1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Security-Enhanced Linux (SELinux) security module 4 * 5 * This file contains the SELinux hook function implementations. 6 * 7 * Authors: Stephen Smalley, <stephen.smalley.work@gmail.com> 8 * Chris Vance, <cvance@nai.com> 9 * Wayne Salamon, <wsalamon@nai.com> 10 * James Morris <jmorris@redhat.com> 11 * 12 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 13 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com> 14 * Eric Paris <eparis@redhat.com> 15 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 16 * <dgoeddel@trustedcs.com> 17 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P. 18 * Paul Moore <paul@paul-moore.com> 19 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. 20 * Yuichi Nakamura <ynakam@hitachisoft.jp> 21 * Copyright (C) 2016 Mellanox Technologies 22 */ 23 24 #include <linux/init.h> 25 #include <linux/kd.h> 26 #include <linux/kernel.h> 27 #include <linux/kernel_read_file.h> 28 #include <linux/errno.h> 29 #include <linux/sched/signal.h> 30 #include <linux/sched/task.h> 31 #include <linux/lsm_hooks.h> 32 #include <linux/xattr.h> 33 #include <linux/capability.h> 34 #include <linux/unistd.h> 35 #include <linux/mm.h> 36 #include <linux/mman.h> 37 #include <linux/slab.h> 38 #include <linux/pagemap.h> 39 #include <linux/proc_fs.h> 40 #include <linux/swap.h> 41 #include <linux/spinlock.h> 42 #include <linux/syscalls.h> 43 #include <linux/dcache.h> 44 #include <linux/file.h> 45 #include <linux/fdtable.h> 46 #include <linux/namei.h> 47 #include <linux/mount.h> 48 #include <linux/fs_context.h> 49 #include <linux/fs_parser.h> 50 #include <linux/netfilter_ipv4.h> 51 #include <linux/netfilter_ipv6.h> 52 #include <linux/tty.h> 53 #include <net/icmp.h> 54 #include <net/ip.h> /* for local_port_range[] */ 55 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 56 #include <net/inet_connection_sock.h> 57 #include <net/net_namespace.h> 58 #include <net/netlabel.h> 59 #include <linux/uaccess.h> 60 #include <asm/ioctls.h> 61 #include <linux/atomic.h> 62 #include <linux/bitops.h> 63 #include <linux/interrupt.h> 64 #include <linux/netdevice.h> /* for network interface checks */ 65 #include <net/netlink.h> 66 #include <linux/tcp.h> 67 #include <linux/udp.h> 68 #include <linux/dccp.h> 69 #include <linux/sctp.h> 70 #include <net/sctp/structs.h> 71 #include <linux/quota.h> 72 #include <linux/un.h> /* for Unix socket types */ 73 #include <net/af_unix.h> /* for Unix socket types */ 74 #include <linux/parser.h> 75 #include <linux/nfs_mount.h> 76 #include <net/ipv6.h> 77 #include <linux/hugetlb.h> 78 #include <linux/personality.h> 79 #include <linux/audit.h> 80 #include <linux/string.h> 81 #include <linux/mutex.h> 82 #include <linux/posix-timers.h> 83 #include <linux/syslog.h> 84 #include <linux/user_namespace.h> 85 #include <linux/export.h> 86 #include <linux/msg.h> 87 #include <linux/shm.h> 88 #include <linux/bpf.h> 89 #include <linux/kernfs.h> 90 #include <linux/stringhash.h> /* for hashlen_string() */ 91 #include <uapi/linux/mount.h> 92 #include <linux/fsnotify.h> 93 #include <linux/fanotify.h> 94 #include <linux/io_uring.h> 95 96 #include "avc.h" 97 #include "objsec.h" 98 #include "netif.h" 99 #include "netnode.h" 100 #include "netport.h" 101 #include "ibpkey.h" 102 #include "xfrm.h" 103 #include "netlabel.h" 104 #include "audit.h" 105 #include "avc_ss.h" 106 107 #define SELINUX_INODE_INIT_XATTRS 1 108 109 struct selinux_state selinux_state; 110 111 /* SECMARK reference count */ 112 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0); 113 114 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 115 static int selinux_enforcing_boot __initdata; 116 117 static int __init enforcing_setup(char *str) 118 { 119 unsigned long enforcing; 120 if (!kstrtoul(str, 0, &enforcing)) 121 selinux_enforcing_boot = enforcing ? 1 : 0; 122 return 1; 123 } 124 __setup("enforcing=", enforcing_setup); 125 #else 126 #define selinux_enforcing_boot 1 127 #endif 128 129 int selinux_enabled_boot __initdata = 1; 130 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 131 static int __init selinux_enabled_setup(char *str) 132 { 133 unsigned long enabled; 134 if (!kstrtoul(str, 0, &enabled)) 135 selinux_enabled_boot = enabled ? 1 : 0; 136 return 1; 137 } 138 __setup("selinux=", selinux_enabled_setup); 139 #endif 140 141 static int __init checkreqprot_setup(char *str) 142 { 143 unsigned long checkreqprot; 144 145 if (!kstrtoul(str, 0, &checkreqprot)) { 146 if (checkreqprot) 147 pr_err("SELinux: checkreqprot set to 1 via kernel parameter. This is no longer supported.\n"); 148 } 149 return 1; 150 } 151 __setup("checkreqprot=", checkreqprot_setup); 152 153 /** 154 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled 155 * 156 * Description: 157 * This function checks the SECMARK reference counter to see if any SECMARK 158 * targets are currently configured, if the reference counter is greater than 159 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is 160 * enabled, false (0) if SECMARK is disabled. If the always_check_network 161 * policy capability is enabled, SECMARK is always considered enabled. 162 * 163 */ 164 static int selinux_secmark_enabled(void) 165 { 166 return (selinux_policycap_alwaysnetwork() || 167 atomic_read(&selinux_secmark_refcount)); 168 } 169 170 /** 171 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled 172 * 173 * Description: 174 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true 175 * (1) if any are enabled or false (0) if neither are enabled. If the 176 * always_check_network policy capability is enabled, peer labeling 177 * is always considered enabled. 178 * 179 */ 180 static int selinux_peerlbl_enabled(void) 181 { 182 return (selinux_policycap_alwaysnetwork() || 183 netlbl_enabled() || selinux_xfrm_enabled()); 184 } 185 186 static int selinux_netcache_avc_callback(u32 event) 187 { 188 if (event == AVC_CALLBACK_RESET) { 189 sel_netif_flush(); 190 sel_netnode_flush(); 191 sel_netport_flush(); 192 synchronize_net(); 193 } 194 return 0; 195 } 196 197 static int selinux_lsm_notifier_avc_callback(u32 event) 198 { 199 if (event == AVC_CALLBACK_RESET) { 200 sel_ib_pkey_flush(); 201 call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL); 202 } 203 204 return 0; 205 } 206 207 /* 208 * initialise the security for the init task 209 */ 210 static void cred_init_security(void) 211 { 212 struct task_security_struct *tsec; 213 214 tsec = selinux_cred(unrcu_pointer(current->real_cred)); 215 tsec->osid = tsec->sid = SECINITSID_KERNEL; 216 } 217 218 /* 219 * get the security ID of a set of credentials 220 */ 221 static inline u32 cred_sid(const struct cred *cred) 222 { 223 const struct task_security_struct *tsec; 224 225 tsec = selinux_cred(cred); 226 return tsec->sid; 227 } 228 229 static void __ad_net_init(struct common_audit_data *ad, 230 struct lsm_network_audit *net, 231 int ifindex, struct sock *sk, u16 family) 232 { 233 ad->type = LSM_AUDIT_DATA_NET; 234 ad->u.net = net; 235 net->netif = ifindex; 236 net->sk = sk; 237 net->family = family; 238 } 239 240 static void ad_net_init_from_sk(struct common_audit_data *ad, 241 struct lsm_network_audit *net, 242 struct sock *sk) 243 { 244 __ad_net_init(ad, net, 0, sk, 0); 245 } 246 247 static void ad_net_init_from_iif(struct common_audit_data *ad, 248 struct lsm_network_audit *net, 249 int ifindex, u16 family) 250 { 251 __ad_net_init(ad, net, ifindex, NULL, family); 252 } 253 254 /* 255 * get the objective security ID of a task 256 */ 257 static inline u32 task_sid_obj(const struct task_struct *task) 258 { 259 u32 sid; 260 261 rcu_read_lock(); 262 sid = cred_sid(__task_cred(task)); 263 rcu_read_unlock(); 264 return sid; 265 } 266 267 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 268 269 /* 270 * Try reloading inode security labels that have been marked as invalid. The 271 * @may_sleep parameter indicates when sleeping and thus reloading labels is 272 * allowed; when set to false, returns -ECHILD when the label is 273 * invalid. The @dentry parameter should be set to a dentry of the inode. 274 */ 275 static int __inode_security_revalidate(struct inode *inode, 276 struct dentry *dentry, 277 bool may_sleep) 278 { 279 struct inode_security_struct *isec = selinux_inode(inode); 280 281 might_sleep_if(may_sleep); 282 283 if (selinux_initialized() && 284 isec->initialized != LABEL_INITIALIZED) { 285 if (!may_sleep) 286 return -ECHILD; 287 288 /* 289 * Try reloading the inode security label. This will fail if 290 * @opt_dentry is NULL and no dentry for this inode can be 291 * found; in that case, continue using the old label. 292 */ 293 inode_doinit_with_dentry(inode, dentry); 294 } 295 return 0; 296 } 297 298 static struct inode_security_struct *inode_security_novalidate(struct inode *inode) 299 { 300 return selinux_inode(inode); 301 } 302 303 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu) 304 { 305 int error; 306 307 error = __inode_security_revalidate(inode, NULL, !rcu); 308 if (error) 309 return ERR_PTR(error); 310 return selinux_inode(inode); 311 } 312 313 /* 314 * Get the security label of an inode. 315 */ 316 static struct inode_security_struct *inode_security(struct inode *inode) 317 { 318 __inode_security_revalidate(inode, NULL, true); 319 return selinux_inode(inode); 320 } 321 322 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry) 323 { 324 struct inode *inode = d_backing_inode(dentry); 325 326 return selinux_inode(inode); 327 } 328 329 /* 330 * Get the security label of a dentry's backing inode. 331 */ 332 static struct inode_security_struct *backing_inode_security(struct dentry *dentry) 333 { 334 struct inode *inode = d_backing_inode(dentry); 335 336 __inode_security_revalidate(inode, dentry, true); 337 return selinux_inode(inode); 338 } 339 340 static void inode_free_security(struct inode *inode) 341 { 342 struct inode_security_struct *isec = selinux_inode(inode); 343 struct superblock_security_struct *sbsec; 344 345 if (!isec) 346 return; 347 sbsec = selinux_superblock(inode->i_sb); 348 /* 349 * As not all inode security structures are in a list, we check for 350 * empty list outside of the lock to make sure that we won't waste 351 * time taking a lock doing nothing. 352 * 353 * The list_del_init() function can be safely called more than once. 354 * It should not be possible for this function to be called with 355 * concurrent list_add(), but for better safety against future changes 356 * in the code, we use list_empty_careful() here. 357 */ 358 if (!list_empty_careful(&isec->list)) { 359 spin_lock(&sbsec->isec_lock); 360 list_del_init(&isec->list); 361 spin_unlock(&sbsec->isec_lock); 362 } 363 } 364 365 struct selinux_mnt_opts { 366 u32 fscontext_sid; 367 u32 context_sid; 368 u32 rootcontext_sid; 369 u32 defcontext_sid; 370 }; 371 372 static void selinux_free_mnt_opts(void *mnt_opts) 373 { 374 kfree(mnt_opts); 375 } 376 377 enum { 378 Opt_error = -1, 379 Opt_context = 0, 380 Opt_defcontext = 1, 381 Opt_fscontext = 2, 382 Opt_rootcontext = 3, 383 Opt_seclabel = 4, 384 }; 385 386 #define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg} 387 static const struct { 388 const char *name; 389 int len; 390 int opt; 391 bool has_arg; 392 } tokens[] = { 393 A(context, true), 394 A(fscontext, true), 395 A(defcontext, true), 396 A(rootcontext, true), 397 A(seclabel, false), 398 }; 399 #undef A 400 401 static int match_opt_prefix(char *s, int l, char **arg) 402 { 403 int i; 404 405 for (i = 0; i < ARRAY_SIZE(tokens); i++) { 406 size_t len = tokens[i].len; 407 if (len > l || memcmp(s, tokens[i].name, len)) 408 continue; 409 if (tokens[i].has_arg) { 410 if (len == l || s[len] != '=') 411 continue; 412 *arg = s + len + 1; 413 } else if (len != l) 414 continue; 415 return tokens[i].opt; 416 } 417 return Opt_error; 418 } 419 420 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 421 422 static int may_context_mount_sb_relabel(u32 sid, 423 struct superblock_security_struct *sbsec, 424 const struct cred *cred) 425 { 426 const struct task_security_struct *tsec = selinux_cred(cred); 427 int rc; 428 429 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 430 FILESYSTEM__RELABELFROM, NULL); 431 if (rc) 432 return rc; 433 434 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM, 435 FILESYSTEM__RELABELTO, NULL); 436 return rc; 437 } 438 439 static int may_context_mount_inode_relabel(u32 sid, 440 struct superblock_security_struct *sbsec, 441 const struct cred *cred) 442 { 443 const struct task_security_struct *tsec = selinux_cred(cred); 444 int rc; 445 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 446 FILESYSTEM__RELABELFROM, NULL); 447 if (rc) 448 return rc; 449 450 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, 451 FILESYSTEM__ASSOCIATE, NULL); 452 return rc; 453 } 454 455 static int selinux_is_genfs_special_handling(struct super_block *sb) 456 { 457 /* Special handling. Genfs but also in-core setxattr handler */ 458 return !strcmp(sb->s_type->name, "sysfs") || 459 !strcmp(sb->s_type->name, "pstore") || 460 !strcmp(sb->s_type->name, "debugfs") || 461 !strcmp(sb->s_type->name, "tracefs") || 462 !strcmp(sb->s_type->name, "rootfs") || 463 (selinux_policycap_cgroupseclabel() && 464 (!strcmp(sb->s_type->name, "cgroup") || 465 !strcmp(sb->s_type->name, "cgroup2"))); 466 } 467 468 static int selinux_is_sblabel_mnt(struct super_block *sb) 469 { 470 struct superblock_security_struct *sbsec = selinux_superblock(sb); 471 472 /* 473 * IMPORTANT: Double-check logic in this function when adding a new 474 * SECURITY_FS_USE_* definition! 475 */ 476 BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7); 477 478 switch (sbsec->behavior) { 479 case SECURITY_FS_USE_XATTR: 480 case SECURITY_FS_USE_TRANS: 481 case SECURITY_FS_USE_TASK: 482 case SECURITY_FS_USE_NATIVE: 483 return 1; 484 485 case SECURITY_FS_USE_GENFS: 486 return selinux_is_genfs_special_handling(sb); 487 488 /* Never allow relabeling on context mounts */ 489 case SECURITY_FS_USE_MNTPOINT: 490 case SECURITY_FS_USE_NONE: 491 default: 492 return 0; 493 } 494 } 495 496 static int sb_check_xattr_support(struct super_block *sb) 497 { 498 struct superblock_security_struct *sbsec = selinux_superblock(sb); 499 struct dentry *root = sb->s_root; 500 struct inode *root_inode = d_backing_inode(root); 501 u32 sid; 502 int rc; 503 504 /* 505 * Make sure that the xattr handler exists and that no 506 * error other than -ENODATA is returned by getxattr on 507 * the root directory. -ENODATA is ok, as this may be 508 * the first boot of the SELinux kernel before we have 509 * assigned xattr values to the filesystem. 510 */ 511 if (!(root_inode->i_opflags & IOP_XATTR)) { 512 pr_warn("SELinux: (dev %s, type %s) has no xattr support\n", 513 sb->s_id, sb->s_type->name); 514 goto fallback; 515 } 516 517 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0); 518 if (rc < 0 && rc != -ENODATA) { 519 if (rc == -EOPNOTSUPP) { 520 pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n", 521 sb->s_id, sb->s_type->name); 522 goto fallback; 523 } else { 524 pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n", 525 sb->s_id, sb->s_type->name, -rc); 526 return rc; 527 } 528 } 529 return 0; 530 531 fallback: 532 /* No xattr support - try to fallback to genfs if possible. */ 533 rc = security_genfs_sid(sb->s_type->name, "/", 534 SECCLASS_DIR, &sid); 535 if (rc) 536 return -EOPNOTSUPP; 537 538 pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n", 539 sb->s_id, sb->s_type->name); 540 sbsec->behavior = SECURITY_FS_USE_GENFS; 541 sbsec->sid = sid; 542 return 0; 543 } 544 545 static int sb_finish_set_opts(struct super_block *sb) 546 { 547 struct superblock_security_struct *sbsec = selinux_superblock(sb); 548 struct dentry *root = sb->s_root; 549 struct inode *root_inode = d_backing_inode(root); 550 int rc = 0; 551 552 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 553 rc = sb_check_xattr_support(sb); 554 if (rc) 555 return rc; 556 } 557 558 sbsec->flags |= SE_SBINITIALIZED; 559 560 /* 561 * Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply 562 * leave the flag untouched because sb_clone_mnt_opts might be handing 563 * us a superblock that needs the flag to be cleared. 564 */ 565 if (selinux_is_sblabel_mnt(sb)) 566 sbsec->flags |= SBLABEL_MNT; 567 else 568 sbsec->flags &= ~SBLABEL_MNT; 569 570 /* Initialize the root inode. */ 571 rc = inode_doinit_with_dentry(root_inode, root); 572 573 /* Initialize any other inodes associated with the superblock, e.g. 574 inodes created prior to initial policy load or inodes created 575 during get_sb by a pseudo filesystem that directly 576 populates itself. */ 577 spin_lock(&sbsec->isec_lock); 578 while (!list_empty(&sbsec->isec_head)) { 579 struct inode_security_struct *isec = 580 list_first_entry(&sbsec->isec_head, 581 struct inode_security_struct, list); 582 struct inode *inode = isec->inode; 583 list_del_init(&isec->list); 584 spin_unlock(&sbsec->isec_lock); 585 inode = igrab(inode); 586 if (inode) { 587 if (!IS_PRIVATE(inode)) 588 inode_doinit_with_dentry(inode, NULL); 589 iput(inode); 590 } 591 spin_lock(&sbsec->isec_lock); 592 } 593 spin_unlock(&sbsec->isec_lock); 594 return rc; 595 } 596 597 static int bad_option(struct superblock_security_struct *sbsec, char flag, 598 u32 old_sid, u32 new_sid) 599 { 600 char mnt_flags = sbsec->flags & SE_MNTMASK; 601 602 /* check if the old mount command had the same options */ 603 if (sbsec->flags & SE_SBINITIALIZED) 604 if (!(sbsec->flags & flag) || 605 (old_sid != new_sid)) 606 return 1; 607 608 /* check if we were passed the same options twice, 609 * aka someone passed context=a,context=b 610 */ 611 if (!(sbsec->flags & SE_SBINITIALIZED)) 612 if (mnt_flags & flag) 613 return 1; 614 return 0; 615 } 616 617 /* 618 * Allow filesystems with binary mount data to explicitly set mount point 619 * labeling information. 620 */ 621 static int selinux_set_mnt_opts(struct super_block *sb, 622 void *mnt_opts, 623 unsigned long kern_flags, 624 unsigned long *set_kern_flags) 625 { 626 const struct cred *cred = current_cred(); 627 struct superblock_security_struct *sbsec = selinux_superblock(sb); 628 struct dentry *root = sb->s_root; 629 struct selinux_mnt_opts *opts = mnt_opts; 630 struct inode_security_struct *root_isec; 631 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; 632 u32 defcontext_sid = 0; 633 int rc = 0; 634 635 /* 636 * Specifying internal flags without providing a place to 637 * place the results is not allowed 638 */ 639 if (kern_flags && !set_kern_flags) 640 return -EINVAL; 641 642 mutex_lock(&sbsec->lock); 643 644 if (!selinux_initialized()) { 645 if (!opts) { 646 /* Defer initialization until selinux_complete_init, 647 after the initial policy is loaded and the security 648 server is ready to handle calls. */ 649 if (kern_flags & SECURITY_LSM_NATIVE_LABELS) { 650 sbsec->flags |= SE_SBNATIVE; 651 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 652 } 653 goto out; 654 } 655 rc = -EINVAL; 656 pr_warn("SELinux: Unable to set superblock options " 657 "before the security server is initialized\n"); 658 goto out; 659 } 660 661 /* 662 * Binary mount data FS will come through this function twice. Once 663 * from an explicit call and once from the generic calls from the vfs. 664 * Since the generic VFS calls will not contain any security mount data 665 * we need to skip the double mount verification. 666 * 667 * This does open a hole in which we will not notice if the first 668 * mount using this sb set explicit options and a second mount using 669 * this sb does not set any security options. (The first options 670 * will be used for both mounts) 671 */ 672 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 673 && !opts) 674 goto out; 675 676 root_isec = backing_inode_security_novalidate(root); 677 678 /* 679 * parse the mount options, check if they are valid sids. 680 * also check if someone is trying to mount the same sb more 681 * than once with different security options. 682 */ 683 if (opts) { 684 if (opts->fscontext_sid) { 685 fscontext_sid = opts->fscontext_sid; 686 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 687 fscontext_sid)) 688 goto out_double_mount; 689 sbsec->flags |= FSCONTEXT_MNT; 690 } 691 if (opts->context_sid) { 692 context_sid = opts->context_sid; 693 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 694 context_sid)) 695 goto out_double_mount; 696 sbsec->flags |= CONTEXT_MNT; 697 } 698 if (opts->rootcontext_sid) { 699 rootcontext_sid = opts->rootcontext_sid; 700 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 701 rootcontext_sid)) 702 goto out_double_mount; 703 sbsec->flags |= ROOTCONTEXT_MNT; 704 } 705 if (opts->defcontext_sid) { 706 defcontext_sid = opts->defcontext_sid; 707 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 708 defcontext_sid)) 709 goto out_double_mount; 710 sbsec->flags |= DEFCONTEXT_MNT; 711 } 712 } 713 714 if (sbsec->flags & SE_SBINITIALIZED) { 715 /* previously mounted with options, but not on this attempt? */ 716 if ((sbsec->flags & SE_MNTMASK) && !opts) 717 goto out_double_mount; 718 rc = 0; 719 goto out; 720 } 721 722 if (strcmp(sb->s_type->name, "proc") == 0) 723 sbsec->flags |= SE_SBPROC | SE_SBGENFS; 724 725 if (!strcmp(sb->s_type->name, "debugfs") || 726 !strcmp(sb->s_type->name, "tracefs") || 727 !strcmp(sb->s_type->name, "binder") || 728 !strcmp(sb->s_type->name, "bpf") || 729 !strcmp(sb->s_type->name, "pstore") || 730 !strcmp(sb->s_type->name, "securityfs")) 731 sbsec->flags |= SE_SBGENFS; 732 733 if (!strcmp(sb->s_type->name, "sysfs") || 734 !strcmp(sb->s_type->name, "cgroup") || 735 !strcmp(sb->s_type->name, "cgroup2")) 736 sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR; 737 738 if (!sbsec->behavior) { 739 /* 740 * Determine the labeling behavior to use for this 741 * filesystem type. 742 */ 743 rc = security_fs_use(sb); 744 if (rc) { 745 pr_warn("%s: security_fs_use(%s) returned %d\n", 746 __func__, sb->s_type->name, rc); 747 goto out; 748 } 749 } 750 751 /* 752 * If this is a user namespace mount and the filesystem type is not 753 * explicitly whitelisted, then no contexts are allowed on the command 754 * line and security labels must be ignored. 755 */ 756 if (sb->s_user_ns != &init_user_ns && 757 strcmp(sb->s_type->name, "tmpfs") && 758 strcmp(sb->s_type->name, "ramfs") && 759 strcmp(sb->s_type->name, "devpts") && 760 strcmp(sb->s_type->name, "overlay")) { 761 if (context_sid || fscontext_sid || rootcontext_sid || 762 defcontext_sid) { 763 rc = -EACCES; 764 goto out; 765 } 766 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 767 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 768 rc = security_transition_sid(current_sid(), 769 current_sid(), 770 SECCLASS_FILE, NULL, 771 &sbsec->mntpoint_sid); 772 if (rc) 773 goto out; 774 } 775 goto out_set_opts; 776 } 777 778 /* sets the context of the superblock for the fs being mounted. */ 779 if (fscontext_sid) { 780 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred); 781 if (rc) 782 goto out; 783 784 sbsec->sid = fscontext_sid; 785 } 786 787 /* 788 * Switch to using mount point labeling behavior. 789 * sets the label used on all file below the mountpoint, and will set 790 * the superblock context if not already set. 791 */ 792 if (sbsec->flags & SE_SBNATIVE) { 793 /* 794 * This means we are initializing a superblock that has been 795 * mounted before the SELinux was initialized and the 796 * filesystem requested native labeling. We had already 797 * returned SECURITY_LSM_NATIVE_LABELS in *set_kern_flags 798 * in the original mount attempt, so now we just need to set 799 * the SECURITY_FS_USE_NATIVE behavior. 800 */ 801 sbsec->behavior = SECURITY_FS_USE_NATIVE; 802 } else if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) { 803 sbsec->behavior = SECURITY_FS_USE_NATIVE; 804 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 805 } 806 807 if (context_sid) { 808 if (!fscontext_sid) { 809 rc = may_context_mount_sb_relabel(context_sid, sbsec, 810 cred); 811 if (rc) 812 goto out; 813 sbsec->sid = context_sid; 814 } else { 815 rc = may_context_mount_inode_relabel(context_sid, sbsec, 816 cred); 817 if (rc) 818 goto out; 819 } 820 if (!rootcontext_sid) 821 rootcontext_sid = context_sid; 822 823 sbsec->mntpoint_sid = context_sid; 824 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 825 } 826 827 if (rootcontext_sid) { 828 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, 829 cred); 830 if (rc) 831 goto out; 832 833 root_isec->sid = rootcontext_sid; 834 root_isec->initialized = LABEL_INITIALIZED; 835 } 836 837 if (defcontext_sid) { 838 if (sbsec->behavior != SECURITY_FS_USE_XATTR && 839 sbsec->behavior != SECURITY_FS_USE_NATIVE) { 840 rc = -EINVAL; 841 pr_warn("SELinux: defcontext option is " 842 "invalid for this filesystem type\n"); 843 goto out; 844 } 845 846 if (defcontext_sid != sbsec->def_sid) { 847 rc = may_context_mount_inode_relabel(defcontext_sid, 848 sbsec, cred); 849 if (rc) 850 goto out; 851 } 852 853 sbsec->def_sid = defcontext_sid; 854 } 855 856 out_set_opts: 857 rc = sb_finish_set_opts(sb); 858 out: 859 mutex_unlock(&sbsec->lock); 860 return rc; 861 out_double_mount: 862 rc = -EINVAL; 863 pr_warn("SELinux: mount invalid. Same superblock, different " 864 "security settings for (dev %s, type %s)\n", sb->s_id, 865 sb->s_type->name); 866 goto out; 867 } 868 869 static int selinux_cmp_sb_context(const struct super_block *oldsb, 870 const struct super_block *newsb) 871 { 872 struct superblock_security_struct *old = selinux_superblock(oldsb); 873 struct superblock_security_struct *new = selinux_superblock(newsb); 874 char oldflags = old->flags & SE_MNTMASK; 875 char newflags = new->flags & SE_MNTMASK; 876 877 if (oldflags != newflags) 878 goto mismatch; 879 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid) 880 goto mismatch; 881 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid) 882 goto mismatch; 883 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid) 884 goto mismatch; 885 if (oldflags & ROOTCONTEXT_MNT) { 886 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root); 887 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root); 888 if (oldroot->sid != newroot->sid) 889 goto mismatch; 890 } 891 return 0; 892 mismatch: 893 pr_warn("SELinux: mount invalid. Same superblock, " 894 "different security settings for (dev %s, " 895 "type %s)\n", newsb->s_id, newsb->s_type->name); 896 return -EBUSY; 897 } 898 899 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb, 900 struct super_block *newsb, 901 unsigned long kern_flags, 902 unsigned long *set_kern_flags) 903 { 904 int rc = 0; 905 const struct superblock_security_struct *oldsbsec = 906 selinux_superblock(oldsb); 907 struct superblock_security_struct *newsbsec = selinux_superblock(newsb); 908 909 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); 910 int set_context = (oldsbsec->flags & CONTEXT_MNT); 911 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); 912 913 /* 914 * Specifying internal flags without providing a place to 915 * place the results is not allowed. 916 */ 917 if (kern_flags && !set_kern_flags) 918 return -EINVAL; 919 920 mutex_lock(&newsbsec->lock); 921 922 /* 923 * if the parent was able to be mounted it clearly had no special lsm 924 * mount options. thus we can safely deal with this superblock later 925 */ 926 if (!selinux_initialized()) { 927 if (kern_flags & SECURITY_LSM_NATIVE_LABELS) { 928 newsbsec->flags |= SE_SBNATIVE; 929 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 930 } 931 goto out; 932 } 933 934 /* how can we clone if the old one wasn't set up?? */ 935 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED)); 936 937 /* if fs is reusing a sb, make sure that the contexts match */ 938 if (newsbsec->flags & SE_SBINITIALIZED) { 939 mutex_unlock(&newsbsec->lock); 940 if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) 941 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 942 return selinux_cmp_sb_context(oldsb, newsb); 943 } 944 945 newsbsec->flags = oldsbsec->flags; 946 947 newsbsec->sid = oldsbsec->sid; 948 newsbsec->def_sid = oldsbsec->def_sid; 949 newsbsec->behavior = oldsbsec->behavior; 950 951 if (newsbsec->behavior == SECURITY_FS_USE_NATIVE && 952 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) { 953 rc = security_fs_use(newsb); 954 if (rc) 955 goto out; 956 } 957 958 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) { 959 newsbsec->behavior = SECURITY_FS_USE_NATIVE; 960 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 961 } 962 963 if (set_context) { 964 u32 sid = oldsbsec->mntpoint_sid; 965 966 if (!set_fscontext) 967 newsbsec->sid = sid; 968 if (!set_rootcontext) { 969 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root); 970 newisec->sid = sid; 971 } 972 newsbsec->mntpoint_sid = sid; 973 } 974 if (set_rootcontext) { 975 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root); 976 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root); 977 978 newisec->sid = oldisec->sid; 979 } 980 981 sb_finish_set_opts(newsb); 982 out: 983 mutex_unlock(&newsbsec->lock); 984 return rc; 985 } 986 987 /* 988 * NOTE: the caller is responsible for freeing the memory even if on error. 989 */ 990 static int selinux_add_opt(int token, const char *s, void **mnt_opts) 991 { 992 struct selinux_mnt_opts *opts = *mnt_opts; 993 u32 *dst_sid; 994 int rc; 995 996 if (token == Opt_seclabel) 997 /* eaten and completely ignored */ 998 return 0; 999 if (!s) 1000 return -EINVAL; 1001 1002 if (!selinux_initialized()) { 1003 pr_warn("SELinux: Unable to set superblock options before the security server is initialized\n"); 1004 return -EINVAL; 1005 } 1006 1007 if (!opts) { 1008 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 1009 if (!opts) 1010 return -ENOMEM; 1011 *mnt_opts = opts; 1012 } 1013 1014 switch (token) { 1015 case Opt_context: 1016 if (opts->context_sid || opts->defcontext_sid) 1017 goto err; 1018 dst_sid = &opts->context_sid; 1019 break; 1020 case Opt_fscontext: 1021 if (opts->fscontext_sid) 1022 goto err; 1023 dst_sid = &opts->fscontext_sid; 1024 break; 1025 case Opt_rootcontext: 1026 if (opts->rootcontext_sid) 1027 goto err; 1028 dst_sid = &opts->rootcontext_sid; 1029 break; 1030 case Opt_defcontext: 1031 if (opts->context_sid || opts->defcontext_sid) 1032 goto err; 1033 dst_sid = &opts->defcontext_sid; 1034 break; 1035 default: 1036 WARN_ON(1); 1037 return -EINVAL; 1038 } 1039 rc = security_context_str_to_sid(s, dst_sid, GFP_KERNEL); 1040 if (rc) 1041 pr_warn("SELinux: security_context_str_to_sid (%s) failed with errno=%d\n", 1042 s, rc); 1043 return rc; 1044 1045 err: 1046 pr_warn(SEL_MOUNT_FAIL_MSG); 1047 return -EINVAL; 1048 } 1049 1050 static int show_sid(struct seq_file *m, u32 sid) 1051 { 1052 char *context = NULL; 1053 u32 len; 1054 int rc; 1055 1056 rc = security_sid_to_context(sid, &context, &len); 1057 if (!rc) { 1058 bool has_comma = strchr(context, ','); 1059 1060 seq_putc(m, '='); 1061 if (has_comma) 1062 seq_putc(m, '\"'); 1063 seq_escape(m, context, "\"\n\\"); 1064 if (has_comma) 1065 seq_putc(m, '\"'); 1066 } 1067 kfree(context); 1068 return rc; 1069 } 1070 1071 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb) 1072 { 1073 struct superblock_security_struct *sbsec = selinux_superblock(sb); 1074 int rc; 1075 1076 if (!(sbsec->flags & SE_SBINITIALIZED)) 1077 return 0; 1078 1079 if (!selinux_initialized()) 1080 return 0; 1081 1082 if (sbsec->flags & FSCONTEXT_MNT) { 1083 seq_putc(m, ','); 1084 seq_puts(m, FSCONTEXT_STR); 1085 rc = show_sid(m, sbsec->sid); 1086 if (rc) 1087 return rc; 1088 } 1089 if (sbsec->flags & CONTEXT_MNT) { 1090 seq_putc(m, ','); 1091 seq_puts(m, CONTEXT_STR); 1092 rc = show_sid(m, sbsec->mntpoint_sid); 1093 if (rc) 1094 return rc; 1095 } 1096 if (sbsec->flags & DEFCONTEXT_MNT) { 1097 seq_putc(m, ','); 1098 seq_puts(m, DEFCONTEXT_STR); 1099 rc = show_sid(m, sbsec->def_sid); 1100 if (rc) 1101 return rc; 1102 } 1103 if (sbsec->flags & ROOTCONTEXT_MNT) { 1104 struct dentry *root = sb->s_root; 1105 struct inode_security_struct *isec = backing_inode_security(root); 1106 seq_putc(m, ','); 1107 seq_puts(m, ROOTCONTEXT_STR); 1108 rc = show_sid(m, isec->sid); 1109 if (rc) 1110 return rc; 1111 } 1112 if (sbsec->flags & SBLABEL_MNT) { 1113 seq_putc(m, ','); 1114 seq_puts(m, SECLABEL_STR); 1115 } 1116 return 0; 1117 } 1118 1119 static inline u16 inode_mode_to_security_class(umode_t mode) 1120 { 1121 switch (mode & S_IFMT) { 1122 case S_IFSOCK: 1123 return SECCLASS_SOCK_FILE; 1124 case S_IFLNK: 1125 return SECCLASS_LNK_FILE; 1126 case S_IFREG: 1127 return SECCLASS_FILE; 1128 case S_IFBLK: 1129 return SECCLASS_BLK_FILE; 1130 case S_IFDIR: 1131 return SECCLASS_DIR; 1132 case S_IFCHR: 1133 return SECCLASS_CHR_FILE; 1134 case S_IFIFO: 1135 return SECCLASS_FIFO_FILE; 1136 1137 } 1138 1139 return SECCLASS_FILE; 1140 } 1141 1142 static inline int default_protocol_stream(int protocol) 1143 { 1144 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP || 1145 protocol == IPPROTO_MPTCP); 1146 } 1147 1148 static inline int default_protocol_dgram(int protocol) 1149 { 1150 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 1151 } 1152 1153 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 1154 { 1155 bool extsockclass = selinux_policycap_extsockclass(); 1156 1157 switch (family) { 1158 case PF_UNIX: 1159 switch (type) { 1160 case SOCK_STREAM: 1161 case SOCK_SEQPACKET: 1162 return SECCLASS_UNIX_STREAM_SOCKET; 1163 case SOCK_DGRAM: 1164 case SOCK_RAW: 1165 return SECCLASS_UNIX_DGRAM_SOCKET; 1166 } 1167 break; 1168 case PF_INET: 1169 case PF_INET6: 1170 switch (type) { 1171 case SOCK_STREAM: 1172 case SOCK_SEQPACKET: 1173 if (default_protocol_stream(protocol)) 1174 return SECCLASS_TCP_SOCKET; 1175 else if (extsockclass && protocol == IPPROTO_SCTP) 1176 return SECCLASS_SCTP_SOCKET; 1177 else 1178 return SECCLASS_RAWIP_SOCKET; 1179 case SOCK_DGRAM: 1180 if (default_protocol_dgram(protocol)) 1181 return SECCLASS_UDP_SOCKET; 1182 else if (extsockclass && (protocol == IPPROTO_ICMP || 1183 protocol == IPPROTO_ICMPV6)) 1184 return SECCLASS_ICMP_SOCKET; 1185 else 1186 return SECCLASS_RAWIP_SOCKET; 1187 case SOCK_DCCP: 1188 return SECCLASS_DCCP_SOCKET; 1189 default: 1190 return SECCLASS_RAWIP_SOCKET; 1191 } 1192 break; 1193 case PF_NETLINK: 1194 switch (protocol) { 1195 case NETLINK_ROUTE: 1196 return SECCLASS_NETLINK_ROUTE_SOCKET; 1197 case NETLINK_SOCK_DIAG: 1198 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 1199 case NETLINK_NFLOG: 1200 return SECCLASS_NETLINK_NFLOG_SOCKET; 1201 case NETLINK_XFRM: 1202 return SECCLASS_NETLINK_XFRM_SOCKET; 1203 case NETLINK_SELINUX: 1204 return SECCLASS_NETLINK_SELINUX_SOCKET; 1205 case NETLINK_ISCSI: 1206 return SECCLASS_NETLINK_ISCSI_SOCKET; 1207 case NETLINK_AUDIT: 1208 return SECCLASS_NETLINK_AUDIT_SOCKET; 1209 case NETLINK_FIB_LOOKUP: 1210 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET; 1211 case NETLINK_CONNECTOR: 1212 return SECCLASS_NETLINK_CONNECTOR_SOCKET; 1213 case NETLINK_NETFILTER: 1214 return SECCLASS_NETLINK_NETFILTER_SOCKET; 1215 case NETLINK_DNRTMSG: 1216 return SECCLASS_NETLINK_DNRT_SOCKET; 1217 case NETLINK_KOBJECT_UEVENT: 1218 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 1219 case NETLINK_GENERIC: 1220 return SECCLASS_NETLINK_GENERIC_SOCKET; 1221 case NETLINK_SCSITRANSPORT: 1222 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET; 1223 case NETLINK_RDMA: 1224 return SECCLASS_NETLINK_RDMA_SOCKET; 1225 case NETLINK_CRYPTO: 1226 return SECCLASS_NETLINK_CRYPTO_SOCKET; 1227 default: 1228 return SECCLASS_NETLINK_SOCKET; 1229 } 1230 case PF_PACKET: 1231 return SECCLASS_PACKET_SOCKET; 1232 case PF_KEY: 1233 return SECCLASS_KEY_SOCKET; 1234 case PF_APPLETALK: 1235 return SECCLASS_APPLETALK_SOCKET; 1236 } 1237 1238 if (extsockclass) { 1239 switch (family) { 1240 case PF_AX25: 1241 return SECCLASS_AX25_SOCKET; 1242 case PF_IPX: 1243 return SECCLASS_IPX_SOCKET; 1244 case PF_NETROM: 1245 return SECCLASS_NETROM_SOCKET; 1246 case PF_ATMPVC: 1247 return SECCLASS_ATMPVC_SOCKET; 1248 case PF_X25: 1249 return SECCLASS_X25_SOCKET; 1250 case PF_ROSE: 1251 return SECCLASS_ROSE_SOCKET; 1252 case PF_DECnet: 1253 return SECCLASS_DECNET_SOCKET; 1254 case PF_ATMSVC: 1255 return SECCLASS_ATMSVC_SOCKET; 1256 case PF_RDS: 1257 return SECCLASS_RDS_SOCKET; 1258 case PF_IRDA: 1259 return SECCLASS_IRDA_SOCKET; 1260 case PF_PPPOX: 1261 return SECCLASS_PPPOX_SOCKET; 1262 case PF_LLC: 1263 return SECCLASS_LLC_SOCKET; 1264 case PF_CAN: 1265 return SECCLASS_CAN_SOCKET; 1266 case PF_TIPC: 1267 return SECCLASS_TIPC_SOCKET; 1268 case PF_BLUETOOTH: 1269 return SECCLASS_BLUETOOTH_SOCKET; 1270 case PF_IUCV: 1271 return SECCLASS_IUCV_SOCKET; 1272 case PF_RXRPC: 1273 return SECCLASS_RXRPC_SOCKET; 1274 case PF_ISDN: 1275 return SECCLASS_ISDN_SOCKET; 1276 case PF_PHONET: 1277 return SECCLASS_PHONET_SOCKET; 1278 case PF_IEEE802154: 1279 return SECCLASS_IEEE802154_SOCKET; 1280 case PF_CAIF: 1281 return SECCLASS_CAIF_SOCKET; 1282 case PF_ALG: 1283 return SECCLASS_ALG_SOCKET; 1284 case PF_NFC: 1285 return SECCLASS_NFC_SOCKET; 1286 case PF_VSOCK: 1287 return SECCLASS_VSOCK_SOCKET; 1288 case PF_KCM: 1289 return SECCLASS_KCM_SOCKET; 1290 case PF_QIPCRTR: 1291 return SECCLASS_QIPCRTR_SOCKET; 1292 case PF_SMC: 1293 return SECCLASS_SMC_SOCKET; 1294 case PF_XDP: 1295 return SECCLASS_XDP_SOCKET; 1296 case PF_MCTP: 1297 return SECCLASS_MCTP_SOCKET; 1298 #if PF_MAX > 46 1299 #error New address family defined, please update this function. 1300 #endif 1301 } 1302 } 1303 1304 return SECCLASS_SOCKET; 1305 } 1306 1307 static int selinux_genfs_get_sid(struct dentry *dentry, 1308 u16 tclass, 1309 u16 flags, 1310 u32 *sid) 1311 { 1312 int rc; 1313 struct super_block *sb = dentry->d_sb; 1314 char *buffer, *path; 1315 1316 buffer = (char *)__get_free_page(GFP_KERNEL); 1317 if (!buffer) 1318 return -ENOMEM; 1319 1320 path = dentry_path_raw(dentry, buffer, PAGE_SIZE); 1321 if (IS_ERR(path)) 1322 rc = PTR_ERR(path); 1323 else { 1324 if (flags & SE_SBPROC) { 1325 /* each process gets a /proc/PID/ entry. Strip off the 1326 * PID part to get a valid selinux labeling. 1327 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */ 1328 while (path[1] >= '0' && path[1] <= '9') { 1329 path[1] = '/'; 1330 path++; 1331 } 1332 } 1333 rc = security_genfs_sid(sb->s_type->name, 1334 path, tclass, sid); 1335 if (rc == -ENOENT) { 1336 /* No match in policy, mark as unlabeled. */ 1337 *sid = SECINITSID_UNLABELED; 1338 rc = 0; 1339 } 1340 } 1341 free_page((unsigned long)buffer); 1342 return rc; 1343 } 1344 1345 static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry, 1346 u32 def_sid, u32 *sid) 1347 { 1348 #define INITCONTEXTLEN 255 1349 char *context; 1350 unsigned int len; 1351 int rc; 1352 1353 len = INITCONTEXTLEN; 1354 context = kmalloc(len + 1, GFP_NOFS); 1355 if (!context) 1356 return -ENOMEM; 1357 1358 context[len] = '\0'; 1359 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len); 1360 if (rc == -ERANGE) { 1361 kfree(context); 1362 1363 /* Need a larger buffer. Query for the right size. */ 1364 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0); 1365 if (rc < 0) 1366 return rc; 1367 1368 len = rc; 1369 context = kmalloc(len + 1, GFP_NOFS); 1370 if (!context) 1371 return -ENOMEM; 1372 1373 context[len] = '\0'; 1374 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, 1375 context, len); 1376 } 1377 if (rc < 0) { 1378 kfree(context); 1379 if (rc != -ENODATA) { 1380 pr_warn("SELinux: %s: getxattr returned %d for dev=%s ino=%ld\n", 1381 __func__, -rc, inode->i_sb->s_id, inode->i_ino); 1382 return rc; 1383 } 1384 *sid = def_sid; 1385 return 0; 1386 } 1387 1388 rc = security_context_to_sid_default(context, rc, sid, 1389 def_sid, GFP_NOFS); 1390 if (rc) { 1391 char *dev = inode->i_sb->s_id; 1392 unsigned long ino = inode->i_ino; 1393 1394 if (rc == -EINVAL) { 1395 pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s. This indicates you may need to relabel the inode or the filesystem in question.\n", 1396 ino, dev, context); 1397 } else { 1398 pr_warn("SELinux: %s: context_to_sid(%s) returned %d for dev=%s ino=%ld\n", 1399 __func__, context, -rc, dev, ino); 1400 } 1401 } 1402 kfree(context); 1403 return 0; 1404 } 1405 1406 /* The inode's security attributes must be initialized before first use. */ 1407 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 1408 { 1409 struct superblock_security_struct *sbsec = NULL; 1410 struct inode_security_struct *isec = selinux_inode(inode); 1411 u32 task_sid, sid = 0; 1412 u16 sclass; 1413 struct dentry *dentry; 1414 int rc = 0; 1415 1416 if (isec->initialized == LABEL_INITIALIZED) 1417 return 0; 1418 1419 spin_lock(&isec->lock); 1420 if (isec->initialized == LABEL_INITIALIZED) 1421 goto out_unlock; 1422 1423 if (isec->sclass == SECCLASS_FILE) 1424 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1425 1426 sbsec = selinux_superblock(inode->i_sb); 1427 if (!(sbsec->flags & SE_SBINITIALIZED)) { 1428 /* Defer initialization until selinux_complete_init, 1429 after the initial policy is loaded and the security 1430 server is ready to handle calls. */ 1431 spin_lock(&sbsec->isec_lock); 1432 if (list_empty(&isec->list)) 1433 list_add(&isec->list, &sbsec->isec_head); 1434 spin_unlock(&sbsec->isec_lock); 1435 goto out_unlock; 1436 } 1437 1438 sclass = isec->sclass; 1439 task_sid = isec->task_sid; 1440 sid = isec->sid; 1441 isec->initialized = LABEL_PENDING; 1442 spin_unlock(&isec->lock); 1443 1444 switch (sbsec->behavior) { 1445 /* 1446 * In case of SECURITY_FS_USE_NATIVE we need to re-fetch the labels 1447 * via xattr when called from delayed_superblock_init(). 1448 */ 1449 case SECURITY_FS_USE_NATIVE: 1450 case SECURITY_FS_USE_XATTR: 1451 if (!(inode->i_opflags & IOP_XATTR)) { 1452 sid = sbsec->def_sid; 1453 break; 1454 } 1455 /* Need a dentry, since the xattr API requires one. 1456 Life would be simpler if we could just pass the inode. */ 1457 if (opt_dentry) { 1458 /* Called from d_instantiate or d_splice_alias. */ 1459 dentry = dget(opt_dentry); 1460 } else { 1461 /* 1462 * Called from selinux_complete_init, try to find a dentry. 1463 * Some filesystems really want a connected one, so try 1464 * that first. We could split SECURITY_FS_USE_XATTR in 1465 * two, depending upon that... 1466 */ 1467 dentry = d_find_alias(inode); 1468 if (!dentry) 1469 dentry = d_find_any_alias(inode); 1470 } 1471 if (!dentry) { 1472 /* 1473 * this is can be hit on boot when a file is accessed 1474 * before the policy is loaded. When we load policy we 1475 * may find inodes that have no dentry on the 1476 * sbsec->isec_head list. No reason to complain as these 1477 * will get fixed up the next time we go through 1478 * inode_doinit with a dentry, before these inodes could 1479 * be used again by userspace. 1480 */ 1481 goto out_invalid; 1482 } 1483 1484 rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid, 1485 &sid); 1486 dput(dentry); 1487 if (rc) 1488 goto out; 1489 break; 1490 case SECURITY_FS_USE_TASK: 1491 sid = task_sid; 1492 break; 1493 case SECURITY_FS_USE_TRANS: 1494 /* Default to the fs SID. */ 1495 sid = sbsec->sid; 1496 1497 /* Try to obtain a transition SID. */ 1498 rc = security_transition_sid(task_sid, sid, 1499 sclass, NULL, &sid); 1500 if (rc) 1501 goto out; 1502 break; 1503 case SECURITY_FS_USE_MNTPOINT: 1504 sid = sbsec->mntpoint_sid; 1505 break; 1506 default: 1507 /* Default to the fs superblock SID. */ 1508 sid = sbsec->sid; 1509 1510 if ((sbsec->flags & SE_SBGENFS) && 1511 (!S_ISLNK(inode->i_mode) || 1512 selinux_policycap_genfs_seclabel_symlinks())) { 1513 /* We must have a dentry to determine the label on 1514 * procfs inodes */ 1515 if (opt_dentry) { 1516 /* Called from d_instantiate or 1517 * d_splice_alias. */ 1518 dentry = dget(opt_dentry); 1519 } else { 1520 /* Called from selinux_complete_init, try to 1521 * find a dentry. Some filesystems really want 1522 * a connected one, so try that first. 1523 */ 1524 dentry = d_find_alias(inode); 1525 if (!dentry) 1526 dentry = d_find_any_alias(inode); 1527 } 1528 /* 1529 * This can be hit on boot when a file is accessed 1530 * before the policy is loaded. When we load policy we 1531 * may find inodes that have no dentry on the 1532 * sbsec->isec_head list. No reason to complain as 1533 * these will get fixed up the next time we go through 1534 * inode_doinit() with a dentry, before these inodes 1535 * could be used again by userspace. 1536 */ 1537 if (!dentry) 1538 goto out_invalid; 1539 rc = selinux_genfs_get_sid(dentry, sclass, 1540 sbsec->flags, &sid); 1541 if (rc) { 1542 dput(dentry); 1543 goto out; 1544 } 1545 1546 if ((sbsec->flags & SE_SBGENFS_XATTR) && 1547 (inode->i_opflags & IOP_XATTR)) { 1548 rc = inode_doinit_use_xattr(inode, dentry, 1549 sid, &sid); 1550 if (rc) { 1551 dput(dentry); 1552 goto out; 1553 } 1554 } 1555 dput(dentry); 1556 } 1557 break; 1558 } 1559 1560 out: 1561 spin_lock(&isec->lock); 1562 if (isec->initialized == LABEL_PENDING) { 1563 if (rc) { 1564 isec->initialized = LABEL_INVALID; 1565 goto out_unlock; 1566 } 1567 isec->initialized = LABEL_INITIALIZED; 1568 isec->sid = sid; 1569 } 1570 1571 out_unlock: 1572 spin_unlock(&isec->lock); 1573 return rc; 1574 1575 out_invalid: 1576 spin_lock(&isec->lock); 1577 if (isec->initialized == LABEL_PENDING) { 1578 isec->initialized = LABEL_INVALID; 1579 isec->sid = sid; 1580 } 1581 spin_unlock(&isec->lock); 1582 return 0; 1583 } 1584 1585 /* Convert a Linux signal to an access vector. */ 1586 static inline u32 signal_to_av(int sig) 1587 { 1588 u32 perm = 0; 1589 1590 switch (sig) { 1591 case SIGCHLD: 1592 /* Commonly granted from child to parent. */ 1593 perm = PROCESS__SIGCHLD; 1594 break; 1595 case SIGKILL: 1596 /* Cannot be caught or ignored */ 1597 perm = PROCESS__SIGKILL; 1598 break; 1599 case SIGSTOP: 1600 /* Cannot be caught or ignored */ 1601 perm = PROCESS__SIGSTOP; 1602 break; 1603 default: 1604 /* All other signals. */ 1605 perm = PROCESS__SIGNAL; 1606 break; 1607 } 1608 1609 return perm; 1610 } 1611 1612 #if CAP_LAST_CAP > 63 1613 #error Fix SELinux to handle capabilities > 63. 1614 #endif 1615 1616 /* Check whether a task is allowed to use a capability. */ 1617 static int cred_has_capability(const struct cred *cred, 1618 int cap, unsigned int opts, bool initns) 1619 { 1620 struct common_audit_data ad; 1621 struct av_decision avd; 1622 u16 sclass; 1623 u32 sid = cred_sid(cred); 1624 u32 av = CAP_TO_MASK(cap); 1625 int rc; 1626 1627 ad.type = LSM_AUDIT_DATA_CAP; 1628 ad.u.cap = cap; 1629 1630 switch (CAP_TO_INDEX(cap)) { 1631 case 0: 1632 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS; 1633 break; 1634 case 1: 1635 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS; 1636 break; 1637 default: 1638 pr_err("SELinux: out of range capability %d\n", cap); 1639 BUG(); 1640 return -EINVAL; 1641 } 1642 1643 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd); 1644 if (!(opts & CAP_OPT_NOAUDIT)) { 1645 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad); 1646 if (rc2) 1647 return rc2; 1648 } 1649 return rc; 1650 } 1651 1652 /* Check whether a task has a particular permission to an inode. 1653 The 'adp' parameter is optional and allows other audit 1654 data to be passed (e.g. the dentry). */ 1655 static int inode_has_perm(const struct cred *cred, 1656 struct inode *inode, 1657 u32 perms, 1658 struct common_audit_data *adp) 1659 { 1660 struct inode_security_struct *isec; 1661 u32 sid; 1662 1663 if (unlikely(IS_PRIVATE(inode))) 1664 return 0; 1665 1666 sid = cred_sid(cred); 1667 isec = selinux_inode(inode); 1668 1669 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp); 1670 } 1671 1672 /* Same as inode_has_perm, but pass explicit audit data containing 1673 the dentry to help the auditing code to more easily generate the 1674 pathname if needed. */ 1675 static inline int dentry_has_perm(const struct cred *cred, 1676 struct dentry *dentry, 1677 u32 av) 1678 { 1679 struct inode *inode = d_backing_inode(dentry); 1680 struct common_audit_data ad; 1681 1682 ad.type = LSM_AUDIT_DATA_DENTRY; 1683 ad.u.dentry = dentry; 1684 __inode_security_revalidate(inode, dentry, true); 1685 return inode_has_perm(cred, inode, av, &ad); 1686 } 1687 1688 /* Same as inode_has_perm, but pass explicit audit data containing 1689 the path to help the auditing code to more easily generate the 1690 pathname if needed. */ 1691 static inline int path_has_perm(const struct cred *cred, 1692 const struct path *path, 1693 u32 av) 1694 { 1695 struct inode *inode = d_backing_inode(path->dentry); 1696 struct common_audit_data ad; 1697 1698 ad.type = LSM_AUDIT_DATA_PATH; 1699 ad.u.path = *path; 1700 __inode_security_revalidate(inode, path->dentry, true); 1701 return inode_has_perm(cred, inode, av, &ad); 1702 } 1703 1704 /* Same as path_has_perm, but uses the inode from the file struct. */ 1705 static inline int file_path_has_perm(const struct cred *cred, 1706 struct file *file, 1707 u32 av) 1708 { 1709 struct common_audit_data ad; 1710 1711 ad.type = LSM_AUDIT_DATA_FILE; 1712 ad.u.file = file; 1713 return inode_has_perm(cred, file_inode(file), av, &ad); 1714 } 1715 1716 #ifdef CONFIG_BPF_SYSCALL 1717 static int bpf_fd_pass(const struct file *file, u32 sid); 1718 #endif 1719 1720 /* Check whether a task can use an open file descriptor to 1721 access an inode in a given way. Check access to the 1722 descriptor itself, and then use dentry_has_perm to 1723 check a particular permission to the file. 1724 Access to the descriptor is implicitly granted if it 1725 has the same SID as the process. If av is zero, then 1726 access to the file is not checked, e.g. for cases 1727 where only the descriptor is affected like seek. */ 1728 static int file_has_perm(const struct cred *cred, 1729 struct file *file, 1730 u32 av) 1731 { 1732 struct file_security_struct *fsec = selinux_file(file); 1733 struct inode *inode = file_inode(file); 1734 struct common_audit_data ad; 1735 u32 sid = cred_sid(cred); 1736 int rc; 1737 1738 ad.type = LSM_AUDIT_DATA_FILE; 1739 ad.u.file = file; 1740 1741 if (sid != fsec->sid) { 1742 rc = avc_has_perm(sid, fsec->sid, 1743 SECCLASS_FD, 1744 FD__USE, 1745 &ad); 1746 if (rc) 1747 goto out; 1748 } 1749 1750 #ifdef CONFIG_BPF_SYSCALL 1751 rc = bpf_fd_pass(file, cred_sid(cred)); 1752 if (rc) 1753 return rc; 1754 #endif 1755 1756 /* av is zero if only checking access to the descriptor. */ 1757 rc = 0; 1758 if (av) 1759 rc = inode_has_perm(cred, inode, av, &ad); 1760 1761 out: 1762 return rc; 1763 } 1764 1765 /* 1766 * Determine the label for an inode that might be unioned. 1767 */ 1768 static int 1769 selinux_determine_inode_label(const struct task_security_struct *tsec, 1770 struct inode *dir, 1771 const struct qstr *name, u16 tclass, 1772 u32 *_new_isid) 1773 { 1774 const struct superblock_security_struct *sbsec = 1775 selinux_superblock(dir->i_sb); 1776 1777 if ((sbsec->flags & SE_SBINITIALIZED) && 1778 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) { 1779 *_new_isid = sbsec->mntpoint_sid; 1780 } else if ((sbsec->flags & SBLABEL_MNT) && 1781 tsec->create_sid) { 1782 *_new_isid = tsec->create_sid; 1783 } else { 1784 const struct inode_security_struct *dsec = inode_security(dir); 1785 return security_transition_sid(tsec->sid, 1786 dsec->sid, tclass, 1787 name, _new_isid); 1788 } 1789 1790 return 0; 1791 } 1792 1793 /* Check whether a task can create a file. */ 1794 static int may_create(struct inode *dir, 1795 struct dentry *dentry, 1796 u16 tclass) 1797 { 1798 const struct task_security_struct *tsec = selinux_cred(current_cred()); 1799 struct inode_security_struct *dsec; 1800 struct superblock_security_struct *sbsec; 1801 u32 sid, newsid; 1802 struct common_audit_data ad; 1803 int rc; 1804 1805 dsec = inode_security(dir); 1806 sbsec = selinux_superblock(dir->i_sb); 1807 1808 sid = tsec->sid; 1809 1810 ad.type = LSM_AUDIT_DATA_DENTRY; 1811 ad.u.dentry = dentry; 1812 1813 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, 1814 DIR__ADD_NAME | DIR__SEARCH, 1815 &ad); 1816 if (rc) 1817 return rc; 1818 1819 rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass, 1820 &newsid); 1821 if (rc) 1822 return rc; 1823 1824 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad); 1825 if (rc) 1826 return rc; 1827 1828 return avc_has_perm(newsid, sbsec->sid, 1829 SECCLASS_FILESYSTEM, 1830 FILESYSTEM__ASSOCIATE, &ad); 1831 } 1832 1833 #define MAY_LINK 0 1834 #define MAY_UNLINK 1 1835 #define MAY_RMDIR 2 1836 1837 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1838 static int may_link(struct inode *dir, 1839 struct dentry *dentry, 1840 int kind) 1841 1842 { 1843 struct inode_security_struct *dsec, *isec; 1844 struct common_audit_data ad; 1845 u32 sid = current_sid(); 1846 u32 av; 1847 int rc; 1848 1849 dsec = inode_security(dir); 1850 isec = backing_inode_security(dentry); 1851 1852 ad.type = LSM_AUDIT_DATA_DENTRY; 1853 ad.u.dentry = dentry; 1854 1855 av = DIR__SEARCH; 1856 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1857 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad); 1858 if (rc) 1859 return rc; 1860 1861 switch (kind) { 1862 case MAY_LINK: 1863 av = FILE__LINK; 1864 break; 1865 case MAY_UNLINK: 1866 av = FILE__UNLINK; 1867 break; 1868 case MAY_RMDIR: 1869 av = DIR__RMDIR; 1870 break; 1871 default: 1872 pr_warn("SELinux: %s: unrecognized kind %d\n", 1873 __func__, kind); 1874 return 0; 1875 } 1876 1877 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad); 1878 return rc; 1879 } 1880 1881 static inline int may_rename(struct inode *old_dir, 1882 struct dentry *old_dentry, 1883 struct inode *new_dir, 1884 struct dentry *new_dentry) 1885 { 1886 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1887 struct common_audit_data ad; 1888 u32 sid = current_sid(); 1889 u32 av; 1890 int old_is_dir, new_is_dir; 1891 int rc; 1892 1893 old_dsec = inode_security(old_dir); 1894 old_isec = backing_inode_security(old_dentry); 1895 old_is_dir = d_is_dir(old_dentry); 1896 new_dsec = inode_security(new_dir); 1897 1898 ad.type = LSM_AUDIT_DATA_DENTRY; 1899 1900 ad.u.dentry = old_dentry; 1901 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR, 1902 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1903 if (rc) 1904 return rc; 1905 rc = avc_has_perm(sid, old_isec->sid, 1906 old_isec->sclass, FILE__RENAME, &ad); 1907 if (rc) 1908 return rc; 1909 if (old_is_dir && new_dir != old_dir) { 1910 rc = avc_has_perm(sid, old_isec->sid, 1911 old_isec->sclass, DIR__REPARENT, &ad); 1912 if (rc) 1913 return rc; 1914 } 1915 1916 ad.u.dentry = new_dentry; 1917 av = DIR__ADD_NAME | DIR__SEARCH; 1918 if (d_is_positive(new_dentry)) 1919 av |= DIR__REMOVE_NAME; 1920 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1921 if (rc) 1922 return rc; 1923 if (d_is_positive(new_dentry)) { 1924 new_isec = backing_inode_security(new_dentry); 1925 new_is_dir = d_is_dir(new_dentry); 1926 rc = avc_has_perm(sid, new_isec->sid, 1927 new_isec->sclass, 1928 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1929 if (rc) 1930 return rc; 1931 } 1932 1933 return 0; 1934 } 1935 1936 /* Check whether a task can perform a filesystem operation. */ 1937 static int superblock_has_perm(const struct cred *cred, 1938 struct super_block *sb, 1939 u32 perms, 1940 struct common_audit_data *ad) 1941 { 1942 struct superblock_security_struct *sbsec; 1943 u32 sid = cred_sid(cred); 1944 1945 sbsec = selinux_superblock(sb); 1946 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad); 1947 } 1948 1949 /* Convert a Linux mode and permission mask to an access vector. */ 1950 static inline u32 file_mask_to_av(int mode, int mask) 1951 { 1952 u32 av = 0; 1953 1954 if (!S_ISDIR(mode)) { 1955 if (mask & MAY_EXEC) 1956 av |= FILE__EXECUTE; 1957 if (mask & MAY_READ) 1958 av |= FILE__READ; 1959 1960 if (mask & MAY_APPEND) 1961 av |= FILE__APPEND; 1962 else if (mask & MAY_WRITE) 1963 av |= FILE__WRITE; 1964 1965 } else { 1966 if (mask & MAY_EXEC) 1967 av |= DIR__SEARCH; 1968 if (mask & MAY_WRITE) 1969 av |= DIR__WRITE; 1970 if (mask & MAY_READ) 1971 av |= DIR__READ; 1972 } 1973 1974 return av; 1975 } 1976 1977 /* Convert a Linux file to an access vector. */ 1978 static inline u32 file_to_av(const struct file *file) 1979 { 1980 u32 av = 0; 1981 1982 if (file->f_mode & FMODE_READ) 1983 av |= FILE__READ; 1984 if (file->f_mode & FMODE_WRITE) { 1985 if (file->f_flags & O_APPEND) 1986 av |= FILE__APPEND; 1987 else 1988 av |= FILE__WRITE; 1989 } 1990 if (!av) { 1991 /* 1992 * Special file opened with flags 3 for ioctl-only use. 1993 */ 1994 av = FILE__IOCTL; 1995 } 1996 1997 return av; 1998 } 1999 2000 /* 2001 * Convert a file to an access vector and include the correct 2002 * open permission. 2003 */ 2004 static inline u32 open_file_to_av(struct file *file) 2005 { 2006 u32 av = file_to_av(file); 2007 struct inode *inode = file_inode(file); 2008 2009 if (selinux_policycap_openperm() && 2010 inode->i_sb->s_magic != SOCKFS_MAGIC) 2011 av |= FILE__OPEN; 2012 2013 return av; 2014 } 2015 2016 /* Hook functions begin here. */ 2017 2018 static int selinux_binder_set_context_mgr(const struct cred *mgr) 2019 { 2020 return avc_has_perm(current_sid(), cred_sid(mgr), SECCLASS_BINDER, 2021 BINDER__SET_CONTEXT_MGR, NULL); 2022 } 2023 2024 static int selinux_binder_transaction(const struct cred *from, 2025 const struct cred *to) 2026 { 2027 u32 mysid = current_sid(); 2028 u32 fromsid = cred_sid(from); 2029 u32 tosid = cred_sid(to); 2030 int rc; 2031 2032 if (mysid != fromsid) { 2033 rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER, 2034 BINDER__IMPERSONATE, NULL); 2035 if (rc) 2036 return rc; 2037 } 2038 2039 return avc_has_perm(fromsid, tosid, 2040 SECCLASS_BINDER, BINDER__CALL, NULL); 2041 } 2042 2043 static int selinux_binder_transfer_binder(const struct cred *from, 2044 const struct cred *to) 2045 { 2046 return avc_has_perm(cred_sid(from), cred_sid(to), 2047 SECCLASS_BINDER, BINDER__TRANSFER, 2048 NULL); 2049 } 2050 2051 static int selinux_binder_transfer_file(const struct cred *from, 2052 const struct cred *to, 2053 const struct file *file) 2054 { 2055 u32 sid = cred_sid(to); 2056 struct file_security_struct *fsec = selinux_file(file); 2057 struct dentry *dentry = file->f_path.dentry; 2058 struct inode_security_struct *isec; 2059 struct common_audit_data ad; 2060 int rc; 2061 2062 ad.type = LSM_AUDIT_DATA_PATH; 2063 ad.u.path = file->f_path; 2064 2065 if (sid != fsec->sid) { 2066 rc = avc_has_perm(sid, fsec->sid, 2067 SECCLASS_FD, 2068 FD__USE, 2069 &ad); 2070 if (rc) 2071 return rc; 2072 } 2073 2074 #ifdef CONFIG_BPF_SYSCALL 2075 rc = bpf_fd_pass(file, sid); 2076 if (rc) 2077 return rc; 2078 #endif 2079 2080 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2081 return 0; 2082 2083 isec = backing_inode_security(dentry); 2084 return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file), 2085 &ad); 2086 } 2087 2088 static int selinux_ptrace_access_check(struct task_struct *child, 2089 unsigned int mode) 2090 { 2091 u32 sid = current_sid(); 2092 u32 csid = task_sid_obj(child); 2093 2094 if (mode & PTRACE_MODE_READ) 2095 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, 2096 NULL); 2097 2098 return avc_has_perm(sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, 2099 NULL); 2100 } 2101 2102 static int selinux_ptrace_traceme(struct task_struct *parent) 2103 { 2104 return avc_has_perm(task_sid_obj(parent), task_sid_obj(current), 2105 SECCLASS_PROCESS, PROCESS__PTRACE, NULL); 2106 } 2107 2108 static int selinux_capget(const struct task_struct *target, kernel_cap_t *effective, 2109 kernel_cap_t *inheritable, kernel_cap_t *permitted) 2110 { 2111 return avc_has_perm(current_sid(), task_sid_obj(target), 2112 SECCLASS_PROCESS, PROCESS__GETCAP, NULL); 2113 } 2114 2115 static int selinux_capset(struct cred *new, const struct cred *old, 2116 const kernel_cap_t *effective, 2117 const kernel_cap_t *inheritable, 2118 const kernel_cap_t *permitted) 2119 { 2120 return avc_has_perm(cred_sid(old), cred_sid(new), SECCLASS_PROCESS, 2121 PROCESS__SETCAP, NULL); 2122 } 2123 2124 /* 2125 * (This comment used to live with the selinux_task_setuid hook, 2126 * which was removed). 2127 * 2128 * Since setuid only affects the current process, and since the SELinux 2129 * controls are not based on the Linux identity attributes, SELinux does not 2130 * need to control this operation. However, SELinux does control the use of 2131 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook. 2132 */ 2133 2134 static int selinux_capable(const struct cred *cred, struct user_namespace *ns, 2135 int cap, unsigned int opts) 2136 { 2137 return cred_has_capability(cred, cap, opts, ns == &init_user_ns); 2138 } 2139 2140 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) 2141 { 2142 const struct cred *cred = current_cred(); 2143 int rc = 0; 2144 2145 if (!sb) 2146 return 0; 2147 2148 switch (cmds) { 2149 case Q_SYNC: 2150 case Q_QUOTAON: 2151 case Q_QUOTAOFF: 2152 case Q_SETINFO: 2153 case Q_SETQUOTA: 2154 case Q_XQUOTAOFF: 2155 case Q_XQUOTAON: 2156 case Q_XSETQLIM: 2157 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL); 2158 break; 2159 case Q_GETFMT: 2160 case Q_GETINFO: 2161 case Q_GETQUOTA: 2162 case Q_XGETQUOTA: 2163 case Q_XGETQSTAT: 2164 case Q_XGETQSTATV: 2165 case Q_XGETNEXTQUOTA: 2166 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL); 2167 break; 2168 default: 2169 rc = 0; /* let the kernel handle invalid cmds */ 2170 break; 2171 } 2172 return rc; 2173 } 2174 2175 static int selinux_quota_on(struct dentry *dentry) 2176 { 2177 const struct cred *cred = current_cred(); 2178 2179 return dentry_has_perm(cred, dentry, FILE__QUOTAON); 2180 } 2181 2182 static int selinux_syslog(int type) 2183 { 2184 switch (type) { 2185 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */ 2186 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */ 2187 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 2188 SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL); 2189 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */ 2190 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */ 2191 /* Set level of messages printed to console */ 2192 case SYSLOG_ACTION_CONSOLE_LEVEL: 2193 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 2194 SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE, 2195 NULL); 2196 } 2197 /* All other syslog types */ 2198 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 2199 SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL); 2200 } 2201 2202 /* 2203 * Check that a process has enough memory to allocate a new virtual 2204 * mapping. 0 means there is enough memory for the allocation to 2205 * succeed and -ENOMEM implies there is not. 2206 * 2207 * Do not audit the selinux permission check, as this is applied to all 2208 * processes that allocate mappings. 2209 */ 2210 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) 2211 { 2212 int rc, cap_sys_admin = 0; 2213 2214 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN, 2215 CAP_OPT_NOAUDIT, true); 2216 if (rc == 0) 2217 cap_sys_admin = 1; 2218 2219 return cap_sys_admin; 2220 } 2221 2222 /* binprm security operations */ 2223 2224 static u32 ptrace_parent_sid(void) 2225 { 2226 u32 sid = 0; 2227 struct task_struct *tracer; 2228 2229 rcu_read_lock(); 2230 tracer = ptrace_parent(current); 2231 if (tracer) 2232 sid = task_sid_obj(tracer); 2233 rcu_read_unlock(); 2234 2235 return sid; 2236 } 2237 2238 static int check_nnp_nosuid(const struct linux_binprm *bprm, 2239 const struct task_security_struct *old_tsec, 2240 const struct task_security_struct *new_tsec) 2241 { 2242 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS); 2243 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt); 2244 int rc; 2245 u32 av; 2246 2247 if (!nnp && !nosuid) 2248 return 0; /* neither NNP nor nosuid */ 2249 2250 if (new_tsec->sid == old_tsec->sid) 2251 return 0; /* No change in credentials */ 2252 2253 /* 2254 * If the policy enables the nnp_nosuid_transition policy capability, 2255 * then we permit transitions under NNP or nosuid if the 2256 * policy allows the corresponding permission between 2257 * the old and new contexts. 2258 */ 2259 if (selinux_policycap_nnp_nosuid_transition()) { 2260 av = 0; 2261 if (nnp) 2262 av |= PROCESS2__NNP_TRANSITION; 2263 if (nosuid) 2264 av |= PROCESS2__NOSUID_TRANSITION; 2265 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2266 SECCLASS_PROCESS2, av, NULL); 2267 if (!rc) 2268 return 0; 2269 } 2270 2271 /* 2272 * We also permit NNP or nosuid transitions to bounded SIDs, 2273 * i.e. SIDs that are guaranteed to only be allowed a subset 2274 * of the permissions of the current SID. 2275 */ 2276 rc = security_bounded_transition(old_tsec->sid, 2277 new_tsec->sid); 2278 if (!rc) 2279 return 0; 2280 2281 /* 2282 * On failure, preserve the errno values for NNP vs nosuid. 2283 * NNP: Operation not permitted for caller. 2284 * nosuid: Permission denied to file. 2285 */ 2286 if (nnp) 2287 return -EPERM; 2288 return -EACCES; 2289 } 2290 2291 static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm) 2292 { 2293 const struct task_security_struct *old_tsec; 2294 struct task_security_struct *new_tsec; 2295 struct inode_security_struct *isec; 2296 struct common_audit_data ad; 2297 struct inode *inode = file_inode(bprm->file); 2298 int rc; 2299 2300 /* SELinux context only depends on initial program or script and not 2301 * the script interpreter */ 2302 2303 old_tsec = selinux_cred(current_cred()); 2304 new_tsec = selinux_cred(bprm->cred); 2305 isec = inode_security(inode); 2306 2307 /* Default to the current task SID. */ 2308 new_tsec->sid = old_tsec->sid; 2309 new_tsec->osid = old_tsec->sid; 2310 2311 /* Reset fs, key, and sock SIDs on execve. */ 2312 new_tsec->create_sid = 0; 2313 new_tsec->keycreate_sid = 0; 2314 new_tsec->sockcreate_sid = 0; 2315 2316 if (old_tsec->exec_sid) { 2317 new_tsec->sid = old_tsec->exec_sid; 2318 /* Reset exec SID on execve. */ 2319 new_tsec->exec_sid = 0; 2320 2321 /* Fail on NNP or nosuid if not an allowed transition. */ 2322 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2323 if (rc) 2324 return rc; 2325 } else { 2326 /* Check for a default transition on this program. */ 2327 rc = security_transition_sid(old_tsec->sid, 2328 isec->sid, SECCLASS_PROCESS, NULL, 2329 &new_tsec->sid); 2330 if (rc) 2331 return rc; 2332 2333 /* 2334 * Fallback to old SID on NNP or nosuid if not an allowed 2335 * transition. 2336 */ 2337 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2338 if (rc) 2339 new_tsec->sid = old_tsec->sid; 2340 } 2341 2342 ad.type = LSM_AUDIT_DATA_FILE; 2343 ad.u.file = bprm->file; 2344 2345 if (new_tsec->sid == old_tsec->sid) { 2346 rc = avc_has_perm(old_tsec->sid, isec->sid, 2347 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 2348 if (rc) 2349 return rc; 2350 } else { 2351 /* Check permissions for the transition. */ 2352 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2353 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 2354 if (rc) 2355 return rc; 2356 2357 rc = avc_has_perm(new_tsec->sid, isec->sid, 2358 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 2359 if (rc) 2360 return rc; 2361 2362 /* Check for shared state */ 2363 if (bprm->unsafe & LSM_UNSAFE_SHARE) { 2364 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2365 SECCLASS_PROCESS, PROCESS__SHARE, 2366 NULL); 2367 if (rc) 2368 return -EPERM; 2369 } 2370 2371 /* Make sure that anyone attempting to ptrace over a task that 2372 * changes its SID has the appropriate permit */ 2373 if (bprm->unsafe & LSM_UNSAFE_PTRACE) { 2374 u32 ptsid = ptrace_parent_sid(); 2375 if (ptsid != 0) { 2376 rc = avc_has_perm(ptsid, new_tsec->sid, 2377 SECCLASS_PROCESS, 2378 PROCESS__PTRACE, NULL); 2379 if (rc) 2380 return -EPERM; 2381 } 2382 } 2383 2384 /* Clear any possibly unsafe personality bits on exec: */ 2385 bprm->per_clear |= PER_CLEAR_ON_SETID; 2386 2387 /* Enable secure mode for SIDs transitions unless 2388 the noatsecure permission is granted between 2389 the two SIDs, i.e. ahp returns 0. */ 2390 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2391 SECCLASS_PROCESS, PROCESS__NOATSECURE, 2392 NULL); 2393 bprm->secureexec |= !!rc; 2394 } 2395 2396 return 0; 2397 } 2398 2399 static int match_file(const void *p, struct file *file, unsigned fd) 2400 { 2401 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0; 2402 } 2403 2404 /* Derived from fs/exec.c:flush_old_files. */ 2405 static inline void flush_unauthorized_files(const struct cred *cred, 2406 struct files_struct *files) 2407 { 2408 struct file *file, *devnull = NULL; 2409 struct tty_struct *tty; 2410 int drop_tty = 0; 2411 unsigned n; 2412 2413 tty = get_current_tty(); 2414 if (tty) { 2415 spin_lock(&tty->files_lock); 2416 if (!list_empty(&tty->tty_files)) { 2417 struct tty_file_private *file_priv; 2418 2419 /* Revalidate access to controlling tty. 2420 Use file_path_has_perm on the tty path directly 2421 rather than using file_has_perm, as this particular 2422 open file may belong to another process and we are 2423 only interested in the inode-based check here. */ 2424 file_priv = list_first_entry(&tty->tty_files, 2425 struct tty_file_private, list); 2426 file = file_priv->file; 2427 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE)) 2428 drop_tty = 1; 2429 } 2430 spin_unlock(&tty->files_lock); 2431 tty_kref_put(tty); 2432 } 2433 /* Reset controlling tty. */ 2434 if (drop_tty) 2435 no_tty(); 2436 2437 /* Revalidate access to inherited open files. */ 2438 n = iterate_fd(files, 0, match_file, cred); 2439 if (!n) /* none found? */ 2440 return; 2441 2442 devnull = dentry_open(&selinux_null, O_RDWR, cred); 2443 if (IS_ERR(devnull)) 2444 devnull = NULL; 2445 /* replace all the matching ones with this */ 2446 do { 2447 replace_fd(n - 1, devnull, 0); 2448 } while ((n = iterate_fd(files, n, match_file, cred)) != 0); 2449 if (devnull) 2450 fput(devnull); 2451 } 2452 2453 /* 2454 * Prepare a process for imminent new credential changes due to exec 2455 */ 2456 static void selinux_bprm_committing_creds(struct linux_binprm *bprm) 2457 { 2458 struct task_security_struct *new_tsec; 2459 struct rlimit *rlim, *initrlim; 2460 int rc, i; 2461 2462 new_tsec = selinux_cred(bprm->cred); 2463 if (new_tsec->sid == new_tsec->osid) 2464 return; 2465 2466 /* Close files for which the new task SID is not authorized. */ 2467 flush_unauthorized_files(bprm->cred, current->files); 2468 2469 /* Always clear parent death signal on SID transitions. */ 2470 current->pdeath_signal = 0; 2471 2472 /* Check whether the new SID can inherit resource limits from the old 2473 * SID. If not, reset all soft limits to the lower of the current 2474 * task's hard limit and the init task's soft limit. 2475 * 2476 * Note that the setting of hard limits (even to lower them) can be 2477 * controlled by the setrlimit check. The inclusion of the init task's 2478 * soft limit into the computation is to avoid resetting soft limits 2479 * higher than the default soft limit for cases where the default is 2480 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK. 2481 */ 2482 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS, 2483 PROCESS__RLIMITINH, NULL); 2484 if (rc) { 2485 /* protect against do_prlimit() */ 2486 task_lock(current); 2487 for (i = 0; i < RLIM_NLIMITS; i++) { 2488 rlim = current->signal->rlim + i; 2489 initrlim = init_task.signal->rlim + i; 2490 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur); 2491 } 2492 task_unlock(current); 2493 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) 2494 update_rlimit_cpu(current, rlimit(RLIMIT_CPU)); 2495 } 2496 } 2497 2498 /* 2499 * Clean up the process immediately after the installation of new credentials 2500 * due to exec 2501 */ 2502 static void selinux_bprm_committed_creds(struct linux_binprm *bprm) 2503 { 2504 const struct task_security_struct *tsec = selinux_cred(current_cred()); 2505 u32 osid, sid; 2506 int rc; 2507 2508 osid = tsec->osid; 2509 sid = tsec->sid; 2510 2511 if (sid == osid) 2512 return; 2513 2514 /* Check whether the new SID can inherit signal state from the old SID. 2515 * If not, clear itimers to avoid subsequent signal generation and 2516 * flush and unblock signals. 2517 * 2518 * This must occur _after_ the task SID has been updated so that any 2519 * kill done after the flush will be checked against the new SID. 2520 */ 2521 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL); 2522 if (rc) { 2523 clear_itimer(); 2524 2525 spin_lock_irq(&unrcu_pointer(current->sighand)->siglock); 2526 if (!fatal_signal_pending(current)) { 2527 flush_sigqueue(¤t->pending); 2528 flush_sigqueue(¤t->signal->shared_pending); 2529 flush_signal_handlers(current, 1); 2530 sigemptyset(¤t->blocked); 2531 recalc_sigpending(); 2532 } 2533 spin_unlock_irq(&unrcu_pointer(current->sighand)->siglock); 2534 } 2535 2536 /* Wake up the parent if it is waiting so that it can recheck 2537 * wait permission to the new task SID. */ 2538 read_lock(&tasklist_lock); 2539 __wake_up_parent(current, unrcu_pointer(current->real_parent)); 2540 read_unlock(&tasklist_lock); 2541 } 2542 2543 /* superblock security operations */ 2544 2545 static int selinux_sb_alloc_security(struct super_block *sb) 2546 { 2547 struct superblock_security_struct *sbsec = selinux_superblock(sb); 2548 2549 mutex_init(&sbsec->lock); 2550 INIT_LIST_HEAD(&sbsec->isec_head); 2551 spin_lock_init(&sbsec->isec_lock); 2552 sbsec->sid = SECINITSID_UNLABELED; 2553 sbsec->def_sid = SECINITSID_FILE; 2554 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 2555 2556 return 0; 2557 } 2558 2559 static inline int opt_len(const char *s) 2560 { 2561 bool open_quote = false; 2562 int len; 2563 char c; 2564 2565 for (len = 0; (c = s[len]) != '\0'; len++) { 2566 if (c == '"') 2567 open_quote = !open_quote; 2568 if (c == ',' && !open_quote) 2569 break; 2570 } 2571 return len; 2572 } 2573 2574 static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts) 2575 { 2576 char *from = options; 2577 char *to = options; 2578 bool first = true; 2579 int rc; 2580 2581 while (1) { 2582 int len = opt_len(from); 2583 int token; 2584 char *arg = NULL; 2585 2586 token = match_opt_prefix(from, len, &arg); 2587 2588 if (token != Opt_error) { 2589 char *p, *q; 2590 2591 /* strip quotes */ 2592 if (arg) { 2593 for (p = q = arg; p < from + len; p++) { 2594 char c = *p; 2595 if (c != '"') 2596 *q++ = c; 2597 } 2598 arg = kmemdup_nul(arg, q - arg, GFP_KERNEL); 2599 if (!arg) { 2600 rc = -ENOMEM; 2601 goto free_opt; 2602 } 2603 } 2604 rc = selinux_add_opt(token, arg, mnt_opts); 2605 kfree(arg); 2606 arg = NULL; 2607 if (unlikely(rc)) { 2608 goto free_opt; 2609 } 2610 } else { 2611 if (!first) { // copy with preceding comma 2612 from--; 2613 len++; 2614 } 2615 if (to != from) 2616 memmove(to, from, len); 2617 to += len; 2618 first = false; 2619 } 2620 if (!from[len]) 2621 break; 2622 from += len + 1; 2623 } 2624 *to = '\0'; 2625 return 0; 2626 2627 free_opt: 2628 if (*mnt_opts) { 2629 selinux_free_mnt_opts(*mnt_opts); 2630 *mnt_opts = NULL; 2631 } 2632 return rc; 2633 } 2634 2635 static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts) 2636 { 2637 struct selinux_mnt_opts *opts = mnt_opts; 2638 struct superblock_security_struct *sbsec = selinux_superblock(sb); 2639 2640 /* 2641 * Superblock not initialized (i.e. no options) - reject if any 2642 * options specified, otherwise accept. 2643 */ 2644 if (!(sbsec->flags & SE_SBINITIALIZED)) 2645 return opts ? 1 : 0; 2646 2647 /* 2648 * Superblock initialized and no options specified - reject if 2649 * superblock has any options set, otherwise accept. 2650 */ 2651 if (!opts) 2652 return (sbsec->flags & SE_MNTMASK) ? 1 : 0; 2653 2654 if (opts->fscontext_sid) { 2655 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 2656 opts->fscontext_sid)) 2657 return 1; 2658 } 2659 if (opts->context_sid) { 2660 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 2661 opts->context_sid)) 2662 return 1; 2663 } 2664 if (opts->rootcontext_sid) { 2665 struct inode_security_struct *root_isec; 2666 2667 root_isec = backing_inode_security(sb->s_root); 2668 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 2669 opts->rootcontext_sid)) 2670 return 1; 2671 } 2672 if (opts->defcontext_sid) { 2673 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 2674 opts->defcontext_sid)) 2675 return 1; 2676 } 2677 return 0; 2678 } 2679 2680 static int selinux_sb_remount(struct super_block *sb, void *mnt_opts) 2681 { 2682 struct selinux_mnt_opts *opts = mnt_opts; 2683 struct superblock_security_struct *sbsec = selinux_superblock(sb); 2684 2685 if (!(sbsec->flags & SE_SBINITIALIZED)) 2686 return 0; 2687 2688 if (!opts) 2689 return 0; 2690 2691 if (opts->fscontext_sid) { 2692 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 2693 opts->fscontext_sid)) 2694 goto out_bad_option; 2695 } 2696 if (opts->context_sid) { 2697 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 2698 opts->context_sid)) 2699 goto out_bad_option; 2700 } 2701 if (opts->rootcontext_sid) { 2702 struct inode_security_struct *root_isec; 2703 root_isec = backing_inode_security(sb->s_root); 2704 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 2705 opts->rootcontext_sid)) 2706 goto out_bad_option; 2707 } 2708 if (opts->defcontext_sid) { 2709 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 2710 opts->defcontext_sid)) 2711 goto out_bad_option; 2712 } 2713 return 0; 2714 2715 out_bad_option: 2716 pr_warn("SELinux: unable to change security options " 2717 "during remount (dev %s, type=%s)\n", sb->s_id, 2718 sb->s_type->name); 2719 return -EINVAL; 2720 } 2721 2722 static int selinux_sb_kern_mount(struct super_block *sb) 2723 { 2724 const struct cred *cred = current_cred(); 2725 struct common_audit_data ad; 2726 2727 ad.type = LSM_AUDIT_DATA_DENTRY; 2728 ad.u.dentry = sb->s_root; 2729 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad); 2730 } 2731 2732 static int selinux_sb_statfs(struct dentry *dentry) 2733 { 2734 const struct cred *cred = current_cred(); 2735 struct common_audit_data ad; 2736 2737 ad.type = LSM_AUDIT_DATA_DENTRY; 2738 ad.u.dentry = dentry->d_sb->s_root; 2739 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2740 } 2741 2742 static int selinux_mount(const char *dev_name, 2743 const struct path *path, 2744 const char *type, 2745 unsigned long flags, 2746 void *data) 2747 { 2748 const struct cred *cred = current_cred(); 2749 2750 if (flags & MS_REMOUNT) 2751 return superblock_has_perm(cred, path->dentry->d_sb, 2752 FILESYSTEM__REMOUNT, NULL); 2753 else 2754 return path_has_perm(cred, path, FILE__MOUNTON); 2755 } 2756 2757 static int selinux_move_mount(const struct path *from_path, 2758 const struct path *to_path) 2759 { 2760 const struct cred *cred = current_cred(); 2761 2762 return path_has_perm(cred, to_path, FILE__MOUNTON); 2763 } 2764 2765 static int selinux_umount(struct vfsmount *mnt, int flags) 2766 { 2767 const struct cred *cred = current_cred(); 2768 2769 return superblock_has_perm(cred, mnt->mnt_sb, 2770 FILESYSTEM__UNMOUNT, NULL); 2771 } 2772 2773 static int selinux_fs_context_submount(struct fs_context *fc, 2774 struct super_block *reference) 2775 { 2776 const struct superblock_security_struct *sbsec = selinux_superblock(reference); 2777 struct selinux_mnt_opts *opts; 2778 2779 /* 2780 * Ensure that fc->security remains NULL when no options are set 2781 * as expected by selinux_set_mnt_opts(). 2782 */ 2783 if (!(sbsec->flags & (FSCONTEXT_MNT|CONTEXT_MNT|DEFCONTEXT_MNT))) 2784 return 0; 2785 2786 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 2787 if (!opts) 2788 return -ENOMEM; 2789 2790 if (sbsec->flags & FSCONTEXT_MNT) 2791 opts->fscontext_sid = sbsec->sid; 2792 if (sbsec->flags & CONTEXT_MNT) 2793 opts->context_sid = sbsec->mntpoint_sid; 2794 if (sbsec->flags & DEFCONTEXT_MNT) 2795 opts->defcontext_sid = sbsec->def_sid; 2796 fc->security = opts; 2797 return 0; 2798 } 2799 2800 static int selinux_fs_context_dup(struct fs_context *fc, 2801 struct fs_context *src_fc) 2802 { 2803 const struct selinux_mnt_opts *src = src_fc->security; 2804 2805 if (!src) 2806 return 0; 2807 2808 fc->security = kmemdup(src, sizeof(*src), GFP_KERNEL); 2809 return fc->security ? 0 : -ENOMEM; 2810 } 2811 2812 static const struct fs_parameter_spec selinux_fs_parameters[] = { 2813 fsparam_string(CONTEXT_STR, Opt_context), 2814 fsparam_string(DEFCONTEXT_STR, Opt_defcontext), 2815 fsparam_string(FSCONTEXT_STR, Opt_fscontext), 2816 fsparam_string(ROOTCONTEXT_STR, Opt_rootcontext), 2817 fsparam_flag (SECLABEL_STR, Opt_seclabel), 2818 {} 2819 }; 2820 2821 static int selinux_fs_context_parse_param(struct fs_context *fc, 2822 struct fs_parameter *param) 2823 { 2824 struct fs_parse_result result; 2825 int opt; 2826 2827 opt = fs_parse(fc, selinux_fs_parameters, param, &result); 2828 if (opt < 0) 2829 return opt; 2830 2831 return selinux_add_opt(opt, param->string, &fc->security); 2832 } 2833 2834 /* inode security operations */ 2835 2836 static int selinux_inode_alloc_security(struct inode *inode) 2837 { 2838 struct inode_security_struct *isec = selinux_inode(inode); 2839 u32 sid = current_sid(); 2840 2841 spin_lock_init(&isec->lock); 2842 INIT_LIST_HEAD(&isec->list); 2843 isec->inode = inode; 2844 isec->sid = SECINITSID_UNLABELED; 2845 isec->sclass = SECCLASS_FILE; 2846 isec->task_sid = sid; 2847 isec->initialized = LABEL_INVALID; 2848 2849 return 0; 2850 } 2851 2852 static void selinux_inode_free_security(struct inode *inode) 2853 { 2854 inode_free_security(inode); 2855 } 2856 2857 static int selinux_dentry_init_security(struct dentry *dentry, int mode, 2858 const struct qstr *name, 2859 const char **xattr_name, void **ctx, 2860 u32 *ctxlen) 2861 { 2862 u32 newsid; 2863 int rc; 2864 2865 rc = selinux_determine_inode_label(selinux_cred(current_cred()), 2866 d_inode(dentry->d_parent), name, 2867 inode_mode_to_security_class(mode), 2868 &newsid); 2869 if (rc) 2870 return rc; 2871 2872 if (xattr_name) 2873 *xattr_name = XATTR_NAME_SELINUX; 2874 2875 return security_sid_to_context(newsid, (char **)ctx, 2876 ctxlen); 2877 } 2878 2879 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode, 2880 struct qstr *name, 2881 const struct cred *old, 2882 struct cred *new) 2883 { 2884 u32 newsid; 2885 int rc; 2886 struct task_security_struct *tsec; 2887 2888 rc = selinux_determine_inode_label(selinux_cred(old), 2889 d_inode(dentry->d_parent), name, 2890 inode_mode_to_security_class(mode), 2891 &newsid); 2892 if (rc) 2893 return rc; 2894 2895 tsec = selinux_cred(new); 2896 tsec->create_sid = newsid; 2897 return 0; 2898 } 2899 2900 static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 2901 const struct qstr *qstr, 2902 struct xattr *xattrs, int *xattr_count) 2903 { 2904 const struct task_security_struct *tsec = selinux_cred(current_cred()); 2905 struct superblock_security_struct *sbsec; 2906 struct xattr *xattr = lsm_get_xattr_slot(xattrs, xattr_count); 2907 u32 newsid, clen; 2908 int rc; 2909 char *context; 2910 2911 sbsec = selinux_superblock(dir->i_sb); 2912 2913 newsid = tsec->create_sid; 2914 2915 rc = selinux_determine_inode_label(tsec, dir, qstr, 2916 inode_mode_to_security_class(inode->i_mode), 2917 &newsid); 2918 if (rc) 2919 return rc; 2920 2921 /* Possibly defer initialization to selinux_complete_init. */ 2922 if (sbsec->flags & SE_SBINITIALIZED) { 2923 struct inode_security_struct *isec = selinux_inode(inode); 2924 isec->sclass = inode_mode_to_security_class(inode->i_mode); 2925 isec->sid = newsid; 2926 isec->initialized = LABEL_INITIALIZED; 2927 } 2928 2929 if (!selinux_initialized() || 2930 !(sbsec->flags & SBLABEL_MNT)) 2931 return -EOPNOTSUPP; 2932 2933 if (xattr) { 2934 rc = security_sid_to_context_force(newsid, 2935 &context, &clen); 2936 if (rc) 2937 return rc; 2938 xattr->value = context; 2939 xattr->value_len = clen; 2940 xattr->name = XATTR_SELINUX_SUFFIX; 2941 } 2942 2943 return 0; 2944 } 2945 2946 static int selinux_inode_init_security_anon(struct inode *inode, 2947 const struct qstr *name, 2948 const struct inode *context_inode) 2949 { 2950 const struct task_security_struct *tsec = selinux_cred(current_cred()); 2951 struct common_audit_data ad; 2952 struct inode_security_struct *isec; 2953 int rc; 2954 2955 if (unlikely(!selinux_initialized())) 2956 return 0; 2957 2958 isec = selinux_inode(inode); 2959 2960 /* 2961 * We only get here once per ephemeral inode. The inode has 2962 * been initialized via inode_alloc_security but is otherwise 2963 * untouched. 2964 */ 2965 2966 if (context_inode) { 2967 struct inode_security_struct *context_isec = 2968 selinux_inode(context_inode); 2969 if (context_isec->initialized != LABEL_INITIALIZED) { 2970 pr_err("SELinux: context_inode is not initialized\n"); 2971 return -EACCES; 2972 } 2973 2974 isec->sclass = context_isec->sclass; 2975 isec->sid = context_isec->sid; 2976 } else { 2977 isec->sclass = SECCLASS_ANON_INODE; 2978 rc = security_transition_sid( 2979 tsec->sid, tsec->sid, 2980 isec->sclass, name, &isec->sid); 2981 if (rc) 2982 return rc; 2983 } 2984 2985 isec->initialized = LABEL_INITIALIZED; 2986 /* 2987 * Now that we've initialized security, check whether we're 2988 * allowed to actually create this type of anonymous inode. 2989 */ 2990 2991 ad.type = LSM_AUDIT_DATA_ANONINODE; 2992 ad.u.anonclass = name ? (const char *)name->name : "?"; 2993 2994 return avc_has_perm(tsec->sid, 2995 isec->sid, 2996 isec->sclass, 2997 FILE__CREATE, 2998 &ad); 2999 } 3000 3001 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 3002 { 3003 return may_create(dir, dentry, SECCLASS_FILE); 3004 } 3005 3006 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 3007 { 3008 return may_link(dir, old_dentry, MAY_LINK); 3009 } 3010 3011 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 3012 { 3013 return may_link(dir, dentry, MAY_UNLINK); 3014 } 3015 3016 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 3017 { 3018 return may_create(dir, dentry, SECCLASS_LNK_FILE); 3019 } 3020 3021 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask) 3022 { 3023 return may_create(dir, dentry, SECCLASS_DIR); 3024 } 3025 3026 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 3027 { 3028 return may_link(dir, dentry, MAY_RMDIR); 3029 } 3030 3031 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3032 { 3033 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 3034 } 3035 3036 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 3037 struct inode *new_inode, struct dentry *new_dentry) 3038 { 3039 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 3040 } 3041 3042 static int selinux_inode_readlink(struct dentry *dentry) 3043 { 3044 const struct cred *cred = current_cred(); 3045 3046 return dentry_has_perm(cred, dentry, FILE__READ); 3047 } 3048 3049 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode, 3050 bool rcu) 3051 { 3052 const struct cred *cred = current_cred(); 3053 struct common_audit_data ad; 3054 struct inode_security_struct *isec; 3055 u32 sid; 3056 3057 ad.type = LSM_AUDIT_DATA_DENTRY; 3058 ad.u.dentry = dentry; 3059 sid = cred_sid(cred); 3060 isec = inode_security_rcu(inode, rcu); 3061 if (IS_ERR(isec)) 3062 return PTR_ERR(isec); 3063 3064 return avc_has_perm(sid, isec->sid, isec->sclass, FILE__READ, &ad); 3065 } 3066 3067 static noinline int audit_inode_permission(struct inode *inode, 3068 u32 perms, u32 audited, u32 denied, 3069 int result) 3070 { 3071 struct common_audit_data ad; 3072 struct inode_security_struct *isec = selinux_inode(inode); 3073 3074 ad.type = LSM_AUDIT_DATA_INODE; 3075 ad.u.inode = inode; 3076 3077 return slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms, 3078 audited, denied, result, &ad); 3079 } 3080 3081 static int selinux_inode_permission(struct inode *inode, int mask) 3082 { 3083 const struct cred *cred = current_cred(); 3084 u32 perms; 3085 bool from_access; 3086 bool no_block = mask & MAY_NOT_BLOCK; 3087 struct inode_security_struct *isec; 3088 u32 sid; 3089 struct av_decision avd; 3090 int rc, rc2; 3091 u32 audited, denied; 3092 3093 from_access = mask & MAY_ACCESS; 3094 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND); 3095 3096 /* No permission to check. Existence test. */ 3097 if (!mask) 3098 return 0; 3099 3100 if (unlikely(IS_PRIVATE(inode))) 3101 return 0; 3102 3103 perms = file_mask_to_av(inode->i_mode, mask); 3104 3105 sid = cred_sid(cred); 3106 isec = inode_security_rcu(inode, no_block); 3107 if (IS_ERR(isec)) 3108 return PTR_ERR(isec); 3109 3110 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, 3111 &avd); 3112 audited = avc_audit_required(perms, &avd, rc, 3113 from_access ? FILE__AUDIT_ACCESS : 0, 3114 &denied); 3115 if (likely(!audited)) 3116 return rc; 3117 3118 rc2 = audit_inode_permission(inode, perms, audited, denied, rc); 3119 if (rc2) 3120 return rc2; 3121 return rc; 3122 } 3123 3124 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) 3125 { 3126 const struct cred *cred = current_cred(); 3127 struct inode *inode = d_backing_inode(dentry); 3128 unsigned int ia_valid = iattr->ia_valid; 3129 __u32 av = FILE__WRITE; 3130 3131 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */ 3132 if (ia_valid & ATTR_FORCE) { 3133 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE | 3134 ATTR_FORCE); 3135 if (!ia_valid) 3136 return 0; 3137 } 3138 3139 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 3140 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET)) 3141 return dentry_has_perm(cred, dentry, FILE__SETATTR); 3142 3143 if (selinux_policycap_openperm() && 3144 inode->i_sb->s_magic != SOCKFS_MAGIC && 3145 (ia_valid & ATTR_SIZE) && 3146 !(ia_valid & ATTR_FILE)) 3147 av |= FILE__OPEN; 3148 3149 return dentry_has_perm(cred, dentry, av); 3150 } 3151 3152 static int selinux_inode_getattr(const struct path *path) 3153 { 3154 return path_has_perm(current_cred(), path, FILE__GETATTR); 3155 } 3156 3157 static bool has_cap_mac_admin(bool audit) 3158 { 3159 const struct cred *cred = current_cred(); 3160 unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT; 3161 3162 if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts)) 3163 return false; 3164 if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true)) 3165 return false; 3166 return true; 3167 } 3168 3169 static int selinux_inode_setxattr(struct mnt_idmap *idmap, 3170 struct dentry *dentry, const char *name, 3171 const void *value, size_t size, int flags) 3172 { 3173 struct inode *inode = d_backing_inode(dentry); 3174 struct inode_security_struct *isec; 3175 struct superblock_security_struct *sbsec; 3176 struct common_audit_data ad; 3177 u32 newsid, sid = current_sid(); 3178 int rc = 0; 3179 3180 if (strcmp(name, XATTR_NAME_SELINUX)) { 3181 rc = cap_inode_setxattr(dentry, name, value, size, flags); 3182 if (rc) 3183 return rc; 3184 3185 /* Not an attribute we recognize, so just check the 3186 ordinary setattr permission. */ 3187 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); 3188 } 3189 3190 if (!selinux_initialized()) 3191 return (inode_owner_or_capable(idmap, inode) ? 0 : -EPERM); 3192 3193 sbsec = selinux_superblock(inode->i_sb); 3194 if (!(sbsec->flags & SBLABEL_MNT)) 3195 return -EOPNOTSUPP; 3196 3197 if (!inode_owner_or_capable(idmap, inode)) 3198 return -EPERM; 3199 3200 ad.type = LSM_AUDIT_DATA_DENTRY; 3201 ad.u.dentry = dentry; 3202 3203 isec = backing_inode_security(dentry); 3204 rc = avc_has_perm(sid, isec->sid, isec->sclass, 3205 FILE__RELABELFROM, &ad); 3206 if (rc) 3207 return rc; 3208 3209 rc = security_context_to_sid(value, size, &newsid, 3210 GFP_KERNEL); 3211 if (rc == -EINVAL) { 3212 if (!has_cap_mac_admin(true)) { 3213 struct audit_buffer *ab; 3214 size_t audit_size; 3215 3216 /* We strip a nul only if it is at the end, otherwise the 3217 * context contains a nul and we should audit that */ 3218 if (value) { 3219 const char *str = value; 3220 3221 if (str[size - 1] == '\0') 3222 audit_size = size - 1; 3223 else 3224 audit_size = size; 3225 } else { 3226 audit_size = 0; 3227 } 3228 ab = audit_log_start(audit_context(), 3229 GFP_ATOMIC, AUDIT_SELINUX_ERR); 3230 if (!ab) 3231 return rc; 3232 audit_log_format(ab, "op=setxattr invalid_context="); 3233 audit_log_n_untrustedstring(ab, value, audit_size); 3234 audit_log_end(ab); 3235 3236 return rc; 3237 } 3238 rc = security_context_to_sid_force(value, 3239 size, &newsid); 3240 } 3241 if (rc) 3242 return rc; 3243 3244 rc = avc_has_perm(sid, newsid, isec->sclass, 3245 FILE__RELABELTO, &ad); 3246 if (rc) 3247 return rc; 3248 3249 rc = security_validate_transition(isec->sid, newsid, 3250 sid, isec->sclass); 3251 if (rc) 3252 return rc; 3253 3254 return avc_has_perm(newsid, 3255 sbsec->sid, 3256 SECCLASS_FILESYSTEM, 3257 FILESYSTEM__ASSOCIATE, 3258 &ad); 3259 } 3260 3261 static int selinux_inode_set_acl(struct mnt_idmap *idmap, 3262 struct dentry *dentry, const char *acl_name, 3263 struct posix_acl *kacl) 3264 { 3265 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); 3266 } 3267 3268 static int selinux_inode_get_acl(struct mnt_idmap *idmap, 3269 struct dentry *dentry, const char *acl_name) 3270 { 3271 return dentry_has_perm(current_cred(), dentry, FILE__GETATTR); 3272 } 3273 3274 static int selinux_inode_remove_acl(struct mnt_idmap *idmap, 3275 struct dentry *dentry, const char *acl_name) 3276 { 3277 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); 3278 } 3279 3280 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name, 3281 const void *value, size_t size, 3282 int flags) 3283 { 3284 struct inode *inode = d_backing_inode(dentry); 3285 struct inode_security_struct *isec; 3286 u32 newsid; 3287 int rc; 3288 3289 if (strcmp(name, XATTR_NAME_SELINUX)) { 3290 /* Not an attribute we recognize, so nothing to do. */ 3291 return; 3292 } 3293 3294 if (!selinux_initialized()) { 3295 /* If we haven't even been initialized, then we can't validate 3296 * against a policy, so leave the label as invalid. It may 3297 * resolve to a valid label on the next revalidation try if 3298 * we've since initialized. 3299 */ 3300 return; 3301 } 3302 3303 rc = security_context_to_sid_force(value, size, 3304 &newsid); 3305 if (rc) { 3306 pr_err("SELinux: unable to map context to SID" 3307 "for (%s, %lu), rc=%d\n", 3308 inode->i_sb->s_id, inode->i_ino, -rc); 3309 return; 3310 } 3311 3312 isec = backing_inode_security(dentry); 3313 spin_lock(&isec->lock); 3314 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3315 isec->sid = newsid; 3316 isec->initialized = LABEL_INITIALIZED; 3317 spin_unlock(&isec->lock); 3318 } 3319 3320 static int selinux_inode_getxattr(struct dentry *dentry, const char *name) 3321 { 3322 const struct cred *cred = current_cred(); 3323 3324 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3325 } 3326 3327 static int selinux_inode_listxattr(struct dentry *dentry) 3328 { 3329 const struct cred *cred = current_cred(); 3330 3331 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3332 } 3333 3334 static int selinux_inode_removexattr(struct mnt_idmap *idmap, 3335 struct dentry *dentry, const char *name) 3336 { 3337 if (strcmp(name, XATTR_NAME_SELINUX)) { 3338 int rc = cap_inode_removexattr(idmap, dentry, name); 3339 if (rc) 3340 return rc; 3341 3342 /* Not an attribute we recognize, so just check the 3343 ordinary setattr permission. */ 3344 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); 3345 } 3346 3347 if (!selinux_initialized()) 3348 return 0; 3349 3350 /* No one is allowed to remove a SELinux security label. 3351 You can change the label, but all data must be labeled. */ 3352 return -EACCES; 3353 } 3354 3355 static int selinux_path_notify(const struct path *path, u64 mask, 3356 unsigned int obj_type) 3357 { 3358 int ret; 3359 u32 perm; 3360 3361 struct common_audit_data ad; 3362 3363 ad.type = LSM_AUDIT_DATA_PATH; 3364 ad.u.path = *path; 3365 3366 /* 3367 * Set permission needed based on the type of mark being set. 3368 * Performs an additional check for sb watches. 3369 */ 3370 switch (obj_type) { 3371 case FSNOTIFY_OBJ_TYPE_VFSMOUNT: 3372 perm = FILE__WATCH_MOUNT; 3373 break; 3374 case FSNOTIFY_OBJ_TYPE_SB: 3375 perm = FILE__WATCH_SB; 3376 ret = superblock_has_perm(current_cred(), path->dentry->d_sb, 3377 FILESYSTEM__WATCH, &ad); 3378 if (ret) 3379 return ret; 3380 break; 3381 case FSNOTIFY_OBJ_TYPE_INODE: 3382 perm = FILE__WATCH; 3383 break; 3384 default: 3385 return -EINVAL; 3386 } 3387 3388 /* blocking watches require the file:watch_with_perm permission */ 3389 if (mask & (ALL_FSNOTIFY_PERM_EVENTS)) 3390 perm |= FILE__WATCH_WITH_PERM; 3391 3392 /* watches on read-like events need the file:watch_reads permission */ 3393 if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE)) 3394 perm |= FILE__WATCH_READS; 3395 3396 return path_has_perm(current_cred(), path, perm); 3397 } 3398 3399 /* 3400 * Copy the inode security context value to the user. 3401 * 3402 * Permission check is handled by selinux_inode_getxattr hook. 3403 */ 3404 static int selinux_inode_getsecurity(struct mnt_idmap *idmap, 3405 struct inode *inode, const char *name, 3406 void **buffer, bool alloc) 3407 { 3408 u32 size; 3409 int error; 3410 char *context = NULL; 3411 struct inode_security_struct *isec; 3412 3413 /* 3414 * If we're not initialized yet, then we can't validate contexts, so 3415 * just let vfs_getxattr fall back to using the on-disk xattr. 3416 */ 3417 if (!selinux_initialized() || 3418 strcmp(name, XATTR_SELINUX_SUFFIX)) 3419 return -EOPNOTSUPP; 3420 3421 /* 3422 * If the caller has CAP_MAC_ADMIN, then get the raw context 3423 * value even if it is not defined by current policy; otherwise, 3424 * use the in-core value under current policy. 3425 * Use the non-auditing forms of the permission checks since 3426 * getxattr may be called by unprivileged processes commonly 3427 * and lack of permission just means that we fall back to the 3428 * in-core context value, not a denial. 3429 */ 3430 isec = inode_security(inode); 3431 if (has_cap_mac_admin(false)) 3432 error = security_sid_to_context_force(isec->sid, &context, 3433 &size); 3434 else 3435 error = security_sid_to_context(isec->sid, 3436 &context, &size); 3437 if (error) 3438 return error; 3439 error = size; 3440 if (alloc) { 3441 *buffer = context; 3442 goto out_nofree; 3443 } 3444 kfree(context); 3445 out_nofree: 3446 return error; 3447 } 3448 3449 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 3450 const void *value, size_t size, int flags) 3451 { 3452 struct inode_security_struct *isec = inode_security_novalidate(inode); 3453 struct superblock_security_struct *sbsec; 3454 u32 newsid; 3455 int rc; 3456 3457 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 3458 return -EOPNOTSUPP; 3459 3460 sbsec = selinux_superblock(inode->i_sb); 3461 if (!(sbsec->flags & SBLABEL_MNT)) 3462 return -EOPNOTSUPP; 3463 3464 if (!value || !size) 3465 return -EACCES; 3466 3467 rc = security_context_to_sid(value, size, &newsid, 3468 GFP_KERNEL); 3469 if (rc) 3470 return rc; 3471 3472 spin_lock(&isec->lock); 3473 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3474 isec->sid = newsid; 3475 isec->initialized = LABEL_INITIALIZED; 3476 spin_unlock(&isec->lock); 3477 return 0; 3478 } 3479 3480 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 3481 { 3482 const int len = sizeof(XATTR_NAME_SELINUX); 3483 3484 if (!selinux_initialized()) 3485 return 0; 3486 3487 if (buffer && len <= buffer_size) 3488 memcpy(buffer, XATTR_NAME_SELINUX, len); 3489 return len; 3490 } 3491 3492 static void selinux_inode_getsecid(struct inode *inode, u32 *secid) 3493 { 3494 struct inode_security_struct *isec = inode_security_novalidate(inode); 3495 *secid = isec->sid; 3496 } 3497 3498 static int selinux_inode_copy_up(struct dentry *src, struct cred **new) 3499 { 3500 u32 sid; 3501 struct task_security_struct *tsec; 3502 struct cred *new_creds = *new; 3503 3504 if (new_creds == NULL) { 3505 new_creds = prepare_creds(); 3506 if (!new_creds) 3507 return -ENOMEM; 3508 } 3509 3510 tsec = selinux_cred(new_creds); 3511 /* Get label from overlay inode and set it in create_sid */ 3512 selinux_inode_getsecid(d_inode(src), &sid); 3513 tsec->create_sid = sid; 3514 *new = new_creds; 3515 return 0; 3516 } 3517 3518 static int selinux_inode_copy_up_xattr(const char *name) 3519 { 3520 /* The copy_up hook above sets the initial context on an inode, but we 3521 * don't then want to overwrite it by blindly copying all the lower 3522 * xattrs up. Instead, we have to filter out SELinux-related xattrs. 3523 */ 3524 if (strcmp(name, XATTR_NAME_SELINUX) == 0) 3525 return 1; /* Discard */ 3526 /* 3527 * Any other attribute apart from SELINUX is not claimed, supported 3528 * by selinux. 3529 */ 3530 return -EOPNOTSUPP; 3531 } 3532 3533 /* kernfs node operations */ 3534 3535 static int selinux_kernfs_init_security(struct kernfs_node *kn_dir, 3536 struct kernfs_node *kn) 3537 { 3538 const struct task_security_struct *tsec = selinux_cred(current_cred()); 3539 u32 parent_sid, newsid, clen; 3540 int rc; 3541 char *context; 3542 3543 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0); 3544 if (rc == -ENODATA) 3545 return 0; 3546 else if (rc < 0) 3547 return rc; 3548 3549 clen = (u32)rc; 3550 context = kmalloc(clen, GFP_KERNEL); 3551 if (!context) 3552 return -ENOMEM; 3553 3554 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen); 3555 if (rc < 0) { 3556 kfree(context); 3557 return rc; 3558 } 3559 3560 rc = security_context_to_sid(context, clen, &parent_sid, 3561 GFP_KERNEL); 3562 kfree(context); 3563 if (rc) 3564 return rc; 3565 3566 if (tsec->create_sid) { 3567 newsid = tsec->create_sid; 3568 } else { 3569 u16 secclass = inode_mode_to_security_class(kn->mode); 3570 struct qstr q; 3571 3572 q.name = kn->name; 3573 q.hash_len = hashlen_string(kn_dir, kn->name); 3574 3575 rc = security_transition_sid(tsec->sid, 3576 parent_sid, secclass, &q, 3577 &newsid); 3578 if (rc) 3579 return rc; 3580 } 3581 3582 rc = security_sid_to_context_force(newsid, 3583 &context, &clen); 3584 if (rc) 3585 return rc; 3586 3587 rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen, 3588 XATTR_CREATE); 3589 kfree(context); 3590 return rc; 3591 } 3592 3593 3594 /* file security operations */ 3595 3596 static int selinux_revalidate_file_permission(struct file *file, int mask) 3597 { 3598 const struct cred *cred = current_cred(); 3599 struct inode *inode = file_inode(file); 3600 3601 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 3602 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 3603 mask |= MAY_APPEND; 3604 3605 return file_has_perm(cred, file, 3606 file_mask_to_av(inode->i_mode, mask)); 3607 } 3608 3609 static int selinux_file_permission(struct file *file, int mask) 3610 { 3611 struct inode *inode = file_inode(file); 3612 struct file_security_struct *fsec = selinux_file(file); 3613 struct inode_security_struct *isec; 3614 u32 sid = current_sid(); 3615 3616 if (!mask) 3617 /* No permission to check. Existence test. */ 3618 return 0; 3619 3620 isec = inode_security(inode); 3621 if (sid == fsec->sid && fsec->isid == isec->sid && 3622 fsec->pseqno == avc_policy_seqno()) 3623 /* No change since file_open check. */ 3624 return 0; 3625 3626 return selinux_revalidate_file_permission(file, mask); 3627 } 3628 3629 static int selinux_file_alloc_security(struct file *file) 3630 { 3631 struct file_security_struct *fsec = selinux_file(file); 3632 u32 sid = current_sid(); 3633 3634 fsec->sid = sid; 3635 fsec->fown_sid = sid; 3636 3637 return 0; 3638 } 3639 3640 /* 3641 * Check whether a task has the ioctl permission and cmd 3642 * operation to an inode. 3643 */ 3644 static int ioctl_has_perm(const struct cred *cred, struct file *file, 3645 u32 requested, u16 cmd) 3646 { 3647 struct common_audit_data ad; 3648 struct file_security_struct *fsec = selinux_file(file); 3649 struct inode *inode = file_inode(file); 3650 struct inode_security_struct *isec; 3651 struct lsm_ioctlop_audit ioctl; 3652 u32 ssid = cred_sid(cred); 3653 int rc; 3654 u8 driver = cmd >> 8; 3655 u8 xperm = cmd & 0xff; 3656 3657 ad.type = LSM_AUDIT_DATA_IOCTL_OP; 3658 ad.u.op = &ioctl; 3659 ad.u.op->cmd = cmd; 3660 ad.u.op->path = file->f_path; 3661 3662 if (ssid != fsec->sid) { 3663 rc = avc_has_perm(ssid, fsec->sid, 3664 SECCLASS_FD, 3665 FD__USE, 3666 &ad); 3667 if (rc) 3668 goto out; 3669 } 3670 3671 if (unlikely(IS_PRIVATE(inode))) 3672 return 0; 3673 3674 isec = inode_security(inode); 3675 rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass, 3676 requested, driver, xperm, &ad); 3677 out: 3678 return rc; 3679 } 3680 3681 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 3682 unsigned long arg) 3683 { 3684 const struct cred *cred = current_cred(); 3685 int error = 0; 3686 3687 switch (cmd) { 3688 case FIONREAD: 3689 case FIBMAP: 3690 case FIGETBSZ: 3691 case FS_IOC_GETFLAGS: 3692 case FS_IOC_GETVERSION: 3693 error = file_has_perm(cred, file, FILE__GETATTR); 3694 break; 3695 3696 case FS_IOC_SETFLAGS: 3697 case FS_IOC_SETVERSION: 3698 error = file_has_perm(cred, file, FILE__SETATTR); 3699 break; 3700 3701 /* sys_ioctl() checks */ 3702 case FIONBIO: 3703 case FIOASYNC: 3704 error = file_has_perm(cred, file, 0); 3705 break; 3706 3707 case KDSKBENT: 3708 case KDSKBSENT: 3709 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG, 3710 CAP_OPT_NONE, true); 3711 break; 3712 3713 case FIOCLEX: 3714 case FIONCLEX: 3715 if (!selinux_policycap_ioctl_skip_cloexec()) 3716 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd); 3717 break; 3718 3719 /* default case assumes that the command will go 3720 * to the file's ioctl() function. 3721 */ 3722 default: 3723 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd); 3724 } 3725 return error; 3726 } 3727 3728 static int selinux_file_ioctl_compat(struct file *file, unsigned int cmd, 3729 unsigned long arg) 3730 { 3731 /* 3732 * If we are in a 64-bit kernel running 32-bit userspace, we need to 3733 * make sure we don't compare 32-bit flags to 64-bit flags. 3734 */ 3735 switch (cmd) { 3736 case FS_IOC32_GETFLAGS: 3737 cmd = FS_IOC_GETFLAGS; 3738 break; 3739 case FS_IOC32_SETFLAGS: 3740 cmd = FS_IOC_SETFLAGS; 3741 break; 3742 case FS_IOC32_GETVERSION: 3743 cmd = FS_IOC_GETVERSION; 3744 break; 3745 case FS_IOC32_SETVERSION: 3746 cmd = FS_IOC_SETVERSION; 3747 break; 3748 default: 3749 break; 3750 } 3751 3752 return selinux_file_ioctl(file, cmd, arg); 3753 } 3754 3755 static int default_noexec __ro_after_init; 3756 3757 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 3758 { 3759 const struct cred *cred = current_cred(); 3760 u32 sid = cred_sid(cred); 3761 int rc = 0; 3762 3763 if (default_noexec && 3764 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) || 3765 (!shared && (prot & PROT_WRITE)))) { 3766 /* 3767 * We are making executable an anonymous mapping or a 3768 * private file mapping that will also be writable. 3769 * This has an additional check. 3770 */ 3771 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS, 3772 PROCESS__EXECMEM, NULL); 3773 if (rc) 3774 goto error; 3775 } 3776 3777 if (file) { 3778 /* read access is always possible with a mapping */ 3779 u32 av = FILE__READ; 3780 3781 /* write access only matters if the mapping is shared */ 3782 if (shared && (prot & PROT_WRITE)) 3783 av |= FILE__WRITE; 3784 3785 if (prot & PROT_EXEC) 3786 av |= FILE__EXECUTE; 3787 3788 return file_has_perm(cred, file, av); 3789 } 3790 3791 error: 3792 return rc; 3793 } 3794 3795 static int selinux_mmap_addr(unsigned long addr) 3796 { 3797 int rc = 0; 3798 3799 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) { 3800 u32 sid = current_sid(); 3801 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT, 3802 MEMPROTECT__MMAP_ZERO, NULL); 3803 } 3804 3805 return rc; 3806 } 3807 3808 static int selinux_mmap_file(struct file *file, 3809 unsigned long reqprot __always_unused, 3810 unsigned long prot, unsigned long flags) 3811 { 3812 struct common_audit_data ad; 3813 int rc; 3814 3815 if (file) { 3816 ad.type = LSM_AUDIT_DATA_FILE; 3817 ad.u.file = file; 3818 rc = inode_has_perm(current_cred(), file_inode(file), 3819 FILE__MAP, &ad); 3820 if (rc) 3821 return rc; 3822 } 3823 3824 return file_map_prot_check(file, prot, 3825 (flags & MAP_TYPE) == MAP_SHARED); 3826 } 3827 3828 static int selinux_file_mprotect(struct vm_area_struct *vma, 3829 unsigned long reqprot __always_unused, 3830 unsigned long prot) 3831 { 3832 const struct cred *cred = current_cred(); 3833 u32 sid = cred_sid(cred); 3834 3835 if (default_noexec && 3836 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 3837 int rc = 0; 3838 /* 3839 * We don't use the vma_is_initial_heap() helper as it has 3840 * a history of problems and is currently broken on systems 3841 * where there is no heap, e.g. brk == start_brk. Before 3842 * replacing the conditional below with vma_is_initial_heap(), 3843 * or something similar, please ensure that the logic is the 3844 * same as what we have below or you have tested every possible 3845 * corner case you can think to test. 3846 */ 3847 if (vma->vm_start >= vma->vm_mm->start_brk && 3848 vma->vm_end <= vma->vm_mm->brk) { 3849 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS, 3850 PROCESS__EXECHEAP, NULL); 3851 } else if (!vma->vm_file && (vma_is_initial_stack(vma) || 3852 vma_is_stack_for_current(vma))) { 3853 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS, 3854 PROCESS__EXECSTACK, NULL); 3855 } else if (vma->vm_file && vma->anon_vma) { 3856 /* 3857 * We are making executable a file mapping that has 3858 * had some COW done. Since pages might have been 3859 * written, check ability to execute the possibly 3860 * modified content. This typically should only 3861 * occur for text relocations. 3862 */ 3863 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD); 3864 } 3865 if (rc) 3866 return rc; 3867 } 3868 3869 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 3870 } 3871 3872 static int selinux_file_lock(struct file *file, unsigned int cmd) 3873 { 3874 const struct cred *cred = current_cred(); 3875 3876 return file_has_perm(cred, file, FILE__LOCK); 3877 } 3878 3879 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 3880 unsigned long arg) 3881 { 3882 const struct cred *cred = current_cred(); 3883 int err = 0; 3884 3885 switch (cmd) { 3886 case F_SETFL: 3887 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 3888 err = file_has_perm(cred, file, FILE__WRITE); 3889 break; 3890 } 3891 fallthrough; 3892 case F_SETOWN: 3893 case F_SETSIG: 3894 case F_GETFL: 3895 case F_GETOWN: 3896 case F_GETSIG: 3897 case F_GETOWNER_UIDS: 3898 /* Just check FD__USE permission */ 3899 err = file_has_perm(cred, file, 0); 3900 break; 3901 case F_GETLK: 3902 case F_SETLK: 3903 case F_SETLKW: 3904 case F_OFD_GETLK: 3905 case F_OFD_SETLK: 3906 case F_OFD_SETLKW: 3907 #if BITS_PER_LONG == 32 3908 case F_GETLK64: 3909 case F_SETLK64: 3910 case F_SETLKW64: 3911 #endif 3912 err = file_has_perm(cred, file, FILE__LOCK); 3913 break; 3914 } 3915 3916 return err; 3917 } 3918 3919 static void selinux_file_set_fowner(struct file *file) 3920 { 3921 struct file_security_struct *fsec; 3922 3923 fsec = selinux_file(file); 3924 fsec->fown_sid = current_sid(); 3925 } 3926 3927 static int selinux_file_send_sigiotask(struct task_struct *tsk, 3928 struct fown_struct *fown, int signum) 3929 { 3930 struct file *file; 3931 u32 sid = task_sid_obj(tsk); 3932 u32 perm; 3933 struct file_security_struct *fsec; 3934 3935 /* struct fown_struct is never outside the context of a struct file */ 3936 file = container_of(fown, struct file, f_owner); 3937 3938 fsec = selinux_file(file); 3939 3940 if (!signum) 3941 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 3942 else 3943 perm = signal_to_av(signum); 3944 3945 return avc_has_perm(fsec->fown_sid, sid, 3946 SECCLASS_PROCESS, perm, NULL); 3947 } 3948 3949 static int selinux_file_receive(struct file *file) 3950 { 3951 const struct cred *cred = current_cred(); 3952 3953 return file_has_perm(cred, file, file_to_av(file)); 3954 } 3955 3956 static int selinux_file_open(struct file *file) 3957 { 3958 struct file_security_struct *fsec; 3959 struct inode_security_struct *isec; 3960 3961 fsec = selinux_file(file); 3962 isec = inode_security(file_inode(file)); 3963 /* 3964 * Save inode label and policy sequence number 3965 * at open-time so that selinux_file_permission 3966 * can determine whether revalidation is necessary. 3967 * Task label is already saved in the file security 3968 * struct as its SID. 3969 */ 3970 fsec->isid = isec->sid; 3971 fsec->pseqno = avc_policy_seqno(); 3972 /* 3973 * Since the inode label or policy seqno may have changed 3974 * between the selinux_inode_permission check and the saving 3975 * of state above, recheck that access is still permitted. 3976 * Otherwise, access might never be revalidated against the 3977 * new inode label or new policy. 3978 * This check is not redundant - do not remove. 3979 */ 3980 return file_path_has_perm(file->f_cred, file, open_file_to_av(file)); 3981 } 3982 3983 /* task security operations */ 3984 3985 static int selinux_task_alloc(struct task_struct *task, 3986 unsigned long clone_flags) 3987 { 3988 u32 sid = current_sid(); 3989 3990 return avc_has_perm(sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL); 3991 } 3992 3993 /* 3994 * prepare a new set of credentials for modification 3995 */ 3996 static int selinux_cred_prepare(struct cred *new, const struct cred *old, 3997 gfp_t gfp) 3998 { 3999 const struct task_security_struct *old_tsec = selinux_cred(old); 4000 struct task_security_struct *tsec = selinux_cred(new); 4001 4002 *tsec = *old_tsec; 4003 return 0; 4004 } 4005 4006 /* 4007 * transfer the SELinux data to a blank set of creds 4008 */ 4009 static void selinux_cred_transfer(struct cred *new, const struct cred *old) 4010 { 4011 const struct task_security_struct *old_tsec = selinux_cred(old); 4012 struct task_security_struct *tsec = selinux_cred(new); 4013 4014 *tsec = *old_tsec; 4015 } 4016 4017 static void selinux_cred_getsecid(const struct cred *c, u32 *secid) 4018 { 4019 *secid = cred_sid(c); 4020 } 4021 4022 /* 4023 * set the security data for a kernel service 4024 * - all the creation contexts are set to unlabelled 4025 */ 4026 static int selinux_kernel_act_as(struct cred *new, u32 secid) 4027 { 4028 struct task_security_struct *tsec = selinux_cred(new); 4029 u32 sid = current_sid(); 4030 int ret; 4031 4032 ret = avc_has_perm(sid, secid, 4033 SECCLASS_KERNEL_SERVICE, 4034 KERNEL_SERVICE__USE_AS_OVERRIDE, 4035 NULL); 4036 if (ret == 0) { 4037 tsec->sid = secid; 4038 tsec->create_sid = 0; 4039 tsec->keycreate_sid = 0; 4040 tsec->sockcreate_sid = 0; 4041 } 4042 return ret; 4043 } 4044 4045 /* 4046 * set the file creation context in a security record to the same as the 4047 * objective context of the specified inode 4048 */ 4049 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode) 4050 { 4051 struct inode_security_struct *isec = inode_security(inode); 4052 struct task_security_struct *tsec = selinux_cred(new); 4053 u32 sid = current_sid(); 4054 int ret; 4055 4056 ret = avc_has_perm(sid, isec->sid, 4057 SECCLASS_KERNEL_SERVICE, 4058 KERNEL_SERVICE__CREATE_FILES_AS, 4059 NULL); 4060 4061 if (ret == 0) 4062 tsec->create_sid = isec->sid; 4063 return ret; 4064 } 4065 4066 static int selinux_kernel_module_request(char *kmod_name) 4067 { 4068 struct common_audit_data ad; 4069 4070 ad.type = LSM_AUDIT_DATA_KMOD; 4071 ad.u.kmod_name = kmod_name; 4072 4073 return avc_has_perm(current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM, 4074 SYSTEM__MODULE_REQUEST, &ad); 4075 } 4076 4077 static int selinux_kernel_module_from_file(struct file *file) 4078 { 4079 struct common_audit_data ad; 4080 struct inode_security_struct *isec; 4081 struct file_security_struct *fsec; 4082 u32 sid = current_sid(); 4083 int rc; 4084 4085 /* init_module */ 4086 if (file == NULL) 4087 return avc_has_perm(sid, sid, SECCLASS_SYSTEM, 4088 SYSTEM__MODULE_LOAD, NULL); 4089 4090 /* finit_module */ 4091 4092 ad.type = LSM_AUDIT_DATA_FILE; 4093 ad.u.file = file; 4094 4095 fsec = selinux_file(file); 4096 if (sid != fsec->sid) { 4097 rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad); 4098 if (rc) 4099 return rc; 4100 } 4101 4102 isec = inode_security(file_inode(file)); 4103 return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM, 4104 SYSTEM__MODULE_LOAD, &ad); 4105 } 4106 4107 static int selinux_kernel_read_file(struct file *file, 4108 enum kernel_read_file_id id, 4109 bool contents) 4110 { 4111 int rc = 0; 4112 4113 switch (id) { 4114 case READING_MODULE: 4115 rc = selinux_kernel_module_from_file(contents ? file : NULL); 4116 break; 4117 default: 4118 break; 4119 } 4120 4121 return rc; 4122 } 4123 4124 static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents) 4125 { 4126 int rc = 0; 4127 4128 switch (id) { 4129 case LOADING_MODULE: 4130 rc = selinux_kernel_module_from_file(NULL); 4131 break; 4132 default: 4133 break; 4134 } 4135 4136 return rc; 4137 } 4138 4139 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 4140 { 4141 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4142 PROCESS__SETPGID, NULL); 4143 } 4144 4145 static int selinux_task_getpgid(struct task_struct *p) 4146 { 4147 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4148 PROCESS__GETPGID, NULL); 4149 } 4150 4151 static int selinux_task_getsid(struct task_struct *p) 4152 { 4153 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4154 PROCESS__GETSESSION, NULL); 4155 } 4156 4157 static void selinux_current_getsecid_subj(u32 *secid) 4158 { 4159 *secid = current_sid(); 4160 } 4161 4162 static void selinux_task_getsecid_obj(struct task_struct *p, u32 *secid) 4163 { 4164 *secid = task_sid_obj(p); 4165 } 4166 4167 static int selinux_task_setnice(struct task_struct *p, int nice) 4168 { 4169 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4170 PROCESS__SETSCHED, NULL); 4171 } 4172 4173 static int selinux_task_setioprio(struct task_struct *p, int ioprio) 4174 { 4175 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4176 PROCESS__SETSCHED, NULL); 4177 } 4178 4179 static int selinux_task_getioprio(struct task_struct *p) 4180 { 4181 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4182 PROCESS__GETSCHED, NULL); 4183 } 4184 4185 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred, 4186 unsigned int flags) 4187 { 4188 u32 av = 0; 4189 4190 if (!flags) 4191 return 0; 4192 if (flags & LSM_PRLIMIT_WRITE) 4193 av |= PROCESS__SETRLIMIT; 4194 if (flags & LSM_PRLIMIT_READ) 4195 av |= PROCESS__GETRLIMIT; 4196 return avc_has_perm(cred_sid(cred), cred_sid(tcred), 4197 SECCLASS_PROCESS, av, NULL); 4198 } 4199 4200 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource, 4201 struct rlimit *new_rlim) 4202 { 4203 struct rlimit *old_rlim = p->signal->rlim + resource; 4204 4205 /* Control the ability to change the hard limit (whether 4206 lowering or raising it), so that the hard limit can 4207 later be used as a safe reset point for the soft limit 4208 upon context transitions. See selinux_bprm_committing_creds. */ 4209 if (old_rlim->rlim_max != new_rlim->rlim_max) 4210 return avc_has_perm(current_sid(), task_sid_obj(p), 4211 SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL); 4212 4213 return 0; 4214 } 4215 4216 static int selinux_task_setscheduler(struct task_struct *p) 4217 { 4218 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4219 PROCESS__SETSCHED, NULL); 4220 } 4221 4222 static int selinux_task_getscheduler(struct task_struct *p) 4223 { 4224 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4225 PROCESS__GETSCHED, NULL); 4226 } 4227 4228 static int selinux_task_movememory(struct task_struct *p) 4229 { 4230 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4231 PROCESS__SETSCHED, NULL); 4232 } 4233 4234 static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info, 4235 int sig, const struct cred *cred) 4236 { 4237 u32 secid; 4238 u32 perm; 4239 4240 if (!sig) 4241 perm = PROCESS__SIGNULL; /* null signal; existence test */ 4242 else 4243 perm = signal_to_av(sig); 4244 if (!cred) 4245 secid = current_sid(); 4246 else 4247 secid = cred_sid(cred); 4248 return avc_has_perm(secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL); 4249 } 4250 4251 static void selinux_task_to_inode(struct task_struct *p, 4252 struct inode *inode) 4253 { 4254 struct inode_security_struct *isec = selinux_inode(inode); 4255 u32 sid = task_sid_obj(p); 4256 4257 spin_lock(&isec->lock); 4258 isec->sclass = inode_mode_to_security_class(inode->i_mode); 4259 isec->sid = sid; 4260 isec->initialized = LABEL_INITIALIZED; 4261 spin_unlock(&isec->lock); 4262 } 4263 4264 static int selinux_userns_create(const struct cred *cred) 4265 { 4266 u32 sid = current_sid(); 4267 4268 return avc_has_perm(sid, sid, SECCLASS_USER_NAMESPACE, 4269 USER_NAMESPACE__CREATE, NULL); 4270 } 4271 4272 /* Returns error only if unable to parse addresses */ 4273 static int selinux_parse_skb_ipv4(struct sk_buff *skb, 4274 struct common_audit_data *ad, u8 *proto) 4275 { 4276 int offset, ihlen, ret = -EINVAL; 4277 struct iphdr _iph, *ih; 4278 4279 offset = skb_network_offset(skb); 4280 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 4281 if (ih == NULL) 4282 goto out; 4283 4284 ihlen = ih->ihl * 4; 4285 if (ihlen < sizeof(_iph)) 4286 goto out; 4287 4288 ad->u.net->v4info.saddr = ih->saddr; 4289 ad->u.net->v4info.daddr = ih->daddr; 4290 ret = 0; 4291 4292 if (proto) 4293 *proto = ih->protocol; 4294 4295 switch (ih->protocol) { 4296 case IPPROTO_TCP: { 4297 struct tcphdr _tcph, *th; 4298 4299 if (ntohs(ih->frag_off) & IP_OFFSET) 4300 break; 4301 4302 offset += ihlen; 4303 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 4304 if (th == NULL) 4305 break; 4306 4307 ad->u.net->sport = th->source; 4308 ad->u.net->dport = th->dest; 4309 break; 4310 } 4311 4312 case IPPROTO_UDP: { 4313 struct udphdr _udph, *uh; 4314 4315 if (ntohs(ih->frag_off) & IP_OFFSET) 4316 break; 4317 4318 offset += ihlen; 4319 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 4320 if (uh == NULL) 4321 break; 4322 4323 ad->u.net->sport = uh->source; 4324 ad->u.net->dport = uh->dest; 4325 break; 4326 } 4327 4328 case IPPROTO_DCCP: { 4329 struct dccp_hdr _dccph, *dh; 4330 4331 if (ntohs(ih->frag_off) & IP_OFFSET) 4332 break; 4333 4334 offset += ihlen; 4335 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 4336 if (dh == NULL) 4337 break; 4338 4339 ad->u.net->sport = dh->dccph_sport; 4340 ad->u.net->dport = dh->dccph_dport; 4341 break; 4342 } 4343 4344 #if IS_ENABLED(CONFIG_IP_SCTP) 4345 case IPPROTO_SCTP: { 4346 struct sctphdr _sctph, *sh; 4347 4348 if (ntohs(ih->frag_off) & IP_OFFSET) 4349 break; 4350 4351 offset += ihlen; 4352 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph); 4353 if (sh == NULL) 4354 break; 4355 4356 ad->u.net->sport = sh->source; 4357 ad->u.net->dport = sh->dest; 4358 break; 4359 } 4360 #endif 4361 default: 4362 break; 4363 } 4364 out: 4365 return ret; 4366 } 4367 4368 #if IS_ENABLED(CONFIG_IPV6) 4369 4370 /* Returns error only if unable to parse addresses */ 4371 static int selinux_parse_skb_ipv6(struct sk_buff *skb, 4372 struct common_audit_data *ad, u8 *proto) 4373 { 4374 u8 nexthdr; 4375 int ret = -EINVAL, offset; 4376 struct ipv6hdr _ipv6h, *ip6; 4377 __be16 frag_off; 4378 4379 offset = skb_network_offset(skb); 4380 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 4381 if (ip6 == NULL) 4382 goto out; 4383 4384 ad->u.net->v6info.saddr = ip6->saddr; 4385 ad->u.net->v6info.daddr = ip6->daddr; 4386 ret = 0; 4387 4388 nexthdr = ip6->nexthdr; 4389 offset += sizeof(_ipv6h); 4390 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off); 4391 if (offset < 0) 4392 goto out; 4393 4394 if (proto) 4395 *proto = nexthdr; 4396 4397 switch (nexthdr) { 4398 case IPPROTO_TCP: { 4399 struct tcphdr _tcph, *th; 4400 4401 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 4402 if (th == NULL) 4403 break; 4404 4405 ad->u.net->sport = th->source; 4406 ad->u.net->dport = th->dest; 4407 break; 4408 } 4409 4410 case IPPROTO_UDP: { 4411 struct udphdr _udph, *uh; 4412 4413 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 4414 if (uh == NULL) 4415 break; 4416 4417 ad->u.net->sport = uh->source; 4418 ad->u.net->dport = uh->dest; 4419 break; 4420 } 4421 4422 case IPPROTO_DCCP: { 4423 struct dccp_hdr _dccph, *dh; 4424 4425 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 4426 if (dh == NULL) 4427 break; 4428 4429 ad->u.net->sport = dh->dccph_sport; 4430 ad->u.net->dport = dh->dccph_dport; 4431 break; 4432 } 4433 4434 #if IS_ENABLED(CONFIG_IP_SCTP) 4435 case IPPROTO_SCTP: { 4436 struct sctphdr _sctph, *sh; 4437 4438 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph); 4439 if (sh == NULL) 4440 break; 4441 4442 ad->u.net->sport = sh->source; 4443 ad->u.net->dport = sh->dest; 4444 break; 4445 } 4446 #endif 4447 /* includes fragments */ 4448 default: 4449 break; 4450 } 4451 out: 4452 return ret; 4453 } 4454 4455 #endif /* IPV6 */ 4456 4457 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad, 4458 char **_addrp, int src, u8 *proto) 4459 { 4460 char *addrp; 4461 int ret; 4462 4463 switch (ad->u.net->family) { 4464 case PF_INET: 4465 ret = selinux_parse_skb_ipv4(skb, ad, proto); 4466 if (ret) 4467 goto parse_error; 4468 addrp = (char *)(src ? &ad->u.net->v4info.saddr : 4469 &ad->u.net->v4info.daddr); 4470 goto okay; 4471 4472 #if IS_ENABLED(CONFIG_IPV6) 4473 case PF_INET6: 4474 ret = selinux_parse_skb_ipv6(skb, ad, proto); 4475 if (ret) 4476 goto parse_error; 4477 addrp = (char *)(src ? &ad->u.net->v6info.saddr : 4478 &ad->u.net->v6info.daddr); 4479 goto okay; 4480 #endif /* IPV6 */ 4481 default: 4482 addrp = NULL; 4483 goto okay; 4484 } 4485 4486 parse_error: 4487 pr_warn( 4488 "SELinux: failure in selinux_parse_skb()," 4489 " unable to parse packet\n"); 4490 return ret; 4491 4492 okay: 4493 if (_addrp) 4494 *_addrp = addrp; 4495 return 0; 4496 } 4497 4498 /** 4499 * selinux_skb_peerlbl_sid - Determine the peer label of a packet 4500 * @skb: the packet 4501 * @family: protocol family 4502 * @sid: the packet's peer label SID 4503 * 4504 * Description: 4505 * Check the various different forms of network peer labeling and determine 4506 * the peer label/SID for the packet; most of the magic actually occurs in 4507 * the security server function security_net_peersid_cmp(). The function 4508 * returns zero if the value in @sid is valid (although it may be SECSID_NULL) 4509 * or -EACCES if @sid is invalid due to inconsistencies with the different 4510 * peer labels. 4511 * 4512 */ 4513 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid) 4514 { 4515 int err; 4516 u32 xfrm_sid; 4517 u32 nlbl_sid; 4518 u32 nlbl_type; 4519 4520 err = selinux_xfrm_skb_sid(skb, &xfrm_sid); 4521 if (unlikely(err)) 4522 return -EACCES; 4523 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid); 4524 if (unlikely(err)) 4525 return -EACCES; 4526 4527 err = security_net_peersid_resolve(nlbl_sid, 4528 nlbl_type, xfrm_sid, sid); 4529 if (unlikely(err)) { 4530 pr_warn( 4531 "SELinux: failure in selinux_skb_peerlbl_sid()," 4532 " unable to determine packet's peer label\n"); 4533 return -EACCES; 4534 } 4535 4536 return 0; 4537 } 4538 4539 /** 4540 * selinux_conn_sid - Determine the child socket label for a connection 4541 * @sk_sid: the parent socket's SID 4542 * @skb_sid: the packet's SID 4543 * @conn_sid: the resulting connection SID 4544 * 4545 * If @skb_sid is valid then the user:role:type information from @sk_sid is 4546 * combined with the MLS information from @skb_sid in order to create 4547 * @conn_sid. If @skb_sid is not valid then @conn_sid is simply a copy 4548 * of @sk_sid. Returns zero on success, negative values on failure. 4549 * 4550 */ 4551 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid) 4552 { 4553 int err = 0; 4554 4555 if (skb_sid != SECSID_NULL) 4556 err = security_sid_mls_copy(sk_sid, skb_sid, 4557 conn_sid); 4558 else 4559 *conn_sid = sk_sid; 4560 4561 return err; 4562 } 4563 4564 /* socket security operations */ 4565 4566 static int socket_sockcreate_sid(const struct task_security_struct *tsec, 4567 u16 secclass, u32 *socksid) 4568 { 4569 if (tsec->sockcreate_sid > SECSID_NULL) { 4570 *socksid = tsec->sockcreate_sid; 4571 return 0; 4572 } 4573 4574 return security_transition_sid(tsec->sid, tsec->sid, 4575 secclass, NULL, socksid); 4576 } 4577 4578 static int sock_has_perm(struct sock *sk, u32 perms) 4579 { 4580 struct sk_security_struct *sksec = sk->sk_security; 4581 struct common_audit_data ad; 4582 struct lsm_network_audit net; 4583 4584 if (sksec->sid == SECINITSID_KERNEL) 4585 return 0; 4586 4587 ad_net_init_from_sk(&ad, &net, sk); 4588 4589 return avc_has_perm(current_sid(), sksec->sid, sksec->sclass, perms, 4590 &ad); 4591 } 4592 4593 static int selinux_socket_create(int family, int type, 4594 int protocol, int kern) 4595 { 4596 const struct task_security_struct *tsec = selinux_cred(current_cred()); 4597 u32 newsid; 4598 u16 secclass; 4599 int rc; 4600 4601 if (kern) 4602 return 0; 4603 4604 secclass = socket_type_to_security_class(family, type, protocol); 4605 rc = socket_sockcreate_sid(tsec, secclass, &newsid); 4606 if (rc) 4607 return rc; 4608 4609 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL); 4610 } 4611 4612 static int selinux_socket_post_create(struct socket *sock, int family, 4613 int type, int protocol, int kern) 4614 { 4615 const struct task_security_struct *tsec = selinux_cred(current_cred()); 4616 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock)); 4617 struct sk_security_struct *sksec; 4618 u16 sclass = socket_type_to_security_class(family, type, protocol); 4619 u32 sid = SECINITSID_KERNEL; 4620 int err = 0; 4621 4622 if (!kern) { 4623 err = socket_sockcreate_sid(tsec, sclass, &sid); 4624 if (err) 4625 return err; 4626 } 4627 4628 isec->sclass = sclass; 4629 isec->sid = sid; 4630 isec->initialized = LABEL_INITIALIZED; 4631 4632 if (sock->sk) { 4633 sksec = sock->sk->sk_security; 4634 sksec->sclass = sclass; 4635 sksec->sid = sid; 4636 /* Allows detection of the first association on this socket */ 4637 if (sksec->sclass == SECCLASS_SCTP_SOCKET) 4638 sksec->sctp_assoc_state = SCTP_ASSOC_UNSET; 4639 4640 err = selinux_netlbl_socket_post_create(sock->sk, family); 4641 } 4642 4643 return err; 4644 } 4645 4646 static int selinux_socket_socketpair(struct socket *socka, 4647 struct socket *sockb) 4648 { 4649 struct sk_security_struct *sksec_a = socka->sk->sk_security; 4650 struct sk_security_struct *sksec_b = sockb->sk->sk_security; 4651 4652 sksec_a->peer_sid = sksec_b->sid; 4653 sksec_b->peer_sid = sksec_a->sid; 4654 4655 return 0; 4656 } 4657 4658 /* Range of port numbers used to automatically bind. 4659 Need to determine whether we should perform a name_bind 4660 permission check between the socket and the port number. */ 4661 4662 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 4663 { 4664 struct sock *sk = sock->sk; 4665 struct sk_security_struct *sksec = sk->sk_security; 4666 u16 family; 4667 int err; 4668 4669 err = sock_has_perm(sk, SOCKET__BIND); 4670 if (err) 4671 goto out; 4672 4673 /* If PF_INET or PF_INET6, check name_bind permission for the port. */ 4674 family = sk->sk_family; 4675 if (family == PF_INET || family == PF_INET6) { 4676 char *addrp; 4677 struct common_audit_data ad; 4678 struct lsm_network_audit net = {0,}; 4679 struct sockaddr_in *addr4 = NULL; 4680 struct sockaddr_in6 *addr6 = NULL; 4681 u16 family_sa; 4682 unsigned short snum; 4683 u32 sid, node_perm; 4684 4685 /* 4686 * sctp_bindx(3) calls via selinux_sctp_bind_connect() 4687 * that validates multiple binding addresses. Because of this 4688 * need to check address->sa_family as it is possible to have 4689 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET. 4690 */ 4691 if (addrlen < offsetofend(struct sockaddr, sa_family)) 4692 return -EINVAL; 4693 family_sa = address->sa_family; 4694 switch (family_sa) { 4695 case AF_UNSPEC: 4696 case AF_INET: 4697 if (addrlen < sizeof(struct sockaddr_in)) 4698 return -EINVAL; 4699 addr4 = (struct sockaddr_in *)address; 4700 if (family_sa == AF_UNSPEC) { 4701 if (family == PF_INET6) { 4702 /* Length check from inet6_bind_sk() */ 4703 if (addrlen < SIN6_LEN_RFC2133) 4704 return -EINVAL; 4705 /* Family check from __inet6_bind() */ 4706 goto err_af; 4707 } 4708 /* see __inet_bind(), we only want to allow 4709 * AF_UNSPEC if the address is INADDR_ANY 4710 */ 4711 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY)) 4712 goto err_af; 4713 family_sa = AF_INET; 4714 } 4715 snum = ntohs(addr4->sin_port); 4716 addrp = (char *)&addr4->sin_addr.s_addr; 4717 break; 4718 case AF_INET6: 4719 if (addrlen < SIN6_LEN_RFC2133) 4720 return -EINVAL; 4721 addr6 = (struct sockaddr_in6 *)address; 4722 snum = ntohs(addr6->sin6_port); 4723 addrp = (char *)&addr6->sin6_addr.s6_addr; 4724 break; 4725 default: 4726 goto err_af; 4727 } 4728 4729 ad.type = LSM_AUDIT_DATA_NET; 4730 ad.u.net = &net; 4731 ad.u.net->sport = htons(snum); 4732 ad.u.net->family = family_sa; 4733 4734 if (snum) { 4735 int low, high; 4736 4737 inet_get_local_port_range(sock_net(sk), &low, &high); 4738 4739 if (inet_port_requires_bind_service(sock_net(sk), snum) || 4740 snum < low || snum > high) { 4741 err = sel_netport_sid(sk->sk_protocol, 4742 snum, &sid); 4743 if (err) 4744 goto out; 4745 err = avc_has_perm(sksec->sid, sid, 4746 sksec->sclass, 4747 SOCKET__NAME_BIND, &ad); 4748 if (err) 4749 goto out; 4750 } 4751 } 4752 4753 switch (sksec->sclass) { 4754 case SECCLASS_TCP_SOCKET: 4755 node_perm = TCP_SOCKET__NODE_BIND; 4756 break; 4757 4758 case SECCLASS_UDP_SOCKET: 4759 node_perm = UDP_SOCKET__NODE_BIND; 4760 break; 4761 4762 case SECCLASS_DCCP_SOCKET: 4763 node_perm = DCCP_SOCKET__NODE_BIND; 4764 break; 4765 4766 case SECCLASS_SCTP_SOCKET: 4767 node_perm = SCTP_SOCKET__NODE_BIND; 4768 break; 4769 4770 default: 4771 node_perm = RAWIP_SOCKET__NODE_BIND; 4772 break; 4773 } 4774 4775 err = sel_netnode_sid(addrp, family_sa, &sid); 4776 if (err) 4777 goto out; 4778 4779 if (family_sa == AF_INET) 4780 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr; 4781 else 4782 ad.u.net->v6info.saddr = addr6->sin6_addr; 4783 4784 err = avc_has_perm(sksec->sid, sid, 4785 sksec->sclass, node_perm, &ad); 4786 if (err) 4787 goto out; 4788 } 4789 out: 4790 return err; 4791 err_af: 4792 /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */ 4793 if (sksec->sclass == SECCLASS_SCTP_SOCKET) 4794 return -EINVAL; 4795 return -EAFNOSUPPORT; 4796 } 4797 4798 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3) 4799 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst 4800 */ 4801 static int selinux_socket_connect_helper(struct socket *sock, 4802 struct sockaddr *address, int addrlen) 4803 { 4804 struct sock *sk = sock->sk; 4805 struct sk_security_struct *sksec = sk->sk_security; 4806 int err; 4807 4808 err = sock_has_perm(sk, SOCKET__CONNECT); 4809 if (err) 4810 return err; 4811 if (addrlen < offsetofend(struct sockaddr, sa_family)) 4812 return -EINVAL; 4813 4814 /* connect(AF_UNSPEC) has special handling, as it is a documented 4815 * way to disconnect the socket 4816 */ 4817 if (address->sa_family == AF_UNSPEC) 4818 return 0; 4819 4820 /* 4821 * If a TCP, DCCP or SCTP socket, check name_connect permission 4822 * for the port. 4823 */ 4824 if (sksec->sclass == SECCLASS_TCP_SOCKET || 4825 sksec->sclass == SECCLASS_DCCP_SOCKET || 4826 sksec->sclass == SECCLASS_SCTP_SOCKET) { 4827 struct common_audit_data ad; 4828 struct lsm_network_audit net = {0,}; 4829 struct sockaddr_in *addr4 = NULL; 4830 struct sockaddr_in6 *addr6 = NULL; 4831 unsigned short snum; 4832 u32 sid, perm; 4833 4834 /* sctp_connectx(3) calls via selinux_sctp_bind_connect() 4835 * that validates multiple connect addresses. Because of this 4836 * need to check address->sa_family as it is possible to have 4837 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET. 4838 */ 4839 switch (address->sa_family) { 4840 case AF_INET: 4841 addr4 = (struct sockaddr_in *)address; 4842 if (addrlen < sizeof(struct sockaddr_in)) 4843 return -EINVAL; 4844 snum = ntohs(addr4->sin_port); 4845 break; 4846 case AF_INET6: 4847 addr6 = (struct sockaddr_in6 *)address; 4848 if (addrlen < SIN6_LEN_RFC2133) 4849 return -EINVAL; 4850 snum = ntohs(addr6->sin6_port); 4851 break; 4852 default: 4853 /* Note that SCTP services expect -EINVAL, whereas 4854 * others expect -EAFNOSUPPORT. 4855 */ 4856 if (sksec->sclass == SECCLASS_SCTP_SOCKET) 4857 return -EINVAL; 4858 else 4859 return -EAFNOSUPPORT; 4860 } 4861 4862 err = sel_netport_sid(sk->sk_protocol, snum, &sid); 4863 if (err) 4864 return err; 4865 4866 switch (sksec->sclass) { 4867 case SECCLASS_TCP_SOCKET: 4868 perm = TCP_SOCKET__NAME_CONNECT; 4869 break; 4870 case SECCLASS_DCCP_SOCKET: 4871 perm = DCCP_SOCKET__NAME_CONNECT; 4872 break; 4873 case SECCLASS_SCTP_SOCKET: 4874 perm = SCTP_SOCKET__NAME_CONNECT; 4875 break; 4876 } 4877 4878 ad.type = LSM_AUDIT_DATA_NET; 4879 ad.u.net = &net; 4880 ad.u.net->dport = htons(snum); 4881 ad.u.net->family = address->sa_family; 4882 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad); 4883 if (err) 4884 return err; 4885 } 4886 4887 return 0; 4888 } 4889 4890 /* Supports connect(2), see comments in selinux_socket_connect_helper() */ 4891 static int selinux_socket_connect(struct socket *sock, 4892 struct sockaddr *address, int addrlen) 4893 { 4894 int err; 4895 struct sock *sk = sock->sk; 4896 4897 err = selinux_socket_connect_helper(sock, address, addrlen); 4898 if (err) 4899 return err; 4900 4901 return selinux_netlbl_socket_connect(sk, address); 4902 } 4903 4904 static int selinux_socket_listen(struct socket *sock, int backlog) 4905 { 4906 return sock_has_perm(sock->sk, SOCKET__LISTEN); 4907 } 4908 4909 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 4910 { 4911 int err; 4912 struct inode_security_struct *isec; 4913 struct inode_security_struct *newisec; 4914 u16 sclass; 4915 u32 sid; 4916 4917 err = sock_has_perm(sock->sk, SOCKET__ACCEPT); 4918 if (err) 4919 return err; 4920 4921 isec = inode_security_novalidate(SOCK_INODE(sock)); 4922 spin_lock(&isec->lock); 4923 sclass = isec->sclass; 4924 sid = isec->sid; 4925 spin_unlock(&isec->lock); 4926 4927 newisec = inode_security_novalidate(SOCK_INODE(newsock)); 4928 newisec->sclass = sclass; 4929 newisec->sid = sid; 4930 newisec->initialized = LABEL_INITIALIZED; 4931 4932 return 0; 4933 } 4934 4935 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 4936 int size) 4937 { 4938 return sock_has_perm(sock->sk, SOCKET__WRITE); 4939 } 4940 4941 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 4942 int size, int flags) 4943 { 4944 return sock_has_perm(sock->sk, SOCKET__READ); 4945 } 4946 4947 static int selinux_socket_getsockname(struct socket *sock) 4948 { 4949 return sock_has_perm(sock->sk, SOCKET__GETATTR); 4950 } 4951 4952 static int selinux_socket_getpeername(struct socket *sock) 4953 { 4954 return sock_has_perm(sock->sk, SOCKET__GETATTR); 4955 } 4956 4957 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname) 4958 { 4959 int err; 4960 4961 err = sock_has_perm(sock->sk, SOCKET__SETOPT); 4962 if (err) 4963 return err; 4964 4965 return selinux_netlbl_socket_setsockopt(sock, level, optname); 4966 } 4967 4968 static int selinux_socket_getsockopt(struct socket *sock, int level, 4969 int optname) 4970 { 4971 return sock_has_perm(sock->sk, SOCKET__GETOPT); 4972 } 4973 4974 static int selinux_socket_shutdown(struct socket *sock, int how) 4975 { 4976 return sock_has_perm(sock->sk, SOCKET__SHUTDOWN); 4977 } 4978 4979 static int selinux_socket_unix_stream_connect(struct sock *sock, 4980 struct sock *other, 4981 struct sock *newsk) 4982 { 4983 struct sk_security_struct *sksec_sock = sock->sk_security; 4984 struct sk_security_struct *sksec_other = other->sk_security; 4985 struct sk_security_struct *sksec_new = newsk->sk_security; 4986 struct common_audit_data ad; 4987 struct lsm_network_audit net; 4988 int err; 4989 4990 ad_net_init_from_sk(&ad, &net, other); 4991 4992 err = avc_has_perm(sksec_sock->sid, sksec_other->sid, 4993 sksec_other->sclass, 4994 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 4995 if (err) 4996 return err; 4997 4998 /* server child socket */ 4999 sksec_new->peer_sid = sksec_sock->sid; 5000 err = security_sid_mls_copy(sksec_other->sid, 5001 sksec_sock->sid, &sksec_new->sid); 5002 if (err) 5003 return err; 5004 5005 /* connecting socket */ 5006 sksec_sock->peer_sid = sksec_new->sid; 5007 5008 return 0; 5009 } 5010 5011 static int selinux_socket_unix_may_send(struct socket *sock, 5012 struct socket *other) 5013 { 5014 struct sk_security_struct *ssec = sock->sk->sk_security; 5015 struct sk_security_struct *osec = other->sk->sk_security; 5016 struct common_audit_data ad; 5017 struct lsm_network_audit net; 5018 5019 ad_net_init_from_sk(&ad, &net, other->sk); 5020 5021 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO, 5022 &ad); 5023 } 5024 5025 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex, 5026 char *addrp, u16 family, u32 peer_sid, 5027 struct common_audit_data *ad) 5028 { 5029 int err; 5030 u32 if_sid; 5031 u32 node_sid; 5032 5033 err = sel_netif_sid(ns, ifindex, &if_sid); 5034 if (err) 5035 return err; 5036 err = avc_has_perm(peer_sid, if_sid, 5037 SECCLASS_NETIF, NETIF__INGRESS, ad); 5038 if (err) 5039 return err; 5040 5041 err = sel_netnode_sid(addrp, family, &node_sid); 5042 if (err) 5043 return err; 5044 return avc_has_perm(peer_sid, node_sid, 5045 SECCLASS_NODE, NODE__RECVFROM, ad); 5046 } 5047 5048 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 5049 u16 family) 5050 { 5051 int err = 0; 5052 struct sk_security_struct *sksec = sk->sk_security; 5053 u32 sk_sid = sksec->sid; 5054 struct common_audit_data ad; 5055 struct lsm_network_audit net; 5056 char *addrp; 5057 5058 ad_net_init_from_iif(&ad, &net, skb->skb_iif, family); 5059 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 5060 if (err) 5061 return err; 5062 5063 if (selinux_secmark_enabled()) { 5064 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 5065 PACKET__RECV, &ad); 5066 if (err) 5067 return err; 5068 } 5069 5070 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad); 5071 if (err) 5072 return err; 5073 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad); 5074 5075 return err; 5076 } 5077 5078 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 5079 { 5080 int err, peerlbl_active, secmark_active; 5081 struct sk_security_struct *sksec = sk->sk_security; 5082 u16 family = sk->sk_family; 5083 u32 sk_sid = sksec->sid; 5084 struct common_audit_data ad; 5085 struct lsm_network_audit net; 5086 char *addrp; 5087 5088 if (family != PF_INET && family != PF_INET6) 5089 return 0; 5090 5091 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 5092 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 5093 family = PF_INET; 5094 5095 /* If any sort of compatibility mode is enabled then handoff processing 5096 * to the selinux_sock_rcv_skb_compat() function to deal with the 5097 * special handling. We do this in an attempt to keep this function 5098 * as fast and as clean as possible. */ 5099 if (!selinux_policycap_netpeer()) 5100 return selinux_sock_rcv_skb_compat(sk, skb, family); 5101 5102 secmark_active = selinux_secmark_enabled(); 5103 peerlbl_active = selinux_peerlbl_enabled(); 5104 if (!secmark_active && !peerlbl_active) 5105 return 0; 5106 5107 ad_net_init_from_iif(&ad, &net, skb->skb_iif, family); 5108 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 5109 if (err) 5110 return err; 5111 5112 if (peerlbl_active) { 5113 u32 peer_sid; 5114 5115 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 5116 if (err) 5117 return err; 5118 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif, 5119 addrp, family, peer_sid, &ad); 5120 if (err) { 5121 selinux_netlbl_err(skb, family, err, 0); 5122 return err; 5123 } 5124 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER, 5125 PEER__RECV, &ad); 5126 if (err) { 5127 selinux_netlbl_err(skb, family, err, 0); 5128 return err; 5129 } 5130 } 5131 5132 if (secmark_active) { 5133 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 5134 PACKET__RECV, &ad); 5135 if (err) 5136 return err; 5137 } 5138 5139 return err; 5140 } 5141 5142 static int selinux_socket_getpeersec_stream(struct socket *sock, 5143 sockptr_t optval, sockptr_t optlen, 5144 unsigned int len) 5145 { 5146 int err = 0; 5147 char *scontext = NULL; 5148 u32 scontext_len; 5149 struct sk_security_struct *sksec = sock->sk->sk_security; 5150 u32 peer_sid = SECSID_NULL; 5151 5152 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 5153 sksec->sclass == SECCLASS_TCP_SOCKET || 5154 sksec->sclass == SECCLASS_SCTP_SOCKET) 5155 peer_sid = sksec->peer_sid; 5156 if (peer_sid == SECSID_NULL) 5157 return -ENOPROTOOPT; 5158 5159 err = security_sid_to_context(peer_sid, &scontext, 5160 &scontext_len); 5161 if (err) 5162 return err; 5163 if (scontext_len > len) { 5164 err = -ERANGE; 5165 goto out_len; 5166 } 5167 5168 if (copy_to_sockptr(optval, scontext, scontext_len)) 5169 err = -EFAULT; 5170 out_len: 5171 if (copy_to_sockptr(optlen, &scontext_len, sizeof(scontext_len))) 5172 err = -EFAULT; 5173 kfree(scontext); 5174 return err; 5175 } 5176 5177 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 5178 { 5179 u32 peer_secid = SECSID_NULL; 5180 u16 family; 5181 struct inode_security_struct *isec; 5182 5183 if (skb && skb->protocol == htons(ETH_P_IP)) 5184 family = PF_INET; 5185 else if (skb && skb->protocol == htons(ETH_P_IPV6)) 5186 family = PF_INET6; 5187 else if (sock) 5188 family = sock->sk->sk_family; 5189 else 5190 goto out; 5191 5192 if (sock && family == PF_UNIX) { 5193 isec = inode_security_novalidate(SOCK_INODE(sock)); 5194 peer_secid = isec->sid; 5195 } else if (skb) 5196 selinux_skb_peerlbl_sid(skb, family, &peer_secid); 5197 5198 out: 5199 *secid = peer_secid; 5200 if (peer_secid == SECSID_NULL) 5201 return -EINVAL; 5202 return 0; 5203 } 5204 5205 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 5206 { 5207 struct sk_security_struct *sksec; 5208 5209 sksec = kzalloc(sizeof(*sksec), priority); 5210 if (!sksec) 5211 return -ENOMEM; 5212 5213 sksec->peer_sid = SECINITSID_UNLABELED; 5214 sksec->sid = SECINITSID_UNLABELED; 5215 sksec->sclass = SECCLASS_SOCKET; 5216 selinux_netlbl_sk_security_reset(sksec); 5217 sk->sk_security = sksec; 5218 5219 return 0; 5220 } 5221 5222 static void selinux_sk_free_security(struct sock *sk) 5223 { 5224 struct sk_security_struct *sksec = sk->sk_security; 5225 5226 sk->sk_security = NULL; 5227 selinux_netlbl_sk_security_free(sksec); 5228 kfree(sksec); 5229 } 5230 5231 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 5232 { 5233 struct sk_security_struct *sksec = sk->sk_security; 5234 struct sk_security_struct *newsksec = newsk->sk_security; 5235 5236 newsksec->sid = sksec->sid; 5237 newsksec->peer_sid = sksec->peer_sid; 5238 newsksec->sclass = sksec->sclass; 5239 5240 selinux_netlbl_sk_security_reset(newsksec); 5241 } 5242 5243 static void selinux_sk_getsecid(const struct sock *sk, u32 *secid) 5244 { 5245 if (!sk) 5246 *secid = SECINITSID_ANY_SOCKET; 5247 else { 5248 const struct sk_security_struct *sksec = sk->sk_security; 5249 5250 *secid = sksec->sid; 5251 } 5252 } 5253 5254 static void selinux_sock_graft(struct sock *sk, struct socket *parent) 5255 { 5256 struct inode_security_struct *isec = 5257 inode_security_novalidate(SOCK_INODE(parent)); 5258 struct sk_security_struct *sksec = sk->sk_security; 5259 5260 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 5261 sk->sk_family == PF_UNIX) 5262 isec->sid = sksec->sid; 5263 sksec->sclass = isec->sclass; 5264 } 5265 5266 /* 5267 * Determines peer_secid for the asoc and updates socket's peer label 5268 * if it's the first association on the socket. 5269 */ 5270 static int selinux_sctp_process_new_assoc(struct sctp_association *asoc, 5271 struct sk_buff *skb) 5272 { 5273 struct sock *sk = asoc->base.sk; 5274 u16 family = sk->sk_family; 5275 struct sk_security_struct *sksec = sk->sk_security; 5276 struct common_audit_data ad; 5277 struct lsm_network_audit net; 5278 int err; 5279 5280 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 5281 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 5282 family = PF_INET; 5283 5284 if (selinux_peerlbl_enabled()) { 5285 asoc->peer_secid = SECSID_NULL; 5286 5287 /* This will return peer_sid = SECSID_NULL if there are 5288 * no peer labels, see security_net_peersid_resolve(). 5289 */ 5290 err = selinux_skb_peerlbl_sid(skb, family, &asoc->peer_secid); 5291 if (err) 5292 return err; 5293 5294 if (asoc->peer_secid == SECSID_NULL) 5295 asoc->peer_secid = SECINITSID_UNLABELED; 5296 } else { 5297 asoc->peer_secid = SECINITSID_UNLABELED; 5298 } 5299 5300 if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) { 5301 sksec->sctp_assoc_state = SCTP_ASSOC_SET; 5302 5303 /* Here as first association on socket. As the peer SID 5304 * was allowed by peer recv (and the netif/node checks), 5305 * then it is approved by policy and used as the primary 5306 * peer SID for getpeercon(3). 5307 */ 5308 sksec->peer_sid = asoc->peer_secid; 5309 } else if (sksec->peer_sid != asoc->peer_secid) { 5310 /* Other association peer SIDs are checked to enforce 5311 * consistency among the peer SIDs. 5312 */ 5313 ad_net_init_from_sk(&ad, &net, asoc->base.sk); 5314 err = avc_has_perm(sksec->peer_sid, asoc->peer_secid, 5315 sksec->sclass, SCTP_SOCKET__ASSOCIATION, 5316 &ad); 5317 if (err) 5318 return err; 5319 } 5320 return 0; 5321 } 5322 5323 /* Called whenever SCTP receives an INIT or COOKIE ECHO chunk. This 5324 * happens on an incoming connect(2), sctp_connectx(3) or 5325 * sctp_sendmsg(3) (with no association already present). 5326 */ 5327 static int selinux_sctp_assoc_request(struct sctp_association *asoc, 5328 struct sk_buff *skb) 5329 { 5330 struct sk_security_struct *sksec = asoc->base.sk->sk_security; 5331 u32 conn_sid; 5332 int err; 5333 5334 if (!selinux_policycap_extsockclass()) 5335 return 0; 5336 5337 err = selinux_sctp_process_new_assoc(asoc, skb); 5338 if (err) 5339 return err; 5340 5341 /* Compute the MLS component for the connection and store 5342 * the information in asoc. This will be used by SCTP TCP type 5343 * sockets and peeled off connections as they cause a new 5344 * socket to be generated. selinux_sctp_sk_clone() will then 5345 * plug this into the new socket. 5346 */ 5347 err = selinux_conn_sid(sksec->sid, asoc->peer_secid, &conn_sid); 5348 if (err) 5349 return err; 5350 5351 asoc->secid = conn_sid; 5352 5353 /* Set any NetLabel labels including CIPSO/CALIPSO options. */ 5354 return selinux_netlbl_sctp_assoc_request(asoc, skb); 5355 } 5356 5357 /* Called when SCTP receives a COOKIE ACK chunk as the final 5358 * response to an association request (initited by us). 5359 */ 5360 static int selinux_sctp_assoc_established(struct sctp_association *asoc, 5361 struct sk_buff *skb) 5362 { 5363 struct sk_security_struct *sksec = asoc->base.sk->sk_security; 5364 5365 if (!selinux_policycap_extsockclass()) 5366 return 0; 5367 5368 /* Inherit secid from the parent socket - this will be picked up 5369 * by selinux_sctp_sk_clone() if the association gets peeled off 5370 * into a new socket. 5371 */ 5372 asoc->secid = sksec->sid; 5373 5374 return selinux_sctp_process_new_assoc(asoc, skb); 5375 } 5376 5377 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting 5378 * based on their @optname. 5379 */ 5380 static int selinux_sctp_bind_connect(struct sock *sk, int optname, 5381 struct sockaddr *address, 5382 int addrlen) 5383 { 5384 int len, err = 0, walk_size = 0; 5385 void *addr_buf; 5386 struct sockaddr *addr; 5387 struct socket *sock; 5388 5389 if (!selinux_policycap_extsockclass()) 5390 return 0; 5391 5392 /* Process one or more addresses that may be IPv4 or IPv6 */ 5393 sock = sk->sk_socket; 5394 addr_buf = address; 5395 5396 while (walk_size < addrlen) { 5397 if (walk_size + sizeof(sa_family_t) > addrlen) 5398 return -EINVAL; 5399 5400 addr = addr_buf; 5401 switch (addr->sa_family) { 5402 case AF_UNSPEC: 5403 case AF_INET: 5404 len = sizeof(struct sockaddr_in); 5405 break; 5406 case AF_INET6: 5407 len = sizeof(struct sockaddr_in6); 5408 break; 5409 default: 5410 return -EINVAL; 5411 } 5412 5413 if (walk_size + len > addrlen) 5414 return -EINVAL; 5415 5416 err = -EINVAL; 5417 switch (optname) { 5418 /* Bind checks */ 5419 case SCTP_PRIMARY_ADDR: 5420 case SCTP_SET_PEER_PRIMARY_ADDR: 5421 case SCTP_SOCKOPT_BINDX_ADD: 5422 err = selinux_socket_bind(sock, addr, len); 5423 break; 5424 /* Connect checks */ 5425 case SCTP_SOCKOPT_CONNECTX: 5426 case SCTP_PARAM_SET_PRIMARY: 5427 case SCTP_PARAM_ADD_IP: 5428 case SCTP_SENDMSG_CONNECT: 5429 err = selinux_socket_connect_helper(sock, addr, len); 5430 if (err) 5431 return err; 5432 5433 /* As selinux_sctp_bind_connect() is called by the 5434 * SCTP protocol layer, the socket is already locked, 5435 * therefore selinux_netlbl_socket_connect_locked() 5436 * is called here. The situations handled are: 5437 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2), 5438 * whenever a new IP address is added or when a new 5439 * primary address is selected. 5440 * Note that an SCTP connect(2) call happens before 5441 * the SCTP protocol layer and is handled via 5442 * selinux_socket_connect(). 5443 */ 5444 err = selinux_netlbl_socket_connect_locked(sk, addr); 5445 break; 5446 } 5447 5448 if (err) 5449 return err; 5450 5451 addr_buf += len; 5452 walk_size += len; 5453 } 5454 5455 return 0; 5456 } 5457 5458 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */ 5459 static void selinux_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk, 5460 struct sock *newsk) 5461 { 5462 struct sk_security_struct *sksec = sk->sk_security; 5463 struct sk_security_struct *newsksec = newsk->sk_security; 5464 5465 /* If policy does not support SECCLASS_SCTP_SOCKET then call 5466 * the non-sctp clone version. 5467 */ 5468 if (!selinux_policycap_extsockclass()) 5469 return selinux_sk_clone_security(sk, newsk); 5470 5471 newsksec->sid = asoc->secid; 5472 newsksec->peer_sid = asoc->peer_secid; 5473 newsksec->sclass = sksec->sclass; 5474 selinux_netlbl_sctp_sk_clone(sk, newsk); 5475 } 5476 5477 static int selinux_mptcp_add_subflow(struct sock *sk, struct sock *ssk) 5478 { 5479 struct sk_security_struct *ssksec = ssk->sk_security; 5480 struct sk_security_struct *sksec = sk->sk_security; 5481 5482 ssksec->sclass = sksec->sclass; 5483 ssksec->sid = sksec->sid; 5484 5485 /* replace the existing subflow label deleting the existing one 5486 * and re-recreating a new label using the updated context 5487 */ 5488 selinux_netlbl_sk_security_free(ssksec); 5489 return selinux_netlbl_socket_post_create(ssk, ssk->sk_family); 5490 } 5491 5492 static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb, 5493 struct request_sock *req) 5494 { 5495 struct sk_security_struct *sksec = sk->sk_security; 5496 int err; 5497 u16 family = req->rsk_ops->family; 5498 u32 connsid; 5499 u32 peersid; 5500 5501 err = selinux_skb_peerlbl_sid(skb, family, &peersid); 5502 if (err) 5503 return err; 5504 err = selinux_conn_sid(sksec->sid, peersid, &connsid); 5505 if (err) 5506 return err; 5507 req->secid = connsid; 5508 req->peer_secid = peersid; 5509 5510 return selinux_netlbl_inet_conn_request(req, family); 5511 } 5512 5513 static void selinux_inet_csk_clone(struct sock *newsk, 5514 const struct request_sock *req) 5515 { 5516 struct sk_security_struct *newsksec = newsk->sk_security; 5517 5518 newsksec->sid = req->secid; 5519 newsksec->peer_sid = req->peer_secid; 5520 /* NOTE: Ideally, we should also get the isec->sid for the 5521 new socket in sync, but we don't have the isec available yet. 5522 So we will wait until sock_graft to do it, by which 5523 time it will have been created and available. */ 5524 5525 /* We don't need to take any sort of lock here as we are the only 5526 * thread with access to newsksec */ 5527 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family); 5528 } 5529 5530 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb) 5531 { 5532 u16 family = sk->sk_family; 5533 struct sk_security_struct *sksec = sk->sk_security; 5534 5535 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 5536 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 5537 family = PF_INET; 5538 5539 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid); 5540 } 5541 5542 static int selinux_secmark_relabel_packet(u32 sid) 5543 { 5544 const struct task_security_struct *tsec; 5545 u32 tsid; 5546 5547 tsec = selinux_cred(current_cred()); 5548 tsid = tsec->sid; 5549 5550 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, 5551 NULL); 5552 } 5553 5554 static void selinux_secmark_refcount_inc(void) 5555 { 5556 atomic_inc(&selinux_secmark_refcount); 5557 } 5558 5559 static void selinux_secmark_refcount_dec(void) 5560 { 5561 atomic_dec(&selinux_secmark_refcount); 5562 } 5563 5564 static void selinux_req_classify_flow(const struct request_sock *req, 5565 struct flowi_common *flic) 5566 { 5567 flic->flowic_secid = req->secid; 5568 } 5569 5570 static int selinux_tun_dev_alloc_security(void **security) 5571 { 5572 struct tun_security_struct *tunsec; 5573 5574 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL); 5575 if (!tunsec) 5576 return -ENOMEM; 5577 tunsec->sid = current_sid(); 5578 5579 *security = tunsec; 5580 return 0; 5581 } 5582 5583 static void selinux_tun_dev_free_security(void *security) 5584 { 5585 kfree(security); 5586 } 5587 5588 static int selinux_tun_dev_create(void) 5589 { 5590 u32 sid = current_sid(); 5591 5592 /* we aren't taking into account the "sockcreate" SID since the socket 5593 * that is being created here is not a socket in the traditional sense, 5594 * instead it is a private sock, accessible only to the kernel, and 5595 * representing a wide range of network traffic spanning multiple 5596 * connections unlike traditional sockets - check the TUN driver to 5597 * get a better understanding of why this socket is special */ 5598 5599 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE, 5600 NULL); 5601 } 5602 5603 static int selinux_tun_dev_attach_queue(void *security) 5604 { 5605 struct tun_security_struct *tunsec = security; 5606 5607 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET, 5608 TUN_SOCKET__ATTACH_QUEUE, NULL); 5609 } 5610 5611 static int selinux_tun_dev_attach(struct sock *sk, void *security) 5612 { 5613 struct tun_security_struct *tunsec = security; 5614 struct sk_security_struct *sksec = sk->sk_security; 5615 5616 /* we don't currently perform any NetLabel based labeling here and it 5617 * isn't clear that we would want to do so anyway; while we could apply 5618 * labeling without the support of the TUN user the resulting labeled 5619 * traffic from the other end of the connection would almost certainly 5620 * cause confusion to the TUN user that had no idea network labeling 5621 * protocols were being used */ 5622 5623 sksec->sid = tunsec->sid; 5624 sksec->sclass = SECCLASS_TUN_SOCKET; 5625 5626 return 0; 5627 } 5628 5629 static int selinux_tun_dev_open(void *security) 5630 { 5631 struct tun_security_struct *tunsec = security; 5632 u32 sid = current_sid(); 5633 int err; 5634 5635 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET, 5636 TUN_SOCKET__RELABELFROM, NULL); 5637 if (err) 5638 return err; 5639 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, 5640 TUN_SOCKET__RELABELTO, NULL); 5641 if (err) 5642 return err; 5643 tunsec->sid = sid; 5644 5645 return 0; 5646 } 5647 5648 #ifdef CONFIG_NETFILTER 5649 5650 static unsigned int selinux_ip_forward(void *priv, struct sk_buff *skb, 5651 const struct nf_hook_state *state) 5652 { 5653 int ifindex; 5654 u16 family; 5655 char *addrp; 5656 u32 peer_sid; 5657 struct common_audit_data ad; 5658 struct lsm_network_audit net; 5659 int secmark_active, peerlbl_active; 5660 5661 if (!selinux_policycap_netpeer()) 5662 return NF_ACCEPT; 5663 5664 secmark_active = selinux_secmark_enabled(); 5665 peerlbl_active = selinux_peerlbl_enabled(); 5666 if (!secmark_active && !peerlbl_active) 5667 return NF_ACCEPT; 5668 5669 family = state->pf; 5670 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0) 5671 return NF_DROP; 5672 5673 ifindex = state->in->ifindex; 5674 ad_net_init_from_iif(&ad, &net, ifindex, family); 5675 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0) 5676 return NF_DROP; 5677 5678 if (peerlbl_active) { 5679 int err; 5680 5681 err = selinux_inet_sys_rcv_skb(state->net, ifindex, 5682 addrp, family, peer_sid, &ad); 5683 if (err) { 5684 selinux_netlbl_err(skb, family, err, 1); 5685 return NF_DROP; 5686 } 5687 } 5688 5689 if (secmark_active) 5690 if (avc_has_perm(peer_sid, skb->secmark, 5691 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad)) 5692 return NF_DROP; 5693 5694 if (netlbl_enabled()) 5695 /* we do this in the FORWARD path and not the POST_ROUTING 5696 * path because we want to make sure we apply the necessary 5697 * labeling before IPsec is applied so we can leverage AH 5698 * protection */ 5699 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0) 5700 return NF_DROP; 5701 5702 return NF_ACCEPT; 5703 } 5704 5705 static unsigned int selinux_ip_output(void *priv, struct sk_buff *skb, 5706 const struct nf_hook_state *state) 5707 { 5708 struct sock *sk; 5709 u32 sid; 5710 5711 if (!netlbl_enabled()) 5712 return NF_ACCEPT; 5713 5714 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path 5715 * because we want to make sure we apply the necessary labeling 5716 * before IPsec is applied so we can leverage AH protection */ 5717 sk = skb->sk; 5718 if (sk) { 5719 struct sk_security_struct *sksec; 5720 5721 if (sk_listener(sk)) 5722 /* if the socket is the listening state then this 5723 * packet is a SYN-ACK packet which means it needs to 5724 * be labeled based on the connection/request_sock and 5725 * not the parent socket. unfortunately, we can't 5726 * lookup the request_sock yet as it isn't queued on 5727 * the parent socket until after the SYN-ACK is sent. 5728 * the "solution" is to simply pass the packet as-is 5729 * as any IP option based labeling should be copied 5730 * from the initial connection request (in the IP 5731 * layer). it is far from ideal, but until we get a 5732 * security label in the packet itself this is the 5733 * best we can do. */ 5734 return NF_ACCEPT; 5735 5736 /* standard practice, label using the parent socket */ 5737 sksec = sk->sk_security; 5738 sid = sksec->sid; 5739 } else 5740 sid = SECINITSID_KERNEL; 5741 if (selinux_netlbl_skbuff_setsid(skb, state->pf, sid) != 0) 5742 return NF_DROP; 5743 5744 return NF_ACCEPT; 5745 } 5746 5747 5748 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb, 5749 const struct nf_hook_state *state) 5750 { 5751 struct sock *sk; 5752 struct sk_security_struct *sksec; 5753 struct common_audit_data ad; 5754 struct lsm_network_audit net; 5755 u8 proto = 0; 5756 5757 sk = skb_to_full_sk(skb); 5758 if (sk == NULL) 5759 return NF_ACCEPT; 5760 sksec = sk->sk_security; 5761 5762 ad_net_init_from_iif(&ad, &net, state->out->ifindex, state->pf); 5763 if (selinux_parse_skb(skb, &ad, NULL, 0, &proto)) 5764 return NF_DROP; 5765 5766 if (selinux_secmark_enabled()) 5767 if (avc_has_perm(sksec->sid, skb->secmark, 5768 SECCLASS_PACKET, PACKET__SEND, &ad)) 5769 return NF_DROP_ERR(-ECONNREFUSED); 5770 5771 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto)) 5772 return NF_DROP_ERR(-ECONNREFUSED); 5773 5774 return NF_ACCEPT; 5775 } 5776 5777 static unsigned int selinux_ip_postroute(void *priv, 5778 struct sk_buff *skb, 5779 const struct nf_hook_state *state) 5780 { 5781 u16 family; 5782 u32 secmark_perm; 5783 u32 peer_sid; 5784 int ifindex; 5785 struct sock *sk; 5786 struct common_audit_data ad; 5787 struct lsm_network_audit net; 5788 char *addrp; 5789 int secmark_active, peerlbl_active; 5790 5791 /* If any sort of compatibility mode is enabled then handoff processing 5792 * to the selinux_ip_postroute_compat() function to deal with the 5793 * special handling. We do this in an attempt to keep this function 5794 * as fast and as clean as possible. */ 5795 if (!selinux_policycap_netpeer()) 5796 return selinux_ip_postroute_compat(skb, state); 5797 5798 secmark_active = selinux_secmark_enabled(); 5799 peerlbl_active = selinux_peerlbl_enabled(); 5800 if (!secmark_active && !peerlbl_active) 5801 return NF_ACCEPT; 5802 5803 sk = skb_to_full_sk(skb); 5804 5805 #ifdef CONFIG_XFRM 5806 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec 5807 * packet transformation so allow the packet to pass without any checks 5808 * since we'll have another chance to perform access control checks 5809 * when the packet is on it's final way out. 5810 * NOTE: there appear to be some IPv6 multicast cases where skb->dst 5811 * is NULL, in this case go ahead and apply access control. 5812 * NOTE: if this is a local socket (skb->sk != NULL) that is in the 5813 * TCP listening state we cannot wait until the XFRM processing 5814 * is done as we will miss out on the SA label if we do; 5815 * unfortunately, this means more work, but it is only once per 5816 * connection. */ 5817 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL && 5818 !(sk && sk_listener(sk))) 5819 return NF_ACCEPT; 5820 #endif 5821 5822 family = state->pf; 5823 if (sk == NULL) { 5824 /* Without an associated socket the packet is either coming 5825 * from the kernel or it is being forwarded; check the packet 5826 * to determine which and if the packet is being forwarded 5827 * query the packet directly to determine the security label. */ 5828 if (skb->skb_iif) { 5829 secmark_perm = PACKET__FORWARD_OUT; 5830 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid)) 5831 return NF_DROP; 5832 } else { 5833 secmark_perm = PACKET__SEND; 5834 peer_sid = SECINITSID_KERNEL; 5835 } 5836 } else if (sk_listener(sk)) { 5837 /* Locally generated packet but the associated socket is in the 5838 * listening state which means this is a SYN-ACK packet. In 5839 * this particular case the correct security label is assigned 5840 * to the connection/request_sock but unfortunately we can't 5841 * query the request_sock as it isn't queued on the parent 5842 * socket until after the SYN-ACK packet is sent; the only 5843 * viable choice is to regenerate the label like we do in 5844 * selinux_inet_conn_request(). See also selinux_ip_output() 5845 * for similar problems. */ 5846 u32 skb_sid; 5847 struct sk_security_struct *sksec; 5848 5849 sksec = sk->sk_security; 5850 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid)) 5851 return NF_DROP; 5852 /* At this point, if the returned skb peerlbl is SECSID_NULL 5853 * and the packet has been through at least one XFRM 5854 * transformation then we must be dealing with the "final" 5855 * form of labeled IPsec packet; since we've already applied 5856 * all of our access controls on this packet we can safely 5857 * pass the packet. */ 5858 if (skb_sid == SECSID_NULL) { 5859 switch (family) { 5860 case PF_INET: 5861 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED) 5862 return NF_ACCEPT; 5863 break; 5864 case PF_INET6: 5865 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED) 5866 return NF_ACCEPT; 5867 break; 5868 default: 5869 return NF_DROP_ERR(-ECONNREFUSED); 5870 } 5871 } 5872 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid)) 5873 return NF_DROP; 5874 secmark_perm = PACKET__SEND; 5875 } else { 5876 /* Locally generated packet, fetch the security label from the 5877 * associated socket. */ 5878 struct sk_security_struct *sksec = sk->sk_security; 5879 peer_sid = sksec->sid; 5880 secmark_perm = PACKET__SEND; 5881 } 5882 5883 ifindex = state->out->ifindex; 5884 ad_net_init_from_iif(&ad, &net, ifindex, family); 5885 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL)) 5886 return NF_DROP; 5887 5888 if (secmark_active) 5889 if (avc_has_perm(peer_sid, skb->secmark, 5890 SECCLASS_PACKET, secmark_perm, &ad)) 5891 return NF_DROP_ERR(-ECONNREFUSED); 5892 5893 if (peerlbl_active) { 5894 u32 if_sid; 5895 u32 node_sid; 5896 5897 if (sel_netif_sid(state->net, ifindex, &if_sid)) 5898 return NF_DROP; 5899 if (avc_has_perm(peer_sid, if_sid, 5900 SECCLASS_NETIF, NETIF__EGRESS, &ad)) 5901 return NF_DROP_ERR(-ECONNREFUSED); 5902 5903 if (sel_netnode_sid(addrp, family, &node_sid)) 5904 return NF_DROP; 5905 if (avc_has_perm(peer_sid, node_sid, 5906 SECCLASS_NODE, NODE__SENDTO, &ad)) 5907 return NF_DROP_ERR(-ECONNREFUSED); 5908 } 5909 5910 return NF_ACCEPT; 5911 } 5912 #endif /* CONFIG_NETFILTER */ 5913 5914 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 5915 { 5916 int rc = 0; 5917 unsigned int msg_len; 5918 unsigned int data_len = skb->len; 5919 unsigned char *data = skb->data; 5920 struct nlmsghdr *nlh; 5921 struct sk_security_struct *sksec = sk->sk_security; 5922 u16 sclass = sksec->sclass; 5923 u32 perm; 5924 5925 while (data_len >= nlmsg_total_size(0)) { 5926 nlh = (struct nlmsghdr *)data; 5927 5928 /* NOTE: the nlmsg_len field isn't reliably set by some netlink 5929 * users which means we can't reject skb's with bogus 5930 * length fields; our solution is to follow what 5931 * netlink_rcv_skb() does and simply skip processing at 5932 * messages with length fields that are clearly junk 5933 */ 5934 if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len) 5935 return 0; 5936 5937 rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm); 5938 if (rc == 0) { 5939 rc = sock_has_perm(sk, perm); 5940 if (rc) 5941 return rc; 5942 } else if (rc == -EINVAL) { 5943 /* -EINVAL is a missing msg/perm mapping */ 5944 pr_warn_ratelimited("SELinux: unrecognized netlink" 5945 " message: protocol=%hu nlmsg_type=%hu sclass=%s" 5946 " pid=%d comm=%s\n", 5947 sk->sk_protocol, nlh->nlmsg_type, 5948 secclass_map[sclass - 1].name, 5949 task_pid_nr(current), current->comm); 5950 if (enforcing_enabled() && 5951 !security_get_allow_unknown()) 5952 return rc; 5953 rc = 0; 5954 } else if (rc == -ENOENT) { 5955 /* -ENOENT is a missing socket/class mapping, ignore */ 5956 rc = 0; 5957 } else { 5958 return rc; 5959 } 5960 5961 /* move to the next message after applying netlink padding */ 5962 msg_len = NLMSG_ALIGN(nlh->nlmsg_len); 5963 if (msg_len >= data_len) 5964 return 0; 5965 data_len -= msg_len; 5966 data += msg_len; 5967 } 5968 5969 return rc; 5970 } 5971 5972 static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass) 5973 { 5974 isec->sclass = sclass; 5975 isec->sid = current_sid(); 5976 } 5977 5978 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 5979 u32 perms) 5980 { 5981 struct ipc_security_struct *isec; 5982 struct common_audit_data ad; 5983 u32 sid = current_sid(); 5984 5985 isec = selinux_ipc(ipc_perms); 5986 5987 ad.type = LSM_AUDIT_DATA_IPC; 5988 ad.u.ipc_id = ipc_perms->key; 5989 5990 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad); 5991 } 5992 5993 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 5994 { 5995 struct msg_security_struct *msec; 5996 5997 msec = selinux_msg_msg(msg); 5998 msec->sid = SECINITSID_UNLABELED; 5999 6000 return 0; 6001 } 6002 6003 /* message queue security operations */ 6004 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq) 6005 { 6006 struct ipc_security_struct *isec; 6007 struct common_audit_data ad; 6008 u32 sid = current_sid(); 6009 6010 isec = selinux_ipc(msq); 6011 ipc_init_security(isec, SECCLASS_MSGQ); 6012 6013 ad.type = LSM_AUDIT_DATA_IPC; 6014 ad.u.ipc_id = msq->key; 6015 6016 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 6017 MSGQ__CREATE, &ad); 6018 } 6019 6020 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 6021 { 6022 struct ipc_security_struct *isec; 6023 struct common_audit_data ad; 6024 u32 sid = current_sid(); 6025 6026 isec = selinux_ipc(msq); 6027 6028 ad.type = LSM_AUDIT_DATA_IPC; 6029 ad.u.ipc_id = msq->key; 6030 6031 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 6032 MSGQ__ASSOCIATE, &ad); 6033 } 6034 6035 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 6036 { 6037 u32 perms; 6038 6039 switch (cmd) { 6040 case IPC_INFO: 6041 case MSG_INFO: 6042 /* No specific object, just general system-wide information. */ 6043 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 6044 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 6045 case IPC_STAT: 6046 case MSG_STAT: 6047 case MSG_STAT_ANY: 6048 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 6049 break; 6050 case IPC_SET: 6051 perms = MSGQ__SETATTR; 6052 break; 6053 case IPC_RMID: 6054 perms = MSGQ__DESTROY; 6055 break; 6056 default: 6057 return 0; 6058 } 6059 6060 return ipc_has_perm(msq, perms); 6061 } 6062 6063 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg) 6064 { 6065 struct ipc_security_struct *isec; 6066 struct msg_security_struct *msec; 6067 struct common_audit_data ad; 6068 u32 sid = current_sid(); 6069 int rc; 6070 6071 isec = selinux_ipc(msq); 6072 msec = selinux_msg_msg(msg); 6073 6074 /* 6075 * First time through, need to assign label to the message 6076 */ 6077 if (msec->sid == SECINITSID_UNLABELED) { 6078 /* 6079 * Compute new sid based on current process and 6080 * message queue this message will be stored in 6081 */ 6082 rc = security_transition_sid(sid, isec->sid, 6083 SECCLASS_MSG, NULL, &msec->sid); 6084 if (rc) 6085 return rc; 6086 } 6087 6088 ad.type = LSM_AUDIT_DATA_IPC; 6089 ad.u.ipc_id = msq->key; 6090 6091 /* Can this process write to the queue? */ 6092 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 6093 MSGQ__WRITE, &ad); 6094 if (!rc) 6095 /* Can this process send the message */ 6096 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG, 6097 MSG__SEND, &ad); 6098 if (!rc) 6099 /* Can the message be put in the queue? */ 6100 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ, 6101 MSGQ__ENQUEUE, &ad); 6102 6103 return rc; 6104 } 6105 6106 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 6107 struct task_struct *target, 6108 long type, int mode) 6109 { 6110 struct ipc_security_struct *isec; 6111 struct msg_security_struct *msec; 6112 struct common_audit_data ad; 6113 u32 sid = task_sid_obj(target); 6114 int rc; 6115 6116 isec = selinux_ipc(msq); 6117 msec = selinux_msg_msg(msg); 6118 6119 ad.type = LSM_AUDIT_DATA_IPC; 6120 ad.u.ipc_id = msq->key; 6121 6122 rc = avc_has_perm(sid, isec->sid, 6123 SECCLASS_MSGQ, MSGQ__READ, &ad); 6124 if (!rc) 6125 rc = avc_has_perm(sid, msec->sid, 6126 SECCLASS_MSG, MSG__RECEIVE, &ad); 6127 return rc; 6128 } 6129 6130 /* Shared Memory security operations */ 6131 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp) 6132 { 6133 struct ipc_security_struct *isec; 6134 struct common_audit_data ad; 6135 u32 sid = current_sid(); 6136 6137 isec = selinux_ipc(shp); 6138 ipc_init_security(isec, SECCLASS_SHM); 6139 6140 ad.type = LSM_AUDIT_DATA_IPC; 6141 ad.u.ipc_id = shp->key; 6142 6143 return avc_has_perm(sid, isec->sid, SECCLASS_SHM, 6144 SHM__CREATE, &ad); 6145 } 6146 6147 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg) 6148 { 6149 struct ipc_security_struct *isec; 6150 struct common_audit_data ad; 6151 u32 sid = current_sid(); 6152 6153 isec = selinux_ipc(shp); 6154 6155 ad.type = LSM_AUDIT_DATA_IPC; 6156 ad.u.ipc_id = shp->key; 6157 6158 return avc_has_perm(sid, isec->sid, SECCLASS_SHM, 6159 SHM__ASSOCIATE, &ad); 6160 } 6161 6162 /* Note, at this point, shp is locked down */ 6163 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 6164 { 6165 u32 perms; 6166 6167 switch (cmd) { 6168 case IPC_INFO: 6169 case SHM_INFO: 6170 /* No specific object, just general system-wide information. */ 6171 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 6172 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 6173 case IPC_STAT: 6174 case SHM_STAT: 6175 case SHM_STAT_ANY: 6176 perms = SHM__GETATTR | SHM__ASSOCIATE; 6177 break; 6178 case IPC_SET: 6179 perms = SHM__SETATTR; 6180 break; 6181 case SHM_LOCK: 6182 case SHM_UNLOCK: 6183 perms = SHM__LOCK; 6184 break; 6185 case IPC_RMID: 6186 perms = SHM__DESTROY; 6187 break; 6188 default: 6189 return 0; 6190 } 6191 6192 return ipc_has_perm(shp, perms); 6193 } 6194 6195 static int selinux_shm_shmat(struct kern_ipc_perm *shp, 6196 char __user *shmaddr, int shmflg) 6197 { 6198 u32 perms; 6199 6200 if (shmflg & SHM_RDONLY) 6201 perms = SHM__READ; 6202 else 6203 perms = SHM__READ | SHM__WRITE; 6204 6205 return ipc_has_perm(shp, perms); 6206 } 6207 6208 /* Semaphore security operations */ 6209 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma) 6210 { 6211 struct ipc_security_struct *isec; 6212 struct common_audit_data ad; 6213 u32 sid = current_sid(); 6214 6215 isec = selinux_ipc(sma); 6216 ipc_init_security(isec, SECCLASS_SEM); 6217 6218 ad.type = LSM_AUDIT_DATA_IPC; 6219 ad.u.ipc_id = sma->key; 6220 6221 return avc_has_perm(sid, isec->sid, SECCLASS_SEM, 6222 SEM__CREATE, &ad); 6223 } 6224 6225 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg) 6226 { 6227 struct ipc_security_struct *isec; 6228 struct common_audit_data ad; 6229 u32 sid = current_sid(); 6230 6231 isec = selinux_ipc(sma); 6232 6233 ad.type = LSM_AUDIT_DATA_IPC; 6234 ad.u.ipc_id = sma->key; 6235 6236 return avc_has_perm(sid, isec->sid, SECCLASS_SEM, 6237 SEM__ASSOCIATE, &ad); 6238 } 6239 6240 /* Note, at this point, sma is locked down */ 6241 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd) 6242 { 6243 int err; 6244 u32 perms; 6245 6246 switch (cmd) { 6247 case IPC_INFO: 6248 case SEM_INFO: 6249 /* No specific object, just general system-wide information. */ 6250 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 6251 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 6252 case GETPID: 6253 case GETNCNT: 6254 case GETZCNT: 6255 perms = SEM__GETATTR; 6256 break; 6257 case GETVAL: 6258 case GETALL: 6259 perms = SEM__READ; 6260 break; 6261 case SETVAL: 6262 case SETALL: 6263 perms = SEM__WRITE; 6264 break; 6265 case IPC_RMID: 6266 perms = SEM__DESTROY; 6267 break; 6268 case IPC_SET: 6269 perms = SEM__SETATTR; 6270 break; 6271 case IPC_STAT: 6272 case SEM_STAT: 6273 case SEM_STAT_ANY: 6274 perms = SEM__GETATTR | SEM__ASSOCIATE; 6275 break; 6276 default: 6277 return 0; 6278 } 6279 6280 err = ipc_has_perm(sma, perms); 6281 return err; 6282 } 6283 6284 static int selinux_sem_semop(struct kern_ipc_perm *sma, 6285 struct sembuf *sops, unsigned nsops, int alter) 6286 { 6287 u32 perms; 6288 6289 if (alter) 6290 perms = SEM__READ | SEM__WRITE; 6291 else 6292 perms = SEM__READ; 6293 6294 return ipc_has_perm(sma, perms); 6295 } 6296 6297 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 6298 { 6299 u32 av = 0; 6300 6301 av = 0; 6302 if (flag & S_IRUGO) 6303 av |= IPC__UNIX_READ; 6304 if (flag & S_IWUGO) 6305 av |= IPC__UNIX_WRITE; 6306 6307 if (av == 0) 6308 return 0; 6309 6310 return ipc_has_perm(ipcp, av); 6311 } 6312 6313 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 6314 { 6315 struct ipc_security_struct *isec = selinux_ipc(ipcp); 6316 *secid = isec->sid; 6317 } 6318 6319 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode) 6320 { 6321 if (inode) 6322 inode_doinit_with_dentry(inode, dentry); 6323 } 6324 6325 static int selinux_getprocattr(struct task_struct *p, 6326 const char *name, char **value) 6327 { 6328 const struct task_security_struct *__tsec; 6329 u32 sid; 6330 int error; 6331 unsigned len; 6332 6333 rcu_read_lock(); 6334 __tsec = selinux_cred(__task_cred(p)); 6335 6336 if (current != p) { 6337 error = avc_has_perm(current_sid(), __tsec->sid, 6338 SECCLASS_PROCESS, PROCESS__GETATTR, NULL); 6339 if (error) 6340 goto bad; 6341 } 6342 6343 if (!strcmp(name, "current")) 6344 sid = __tsec->sid; 6345 else if (!strcmp(name, "prev")) 6346 sid = __tsec->osid; 6347 else if (!strcmp(name, "exec")) 6348 sid = __tsec->exec_sid; 6349 else if (!strcmp(name, "fscreate")) 6350 sid = __tsec->create_sid; 6351 else if (!strcmp(name, "keycreate")) 6352 sid = __tsec->keycreate_sid; 6353 else if (!strcmp(name, "sockcreate")) 6354 sid = __tsec->sockcreate_sid; 6355 else { 6356 error = -EINVAL; 6357 goto bad; 6358 } 6359 rcu_read_unlock(); 6360 6361 if (!sid) 6362 return 0; 6363 6364 error = security_sid_to_context(sid, value, &len); 6365 if (error) 6366 return error; 6367 return len; 6368 6369 bad: 6370 rcu_read_unlock(); 6371 return error; 6372 } 6373 6374 static int selinux_setprocattr(const char *name, void *value, size_t size) 6375 { 6376 struct task_security_struct *tsec; 6377 struct cred *new; 6378 u32 mysid = current_sid(), sid = 0, ptsid; 6379 int error; 6380 char *str = value; 6381 6382 /* 6383 * Basic control over ability to set these attributes at all. 6384 */ 6385 if (!strcmp(name, "exec")) 6386 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS, 6387 PROCESS__SETEXEC, NULL); 6388 else if (!strcmp(name, "fscreate")) 6389 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS, 6390 PROCESS__SETFSCREATE, NULL); 6391 else if (!strcmp(name, "keycreate")) 6392 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS, 6393 PROCESS__SETKEYCREATE, NULL); 6394 else if (!strcmp(name, "sockcreate")) 6395 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS, 6396 PROCESS__SETSOCKCREATE, NULL); 6397 else if (!strcmp(name, "current")) 6398 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS, 6399 PROCESS__SETCURRENT, NULL); 6400 else 6401 error = -EINVAL; 6402 if (error) 6403 return error; 6404 6405 /* Obtain a SID for the context, if one was specified. */ 6406 if (size && str[0] && str[0] != '\n') { 6407 if (str[size-1] == '\n') { 6408 str[size-1] = 0; 6409 size--; 6410 } 6411 error = security_context_to_sid(value, size, 6412 &sid, GFP_KERNEL); 6413 if (error == -EINVAL && !strcmp(name, "fscreate")) { 6414 if (!has_cap_mac_admin(true)) { 6415 struct audit_buffer *ab; 6416 size_t audit_size; 6417 6418 /* We strip a nul only if it is at the end, otherwise the 6419 * context contains a nul and we should audit that */ 6420 if (str[size - 1] == '\0') 6421 audit_size = size - 1; 6422 else 6423 audit_size = size; 6424 ab = audit_log_start(audit_context(), 6425 GFP_ATOMIC, 6426 AUDIT_SELINUX_ERR); 6427 if (!ab) 6428 return error; 6429 audit_log_format(ab, "op=fscreate invalid_context="); 6430 audit_log_n_untrustedstring(ab, value, audit_size); 6431 audit_log_end(ab); 6432 6433 return error; 6434 } 6435 error = security_context_to_sid_force(value, size, 6436 &sid); 6437 } 6438 if (error) 6439 return error; 6440 } 6441 6442 new = prepare_creds(); 6443 if (!new) 6444 return -ENOMEM; 6445 6446 /* Permission checking based on the specified context is 6447 performed during the actual operation (execve, 6448 open/mkdir/...), when we know the full context of the 6449 operation. See selinux_bprm_creds_for_exec for the execve 6450 checks and may_create for the file creation checks. The 6451 operation will then fail if the context is not permitted. */ 6452 tsec = selinux_cred(new); 6453 if (!strcmp(name, "exec")) { 6454 tsec->exec_sid = sid; 6455 } else if (!strcmp(name, "fscreate")) { 6456 tsec->create_sid = sid; 6457 } else if (!strcmp(name, "keycreate")) { 6458 if (sid) { 6459 error = avc_has_perm(mysid, sid, 6460 SECCLASS_KEY, KEY__CREATE, NULL); 6461 if (error) 6462 goto abort_change; 6463 } 6464 tsec->keycreate_sid = sid; 6465 } else if (!strcmp(name, "sockcreate")) { 6466 tsec->sockcreate_sid = sid; 6467 } else if (!strcmp(name, "current")) { 6468 error = -EINVAL; 6469 if (sid == 0) 6470 goto abort_change; 6471 6472 /* Only allow single threaded processes to change context */ 6473 if (!current_is_single_threaded()) { 6474 error = security_bounded_transition(tsec->sid, sid); 6475 if (error) 6476 goto abort_change; 6477 } 6478 6479 /* Check permissions for the transition. */ 6480 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 6481 PROCESS__DYNTRANSITION, NULL); 6482 if (error) 6483 goto abort_change; 6484 6485 /* Check for ptracing, and update the task SID if ok. 6486 Otherwise, leave SID unchanged and fail. */ 6487 ptsid = ptrace_parent_sid(); 6488 if (ptsid != 0) { 6489 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS, 6490 PROCESS__PTRACE, NULL); 6491 if (error) 6492 goto abort_change; 6493 } 6494 6495 tsec->sid = sid; 6496 } else { 6497 error = -EINVAL; 6498 goto abort_change; 6499 } 6500 6501 commit_creds(new); 6502 return size; 6503 6504 abort_change: 6505 abort_creds(new); 6506 return error; 6507 } 6508 6509 static int selinux_ismaclabel(const char *name) 6510 { 6511 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0); 6512 } 6513 6514 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 6515 { 6516 return security_sid_to_context(secid, 6517 secdata, seclen); 6518 } 6519 6520 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 6521 { 6522 return security_context_to_sid(secdata, seclen, 6523 secid, GFP_KERNEL); 6524 } 6525 6526 static void selinux_release_secctx(char *secdata, u32 seclen) 6527 { 6528 kfree(secdata); 6529 } 6530 6531 static void selinux_inode_invalidate_secctx(struct inode *inode) 6532 { 6533 struct inode_security_struct *isec = selinux_inode(inode); 6534 6535 spin_lock(&isec->lock); 6536 isec->initialized = LABEL_INVALID; 6537 spin_unlock(&isec->lock); 6538 } 6539 6540 /* 6541 * called with inode->i_mutex locked 6542 */ 6543 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 6544 { 6545 int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, 6546 ctx, ctxlen, 0); 6547 /* Do not return error when suppressing label (SBLABEL_MNT not set). */ 6548 return rc == -EOPNOTSUPP ? 0 : rc; 6549 } 6550 6551 /* 6552 * called with inode->i_mutex locked 6553 */ 6554 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 6555 { 6556 return __vfs_setxattr_locked(&nop_mnt_idmap, dentry, XATTR_NAME_SELINUX, 6557 ctx, ctxlen, 0, NULL); 6558 } 6559 6560 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 6561 { 6562 int len = 0; 6563 len = selinux_inode_getsecurity(&nop_mnt_idmap, inode, 6564 XATTR_SELINUX_SUFFIX, ctx, true); 6565 if (len < 0) 6566 return len; 6567 *ctxlen = len; 6568 return 0; 6569 } 6570 #ifdef CONFIG_KEYS 6571 6572 static int selinux_key_alloc(struct key *k, const struct cred *cred, 6573 unsigned long flags) 6574 { 6575 const struct task_security_struct *tsec; 6576 struct key_security_struct *ksec; 6577 6578 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); 6579 if (!ksec) 6580 return -ENOMEM; 6581 6582 tsec = selinux_cred(cred); 6583 if (tsec->keycreate_sid) 6584 ksec->sid = tsec->keycreate_sid; 6585 else 6586 ksec->sid = tsec->sid; 6587 6588 k->security = ksec; 6589 return 0; 6590 } 6591 6592 static void selinux_key_free(struct key *k) 6593 { 6594 struct key_security_struct *ksec = k->security; 6595 6596 k->security = NULL; 6597 kfree(ksec); 6598 } 6599 6600 static int selinux_key_permission(key_ref_t key_ref, 6601 const struct cred *cred, 6602 enum key_need_perm need_perm) 6603 { 6604 struct key *key; 6605 struct key_security_struct *ksec; 6606 u32 perm, sid; 6607 6608 switch (need_perm) { 6609 case KEY_NEED_VIEW: 6610 perm = KEY__VIEW; 6611 break; 6612 case KEY_NEED_READ: 6613 perm = KEY__READ; 6614 break; 6615 case KEY_NEED_WRITE: 6616 perm = KEY__WRITE; 6617 break; 6618 case KEY_NEED_SEARCH: 6619 perm = KEY__SEARCH; 6620 break; 6621 case KEY_NEED_LINK: 6622 perm = KEY__LINK; 6623 break; 6624 case KEY_NEED_SETATTR: 6625 perm = KEY__SETATTR; 6626 break; 6627 case KEY_NEED_UNLINK: 6628 case KEY_SYSADMIN_OVERRIDE: 6629 case KEY_AUTHTOKEN_OVERRIDE: 6630 case KEY_DEFER_PERM_CHECK: 6631 return 0; 6632 default: 6633 WARN_ON(1); 6634 return -EPERM; 6635 6636 } 6637 6638 sid = cred_sid(cred); 6639 key = key_ref_to_ptr(key_ref); 6640 ksec = key->security; 6641 6642 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL); 6643 } 6644 6645 static int selinux_key_getsecurity(struct key *key, char **_buffer) 6646 { 6647 struct key_security_struct *ksec = key->security; 6648 char *context = NULL; 6649 unsigned len; 6650 int rc; 6651 6652 rc = security_sid_to_context(ksec->sid, 6653 &context, &len); 6654 if (!rc) 6655 rc = len; 6656 *_buffer = context; 6657 return rc; 6658 } 6659 6660 #ifdef CONFIG_KEY_NOTIFICATIONS 6661 static int selinux_watch_key(struct key *key) 6662 { 6663 struct key_security_struct *ksec = key->security; 6664 u32 sid = current_sid(); 6665 6666 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL); 6667 } 6668 #endif 6669 #endif 6670 6671 #ifdef CONFIG_SECURITY_INFINIBAND 6672 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val) 6673 { 6674 struct common_audit_data ad; 6675 int err; 6676 u32 sid = 0; 6677 struct ib_security_struct *sec = ib_sec; 6678 struct lsm_ibpkey_audit ibpkey; 6679 6680 err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid); 6681 if (err) 6682 return err; 6683 6684 ad.type = LSM_AUDIT_DATA_IBPKEY; 6685 ibpkey.subnet_prefix = subnet_prefix; 6686 ibpkey.pkey = pkey_val; 6687 ad.u.ibpkey = &ibpkey; 6688 return avc_has_perm(sec->sid, sid, 6689 SECCLASS_INFINIBAND_PKEY, 6690 INFINIBAND_PKEY__ACCESS, &ad); 6691 } 6692 6693 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name, 6694 u8 port_num) 6695 { 6696 struct common_audit_data ad; 6697 int err; 6698 u32 sid = 0; 6699 struct ib_security_struct *sec = ib_sec; 6700 struct lsm_ibendport_audit ibendport; 6701 6702 err = security_ib_endport_sid(dev_name, port_num, 6703 &sid); 6704 6705 if (err) 6706 return err; 6707 6708 ad.type = LSM_AUDIT_DATA_IBENDPORT; 6709 ibendport.dev_name = dev_name; 6710 ibendport.port = port_num; 6711 ad.u.ibendport = &ibendport; 6712 return avc_has_perm(sec->sid, sid, 6713 SECCLASS_INFINIBAND_ENDPORT, 6714 INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad); 6715 } 6716 6717 static int selinux_ib_alloc_security(void **ib_sec) 6718 { 6719 struct ib_security_struct *sec; 6720 6721 sec = kzalloc(sizeof(*sec), GFP_KERNEL); 6722 if (!sec) 6723 return -ENOMEM; 6724 sec->sid = current_sid(); 6725 6726 *ib_sec = sec; 6727 return 0; 6728 } 6729 6730 static void selinux_ib_free_security(void *ib_sec) 6731 { 6732 kfree(ib_sec); 6733 } 6734 #endif 6735 6736 #ifdef CONFIG_BPF_SYSCALL 6737 static int selinux_bpf(int cmd, union bpf_attr *attr, 6738 unsigned int size) 6739 { 6740 u32 sid = current_sid(); 6741 int ret; 6742 6743 switch (cmd) { 6744 case BPF_MAP_CREATE: 6745 ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__MAP_CREATE, 6746 NULL); 6747 break; 6748 case BPF_PROG_LOAD: 6749 ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__PROG_LOAD, 6750 NULL); 6751 break; 6752 default: 6753 ret = 0; 6754 break; 6755 } 6756 6757 return ret; 6758 } 6759 6760 static u32 bpf_map_fmode_to_av(fmode_t fmode) 6761 { 6762 u32 av = 0; 6763 6764 if (fmode & FMODE_READ) 6765 av |= BPF__MAP_READ; 6766 if (fmode & FMODE_WRITE) 6767 av |= BPF__MAP_WRITE; 6768 return av; 6769 } 6770 6771 /* This function will check the file pass through unix socket or binder to see 6772 * if it is a bpf related object. And apply corresponding checks on the bpf 6773 * object based on the type. The bpf maps and programs, not like other files and 6774 * socket, are using a shared anonymous inode inside the kernel as their inode. 6775 * So checking that inode cannot identify if the process have privilege to 6776 * access the bpf object and that's why we have to add this additional check in 6777 * selinux_file_receive and selinux_binder_transfer_files. 6778 */ 6779 static int bpf_fd_pass(const struct file *file, u32 sid) 6780 { 6781 struct bpf_security_struct *bpfsec; 6782 struct bpf_prog *prog; 6783 struct bpf_map *map; 6784 int ret; 6785 6786 if (file->f_op == &bpf_map_fops) { 6787 map = file->private_data; 6788 bpfsec = map->security; 6789 ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF, 6790 bpf_map_fmode_to_av(file->f_mode), NULL); 6791 if (ret) 6792 return ret; 6793 } else if (file->f_op == &bpf_prog_fops) { 6794 prog = file->private_data; 6795 bpfsec = prog->aux->security; 6796 ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF, 6797 BPF__PROG_RUN, NULL); 6798 if (ret) 6799 return ret; 6800 } 6801 return 0; 6802 } 6803 6804 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode) 6805 { 6806 u32 sid = current_sid(); 6807 struct bpf_security_struct *bpfsec; 6808 6809 bpfsec = map->security; 6810 return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF, 6811 bpf_map_fmode_to_av(fmode), NULL); 6812 } 6813 6814 static int selinux_bpf_prog(struct bpf_prog *prog) 6815 { 6816 u32 sid = current_sid(); 6817 struct bpf_security_struct *bpfsec; 6818 6819 bpfsec = prog->aux->security; 6820 return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF, 6821 BPF__PROG_RUN, NULL); 6822 } 6823 6824 static int selinux_bpf_map_alloc(struct bpf_map *map) 6825 { 6826 struct bpf_security_struct *bpfsec; 6827 6828 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL); 6829 if (!bpfsec) 6830 return -ENOMEM; 6831 6832 bpfsec->sid = current_sid(); 6833 map->security = bpfsec; 6834 6835 return 0; 6836 } 6837 6838 static void selinux_bpf_map_free(struct bpf_map *map) 6839 { 6840 struct bpf_security_struct *bpfsec = map->security; 6841 6842 map->security = NULL; 6843 kfree(bpfsec); 6844 } 6845 6846 static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux) 6847 { 6848 struct bpf_security_struct *bpfsec; 6849 6850 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL); 6851 if (!bpfsec) 6852 return -ENOMEM; 6853 6854 bpfsec->sid = current_sid(); 6855 aux->security = bpfsec; 6856 6857 return 0; 6858 } 6859 6860 static void selinux_bpf_prog_free(struct bpf_prog_aux *aux) 6861 { 6862 struct bpf_security_struct *bpfsec = aux->security; 6863 6864 aux->security = NULL; 6865 kfree(bpfsec); 6866 } 6867 #endif 6868 6869 struct lsm_blob_sizes selinux_blob_sizes __ro_after_init = { 6870 .lbs_cred = sizeof(struct task_security_struct), 6871 .lbs_file = sizeof(struct file_security_struct), 6872 .lbs_inode = sizeof(struct inode_security_struct), 6873 .lbs_ipc = sizeof(struct ipc_security_struct), 6874 .lbs_msg_msg = sizeof(struct msg_security_struct), 6875 .lbs_superblock = sizeof(struct superblock_security_struct), 6876 .lbs_xattr_count = SELINUX_INODE_INIT_XATTRS, 6877 }; 6878 6879 #ifdef CONFIG_PERF_EVENTS 6880 static int selinux_perf_event_open(struct perf_event_attr *attr, int type) 6881 { 6882 u32 requested, sid = current_sid(); 6883 6884 if (type == PERF_SECURITY_OPEN) 6885 requested = PERF_EVENT__OPEN; 6886 else if (type == PERF_SECURITY_CPU) 6887 requested = PERF_EVENT__CPU; 6888 else if (type == PERF_SECURITY_KERNEL) 6889 requested = PERF_EVENT__KERNEL; 6890 else if (type == PERF_SECURITY_TRACEPOINT) 6891 requested = PERF_EVENT__TRACEPOINT; 6892 else 6893 return -EINVAL; 6894 6895 return avc_has_perm(sid, sid, SECCLASS_PERF_EVENT, 6896 requested, NULL); 6897 } 6898 6899 static int selinux_perf_event_alloc(struct perf_event *event) 6900 { 6901 struct perf_event_security_struct *perfsec; 6902 6903 perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL); 6904 if (!perfsec) 6905 return -ENOMEM; 6906 6907 perfsec->sid = current_sid(); 6908 event->security = perfsec; 6909 6910 return 0; 6911 } 6912 6913 static void selinux_perf_event_free(struct perf_event *event) 6914 { 6915 struct perf_event_security_struct *perfsec = event->security; 6916 6917 event->security = NULL; 6918 kfree(perfsec); 6919 } 6920 6921 static int selinux_perf_event_read(struct perf_event *event) 6922 { 6923 struct perf_event_security_struct *perfsec = event->security; 6924 u32 sid = current_sid(); 6925 6926 return avc_has_perm(sid, perfsec->sid, 6927 SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL); 6928 } 6929 6930 static int selinux_perf_event_write(struct perf_event *event) 6931 { 6932 struct perf_event_security_struct *perfsec = event->security; 6933 u32 sid = current_sid(); 6934 6935 return avc_has_perm(sid, perfsec->sid, 6936 SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL); 6937 } 6938 #endif 6939 6940 #ifdef CONFIG_IO_URING 6941 /** 6942 * selinux_uring_override_creds - check the requested cred override 6943 * @new: the target creds 6944 * 6945 * Check to see if the current task is allowed to override it's credentials 6946 * to service an io_uring operation. 6947 */ 6948 static int selinux_uring_override_creds(const struct cred *new) 6949 { 6950 return avc_has_perm(current_sid(), cred_sid(new), 6951 SECCLASS_IO_URING, IO_URING__OVERRIDE_CREDS, NULL); 6952 } 6953 6954 /** 6955 * selinux_uring_sqpoll - check if a io_uring polling thread can be created 6956 * 6957 * Check to see if the current task is allowed to create a new io_uring 6958 * kernel polling thread. 6959 */ 6960 static int selinux_uring_sqpoll(void) 6961 { 6962 u32 sid = current_sid(); 6963 6964 return avc_has_perm(sid, sid, 6965 SECCLASS_IO_URING, IO_URING__SQPOLL, NULL); 6966 } 6967 6968 /** 6969 * selinux_uring_cmd - check if IORING_OP_URING_CMD is allowed 6970 * @ioucmd: the io_uring command structure 6971 * 6972 * Check to see if the current domain is allowed to execute an 6973 * IORING_OP_URING_CMD against the device/file specified in @ioucmd. 6974 * 6975 */ 6976 static int selinux_uring_cmd(struct io_uring_cmd *ioucmd) 6977 { 6978 struct file *file = ioucmd->file; 6979 struct inode *inode = file_inode(file); 6980 struct inode_security_struct *isec = selinux_inode(inode); 6981 struct common_audit_data ad; 6982 6983 ad.type = LSM_AUDIT_DATA_FILE; 6984 ad.u.file = file; 6985 6986 return avc_has_perm(current_sid(), isec->sid, 6987 SECCLASS_IO_URING, IO_URING__CMD, &ad); 6988 } 6989 #endif /* CONFIG_IO_URING */ 6990 6991 /* 6992 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order: 6993 * 1. any hooks that don't belong to (2.) or (3.) below, 6994 * 2. hooks that both access structures allocated by other hooks, and allocate 6995 * structures that can be later accessed by other hooks (mostly "cloning" 6996 * hooks), 6997 * 3. hooks that only allocate structures that can be later accessed by other 6998 * hooks ("allocating" hooks). 6999 * 7000 * Please follow block comment delimiters in the list to keep this order. 7001 */ 7002 static struct security_hook_list selinux_hooks[] __ro_after_init = { 7003 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr), 7004 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction), 7005 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder), 7006 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file), 7007 7008 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check), 7009 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme), 7010 LSM_HOOK_INIT(capget, selinux_capget), 7011 LSM_HOOK_INIT(capset, selinux_capset), 7012 LSM_HOOK_INIT(capable, selinux_capable), 7013 LSM_HOOK_INIT(quotactl, selinux_quotactl), 7014 LSM_HOOK_INIT(quota_on, selinux_quota_on), 7015 LSM_HOOK_INIT(syslog, selinux_syslog), 7016 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory), 7017 7018 LSM_HOOK_INIT(netlink_send, selinux_netlink_send), 7019 7020 LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec), 7021 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds), 7022 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds), 7023 7024 LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts), 7025 LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat), 7026 LSM_HOOK_INIT(sb_remount, selinux_sb_remount), 7027 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount), 7028 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options), 7029 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs), 7030 LSM_HOOK_INIT(sb_mount, selinux_mount), 7031 LSM_HOOK_INIT(sb_umount, selinux_umount), 7032 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts), 7033 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts), 7034 7035 LSM_HOOK_INIT(move_mount, selinux_move_mount), 7036 7037 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security), 7038 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as), 7039 7040 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security), 7041 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security), 7042 LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon), 7043 LSM_HOOK_INIT(inode_create, selinux_inode_create), 7044 LSM_HOOK_INIT(inode_link, selinux_inode_link), 7045 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink), 7046 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink), 7047 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir), 7048 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir), 7049 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod), 7050 LSM_HOOK_INIT(inode_rename, selinux_inode_rename), 7051 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink), 7052 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link), 7053 LSM_HOOK_INIT(inode_permission, selinux_inode_permission), 7054 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr), 7055 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr), 7056 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr), 7057 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr), 7058 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr), 7059 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr), 7060 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr), 7061 LSM_HOOK_INIT(inode_set_acl, selinux_inode_set_acl), 7062 LSM_HOOK_INIT(inode_get_acl, selinux_inode_get_acl), 7063 LSM_HOOK_INIT(inode_remove_acl, selinux_inode_remove_acl), 7064 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity), 7065 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity), 7066 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity), 7067 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid), 7068 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up), 7069 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr), 7070 LSM_HOOK_INIT(path_notify, selinux_path_notify), 7071 7072 LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security), 7073 7074 LSM_HOOK_INIT(file_permission, selinux_file_permission), 7075 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security), 7076 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl), 7077 LSM_HOOK_INIT(file_ioctl_compat, selinux_file_ioctl_compat), 7078 LSM_HOOK_INIT(mmap_file, selinux_mmap_file), 7079 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr), 7080 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect), 7081 LSM_HOOK_INIT(file_lock, selinux_file_lock), 7082 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl), 7083 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner), 7084 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask), 7085 LSM_HOOK_INIT(file_receive, selinux_file_receive), 7086 7087 LSM_HOOK_INIT(file_open, selinux_file_open), 7088 7089 LSM_HOOK_INIT(task_alloc, selinux_task_alloc), 7090 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare), 7091 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer), 7092 LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid), 7093 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as), 7094 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as), 7095 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request), 7096 LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data), 7097 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file), 7098 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid), 7099 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid), 7100 LSM_HOOK_INIT(task_getsid, selinux_task_getsid), 7101 LSM_HOOK_INIT(current_getsecid_subj, selinux_current_getsecid_subj), 7102 LSM_HOOK_INIT(task_getsecid_obj, selinux_task_getsecid_obj), 7103 LSM_HOOK_INIT(task_setnice, selinux_task_setnice), 7104 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio), 7105 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio), 7106 LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit), 7107 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit), 7108 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler), 7109 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler), 7110 LSM_HOOK_INIT(task_movememory, selinux_task_movememory), 7111 LSM_HOOK_INIT(task_kill, selinux_task_kill), 7112 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode), 7113 LSM_HOOK_INIT(userns_create, selinux_userns_create), 7114 7115 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission), 7116 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid), 7117 7118 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate), 7119 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl), 7120 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd), 7121 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv), 7122 7123 LSM_HOOK_INIT(shm_associate, selinux_shm_associate), 7124 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl), 7125 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat), 7126 7127 LSM_HOOK_INIT(sem_associate, selinux_sem_associate), 7128 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl), 7129 LSM_HOOK_INIT(sem_semop, selinux_sem_semop), 7130 7131 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate), 7132 7133 LSM_HOOK_INIT(getprocattr, selinux_getprocattr), 7134 LSM_HOOK_INIT(setprocattr, selinux_setprocattr), 7135 7136 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel), 7137 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid), 7138 LSM_HOOK_INIT(release_secctx, selinux_release_secctx), 7139 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx), 7140 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx), 7141 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx), 7142 7143 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect), 7144 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send), 7145 7146 LSM_HOOK_INIT(socket_create, selinux_socket_create), 7147 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create), 7148 LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair), 7149 LSM_HOOK_INIT(socket_bind, selinux_socket_bind), 7150 LSM_HOOK_INIT(socket_connect, selinux_socket_connect), 7151 LSM_HOOK_INIT(socket_listen, selinux_socket_listen), 7152 LSM_HOOK_INIT(socket_accept, selinux_socket_accept), 7153 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg), 7154 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg), 7155 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname), 7156 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername), 7157 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt), 7158 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt), 7159 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown), 7160 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb), 7161 LSM_HOOK_INIT(socket_getpeersec_stream, 7162 selinux_socket_getpeersec_stream), 7163 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram), 7164 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security), 7165 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security), 7166 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid), 7167 LSM_HOOK_INIT(sock_graft, selinux_sock_graft), 7168 LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request), 7169 LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone), 7170 LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect), 7171 LSM_HOOK_INIT(sctp_assoc_established, selinux_sctp_assoc_established), 7172 LSM_HOOK_INIT(mptcp_add_subflow, selinux_mptcp_add_subflow), 7173 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request), 7174 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone), 7175 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established), 7176 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet), 7177 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc), 7178 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec), 7179 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow), 7180 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security), 7181 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create), 7182 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue), 7183 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach), 7184 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open), 7185 #ifdef CONFIG_SECURITY_INFINIBAND 7186 LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access), 7187 LSM_HOOK_INIT(ib_endport_manage_subnet, 7188 selinux_ib_endport_manage_subnet), 7189 LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security), 7190 #endif 7191 #ifdef CONFIG_SECURITY_NETWORK_XFRM 7192 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free), 7193 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete), 7194 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free), 7195 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete), 7196 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup), 7197 LSM_HOOK_INIT(xfrm_state_pol_flow_match, 7198 selinux_xfrm_state_pol_flow_match), 7199 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session), 7200 #endif 7201 7202 #ifdef CONFIG_KEYS 7203 LSM_HOOK_INIT(key_free, selinux_key_free), 7204 LSM_HOOK_INIT(key_permission, selinux_key_permission), 7205 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity), 7206 #ifdef CONFIG_KEY_NOTIFICATIONS 7207 LSM_HOOK_INIT(watch_key, selinux_watch_key), 7208 #endif 7209 #endif 7210 7211 #ifdef CONFIG_AUDIT 7212 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known), 7213 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match), 7214 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free), 7215 #endif 7216 7217 #ifdef CONFIG_BPF_SYSCALL 7218 LSM_HOOK_INIT(bpf, selinux_bpf), 7219 LSM_HOOK_INIT(bpf_map, selinux_bpf_map), 7220 LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog), 7221 LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free), 7222 LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free), 7223 #endif 7224 7225 #ifdef CONFIG_PERF_EVENTS 7226 LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open), 7227 LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free), 7228 LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read), 7229 LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write), 7230 #endif 7231 7232 #ifdef CONFIG_IO_URING 7233 LSM_HOOK_INIT(uring_override_creds, selinux_uring_override_creds), 7234 LSM_HOOK_INIT(uring_sqpoll, selinux_uring_sqpoll), 7235 LSM_HOOK_INIT(uring_cmd, selinux_uring_cmd), 7236 #endif 7237 7238 /* 7239 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE 7240 */ 7241 LSM_HOOK_INIT(fs_context_submount, selinux_fs_context_submount), 7242 LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup), 7243 LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param), 7244 LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts), 7245 #ifdef CONFIG_SECURITY_NETWORK_XFRM 7246 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone), 7247 #endif 7248 7249 /* 7250 * PUT "ALLOCATING" HOOKS HERE 7251 */ 7252 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security), 7253 LSM_HOOK_INIT(msg_queue_alloc_security, 7254 selinux_msg_queue_alloc_security), 7255 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security), 7256 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security), 7257 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security), 7258 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security), 7259 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx), 7260 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx), 7261 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security), 7262 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security), 7263 #ifdef CONFIG_SECURITY_INFINIBAND 7264 LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security), 7265 #endif 7266 #ifdef CONFIG_SECURITY_NETWORK_XFRM 7267 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc), 7268 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc), 7269 LSM_HOOK_INIT(xfrm_state_alloc_acquire, 7270 selinux_xfrm_state_alloc_acquire), 7271 #endif 7272 #ifdef CONFIG_KEYS 7273 LSM_HOOK_INIT(key_alloc, selinux_key_alloc), 7274 #endif 7275 #ifdef CONFIG_AUDIT 7276 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init), 7277 #endif 7278 #ifdef CONFIG_BPF_SYSCALL 7279 LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc), 7280 LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc), 7281 #endif 7282 #ifdef CONFIG_PERF_EVENTS 7283 LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc), 7284 #endif 7285 }; 7286 7287 static __init int selinux_init(void) 7288 { 7289 pr_info("SELinux: Initializing.\n"); 7290 7291 memset(&selinux_state, 0, sizeof(selinux_state)); 7292 enforcing_set(selinux_enforcing_boot); 7293 selinux_avc_init(); 7294 mutex_init(&selinux_state.status_lock); 7295 mutex_init(&selinux_state.policy_mutex); 7296 7297 /* Set the security state for the initial task. */ 7298 cred_init_security(); 7299 7300 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC); 7301 if (!default_noexec) 7302 pr_notice("SELinux: virtual memory is executable by default\n"); 7303 7304 avc_init(); 7305 7306 avtab_cache_init(); 7307 7308 ebitmap_cache_init(); 7309 7310 hashtab_cache_init(); 7311 7312 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux"); 7313 7314 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET)) 7315 panic("SELinux: Unable to register AVC netcache callback\n"); 7316 7317 if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET)) 7318 panic("SELinux: Unable to register AVC LSM notifier callback\n"); 7319 7320 if (selinux_enforcing_boot) 7321 pr_debug("SELinux: Starting in enforcing mode\n"); 7322 else 7323 pr_debug("SELinux: Starting in permissive mode\n"); 7324 7325 fs_validate_description("selinux", selinux_fs_parameters); 7326 7327 return 0; 7328 } 7329 7330 static void delayed_superblock_init(struct super_block *sb, void *unused) 7331 { 7332 selinux_set_mnt_opts(sb, NULL, 0, NULL); 7333 } 7334 7335 void selinux_complete_init(void) 7336 { 7337 pr_debug("SELinux: Completing initialization.\n"); 7338 7339 /* Set up any superblocks initialized prior to the policy load. */ 7340 pr_debug("SELinux: Setting up existing superblocks.\n"); 7341 iterate_supers(delayed_superblock_init, NULL); 7342 } 7343 7344 /* SELinux requires early initialization in order to label 7345 all processes and objects when they are created. */ 7346 DEFINE_LSM(selinux) = { 7347 .name = "selinux", 7348 .flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE, 7349 .enabled = &selinux_enabled_boot, 7350 .blobs = &selinux_blob_sizes, 7351 .init = selinux_init, 7352 }; 7353 7354 #if defined(CONFIG_NETFILTER) 7355 static const struct nf_hook_ops selinux_nf_ops[] = { 7356 { 7357 .hook = selinux_ip_postroute, 7358 .pf = NFPROTO_IPV4, 7359 .hooknum = NF_INET_POST_ROUTING, 7360 .priority = NF_IP_PRI_SELINUX_LAST, 7361 }, 7362 { 7363 .hook = selinux_ip_forward, 7364 .pf = NFPROTO_IPV4, 7365 .hooknum = NF_INET_FORWARD, 7366 .priority = NF_IP_PRI_SELINUX_FIRST, 7367 }, 7368 { 7369 .hook = selinux_ip_output, 7370 .pf = NFPROTO_IPV4, 7371 .hooknum = NF_INET_LOCAL_OUT, 7372 .priority = NF_IP_PRI_SELINUX_FIRST, 7373 }, 7374 #if IS_ENABLED(CONFIG_IPV6) 7375 { 7376 .hook = selinux_ip_postroute, 7377 .pf = NFPROTO_IPV6, 7378 .hooknum = NF_INET_POST_ROUTING, 7379 .priority = NF_IP6_PRI_SELINUX_LAST, 7380 }, 7381 { 7382 .hook = selinux_ip_forward, 7383 .pf = NFPROTO_IPV6, 7384 .hooknum = NF_INET_FORWARD, 7385 .priority = NF_IP6_PRI_SELINUX_FIRST, 7386 }, 7387 { 7388 .hook = selinux_ip_output, 7389 .pf = NFPROTO_IPV6, 7390 .hooknum = NF_INET_LOCAL_OUT, 7391 .priority = NF_IP6_PRI_SELINUX_FIRST, 7392 }, 7393 #endif /* IPV6 */ 7394 }; 7395 7396 static int __net_init selinux_nf_register(struct net *net) 7397 { 7398 return nf_register_net_hooks(net, selinux_nf_ops, 7399 ARRAY_SIZE(selinux_nf_ops)); 7400 } 7401 7402 static void __net_exit selinux_nf_unregister(struct net *net) 7403 { 7404 nf_unregister_net_hooks(net, selinux_nf_ops, 7405 ARRAY_SIZE(selinux_nf_ops)); 7406 } 7407 7408 static struct pernet_operations selinux_net_ops = { 7409 .init = selinux_nf_register, 7410 .exit = selinux_nf_unregister, 7411 }; 7412 7413 static int __init selinux_nf_ip_init(void) 7414 { 7415 int err; 7416 7417 if (!selinux_enabled_boot) 7418 return 0; 7419 7420 pr_debug("SELinux: Registering netfilter hooks\n"); 7421 7422 err = register_pernet_subsys(&selinux_net_ops); 7423 if (err) 7424 panic("SELinux: register_pernet_subsys: error %d\n", err); 7425 7426 return 0; 7427 } 7428 __initcall(selinux_nf_ip_init); 7429 #endif /* CONFIG_NETFILTER */ 7430