
2768 	if (!src)
2769 		return 0;
2770 
2771 	fc->security = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
2772 	if (!fc->security)
2773 		return -ENOMEM;
2774 
2775 	opts = fc->security;
2776 
2777 	if (src->fscontext) {
2778 		opts->fscontext = kstrdup(src->fscontext, GFP_KERNEL);
2779 		if (!opts->fscontext)
2780 			return -ENOMEM;
2781 	}
2782 	if (src->context) {
2783 		opts->context = kstrdup(src->context, GFP_KERNEL);
2784 		if (!opts->context)
2785 			return -ENOMEM;
2786 	}
2787 	if (src->rootcontext) {
2788 		opts->rootcontext = kstrdup(src->rootcontext, GFP_KERNEL);
2789 		if (!opts->rootcontext)
2790 			return -ENOMEM;
2791 	}
2792 	if (src->defcontext) {
2793 		opts->defcontext = kstrdup(src->defcontext, GFP_KERNEL);
2794 		if (!opts->defcontext)
2795 			return -ENOMEM;
2796 	}
2797 	return 0;
2798 }
2799 
2800 static const struct fs_parameter_spec selinux_fs_parameters[] = {
2801 	fsparam_string(CONTEXT_STR,	Opt_context),
2802 	fsparam_string(DEFCONTEXT_STR,	Opt_defcontext),
2803 	fsparam_string(FSCONTEXT_STR,	Opt_fscontext),
2804 	fsparam_string(ROOTCONTEXT_STR,	Opt_rootcontext),
2805 	fsparam_flag  (SECLABEL_STR,	Opt_seclabel),
2806 	{}
2807 };
2808 
2809 static int selinux_fs_context_parse_param(struct fs_context *fc,
2810 					  struct fs_parameter *param)
2811 {
2812 	struct fs_parse_result result;
2813 	int opt, rc;
2814 
2815 	opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2816 	if (opt < 0)
2817 		return opt;
2818 
2819 	rc = selinux_add_opt(opt, param->string, &fc->security);
2820 	if (!rc) {
2821 		param->string = NULL;
2822 		rc = 1;
2823 	}
2824 	return rc;
2825 }
2826 
2827 /* inode security operations */
2828 
2829 static int selinux_inode_alloc_security(struct inode *inode)
2830 {
2831 	struct inode_security_struct *isec = selinux_inode(inode);
2832 	u32 sid = current_sid();
2833 
2834 	spin_lock_init(&isec->lock);
2835 	INIT_LIST_HEAD(&isec->list);
2836 	isec->inode = inode;
2837 	isec->sid = SECINITSID_UNLABELED;
2838 	isec->sclass = SECCLASS_FILE;
2839 	isec->task_sid = sid;
2840 	isec->initialized = LABEL_INVALID;
2841 
2842 	return 0;
2843 }
2844 
2845 static void selinux_inode_free_security(struct inode *inode)
2846 {
2847 	inode_free_security(inode);
2848 }
2849 
2850 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2851 					const struct qstr *name, void **ctx,
2852 					u32 *ctxlen)
2853 {
2854 	u32 newsid;
2855 	int rc;
2856 
2857 	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2858 					   d_inode(dentry->d_parent), name,
2859 					   inode_mode_to_security_class(mode),
2860 					   &newsid);
2861 	if (rc)
2862 		return rc;
2863 
2864 	return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2865 				       ctxlen);
2866 }
2867 
2868 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2869 					  struct qstr *name,
2870 					  const struct cred *old,
2871 					  struct cred *new)
2872 {
2873 	u32 newsid;
2874 	int rc;
2875 	struct task_security_struct *tsec;
2876 
2877 	rc = selinux_determine_inode_label(selinux_cred(old),
2878 					   d_inode(dentry->d_parent), name,
2879 					   inode_mode_to_security_class(mode),
2880 					   &newsid);
2881 	if (rc)
2882 		return rc;
2883 
2884 	tsec = selinux_cred(new);
2885 	tsec->create_sid = newsid;
2886 	return 0;
2887 }
2888 
2889 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2890 				       const struct qstr *qstr,
2891 				       const char **name,
2892 				       void **value, size_t *len)
2893 {
2894 	const struct task_security_struct *tsec = selinux_cred(current_cred());
2895 	struct superblock_security_struct *sbsec;
2896 	u32 newsid, clen;
2897 	int rc;
2898 	char *context;
2899 
2900 	sbsec = dir->i_sb->s_security;
2901 
2902 	newsid = tsec->create_sid;
2903 
2904 	rc = selinux_determine_inode_label(tsec, dir, qstr,
2905 		inode_mode_to_security_class(inode->i_mode),
2906 		&newsid);
2907 	if (rc)
2908 		return rc;
2909 
2910 	/* Possibly defer initialization to selinux_complete_init. */
2911 	if (sbsec->flags & SE_SBINITIALIZED) {
2912 		struct inode_security_struct *isec = selinux_inode(inode);
2913 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2914 		isec->sid = newsid;
2915 		isec->initialized = LABEL_INITIALIZED;
2916 	}
2917 
2918 	if (!selinux_initialized(&selinux_state) ||
2919 	    !(sbsec->flags & SBLABEL_MNT))
2920 		return -EOPNOTSUPP;
2921 
2922 	if (name)
2923 		*name = XATTR_SELINUX_SUFFIX;
2924 
2925 	if (value && len) {
2926 		rc = security_sid_to_context_force(&selinux_state, newsid,
2927 						   &context, &clen);
2928 		if (rc)
2929 			return rc;
2930 		*value = context;
2931 		*len = clen;
2932 	}
2933 
2934 	return 0;
2935 }
2936 
2937 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2938 {
2939 	return may_create(dir, dentry, SECCLASS_FILE);
2940 }
2941 
2942 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2943 {
2944 	return may_link(dir, old_dentry, MAY_LINK);
2945 }
2946 
2947 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2948 {
2949 	return may_link(dir, dentry, MAY_UNLINK);
2950 }
2951 
2952 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2953 {
2954 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2955 }
2956 
2957 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2958 {
2959 	return may_create(dir, dentry, SECCLASS_DIR);
2960 }
2961 
2962 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2963 {
2964 	return may_link(dir, dentry, MAY_RMDIR);
2965 }
2966 
2967 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2968 {
2969 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2970 }
2971 
2972 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2973 				struct inode *new_inode, struct dentry *new_dentry)
2974 {
2975 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2976 }
2977 
2978 static int selinux_inode_readlink(struct dentry *dentry)
2979 {
2980 	const struct cred *cred = current_cred();
2981 
2982 	return dentry_has_perm(cred, dentry, FILE__READ);
2983 }
2984 
2985 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2986 				     bool rcu)
2987 {
2988 	const struct cred *cred = current_cred();
2989 	struct common_audit_data ad;
2990 	struct inode_security_struct *isec;
2991 	u32 sid;
2992 
2993 	validate_creds(cred);
2994 
2995 	ad.type = LSM_AUDIT_DATA_DENTRY;
2996 	ad.u.dentry = dentry;
2997 	sid = cred_sid(cred);
2998 	isec = inode_security_rcu(inode, rcu);
2999 	if (IS_ERR(isec))
3000 		return PTR_ERR(isec);
3001 
3002 	return avc_has_perm_flags(&selinux_state,
3003 				  sid, isec->sid, isec->sclass, FILE__READ, &ad,
3004 				  rcu ? MAY_NOT_BLOCK : 0);
3005 }
3006 
3007 static noinline int audit_inode_permission(struct inode *inode,
3008 					   u32 perms, u32 audited, u32 denied,
3009 					   int result)
3010 {
3011 	struct common_audit_data ad;
3012 	struct inode_security_struct *isec = selinux_inode(inode);
3013 	int rc;
3014 
3015 	ad.type = LSM_AUDIT_DATA_INODE;
3016 	ad.u.inode = inode;
3017 
3018 	rc = slow_avc_audit(&selinux_state,
3019 			    current_sid(), isec->sid, isec->sclass, perms,
3020 			    audited, denied, result, &ad);
3021 	if (rc)
3022 		return rc;
3023 	return 0;
3024 }
3025 
3026 static int selinux_inode_permission(struct inode *inode, int mask)
3027 {
3028 	const struct cred *cred = current_cred();
3029 	u32 perms;
3030 	bool from_access;
3031 	bool no_block = mask & MAY_NOT_BLOCK;
3032 	struct inode_security_struct *isec;
3033 	u32 sid;
3034 	struct av_decision avd;
3035 	int rc, rc2;
3036 	u32 audited, denied;
3037 
3038 	from_access = mask & MAY_ACCESS;
3039 	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3040 
3041 	/* No permission to check.  Existence test. */
3042 	if (!mask)
3043 		return 0;
3044 
3045 	validate_creds(cred);
3046 
3047 	if (unlikely(IS_PRIVATE(inode)))
3048 		return 0;
3049 
3050 	perms = file_mask_to_av(inode->i_mode, mask);
3051 
3052 	sid = cred_sid(cred);
3053 	isec = inode_security_rcu(inode, no_block);
3054 	if (IS_ERR(isec))
3055 		return PTR_ERR(isec);
3056 
3057 	rc = avc_has_perm_noaudit(&selinux_state,
3058 				  sid, isec->sid, isec->sclass, perms,
3059 				  no_block ? AVC_NONBLOCKING : 0,
3060 				  &avd);
3061 	audited = avc_audit_required(perms, &avd, rc,
3062 				     from_access ? FILE__AUDIT_ACCESS : 0,
3063 				     &denied);
3064 	if (likely(!audited))
3065 		return rc;
3066 
3067 	/* fall back to ref-walk if we have to generate audit */
3068 	if (no_block)
3069 		return -ECHILD;
3070 
3071 	rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3072 	if (rc2)
3073 		return rc2;
3074 	return rc;
3075 }
3076 
3077 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3078 {
3079 	const struct cred *cred = current_cred();
3080 	struct inode *inode = d_backing_inode(dentry);
3081 	unsigned int ia_valid = iattr->ia_valid;
3082 	__u32 av = FILE__WRITE;
3083 
3084 	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3085 	if (ia_valid & ATTR_FORCE) {
3086 		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3087 			      ATTR_FORCE);
3088 		if (!ia_valid)
3089 			return 0;
3090 	}
3091 
3092 	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3093 			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3094 		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3095 
3096 	if (selinux_policycap_openperm() &&
3097 	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3098 	    (ia_valid & ATTR_SIZE) &&
3099 	    !(ia_valid & ATTR_FILE))
3100 		av |= FILE__OPEN;
3101 
3102 	return dentry_has_perm(cred, dentry, av);
3103 }
3104 
3105 static int selinux_inode_getattr(const struct path *path)
3106 {
3107 	return path_has_perm(current_cred(), path, FILE__GETATTR);
3108 }
3109 
3110 static bool has_cap_mac_admin(bool audit)
3111 {
3112 	const struct cred *cred = current_cred();
3113 	unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3114 
3115 	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3116 		return false;
3117 	if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3118 		return false;
3119 	return true;
3120 }
3121 
3122 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3123 				  const void *value, size_t size, int flags)
3124 {
3125 	struct inode *inode = d_backing_inode(dentry);
3126 	struct inode_security_struct *isec;
3127 	struct superblock_security_struct *sbsec;
3128 	struct common_audit_data ad;
3129 	u32 newsid, sid = current_sid();
3130 	int rc = 0;
3131 
3132 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3133 		rc = cap_inode_setxattr(dentry, name, value, size, flags);
3134 		if (rc)
3135 			return rc;
3136 
3137 		/* Not an attribute we recognize, so just check the
3138 		   ordinary setattr permission. */
3139 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3140 	}
3141 
3142 	if (!selinux_initialized(&selinux_state))
3143 		return (inode_owner_or_capable(inode) ? 0 : -EPERM);
3144 
3145 	sbsec = inode->i_sb->s_security;
3146 	if (!(sbsec->flags & SBLABEL_MNT))
3147 		return -EOPNOTSUPP;
3148 
3149 	if (!inode_owner_or_capable(inode))
3150 		return -EPERM;
3151 
3152 	ad.type = LSM_AUDIT_DATA_DENTRY;
3153 	ad.u.dentry = dentry;
3154 
3155 	isec = backing_inode_security(dentry);
3156 	rc = avc_has_perm(&selinux_state,
3157 			  sid, isec->sid, isec->sclass,
3158 			  FILE__RELABELFROM, &ad);
3159 	if (rc)
3160 		return rc;
3161 
3162 	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3163 				     GFP_KERNEL);
3164 	if (rc == -EINVAL) {
3165 		if (!has_cap_mac_admin(true)) {
3166 			struct audit_buffer *ab;
3167 			size_t audit_size;
3168 
3169 			/* We strip a nul only if it is at the end, otherwise the
3170 			 * context contains a nul and we should audit that */
3171 			if (value) {
3172 				const char *str = value;
3173 
3174 				if (str[size - 1] == '\0')
3175 					audit_size = size - 1;
3176 				else
3177 					audit_size = size;
3178 			} else {
3179 				audit_size = 0;
3180 			}
3181 			ab = audit_log_start(audit_context(),
3182 					     GFP_ATOMIC, AUDIT_SELINUX_ERR);
3183 			audit_log_format(ab, "op=setxattr invalid_context=");
3184 			audit_log_n_untrustedstring(ab, value, audit_size);
3185 			audit_log_end(ab);
3186 
3187 			return rc;
3188 		}
3189 		rc = security_context_to_sid_force(&selinux_state, value,
3190 						   size, &newsid);
3191 	}
3192 	if (rc)
3193 		return rc;
3194 
3195 	rc = avc_has_perm(&selinux_state,
3196 			  sid, newsid, isec->sclass,
3197 			  FILE__RELABELTO, &ad);
3198 	if (rc)
3199 		return rc;
3200 
3201 	rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3202 					  sid, isec->sclass);
3203 	if (rc)
3204 		return rc;
3205 
3206 	return avc_has_perm(&selinux_state,
3207 			    newsid,
3208 			    sbsec->sid,
3209 			    SECCLASS_FILESYSTEM,
3210 			    FILESYSTEM__ASSOCIATE,
3211 			    &ad);
3212 }
3213 
3214 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3215 					const void *value, size_t size,
3216 					int flags)
3217 {
3218 	struct inode *inode = d_backing_inode(dentry);
3219 	struct inode_security_struct *isec;
3220 	u32 newsid;
3221 	int rc;
3222 
3223 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3224 		/* Not an attribute we recognize, so nothing to do. */
3225 		return;
3226 	}
3227 
3228 	if (!selinux_initialized(&selinux_state)) {
3229 		/* If we haven't even been initialized, then we can't validate
3230 		 * against a policy, so leave the label as invalid. It may
3231 		 * resolve to a valid label on the next revalidation try if
3232 		 * we've since initialized.
3233 		 */
3234 		return;
3235 	}
3236 
3237 	rc = security_context_to_sid_force(&selinux_state, value, size,
3238 					   &newsid);
3239 	if (rc) {
3240 		pr_err("SELinux:  unable to map context to SID"
3241 		       "for (%s, %lu), rc=%d\n",
3242 		       inode->i_sb->s_id, inode->i_ino, -rc);
3243 		return;
3244 	}
3245 
3246 	isec = backing_inode_security(dentry);
3247 	spin_lock(&isec->lock);
3248 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3249 	isec->sid = newsid;
3250 	isec->initialized = LABEL_INITIALIZED;
3251 	spin_unlock(&isec->lock);
3252 
3253 	return;
3254 }
3255 
3256 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3257 {
3258 	const struct cred *cred = current_cred();
3259 
3260 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3261 }
3262 
3263 static int selinux_inode_listxattr(struct dentry *dentry)
3264 {
3265 	const struct cred *cred = current_cred();
3266 
3267 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3268 }
3269 
3270 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3271 {
3272 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3273 		int rc = cap_inode_removexattr(dentry, name);
3274 		if (rc)
3275 			return rc;
3276 
3277 		/* Not an attribute we recognize, so just check the
3278 		   ordinary setattr permission. */
3279 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3280 	}
3281 
3282 	if (!selinux_initialized(&selinux_state))
3283 		return 0;
3284 
3285 	/* No one is allowed to remove a SELinux security label.
3286 	   You can change the label, but all data must be labeled. */
3287 	return -EACCES;
3288 }
3289 
3290 static int selinux_path_notify(const struct path *path, u64 mask,
3291 						unsigned int obj_type)
3292 {
3293 	int ret;
3294 	u32 perm;
3295 
3296 	struct common_audit_data ad;
3297 
3298 	ad.type = LSM_AUDIT_DATA_PATH;
3299 	ad.u.path = *path;
3300 
3301 	/*
3302 	 * Set permission needed based on the type of mark being set.
3303 	 * Performs an additional check for sb watches.
3304 	 */
3305 	switch (obj_type) {
3306 	case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3307 		perm = FILE__WATCH_MOUNT;
3308 		break;
3309 	case FSNOTIFY_OBJ_TYPE_SB:
3310 		perm = FILE__WATCH_SB;
3311 		ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3312 						FILESYSTEM__WATCH, &ad);
3313 		if (ret)
3314 			return ret;
3315 		break;
3316 	case FSNOTIFY_OBJ_TYPE_INODE:
3317 		perm = FILE__WATCH;
3318 		break;
3319 	default:
3320 		return -EINVAL;
3321 	}
3322 
3323 	/* blocking watches require the file:watch_with_perm permission */
3324 	if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3325 		perm |= FILE__WATCH_WITH_PERM;
3326 
3327 	/* watches on read-like events need the file:watch_reads permission */
3328 	if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3329 		perm |= FILE__WATCH_READS;
3330 
3331 	return path_has_perm(current_cred(), path, perm);
3332 }
3333 
3334 /*
3335  * Copy the inode security context value to the user.
3336  *
3337  * Permission check is handled by selinux_inode_getxattr hook.
3338  */
3339 static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3340 {
3341 	u32 size;
3342 	int error;
3343 	char *context = NULL;
3344 	struct inode_security_struct *isec;
3345 
3346 	/*
3347 	 * If we're not initialized yet, then we can't validate contexts, so
3348 	 * just let vfs_getxattr fall back to using the on-disk xattr.
3349 	 */
3350 	if (!selinux_initialized(&selinux_state) ||
3351 	    strcmp(name, XATTR_SELINUX_SUFFIX))
3352 		return -EOPNOTSUPP;
3353 
3354 	/*
3355 	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3356 	 * value even if it is not defined by current policy; otherwise,
3357 	 * use the in-core value under current policy.
3358 	 * Use the non-auditing forms of the permission checks since
3359 	 * getxattr may be called by unprivileged processes commonly
3360 	 * and lack of permission just means that we fall back to the
3361 	 * in-core context value, not a denial.
3362 	 */
3363 	isec = inode_security(inode);
3364 	if (has_cap_mac_admin(false))
3365 		error = security_sid_to_context_force(&selinux_state,
3366 						      isec->sid, &context,
3367 						      &size);
3368 	else
3369 		error = security_sid_to_context(&selinux_state, isec->sid,
3370 						&context, &size);
3371 	if (error)
3372 		return error;
3373 	error = size;
3374 	if (alloc) {
3375 		*buffer = context;
3376 		goto out_nofree;
3377 	}
3378 	kfree(context);
3379 out_nofree:
3380 	return error;
3381 }
3382 
3383 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3384 				     const void *value, size_t size, int flags)
3385 {
3386 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3387 	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
3388 	u32 newsid;
3389 	int rc;
3390 
3391 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3392 		return -EOPNOTSUPP;
3393 
3394 	if (!(sbsec->flags & SBLABEL_MNT))
3395 		return -EOPNOTSUPP;
3396 
3397 	if (!value || !size)
3398 		return -EACCES;
3399 
3400 	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3401 				     GFP_KERNEL);
3402 	if (rc)
3403 		return rc;
3404 
3405 	spin_lock(&isec->lock);
3406 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3407 	isec->sid = newsid;
3408 	isec->initialized = LABEL_INITIALIZED;
3409 	spin_unlock(&isec->lock);
3410 	return 0;
3411 }
3412 
3413 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3414 {
3415 	const int len = sizeof(XATTR_NAME_SELINUX);
3416 	if (buffer && len <= buffer_size)
3417 		memcpy(buffer, XATTR_NAME_SELINUX, len);
3418 	return len;
3419 }
3420 
3421 static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3422 {
3423 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3424 	*secid = isec->sid;
3425 }
3426 
3427 static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3428 {
3429 	u32 sid;
3430 	struct task_security_struct *tsec;
3431 	struct cred *new_creds = *new;
3432 
3433 	if (new_creds == NULL) {
3434 		new_creds = prepare_creds();
3435 		if (!new_creds)
3436 			return -ENOMEM;
3437 	}
3438 
3439 	tsec = selinux_cred(new_creds);
3440 	/* Get label from overlay inode and set it in create_sid */
3441 	selinux_inode_getsecid(d_inode(src), &sid);
3442 	tsec->create_sid = sid;
3443 	*new = new_creds;
3444 	return 0;
3445 }
3446 
3447 static int selinux_inode_copy_up_xattr(const char *name)
3448 {
3449 	/* The copy_up hook above sets the initial context on an inode, but we
3450 	 * don't then want to overwrite it by blindly copying all the lower
3451 	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3452 	 */
3453 	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3454 		return 1; /* Discard */
3455 	/*
3456 	 * Any other attribute apart from SELINUX is not claimed, supported
3457 	 * by selinux.
3458 	 */
3459 	return -EOPNOTSUPP;
3460 }
3461 
3462 /* kernfs node operations */
3463 
3464 static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3465 					struct kernfs_node *kn)
3466 {
3467 	const struct task_security_struct *tsec = selinux_cred(current_cred());
3468 	u32 parent_sid, newsid, clen;
3469 	int rc;
3470 	char *context;
3471 
3472 	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3473 	if (rc == -ENODATA)
3474 		return 0;
3475 	else if (rc < 0)
3476 		return rc;
3477 
3478 	clen = (u32)rc;
3479 	context = kmalloc(clen, GFP_KERNEL);
3480 	if (!context)
3481 		return -ENOMEM;
3482 
3483 	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3484 	if (rc < 0) {
3485 		kfree(context);
3486 		return rc;
3487 	}
3488 
3489 	rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid,
3490 				     GFP_KERNEL);
3491 	kfree(context);
3492 	if (rc)
3493 		return rc;
3494 
3495 	if (tsec->create_sid) {
3496 		newsid = tsec->create_sid;
3497 	} else {
3498 		u16 secclass = inode_mode_to_security_class(kn->mode);
3499 		struct qstr q;
3500 
3501 		q.name = kn->name;
3502 		q.hash_len = hashlen_string(kn_dir, kn->name);
3503 
3504 		rc = security_transition_sid(&selinux_state, tsec->sid,
3505 					     parent_sid, secclass, &q,
3506 					     &newsid);
3507 		if (rc)
3508 			return rc;
3509 	}
3510 
3511 	rc = security_sid_to_context_force(&selinux_state, newsid,
3512 					   &context, &clen);
3513 	if (rc)
3514 		return rc;
3515 
3516 	rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3517 			      XATTR_CREATE);
3518 	kfree(context);
3519 	return rc;
3520 }
3521 
3522 
3523 /* file security operations */
3524 
3525 static int selinux_revalidate_file_permission(struct file *file, int mask)
3526 {
3527 	const struct cred *cred = current_cred();
3528 	struct inode *inode = file_inode(file);
3529 
3530 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3531 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3532 		mask |= MAY_APPEND;
3533 
3534 	return file_has_perm(cred, file,
3535 			     file_mask_to_av(inode->i_mode, mask));
3536 }
3537 
3538 static int selinux_file_permission(struct file *file, int mask)
3539 {
3540 	struct inode *inode = file_inode(file);
3541 	struct file_security_struct *fsec = selinux_file(file);
3542 	struct inode_security_struct *isec;
3543 	u32 sid = current_sid();
3544 
3545 	if (!mask)
3546 		/* No permission to check.  Existence test. */
3547 		return 0;
3548 
3549 	isec = inode_security(inode);
3550 	if (sid == fsec->sid && fsec->isid == isec->sid &&
3551 	    fsec->pseqno == avc_policy_seqno(&selinux_state))
3552 		/* No change since file_open check. */
3553 		return 0;
3554 
3555 	return selinux_revalidate_file_permission(file, mask);
3556 }
3557 
3558 static int selinux_file_alloc_security(struct file *file)
3559 {
3560 	struct file_security_struct *fsec = selinux_file(file);
3561 	u32 sid = current_sid();
3562 
3563 	fsec->sid = sid;
3564 	fsec->fown_sid = sid;
3565 
3566 	return 0;
3567 }
3568 
3569 /*
3570  * Check whether a task has the ioctl permission and cmd
3571  * operation to an inode.
3572  */
3573 static int ioctl_has_perm(const struct cred *cred, struct file *file,
3574 		u32 requested, u16 cmd)
3575 {
3576 	struct common_audit_data ad;
3577 	struct file_security_struct *fsec = selinux_file(file);
3578 	struct inode *inode = file_inode(file);
3579 	struct inode_security_struct *isec;
3580 	struct lsm_ioctlop_audit ioctl;
3581 	u32 ssid = cred_sid(cred);
3582 	int rc;
3583 	u8 driver = cmd >> 8;
3584 	u8 xperm = cmd & 0xff;
3585 
3586 	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3587 	ad.u.op = &ioctl;
3588 	ad.u.op->cmd = cmd;
3589 	ad.u.op->path = file->f_path;
3590 
3591 	if (ssid != fsec->sid) {
3592 		rc = avc_has_perm(&selinux_state,
3593 				  ssid, fsec->sid,
3594 				SECCLASS_FD,
3595 				FD__USE,
3596 				&ad);
3597 		if (rc)
3598 			goto out;
3599 	}
3600 
3601 	if (unlikely(IS_PRIVATE(inode)))
3602 		return 0;
3603 
3604 	isec = inode_security(inode);
3605 	rc = avc_has_extended_perms(&selinux_state,
3606 				    ssid, isec->sid, isec->sclass,
3607 				    requested, driver, xperm, &ad);
3608 out:
3609 	return rc;
3610 }
3611 
3612 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3613 			      unsigned long arg)
3614 {
3615 	const struct cred *cred = current_cred();
3616 	int error = 0;
3617 
3618 	switch (cmd) {
3619 	case FIONREAD:
3620 	case FIBMAP:
3621 	case FIGETBSZ:
3622 	case FS_IOC_GETFLAGS:
3623 	case FS_IOC_GETVERSION:
3624 		error = file_has_perm(cred, file, FILE__GETATTR);
3625 		break;
3626 
3627 	case FS_IOC_SETFLAGS:
3628 	case FS_IOC_SETVERSION:
3629 		error = file_has_perm(cred, file, FILE__SETATTR);
3630 		break;
3631 
3632 	/* sys_ioctl() checks */
3633 	case FIONBIO:
3634 	case FIOASYNC:
3635 		error = file_has_perm(cred, file, 0);
3636 		break;
3637 
3638 	case KDSKBENT:
3639 	case KDSKBSENT:
3640 		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3641 					    CAP_OPT_NONE, true);
3642 		break;
3643 
3644 	/* default case assumes that the command will go
3645 	 * to the file's ioctl() function.
3646 	 */
3647 	default:
3648 		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3649 	}
3650 	return error;
3651 }
3652 
3653 static int default_noexec __ro_after_init;
3654 
3655 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3656 {
3657 	const struct cred *cred = current_cred();
3658 	u32 sid = cred_sid(cred);
3659 	int rc = 0;
3660 
3661 	if (default_noexec &&
3662 	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3663 				   (!shared && (prot & PROT_WRITE)))) {
3664 		/*
3665 		 * We are making executable an anonymous mapping or a
3666 		 * private file mapping that will also be writable.
3667 		 * This has an additional check.
3668 		 */
3669 		rc = avc_has_perm(&selinux_state,
3670 				  sid, sid, SECCLASS_PROCESS,
3671 				  PROCESS__EXECMEM, NULL);
3672 		if (rc)
3673 			goto error;
3674 	}
3675 
3676 	if (file) {
3677 		/* read access is always possible with a mapping */
3678 		u32 av = FILE__READ;
3679 
3680 		/* write access only matters if the mapping is shared */
3681 		if (shared && (prot & PROT_WRITE))
3682 			av |= FILE__WRITE;
3683 
3684 		if (prot & PROT_EXEC)
3685 			av |= FILE__EXECUTE;
3686 
3687 		return file_has_perm(cred, file, av);
3688 	}
3689 
3690 error:
3691 	return rc;
3692 }
3693 
3694 static int selinux_mmap_addr(unsigned long addr)
3695 {
3696 	int rc = 0;
3697 
3698 	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3699 		u32 sid = current_sid();
3700 		rc = avc_has_perm(&selinux_state,
3701 				  sid, sid, SECCLASS_MEMPROTECT,
3702 				  MEMPROTECT__MMAP_ZERO, NULL);
3703 	}
3704 
3705 	return rc;
3706 }
3707 
3708 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3709 			     unsigned long prot, unsigned long flags)
3710 {
3711 	struct common_audit_data ad;
3712 	int rc;
3713 
3714 	if (file) {
3715 		ad.type = LSM_AUDIT_DATA_FILE;
3716 		ad.u.file = file;
3717 		rc = inode_has_perm(current_cred(), file_inode(file),
3718 				    FILE__MAP, &ad);
3719 		if (rc)
3720 			return rc;
3721 	}
3722 
3723 	if (checkreqprot_get(&selinux_state))
3724 		prot = reqprot;
3725 
3726 	return file_map_prot_check(file, prot,
3727 				   (flags & MAP_TYPE) == MAP_SHARED);
3728 }
3729 
3730 static int selinux_file_mprotect(struct vm_area_struct *vma,
3731 				 unsigned long reqprot,
3732 				 unsigned long prot)
3733 {
3734 	const struct cred *cred = current_cred();
3735 	u32 sid = cred_sid(cred);
3736 
3737 	if (checkreqprot_get(&selinux_state))
3738 		prot = reqprot;
3739 
3740 	if (default_noexec &&
3741 	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3742 		int rc = 0;
3743 		if (vma->vm_start >= vma->vm_mm->start_brk &&
3744 		    vma->vm_end <= vma->vm_mm->brk) {
3745 			rc = avc_has_perm(&selinux_state,
3746 					  sid, sid, SECCLASS_PROCESS,
3747 					  PROCESS__EXECHEAP, NULL);
3748 		} else if (!vma->vm_file &&
3749 			   ((vma->vm_start <= vma->vm_mm->start_stack &&
3750 			     vma->vm_end >= vma->vm_mm->start_stack) ||
3751 			    vma_is_stack_for_current(vma))) {
3752 			rc = avc_has_perm(&selinux_state,
3753 					  sid, sid, SECCLASS_PROCESS,
3754 					  PROCESS__EXECSTACK, NULL);
3755 		} else if (vma->vm_file && vma->anon_vma) {
3756 			/*
3757 			 * We are making executable a file mapping that has
3758 			 * had some COW done. Since pages might have been
3759 			 * written, check ability to execute the possibly
3760 			 * modified content.  This typically should only
3761 			 * occur for text relocations.
3762 			 */
3763 			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3764 		}
3765 		if (rc)
3766 			return rc;
3767 	}
3768 
3769 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3770 }
3771 
3772 static int selinux_file_lock(struct file *file, unsigned int cmd)
3773 {
3774 	const struct cred *cred = current_cred();
3775 
3776 	return file_has_perm(cred, file, FILE__LOCK);
3777 }
3778 
3779 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3780 			      unsigned long arg)
3781 {
3782 	const struct cred *cred = current_cred();
3783 	int err = 0;
3784 
3785 	switch (cmd) {
3786 	case F_SETFL:
3787 		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3788 			err = file_has_perm(cred, file, FILE__WRITE);
3789 			break;
3790 		}
3791 		fallthrough;
3792 	case F_SETOWN:
3793 	case F_SETSIG:
3794 	case F_GETFL:
3795 	case F_GETOWN:
3796 	case F_GETSIG:
3797 	case F_GETOWNER_UIDS:
3798 		/* Just check FD__USE permission */
3799 		err = file_has_perm(cred, file, 0);
3800 		break;
3801 	case F_GETLK:
3802 	case F_SETLK:
3803 	case F_SETLKW:
3804 	case F_OFD_GETLK:
3805 	case F_OFD_SETLK:
3806 	case F_OFD_SETLKW:
3807 #if BITS_PER_LONG == 32
3808 	case F_GETLK64:
3809 	case F_SETLK64:
3810 	case F_SETLKW64:
3811 #endif
3812 		err = file_has_perm(cred, file, FILE__LOCK);
3813 		break;
3814 	}
3815 
3816 	return err;
3817 }
3818 
3819 static void selinux_file_set_fowner(struct file *file)
3820 {
3821 	struct file_security_struct *fsec;
3822 
3823 	fsec = selinux_file(file);
3824 	fsec->fown_sid = current_sid();
3825 }
3826 
3827 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3828 				       struct fown_struct *fown, int signum)
3829 {
3830 	struct file *file;
3831 	u32 sid = task_sid(tsk);
3832 	u32 perm;
3833 	struct file_security_struct *fsec;
3834 
3835 	/* struct fown_struct is never outside the context of a struct file */
3836 	file = container_of(fown, struct file, f_owner);
3837 
3838 	fsec = selinux_file(file);
3839 
3840 	if (!signum)
3841 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3842 	else
3843 		perm = signal_to_av(signum);
3844 
3845 	return avc_has_perm(&selinux_state,
3846 			    fsec->fown_sid, sid,
3847 			    SECCLASS_PROCESS, perm, NULL);
3848 }
3849 
3850 static int selinux_file_receive(struct file *file)
3851 {
3852 	const struct cred *cred = current_cred();
3853 
3854 	return file_has_perm(cred, file, file_to_av(file));
3855 }
3856 
3857 static int selinux_file_open(struct file *file)
3858 {
3859 	struct file_security_struct *fsec;
3860 	struct inode_security_struct *isec;
3861 
3862 	fsec = selinux_file(file);
3863 	isec = inode_security(file_inode(file));
3864 	/*
3865 	 * Save inode label and policy sequence number
3866 	 * at open-time so that selinux_file_permission
3867 	 * can determine whether revalidation is necessary.
3868 	 * Task label is already saved in the file security
3869 	 * struct as its SID.
3870 	 */
3871 	fsec->isid = isec->sid;
3872 	fsec->pseqno = avc_policy_seqno(&selinux_state);
3873 	/*
3874 	 * Since the inode label or policy seqno may have changed
3875 	 * between the selinux_inode_permission check and the saving
3876 	 * of state above, recheck that access is still permitted.
3877 	 * Otherwise, access might never be revalidated against the
3878 	 * new inode label or new policy.
3879 	 * This check is not redundant - do not remove.
3880 	 */
3881 	return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3882 }
3883 
3884 /* task security operations */
3885 
3886 static int selinux_task_alloc(struct task_struct *task,
3887 			      unsigned long clone_flags)
3888 {
3889 	u32 sid = current_sid();
3890 
3891 	return avc_has_perm(&selinux_state,
3892 			    sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3893 }
3894 
3895 /*
3896  * prepare a new set of credentials for modification
3897  */
3898 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3899 				gfp_t gfp)
3900 {
3901 	const struct task_security_struct *old_tsec = selinux_cred(old);
3902 	struct task_security_struct *tsec = selinux_cred(new);
3903 
3904 	*tsec = *old_tsec;
3905 	return 0;
3906 }
3907 
3908 /*
3909  * transfer the SELinux data to a blank set of creds
3910  */
3911 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3912 {
3913 	const struct task_security_struct *old_tsec = selinux_cred(old);
3914 	struct task_security_struct *tsec = selinux_cred(new);
3915 
3916 	*tsec = *old_tsec;
3917 }
3918 
3919 static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3920 {
3921 	*secid = cred_sid(c);
3922 }
3923 
3924 /*
3925  * set the security data for a kernel service
3926  * - all the creation contexts are set to unlabelled
3927  */
3928 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3929 {
3930 	struct task_security_struct *tsec = selinux_cred(new);
3931 	u32 sid = current_sid();
3932 	int ret;
3933 
3934 	ret = avc_has_perm(&selinux_state,
3935 			   sid, secid,
3936 			   SECCLASS_KERNEL_SERVICE,
3937 			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3938 			   NULL);
3939 	if (ret == 0) {
3940 		tsec->sid = secid;
3941 		tsec->create_sid = 0;
3942 		tsec->keycreate_sid = 0;
3943 		tsec->sockcreate_sid = 0;
3944 	}
3945 	return ret;
3946 }
3947 
3948 /*
3949  * set the file creation context in a security record to the same as the
3950  * objective context of the specified inode
3951  */
3952 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3953 {
3954 	struct inode_security_struct *isec = inode_security(inode);
3955 	struct task_security_struct *tsec = selinux_cred(new);
3956 	u32 sid = current_sid();
3957 	int ret;
3958 
3959 	ret = avc_has_perm(&selinux_state,
3960 			   sid, isec->sid,
3961 			   SECCLASS_KERNEL_SERVICE,
3962 			   KERNEL_SERVICE__CREATE_FILES_AS,
3963 			   NULL);
3964 
3965 	if (ret == 0)
3966 		tsec->create_sid = isec->sid;
3967 	return ret;
3968 }
3969 
3970 static int selinux_kernel_module_request(char *kmod_name)
3971 {
3972 	struct common_audit_data ad;
3973 
3974 	ad.type = LSM_AUDIT_DATA_KMOD;
3975 	ad.u.kmod_name = kmod_name;
3976 
3977 	return avc_has_perm(&selinux_state,
3978 			    current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
3979 			    SYSTEM__MODULE_REQUEST, &ad);
3980 }
3981 
3982 static int selinux_kernel_module_from_file(struct file *file)
3983 {
3984 	struct common_audit_data ad;
3985 	struct inode_security_struct *isec;
3986 	struct file_security_struct *fsec;
3987 	u32 sid = current_sid();
3988 	int rc;
3989 
3990 	/* init_module */
3991 	if (file == NULL)
3992 		return avc_has_perm(&selinux_state,
3993 				    sid, sid, SECCLASS_SYSTEM,
3994 					SYSTEM__MODULE_LOAD, NULL);
3995 
3996 	/* finit_module */
3997 
3998 	ad.type = LSM_AUDIT_DATA_FILE;
3999 	ad.u.file = file;
4000 
4001 	fsec = selinux_file(file);
4002 	if (sid != fsec->sid) {
4003 		rc = avc_has_perm(&selinux_state,
4004 				  sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4005 		if (rc)
4006 			return rc;
4007 	}
4008 
4009 	isec = inode_security(file_inode(file));
4010 	return avc_has_perm(&selinux_state,
4011 			    sid, isec->sid, SECCLASS_SYSTEM,
4012 				SYSTEM__MODULE_LOAD, &ad);
4013 }
4014 
4015 static int selinux_kernel_read_file(struct file *file,
4016 				    enum kernel_read_file_id id,
4017 				    bool contents)
4018 {
4019 	int rc = 0;
4020 
4021 	switch (id) {
4022 	case READING_MODULE:
4023 		rc = selinux_kernel_module_from_file(contents ? file : NULL);
4024 		break;
4025 	default:
4026 		break;
4027 	}
4028 
4029 	return rc;
4030 }
4031 
4032 static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4033 {
4034 	int rc = 0;
4035 
4036 	switch (id) {
4037 	case LOADING_MODULE:
4038 		rc = selinux_kernel_module_from_file(NULL);
4039 		break;
4040 	default:
4041 		break;
4042 	}
4043 
4044 	return rc;
4045 }
4046 
4047 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4048 {
4049 	return avc_has_perm(&selinux_state,
4050 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4051 			    PROCESS__SETPGID, NULL);
4052 }
4053 
4054 static int selinux_task_getpgid(struct task_struct *p)
4055 {
4056 	return avc_has_perm(&selinux_state,
4057 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4058 			    PROCESS__GETPGID, NULL);
4059 }
4060 
4061 static int selinux_task_getsid(struct task_struct *p)
4062 {
4063 	return avc_has_perm(&selinux_state,
4064 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4065 			    PROCESS__GETSESSION, NULL);
4066 }
4067 
4068 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
4069 {
4070 	*secid = task_sid(p);
4071 }
4072 
4073 static int selinux_task_setnice(struct task_struct *p, int nice)
4074 {
4075 	return avc_has_perm(&selinux_state,
4076 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4077 			    PROCESS__SETSCHED, NULL);
4078 }
4079 
4080 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4081 {
4082 	return avc_has_perm(&selinux_state,
4083 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4084 			    PROCESS__SETSCHED, NULL);
4085 }
4086 
4087 static int selinux_task_getioprio(struct task_struct *p)
4088 {
4089 	return avc_has_perm(&selinux_state,
4090 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4091 			    PROCESS__GETSCHED, NULL);
4092 }
4093 
4094 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4095 				unsigned int flags)
4096 {
4097 	u32 av = 0;
4098 
4099 	if (!flags)
4100 		return 0;
4101 	if (flags & LSM_PRLIMIT_WRITE)
4102 		av |= PROCESS__SETRLIMIT;
4103 	if (flags & LSM_PRLIMIT_READ)
4104 		av |= PROCESS__GETRLIMIT;
4105 	return avc_has_perm(&selinux_state,
4106 			    cred_sid(cred), cred_sid(tcred),
4107 			    SECCLASS_PROCESS, av, NULL);
4108 }
4109 
4110 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4111 		struct rlimit *new_rlim)
4112 {
4113 	struct rlimit *old_rlim = p->signal->rlim + resource;
4114 
4115 	/* Control the ability to change the hard limit (whether
4116 	   lowering or raising it), so that the hard limit can
4117 	   later be used as a safe reset point for the soft limit
4118 	   upon context transitions.  See selinux_bprm_committing_creds. */
4119 	if (old_rlim->rlim_max != new_rlim->rlim_max)
4120 		return avc_has_perm(&selinux_state,
4121 				    current_sid(), task_sid(p),
4122 				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4123 
4124 	return 0;
4125 }
4126 
4127 static int selinux_task_setscheduler(struct task_struct *p)
4128 {
4129 	return avc_has_perm(&selinux_state,
4130 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4131 			    PROCESS__SETSCHED, NULL);
4132 }
4133 
4134 static int selinux_task_getscheduler(struct task_struct *p)
4135 {
4136 	return avc_has_perm(&selinux_state,
4137 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4138 			    PROCESS__GETSCHED, NULL);
4139 }
4140 
4141 static int selinux_task_movememory(struct task_struct *p)
4142 {
4143 	return avc_has_perm(&selinux_state,
4144 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4145 			    PROCESS__SETSCHED, NULL);
4146 }
4147 
4148 static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4149 				int sig, const struct cred *cred)
4150 {
4151 	u32 secid;
4152 	u32 perm;
4153 
4154 	if (!sig)
4155 		perm = PROCESS__SIGNULL; /* null signal; existence test */
4156 	else
4157 		perm = signal_to_av(sig);
4158 	if (!cred)
4159 		secid = current_sid();
4160 	else
4161 		secid = cred_sid(cred);
4162 	return avc_has_perm(&selinux_state,
4163 			    secid, task_sid(p), SECCLASS_PROCESS, perm, NULL);
4164 }
4165 
4166 static void selinux_task_to_inode(struct task_struct *p,
4167 				  struct inode *inode)
4168 {
4169 	struct inode_security_struct *isec = selinux_inode(inode);
4170 	u32 sid = task_sid(p);
4171 
4172 	spin_lock(&isec->lock);
4173 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4174 	isec->sid = sid;
4175 	isec->initialized = LABEL_INITIALIZED;
4176 	spin_unlock(&isec->lock);
4177 }
4178 
4179 /* Returns error only if unable to parse addresses */
4180 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4181 			struct common_audit_data *ad, u8 *proto)
4182 {
4183 	int offset, ihlen, ret = -EINVAL;
4184 	struct iphdr _iph, *ih;
4185 
4186 	offset = skb_network_offset(skb);
4187 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4188 	if (ih == NULL)
4189 		goto out;
4190 
4191 	ihlen = ih->ihl * 4;
4192 	if (ihlen < sizeof(_iph))
4193 		goto out;
4194 
4195 	ad->u.net->v4info.saddr = ih->saddr;
4196 	ad->u.net->v4info.daddr = ih->daddr;
4197 	ret = 0;
4198 
4199 	if (proto)
4200 		*proto = ih->protocol;
4201 
4202 	switch (ih->protocol) {
4203 	case IPPROTO_TCP: {
4204 		struct tcphdr _tcph, *th;
4205 
4206 		if (ntohs(ih->frag_off) & IP_OFFSET)
4207 			break;
4208 
4209 		offset += ihlen;
4210 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4211 		if (th == NULL)
4212 			break;
4213 
4214 		ad->u.net->sport = th->source;
4215 		ad->u.net->dport = th->dest;
4216 		break;
4217 	}
4218 
4219 	case IPPROTO_UDP: {
4220 		struct udphdr _udph, *uh;
4221 
4222 		if (ntohs(ih->frag_off) & IP_OFFSET)
4223 			break;
4224 
4225 		offset += ihlen;
4226 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4227 		if (uh == NULL)
4228 			break;
4229 
4230 		ad->u.net->sport = uh->source;
4231 		ad->u.net->dport = uh->dest;
4232 		break;
4233 	}
4234 
4235 	case IPPROTO_DCCP: {
4236 		struct dccp_hdr _dccph, *dh;
4237 
4238 		if (ntohs(ih->frag_off) & IP_OFFSET)
4239 			break;
4240 
4241 		offset += ihlen;
4242 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4243 		if (dh == NULL)
4244 			break;
4245 
4246 		ad->u.net->sport = dh->dccph_sport;
4247 		ad->u.net->dport = dh->dccph_dport;
4248 		break;
4249 	}
4250 
4251 #if IS_ENABLED(CONFIG_IP_SCTP)
4252 	case IPPROTO_SCTP: {
4253 		struct sctphdr _sctph, *sh;
4254 
4255 		if (ntohs(ih->frag_off) & IP_OFFSET)
4256 			break;
4257 
4258 		offset += ihlen;
4259 		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4260 		if (sh == NULL)
4261 			break;
4262 
4263 		ad->u.net->sport = sh->source;
4264 		ad->u.net->dport = sh->dest;
4265 		break;
4266 	}
4267 #endif
4268 	default:
4269 		break;
4270 	}
4271 out:
4272 	return ret;
4273 }
4274 
4275 #if IS_ENABLED(CONFIG_IPV6)
4276 
4277 /* Returns error only if unable to parse addresses */
4278 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4279 			struct common_audit_data *ad, u8 *proto)
4280 {
4281 	u8 nexthdr;
4282 	int ret = -EINVAL, offset;
4283 	struct ipv6hdr _ipv6h, *ip6;
4284 	__be16 frag_off;
4285 
4286 	offset = skb_network_offset(skb);
4287 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4288 	if (ip6 == NULL)
4289 		goto out;
4290 
4291 	ad->u.net->v6info.saddr = ip6->saddr;
4292 	ad->u.net->v6info.daddr = ip6->daddr;
4293 	ret = 0;
4294 
4295 	nexthdr = ip6->nexthdr;
4296 	offset += sizeof(_ipv6h);
4297 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4298 	if (offset < 0)
4299 		goto out;
4300 
4301 	if (proto)
4302 		*proto = nexthdr;
4303 
4304 	switch (nexthdr) {
4305 	case IPPROTO_TCP: {
4306 		struct tcphdr _tcph, *th;
4307 
4308 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4309 		if (th == NULL)
4310 			break;
4311 
4312 		ad->u.net->sport = th->source;
4313 		ad->u.net->dport = th->dest;
4314 		break;
4315 	}
4316 
4317 	case IPPROTO_UDP: {
4318 		struct udphdr _udph, *uh;
4319 
4320 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4321 		if (uh == NULL)
4322 			break;
4323 
4324 		ad->u.net->sport = uh->source;
4325 		ad->u.net->dport = uh->dest;
4326 		break;
4327 	}
4328 
4329 	case IPPROTO_DCCP: {
4330 		struct dccp_hdr _dccph, *dh;
4331 
4332 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4333 		if (dh == NULL)
4334 			break;
4335 
4336 		ad->u.net->sport = dh->dccph_sport;
4337 		ad->u.net->dport = dh->dccph_dport;
4338 		break;
4339 	}
4340 
4341 #if IS_ENABLED(CONFIG_IP_SCTP)
4342 	case IPPROTO_SCTP: {
4343 		struct sctphdr _sctph, *sh;
4344 
4345 		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4346 		if (sh == NULL)
4347 			break;
4348 
4349 		ad->u.net->sport = sh->source;
4350 		ad->u.net->dport = sh->dest;
4351 		break;
4352 	}
4353 #endif
4354 	/* includes fragments */
4355 	default:
4356 		break;
4357 	}
4358 out:
4359 	return ret;
4360 }
4361 
4362 #endif /* IPV6 */
4363 
4364 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4365 			     char **_addrp, int src, u8 *proto)
4366 {
4367 	char *addrp;
4368 	int ret;
4369 
4370 	switch (ad->u.net->family) {
4371 	case PF_INET:
4372 		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4373 		if (ret)
4374 			goto parse_error;
4375 		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4376 				       &ad->u.net->v4info.daddr);
4377 		goto okay;
4378 
4379 #if IS_ENABLED(CONFIG_IPV6)
4380 	case PF_INET6:
4381 		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4382 		if (ret)
4383 			goto parse_error;
4384 		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4385 				       &ad->u.net->v6info.daddr);
4386 		goto okay;
4387 #endif	/* IPV6 */
4388 	default:
4389 		addrp = NULL;
4390 		goto okay;
4391 	}
4392 
4393 parse_error:
4394 	pr_warn(
4395 	       "SELinux: failure in selinux_parse_skb(),"
4396 	       " unable to parse packet\n");
4397 	return ret;
4398 
4399 okay:
4400 	if (_addrp)
4401 		*_addrp = addrp;
4402 	return 0;
4403 }
4404 
4405 /**
4406  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4407  * @skb: the packet
4408  * @family: protocol family
4409  * @sid: the packet's peer label SID
4410  *
4411  * Description:
4412  * Check the various different forms of network peer labeling and determine
4413  * the peer label/SID for the packet; most of the magic actually occurs in
4414  * the security server function security_net_peersid_cmp().  The function
4415  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4416  * or -EACCES if @sid is invalid due to inconsistencies with the different
4417  * peer labels.
4418  *
4419  */
4420 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4421 {
4422 	int err;
4423 	u32 xfrm_sid;
4424 	u32 nlbl_sid;
4425 	u32 nlbl_type;
4426 
4427 	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4428 	if (unlikely(err))
4429 		return -EACCES;
4430 	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4431 	if (unlikely(err))
4432 		return -EACCES;
4433 
4434 	err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4435 					   nlbl_type, xfrm_sid, sid);
4436 	if (unlikely(err)) {
4437 		pr_warn(
4438 		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4439 		       " unable to determine packet's peer label\n");
4440 		return -EACCES;
4441 	}
4442 
4443 	return 0;
4444 }
4445 
4446 /**
4447  * selinux_conn_sid - Determine the child socket label for a connection
4448  * @sk_sid: the parent socket's SID
4449  * @skb_sid: the packet's SID
4450  * @conn_sid: the resulting connection SID
4451  *
4452  * If @skb_sid is valid then the user:role:type information from @sk_sid is
4453  * combined with the MLS information from @skb_sid in order to create
4454  * @conn_sid.  If @skb_sid is not valid then @conn_sid is simply a copy
4455  * of @sk_sid.  Returns zero on success, negative values on failure.
4456  *
4457  */
4458 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4459 {
4460 	int err = 0;
4461 
4462 	if (skb_sid != SECSID_NULL)
4463 		err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4464 					    conn_sid);
4465 	else
4466 		*conn_sid = sk_sid;
4467 
4468 	return err;
4469 }
4470 
4471 /* socket security operations */
4472 
4473 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4474 				 u16 secclass, u32 *socksid)
4475 {
4476 	if (tsec->sockcreate_sid > SECSID_NULL) {
4477 		*socksid = tsec->sockcreate_sid;
4478 		return 0;
4479 	}
4480 
4481 	return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4482 				       secclass, NULL, socksid);
4483 }
4484 
4485 static int sock_has_perm(struct sock *sk, u32 perms)
4486 {
4487 	struct sk_security_struct *sksec = sk->sk_security;
4488 	struct common_audit_data ad;
4489 	struct lsm_network_audit net = {0,};
4490 
4491 	if (sksec->sid == SECINITSID_KERNEL)
4492 		return 0;
4493 
4494 	ad.type = LSM_AUDIT_DATA_NET;
4495 	ad.u.net = &net;
4496 	ad.u.net->sk = sk;
4497 
4498 	return avc_has_perm(&selinux_state,
4499 			    current_sid(), sksec->sid, sksec->sclass, perms,
4500 			    &ad);
4501 }
4502 
4503 static int selinux_socket_create(int family, int type,
4504 				 int protocol, int kern)
4505 {
4506 	const struct task_security_struct *tsec = selinux_cred(current_cred());
4507 	u32 newsid;
4508 	u16 secclass;
4509 	int rc;
4510 
4511 	if (kern)
4512 		return 0;
4513 
4514 	secclass = socket_type_to_security_class(family, type, protocol);
4515 	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4516 	if (rc)
4517 		return rc;
4518 
4519 	return avc_has_perm(&selinux_state,
4520 			    tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4521 }
4522 
4523 static int selinux_socket_post_create(struct socket *sock, int family,
4524 				      int type, int protocol, int kern)
4525 {
4526 	const struct task_security_struct *tsec = selinux_cred(current_cred());
4527 	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4528 	struct sk_security_struct *sksec;
4529 	u16 sclass = socket_type_to_security_class(family, type, protocol);
4530 	u32 sid = SECINITSID_KERNEL;
4531 	int err = 0;
4532 
4533 	if (!kern) {
4534 		err = socket_sockcreate_sid(tsec, sclass, &sid);
4535 		if (err)
4536 			return err;
4537 	}
4538 
4539 	isec->sclass = sclass;
4540 	isec->sid = sid;
4541 	isec->initialized = LABEL_INITIALIZED;
4542 
4543 	if (sock->sk) {
4544 		sksec = sock->sk->sk_security;
4545 		sksec->sclass = sclass;
4546 		sksec->sid = sid;
4547 		/* Allows detection of the first association on this socket */
4548 		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4549 			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4550 
4551 		err = selinux_netlbl_socket_post_create(sock->sk, family);
4552 	}
4553 
4554 	return err;
4555 }
4556 
4557 static int selinux_socket_socketpair(struct socket *socka,
4558 				     struct socket *sockb)
4559 {
4560 	struct sk_security_struct *sksec_a = socka->sk->sk_security;
4561 	struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4562 
4563 	sksec_a->peer_sid = sksec_b->sid;
4564 	sksec_b->peer_sid = sksec_a->sid;
4565 
4566 	return 0;
4567 }
4568 
4569 /* Range of port numbers used to automatically bind.
4570    Need to determine whether we should perform a name_bind
4571    permission check between the socket and the port number. */
4572 
4573 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4574 {
4575 	struct sock *sk = sock->sk;
4576 	struct sk_security_struct *sksec = sk->sk_security;
4577 	u16 family;
4578 	int err;
4579 
4580 	err = sock_has_perm(sk, SOCKET__BIND);
4581 	if (err)
4582 		goto out;
4583 
4584 	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
4585 	family = sk->sk_family;
4586 	if (family == PF_INET || family == PF_INET6) {
4587 		char *addrp;
4588 		struct common_audit_data ad;
4589 		struct lsm_network_audit net = {0,};
4590 		struct sockaddr_in *addr4 = NULL;
4591 		struct sockaddr_in6 *addr6 = NULL;
4592 		u16 family_sa;
4593 		unsigned short snum;
4594 		u32 sid, node_perm;
4595 
4596 		/*
4597 		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4598 		 * that validates multiple binding addresses. Because of this
4599 		 * need to check address->sa_family as it is possible to have
4600 		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4601 		 */
4602 		if (addrlen < offsetofend(struct sockaddr, sa_family))
4603 			return -EINVAL;
4604 		family_sa = address->sa_family;
4605 		switch (family_sa) {
4606 		case AF_UNSPEC:
4607 		case AF_INET:
4608 			if (addrlen < sizeof(struct sockaddr_in))
4609 				return -EINVAL;
4610 			addr4 = (struct sockaddr_in *)address;
4611 			if (family_sa == AF_UNSPEC) {
4612 				/* see __inet_bind(), we only want to allow
4613 				 * AF_UNSPEC if the address is INADDR_ANY
4614 				 */
4615 				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4616 					goto err_af;
4617 				family_sa = AF_INET;
4618 			}
4619 			snum = ntohs(addr4->sin_port);
4620 			addrp = (char *)&addr4->sin_addr.s_addr;
4621 			break;
4622 		case AF_INET6:
4623 			if (addrlen < SIN6_LEN_RFC2133)
4624 				return -EINVAL;
4625 			addr6 = (struct sockaddr_in6 *)address;
4626 			snum = ntohs(addr6->sin6_port);
4627 			addrp = (char *)&addr6->sin6_addr.s6_addr;
4628 			break;
4629 		default:
4630 			goto err_af;
4631 		}
4632 
4633 		ad.type = LSM_AUDIT_DATA_NET;
4634 		ad.u.net = &net;
4635 		ad.u.net->sport = htons(snum);
4636 		ad.u.net->family = family_sa;
4637 
4638 		if (snum) {
4639 			int low, high;
4640 
4641 			inet_get_local_port_range(sock_net(sk), &low, &high);
4642 
4643 			if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4644 			    snum < low || snum > high) {
4645 				err = sel_netport_sid(sk->sk_protocol,
4646 						      snum, &sid);
4647 				if (err)
4648 					goto out;
4649 				err = avc_has_perm(&selinux_state,
4650 						   sksec->sid, sid,
4651 						   sksec->sclass,
4652 						   SOCKET__NAME_BIND, &ad);
4653 				if (err)
4654 					goto out;
4655 			}
4656 		}
4657 
4658 		switch (sksec->sclass) {
4659 		case SECCLASS_TCP_SOCKET:
4660 			node_perm = TCP_SOCKET__NODE_BIND;
4661 			break;
4662 
4663 		case SECCLASS_UDP_SOCKET:
4664 			node_perm = UDP_SOCKET__NODE_BIND;
4665 			break;
4666 
4667 		case SECCLASS_DCCP_SOCKET:
4668 			node_perm = DCCP_SOCKET__NODE_BIND;
4669 			break;
4670 
4671 		case SECCLASS_SCTP_SOCKET:
4672 			node_perm = SCTP_SOCKET__NODE_BIND;
4673 			break;
4674 
4675 		default:
4676 			node_perm = RAWIP_SOCKET__NODE_BIND;
4677 			break;
4678 		}
4679 
4680 		err = sel_netnode_sid(addrp, family_sa, &sid);
4681 		if (err)
4682 			goto out;
4683 
4684 		if (family_sa == AF_INET)
4685 			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4686 		else
4687 			ad.u.net->v6info.saddr = addr6->sin6_addr;
4688 
4689 		err = avc_has_perm(&selinux_state,
4690 				   sksec->sid, sid,
4691 				   sksec->sclass, node_perm, &ad);
4692 		if (err)
4693 			goto out;
4694 	}
4695 out:
4696 	return err;
4697 err_af:
4698 	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4699 	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4700 		return -EINVAL;
4701 	return -EAFNOSUPPORT;
4702 }
4703 
4704 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4705  * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4706  */
4707 static int selinux_socket_connect_helper(struct socket *sock,
4708 					 struct sockaddr *address, int addrlen)
4709 {
4710 	struct sock *sk = sock->sk;
4711 	struct sk_security_struct *sksec = sk->sk_security;
4712 	int err;
4713 
4714 	err = sock_has_perm(sk, SOCKET__CONNECT);
4715 	if (err)
4716 		return err;
4717 	if (addrlen < offsetofend(struct sockaddr, sa_family))
4718 		return -EINVAL;
4719 
4720 	/* connect(AF_UNSPEC) has special handling, as it is a documented
4721 	 * way to disconnect the socket
4722 	 */
4723 	if (address->sa_family == AF_UNSPEC)
4724 		return 0;
4725 
4726 	/*
4727 	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4728 	 * for the port.
4729 	 */
4730 	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4731 	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4732 	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4733 		struct common_audit_data ad;
4734 		struct lsm_network_audit net = {0,};
4735 		struct sockaddr_in *addr4 = NULL;
4736 		struct sockaddr_in6 *addr6 = NULL;
4737 		unsigned short snum;
4738 		u32 sid, perm;
4739 
4740 		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4741 		 * that validates multiple connect addresses. Because of this
4742 		 * need to check address->sa_family as it is possible to have
4743 		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4744 		 */
4745 		switch (address->sa_family) {
4746 		case AF_INET:
4747 			addr4 = (struct sockaddr_in *)address;
4748 			if (addrlen < sizeof(struct sockaddr_in))
4749 				return -EINVAL;
4750 			snum = ntohs(addr4->sin_port);
4751 			break;
4752 		case AF_INET6:
4753 			addr6 = (struct sockaddr_in6 *)address;
4754 			if (addrlen < SIN6_LEN_RFC2133)
4755 				return -EINVAL;
4756 			snum = ntohs(addr6->sin6_port);
4757 			break;
4758 		default:
4759 			/* Note that SCTP services expect -EINVAL, whereas
4760 			 * others expect -EAFNOSUPPORT.
4761 			 */
4762 			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4763 				return -EINVAL;
4764 			else
4765 				return -EAFNOSUPPORT;
4766 		}
4767 
4768 		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4769 		if (err)
4770 			return err;
4771 
4772 		switch (sksec->sclass) {
4773 		case SECCLASS_TCP_SOCKET:
4774 			perm = TCP_SOCKET__NAME_CONNECT;
4775 			break;
4776 		case SECCLASS_DCCP_SOCKET:
4777 			perm = DCCP_SOCKET__NAME_CONNECT;
4778 			break;
4779 		case SECCLASS_SCTP_SOCKET:
4780 			perm = SCTP_SOCKET__NAME_CONNECT;
4781 			break;
4782 		}
4783 
4784 		ad.type = LSM_AUDIT_DATA_NET;
4785 		ad.u.net = &net;
4786 		ad.u.net->dport = htons(snum);
4787 		ad.u.net->family = address->sa_family;
4788 		err = avc_has_perm(&selinux_state,
4789 				   sksec->sid, sid, sksec->sclass, perm, &ad);
4790 		if (err)
4791 			return err;
4792 	}
4793 
4794 	return 0;
4795 }
4796 
4797 /* Supports connect(2), see comments in selinux_socket_connect_helper() */
4798 static int selinux_socket_connect(struct socket *sock,
4799 				  struct sockaddr *address, int addrlen)
4800 {
4801 	int err;
4802 	struct sock *sk = sock->sk;
4803 
4804 	err = selinux_socket_connect_helper(sock, address, addrlen);
4805 	if (err)
4806 		return err;
4807 
4808 	return selinux_netlbl_socket_connect(sk, address);
4809 }
4810 
4811 static int selinux_socket_listen(struct socket *sock, int backlog)
4812 {
4813 	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4814 }
4815 
4816 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4817 {
4818 	int err;
4819 	struct inode_security_struct *isec;
4820 	struct inode_security_struct *newisec;
4821 	u16 sclass;
4822 	u32 sid;
4823 
4824 	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4825 	if (err)
4826 		return err;
4827 
4828 	isec = inode_security_novalidate(SOCK_INODE(sock));
4829 	spin_lock(&isec->lock);
4830 	sclass = isec->sclass;
4831 	sid = isec->sid;
4832 	spin_unlock(&isec->lock);
4833 
4834 	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4835 	newisec->sclass = sclass;
4836 	newisec->sid = sid;
4837 	newisec->initialized = LABEL_INITIALIZED;
4838 
4839 	return 0;
4840 }
4841 
4842 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4843 				  int size)
4844 {
4845 	return sock_has_perm(sock->sk, SOCKET__WRITE);
4846 }
4847 
4848 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4849 				  int size, int flags)
4850 {
4851 	return sock_has_perm(sock->sk, SOCKET__READ);
4852 }
4853 
4854 static int selinux_socket_getsockname(struct socket *sock)
4855 {
4856 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4857 }
4858 
4859 static int selinux_socket_getpeername(struct socket *sock)
4860 {
4861 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4862 }
4863 
4864 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4865 {
4866 	int err;
4867 
4868 	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4869 	if (err)
4870 		return err;
4871 
4872 	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4873 }
4874 
4875 static int selinux_socket_getsockopt(struct socket *sock, int level,
4876 				     int optname)
4877 {
4878 	return sock_has_perm(sock->sk, SOCKET__GETOPT);
4879 }
4880 
4881 static int selinux_socket_shutdown(struct socket *sock, int how)
4882 {
4883 	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4884 }
4885 
4886 static int selinux_socket_unix_stream_connect(struct sock *sock,
4887 					      struct sock *other,
4888 					      struct sock *newsk)
4889 {
4890 	struct sk_security_struct *sksec_sock = sock->sk_security;
4891 	struct sk_security_struct *sksec_other = other->sk_security;
4892 	struct sk_security_struct *sksec_new = newsk->sk_security;
4893 	struct common_audit_data ad;
4894 	struct lsm_network_audit net = {0,};
4895 	int err;
4896 
4897 	ad.type = LSM_AUDIT_DATA_NET;
4898 	ad.u.net = &net;
4899 	ad.u.net->sk = other;
4900 
4901 	err = avc_has_perm(&selinux_state,
4902 			   sksec_sock->sid, sksec_other->sid,
4903 			   sksec_other->sclass,
4904 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4905 	if (err)
4906 		return err;
4907 
4908 	/* server child socket */
4909 	sksec_new->peer_sid = sksec_sock->sid;
4910 	err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4911 				    sksec_sock->sid, &sksec_new->sid);
4912 	if (err)
4913 		return err;
4914 
4915 	/* connecting socket */
4916 	sksec_sock->peer_sid = sksec_new->sid;
4917 
4918 	return 0;
4919 }
4920 
4921 static int selinux_socket_unix_may_send(struct socket *sock,
4922 					struct socket *other)
4923 {
4924 	struct sk_security_struct *ssec = sock->sk->sk_security;
4925 	struct sk_security_struct *osec = other->sk->sk_security;
4926 	struct common_audit_data ad;
4927 	struct lsm_network_audit net = {0,};
4928 
4929 	ad.type = LSM_AUDIT_DATA_NET;
4930 	ad.u.net = &net;
4931 	ad.u.net->sk = other->sk;
4932 
4933 	return avc_has_perm(&selinux_state,
4934 			    ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4935 			    &ad);
4936 }
4937 
4938 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4939 				    char *addrp, u16 family, u32 peer_sid,
4940 				    struct common_audit_data *ad)
4941 {
4942 	int err;
4943 	u32 if_sid;
4944 	u32 node_sid;
4945 
4946 	err = sel_netif_sid(ns, ifindex, &if_sid);
4947 	if (err)
4948 		return err;
4949 	err = avc_has_perm(&selinux_state,
4950 			   peer_sid, if_sid,
4951 			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4952 	if (err)
4953 		return err;
4954 
4955 	err = sel_netnode_sid(addrp, family, &node_sid);
4956 	if (err)
4957 		return err;
4958 	return avc_has_perm(&selinux_state,
4959 			    peer_sid, node_sid,
4960 			    SECCLASS_NODE, NODE__RECVFROM, ad);
4961 }
4962 
4963 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4964 				       u16 family)
4965 {
4966 	int err = 0;
4967 	struct sk_security_struct *sksec = sk->sk_security;
4968 	u32 sk_sid = sksec->sid;
4969 	struct common_audit_data ad;
4970 	struct lsm_network_audit net = {0,};
4971 	char *addrp;
4972 
4973 	ad.type = LSM_AUDIT_DATA_NET;
4974 	ad.u.net = &net;
4975 	ad.u.net->netif = skb->skb_iif;
4976 	ad.u.net->family = family;
4977 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4978 	if (err)
4979 		return err;
4980 
4981 	if (selinux_secmark_enabled()) {
4982 		err = avc_has_perm(&selinux_state,
4983 				   sk_sid, skb->secmark, SECCLASS_PACKET,
4984 				   PACKET__RECV, &ad);
4985 		if (err)
4986 			return err;
4987 	}
4988 
4989 	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4990 	if (err)
4991 		return err;
4992 	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4993 
4994 	return err;
4995 }
4996 
4997 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4998 {
4999 	int err;
5000 	struct sk_security_struct *sksec = sk->sk_security;
5001 	u16 family = sk->sk_family;
5002 	u32 sk_sid = sksec->sid;
5003 	struct common_audit_data ad;
5004 	struct lsm_network_audit net = {0,};
5005 	char *addrp;
5006 	u8 secmark_active;
5007 	u8 peerlbl_active;
5008 
5009 	if (family != PF_INET && family != PF_INET6)
5010 		return 0;
5011 
5012 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
5013 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5014 		family = PF_INET;
5015 
5016 	/* If any sort of compatibility mode is enabled then handoff processing
5017 	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5018 	 * special handling.  We do this in an attempt to keep this function
5019 	 * as fast and as clean as possible. */
5020 	if (!selinux_policycap_netpeer())
5021 		return selinux_sock_rcv_skb_compat(sk, skb, family);
5022 
5023 	secmark_active = selinux_secmark_enabled();
5024 	peerlbl_active = selinux_peerlbl_enabled();
5025 	if (!secmark_active && !peerlbl_active)
5026 		return 0;
5027 
5028 	ad.type = LSM_AUDIT_DATA_NET;
5029 	ad.u.net = &net;
5030 	ad.u.net->netif = skb->skb_iif;
5031 	ad.u.net->family = family;
5032 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5033 	if (err)
5034 		return err;
5035 
5036 	if (peerlbl_active) {
5037 		u32 peer_sid;
5038 
5039 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5040 		if (err)
5041 			return err;
5042 		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5043 					       addrp, family, peer_sid, &ad);
5044 		if (err) {
5045 			selinux_netlbl_err(skb, family, err, 0);
5046 			return err;
5047 		}
5048 		err = avc_has_perm(&selinux_state,
5049 				   sk_sid, peer_sid, SECCLASS_PEER,
5050 				   PEER__RECV, &ad);
5051 		if (err) {
5052 			selinux_netlbl_err(skb, family, err, 0);
5053 			return err;
5054 		}
5055 	}
5056 
5057 	if (secmark_active) {
5058 		err = avc_has_perm(&selinux_state,
5059 				   sk_sid, skb->secmark, SECCLASS_PACKET,
5060 				   PACKET__RECV, &ad);
5061 		if (err)
5062 			return err;
5063 	}
5064 
5065 	return err;
5066 }
5067 
5068 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5069 					    int __user *optlen, unsigned len)
5070 {
5071 	int err = 0;
5072 	char *scontext;
5073 	u32 scontext_len;
5074 	struct sk_security_struct *sksec = sock->sk->sk_security;
5075 	u32 peer_sid = SECSID_NULL;
5076 
5077 	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5078 	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5079 	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5080 		peer_sid = sksec->peer_sid;
5081 	if (peer_sid == SECSID_NULL)
5082 		return -ENOPROTOOPT;
5083 
5084 	err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5085 				      &scontext_len);
5086 	if (err)
5087 		return err;
5088 
5089 	if (scontext_len > len) {
5090 		err = -ERANGE;
5091 		goto out_len;
5092 	}
5093 
5094 	if (copy_to_user(optval, scontext, scontext_len))
5095 		err = -EFAULT;
5096 
5097 out_len:
5098 	if (put_user(scontext_len, optlen))
5099 		err = -EFAULT;
5100 	kfree(scontext);
5101 	return err;
5102 }
5103 
5104 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5105 {
5106 	u32 peer_secid = SECSID_NULL;
5107 	u16 family;
5108 	struct inode_security_struct *isec;
5109 
5110 	if (skb && skb->protocol == htons(ETH_P_IP))
5111 		family = PF_INET;
5112 	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5113 		family = PF_INET6;
5114 	else if (sock)
5115 		family = sock->sk->sk_family;
5116 	else
5117 		goto out;
5118 
5119 	if (sock && family == PF_UNIX) {
5120 		isec = inode_security_novalidate(SOCK_INODE(sock));
5121 		peer_secid = isec->sid;
5122 	} else if (skb)
5123 		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5124 
5125 out:
5126 	*secid = peer_secid;
5127 	if (peer_secid == SECSID_NULL)
5128 		return -EINVAL;
5129 	return 0;
5130 }
5131 
5132 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5133 {
5134 	struct sk_security_struct *sksec;
5135 
5136 	sksec = kzalloc(sizeof(*sksec), priority);
5137 	if (!sksec)
5138 		return -ENOMEM;
5139 
5140 	sksec->peer_sid = SECINITSID_UNLABELED;
5141 	sksec->sid = SECINITSID_UNLABELED;
5142 	sksec->sclass = SECCLASS_SOCKET;
5143 	selinux_netlbl_sk_security_reset(sksec);
5144 	sk->sk_security = sksec;
5145 
5146 	return 0;
5147 }
5148 
5149 static void selinux_sk_free_security(struct sock *sk)
5150 {
5151 	struct sk_security_struct *sksec = sk->sk_security;
5152 
5153 	sk->sk_security = NULL;
5154 	selinux_netlbl_sk_security_free(sksec);
5155 	kfree(sksec);
5156 }
5157 
5158 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5159 {
5160 	struct sk_security_struct *sksec = sk->sk_security;
5161 	struct sk_security_struct *newsksec = newsk->sk_security;
5162 
5163 	newsksec->sid = sksec->sid;
5164 	newsksec->peer_sid = sksec->peer_sid;
5165 	newsksec->sclass = sksec->sclass;
5166 
5167 	selinux_netlbl_sk_security_reset(newsksec);
5168 }
5169 
5170 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5171 {
5172 	if (!sk)
5173 		*secid = SECINITSID_ANY_SOCKET;
5174 	else {
5175 		struct sk_security_struct *sksec = sk->sk_security;
5176 
5177 		*secid = sksec->sid;
5178 	}
5179 }
5180 
5181 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5182 {
5183 	struct inode_security_struct *isec =
5184 		inode_security_novalidate(SOCK_INODE(parent));
5185 	struct sk_security_struct *sksec = sk->sk_security;
5186 
5187 	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5188 	    sk->sk_family == PF_UNIX)
5189 		isec->sid = sksec->sid;
5190 	sksec->sclass = isec->sclass;
5191 }
5192 
5193 /* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5194  * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5195  * already present).
5196  */
5197 static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5198 				      struct sk_buff *skb)
5199 {
5200 	struct sk_security_struct *sksec = ep->base.sk->sk_security;
5201 	struct common_audit_data ad;
5202 	struct lsm_network_audit net = {0,};
5203 	u8 peerlbl_active;
5204 	u32 peer_sid = SECINITSID_UNLABELED;
5205 	u32 conn_sid;
5206 	int err = 0;
5207 
5208 	if (!selinux_policycap_extsockclass())
5209 		return 0;
5210 
5211 	peerlbl_active = selinux_peerlbl_enabled();
5212 
5213 	if (peerlbl_active) {
5214 		/* This will return peer_sid = SECSID_NULL if there are
5215 		 * no peer labels, see security_net_peersid_resolve().
5216 		 */
5217 		err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5218 					      &peer_sid);
5219 		if (err)
5220 			return err;
5221 
5222 		if (peer_sid == SECSID_NULL)
5223 			peer_sid = SECINITSID_UNLABELED;
5224 	}
5225 
5226 	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5227 		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5228 
5229 		/* Here as first association on socket. As the peer SID
5230 		 * was allowed by peer recv (and the netif/node checks),
5231 		 * then it is approved by policy and used as the primary
5232 		 * peer SID for getpeercon(3).
5233 		 */
5234 		sksec->peer_sid = peer_sid;
5235 	} else if  (sksec->peer_sid != peer_sid) {
5236 		/* Other association peer SIDs are checked to enforce
5237 		 * consistency among the peer SIDs.
5238 		 */
5239 		ad.type = LSM_AUDIT_DATA_NET;
5240 		ad.u.net = &net;
5241 		ad.u.net->sk = ep->base.sk;
5242 		err = avc_has_perm(&selinux_state,
5243 				   sksec->peer_sid, peer_sid, sksec->sclass,
5244 				   SCTP_SOCKET__ASSOCIATION, &ad);
5245 		if (err)
5246 			return err;
5247 	}
5248 
5249 	/* Compute the MLS component for the connection and store
5250 	 * the information in ep. This will be used by SCTP TCP type
5251 	 * sockets and peeled off connections as they cause a new
5252 	 * socket to be generated. selinux_sctp_sk_clone() will then
5253 	 * plug this into the new socket.
5254 	 */
5255 	err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5256 	if (err)
5257 		return err;
5258 
5259 	ep->secid = conn_sid;
5260 	ep->peer_secid = peer_sid;
5261 
5262 	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5263 	return selinux_netlbl_sctp_assoc_request(ep, skb);
5264 }
5265 
5266 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5267  * based on their @optname.
5268  */
5269 static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5270 				     struct sockaddr *address,
5271 				     int addrlen)
5272 {
5273 	int len, err = 0, walk_size = 0;
5274 	void *addr_buf;
5275 	struct sockaddr *addr;
5276 	struct socket *sock;
5277 
5278 	if (!selinux_policycap_extsockclass())
5279 		return 0;
5280 
5281 	/* Process one or more addresses that may be IPv4 or IPv6 */
5282 	sock = sk->sk_socket;
5283 	addr_buf = address;
5284 
5285 	while (walk_size < addrlen) {
5286 		if (walk_size + sizeof(sa_family_t) > addrlen)
5287 			return -EINVAL;
5288 
5289 		addr = addr_buf;
5290 		switch (addr->sa_family) {
5291 		case AF_UNSPEC:
5292 		case AF_INET:
5293 			len = sizeof(struct sockaddr_in);
5294 			break;
5295 		case AF_INET6:
5296 			len = sizeof(struct sockaddr_in6);
5297 			break;
5298 		default:
5299 			return -EINVAL;
5300 		}
5301 
5302 		if (walk_size + len > addrlen)
5303 			return -EINVAL;
5304 
5305 		err = -EINVAL;
5306 		switch (optname) {
5307 		/* Bind checks */
5308 		case SCTP_PRIMARY_ADDR:
5309 		case SCTP_SET_PEER_PRIMARY_ADDR:
5310 		case SCTP_SOCKOPT_BINDX_ADD:
5311 			err = selinux_socket_bind(sock, addr, len);
5312 			break;
5313 		/* Connect checks */
5314 		case SCTP_SOCKOPT_CONNECTX:
5315 		case SCTP_PARAM_SET_PRIMARY:
5316 		case SCTP_PARAM_ADD_IP:
5317 		case SCTP_SENDMSG_CONNECT:
5318 			err = selinux_socket_connect_helper(sock, addr, len);
5319 			if (err)
5320 				return err;
5321 
5322 			/* As selinux_sctp_bind_connect() is called by the
5323 			 * SCTP protocol layer, the socket is already locked,
5324 			 * therefore selinux_netlbl_socket_connect_locked()
5325 			 * is called here. The situations handled are:
5326 			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5327 			 * whenever a new IP address is added or when a new
5328 			 * primary address is selected.
5329 			 * Note that an SCTP connect(2) call happens before
5330 			 * the SCTP protocol layer and is handled via
5331 			 * selinux_socket_connect().
5332 			 */
5333 			err = selinux_netlbl_socket_connect_locked(sk, addr);
5334 			break;
5335 		}
5336 
5337 		if (err)
5338 			return err;
5339 
5340 		addr_buf += len;
5341 		walk_size += len;
5342 	}
5343 
5344 	return 0;
5345 }
5346 
5347 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5348 static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5349 				  struct sock *newsk)
5350 {
5351 	struct sk_security_struct *sksec = sk->sk_security;
5352 	struct sk_security_struct *newsksec = newsk->sk_security;
5353 
5354 	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5355 	 * the non-sctp clone version.
5356 	 */
5357 	if (!selinux_policycap_extsockclass())
5358 		return selinux_sk_clone_security(sk, newsk);
5359 
5360 	newsksec->sid = ep->secid;
5361 	newsksec->peer_sid = ep->peer_secid;
5362 	newsksec->sclass = sksec->sclass;
5363 	selinux_netlbl_sctp_sk_clone(sk, newsk);
5364 }
5365 
5366 static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5367 				     struct request_sock *req)
5368 {
5369 	struct sk_security_struct *sksec = sk->sk_security;
5370 	int err;
5371 	u16 family = req->rsk_ops->family;
5372 	u32 connsid;
5373 	u32 peersid;
5374 
5375 	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5376 	if (err)
5377 		return err;
5378 	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5379 	if (err)
5380 		return err;
5381 	req->secid = connsid;
5382 	req->peer_secid = peersid;
5383 
5384 	return selinux_netlbl_inet_conn_request(req, family);
5385 }
5386 
5387 static void selinux_inet_csk_clone(struct sock *newsk,
5388 				   const struct request_sock *req)
5389 {
5390 	struct sk_security_struct *newsksec = newsk->sk_security;
5391 
5392 	newsksec->sid = req->secid;
5393 	newsksec->peer_sid = req->peer_secid;
5394 	/* NOTE: Ideally, we should also get the isec->sid for the
5395 	   new socket in sync, but we don't have the isec available yet.
5396 	   So we will wait until sock_graft to do it, by which
5397 	   time it will have been created and available. */
5398 
5399 	/* We don't need to take any sort of lock here as we are the only
5400 	 * thread with access to newsksec */
5401 	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5402 }
5403 
5404 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5405 {
5406 	u16 family = sk->sk_family;
5407 	struct sk_security_struct *sksec = sk->sk_security;
5408 
5409 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5410 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5411 		family = PF_INET;
5412 
5413 	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5414 }
5415 
5416 static int selinux_secmark_relabel_packet(u32 sid)
5417 {
5418 	const struct task_security_struct *__tsec;
5419 	u32 tsid;
5420 
5421 	__tsec = selinux_cred(current_cred());
5422 	tsid = __tsec->sid;
5423 
5424 	return avc_has_perm(&selinux_state,
5425 			    tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5426 			    NULL);
5427 }
5428 
5429 static void selinux_secmark_refcount_inc(void)
5430 {
5431 	atomic_inc(&selinux_secmark_refcount);
5432 }
5433 
5434 static void selinux_secmark_refcount_dec(void)
5435 {
5436 	atomic_dec(&selinux_secmark_refcount);
5437 }
5438 
5439 static void selinux_req_classify_flow(const struct request_sock *req,
5440 				      struct flowi_common *flic)
5441 {
5442 	flic->flowic_secid = req->secid;
5443 }
5444 
5445 static int selinux_tun_dev_alloc_security(void **security)
5446 {
5447 	struct tun_security_struct *tunsec;
5448 
5449 	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5450 	if (!tunsec)
5451 		return -ENOMEM;
5452 	tunsec->sid = current_sid();
5453 
5454 	*security = tunsec;
5455 	return 0;
5456 }
5457 
5458 static void selinux_tun_dev_free_security(void *security)
5459 {
5460 	kfree(security);
5461 }
5462 
5463 static int selinux_tun_dev_create(void)
5464 {
5465 	u32 sid = current_sid();
5466 
5467 	/* we aren't taking into account the "sockcreate" SID since the socket
5468 	 * that is being created here is not a socket in the traditional sense,
5469 	 * instead it is a private sock, accessible only to the kernel, and
5470 	 * representing a wide range of network traffic spanning multiple
5471 	 * connections unlike traditional sockets - check the TUN driver to
5472 	 * get a better understanding of why this socket is special */
5473 
5474 	return avc_has_perm(&selinux_state,
5475 			    sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5476 			    NULL);
5477 }
5478 
5479 static int selinux_tun_dev_attach_queue(void *security)
5480 {
5481 	struct tun_security_struct *tunsec = security;
5482 
5483 	return avc_has_perm(&selinux_state,
5484 			    current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5485 			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5486 }
5487 
5488 static int selinux_tun_dev_attach(struct sock *sk, void *security)
5489 {
5490 	struct tun_security_struct *tunsec = security;
5491 	struct sk_security_struct *sksec = sk->sk_security;
5492 
5493 	/* we don't currently perform any NetLabel based labeling here and it
5494 	 * isn't clear that we would want to do so anyway; while we could apply
5495 	 * labeling without the support of the TUN user the resulting labeled
5496 	 * traffic from the other end of the connection would almost certainly
5497 	 * cause confusion to the TUN user that had no idea network labeling
5498 	 * protocols were being used */
5499 
5500 	sksec->sid = tunsec->sid;
5501 	sksec->sclass = SECCLASS_TUN_SOCKET;
5502 
5503 	return 0;
5504 }
5505 
5506 static int selinux_tun_dev_open(void *security)
5507 {
5508 	struct tun_security_struct *tunsec = security;
5509 	u32 sid = current_sid();
5510 	int err;
5511 
5512 	err = avc_has_perm(&selinux_state,
5513 			   sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5514 			   TUN_SOCKET__RELABELFROM, NULL);
5515 	if (err)
5516 		return err;
5517 	err = avc_has_perm(&selinux_state,
5518 			   sid, sid, SECCLASS_TUN_SOCKET,
5519 			   TUN_SOCKET__RELABELTO, NULL);
5520 	if (err)
5521 		return err;
5522 	tunsec->sid = sid;
5523 
5524 	return 0;
5525 }
5526 
5527 #ifdef CONFIG_NETFILTER
5528 
5529 static unsigned int selinux_ip_forward(struct sk_buff *skb,
5530 				       const struct net_device *indev,
5531 				       u16 family)
5532 {
5533 	int err;
5534 	char *addrp;
5535 	u32 peer_sid;
5536 	struct common_audit_data ad;
5537 	struct lsm_network_audit net = {0,};
5538 	u8 secmark_active;
5539 	u8 netlbl_active;
5540 	u8 peerlbl_active;
5541 
5542 	if (!selinux_policycap_netpeer())
5543 		return NF_ACCEPT;
5544 
5545 	secmark_active = selinux_secmark_enabled();
5546 	netlbl_active = netlbl_enabled();
5547 	peerlbl_active = selinux_peerlbl_enabled();
5548 	if (!secmark_active && !peerlbl_active)
5549 		return NF_ACCEPT;
5550 
5551 	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5552 		return NF_DROP;
5553 
5554 	ad.type = LSM_AUDIT_DATA_NET;
5555 	ad.u.net = &net;
5556 	ad.u.net->netif = indev->ifindex;
5557 	ad.u.net->family = family;
5558 	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5559 		return NF_DROP;
5560 
5561 	if (peerlbl_active) {
5562 		err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5563 					       addrp, family, peer_sid, &ad);
5564 		if (err) {
5565 			selinux_netlbl_err(skb, family, err, 1);
5566 			return NF_DROP;
5567 		}
5568 	}
5569 
5570 	if (secmark_active)
5571 		if (avc_has_perm(&selinux_state,
5572 				 peer_sid, skb->secmark,
5573 				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5574 			return NF_DROP;
5575 
5576 	if (netlbl_active)
5577 		/* we do this in the FORWARD path and not the POST_ROUTING
5578 		 * path because we want to make sure we apply the necessary
5579 		 * labeling before IPsec is applied so we can leverage AH
5580 		 * protection */
5581 		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5582 			return NF_DROP;
5583 
5584 	return NF_ACCEPT;
5585 }
5586 
5587 static unsigned int selinux_ipv4_forward(void *priv,
5588 					 struct sk_buff *skb,
5589 					 const struct nf_hook_state *state)
5590 {
5591 	return selinux_ip_forward(skb, state->in, PF_INET);
5592 }
5593 
5594 #if IS_ENABLED(CONFIG_IPV6)
5595 static unsigned int selinux_ipv6_forward(void *priv,
5596 					 struct sk_buff *skb,
5597 					 const struct nf_hook_state *state)
5598 {
5599 	return selinux_ip_forward(skb, state->in, PF_INET6);
5600 }
5601 #endif	/* IPV6 */
5602 
5603 static unsigned int selinux_ip_output(struct sk_buff *skb,
5604 				      u16 family)
5605 {
5606 	struct sock *sk;
5607 	u32 sid;
5608 
5609 	if (!netlbl_enabled())
5610 		return NF_ACCEPT;
5611 
5612 	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5613 	 * because we want to make sure we apply the necessary labeling
5614 	 * before IPsec is applied so we can leverage AH protection */
5615 	sk = skb->sk;
5616 	if (sk) {
5617 		struct sk_security_struct *sksec;
5618 
5619 		if (sk_listener(sk))
5620 			/* if the socket is the listening state then this
5621 			 * packet is a SYN-ACK packet which means it needs to
5622 			 * be labeled based on the connection/request_sock and
5623 			 * not the parent socket.  unfortunately, we can't
5624 			 * lookup the request_sock yet as it isn't queued on
5625 			 * the parent socket until after the SYN-ACK is sent.
5626 			 * the "solution" is to simply pass the packet as-is
5627 			 * as any IP option based labeling should be copied
5628 			 * from the initial connection request (in the IP
5629 			 * layer).  it is far from ideal, but until we get a
5630 			 * security label in the packet itself this is the
5631 			 * best we can do. */
5632 			return NF_ACCEPT;
5633 
5634 		/* standard practice, label using the parent socket */
5635 		sksec = sk->sk_security;
5636 		sid = sksec->sid;
5637 	} else
5638 		sid = SECINITSID_KERNEL;
5639 	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5640 		return NF_DROP;
5641 
5642 	return NF_ACCEPT;
5643 }
5644 
5645 static unsigned int selinux_ipv4_output(void *priv,
5646 					struct sk_buff *skb,
5647 					const struct nf_hook_state *state)
5648 {
5649 	return selinux_ip_output(skb, PF_INET);
5650 }
5651 
5652 #if IS_ENABLED(CONFIG_IPV6)
5653 static unsigned int selinux_ipv6_output(void *priv,
5654 					struct sk_buff *skb,
5655 					const struct nf_hook_state *state)
5656 {
5657 	return selinux_ip_output(skb, PF_INET6);
5658 }
5659 #endif	/* IPV6 */
5660 
5661 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5662 						int ifindex,
5663 						u16 family)
5664 {
5665 	struct sock *sk = skb_to_full_sk(skb);
5666 	struct sk_security_struct *sksec;
5667 	struct common_audit_data ad;
5668 	struct lsm_network_audit net = {0,};
5669 	char *addrp;
5670 	u8 proto;
5671 
5672 	if (sk == NULL)
5673 		return NF_ACCEPT;
5674 	sksec = sk->sk_security;
5675 
5676 	ad.type = LSM_AUDIT_DATA_NET;
5677 	ad.u.net = &net;
5678 	ad.u.net->netif = ifindex;
5679 	ad.u.net->family = family;
5680 	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5681 		return NF_DROP;
5682 
5683 	if (selinux_secmark_enabled())
5684 		if (avc_has_perm(&selinux_state,
5685 				 sksec->sid, skb->secmark,
5686 				 SECCLASS_PACKET, PACKET__SEND, &ad))
5687 			return NF_DROP_ERR(-ECONNREFUSED);
5688 
5689 	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5690 		return NF_DROP_ERR(-ECONNREFUSED);
5691 
5692 	return NF_ACCEPT;
5693 }
5694 
5695 static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5696 					 const struct net_device *outdev,
5697 					 u16 family)
5698 {
5699 	u32 secmark_perm;
5700 	u32 peer_sid;
5701 	int ifindex = outdev->ifindex;
5702 	struct sock *sk;
5703 	struct common_audit_data ad;
5704 	struct lsm_network_audit net = {0,};
5705 	char *addrp;
5706 	u8 secmark_active;
5707 	u8 peerlbl_active;
5708 
5709 	/* If any sort of compatibility mode is enabled then handoff processing
5710 	 * to the selinux_ip_postroute_compat() function to deal with the
5711 	 * special handling.  We do this in an attempt to keep this function
5712 	 * as fast and as clean as possible. */
5713 	if (!selinux_policycap_netpeer())
5714 		return selinux_ip_postroute_compat(skb, ifindex, family);
5715 
5716 	secmark_active = selinux_secmark_enabled();
5717 	peerlbl_active = selinux_peerlbl_enabled();
5718 	if (!secmark_active && !peerlbl_active)
5719 		return NF_ACCEPT;
5720 
5721 	sk = skb_to_full_sk(skb);
5722 
5723 #ifdef CONFIG_XFRM
5724 	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5725 	 * packet transformation so allow the packet to pass without any checks
5726 	 * since we'll have another chance to perform access control checks
5727 	 * when the packet is on it's final way out.
5728 	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5729 	 *       is NULL, in this case go ahead and apply access control.
5730 	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5731 	 *       TCP listening state we cannot wait until the XFRM processing
5732 	 *       is done as we will miss out on the SA label if we do;
5733 	 *       unfortunately, this means more work, but it is only once per
5734 	 *       connection. */
5735 	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5736 	    !(sk && sk_listener(sk)))
5737 		return NF_ACCEPT;
5738 #endif
5739 
5740 	if (sk == NULL) {
5741 		/* Without an associated socket the packet is either coming
5742 		 * from the kernel or it is being forwarded; check the packet
5743 		 * to determine which and if the packet is being forwarded
5744 		 * query the packet directly to determine the security label. */
5745 		if (skb->skb_iif) {
5746 			secmark_perm = PACKET__FORWARD_OUT;
5747 			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5748 				return NF_DROP;
5749 		} else {
5750 			secmark_perm = PACKET__SEND;
5751 			peer_sid = SECINITSID_KERNEL;
5752 		}
5753 	} else if (sk_listener(sk)) {
5754 		/* Locally generated packet but the associated socket is in the
5755 		 * listening state which means this is a SYN-ACK packet.  In
5756 		 * this particular case the correct security label is assigned
5757 		 * to the connection/request_sock but unfortunately we can't
5758 		 * query the request_sock as it isn't queued on the parent
5759 		 * socket until after the SYN-ACK packet is sent; the only
5760 		 * viable choice is to regenerate the label like we do in
5761 		 * selinux_inet_conn_request().  See also selinux_ip_output()
5762 		 * for similar problems. */
5763 		u32 skb_sid;
5764 		struct sk_security_struct *sksec;
5765 
5766 		sksec = sk->sk_security;
5767 		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5768 			return NF_DROP;
5769 		/* At this point, if the returned skb peerlbl is SECSID_NULL
5770 		 * and the packet has been through at least one XFRM
5771 		 * transformation then we must be dealing with the "final"
5772 		 * form of labeled IPsec packet; since we've already applied
5773 		 * all of our access controls on this packet we can safely
5774 		 * pass the packet. */
5775 		if (skb_sid == SECSID_NULL) {
5776 			switch (family) {
5777 			case PF_INET:
5778 				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5779 					return NF_ACCEPT;
5780 				break;
5781 			case PF_INET6:
5782 				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5783 					return NF_ACCEPT;
5784 				break;
5785 			default:
5786 				return NF_DROP_ERR(-ECONNREFUSED);
5787 			}
5788 		}
5789 		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5790 			return NF_DROP;
5791 		secmark_perm = PACKET__SEND;
5792 	} else {
5793 		/* Locally generated packet, fetch the security label from the
5794 		 * associated socket. */
5795 		struct sk_security_struct *sksec = sk->sk_security;
5796 		peer_sid = sksec->sid;
5797 		secmark_perm = PACKET__SEND;
5798 	}
5799 
5800 	ad.type = LSM_AUDIT_DATA_NET;
5801 	ad.u.net = &net;
5802 	ad.u.net->netif = ifindex;
5803 	ad.u.net->family = family;
5804 	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5805 		return NF_DROP;
5806 
5807 	if (secmark_active)
5808 		if (avc_has_perm(&selinux_state,
5809 				 peer_sid, skb->secmark,
5810 				 SECCLASS_PACKET, secmark_perm, &ad))
5811 			return NF_DROP_ERR(-ECONNREFUSED);
5812 
5813 	if (peerlbl_active) {
5814 		u32 if_sid;
5815 		u32 node_sid;
5816 
5817 		if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5818 			return NF_DROP;
5819 		if (avc_has_perm(&selinux_state,
5820 				 peer_sid, if_sid,
5821 				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5822 			return NF_DROP_ERR(-ECONNREFUSED);
5823 
5824 		if (sel_netnode_sid(addrp, family, &node_sid))
5825 			return NF_DROP;
5826 		if (avc_has_perm(&selinux_state,
5827 				 peer_sid, node_sid,
5828 				 SECCLASS_NODE, NODE__SENDTO, &ad))
5829 			return NF_DROP_ERR(-ECONNREFUSED);
5830 	}
5831 
5832 	return NF_ACCEPT;
5833 }
5834 
5835 static unsigned int selinux_ipv4_postroute(void *priv,
5836 					   struct sk_buff *skb,
5837 					   const struct nf_hook_state *state)
5838 {
5839 	return selinux_ip_postroute(skb, state->out, PF_INET);
5840 }
5841 
5842 #if IS_ENABLED(CONFIG_IPV6)
5843 static unsigned int selinux_ipv6_postroute(void *priv,
5844 					   struct sk_buff *skb,
5845 					   const struct nf_hook_state *state)
5846 {
5847 	return selinux_ip_postroute(skb, state->out, PF_INET6);
5848 }
5849 #endif	/* IPV6 */
5850 
5851 #endif	/* CONFIG_NETFILTER */
5852 
5853 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5854 {
5855 	int rc = 0;
5856 	unsigned int msg_len;
5857 	unsigned int data_len = skb->len;
5858 	unsigned char *data = skb->data;
5859 	struct nlmsghdr *nlh;
5860 	struct sk_security_struct *sksec = sk->sk_security;
5861 	u16 sclass = sksec->sclass;
5862 	u32 perm;
5863 
5864 	while (data_len >= nlmsg_total_size(0)) {
5865 		nlh = (struct nlmsghdr *)data;
5866 
5867 		/* NOTE: the nlmsg_len field isn't reliably set by some netlink
5868 		 *       users which means we can't reject skb's with bogus
5869 		 *       length fields; our solution is to follow what
5870 		 *       netlink_rcv_skb() does and simply skip processing at
5871 		 *       messages with length fields that are clearly junk
5872 		 */
5873 		if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5874 			return 0;
5875 
5876 		rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5877 		if (rc == 0) {
5878 			rc = sock_has_perm(sk, perm);
5879 			if (rc)
5880 				return rc;
5881 		} else if (rc == -EINVAL) {
5882 			/* -EINVAL is a missing msg/perm mapping */
5883 			pr_warn_ratelimited("SELinux: unrecognized netlink"
5884 				" message: protocol=%hu nlmsg_type=%hu sclass=%s"
5885 				" pid=%d comm=%s\n",
5886 				sk->sk_protocol, nlh->nlmsg_type,
5887 				secclass_map[sclass - 1].name,
5888 				task_pid_nr(current), current->comm);
5889 			if (enforcing_enabled(&selinux_state) &&
5890 			    !security_get_allow_unknown(&selinux_state))
5891 				return rc;
5892 			rc = 0;
5893 		} else if (rc == -ENOENT) {
5894 			/* -ENOENT is a missing socket/class mapping, ignore */
5895 			rc = 0;
5896 		} else {
5897 			return rc;
5898 		}
5899 
5900 		/* move to the next message after applying netlink padding */
5901 		msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
5902 		if (msg_len >= data_len)
5903 			return 0;
5904 		data_len -= msg_len;
5905 		data += msg_len;
5906 	}
5907 
5908 	return rc;
5909 }
5910 
5911 static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
5912 {
5913 	isec->sclass = sclass;
5914 	isec->sid = current_sid();
5915 }
5916 
5917 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5918 			u32 perms)
5919 {
5920 	struct ipc_security_struct *isec;
5921 	struct common_audit_data ad;
5922 	u32 sid = current_sid();
5923 
5924 	isec = selinux_ipc(ipc_perms);
5925 
5926 	ad.type = LSM_AUDIT_DATA_IPC;
5927 	ad.u.ipc_id = ipc_perms->key;
5928 
5929 	return avc_has_perm(&selinux_state,
5930 			    sid, isec->sid, isec->sclass, perms, &ad);
5931 }
5932 
5933 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5934 {
5935 	struct msg_security_struct *msec;
5936 
5937 	msec = selinux_msg_msg(msg);
5938 	msec->sid = SECINITSID_UNLABELED;
5939 
5940 	return 0;
5941 }
5942 
5943 /* message queue security operations */
5944 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
5945 {
5946 	struct ipc_security_struct *isec;
5947 	struct common_audit_data ad;
5948 	u32 sid = current_sid();
5949 	int rc;
5950 
5951 	isec = selinux_ipc(msq);
5952 	ipc_init_security(isec, SECCLASS_MSGQ);
5953 
5954 	ad.type = LSM_AUDIT_DATA_IPC;
5955 	ad.u.ipc_id = msq->key;
5956 
5957 	rc = avc_has_perm(&selinux_state,
5958 			  sid, isec->sid, SECCLASS_MSGQ,
5959 			  MSGQ__CREATE, &ad);
5960 	return rc;
5961 }
5962 
5963 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
5964 {
5965 	struct ipc_security_struct *isec;
5966 	struct common_audit_data ad;
5967 	u32 sid = current_sid();
5968 
5969 	isec = selinux_ipc(msq);
5970 
5971 	ad.type = LSM_AUDIT_DATA_IPC;
5972 	ad.u.ipc_id = msq->key;
5973 
5974 	return avc_has_perm(&selinux_state,
5975 			    sid, isec->sid, SECCLASS_MSGQ,
5976 			    MSGQ__ASSOCIATE, &ad);
5977 }
5978 
5979 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
5980 {
5981 	int err;
5982 	int perms;
5983 
5984 	switch (cmd) {
5985 	case IPC_INFO:
5986 	case MSG_INFO:
5987 		/* No specific object, just general system-wide information. */
5988 		return avc_has_perm(&selinux_state,
5989 				    current_sid(), SECINITSID_KERNEL,
5990 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
5991 	case IPC_STAT:
5992 	case MSG_STAT:
5993 	case MSG_STAT_ANY:
5994 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5995 		break;
5996 	case IPC_SET:
5997 		perms = MSGQ__SETATTR;
5998 		break;
5999 	case IPC_RMID:
6000 		perms = MSGQ__DESTROY;
6001 		break;
6002 	default:
6003 		return 0;
6004 	}
6005 
6006 	err = ipc_has_perm(msq, perms);
6007 	return err;
6008 }
6009 
6010 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6011 {
6012 	struct ipc_security_struct *isec;
6013 	struct msg_security_struct *msec;
6014 	struct common_audit_data ad;
6015 	u32 sid = current_sid();
6016 	int rc;
6017 
6018 	isec = selinux_ipc(msq);
6019 	msec = selinux_msg_msg(msg);
6020 
6021 	/*
6022 	 * First time through, need to assign label to the message
6023 	 */
6024 	if (msec->sid == SECINITSID_UNLABELED) {
6025 		/*
6026 		 * Compute new sid based on current process and
6027 		 * message queue this message will be stored in
6028 		 */
6029 		rc = security_transition_sid(&selinux_state, sid, isec->sid,
6030 					     SECCLASS_MSG, NULL, &msec->sid);
6031 		if (rc)
6032 			return rc;
6033 	}
6034 
6035 	ad.type = LSM_AUDIT_DATA_IPC;
6036 	ad.u.ipc_id = msq->key;
6037 
6038 	/* Can this process write to the queue? */
6039 	rc = avc_has_perm(&selinux_state,
6040 			  sid, isec->sid, SECCLASS_MSGQ,
6041 			  MSGQ__WRITE, &ad);
6042 	if (!rc)
6043 		/* Can this process send the message */
6044 		rc = avc_has_perm(&selinux_state,
6045 				  sid, msec->sid, SECCLASS_MSG,
6046 				  MSG__SEND, &ad);
6047 	if (!rc)
6048 		/* Can the message be put in the queue? */
6049 		rc = avc_has_perm(&selinux_state,
6050 				  msec->sid, isec->sid, SECCLASS_MSGQ,
6051 				  MSGQ__ENQUEUE, &ad);
6052 
6053 	return rc;
6054 }
6055 
6056 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6057 				    struct task_struct *target,
6058 				    long type, int mode)
6059 {
6060 	struct ipc_security_struct *isec;
6061 	struct msg_security_struct *msec;
6062 	struct common_audit_data ad;
6063 	u32 sid = task_sid(target);
6064 	int rc;
6065 
6066 	isec = selinux_ipc(msq);
6067 	msec = selinux_msg_msg(msg);
6068 
6069 	ad.type = LSM_AUDIT_DATA_IPC;
6070 	ad.u.ipc_id = msq->key;
6071 
6072 	rc = avc_has_perm(&selinux_state,
6073 			  sid, isec->sid,
6074 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6075 	if (!rc)
6076 		rc = avc_has_perm(&selinux_state,
6077 				  sid, msec->sid,
6078 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6079 	return rc;
6080 }
6081 
6082 /* Shared Memory security operations */
6083 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6084 {
6085 	struct ipc_security_struct *isec;
6086 	struct common_audit_data ad;
6087 	u32 sid = current_sid();
6088 	int rc;
6089 
6090 	isec = selinux_ipc(shp);
6091 	ipc_init_security(isec, SECCLASS_SHM);
6092 
6093 	ad.type = LSM_AUDIT_DATA_IPC;
6094 	ad.u.ipc_id = shp->key;
6095 
6096 	rc = avc_has_perm(&selinux_state,
6097 			  sid, isec->sid, SECCLASS_SHM,
6098 			  SHM__CREATE, &ad);
6099 	return rc;
6100 }
6101 
6102 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6103 {
6104 	struct ipc_security_struct *isec;
6105 	struct common_audit_data ad;
6106 	u32 sid = current_sid();
6107 
6108 	isec = selinux_ipc(shp);
6109 
6110 	ad.type = LSM_AUDIT_DATA_IPC;
6111 	ad.u.ipc_id = shp->key;
6112 
6113 	return avc_has_perm(&selinux_state,
6114 			    sid, isec->sid, SECCLASS_SHM,
6115 			    SHM__ASSOCIATE, &ad);
6116 }
6117 
6118 /* Note, at this point, shp is locked down */
6119 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6120 {
6121 	int perms;
6122 	int err;
6123 
6124 	switch (cmd) {
6125 	case IPC_INFO:
6126 	case SHM_INFO:
6127 		/* No specific object, just general system-wide information. */
6128 		return avc_has_perm(&selinux_state,
6129 				    current_sid(), SECINITSID_KERNEL,
6130 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6131 	case IPC_STAT:
6132 	case SHM_STAT:
6133 	case SHM_STAT_ANY:
6134 		perms = SHM__GETATTR | SHM__ASSOCIATE;
6135 		break;
6136 	case IPC_SET:
6137 		perms = SHM__SETATTR;
6138 		break;
6139 	case SHM_LOCK:
6140 	case SHM_UNLOCK:
6141 		perms = SHM__LOCK;
6142 		break;
6143 	case IPC_RMID:
6144 		perms = SHM__DESTROY;
6145 		break;
6146 	default:
6147 		return 0;
6148 	}
6149 
6150 	err = ipc_has_perm(shp, perms);
6151 	return err;
6152 }
6153 
6154 static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6155 			     char __user *shmaddr, int shmflg)
6156 {
6157 	u32 perms;
6158 
6159 	if (shmflg & SHM_RDONLY)
6160 		perms = SHM__READ;
6161 	else
6162 		perms = SHM__READ | SHM__WRITE;
6163 
6164 	return ipc_has_perm(shp, perms);
6165 }
6166 
6167 /* Semaphore security operations */
6168 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6169 {
6170 	struct ipc_security_struct *isec;
6171 	struct common_audit_data ad;
6172 	u32 sid = current_sid();
6173 	int rc;
6174 
6175 	isec = selinux_ipc(sma);
6176 	ipc_init_security(isec, SECCLASS_SEM);
6177 
6178 	ad.type = LSM_AUDIT_DATA_IPC;
6179 	ad.u.ipc_id = sma->key;
6180 
6181 	rc = avc_has_perm(&selinux_state,
6182 			  sid, isec->sid, SECCLASS_SEM,
6183 			  SEM__CREATE, &ad);
6184 	return rc;
6185 }
6186 
6187 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6188 {
6189 	struct ipc_security_struct *isec;
6190 	struct common_audit_data ad;
6191 	u32 sid = current_sid();
6192 
6193 	isec = selinux_ipc(sma);
6194 
6195 	ad.type = LSM_AUDIT_DATA_IPC;
6196 	ad.u.ipc_id = sma->key;
6197 
6198 	return avc_has_perm(&selinux_state,
6199 			    sid, isec->sid, SECCLASS_SEM,
6200 			    SEM__ASSOCIATE, &ad);
6201 }
6202 
6203 /* Note, at this point, sma is locked down */
6204 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6205 {
6206 	int err;
6207 	u32 perms;
6208 
6209 	switch (cmd) {
6210 	case IPC_INFO:
6211 	case SEM_INFO:
6212 		/* No specific object, just general system-wide information. */
6213 		return avc_has_perm(&selinux_state,
6214 				    current_sid(), SECINITSID_KERNEL,
6215 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6216 	case GETPID:
6217 	case GETNCNT:
6218 	case GETZCNT:
6219 		perms = SEM__GETATTR;
6220 		break;
6221 	case GETVAL:
6222 	case GETALL:
6223 		perms = SEM__READ;
6224 		break;
6225 	case SETVAL:
6226 	case SETALL:
6227 		perms = SEM__WRITE;
6228 		break;
6229 	case IPC_RMID:
6230 		perms = SEM__DESTROY;
6231 		break;
6232 	case IPC_SET:
6233 		perms = SEM__SETATTR;
6234 		break;
6235 	case IPC_STAT:
6236 	case SEM_STAT:
6237 	case SEM_STAT_ANY:
6238 		perms = SEM__GETATTR | SEM__ASSOCIATE;
6239 		break;
6240 	default:
6241 		return 0;
6242 	}
6243 
6244 	err = ipc_has_perm(sma, perms);
6245 	return err;
6246 }
6247 
6248 static int selinux_sem_semop(struct kern_ipc_perm *sma,
6249 			     struct sembuf *sops, unsigned nsops, int alter)
6250 {
6251 	u32 perms;
6252 
6253 	if (alter)
6254 		perms = SEM__READ | SEM__WRITE;
6255 	else
6256 		perms = SEM__READ;
6257 
6258 	return ipc_has_perm(sma, perms);
6259 }
6260 
6261 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6262 {
6263 	u32 av = 0;
6264 
6265 	av = 0;
6266 	if (flag & S_IRUGO)
6267 		av |= IPC__UNIX_READ;
6268 	if (flag & S_IWUGO)
6269 		av |= IPC__UNIX_WRITE;
6270 
6271 	if (av == 0)
6272 		return 0;
6273 
6274 	return ipc_has_perm(ipcp, av);
6275 }
6276 
6277 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6278 {
6279 	struct ipc_security_struct *isec = selinux_ipc(ipcp);
6280 	*secid = isec->sid;
6281 }
6282 
6283 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6284 {
6285 	if (inode)
6286 		inode_doinit_with_dentry(inode, dentry);
6287 }
6288 
6289 static int selinux_getprocattr(struct task_struct *p,
6290 			       char *name, char **value)
6291 {
6292 	const struct task_security_struct *__tsec;
6293 	u32 sid;
6294 	int error;
6295 	unsigned len;
6296 
6297 	rcu_read_lock();
6298 	__tsec = selinux_cred(__task_cred(p));
6299 
6300 	if (current != p) {
6301 		error = avc_has_perm(&selinux_state,
6302 				     current_sid(), __tsec->sid,
6303 				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6304 		if (error)
6305 			goto bad;
6306 	}
6307 
6308 	if (!strcmp(name, "current"))
6309 		sid = __tsec->sid;
6310 	else if (!strcmp(name, "prev"))
6311 		sid = __tsec->osid;
6312 	else if (!strcmp(name, "exec"))
6313 		sid = __tsec->exec_sid;
6314 	else if (!strcmp(name, "fscreate"))
6315 		sid = __tsec->create_sid;
6316 	else if (!strcmp(name, "keycreate"))
6317 		sid = __tsec->keycreate_sid;
6318 	else if (!strcmp(name, "sockcreate"))
6319 		sid = __tsec->sockcreate_sid;
6320 	else {
6321 		error = -EINVAL;
6322 		goto bad;
6323 	}
6324 	rcu_read_unlock();
6325 
6326 	if (!sid)
6327 		return 0;
6328 
6329 	error = security_sid_to_context(&selinux_state, sid, value, &len);
6330 	if (error)
6331 		return error;
6332 	return len;
6333 
6334 bad:
6335 	rcu_read_unlock();
6336 	return error;
6337 }
6338 
6339 static int selinux_setprocattr(const char *name, void *value, size_t size)
6340 {
6341 	struct task_security_struct *tsec;
6342 	struct cred *new;
6343 	u32 mysid = current_sid(), sid = 0, ptsid;
6344 	int error;
6345 	char *str = value;
6346 
6347 	/*
6348 	 * Basic control over ability to set these attributes at all.
6349 	 */
6350 	if (!strcmp(name, "exec"))
6351 		error = avc_has_perm(&selinux_state,
6352 				     mysid, mysid, SECCLASS_PROCESS,
6353 				     PROCESS__SETEXEC, NULL);
6354 	else if (!strcmp(name, "fscreate"))
6355 		error = avc_has_perm(&selinux_state,
6356 				     mysid, mysid, SECCLASS_PROCESS,
6357 				     PROCESS__SETFSCREATE, NULL);
6358 	else if (!strcmp(name, "keycreate"))
6359 		error = avc_has_perm(&selinux_state,
6360 				     mysid, mysid, SECCLASS_PROCESS,
6361 				     PROCESS__SETKEYCREATE, NULL);
6362 	else if (!strcmp(name, "sockcreate"))
6363 		error = avc_has_perm(&selinux_state,
6364 				     mysid, mysid, SECCLASS_PROCESS,
6365 				     PROCESS__SETSOCKCREATE, NULL);
6366 	else if (!strcmp(name, "current"))
6367 		error = avc_has_perm(&selinux_state,
6368 				     mysid, mysid, SECCLASS_PROCESS,
6369 				     PROCESS__SETCURRENT, NULL);
6370 	else
6371 		error = -EINVAL;
6372 	if (error)
6373 		return error;
6374 
6375 	/* Obtain a SID for the context, if one was specified. */
6376 	if (size && str[0] && str[0] != '\n') {
6377 		if (str[size-1] == '\n') {
6378 			str[size-1] = 0;
6379 			size--;
6380 		}
6381 		error = security_context_to_sid(&selinux_state, value, size,
6382 						&sid, GFP_KERNEL);
6383 		if (error == -EINVAL && !strcmp(name, "fscreate")) {
6384 			if (!has_cap_mac_admin(true)) {
6385 				struct audit_buffer *ab;
6386 				size_t audit_size;
6387 
6388 				/* We strip a nul only if it is at the end, otherwise the
6389 				 * context contains a nul and we should audit that */
6390 				if (str[size - 1] == '\0')
6391 					audit_size = size - 1;
6392 				else
6393 					audit_size = size;
6394 				ab = audit_log_start(audit_context(),
6395 						     GFP_ATOMIC,
6396 						     AUDIT_SELINUX_ERR);
6397 				audit_log_format(ab, "op=fscreate invalid_context=");
6398 				audit_log_n_untrustedstring(ab, value, audit_size);
6399 				audit_log_end(ab);
6400 
6401 				return error;
6402 			}
6403 			error = security_context_to_sid_force(
6404 						      &selinux_state,
6405 						      value, size, &sid);
6406 		}
6407 		if (error)
6408 			return error;
6409 	}
6410 
6411 	new = prepare_creds();
6412 	if (!new)
6413 		return -ENOMEM;
6414 
6415 	/* Permission checking based on the specified context is
6416 	   performed during the actual operation (execve,
6417 	   open/mkdir/...), when we know the full context of the
6418 	   operation.  See selinux_bprm_creds_for_exec for the execve
6419 	   checks and may_create for the file creation checks. The
6420 	   operation will then fail if the context is not permitted. */
6421 	tsec = selinux_cred(new);
6422 	if (!strcmp(name, "exec")) {
6423 		tsec->exec_sid = sid;
6424 	} else if (!strcmp(name, "fscreate")) {
6425 		tsec->create_sid = sid;
6426 	} else if (!strcmp(name, "keycreate")) {
6427 		if (sid) {
6428 			error = avc_has_perm(&selinux_state, mysid, sid,
6429 					     SECCLASS_KEY, KEY__CREATE, NULL);
6430 			if (error)
6431 				goto abort_change;
6432 		}
6433 		tsec->keycreate_sid = sid;
6434 	} else if (!strcmp(name, "sockcreate")) {
6435 		tsec->sockcreate_sid = sid;
6436 	} else if (!strcmp(name, "current")) {
6437 		error = -EINVAL;
6438 		if (sid == 0)
6439 			goto abort_change;
6440 
6441 		/* Only allow single threaded processes to change context */
6442 		error = -EPERM;
6443 		if (!current_is_single_threaded()) {
6444 			error = security_bounded_transition(&selinux_state,
6445 							    tsec->sid, sid);
6446 			if (error)
6447 				goto abort_change;
6448 		}
6449 
6450 		/* Check permissions for the transition. */
6451 		error = avc_has_perm(&selinux_state,
6452 				     tsec->sid, sid, SECCLASS_PROCESS,
6453 				     PROCESS__DYNTRANSITION, NULL);
6454 		if (error)
6455 			goto abort_change;
6456 
6457 		/* Check for ptracing, and update the task SID if ok.
6458 		   Otherwise, leave SID unchanged and fail. */
6459 		ptsid = ptrace_parent_sid();
6460 		if (ptsid != 0) {
6461 			error = avc_has_perm(&selinux_state,
6462 					     ptsid, sid, SECCLASS_PROCESS,
6463 					     PROCESS__PTRACE, NULL);
6464 			if (error)
6465 				goto abort_change;
6466 		}
6467 
6468 		tsec->sid = sid;
6469 	} else {
6470 		error = -EINVAL;
6471 		goto abort_change;
6472 	}
6473 
6474 	commit_creds(new);
6475 	return size;
6476 
6477 abort_change:
6478 	abort_creds(new);
6479 	return error;
6480 }
6481 
6482 static int selinux_ismaclabel(const char *name)
6483 {
6484 	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6485 }
6486 
6487 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6488 {
6489 	return security_sid_to_context(&selinux_state, secid,
6490 				       secdata, seclen);
6491 }
6492 
6493 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6494 {
6495 	return security_context_to_sid(&selinux_state, secdata, seclen,
6496 				       secid, GFP_KERNEL);
6497 }
6498 
6499 static void selinux_release_secctx(char *secdata, u32 seclen)
6500 {
6501 	kfree(secdata);
6502 }
6503 
6504 static void selinux_inode_invalidate_secctx(struct inode *inode)
6505 {
6506 	struct inode_security_struct *isec = selinux_inode(inode);
6507 
6508 	spin_lock(&isec->lock);
6509 	isec->initialized = LABEL_INVALID;
6510 	spin_unlock(&isec->lock);
6511 }
6512 
6513 /*
6514  *	called with inode->i_mutex locked
6515  */
6516 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6517 {
6518 	int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6519 					   ctx, ctxlen, 0);
6520 	/* Do not return error when suppressing label (SBLABEL_MNT not set). */
6521 	return rc == -EOPNOTSUPP ? 0 : rc;
6522 }
6523 
6524 /*
6525  *	called with inode->i_mutex locked
6526  */
6527 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6528 {
6529 	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6530 }
6531 
6532 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6533 {
6534 	int len = 0;
6535 	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6536 						ctx, true);
6537 	if (len < 0)
6538 		return len;
6539 	*ctxlen = len;
6540 	return 0;
6541 }
6542 #ifdef CONFIG_KEYS
6543 
6544 static int selinux_key_alloc(struct key *k, const struct cred *cred,
6545 			     unsigned long flags)
6546 {
6547 	const struct task_security_struct *tsec;
6548 	struct key_security_struct *ksec;
6549 
6550 	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6551 	if (!ksec)
6552 		return -ENOMEM;
6553 
6554 	tsec = selinux_cred(cred);
6555 	if (tsec->keycreate_sid)
6556 		ksec->sid = tsec->keycreate_sid;
6557 	else
6558 		ksec->sid = tsec->sid;
6559 
6560 	k->security = ksec;
6561 	return 0;
6562 }
6563 
6564 static void selinux_key_free(struct key *k)
6565 {
6566 	struct key_security_struct *ksec = k->security;
6567 
6568 	k->security = NULL;
6569 	kfree(ksec);
6570 }
6571 
6572 static int selinux_key_permission(key_ref_t key_ref,
6573 				  const struct cred *cred,
6574 				  enum key_need_perm need_perm)
6575 {
6576 	struct key *key;
6577 	struct key_security_struct *ksec;
6578 	u32 perm, sid;
6579 
6580 	switch (need_perm) {
6581 	case KEY_NEED_VIEW:
6582 		perm = KEY__VIEW;
6583 		break;
6584 	case KEY_NEED_READ:
6585 		perm = KEY__READ;
6586 		break;
6587 	case KEY_NEED_WRITE:
6588 		perm = KEY__WRITE;
6589 		break;
6590 	case KEY_NEED_SEARCH:
6591 		perm = KEY__SEARCH;
6592 		break;
6593 	case KEY_NEED_LINK:
6594 		perm = KEY__LINK;
6595 		break;
6596 	case KEY_NEED_SETATTR:
6597 		perm = KEY__SETATTR;
6598 		break;
6599 	case KEY_NEED_UNLINK:
6600 	case KEY_SYSADMIN_OVERRIDE:
6601 	case KEY_AUTHTOKEN_OVERRIDE:
6602 	case KEY_DEFER_PERM_CHECK:
6603 		return 0;
6604 	default:
6605 		WARN_ON(1);
6606 		return -EPERM;
6607 
6608 	}
6609 
6610 	sid = cred_sid(cred);
6611 	key = key_ref_to_ptr(key_ref);
6612 	ksec = key->security;
6613 
6614 	return avc_has_perm(&selinux_state,
6615 			    sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6616 }
6617 
6618 static int selinux_key_getsecurity(struct key *key, char **_buffer)
6619 {
6620 	struct key_security_struct *ksec = key->security;
6621 	char *context = NULL;
6622 	unsigned len;
6623 	int rc;
6624 
6625 	rc = security_sid_to_context(&selinux_state, ksec->sid,
6626 				     &context, &len);
6627 	if (!rc)
6628 		rc = len;
6629 	*_buffer = context;
6630 	return rc;
6631 }
6632 
6633 #ifdef CONFIG_KEY_NOTIFICATIONS
6634 static int selinux_watch_key(struct key *key)
6635 {
6636 	struct key_security_struct *ksec = key->security;
6637 	u32 sid = current_sid();
6638 
6639 	return avc_has_perm(&selinux_state,
6640 			    sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6641 }
6642 #endif
6643 #endif
6644 
6645 #ifdef CONFIG_SECURITY_INFINIBAND
6646 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6647 {
6648 	struct common_audit_data ad;
6649 	int err;
6650 	u32 sid = 0;
6651 	struct ib_security_struct *sec = ib_sec;
6652 	struct lsm_ibpkey_audit ibpkey;
6653 
6654 	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6655 	if (err)
6656 		return err;
6657 
6658 	ad.type = LSM_AUDIT_DATA_IBPKEY;
6659 	ibpkey.subnet_prefix = subnet_prefix;
6660 	ibpkey.pkey = pkey_val;
6661 	ad.u.ibpkey = &ibpkey;
6662 	return avc_has_perm(&selinux_state,
6663 			    sec->sid, sid,
6664 			    SECCLASS_INFINIBAND_PKEY,
6665 			    INFINIBAND_PKEY__ACCESS, &ad);
6666 }
6667 
6668 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6669 					    u8 port_num)
6670 {
6671 	struct common_audit_data ad;
6672 	int err;
6673 	u32 sid = 0;
6674 	struct ib_security_struct *sec = ib_sec;
6675 	struct lsm_ibendport_audit ibendport;
6676 
6677 	err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6678 				      &sid);
6679 
6680 	if (err)
6681 		return err;
6682 
6683 	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6684 	strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name));
6685 	ibendport.port = port_num;
6686 	ad.u.ibendport = &ibendport;
6687 	return avc_has_perm(&selinux_state,
6688 			    sec->sid, sid,
6689 			    SECCLASS_INFINIBAND_ENDPORT,
6690 			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6691 }
6692 
6693 static int selinux_ib_alloc_security(void **ib_sec)
6694 {
6695 	struct ib_security_struct *sec;
6696 
6697 	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6698 	if (!sec)
6699 		return -ENOMEM;
6700 	sec->sid = current_sid();
6701 
6702 	*ib_sec = sec;
6703 	return 0;
6704 }
6705 
6706 static void selinux_ib_free_security(void *ib_sec)
6707 {
6708 	kfree(ib_sec);
6709 }
6710 #endif
6711 
6712 #ifdef CONFIG_BPF_SYSCALL
6713 static int selinux_bpf(int cmd, union bpf_attr *attr,
6714 				     unsigned int size)
6715 {
6716 	u32 sid = current_sid();
6717 	int ret;
6718 
6719 	switch (cmd) {
6720 	case BPF_MAP_CREATE:
6721 		ret = avc_has_perm(&selinux_state,
6722 				   sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6723 				   NULL);
6724 		break;
6725 	case BPF_PROG_LOAD:
6726 		ret = avc_has_perm(&selinux_state,
6727 				   sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6728 				   NULL);
6729 		break;
6730 	default:
6731 		ret = 0;
6732 		break;
6733 	}
6734 
6735 	return ret;
6736 }
6737 
6738 static u32 bpf_map_fmode_to_av(fmode_t fmode)
6739 {
6740 	u32 av = 0;
6741 
6742 	if (fmode & FMODE_READ)
6743 		av |= BPF__MAP_READ;
6744 	if (fmode & FMODE_WRITE)
6745 		av |= BPF__MAP_WRITE;
6746 	return av;
6747 }
6748 
6749 /* This function will check the file pass through unix socket or binder to see
6750  * if it is a bpf related object. And apply correspinding checks on the bpf
6751  * object based on the type. The bpf maps and programs, not like other files and
6752  * socket, are using a shared anonymous inode inside the kernel as their inode.
6753  * So checking that inode cannot identify if the process have privilege to
6754  * access the bpf object and that's why we have to add this additional check in
6755  * selinux_file_receive and selinux_binder_transfer_files.
6756  */
6757 static int bpf_fd_pass(struct file *file, u32 sid)
6758 {
6759 	struct bpf_security_struct *bpfsec;
6760 	struct bpf_prog *prog;
6761 	struct bpf_map *map;
6762 	int ret;
6763 
6764 	if (file->f_op == &bpf_map_fops) {
6765 		map = file->private_data;
6766 		bpfsec = map->security;
6767 		ret = avc_has_perm(&selinux_state,
6768 				   sid, bpfsec->sid, SECCLASS_BPF,
6769 				   bpf_map_fmode_to_av(file->f_mode), NULL);
6770 		if (ret)
6771 			return ret;
6772 	} else if (file->f_op == &bpf_prog_fops) {
6773 		prog = file->private_data;
6774 		bpfsec = prog->aux->security;
6775 		ret = avc_has_perm(&selinux_state,
6776 				   sid, bpfsec->sid, SECCLASS_BPF,
6777 				   BPF__PROG_RUN, NULL);
6778 		if (ret)
6779 			return ret;
6780 	}
6781 	return 0;
6782 }
6783 
6784 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6785 {
6786 	u32 sid = current_sid();
6787 	struct bpf_security_struct *bpfsec;
6788 
6789 	bpfsec = map->security;
6790 	return avc_has_perm(&selinux_state,
6791 			    sid, bpfsec->sid, SECCLASS_BPF,
6792 			    bpf_map_fmode_to_av(fmode), NULL);
6793 }
6794 
6795 static int selinux_bpf_prog(struct bpf_prog *prog)
6796 {
6797 	u32 sid = current_sid();
6798 	struct bpf_security_struct *bpfsec;
6799 
6800 	bpfsec = prog->aux->security;
6801 	return avc_has_perm(&selinux_state,
6802 			    sid, bpfsec->sid, SECCLASS_BPF,
6803 			    BPF__PROG_RUN, NULL);
6804 }
6805 
6806 static int selinux_bpf_map_alloc(struct bpf_map *map)
6807 {
6808 	struct bpf_security_struct *bpfsec;
6809 
6810 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6811 	if (!bpfsec)
6812 		return -ENOMEM;
6813 
6814 	bpfsec->sid = current_sid();
6815 	map->security = bpfsec;
6816 
6817 	return 0;
6818 }
6819 
6820 static void selinux_bpf_map_free(struct bpf_map *map)
6821 {
6822 	struct bpf_security_struct *bpfsec = map->security;
6823 
6824 	map->security = NULL;
6825 	kfree(bpfsec);
6826 }
6827 
6828 static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6829 {
6830 	struct bpf_security_struct *bpfsec;
6831 
6832 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6833 	if (!bpfsec)
6834 		return -ENOMEM;
6835 
6836 	bpfsec->sid = current_sid();
6837 	aux->security = bpfsec;
6838 
6839 	return 0;
6840 }
6841 
6842 static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6843 {
6844 	struct bpf_security_struct *bpfsec = aux->security;
6845 
6846 	aux->security = NULL;
6847 	kfree(bpfsec);
6848 }
6849 #endif
6850 
6851 static int selinux_lockdown(enum lockdown_reason what)
6852 {
6853 	struct common_audit_data ad;
6854 	u32 sid = current_sid();
6855 	int invalid_reason = (what <= LOCKDOWN_NONE) ||
6856 			     (what == LOCKDOWN_INTEGRITY_MAX) ||
6857 			     (what >= LOCKDOWN_CONFIDENTIALITY_MAX);
6858 
6859 	if (WARN(invalid_reason, "Invalid lockdown reason")) {
6860 		audit_log(audit_context(),
6861 			  GFP_ATOMIC, AUDIT_SELINUX_ERR,
6862 			  "lockdown_reason=invalid");
6863 		return -EINVAL;
6864 	}
6865 
6866 	ad.type = LSM_AUDIT_DATA_LOCKDOWN;
6867 	ad.u.reason = what;
6868 
6869 	if (what <= LOCKDOWN_INTEGRITY_MAX)
6870 		return avc_has_perm(&selinux_state,
6871 				    sid, sid, SECCLASS_LOCKDOWN,
6872 				    LOCKDOWN__INTEGRITY, &ad);
6873 	else
6874 		return avc_has_perm(&selinux_state,
6875 				    sid, sid, SECCLASS_LOCKDOWN,
6876 				    LOCKDOWN__CONFIDENTIALITY, &ad);
6877 }
6878 
6879 struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = {
6880 	.lbs_cred = sizeof(struct task_security_struct),
6881 	.lbs_file = sizeof(struct file_security_struct),
6882 	.lbs_inode = sizeof(struct inode_security_struct),
6883 	.lbs_ipc = sizeof(struct ipc_security_struct),
6884 	.lbs_msg_msg = sizeof(struct msg_security_struct),
6885 };
6886 
6887 #ifdef CONFIG_PERF_EVENTS
6888 static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
6889 {
6890 	u32 requested, sid = current_sid();
6891 
6892 	if (type == PERF_SECURITY_OPEN)
6893 		requested = PERF_EVENT__OPEN;
6894 	else if (type == PERF_SECURITY_CPU)
6895 		requested = PERF_EVENT__CPU;
6896 	else if (type == PERF_SECURITY_KERNEL)
6897 		requested = PERF_EVENT__KERNEL;
6898 	else if (type == PERF_SECURITY_TRACEPOINT)
6899 		requested = PERF_EVENT__TRACEPOINT;
6900 	else
6901 		return -EINVAL;
6902 
6903 	return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PERF_EVENT,
6904 			    requested, NULL);
6905 }
6906 
6907 static int selinux_perf_event_alloc(struct perf_event *event)
6908 {
6909 	struct perf_event_security_struct *perfsec;
6910 
6911 	perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
6912 	if (!perfsec)
6913 		return -ENOMEM;
6914 
6915 	perfsec->sid = current_sid();
6916 	event->security = perfsec;
6917 
6918 	return 0;
6919 }
6920 
6921 static void selinux_perf_event_free(struct perf_event *event)
6922 {
6923 	struct perf_event_security_struct *perfsec = event->security;
6924 
6925 	event->security = NULL;
6926 	kfree(perfsec);
6927 }
6928 
6929 static int selinux_perf_event_read(struct perf_event *event)
6930 {
6931 	struct perf_event_security_struct *perfsec = event->security;
6932 	u32 sid = current_sid();
6933 
6934 	return avc_has_perm(&selinux_state, sid, perfsec->sid,
6935 			    SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
6936 }
6937 
6938 static int selinux_perf_event_write(struct perf_event *event)
6939 {
6940 	struct perf_event_security_struct *perfsec = event->security;
6941 	u32 sid = current_sid();
6942 
6943 	return avc_has_perm(&selinux_state, sid, perfsec->sid,
6944 			    SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
6945 }
6946 #endif
6947 
6948 /*
6949  * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
6950  * 1. any hooks that don't belong to (2.) or (3.) below,
6951  * 2. hooks that both access structures allocated by other hooks, and allocate
6952  *    structures that can be later accessed by other hooks (mostly "cloning"
6953  *    hooks),
6954  * 3. hooks that only allocate structures that can be later accessed by other
6955  *    hooks ("allocating" hooks).
6956  *
6957  * Please follow block comment delimiters in the list to keep this order.
6958  *
6959  * This ordering is needed for SELinux runtime disable to work at least somewhat
6960  * safely. Breaking the ordering rules above might lead to NULL pointer derefs
6961  * when disabling SELinux at runtime.
6962  */
6963 static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
6964 	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6965 	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6966 	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6967 	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6968 
6969 	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6970 	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6971 	LSM_HOOK_INIT(capget, selinux_capget),
6972 	LSM_HOOK_INIT(capset, selinux_capset),
6973 	LSM_HOOK_INIT(capable, selinux_capable),
6974 	LSM_HOOK_INIT(quotactl, selinux_quotactl),
6975 	LSM_HOOK_INIT(quota_on, selinux_quota_on),
6976 	LSM_HOOK_INIT(syslog, selinux_syslog),
6977 	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6978 
6979 	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6980 
6981 	LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
6982 	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6983 	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6984 
6985 	LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6986 	LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
6987 	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6988 	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6989 	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6990 	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6991 	LSM_HOOK_INIT(sb_mount, selinux_mount),
6992 	LSM_HOOK_INIT(sb_umount, selinux_umount),
6993 	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6994 	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6995 
6996 	LSM_HOOK_INIT(move_mount, selinux_move_mount),
6997 
6998 	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6999 	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7000 
7001 	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7002 	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7003 	LSM_HOOK_INIT(inode_create, selinux_inode_create),
7004 	LSM_HOOK_INIT(inode_link, selinux_inode_link),
7005 	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7006 	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7007 	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7008 	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7009 	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7010 	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7011 	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7012 	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7013 	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7014 	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7015 	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7016 	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7017 	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7018 	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7019 	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7020 	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7021 	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7022 	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7023 	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7024 	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7025 	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7026 	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7027 	LSM_HOOK_INIT(path_notify, selinux_path_notify),
7028 
7029 	LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7030 
7031 	LSM_HOOK_INIT(file_permission, selinux_file_permission),
7032 	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7033 	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7034 	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7035 	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7036 	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7037 	LSM_HOOK_INIT(file_lock, selinux_file_lock),
7038 	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7039 	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7040 	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7041 	LSM_HOOK_INIT(file_receive, selinux_file_receive),
7042 
7043 	LSM_HOOK_INIT(file_open, selinux_file_open),
7044 
7045 	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7046 	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7047 	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7048 	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7049 	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7050 	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7051 	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7052 	LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7053 	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7054 	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7055 	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7056 	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7057 	LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
7058 	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7059 	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7060 	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7061 	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7062 	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7063 	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7064 	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7065 	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7066 	LSM_HOOK_INIT(task_kill, selinux_task_kill),
7067 	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7068 
7069 	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7070 	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7071 
7072 	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7073 	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7074 	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7075 	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7076 
7077 	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7078 	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7079 	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7080 
7081 	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7082 	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7083 	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7084 
7085 	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7086 
7087 	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7088 	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7089 
7090 	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7091 	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7092 	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7093 	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7094 	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7095 	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7096 
7097 	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7098 	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7099 
7100 	LSM_HOOK_INIT(socket_create, selinux_socket_create),
7101 	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7102 	LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7103 	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7104 	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7105 	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7106 	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7107 	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7108 	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7109 	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7110 	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7111 	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7112 	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7113 	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7114 	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7115 	LSM_HOOK_INIT(socket_getpeersec_stream,
7116 			selinux_socket_getpeersec_stream),
7117 	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7118 	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7119 	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7120 	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7121 	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7122 	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7123 	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7124 	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7125 	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7126 	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7127 	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7128 	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7129 	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7130 	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7131 	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7132 	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7133 	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7134 	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7135 	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7136 	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7137 #ifdef CONFIG_SECURITY_INFINIBAND
7138 	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7139 	LSM_HOOK_INIT(ib_endport_manage_subnet,
7140 		      selinux_ib_endport_manage_subnet),
7141 	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7142 #endif
7143 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7144 	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7145 	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7146 	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7147 	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7148 	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7149 	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7150 			selinux_xfrm_state_pol_flow_match),
7151 	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7152 #endif
7153 
7154 #ifdef CONFIG_KEYS
7155 	LSM_HOOK_INIT(key_free, selinux_key_free),
7156 	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7157 	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7158 #ifdef CONFIG_KEY_NOTIFICATIONS
7159 	LSM_HOOK_INIT(watch_key, selinux_watch_key),
7160 #endif
7161 #endif
7162 
7163 #ifdef CONFIG_AUDIT
7164 	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7165 	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7166 	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7167 #endif
7168 
7169 #ifdef CONFIG_BPF_SYSCALL
7170 	LSM_HOOK_INIT(bpf, selinux_bpf),
7171 	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7172 	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7173 	LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7174 	LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7175 #endif
7176 
7177 #ifdef CONFIG_PERF_EVENTS
7178 	LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7179 	LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7180 	LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7181 	LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7182 #endif
7183 
7184 	LSM_HOOK_INIT(locked_down, selinux_lockdown),
7185 
7186 	/*
7187 	 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7188 	 */
7189 	LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7190 	LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7191 	LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7192 	LSM_HOOK_INIT(sb_add_mnt_opt, selinux_add_mnt_opt),
7193 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7194 	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7195 #endif
7196 
7197 	/*
7198 	 * PUT "ALLOCATING" HOOKS HERE
7199 	 */
7200 	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7201 	LSM_HOOK_INIT(msg_queue_alloc_security,
7202 		      selinux_msg_queue_alloc_security),
7203 	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7204 	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7205 	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7206 	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7207 	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7208 	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7209 	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7210 	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7211 #ifdef CONFIG_SECURITY_INFINIBAND
7212 	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7213 #endif
7214 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7215 	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7216 	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7217 	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7218 		      selinux_xfrm_state_alloc_acquire),
7219 #endif
7220 #ifdef CONFIG_KEYS
7221 	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7222 #endif
7223 #ifdef CONFIG_AUDIT
7224 	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7225 #endif
7226 #ifdef CONFIG_BPF_SYSCALL
7227 	LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7228 	LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7229 #endif
7230 #ifdef CONFIG_PERF_EVENTS
7231 	LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7232 #endif
7233 };
7234 
7235 static __init int selinux_init(void)
7236 {
7237 	pr_info("SELinux:  Initializing.\n");
7238 
7239 	memset(&selinux_state, 0, sizeof(selinux_state));
7240 	enforcing_set(&selinux_state, selinux_enforcing_boot);
7241 	checkreqprot_set(&selinux_state, selinux_checkreqprot_boot);
7242 	selinux_avc_init(&selinux_state.avc);
7243 	mutex_init(&selinux_state.status_lock);
7244 	mutex_init(&selinux_state.policy_mutex);
7245 
7246 	/* Set the security state for the initial task. */
7247 	cred_init_security();
7248 
7249 	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7250 
7251 	avc_init();
7252 
7253 	avtab_cache_init();
7254 
7255 	ebitmap_cache_init();
7256 
7257 	hashtab_cache_init();
7258 
7259 	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7260 
7261 	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7262 		panic("SELinux: Unable to register AVC netcache callback\n");
7263 
7264 	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7265 		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7266 
7267 	if (selinux_enforcing_boot)
7268 		pr_debug("SELinux:  Starting in enforcing mode\n");
7269 	else
7270 		pr_debug("SELinux:  Starting in permissive mode\n");
7271 
7272 	fs_validate_description("selinux", selinux_fs_parameters);
7273 
7274 	return 0;
7275 }
7276 
7277 static void delayed_superblock_init(struct super_block *sb, void *unused)
7278 {
7279 	selinux_set_mnt_opts(sb, NULL, 0, NULL);
7280 }
7281 
7282 void selinux_complete_init(void)
7283 {
7284 	pr_debug("SELinux:  Completing initialization.\n");
7285 
7286 	/* Set up any superblocks initialized prior to the policy load. */
7287 	pr_debug("SELinux:  Setting up existing superblocks.\n");
7288 	iterate_supers(delayed_superblock_init, NULL);
7289 }
7290 
7291 /* SELinux requires early initialization in order to label
7292    all processes and objects when they are created. */
7293 DEFINE_LSM(selinux) = {
7294 	.name = "selinux",
7295 	.flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7296 	.enabled = &selinux_enabled_boot,
7297 	.blobs = &selinux_blob_sizes,
7298 	.init = selinux_init,
7299 };
7300 
7301 #if defined(CONFIG_NETFILTER)
7302 
7303 static const struct nf_hook_ops selinux_nf_ops[] = {
7304 	{
7305 		.hook =		selinux_ipv4_postroute,
7306 		.pf =		NFPROTO_IPV4,
7307 		.hooknum =	NF_INET_POST_ROUTING,
7308 		.priority =	NF_IP_PRI_SELINUX_LAST,
7309 	},
7310 	{
7311 		.hook =		selinux_ipv4_forward,
7312 		.pf =		NFPROTO_IPV4,
7313 		.hooknum =	NF_INET_FORWARD,
7314 		.priority =	NF_IP_PRI_SELINUX_FIRST,
7315 	},
7316 	{
7317 		.hook =		selinux_ipv4_output,
7318 		.pf =		NFPROTO_IPV4,
7319 		.hooknum =	NF_INET_LOCAL_OUT,
7320 		.priority =	NF_IP_PRI_SELINUX_FIRST,
7321 	},
7322 #if IS_ENABLED(CONFIG_IPV6)
7323 	{
7324 		.hook =		selinux_ipv6_postroute,
7325 		.pf =		NFPROTO_IPV6,
7326 		.hooknum =	NF_INET_POST_ROUTING,
7327 		.priority =	NF_IP6_PRI_SELINUX_LAST,
7328 	},
7329 	{
7330 		.hook =		selinux_ipv6_forward,
7331 		.pf =		NFPROTO_IPV6,
7332 		.hooknum =	NF_INET_FORWARD,
7333 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7334 	},
7335 	{
7336 		.hook =		selinux_ipv6_output,
7337 		.pf =		NFPROTO_IPV6,
7338 		.hooknum =	NF_INET_LOCAL_OUT,
7339 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7340 	},
7341 #endif	/* IPV6 */
7342 };
7343 
7344 static int __net_init selinux_nf_register(struct net *net)
7345 {
7346 	return nf_register_net_hooks(net, selinux_nf_ops,
7347 				     ARRAY_SIZE(selinux_nf_ops));
7348 }
7349 
7350 static void __net_exit selinux_nf_unregister(struct net *net)
7351 {
7352 	nf_unregister_net_hooks(net, selinux_nf_ops,
7353 				ARRAY_SIZE(selinux_nf_ops));
7354 }
7355 
7356 static struct pernet_operations selinux_net_ops = {
7357 	.init = selinux_nf_register,
7358 	.exit = selinux_nf_unregister,
7359 };
7360 
7361 static int __init selinux_nf_ip_init(void)
7362 {
7363 	int err;
7364 
7365 	if (!selinux_enabled_boot)
7366 		return 0;
7367 
7368 	pr_debug("SELinux:  Registering netfilter hooks\n");
7369 
7370 	err = register_pernet_subsys(&selinux_net_ops);
7371 	if (err)
7372 		panic("SELinux: register_pernet_subsys: error %d\n", err);
7373 
7374 	return 0;
7375 }
7376 __initcall(selinux_nf_ip_init);
7377 
7378 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7379 static void selinux_nf_ip_exit(void)
7380 {
7381 	pr_debug("SELinux:  Unregistering netfilter hooks\n");
7382 
7383 	unregister_pernet_subsys(&selinux_net_ops);
7384 }
7385 #endif
7386 
7387 #else /* CONFIG_NETFILTER */
7388 
7389 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7390 #define selinux_nf_ip_exit()
7391 #endif
7392 
7393 #endif /* CONFIG_NETFILTER */
7394 
7395 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7396 int selinux_disable(struct selinux_state *state)
7397 {
7398 	if (selinux_initialized(state)) {
7399 		/* Not permitted after initial policy load. */
7400 		return -EINVAL;
7401 	}
7402 
7403 	if (selinux_disabled(state)) {
7404 		/* Only do this once. */
7405 		return -EINVAL;
7406 	}
7407 
7408 	selinux_mark_disabled(state);
7409 
7410 	pr_info("SELinux:  Disabled at runtime.\n");
7411 
7412 	/*
7413 	 * Unregister netfilter hooks.
7414 	 * Must be done before security_delete_hooks() to avoid breaking
7415 	 * runtime disable.
7416 	 */
7417 	selinux_nf_ip_exit();
7418 
7419 	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7420 
7421 	/* Try to destroy the avc node cache */
7422 	avc_disable();
7423 
7424 	/* Unregister selinuxfs. */
7425 	exit_sel_fs();
7426 
7427 	return 0;
7428 }
7429 #endif
7430