1 /* 2 * NSA Security-Enhanced Linux (SELinux) security module 3 * 4 * This file contains the SELinux hook function implementations. 5 * 6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil> 7 * Chris Vance, <cvance@nai.com> 8 * Wayne Salamon, <wsalamon@nai.com> 9 * James Morris <jmorris@redhat.com> 10 * 11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com> 13 * Eric Paris <eparis@redhat.com> 14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 15 * <dgoeddel@trustedcs.com> 16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P. 17 * Paul Moore <paul@paul-moore.com> 18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. 19 * Yuichi Nakamura <ynakam@hitachisoft.jp> 20 * 21 * This program is free software; you can redistribute it and/or modify 22 * it under the terms of the GNU General Public License version 2, 23 * as published by the Free Software Foundation. 24 */ 25 26 #include <linux/init.h> 27 #include <linux/kd.h> 28 #include <linux/kernel.h> 29 #include <linux/tracehook.h> 30 #include <linux/errno.h> 31 #include <linux/sched.h> 32 #include <linux/lsm_hooks.h> 33 #include <linux/xattr.h> 34 #include <linux/capability.h> 35 #include <linux/unistd.h> 36 #include <linux/mm.h> 37 #include <linux/mman.h> 38 #include <linux/slab.h> 39 #include <linux/pagemap.h> 40 #include <linux/proc_fs.h> 41 #include <linux/swap.h> 42 #include <linux/spinlock.h> 43 #include <linux/syscalls.h> 44 #include <linux/dcache.h> 45 #include <linux/file.h> 46 #include <linux/fdtable.h> 47 #include <linux/namei.h> 48 #include <linux/mount.h> 49 #include <linux/netfilter_ipv4.h> 50 #include <linux/netfilter_ipv6.h> 51 #include <linux/tty.h> 52 #include <net/icmp.h> 53 #include <net/ip.h> /* for local_port_range[] */ 54 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 55 #include <net/inet_connection_sock.h> 56 #include <net/net_namespace.h> 57 #include <net/netlabel.h> 58 #include <linux/uaccess.h> 59 #include <asm/ioctls.h> 60 #include <linux/atomic.h> 61 #include <linux/bitops.h> 62 #include <linux/interrupt.h> 63 #include <linux/netdevice.h> /* for network interface checks */ 64 #include <net/netlink.h> 65 #include <linux/tcp.h> 66 #include <linux/udp.h> 67 #include <linux/dccp.h> 68 #include <linux/quota.h> 69 #include <linux/un.h> /* for Unix socket types */ 70 #include <net/af_unix.h> /* for Unix socket types */ 71 #include <linux/parser.h> 72 #include <linux/nfs_mount.h> 73 #include <net/ipv6.h> 74 #include <linux/hugetlb.h> 75 #include <linux/personality.h> 76 #include <linux/audit.h> 77 #include <linux/string.h> 78 #include <linux/selinux.h> 79 #include <linux/mutex.h> 80 #include <linux/posix-timers.h> 81 #include <linux/syslog.h> 82 #include <linux/user_namespace.h> 83 #include <linux/export.h> 84 #include <linux/msg.h> 85 #include <linux/shm.h> 86 87 #include "avc.h" 88 #include "objsec.h" 89 #include "netif.h" 90 #include "netnode.h" 91 #include "netport.h" 92 #include "xfrm.h" 93 #include "netlabel.h" 94 #include "audit.h" 95 #include "avc_ss.h" 96 97 /* SECMARK reference count */ 98 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0); 99 100 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 101 int selinux_enforcing; 102 103 static int __init enforcing_setup(char *str) 104 { 105 unsigned long enforcing; 106 if (!kstrtoul(str, 0, &enforcing)) 107 selinux_enforcing = enforcing ? 1 : 0; 108 return 1; 109 } 110 __setup("enforcing=", enforcing_setup); 111 #endif 112 113 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 114 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE; 115 116 static int __init selinux_enabled_setup(char *str) 117 { 118 unsigned long enabled; 119 if (!kstrtoul(str, 0, &enabled)) 120 selinux_enabled = enabled ? 1 : 0; 121 return 1; 122 } 123 __setup("selinux=", selinux_enabled_setup); 124 #else 125 int selinux_enabled = 1; 126 #endif 127 128 static struct kmem_cache *sel_inode_cache; 129 static struct kmem_cache *file_security_cache; 130 131 /** 132 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled 133 * 134 * Description: 135 * This function checks the SECMARK reference counter to see if any SECMARK 136 * targets are currently configured, if the reference counter is greater than 137 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is 138 * enabled, false (0) if SECMARK is disabled. If the always_check_network 139 * policy capability is enabled, SECMARK is always considered enabled. 140 * 141 */ 142 static int selinux_secmark_enabled(void) 143 { 144 return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount)); 145 } 146 147 /** 148 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled 149 * 150 * Description: 151 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true 152 * (1) if any are enabled or false (0) if neither are enabled. If the 153 * always_check_network policy capability is enabled, peer labeling 154 * is always considered enabled. 155 * 156 */ 157 static int selinux_peerlbl_enabled(void) 158 { 159 return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled()); 160 } 161 162 static int selinux_netcache_avc_callback(u32 event) 163 { 164 if (event == AVC_CALLBACK_RESET) { 165 sel_netif_flush(); 166 sel_netnode_flush(); 167 sel_netport_flush(); 168 synchronize_net(); 169 } 170 return 0; 171 } 172 173 /* 174 * initialise the security for the init task 175 */ 176 static void cred_init_security(void) 177 { 178 struct cred *cred = (struct cred *) current->real_cred; 179 struct task_security_struct *tsec; 180 181 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL); 182 if (!tsec) 183 panic("SELinux: Failed to initialize initial task.\n"); 184 185 tsec->osid = tsec->sid = SECINITSID_KERNEL; 186 cred->security = tsec; 187 } 188 189 /* 190 * get the security ID of a set of credentials 191 */ 192 static inline u32 cred_sid(const struct cred *cred) 193 { 194 const struct task_security_struct *tsec; 195 196 tsec = cred->security; 197 return tsec->sid; 198 } 199 200 /* 201 * get the objective security ID of a task 202 */ 203 static inline u32 task_sid(const struct task_struct *task) 204 { 205 u32 sid; 206 207 rcu_read_lock(); 208 sid = cred_sid(__task_cred(task)); 209 rcu_read_unlock(); 210 return sid; 211 } 212 213 /* 214 * get the subjective security ID of the current task 215 */ 216 static inline u32 current_sid(void) 217 { 218 const struct task_security_struct *tsec = current_security(); 219 220 return tsec->sid; 221 } 222 223 /* Allocate and free functions for each kind of security blob. */ 224 225 static int inode_alloc_security(struct inode *inode) 226 { 227 struct inode_security_struct *isec; 228 u32 sid = current_sid(); 229 230 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS); 231 if (!isec) 232 return -ENOMEM; 233 234 spin_lock_init(&isec->lock); 235 INIT_LIST_HEAD(&isec->list); 236 isec->inode = inode; 237 isec->sid = SECINITSID_UNLABELED; 238 isec->sclass = SECCLASS_FILE; 239 isec->task_sid = sid; 240 isec->initialized = LABEL_INVALID; 241 inode->i_security = isec; 242 243 return 0; 244 } 245 246 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 247 248 /* 249 * Try reloading inode security labels that have been marked as invalid. The 250 * @may_sleep parameter indicates when sleeping and thus reloading labels is 251 * allowed; when set to false, returns -ECHILD when the label is 252 * invalid. The @opt_dentry parameter should be set to a dentry of the inode; 253 * when no dentry is available, set it to NULL instead. 254 */ 255 static int __inode_security_revalidate(struct inode *inode, 256 struct dentry *opt_dentry, 257 bool may_sleep) 258 { 259 struct inode_security_struct *isec = inode->i_security; 260 261 might_sleep_if(may_sleep); 262 263 if (ss_initialized && isec->initialized != LABEL_INITIALIZED) { 264 if (!may_sleep) 265 return -ECHILD; 266 267 /* 268 * Try reloading the inode security label. This will fail if 269 * @opt_dentry is NULL and no dentry for this inode can be 270 * found; in that case, continue using the old label. 271 */ 272 inode_doinit_with_dentry(inode, opt_dentry); 273 } 274 return 0; 275 } 276 277 static struct inode_security_struct *inode_security_novalidate(struct inode *inode) 278 { 279 return inode->i_security; 280 } 281 282 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu) 283 { 284 int error; 285 286 error = __inode_security_revalidate(inode, NULL, !rcu); 287 if (error) 288 return ERR_PTR(error); 289 return inode->i_security; 290 } 291 292 /* 293 * Get the security label of an inode. 294 */ 295 static struct inode_security_struct *inode_security(struct inode *inode) 296 { 297 __inode_security_revalidate(inode, NULL, true); 298 return inode->i_security; 299 } 300 301 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry) 302 { 303 struct inode *inode = d_backing_inode(dentry); 304 305 return inode->i_security; 306 } 307 308 /* 309 * Get the security label of a dentry's backing inode. 310 */ 311 static struct inode_security_struct *backing_inode_security(struct dentry *dentry) 312 { 313 struct inode *inode = d_backing_inode(dentry); 314 315 __inode_security_revalidate(inode, dentry, true); 316 return inode->i_security; 317 } 318 319 static void inode_free_rcu(struct rcu_head *head) 320 { 321 struct inode_security_struct *isec; 322 323 isec = container_of(head, struct inode_security_struct, rcu); 324 kmem_cache_free(sel_inode_cache, isec); 325 } 326 327 static void inode_free_security(struct inode *inode) 328 { 329 struct inode_security_struct *isec = inode->i_security; 330 struct superblock_security_struct *sbsec = inode->i_sb->s_security; 331 332 /* 333 * As not all inode security structures are in a list, we check for 334 * empty list outside of the lock to make sure that we won't waste 335 * time taking a lock doing nothing. 336 * 337 * The list_del_init() function can be safely called more than once. 338 * It should not be possible for this function to be called with 339 * concurrent list_add(), but for better safety against future changes 340 * in the code, we use list_empty_careful() here. 341 */ 342 if (!list_empty_careful(&isec->list)) { 343 spin_lock(&sbsec->isec_lock); 344 list_del_init(&isec->list); 345 spin_unlock(&sbsec->isec_lock); 346 } 347 348 /* 349 * The inode may still be referenced in a path walk and 350 * a call to selinux_inode_permission() can be made 351 * after inode_free_security() is called. Ideally, the VFS 352 * wouldn't do this, but fixing that is a much harder 353 * job. For now, simply free the i_security via RCU, and 354 * leave the current inode->i_security pointer intact. 355 * The inode will be freed after the RCU grace period too. 356 */ 357 call_rcu(&isec->rcu, inode_free_rcu); 358 } 359 360 static int file_alloc_security(struct file *file) 361 { 362 struct file_security_struct *fsec; 363 u32 sid = current_sid(); 364 365 fsec = kmem_cache_zalloc(file_security_cache, GFP_KERNEL); 366 if (!fsec) 367 return -ENOMEM; 368 369 fsec->sid = sid; 370 fsec->fown_sid = sid; 371 file->f_security = fsec; 372 373 return 0; 374 } 375 376 static void file_free_security(struct file *file) 377 { 378 struct file_security_struct *fsec = file->f_security; 379 file->f_security = NULL; 380 kmem_cache_free(file_security_cache, fsec); 381 } 382 383 static int superblock_alloc_security(struct super_block *sb) 384 { 385 struct superblock_security_struct *sbsec; 386 387 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL); 388 if (!sbsec) 389 return -ENOMEM; 390 391 mutex_init(&sbsec->lock); 392 INIT_LIST_HEAD(&sbsec->isec_head); 393 spin_lock_init(&sbsec->isec_lock); 394 sbsec->sb = sb; 395 sbsec->sid = SECINITSID_UNLABELED; 396 sbsec->def_sid = SECINITSID_FILE; 397 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 398 sb->s_security = sbsec; 399 400 return 0; 401 } 402 403 static void superblock_free_security(struct super_block *sb) 404 { 405 struct superblock_security_struct *sbsec = sb->s_security; 406 sb->s_security = NULL; 407 kfree(sbsec); 408 } 409 410 /* The file system's label must be initialized prior to use. */ 411 412 static const char *labeling_behaviors[7] = { 413 "uses xattr", 414 "uses transition SIDs", 415 "uses task SIDs", 416 "uses genfs_contexts", 417 "not configured for labeling", 418 "uses mountpoint labeling", 419 "uses native labeling", 420 }; 421 422 static inline int inode_doinit(struct inode *inode) 423 { 424 return inode_doinit_with_dentry(inode, NULL); 425 } 426 427 enum { 428 Opt_error = -1, 429 Opt_context = 1, 430 Opt_fscontext = 2, 431 Opt_defcontext = 3, 432 Opt_rootcontext = 4, 433 Opt_labelsupport = 5, 434 Opt_nextmntopt = 6, 435 }; 436 437 #define NUM_SEL_MNT_OPTS (Opt_nextmntopt - 1) 438 439 static const match_table_t tokens = { 440 {Opt_context, CONTEXT_STR "%s"}, 441 {Opt_fscontext, FSCONTEXT_STR "%s"}, 442 {Opt_defcontext, DEFCONTEXT_STR "%s"}, 443 {Opt_rootcontext, ROOTCONTEXT_STR "%s"}, 444 {Opt_labelsupport, LABELSUPP_STR}, 445 {Opt_error, NULL}, 446 }; 447 448 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 449 450 static int may_context_mount_sb_relabel(u32 sid, 451 struct superblock_security_struct *sbsec, 452 const struct cred *cred) 453 { 454 const struct task_security_struct *tsec = cred->security; 455 int rc; 456 457 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 458 FILESYSTEM__RELABELFROM, NULL); 459 if (rc) 460 return rc; 461 462 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM, 463 FILESYSTEM__RELABELTO, NULL); 464 return rc; 465 } 466 467 static int may_context_mount_inode_relabel(u32 sid, 468 struct superblock_security_struct *sbsec, 469 const struct cred *cred) 470 { 471 const struct task_security_struct *tsec = cred->security; 472 int rc; 473 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 474 FILESYSTEM__RELABELFROM, NULL); 475 if (rc) 476 return rc; 477 478 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, 479 FILESYSTEM__ASSOCIATE, NULL); 480 return rc; 481 } 482 483 static int selinux_is_sblabel_mnt(struct super_block *sb) 484 { 485 struct superblock_security_struct *sbsec = sb->s_security; 486 487 return sbsec->behavior == SECURITY_FS_USE_XATTR || 488 sbsec->behavior == SECURITY_FS_USE_TRANS || 489 sbsec->behavior == SECURITY_FS_USE_TASK || 490 sbsec->behavior == SECURITY_FS_USE_NATIVE || 491 /* Special handling. Genfs but also in-core setxattr handler */ 492 !strcmp(sb->s_type->name, "sysfs") || 493 !strcmp(sb->s_type->name, "pstore") || 494 !strcmp(sb->s_type->name, "debugfs") || 495 !strcmp(sb->s_type->name, "rootfs"); 496 } 497 498 static int sb_finish_set_opts(struct super_block *sb) 499 { 500 struct superblock_security_struct *sbsec = sb->s_security; 501 struct dentry *root = sb->s_root; 502 struct inode *root_inode = d_backing_inode(root); 503 int rc = 0; 504 505 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 506 /* Make sure that the xattr handler exists and that no 507 error other than -ENODATA is returned by getxattr on 508 the root directory. -ENODATA is ok, as this may be 509 the first boot of the SELinux kernel before we have 510 assigned xattr values to the filesystem. */ 511 if (!(root_inode->i_opflags & IOP_XATTR)) { 512 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no " 513 "xattr support\n", sb->s_id, sb->s_type->name); 514 rc = -EOPNOTSUPP; 515 goto out; 516 } 517 518 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0); 519 if (rc < 0 && rc != -ENODATA) { 520 if (rc == -EOPNOTSUPP) 521 printk(KERN_WARNING "SELinux: (dev %s, type " 522 "%s) has no security xattr handler\n", 523 sb->s_id, sb->s_type->name); 524 else 525 printk(KERN_WARNING "SELinux: (dev %s, type " 526 "%s) getxattr errno %d\n", sb->s_id, 527 sb->s_type->name, -rc); 528 goto out; 529 } 530 } 531 532 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) 533 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n", 534 sb->s_id, sb->s_type->name); 535 536 sbsec->flags |= SE_SBINITIALIZED; 537 if (selinux_is_sblabel_mnt(sb)) 538 sbsec->flags |= SBLABEL_MNT; 539 540 /* Initialize the root inode. */ 541 rc = inode_doinit_with_dentry(root_inode, root); 542 543 /* Initialize any other inodes associated with the superblock, e.g. 544 inodes created prior to initial policy load or inodes created 545 during get_sb by a pseudo filesystem that directly 546 populates itself. */ 547 spin_lock(&sbsec->isec_lock); 548 next_inode: 549 if (!list_empty(&sbsec->isec_head)) { 550 struct inode_security_struct *isec = 551 list_entry(sbsec->isec_head.next, 552 struct inode_security_struct, list); 553 struct inode *inode = isec->inode; 554 list_del_init(&isec->list); 555 spin_unlock(&sbsec->isec_lock); 556 inode = igrab(inode); 557 if (inode) { 558 if (!IS_PRIVATE(inode)) 559 inode_doinit(inode); 560 iput(inode); 561 } 562 spin_lock(&sbsec->isec_lock); 563 goto next_inode; 564 } 565 spin_unlock(&sbsec->isec_lock); 566 out: 567 return rc; 568 } 569 570 /* 571 * This function should allow an FS to ask what it's mount security 572 * options were so it can use those later for submounts, displaying 573 * mount options, or whatever. 574 */ 575 static int selinux_get_mnt_opts(const struct super_block *sb, 576 struct security_mnt_opts *opts) 577 { 578 int rc = 0, i; 579 struct superblock_security_struct *sbsec = sb->s_security; 580 char *context = NULL; 581 u32 len; 582 char tmp; 583 584 security_init_mnt_opts(opts); 585 586 if (!(sbsec->flags & SE_SBINITIALIZED)) 587 return -EINVAL; 588 589 if (!ss_initialized) 590 return -EINVAL; 591 592 /* make sure we always check enough bits to cover the mask */ 593 BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS)); 594 595 tmp = sbsec->flags & SE_MNTMASK; 596 /* count the number of mount options for this sb */ 597 for (i = 0; i < NUM_SEL_MNT_OPTS; i++) { 598 if (tmp & 0x01) 599 opts->num_mnt_opts++; 600 tmp >>= 1; 601 } 602 /* Check if the Label support flag is set */ 603 if (sbsec->flags & SBLABEL_MNT) 604 opts->num_mnt_opts++; 605 606 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC); 607 if (!opts->mnt_opts) { 608 rc = -ENOMEM; 609 goto out_free; 610 } 611 612 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC); 613 if (!opts->mnt_opts_flags) { 614 rc = -ENOMEM; 615 goto out_free; 616 } 617 618 i = 0; 619 if (sbsec->flags & FSCONTEXT_MNT) { 620 rc = security_sid_to_context(sbsec->sid, &context, &len); 621 if (rc) 622 goto out_free; 623 opts->mnt_opts[i] = context; 624 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT; 625 } 626 if (sbsec->flags & CONTEXT_MNT) { 627 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len); 628 if (rc) 629 goto out_free; 630 opts->mnt_opts[i] = context; 631 opts->mnt_opts_flags[i++] = CONTEXT_MNT; 632 } 633 if (sbsec->flags & DEFCONTEXT_MNT) { 634 rc = security_sid_to_context(sbsec->def_sid, &context, &len); 635 if (rc) 636 goto out_free; 637 opts->mnt_opts[i] = context; 638 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT; 639 } 640 if (sbsec->flags & ROOTCONTEXT_MNT) { 641 struct dentry *root = sbsec->sb->s_root; 642 struct inode_security_struct *isec = backing_inode_security(root); 643 644 rc = security_sid_to_context(isec->sid, &context, &len); 645 if (rc) 646 goto out_free; 647 opts->mnt_opts[i] = context; 648 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT; 649 } 650 if (sbsec->flags & SBLABEL_MNT) { 651 opts->mnt_opts[i] = NULL; 652 opts->mnt_opts_flags[i++] = SBLABEL_MNT; 653 } 654 655 BUG_ON(i != opts->num_mnt_opts); 656 657 return 0; 658 659 out_free: 660 security_free_mnt_opts(opts); 661 return rc; 662 } 663 664 static int bad_option(struct superblock_security_struct *sbsec, char flag, 665 u32 old_sid, u32 new_sid) 666 { 667 char mnt_flags = sbsec->flags & SE_MNTMASK; 668 669 /* check if the old mount command had the same options */ 670 if (sbsec->flags & SE_SBINITIALIZED) 671 if (!(sbsec->flags & flag) || 672 (old_sid != new_sid)) 673 return 1; 674 675 /* check if we were passed the same options twice, 676 * aka someone passed context=a,context=b 677 */ 678 if (!(sbsec->flags & SE_SBINITIALIZED)) 679 if (mnt_flags & flag) 680 return 1; 681 return 0; 682 } 683 684 /* 685 * Allow filesystems with binary mount data to explicitly set mount point 686 * labeling information. 687 */ 688 static int selinux_set_mnt_opts(struct super_block *sb, 689 struct security_mnt_opts *opts, 690 unsigned long kern_flags, 691 unsigned long *set_kern_flags) 692 { 693 const struct cred *cred = current_cred(); 694 int rc = 0, i; 695 struct superblock_security_struct *sbsec = sb->s_security; 696 const char *name = sb->s_type->name; 697 struct dentry *root = sbsec->sb->s_root; 698 struct inode_security_struct *root_isec; 699 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; 700 u32 defcontext_sid = 0; 701 char **mount_options = opts->mnt_opts; 702 int *flags = opts->mnt_opts_flags; 703 int num_opts = opts->num_mnt_opts; 704 705 mutex_lock(&sbsec->lock); 706 707 if (!ss_initialized) { 708 if (!num_opts) { 709 /* Defer initialization until selinux_complete_init, 710 after the initial policy is loaded and the security 711 server is ready to handle calls. */ 712 goto out; 713 } 714 rc = -EINVAL; 715 printk(KERN_WARNING "SELinux: Unable to set superblock options " 716 "before the security server is initialized\n"); 717 goto out; 718 } 719 if (kern_flags && !set_kern_flags) { 720 /* Specifying internal flags without providing a place to 721 * place the results is not allowed */ 722 rc = -EINVAL; 723 goto out; 724 } 725 726 /* 727 * Binary mount data FS will come through this function twice. Once 728 * from an explicit call and once from the generic calls from the vfs. 729 * Since the generic VFS calls will not contain any security mount data 730 * we need to skip the double mount verification. 731 * 732 * This does open a hole in which we will not notice if the first 733 * mount using this sb set explict options and a second mount using 734 * this sb does not set any security options. (The first options 735 * will be used for both mounts) 736 */ 737 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 738 && (num_opts == 0)) 739 goto out; 740 741 root_isec = backing_inode_security_novalidate(root); 742 743 /* 744 * parse the mount options, check if they are valid sids. 745 * also check if someone is trying to mount the same sb more 746 * than once with different security options. 747 */ 748 for (i = 0; i < num_opts; i++) { 749 u32 sid; 750 751 if (flags[i] == SBLABEL_MNT) 752 continue; 753 rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL); 754 if (rc) { 755 printk(KERN_WARNING "SELinux: security_context_str_to_sid" 756 "(%s) failed for (dev %s, type %s) errno=%d\n", 757 mount_options[i], sb->s_id, name, rc); 758 goto out; 759 } 760 switch (flags[i]) { 761 case FSCONTEXT_MNT: 762 fscontext_sid = sid; 763 764 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 765 fscontext_sid)) 766 goto out_double_mount; 767 768 sbsec->flags |= FSCONTEXT_MNT; 769 break; 770 case CONTEXT_MNT: 771 context_sid = sid; 772 773 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 774 context_sid)) 775 goto out_double_mount; 776 777 sbsec->flags |= CONTEXT_MNT; 778 break; 779 case ROOTCONTEXT_MNT: 780 rootcontext_sid = sid; 781 782 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 783 rootcontext_sid)) 784 goto out_double_mount; 785 786 sbsec->flags |= ROOTCONTEXT_MNT; 787 788 break; 789 case DEFCONTEXT_MNT: 790 defcontext_sid = sid; 791 792 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 793 defcontext_sid)) 794 goto out_double_mount; 795 796 sbsec->flags |= DEFCONTEXT_MNT; 797 798 break; 799 default: 800 rc = -EINVAL; 801 goto out; 802 } 803 } 804 805 if (sbsec->flags & SE_SBINITIALIZED) { 806 /* previously mounted with options, but not on this attempt? */ 807 if ((sbsec->flags & SE_MNTMASK) && !num_opts) 808 goto out_double_mount; 809 rc = 0; 810 goto out; 811 } 812 813 if (strcmp(sb->s_type->name, "proc") == 0) 814 sbsec->flags |= SE_SBPROC | SE_SBGENFS; 815 816 if (!strcmp(sb->s_type->name, "debugfs") || 817 !strcmp(sb->s_type->name, "sysfs") || 818 !strcmp(sb->s_type->name, "pstore")) 819 sbsec->flags |= SE_SBGENFS; 820 821 if (!sbsec->behavior) { 822 /* 823 * Determine the labeling behavior to use for this 824 * filesystem type. 825 */ 826 rc = security_fs_use(sb); 827 if (rc) { 828 printk(KERN_WARNING 829 "%s: security_fs_use(%s) returned %d\n", 830 __func__, sb->s_type->name, rc); 831 goto out; 832 } 833 } 834 835 /* 836 * If this is a user namespace mount, no contexts are allowed 837 * on the command line and security labels must be ignored. 838 */ 839 if (sb->s_user_ns != &init_user_ns) { 840 if (context_sid || fscontext_sid || rootcontext_sid || 841 defcontext_sid) { 842 rc = -EACCES; 843 goto out; 844 } 845 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 846 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 847 rc = security_transition_sid(current_sid(), current_sid(), 848 SECCLASS_FILE, NULL, 849 &sbsec->mntpoint_sid); 850 if (rc) 851 goto out; 852 } 853 goto out_set_opts; 854 } 855 856 /* sets the context of the superblock for the fs being mounted. */ 857 if (fscontext_sid) { 858 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred); 859 if (rc) 860 goto out; 861 862 sbsec->sid = fscontext_sid; 863 } 864 865 /* 866 * Switch to using mount point labeling behavior. 867 * sets the label used on all file below the mountpoint, and will set 868 * the superblock context if not already set. 869 */ 870 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) { 871 sbsec->behavior = SECURITY_FS_USE_NATIVE; 872 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 873 } 874 875 if (context_sid) { 876 if (!fscontext_sid) { 877 rc = may_context_mount_sb_relabel(context_sid, sbsec, 878 cred); 879 if (rc) 880 goto out; 881 sbsec->sid = context_sid; 882 } else { 883 rc = may_context_mount_inode_relabel(context_sid, sbsec, 884 cred); 885 if (rc) 886 goto out; 887 } 888 if (!rootcontext_sid) 889 rootcontext_sid = context_sid; 890 891 sbsec->mntpoint_sid = context_sid; 892 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 893 } 894 895 if (rootcontext_sid) { 896 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, 897 cred); 898 if (rc) 899 goto out; 900 901 root_isec->sid = rootcontext_sid; 902 root_isec->initialized = LABEL_INITIALIZED; 903 } 904 905 if (defcontext_sid) { 906 if (sbsec->behavior != SECURITY_FS_USE_XATTR && 907 sbsec->behavior != SECURITY_FS_USE_NATIVE) { 908 rc = -EINVAL; 909 printk(KERN_WARNING "SELinux: defcontext option is " 910 "invalid for this filesystem type\n"); 911 goto out; 912 } 913 914 if (defcontext_sid != sbsec->def_sid) { 915 rc = may_context_mount_inode_relabel(defcontext_sid, 916 sbsec, cred); 917 if (rc) 918 goto out; 919 } 920 921 sbsec->def_sid = defcontext_sid; 922 } 923 924 out_set_opts: 925 rc = sb_finish_set_opts(sb); 926 out: 927 mutex_unlock(&sbsec->lock); 928 return rc; 929 out_double_mount: 930 rc = -EINVAL; 931 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different " 932 "security settings for (dev %s, type %s)\n", sb->s_id, name); 933 goto out; 934 } 935 936 static int selinux_cmp_sb_context(const struct super_block *oldsb, 937 const struct super_block *newsb) 938 { 939 struct superblock_security_struct *old = oldsb->s_security; 940 struct superblock_security_struct *new = newsb->s_security; 941 char oldflags = old->flags & SE_MNTMASK; 942 char newflags = new->flags & SE_MNTMASK; 943 944 if (oldflags != newflags) 945 goto mismatch; 946 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid) 947 goto mismatch; 948 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid) 949 goto mismatch; 950 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid) 951 goto mismatch; 952 if (oldflags & ROOTCONTEXT_MNT) { 953 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root); 954 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root); 955 if (oldroot->sid != newroot->sid) 956 goto mismatch; 957 } 958 return 0; 959 mismatch: 960 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, " 961 "different security settings for (dev %s, " 962 "type %s)\n", newsb->s_id, newsb->s_type->name); 963 return -EBUSY; 964 } 965 966 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb, 967 struct super_block *newsb) 968 { 969 const struct superblock_security_struct *oldsbsec = oldsb->s_security; 970 struct superblock_security_struct *newsbsec = newsb->s_security; 971 972 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); 973 int set_context = (oldsbsec->flags & CONTEXT_MNT); 974 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); 975 976 /* 977 * if the parent was able to be mounted it clearly had no special lsm 978 * mount options. thus we can safely deal with this superblock later 979 */ 980 if (!ss_initialized) 981 return 0; 982 983 /* how can we clone if the old one wasn't set up?? */ 984 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED)); 985 986 /* if fs is reusing a sb, make sure that the contexts match */ 987 if (newsbsec->flags & SE_SBINITIALIZED) 988 return selinux_cmp_sb_context(oldsb, newsb); 989 990 mutex_lock(&newsbsec->lock); 991 992 newsbsec->flags = oldsbsec->flags; 993 994 newsbsec->sid = oldsbsec->sid; 995 newsbsec->def_sid = oldsbsec->def_sid; 996 newsbsec->behavior = oldsbsec->behavior; 997 998 if (set_context) { 999 u32 sid = oldsbsec->mntpoint_sid; 1000 1001 if (!set_fscontext) 1002 newsbsec->sid = sid; 1003 if (!set_rootcontext) { 1004 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root); 1005 newisec->sid = sid; 1006 } 1007 newsbsec->mntpoint_sid = sid; 1008 } 1009 if (set_rootcontext) { 1010 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root); 1011 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root); 1012 1013 newisec->sid = oldisec->sid; 1014 } 1015 1016 sb_finish_set_opts(newsb); 1017 mutex_unlock(&newsbsec->lock); 1018 return 0; 1019 } 1020 1021 static int selinux_parse_opts_str(char *options, 1022 struct security_mnt_opts *opts) 1023 { 1024 char *p; 1025 char *context = NULL, *defcontext = NULL; 1026 char *fscontext = NULL, *rootcontext = NULL; 1027 int rc, num_mnt_opts = 0; 1028 1029 opts->num_mnt_opts = 0; 1030 1031 /* Standard string-based options. */ 1032 while ((p = strsep(&options, "|")) != NULL) { 1033 int token; 1034 substring_t args[MAX_OPT_ARGS]; 1035 1036 if (!*p) 1037 continue; 1038 1039 token = match_token(p, tokens, args); 1040 1041 switch (token) { 1042 case Opt_context: 1043 if (context || defcontext) { 1044 rc = -EINVAL; 1045 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 1046 goto out_err; 1047 } 1048 context = match_strdup(&args[0]); 1049 if (!context) { 1050 rc = -ENOMEM; 1051 goto out_err; 1052 } 1053 break; 1054 1055 case Opt_fscontext: 1056 if (fscontext) { 1057 rc = -EINVAL; 1058 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 1059 goto out_err; 1060 } 1061 fscontext = match_strdup(&args[0]); 1062 if (!fscontext) { 1063 rc = -ENOMEM; 1064 goto out_err; 1065 } 1066 break; 1067 1068 case Opt_rootcontext: 1069 if (rootcontext) { 1070 rc = -EINVAL; 1071 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 1072 goto out_err; 1073 } 1074 rootcontext = match_strdup(&args[0]); 1075 if (!rootcontext) { 1076 rc = -ENOMEM; 1077 goto out_err; 1078 } 1079 break; 1080 1081 case Opt_defcontext: 1082 if (context || defcontext) { 1083 rc = -EINVAL; 1084 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 1085 goto out_err; 1086 } 1087 defcontext = match_strdup(&args[0]); 1088 if (!defcontext) { 1089 rc = -ENOMEM; 1090 goto out_err; 1091 } 1092 break; 1093 case Opt_labelsupport: 1094 break; 1095 default: 1096 rc = -EINVAL; 1097 printk(KERN_WARNING "SELinux: unknown mount option\n"); 1098 goto out_err; 1099 1100 } 1101 } 1102 1103 rc = -ENOMEM; 1104 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_KERNEL); 1105 if (!opts->mnt_opts) 1106 goto out_err; 1107 1108 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), 1109 GFP_KERNEL); 1110 if (!opts->mnt_opts_flags) { 1111 kfree(opts->mnt_opts); 1112 goto out_err; 1113 } 1114 1115 if (fscontext) { 1116 opts->mnt_opts[num_mnt_opts] = fscontext; 1117 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT; 1118 } 1119 if (context) { 1120 opts->mnt_opts[num_mnt_opts] = context; 1121 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT; 1122 } 1123 if (rootcontext) { 1124 opts->mnt_opts[num_mnt_opts] = rootcontext; 1125 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT; 1126 } 1127 if (defcontext) { 1128 opts->mnt_opts[num_mnt_opts] = defcontext; 1129 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT; 1130 } 1131 1132 opts->num_mnt_opts = num_mnt_opts; 1133 return 0; 1134 1135 out_err: 1136 kfree(context); 1137 kfree(defcontext); 1138 kfree(fscontext); 1139 kfree(rootcontext); 1140 return rc; 1141 } 1142 /* 1143 * string mount options parsing and call set the sbsec 1144 */ 1145 static int superblock_doinit(struct super_block *sb, void *data) 1146 { 1147 int rc = 0; 1148 char *options = data; 1149 struct security_mnt_opts opts; 1150 1151 security_init_mnt_opts(&opts); 1152 1153 if (!data) 1154 goto out; 1155 1156 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA); 1157 1158 rc = selinux_parse_opts_str(options, &opts); 1159 if (rc) 1160 goto out_err; 1161 1162 out: 1163 rc = selinux_set_mnt_opts(sb, &opts, 0, NULL); 1164 1165 out_err: 1166 security_free_mnt_opts(&opts); 1167 return rc; 1168 } 1169 1170 static void selinux_write_opts(struct seq_file *m, 1171 struct security_mnt_opts *opts) 1172 { 1173 int i; 1174 char *prefix; 1175 1176 for (i = 0; i < opts->num_mnt_opts; i++) { 1177 char *has_comma; 1178 1179 if (opts->mnt_opts[i]) 1180 has_comma = strchr(opts->mnt_opts[i], ','); 1181 else 1182 has_comma = NULL; 1183 1184 switch (opts->mnt_opts_flags[i]) { 1185 case CONTEXT_MNT: 1186 prefix = CONTEXT_STR; 1187 break; 1188 case FSCONTEXT_MNT: 1189 prefix = FSCONTEXT_STR; 1190 break; 1191 case ROOTCONTEXT_MNT: 1192 prefix = ROOTCONTEXT_STR; 1193 break; 1194 case DEFCONTEXT_MNT: 1195 prefix = DEFCONTEXT_STR; 1196 break; 1197 case SBLABEL_MNT: 1198 seq_putc(m, ','); 1199 seq_puts(m, LABELSUPP_STR); 1200 continue; 1201 default: 1202 BUG(); 1203 return; 1204 }; 1205 /* we need a comma before each option */ 1206 seq_putc(m, ','); 1207 seq_puts(m, prefix); 1208 if (has_comma) 1209 seq_putc(m, '\"'); 1210 seq_escape(m, opts->mnt_opts[i], "\"\n\\"); 1211 if (has_comma) 1212 seq_putc(m, '\"'); 1213 } 1214 } 1215 1216 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb) 1217 { 1218 struct security_mnt_opts opts; 1219 int rc; 1220 1221 rc = selinux_get_mnt_opts(sb, &opts); 1222 if (rc) { 1223 /* before policy load we may get EINVAL, don't show anything */ 1224 if (rc == -EINVAL) 1225 rc = 0; 1226 return rc; 1227 } 1228 1229 selinux_write_opts(m, &opts); 1230 1231 security_free_mnt_opts(&opts); 1232 1233 return rc; 1234 } 1235 1236 static inline u16 inode_mode_to_security_class(umode_t mode) 1237 { 1238 switch (mode & S_IFMT) { 1239 case S_IFSOCK: 1240 return SECCLASS_SOCK_FILE; 1241 case S_IFLNK: 1242 return SECCLASS_LNK_FILE; 1243 case S_IFREG: 1244 return SECCLASS_FILE; 1245 case S_IFBLK: 1246 return SECCLASS_BLK_FILE; 1247 case S_IFDIR: 1248 return SECCLASS_DIR; 1249 case S_IFCHR: 1250 return SECCLASS_CHR_FILE; 1251 case S_IFIFO: 1252 return SECCLASS_FIFO_FILE; 1253 1254 } 1255 1256 return SECCLASS_FILE; 1257 } 1258 1259 static inline int default_protocol_stream(int protocol) 1260 { 1261 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP); 1262 } 1263 1264 static inline int default_protocol_dgram(int protocol) 1265 { 1266 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 1267 } 1268 1269 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 1270 { 1271 switch (family) { 1272 case PF_UNIX: 1273 switch (type) { 1274 case SOCK_STREAM: 1275 case SOCK_SEQPACKET: 1276 return SECCLASS_UNIX_STREAM_SOCKET; 1277 case SOCK_DGRAM: 1278 return SECCLASS_UNIX_DGRAM_SOCKET; 1279 } 1280 break; 1281 case PF_INET: 1282 case PF_INET6: 1283 switch (type) { 1284 case SOCK_STREAM: 1285 if (default_protocol_stream(protocol)) 1286 return SECCLASS_TCP_SOCKET; 1287 else 1288 return SECCLASS_RAWIP_SOCKET; 1289 case SOCK_DGRAM: 1290 if (default_protocol_dgram(protocol)) 1291 return SECCLASS_UDP_SOCKET; 1292 else 1293 return SECCLASS_RAWIP_SOCKET; 1294 case SOCK_DCCP: 1295 return SECCLASS_DCCP_SOCKET; 1296 default: 1297 return SECCLASS_RAWIP_SOCKET; 1298 } 1299 break; 1300 case PF_NETLINK: 1301 switch (protocol) { 1302 case NETLINK_ROUTE: 1303 return SECCLASS_NETLINK_ROUTE_SOCKET; 1304 case NETLINK_SOCK_DIAG: 1305 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 1306 case NETLINK_NFLOG: 1307 return SECCLASS_NETLINK_NFLOG_SOCKET; 1308 case NETLINK_XFRM: 1309 return SECCLASS_NETLINK_XFRM_SOCKET; 1310 case NETLINK_SELINUX: 1311 return SECCLASS_NETLINK_SELINUX_SOCKET; 1312 case NETLINK_ISCSI: 1313 return SECCLASS_NETLINK_ISCSI_SOCKET; 1314 case NETLINK_AUDIT: 1315 return SECCLASS_NETLINK_AUDIT_SOCKET; 1316 case NETLINK_FIB_LOOKUP: 1317 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET; 1318 case NETLINK_CONNECTOR: 1319 return SECCLASS_NETLINK_CONNECTOR_SOCKET; 1320 case NETLINK_NETFILTER: 1321 return SECCLASS_NETLINK_NETFILTER_SOCKET; 1322 case NETLINK_DNRTMSG: 1323 return SECCLASS_NETLINK_DNRT_SOCKET; 1324 case NETLINK_KOBJECT_UEVENT: 1325 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 1326 case NETLINK_GENERIC: 1327 return SECCLASS_NETLINK_GENERIC_SOCKET; 1328 case NETLINK_SCSITRANSPORT: 1329 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET; 1330 case NETLINK_RDMA: 1331 return SECCLASS_NETLINK_RDMA_SOCKET; 1332 case NETLINK_CRYPTO: 1333 return SECCLASS_NETLINK_CRYPTO_SOCKET; 1334 default: 1335 return SECCLASS_NETLINK_SOCKET; 1336 } 1337 case PF_PACKET: 1338 return SECCLASS_PACKET_SOCKET; 1339 case PF_KEY: 1340 return SECCLASS_KEY_SOCKET; 1341 case PF_APPLETALK: 1342 return SECCLASS_APPLETALK_SOCKET; 1343 } 1344 1345 return SECCLASS_SOCKET; 1346 } 1347 1348 static int selinux_genfs_get_sid(struct dentry *dentry, 1349 u16 tclass, 1350 u16 flags, 1351 u32 *sid) 1352 { 1353 int rc; 1354 struct super_block *sb = dentry->d_sb; 1355 char *buffer, *path; 1356 1357 buffer = (char *)__get_free_page(GFP_KERNEL); 1358 if (!buffer) 1359 return -ENOMEM; 1360 1361 path = dentry_path_raw(dentry, buffer, PAGE_SIZE); 1362 if (IS_ERR(path)) 1363 rc = PTR_ERR(path); 1364 else { 1365 if (flags & SE_SBPROC) { 1366 /* each process gets a /proc/PID/ entry. Strip off the 1367 * PID part to get a valid selinux labeling. 1368 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */ 1369 while (path[1] >= '0' && path[1] <= '9') { 1370 path[1] = '/'; 1371 path++; 1372 } 1373 } 1374 rc = security_genfs_sid(sb->s_type->name, path, tclass, sid); 1375 } 1376 free_page((unsigned long)buffer); 1377 return rc; 1378 } 1379 1380 /* The inode's security attributes must be initialized before first use. */ 1381 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 1382 { 1383 struct superblock_security_struct *sbsec = NULL; 1384 struct inode_security_struct *isec = inode->i_security; 1385 u32 task_sid, sid = 0; 1386 u16 sclass; 1387 struct dentry *dentry; 1388 #define INITCONTEXTLEN 255 1389 char *context = NULL; 1390 unsigned len = 0; 1391 int rc = 0; 1392 1393 if (isec->initialized == LABEL_INITIALIZED) 1394 return 0; 1395 1396 spin_lock(&isec->lock); 1397 if (isec->initialized == LABEL_INITIALIZED) 1398 goto out_unlock; 1399 1400 if (isec->sclass == SECCLASS_FILE) 1401 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1402 1403 sbsec = inode->i_sb->s_security; 1404 if (!(sbsec->flags & SE_SBINITIALIZED)) { 1405 /* Defer initialization until selinux_complete_init, 1406 after the initial policy is loaded and the security 1407 server is ready to handle calls. */ 1408 spin_lock(&sbsec->isec_lock); 1409 if (list_empty(&isec->list)) 1410 list_add(&isec->list, &sbsec->isec_head); 1411 spin_unlock(&sbsec->isec_lock); 1412 goto out_unlock; 1413 } 1414 1415 sclass = isec->sclass; 1416 task_sid = isec->task_sid; 1417 sid = isec->sid; 1418 isec->initialized = LABEL_PENDING; 1419 spin_unlock(&isec->lock); 1420 1421 switch (sbsec->behavior) { 1422 case SECURITY_FS_USE_NATIVE: 1423 break; 1424 case SECURITY_FS_USE_XATTR: 1425 if (!(inode->i_opflags & IOP_XATTR)) { 1426 sid = sbsec->def_sid; 1427 break; 1428 } 1429 /* Need a dentry, since the xattr API requires one. 1430 Life would be simpler if we could just pass the inode. */ 1431 if (opt_dentry) { 1432 /* Called from d_instantiate or d_splice_alias. */ 1433 dentry = dget(opt_dentry); 1434 } else { 1435 /* Called from selinux_complete_init, try to find a dentry. */ 1436 dentry = d_find_alias(inode); 1437 } 1438 if (!dentry) { 1439 /* 1440 * this is can be hit on boot when a file is accessed 1441 * before the policy is loaded. When we load policy we 1442 * may find inodes that have no dentry on the 1443 * sbsec->isec_head list. No reason to complain as these 1444 * will get fixed up the next time we go through 1445 * inode_doinit with a dentry, before these inodes could 1446 * be used again by userspace. 1447 */ 1448 goto out; 1449 } 1450 1451 len = INITCONTEXTLEN; 1452 context = kmalloc(len+1, GFP_NOFS); 1453 if (!context) { 1454 rc = -ENOMEM; 1455 dput(dentry); 1456 goto out; 1457 } 1458 context[len] = '\0'; 1459 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len); 1460 if (rc == -ERANGE) { 1461 kfree(context); 1462 1463 /* Need a larger buffer. Query for the right size. */ 1464 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0); 1465 if (rc < 0) { 1466 dput(dentry); 1467 goto out; 1468 } 1469 len = rc; 1470 context = kmalloc(len+1, GFP_NOFS); 1471 if (!context) { 1472 rc = -ENOMEM; 1473 dput(dentry); 1474 goto out; 1475 } 1476 context[len] = '\0'; 1477 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len); 1478 } 1479 dput(dentry); 1480 if (rc < 0) { 1481 if (rc != -ENODATA) { 1482 printk(KERN_WARNING "SELinux: %s: getxattr returned " 1483 "%d for dev=%s ino=%ld\n", __func__, 1484 -rc, inode->i_sb->s_id, inode->i_ino); 1485 kfree(context); 1486 goto out; 1487 } 1488 /* Map ENODATA to the default file SID */ 1489 sid = sbsec->def_sid; 1490 rc = 0; 1491 } else { 1492 rc = security_context_to_sid_default(context, rc, &sid, 1493 sbsec->def_sid, 1494 GFP_NOFS); 1495 if (rc) { 1496 char *dev = inode->i_sb->s_id; 1497 unsigned long ino = inode->i_ino; 1498 1499 if (rc == -EINVAL) { 1500 if (printk_ratelimit()) 1501 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid " 1502 "context=%s. This indicates you may need to relabel the inode or the " 1503 "filesystem in question.\n", ino, dev, context); 1504 } else { 1505 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) " 1506 "returned %d for dev=%s ino=%ld\n", 1507 __func__, context, -rc, dev, ino); 1508 } 1509 kfree(context); 1510 /* Leave with the unlabeled SID */ 1511 rc = 0; 1512 break; 1513 } 1514 } 1515 kfree(context); 1516 break; 1517 case SECURITY_FS_USE_TASK: 1518 sid = task_sid; 1519 break; 1520 case SECURITY_FS_USE_TRANS: 1521 /* Default to the fs SID. */ 1522 sid = sbsec->sid; 1523 1524 /* Try to obtain a transition SID. */ 1525 rc = security_transition_sid(task_sid, sid, sclass, NULL, &sid); 1526 if (rc) 1527 goto out; 1528 break; 1529 case SECURITY_FS_USE_MNTPOINT: 1530 sid = sbsec->mntpoint_sid; 1531 break; 1532 default: 1533 /* Default to the fs superblock SID. */ 1534 sid = sbsec->sid; 1535 1536 if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) { 1537 /* We must have a dentry to determine the label on 1538 * procfs inodes */ 1539 if (opt_dentry) 1540 /* Called from d_instantiate or 1541 * d_splice_alias. */ 1542 dentry = dget(opt_dentry); 1543 else 1544 /* Called from selinux_complete_init, try to 1545 * find a dentry. */ 1546 dentry = d_find_alias(inode); 1547 /* 1548 * This can be hit on boot when a file is accessed 1549 * before the policy is loaded. When we load policy we 1550 * may find inodes that have no dentry on the 1551 * sbsec->isec_head list. No reason to complain as 1552 * these will get fixed up the next time we go through 1553 * inode_doinit() with a dentry, before these inodes 1554 * could be used again by userspace. 1555 */ 1556 if (!dentry) 1557 goto out; 1558 rc = selinux_genfs_get_sid(dentry, sclass, 1559 sbsec->flags, &sid); 1560 dput(dentry); 1561 if (rc) 1562 goto out; 1563 } 1564 break; 1565 } 1566 1567 out: 1568 spin_lock(&isec->lock); 1569 if (isec->initialized == LABEL_PENDING) { 1570 if (!sid || rc) { 1571 isec->initialized = LABEL_INVALID; 1572 goto out_unlock; 1573 } 1574 1575 isec->initialized = LABEL_INITIALIZED; 1576 isec->sid = sid; 1577 } 1578 1579 out_unlock: 1580 spin_unlock(&isec->lock); 1581 return rc; 1582 } 1583 1584 /* Convert a Linux signal to an access vector. */ 1585 static inline u32 signal_to_av(int sig) 1586 { 1587 u32 perm = 0; 1588 1589 switch (sig) { 1590 case SIGCHLD: 1591 /* Commonly granted from child to parent. */ 1592 perm = PROCESS__SIGCHLD; 1593 break; 1594 case SIGKILL: 1595 /* Cannot be caught or ignored */ 1596 perm = PROCESS__SIGKILL; 1597 break; 1598 case SIGSTOP: 1599 /* Cannot be caught or ignored */ 1600 perm = PROCESS__SIGSTOP; 1601 break; 1602 default: 1603 /* All other signals. */ 1604 perm = PROCESS__SIGNAL; 1605 break; 1606 } 1607 1608 return perm; 1609 } 1610 1611 /* 1612 * Check permission between a pair of credentials 1613 * fork check, ptrace check, etc. 1614 */ 1615 static int cred_has_perm(const struct cred *actor, 1616 const struct cred *target, 1617 u32 perms) 1618 { 1619 u32 asid = cred_sid(actor), tsid = cred_sid(target); 1620 1621 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL); 1622 } 1623 1624 /* 1625 * Check permission between a pair of tasks, e.g. signal checks, 1626 * fork check, ptrace check, etc. 1627 * tsk1 is the actor and tsk2 is the target 1628 * - this uses the default subjective creds of tsk1 1629 */ 1630 static int task_has_perm(const struct task_struct *tsk1, 1631 const struct task_struct *tsk2, 1632 u32 perms) 1633 { 1634 const struct task_security_struct *__tsec1, *__tsec2; 1635 u32 sid1, sid2; 1636 1637 rcu_read_lock(); 1638 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid; 1639 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid; 1640 rcu_read_unlock(); 1641 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL); 1642 } 1643 1644 /* 1645 * Check permission between current and another task, e.g. signal checks, 1646 * fork check, ptrace check, etc. 1647 * current is the actor and tsk2 is the target 1648 * - this uses current's subjective creds 1649 */ 1650 static int current_has_perm(const struct task_struct *tsk, 1651 u32 perms) 1652 { 1653 u32 sid, tsid; 1654 1655 sid = current_sid(); 1656 tsid = task_sid(tsk); 1657 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL); 1658 } 1659 1660 #if CAP_LAST_CAP > 63 1661 #error Fix SELinux to handle capabilities > 63. 1662 #endif 1663 1664 /* Check whether a task is allowed to use a capability. */ 1665 static int cred_has_capability(const struct cred *cred, 1666 int cap, int audit, bool initns) 1667 { 1668 struct common_audit_data ad; 1669 struct av_decision avd; 1670 u16 sclass; 1671 u32 sid = cred_sid(cred); 1672 u32 av = CAP_TO_MASK(cap); 1673 int rc; 1674 1675 ad.type = LSM_AUDIT_DATA_CAP; 1676 ad.u.cap = cap; 1677 1678 switch (CAP_TO_INDEX(cap)) { 1679 case 0: 1680 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS; 1681 break; 1682 case 1: 1683 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS; 1684 break; 1685 default: 1686 printk(KERN_ERR 1687 "SELinux: out of range capability %d\n", cap); 1688 BUG(); 1689 return -EINVAL; 1690 } 1691 1692 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd); 1693 if (audit == SECURITY_CAP_AUDIT) { 1694 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0); 1695 if (rc2) 1696 return rc2; 1697 } 1698 return rc; 1699 } 1700 1701 /* Check whether a task is allowed to use a system operation. */ 1702 static int task_has_system(struct task_struct *tsk, 1703 u32 perms) 1704 { 1705 u32 sid = task_sid(tsk); 1706 1707 return avc_has_perm(sid, SECINITSID_KERNEL, 1708 SECCLASS_SYSTEM, perms, NULL); 1709 } 1710 1711 /* Check whether a task has a particular permission to an inode. 1712 The 'adp' parameter is optional and allows other audit 1713 data to be passed (e.g. the dentry). */ 1714 static int inode_has_perm(const struct cred *cred, 1715 struct inode *inode, 1716 u32 perms, 1717 struct common_audit_data *adp) 1718 { 1719 struct inode_security_struct *isec; 1720 u32 sid; 1721 1722 validate_creds(cred); 1723 1724 if (unlikely(IS_PRIVATE(inode))) 1725 return 0; 1726 1727 sid = cred_sid(cred); 1728 isec = inode->i_security; 1729 1730 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp); 1731 } 1732 1733 /* Same as inode_has_perm, but pass explicit audit data containing 1734 the dentry to help the auditing code to more easily generate the 1735 pathname if needed. */ 1736 static inline int dentry_has_perm(const struct cred *cred, 1737 struct dentry *dentry, 1738 u32 av) 1739 { 1740 struct inode *inode = d_backing_inode(dentry); 1741 struct common_audit_data ad; 1742 1743 ad.type = LSM_AUDIT_DATA_DENTRY; 1744 ad.u.dentry = dentry; 1745 __inode_security_revalidate(inode, dentry, true); 1746 return inode_has_perm(cred, inode, av, &ad); 1747 } 1748 1749 /* Same as inode_has_perm, but pass explicit audit data containing 1750 the path to help the auditing code to more easily generate the 1751 pathname if needed. */ 1752 static inline int path_has_perm(const struct cred *cred, 1753 const struct path *path, 1754 u32 av) 1755 { 1756 struct inode *inode = d_backing_inode(path->dentry); 1757 struct common_audit_data ad; 1758 1759 ad.type = LSM_AUDIT_DATA_PATH; 1760 ad.u.path = *path; 1761 __inode_security_revalidate(inode, path->dentry, true); 1762 return inode_has_perm(cred, inode, av, &ad); 1763 } 1764 1765 /* Same as path_has_perm, but uses the inode from the file struct. */ 1766 static inline int file_path_has_perm(const struct cred *cred, 1767 struct file *file, 1768 u32 av) 1769 { 1770 struct common_audit_data ad; 1771 1772 ad.type = LSM_AUDIT_DATA_FILE; 1773 ad.u.file = file; 1774 return inode_has_perm(cred, file_inode(file), av, &ad); 1775 } 1776 1777 /* Check whether a task can use an open file descriptor to 1778 access an inode in a given way. Check access to the 1779 descriptor itself, and then use dentry_has_perm to 1780 check a particular permission to the file. 1781 Access to the descriptor is implicitly granted if it 1782 has the same SID as the process. If av is zero, then 1783 access to the file is not checked, e.g. for cases 1784 where only the descriptor is affected like seek. */ 1785 static int file_has_perm(const struct cred *cred, 1786 struct file *file, 1787 u32 av) 1788 { 1789 struct file_security_struct *fsec = file->f_security; 1790 struct inode *inode = file_inode(file); 1791 struct common_audit_data ad; 1792 u32 sid = cred_sid(cred); 1793 int rc; 1794 1795 ad.type = LSM_AUDIT_DATA_FILE; 1796 ad.u.file = file; 1797 1798 if (sid != fsec->sid) { 1799 rc = avc_has_perm(sid, fsec->sid, 1800 SECCLASS_FD, 1801 FD__USE, 1802 &ad); 1803 if (rc) 1804 goto out; 1805 } 1806 1807 /* av is zero if only checking access to the descriptor. */ 1808 rc = 0; 1809 if (av) 1810 rc = inode_has_perm(cred, inode, av, &ad); 1811 1812 out: 1813 return rc; 1814 } 1815 1816 /* 1817 * Determine the label for an inode that might be unioned. 1818 */ 1819 static int 1820 selinux_determine_inode_label(const struct task_security_struct *tsec, 1821 struct inode *dir, 1822 const struct qstr *name, u16 tclass, 1823 u32 *_new_isid) 1824 { 1825 const struct superblock_security_struct *sbsec = dir->i_sb->s_security; 1826 1827 if ((sbsec->flags & SE_SBINITIALIZED) && 1828 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) { 1829 *_new_isid = sbsec->mntpoint_sid; 1830 } else if ((sbsec->flags & SBLABEL_MNT) && 1831 tsec->create_sid) { 1832 *_new_isid = tsec->create_sid; 1833 } else { 1834 const struct inode_security_struct *dsec = inode_security(dir); 1835 return security_transition_sid(tsec->sid, dsec->sid, tclass, 1836 name, _new_isid); 1837 } 1838 1839 return 0; 1840 } 1841 1842 /* Check whether a task can create a file. */ 1843 static int may_create(struct inode *dir, 1844 struct dentry *dentry, 1845 u16 tclass) 1846 { 1847 const struct task_security_struct *tsec = current_security(); 1848 struct inode_security_struct *dsec; 1849 struct superblock_security_struct *sbsec; 1850 u32 sid, newsid; 1851 struct common_audit_data ad; 1852 int rc; 1853 1854 dsec = inode_security(dir); 1855 sbsec = dir->i_sb->s_security; 1856 1857 sid = tsec->sid; 1858 1859 ad.type = LSM_AUDIT_DATA_DENTRY; 1860 ad.u.dentry = dentry; 1861 1862 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, 1863 DIR__ADD_NAME | DIR__SEARCH, 1864 &ad); 1865 if (rc) 1866 return rc; 1867 1868 rc = selinux_determine_inode_label(current_security(), dir, 1869 &dentry->d_name, tclass, &newsid); 1870 if (rc) 1871 return rc; 1872 1873 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad); 1874 if (rc) 1875 return rc; 1876 1877 return avc_has_perm(newsid, sbsec->sid, 1878 SECCLASS_FILESYSTEM, 1879 FILESYSTEM__ASSOCIATE, &ad); 1880 } 1881 1882 /* Check whether a task can create a key. */ 1883 static int may_create_key(u32 ksid, 1884 struct task_struct *ctx) 1885 { 1886 u32 sid = task_sid(ctx); 1887 1888 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL); 1889 } 1890 1891 #define MAY_LINK 0 1892 #define MAY_UNLINK 1 1893 #define MAY_RMDIR 2 1894 1895 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1896 static int may_link(struct inode *dir, 1897 struct dentry *dentry, 1898 int kind) 1899 1900 { 1901 struct inode_security_struct *dsec, *isec; 1902 struct common_audit_data ad; 1903 u32 sid = current_sid(); 1904 u32 av; 1905 int rc; 1906 1907 dsec = inode_security(dir); 1908 isec = backing_inode_security(dentry); 1909 1910 ad.type = LSM_AUDIT_DATA_DENTRY; 1911 ad.u.dentry = dentry; 1912 1913 av = DIR__SEARCH; 1914 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1915 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad); 1916 if (rc) 1917 return rc; 1918 1919 switch (kind) { 1920 case MAY_LINK: 1921 av = FILE__LINK; 1922 break; 1923 case MAY_UNLINK: 1924 av = FILE__UNLINK; 1925 break; 1926 case MAY_RMDIR: 1927 av = DIR__RMDIR; 1928 break; 1929 default: 1930 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n", 1931 __func__, kind); 1932 return 0; 1933 } 1934 1935 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad); 1936 return rc; 1937 } 1938 1939 static inline int may_rename(struct inode *old_dir, 1940 struct dentry *old_dentry, 1941 struct inode *new_dir, 1942 struct dentry *new_dentry) 1943 { 1944 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1945 struct common_audit_data ad; 1946 u32 sid = current_sid(); 1947 u32 av; 1948 int old_is_dir, new_is_dir; 1949 int rc; 1950 1951 old_dsec = inode_security(old_dir); 1952 old_isec = backing_inode_security(old_dentry); 1953 old_is_dir = d_is_dir(old_dentry); 1954 new_dsec = inode_security(new_dir); 1955 1956 ad.type = LSM_AUDIT_DATA_DENTRY; 1957 1958 ad.u.dentry = old_dentry; 1959 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR, 1960 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1961 if (rc) 1962 return rc; 1963 rc = avc_has_perm(sid, old_isec->sid, 1964 old_isec->sclass, FILE__RENAME, &ad); 1965 if (rc) 1966 return rc; 1967 if (old_is_dir && new_dir != old_dir) { 1968 rc = avc_has_perm(sid, old_isec->sid, 1969 old_isec->sclass, DIR__REPARENT, &ad); 1970 if (rc) 1971 return rc; 1972 } 1973 1974 ad.u.dentry = new_dentry; 1975 av = DIR__ADD_NAME | DIR__SEARCH; 1976 if (d_is_positive(new_dentry)) 1977 av |= DIR__REMOVE_NAME; 1978 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1979 if (rc) 1980 return rc; 1981 if (d_is_positive(new_dentry)) { 1982 new_isec = backing_inode_security(new_dentry); 1983 new_is_dir = d_is_dir(new_dentry); 1984 rc = avc_has_perm(sid, new_isec->sid, 1985 new_isec->sclass, 1986 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1987 if (rc) 1988 return rc; 1989 } 1990 1991 return 0; 1992 } 1993 1994 /* Check whether a task can perform a filesystem operation. */ 1995 static int superblock_has_perm(const struct cred *cred, 1996 struct super_block *sb, 1997 u32 perms, 1998 struct common_audit_data *ad) 1999 { 2000 struct superblock_security_struct *sbsec; 2001 u32 sid = cred_sid(cred); 2002 2003 sbsec = sb->s_security; 2004 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad); 2005 } 2006 2007 /* Convert a Linux mode and permission mask to an access vector. */ 2008 static inline u32 file_mask_to_av(int mode, int mask) 2009 { 2010 u32 av = 0; 2011 2012 if (!S_ISDIR(mode)) { 2013 if (mask & MAY_EXEC) 2014 av |= FILE__EXECUTE; 2015 if (mask & MAY_READ) 2016 av |= FILE__READ; 2017 2018 if (mask & MAY_APPEND) 2019 av |= FILE__APPEND; 2020 else if (mask & MAY_WRITE) 2021 av |= FILE__WRITE; 2022 2023 } else { 2024 if (mask & MAY_EXEC) 2025 av |= DIR__SEARCH; 2026 if (mask & MAY_WRITE) 2027 av |= DIR__WRITE; 2028 if (mask & MAY_READ) 2029 av |= DIR__READ; 2030 } 2031 2032 return av; 2033 } 2034 2035 /* Convert a Linux file to an access vector. */ 2036 static inline u32 file_to_av(struct file *file) 2037 { 2038 u32 av = 0; 2039 2040 if (file->f_mode & FMODE_READ) 2041 av |= FILE__READ; 2042 if (file->f_mode & FMODE_WRITE) { 2043 if (file->f_flags & O_APPEND) 2044 av |= FILE__APPEND; 2045 else 2046 av |= FILE__WRITE; 2047 } 2048 if (!av) { 2049 /* 2050 * Special file opened with flags 3 for ioctl-only use. 2051 */ 2052 av = FILE__IOCTL; 2053 } 2054 2055 return av; 2056 } 2057 2058 /* 2059 * Convert a file to an access vector and include the correct open 2060 * open permission. 2061 */ 2062 static inline u32 open_file_to_av(struct file *file) 2063 { 2064 u32 av = file_to_av(file); 2065 2066 if (selinux_policycap_openperm) 2067 av |= FILE__OPEN; 2068 2069 return av; 2070 } 2071 2072 /* Hook functions begin here. */ 2073 2074 static int selinux_binder_set_context_mgr(struct task_struct *mgr) 2075 { 2076 u32 mysid = current_sid(); 2077 u32 mgrsid = task_sid(mgr); 2078 2079 return avc_has_perm(mysid, mgrsid, SECCLASS_BINDER, 2080 BINDER__SET_CONTEXT_MGR, NULL); 2081 } 2082 2083 static int selinux_binder_transaction(struct task_struct *from, 2084 struct task_struct *to) 2085 { 2086 u32 mysid = current_sid(); 2087 u32 fromsid = task_sid(from); 2088 u32 tosid = task_sid(to); 2089 int rc; 2090 2091 if (mysid != fromsid) { 2092 rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER, 2093 BINDER__IMPERSONATE, NULL); 2094 if (rc) 2095 return rc; 2096 } 2097 2098 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__CALL, 2099 NULL); 2100 } 2101 2102 static int selinux_binder_transfer_binder(struct task_struct *from, 2103 struct task_struct *to) 2104 { 2105 u32 fromsid = task_sid(from); 2106 u32 tosid = task_sid(to); 2107 2108 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER, 2109 NULL); 2110 } 2111 2112 static int selinux_binder_transfer_file(struct task_struct *from, 2113 struct task_struct *to, 2114 struct file *file) 2115 { 2116 u32 sid = task_sid(to); 2117 struct file_security_struct *fsec = file->f_security; 2118 struct dentry *dentry = file->f_path.dentry; 2119 struct inode_security_struct *isec; 2120 struct common_audit_data ad; 2121 int rc; 2122 2123 ad.type = LSM_AUDIT_DATA_PATH; 2124 ad.u.path = file->f_path; 2125 2126 if (sid != fsec->sid) { 2127 rc = avc_has_perm(sid, fsec->sid, 2128 SECCLASS_FD, 2129 FD__USE, 2130 &ad); 2131 if (rc) 2132 return rc; 2133 } 2134 2135 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2136 return 0; 2137 2138 isec = backing_inode_security(dentry); 2139 return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file), 2140 &ad); 2141 } 2142 2143 static int selinux_ptrace_access_check(struct task_struct *child, 2144 unsigned int mode) 2145 { 2146 if (mode & PTRACE_MODE_READ) { 2147 u32 sid = current_sid(); 2148 u32 csid = task_sid(child); 2149 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL); 2150 } 2151 2152 return current_has_perm(child, PROCESS__PTRACE); 2153 } 2154 2155 static int selinux_ptrace_traceme(struct task_struct *parent) 2156 { 2157 return task_has_perm(parent, current, PROCESS__PTRACE); 2158 } 2159 2160 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective, 2161 kernel_cap_t *inheritable, kernel_cap_t *permitted) 2162 { 2163 return current_has_perm(target, PROCESS__GETCAP); 2164 } 2165 2166 static int selinux_capset(struct cred *new, const struct cred *old, 2167 const kernel_cap_t *effective, 2168 const kernel_cap_t *inheritable, 2169 const kernel_cap_t *permitted) 2170 { 2171 return cred_has_perm(old, new, PROCESS__SETCAP); 2172 } 2173 2174 /* 2175 * (This comment used to live with the selinux_task_setuid hook, 2176 * which was removed). 2177 * 2178 * Since setuid only affects the current process, and since the SELinux 2179 * controls are not based on the Linux identity attributes, SELinux does not 2180 * need to control this operation. However, SELinux does control the use of 2181 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook. 2182 */ 2183 2184 static int selinux_capable(const struct cred *cred, struct user_namespace *ns, 2185 int cap, int audit) 2186 { 2187 return cred_has_capability(cred, cap, audit, ns == &init_user_ns); 2188 } 2189 2190 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) 2191 { 2192 const struct cred *cred = current_cred(); 2193 int rc = 0; 2194 2195 if (!sb) 2196 return 0; 2197 2198 switch (cmds) { 2199 case Q_SYNC: 2200 case Q_QUOTAON: 2201 case Q_QUOTAOFF: 2202 case Q_SETINFO: 2203 case Q_SETQUOTA: 2204 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL); 2205 break; 2206 case Q_GETFMT: 2207 case Q_GETINFO: 2208 case Q_GETQUOTA: 2209 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL); 2210 break; 2211 default: 2212 rc = 0; /* let the kernel handle invalid cmds */ 2213 break; 2214 } 2215 return rc; 2216 } 2217 2218 static int selinux_quota_on(struct dentry *dentry) 2219 { 2220 const struct cred *cred = current_cred(); 2221 2222 return dentry_has_perm(cred, dentry, FILE__QUOTAON); 2223 } 2224 2225 static int selinux_syslog(int type) 2226 { 2227 int rc; 2228 2229 switch (type) { 2230 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */ 2231 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */ 2232 rc = task_has_system(current, SYSTEM__SYSLOG_READ); 2233 break; 2234 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */ 2235 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */ 2236 /* Set level of messages printed to console */ 2237 case SYSLOG_ACTION_CONSOLE_LEVEL: 2238 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE); 2239 break; 2240 case SYSLOG_ACTION_CLOSE: /* Close log */ 2241 case SYSLOG_ACTION_OPEN: /* Open log */ 2242 case SYSLOG_ACTION_READ: /* Read from log */ 2243 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */ 2244 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */ 2245 default: 2246 rc = task_has_system(current, SYSTEM__SYSLOG_MOD); 2247 break; 2248 } 2249 return rc; 2250 } 2251 2252 /* 2253 * Check that a process has enough memory to allocate a new virtual 2254 * mapping. 0 means there is enough memory for the allocation to 2255 * succeed and -ENOMEM implies there is not. 2256 * 2257 * Do not audit the selinux permission check, as this is applied to all 2258 * processes that allocate mappings. 2259 */ 2260 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) 2261 { 2262 int rc, cap_sys_admin = 0; 2263 2264 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN, 2265 SECURITY_CAP_NOAUDIT, true); 2266 if (rc == 0) 2267 cap_sys_admin = 1; 2268 2269 return cap_sys_admin; 2270 } 2271 2272 /* binprm security operations */ 2273 2274 static u32 ptrace_parent_sid(struct task_struct *task) 2275 { 2276 u32 sid = 0; 2277 struct task_struct *tracer; 2278 2279 rcu_read_lock(); 2280 tracer = ptrace_parent(task); 2281 if (tracer) 2282 sid = task_sid(tracer); 2283 rcu_read_unlock(); 2284 2285 return sid; 2286 } 2287 2288 static int check_nnp_nosuid(const struct linux_binprm *bprm, 2289 const struct task_security_struct *old_tsec, 2290 const struct task_security_struct *new_tsec) 2291 { 2292 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS); 2293 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt); 2294 int rc; 2295 2296 if (!nnp && !nosuid) 2297 return 0; /* neither NNP nor nosuid */ 2298 2299 if (new_tsec->sid == old_tsec->sid) 2300 return 0; /* No change in credentials */ 2301 2302 /* 2303 * The only transitions we permit under NNP or nosuid 2304 * are transitions to bounded SIDs, i.e. SIDs that are 2305 * guaranteed to only be allowed a subset of the permissions 2306 * of the current SID. 2307 */ 2308 rc = security_bounded_transition(old_tsec->sid, new_tsec->sid); 2309 if (rc) { 2310 /* 2311 * On failure, preserve the errno values for NNP vs nosuid. 2312 * NNP: Operation not permitted for caller. 2313 * nosuid: Permission denied to file. 2314 */ 2315 if (nnp) 2316 return -EPERM; 2317 else 2318 return -EACCES; 2319 } 2320 return 0; 2321 } 2322 2323 static int selinux_bprm_set_creds(struct linux_binprm *bprm) 2324 { 2325 const struct task_security_struct *old_tsec; 2326 struct task_security_struct *new_tsec; 2327 struct inode_security_struct *isec; 2328 struct common_audit_data ad; 2329 struct inode *inode = file_inode(bprm->file); 2330 int rc; 2331 2332 /* SELinux context only depends on initial program or script and not 2333 * the script interpreter */ 2334 if (bprm->cred_prepared) 2335 return 0; 2336 2337 old_tsec = current_security(); 2338 new_tsec = bprm->cred->security; 2339 isec = inode_security(inode); 2340 2341 /* Default to the current task SID. */ 2342 new_tsec->sid = old_tsec->sid; 2343 new_tsec->osid = old_tsec->sid; 2344 2345 /* Reset fs, key, and sock SIDs on execve. */ 2346 new_tsec->create_sid = 0; 2347 new_tsec->keycreate_sid = 0; 2348 new_tsec->sockcreate_sid = 0; 2349 2350 if (old_tsec->exec_sid) { 2351 new_tsec->sid = old_tsec->exec_sid; 2352 /* Reset exec SID on execve. */ 2353 new_tsec->exec_sid = 0; 2354 2355 /* Fail on NNP or nosuid if not an allowed transition. */ 2356 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2357 if (rc) 2358 return rc; 2359 } else { 2360 /* Check for a default transition on this program. */ 2361 rc = security_transition_sid(old_tsec->sid, isec->sid, 2362 SECCLASS_PROCESS, NULL, 2363 &new_tsec->sid); 2364 if (rc) 2365 return rc; 2366 2367 /* 2368 * Fallback to old SID on NNP or nosuid if not an allowed 2369 * transition. 2370 */ 2371 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2372 if (rc) 2373 new_tsec->sid = old_tsec->sid; 2374 } 2375 2376 ad.type = LSM_AUDIT_DATA_FILE; 2377 ad.u.file = bprm->file; 2378 2379 if (new_tsec->sid == old_tsec->sid) { 2380 rc = avc_has_perm(old_tsec->sid, isec->sid, 2381 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 2382 if (rc) 2383 return rc; 2384 } else { 2385 /* Check permissions for the transition. */ 2386 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2387 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 2388 if (rc) 2389 return rc; 2390 2391 rc = avc_has_perm(new_tsec->sid, isec->sid, 2392 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 2393 if (rc) 2394 return rc; 2395 2396 /* Check for shared state */ 2397 if (bprm->unsafe & LSM_UNSAFE_SHARE) { 2398 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2399 SECCLASS_PROCESS, PROCESS__SHARE, 2400 NULL); 2401 if (rc) 2402 return -EPERM; 2403 } 2404 2405 /* Make sure that anyone attempting to ptrace over a task that 2406 * changes its SID has the appropriate permit */ 2407 if (bprm->unsafe & 2408 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) { 2409 u32 ptsid = ptrace_parent_sid(current); 2410 if (ptsid != 0) { 2411 rc = avc_has_perm(ptsid, new_tsec->sid, 2412 SECCLASS_PROCESS, 2413 PROCESS__PTRACE, NULL); 2414 if (rc) 2415 return -EPERM; 2416 } 2417 } 2418 2419 /* Clear any possibly unsafe personality bits on exec: */ 2420 bprm->per_clear |= PER_CLEAR_ON_SETID; 2421 } 2422 2423 return 0; 2424 } 2425 2426 static int selinux_bprm_secureexec(struct linux_binprm *bprm) 2427 { 2428 const struct task_security_struct *tsec = current_security(); 2429 u32 sid, osid; 2430 int atsecure = 0; 2431 2432 sid = tsec->sid; 2433 osid = tsec->osid; 2434 2435 if (osid != sid) { 2436 /* Enable secure mode for SIDs transitions unless 2437 the noatsecure permission is granted between 2438 the two SIDs, i.e. ahp returns 0. */ 2439 atsecure = avc_has_perm(osid, sid, 2440 SECCLASS_PROCESS, 2441 PROCESS__NOATSECURE, NULL); 2442 } 2443 2444 return !!atsecure; 2445 } 2446 2447 static int match_file(const void *p, struct file *file, unsigned fd) 2448 { 2449 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0; 2450 } 2451 2452 /* Derived from fs/exec.c:flush_old_files. */ 2453 static inline void flush_unauthorized_files(const struct cred *cred, 2454 struct files_struct *files) 2455 { 2456 struct file *file, *devnull = NULL; 2457 struct tty_struct *tty; 2458 int drop_tty = 0; 2459 unsigned n; 2460 2461 tty = get_current_tty(); 2462 if (tty) { 2463 spin_lock(&tty->files_lock); 2464 if (!list_empty(&tty->tty_files)) { 2465 struct tty_file_private *file_priv; 2466 2467 /* Revalidate access to controlling tty. 2468 Use file_path_has_perm on the tty path directly 2469 rather than using file_has_perm, as this particular 2470 open file may belong to another process and we are 2471 only interested in the inode-based check here. */ 2472 file_priv = list_first_entry(&tty->tty_files, 2473 struct tty_file_private, list); 2474 file = file_priv->file; 2475 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE)) 2476 drop_tty = 1; 2477 } 2478 spin_unlock(&tty->files_lock); 2479 tty_kref_put(tty); 2480 } 2481 /* Reset controlling tty. */ 2482 if (drop_tty) 2483 no_tty(); 2484 2485 /* Revalidate access to inherited open files. */ 2486 n = iterate_fd(files, 0, match_file, cred); 2487 if (!n) /* none found? */ 2488 return; 2489 2490 devnull = dentry_open(&selinux_null, O_RDWR, cred); 2491 if (IS_ERR(devnull)) 2492 devnull = NULL; 2493 /* replace all the matching ones with this */ 2494 do { 2495 replace_fd(n - 1, devnull, 0); 2496 } while ((n = iterate_fd(files, n, match_file, cred)) != 0); 2497 if (devnull) 2498 fput(devnull); 2499 } 2500 2501 /* 2502 * Prepare a process for imminent new credential changes due to exec 2503 */ 2504 static void selinux_bprm_committing_creds(struct linux_binprm *bprm) 2505 { 2506 struct task_security_struct *new_tsec; 2507 struct rlimit *rlim, *initrlim; 2508 int rc, i; 2509 2510 new_tsec = bprm->cred->security; 2511 if (new_tsec->sid == new_tsec->osid) 2512 return; 2513 2514 /* Close files for which the new task SID is not authorized. */ 2515 flush_unauthorized_files(bprm->cred, current->files); 2516 2517 /* Always clear parent death signal on SID transitions. */ 2518 current->pdeath_signal = 0; 2519 2520 /* Check whether the new SID can inherit resource limits from the old 2521 * SID. If not, reset all soft limits to the lower of the current 2522 * task's hard limit and the init task's soft limit. 2523 * 2524 * Note that the setting of hard limits (even to lower them) can be 2525 * controlled by the setrlimit check. The inclusion of the init task's 2526 * soft limit into the computation is to avoid resetting soft limits 2527 * higher than the default soft limit for cases where the default is 2528 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK. 2529 */ 2530 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS, 2531 PROCESS__RLIMITINH, NULL); 2532 if (rc) { 2533 /* protect against do_prlimit() */ 2534 task_lock(current); 2535 for (i = 0; i < RLIM_NLIMITS; i++) { 2536 rlim = current->signal->rlim + i; 2537 initrlim = init_task.signal->rlim + i; 2538 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur); 2539 } 2540 task_unlock(current); 2541 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) 2542 update_rlimit_cpu(current, rlimit(RLIMIT_CPU)); 2543 } 2544 } 2545 2546 /* 2547 * Clean up the process immediately after the installation of new credentials 2548 * due to exec 2549 */ 2550 static void selinux_bprm_committed_creds(struct linux_binprm *bprm) 2551 { 2552 const struct task_security_struct *tsec = current_security(); 2553 struct itimerval itimer; 2554 u32 osid, sid; 2555 int rc, i; 2556 2557 osid = tsec->osid; 2558 sid = tsec->sid; 2559 2560 if (sid == osid) 2561 return; 2562 2563 /* Check whether the new SID can inherit signal state from the old SID. 2564 * If not, clear itimers to avoid subsequent signal generation and 2565 * flush and unblock signals. 2566 * 2567 * This must occur _after_ the task SID has been updated so that any 2568 * kill done after the flush will be checked against the new SID. 2569 */ 2570 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL); 2571 if (rc) { 2572 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) { 2573 memset(&itimer, 0, sizeof itimer); 2574 for (i = 0; i < 3; i++) 2575 do_setitimer(i, &itimer, NULL); 2576 } 2577 spin_lock_irq(¤t->sighand->siglock); 2578 if (!fatal_signal_pending(current)) { 2579 flush_sigqueue(¤t->pending); 2580 flush_sigqueue(¤t->signal->shared_pending); 2581 flush_signal_handlers(current, 1); 2582 sigemptyset(¤t->blocked); 2583 recalc_sigpending(); 2584 } 2585 spin_unlock_irq(¤t->sighand->siglock); 2586 } 2587 2588 /* Wake up the parent if it is waiting so that it can recheck 2589 * wait permission to the new task SID. */ 2590 read_lock(&tasklist_lock); 2591 __wake_up_parent(current, current->real_parent); 2592 read_unlock(&tasklist_lock); 2593 } 2594 2595 /* superblock security operations */ 2596 2597 static int selinux_sb_alloc_security(struct super_block *sb) 2598 { 2599 return superblock_alloc_security(sb); 2600 } 2601 2602 static void selinux_sb_free_security(struct super_block *sb) 2603 { 2604 superblock_free_security(sb); 2605 } 2606 2607 static inline int match_prefix(char *prefix, int plen, char *option, int olen) 2608 { 2609 if (plen > olen) 2610 return 0; 2611 2612 return !memcmp(prefix, option, plen); 2613 } 2614 2615 static inline int selinux_option(char *option, int len) 2616 { 2617 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) || 2618 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) || 2619 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) || 2620 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) || 2621 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len)); 2622 } 2623 2624 static inline void take_option(char **to, char *from, int *first, int len) 2625 { 2626 if (!*first) { 2627 **to = ','; 2628 *to += 1; 2629 } else 2630 *first = 0; 2631 memcpy(*to, from, len); 2632 *to += len; 2633 } 2634 2635 static inline void take_selinux_option(char **to, char *from, int *first, 2636 int len) 2637 { 2638 int current_size = 0; 2639 2640 if (!*first) { 2641 **to = '|'; 2642 *to += 1; 2643 } else 2644 *first = 0; 2645 2646 while (current_size < len) { 2647 if (*from != '"') { 2648 **to = *from; 2649 *to += 1; 2650 } 2651 from += 1; 2652 current_size += 1; 2653 } 2654 } 2655 2656 static int selinux_sb_copy_data(char *orig, char *copy) 2657 { 2658 int fnosec, fsec, rc = 0; 2659 char *in_save, *in_curr, *in_end; 2660 char *sec_curr, *nosec_save, *nosec; 2661 int open_quote = 0; 2662 2663 in_curr = orig; 2664 sec_curr = copy; 2665 2666 nosec = (char *)get_zeroed_page(GFP_KERNEL); 2667 if (!nosec) { 2668 rc = -ENOMEM; 2669 goto out; 2670 } 2671 2672 nosec_save = nosec; 2673 fnosec = fsec = 1; 2674 in_save = in_end = orig; 2675 2676 do { 2677 if (*in_end == '"') 2678 open_quote = !open_quote; 2679 if ((*in_end == ',' && open_quote == 0) || 2680 *in_end == '\0') { 2681 int len = in_end - in_curr; 2682 2683 if (selinux_option(in_curr, len)) 2684 take_selinux_option(&sec_curr, in_curr, &fsec, len); 2685 else 2686 take_option(&nosec, in_curr, &fnosec, len); 2687 2688 in_curr = in_end + 1; 2689 } 2690 } while (*in_end++); 2691 2692 strcpy(in_save, nosec_save); 2693 free_page((unsigned long)nosec_save); 2694 out: 2695 return rc; 2696 } 2697 2698 static int selinux_sb_remount(struct super_block *sb, void *data) 2699 { 2700 int rc, i, *flags; 2701 struct security_mnt_opts opts; 2702 char *secdata, **mount_options; 2703 struct superblock_security_struct *sbsec = sb->s_security; 2704 2705 if (!(sbsec->flags & SE_SBINITIALIZED)) 2706 return 0; 2707 2708 if (!data) 2709 return 0; 2710 2711 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 2712 return 0; 2713 2714 security_init_mnt_opts(&opts); 2715 secdata = alloc_secdata(); 2716 if (!secdata) 2717 return -ENOMEM; 2718 rc = selinux_sb_copy_data(data, secdata); 2719 if (rc) 2720 goto out_free_secdata; 2721 2722 rc = selinux_parse_opts_str(secdata, &opts); 2723 if (rc) 2724 goto out_free_secdata; 2725 2726 mount_options = opts.mnt_opts; 2727 flags = opts.mnt_opts_flags; 2728 2729 for (i = 0; i < opts.num_mnt_opts; i++) { 2730 u32 sid; 2731 2732 if (flags[i] == SBLABEL_MNT) 2733 continue; 2734 rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL); 2735 if (rc) { 2736 printk(KERN_WARNING "SELinux: security_context_str_to_sid" 2737 "(%s) failed for (dev %s, type %s) errno=%d\n", 2738 mount_options[i], sb->s_id, sb->s_type->name, rc); 2739 goto out_free_opts; 2740 } 2741 rc = -EINVAL; 2742 switch (flags[i]) { 2743 case FSCONTEXT_MNT: 2744 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid)) 2745 goto out_bad_option; 2746 break; 2747 case CONTEXT_MNT: 2748 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid)) 2749 goto out_bad_option; 2750 break; 2751 case ROOTCONTEXT_MNT: { 2752 struct inode_security_struct *root_isec; 2753 root_isec = backing_inode_security(sb->s_root); 2754 2755 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid)) 2756 goto out_bad_option; 2757 break; 2758 } 2759 case DEFCONTEXT_MNT: 2760 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid)) 2761 goto out_bad_option; 2762 break; 2763 default: 2764 goto out_free_opts; 2765 } 2766 } 2767 2768 rc = 0; 2769 out_free_opts: 2770 security_free_mnt_opts(&opts); 2771 out_free_secdata: 2772 free_secdata(secdata); 2773 return rc; 2774 out_bad_option: 2775 printk(KERN_WARNING "SELinux: unable to change security options " 2776 "during remount (dev %s, type=%s)\n", sb->s_id, 2777 sb->s_type->name); 2778 goto out_free_opts; 2779 } 2780 2781 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data) 2782 { 2783 const struct cred *cred = current_cred(); 2784 struct common_audit_data ad; 2785 int rc; 2786 2787 rc = superblock_doinit(sb, data); 2788 if (rc) 2789 return rc; 2790 2791 /* Allow all mounts performed by the kernel */ 2792 if (flags & MS_KERNMOUNT) 2793 return 0; 2794 2795 ad.type = LSM_AUDIT_DATA_DENTRY; 2796 ad.u.dentry = sb->s_root; 2797 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad); 2798 } 2799 2800 static int selinux_sb_statfs(struct dentry *dentry) 2801 { 2802 const struct cred *cred = current_cred(); 2803 struct common_audit_data ad; 2804 2805 ad.type = LSM_AUDIT_DATA_DENTRY; 2806 ad.u.dentry = dentry->d_sb->s_root; 2807 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2808 } 2809 2810 static int selinux_mount(const char *dev_name, 2811 const struct path *path, 2812 const char *type, 2813 unsigned long flags, 2814 void *data) 2815 { 2816 const struct cred *cred = current_cred(); 2817 2818 if (flags & MS_REMOUNT) 2819 return superblock_has_perm(cred, path->dentry->d_sb, 2820 FILESYSTEM__REMOUNT, NULL); 2821 else 2822 return path_has_perm(cred, path, FILE__MOUNTON); 2823 } 2824 2825 static int selinux_umount(struct vfsmount *mnt, int flags) 2826 { 2827 const struct cred *cred = current_cred(); 2828 2829 return superblock_has_perm(cred, mnt->mnt_sb, 2830 FILESYSTEM__UNMOUNT, NULL); 2831 } 2832 2833 /* inode security operations */ 2834 2835 static int selinux_inode_alloc_security(struct inode *inode) 2836 { 2837 return inode_alloc_security(inode); 2838 } 2839 2840 static void selinux_inode_free_security(struct inode *inode) 2841 { 2842 inode_free_security(inode); 2843 } 2844 2845 static int selinux_dentry_init_security(struct dentry *dentry, int mode, 2846 const struct qstr *name, void **ctx, 2847 u32 *ctxlen) 2848 { 2849 u32 newsid; 2850 int rc; 2851 2852 rc = selinux_determine_inode_label(current_security(), 2853 d_inode(dentry->d_parent), name, 2854 inode_mode_to_security_class(mode), 2855 &newsid); 2856 if (rc) 2857 return rc; 2858 2859 return security_sid_to_context(newsid, (char **)ctx, ctxlen); 2860 } 2861 2862 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode, 2863 struct qstr *name, 2864 const struct cred *old, 2865 struct cred *new) 2866 { 2867 u32 newsid; 2868 int rc; 2869 struct task_security_struct *tsec; 2870 2871 rc = selinux_determine_inode_label(old->security, 2872 d_inode(dentry->d_parent), name, 2873 inode_mode_to_security_class(mode), 2874 &newsid); 2875 if (rc) 2876 return rc; 2877 2878 tsec = new->security; 2879 tsec->create_sid = newsid; 2880 return 0; 2881 } 2882 2883 static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 2884 const struct qstr *qstr, 2885 const char **name, 2886 void **value, size_t *len) 2887 { 2888 const struct task_security_struct *tsec = current_security(); 2889 struct superblock_security_struct *sbsec; 2890 u32 sid, newsid, clen; 2891 int rc; 2892 char *context; 2893 2894 sbsec = dir->i_sb->s_security; 2895 2896 sid = tsec->sid; 2897 newsid = tsec->create_sid; 2898 2899 rc = selinux_determine_inode_label(current_security(), 2900 dir, qstr, 2901 inode_mode_to_security_class(inode->i_mode), 2902 &newsid); 2903 if (rc) 2904 return rc; 2905 2906 /* Possibly defer initialization to selinux_complete_init. */ 2907 if (sbsec->flags & SE_SBINITIALIZED) { 2908 struct inode_security_struct *isec = inode->i_security; 2909 isec->sclass = inode_mode_to_security_class(inode->i_mode); 2910 isec->sid = newsid; 2911 isec->initialized = LABEL_INITIALIZED; 2912 } 2913 2914 if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT)) 2915 return -EOPNOTSUPP; 2916 2917 if (name) 2918 *name = XATTR_SELINUX_SUFFIX; 2919 2920 if (value && len) { 2921 rc = security_sid_to_context_force(newsid, &context, &clen); 2922 if (rc) 2923 return rc; 2924 *value = context; 2925 *len = clen; 2926 } 2927 2928 return 0; 2929 } 2930 2931 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 2932 { 2933 return may_create(dir, dentry, SECCLASS_FILE); 2934 } 2935 2936 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2937 { 2938 return may_link(dir, old_dentry, MAY_LINK); 2939 } 2940 2941 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 2942 { 2943 return may_link(dir, dentry, MAY_UNLINK); 2944 } 2945 2946 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 2947 { 2948 return may_create(dir, dentry, SECCLASS_LNK_FILE); 2949 } 2950 2951 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask) 2952 { 2953 return may_create(dir, dentry, SECCLASS_DIR); 2954 } 2955 2956 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 2957 { 2958 return may_link(dir, dentry, MAY_RMDIR); 2959 } 2960 2961 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2962 { 2963 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 2964 } 2965 2966 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 2967 struct inode *new_inode, struct dentry *new_dentry) 2968 { 2969 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 2970 } 2971 2972 static int selinux_inode_readlink(struct dentry *dentry) 2973 { 2974 const struct cred *cred = current_cred(); 2975 2976 return dentry_has_perm(cred, dentry, FILE__READ); 2977 } 2978 2979 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode, 2980 bool rcu) 2981 { 2982 const struct cred *cred = current_cred(); 2983 struct common_audit_data ad; 2984 struct inode_security_struct *isec; 2985 u32 sid; 2986 2987 validate_creds(cred); 2988 2989 ad.type = LSM_AUDIT_DATA_DENTRY; 2990 ad.u.dentry = dentry; 2991 sid = cred_sid(cred); 2992 isec = inode_security_rcu(inode, rcu); 2993 if (IS_ERR(isec)) 2994 return PTR_ERR(isec); 2995 2996 return avc_has_perm_flags(sid, isec->sid, isec->sclass, FILE__READ, &ad, 2997 rcu ? MAY_NOT_BLOCK : 0); 2998 } 2999 3000 static noinline int audit_inode_permission(struct inode *inode, 3001 u32 perms, u32 audited, u32 denied, 3002 int result, 3003 unsigned flags) 3004 { 3005 struct common_audit_data ad; 3006 struct inode_security_struct *isec = inode->i_security; 3007 int rc; 3008 3009 ad.type = LSM_AUDIT_DATA_INODE; 3010 ad.u.inode = inode; 3011 3012 rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms, 3013 audited, denied, result, &ad, flags); 3014 if (rc) 3015 return rc; 3016 return 0; 3017 } 3018 3019 static int selinux_inode_permission(struct inode *inode, int mask) 3020 { 3021 const struct cred *cred = current_cred(); 3022 u32 perms; 3023 bool from_access; 3024 unsigned flags = mask & MAY_NOT_BLOCK; 3025 struct inode_security_struct *isec; 3026 u32 sid; 3027 struct av_decision avd; 3028 int rc, rc2; 3029 u32 audited, denied; 3030 3031 from_access = mask & MAY_ACCESS; 3032 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND); 3033 3034 /* No permission to check. Existence test. */ 3035 if (!mask) 3036 return 0; 3037 3038 validate_creds(cred); 3039 3040 if (unlikely(IS_PRIVATE(inode))) 3041 return 0; 3042 3043 perms = file_mask_to_av(inode->i_mode, mask); 3044 3045 sid = cred_sid(cred); 3046 isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK); 3047 if (IS_ERR(isec)) 3048 return PTR_ERR(isec); 3049 3050 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd); 3051 audited = avc_audit_required(perms, &avd, rc, 3052 from_access ? FILE__AUDIT_ACCESS : 0, 3053 &denied); 3054 if (likely(!audited)) 3055 return rc; 3056 3057 rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags); 3058 if (rc2) 3059 return rc2; 3060 return rc; 3061 } 3062 3063 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) 3064 { 3065 const struct cred *cred = current_cred(); 3066 unsigned int ia_valid = iattr->ia_valid; 3067 __u32 av = FILE__WRITE; 3068 3069 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */ 3070 if (ia_valid & ATTR_FORCE) { 3071 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE | 3072 ATTR_FORCE); 3073 if (!ia_valid) 3074 return 0; 3075 } 3076 3077 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 3078 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET)) 3079 return dentry_has_perm(cred, dentry, FILE__SETATTR); 3080 3081 if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE) 3082 && !(ia_valid & ATTR_FILE)) 3083 av |= FILE__OPEN; 3084 3085 return dentry_has_perm(cred, dentry, av); 3086 } 3087 3088 static int selinux_inode_getattr(const struct path *path) 3089 { 3090 return path_has_perm(current_cred(), path, FILE__GETATTR); 3091 } 3092 3093 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name) 3094 { 3095 const struct cred *cred = current_cred(); 3096 3097 if (!strncmp(name, XATTR_SECURITY_PREFIX, 3098 sizeof XATTR_SECURITY_PREFIX - 1)) { 3099 if (!strcmp(name, XATTR_NAME_CAPS)) { 3100 if (!capable(CAP_SETFCAP)) 3101 return -EPERM; 3102 } else if (!capable(CAP_SYS_ADMIN)) { 3103 /* A different attribute in the security namespace. 3104 Restrict to administrator. */ 3105 return -EPERM; 3106 } 3107 } 3108 3109 /* Not an attribute we recognize, so just check the 3110 ordinary setattr permission. */ 3111 return dentry_has_perm(cred, dentry, FILE__SETATTR); 3112 } 3113 3114 static int selinux_inode_setxattr(struct dentry *dentry, const char *name, 3115 const void *value, size_t size, int flags) 3116 { 3117 struct inode *inode = d_backing_inode(dentry); 3118 struct inode_security_struct *isec; 3119 struct superblock_security_struct *sbsec; 3120 struct common_audit_data ad; 3121 u32 newsid, sid = current_sid(); 3122 int rc = 0; 3123 3124 if (strcmp(name, XATTR_NAME_SELINUX)) 3125 return selinux_inode_setotherxattr(dentry, name); 3126 3127 sbsec = inode->i_sb->s_security; 3128 if (!(sbsec->flags & SBLABEL_MNT)) 3129 return -EOPNOTSUPP; 3130 3131 if (!inode_owner_or_capable(inode)) 3132 return -EPERM; 3133 3134 ad.type = LSM_AUDIT_DATA_DENTRY; 3135 ad.u.dentry = dentry; 3136 3137 isec = backing_inode_security(dentry); 3138 rc = avc_has_perm(sid, isec->sid, isec->sclass, 3139 FILE__RELABELFROM, &ad); 3140 if (rc) 3141 return rc; 3142 3143 rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL); 3144 if (rc == -EINVAL) { 3145 if (!capable(CAP_MAC_ADMIN)) { 3146 struct audit_buffer *ab; 3147 size_t audit_size; 3148 const char *str; 3149 3150 /* We strip a nul only if it is at the end, otherwise the 3151 * context contains a nul and we should audit that */ 3152 if (value) { 3153 str = value; 3154 if (str[size - 1] == '\0') 3155 audit_size = size - 1; 3156 else 3157 audit_size = size; 3158 } else { 3159 str = ""; 3160 audit_size = 0; 3161 } 3162 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR); 3163 audit_log_format(ab, "op=setxattr invalid_context="); 3164 audit_log_n_untrustedstring(ab, value, audit_size); 3165 audit_log_end(ab); 3166 3167 return rc; 3168 } 3169 rc = security_context_to_sid_force(value, size, &newsid); 3170 } 3171 if (rc) 3172 return rc; 3173 3174 rc = avc_has_perm(sid, newsid, isec->sclass, 3175 FILE__RELABELTO, &ad); 3176 if (rc) 3177 return rc; 3178 3179 rc = security_validate_transition(isec->sid, newsid, sid, 3180 isec->sclass); 3181 if (rc) 3182 return rc; 3183 3184 return avc_has_perm(newsid, 3185 sbsec->sid, 3186 SECCLASS_FILESYSTEM, 3187 FILESYSTEM__ASSOCIATE, 3188 &ad); 3189 } 3190 3191 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name, 3192 const void *value, size_t size, 3193 int flags) 3194 { 3195 struct inode *inode = d_backing_inode(dentry); 3196 struct inode_security_struct *isec; 3197 u32 newsid; 3198 int rc; 3199 3200 if (strcmp(name, XATTR_NAME_SELINUX)) { 3201 /* Not an attribute we recognize, so nothing to do. */ 3202 return; 3203 } 3204 3205 rc = security_context_to_sid_force(value, size, &newsid); 3206 if (rc) { 3207 printk(KERN_ERR "SELinux: unable to map context to SID" 3208 "for (%s, %lu), rc=%d\n", 3209 inode->i_sb->s_id, inode->i_ino, -rc); 3210 return; 3211 } 3212 3213 isec = backing_inode_security(dentry); 3214 spin_lock(&isec->lock); 3215 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3216 isec->sid = newsid; 3217 isec->initialized = LABEL_INITIALIZED; 3218 spin_unlock(&isec->lock); 3219 3220 return; 3221 } 3222 3223 static int selinux_inode_getxattr(struct dentry *dentry, const char *name) 3224 { 3225 const struct cred *cred = current_cred(); 3226 3227 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3228 } 3229 3230 static int selinux_inode_listxattr(struct dentry *dentry) 3231 { 3232 const struct cred *cred = current_cred(); 3233 3234 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3235 } 3236 3237 static int selinux_inode_removexattr(struct dentry *dentry, const char *name) 3238 { 3239 if (strcmp(name, XATTR_NAME_SELINUX)) 3240 return selinux_inode_setotherxattr(dentry, name); 3241 3242 /* No one is allowed to remove a SELinux security label. 3243 You can change the label, but all data must be labeled. */ 3244 return -EACCES; 3245 } 3246 3247 /* 3248 * Copy the inode security context value to the user. 3249 * 3250 * Permission check is handled by selinux_inode_getxattr hook. 3251 */ 3252 static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc) 3253 { 3254 u32 size; 3255 int error; 3256 char *context = NULL; 3257 struct inode_security_struct *isec; 3258 3259 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 3260 return -EOPNOTSUPP; 3261 3262 /* 3263 * If the caller has CAP_MAC_ADMIN, then get the raw context 3264 * value even if it is not defined by current policy; otherwise, 3265 * use the in-core value under current policy. 3266 * Use the non-auditing forms of the permission checks since 3267 * getxattr may be called by unprivileged processes commonly 3268 * and lack of permission just means that we fall back to the 3269 * in-core context value, not a denial. 3270 */ 3271 error = cap_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN, 3272 SECURITY_CAP_NOAUDIT); 3273 if (!error) 3274 error = cred_has_capability(current_cred(), CAP_MAC_ADMIN, 3275 SECURITY_CAP_NOAUDIT, true); 3276 isec = inode_security(inode); 3277 if (!error) 3278 error = security_sid_to_context_force(isec->sid, &context, 3279 &size); 3280 else 3281 error = security_sid_to_context(isec->sid, &context, &size); 3282 if (error) 3283 return error; 3284 error = size; 3285 if (alloc) { 3286 *buffer = context; 3287 goto out_nofree; 3288 } 3289 kfree(context); 3290 out_nofree: 3291 return error; 3292 } 3293 3294 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 3295 const void *value, size_t size, int flags) 3296 { 3297 struct inode_security_struct *isec = inode_security_novalidate(inode); 3298 u32 newsid; 3299 int rc; 3300 3301 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 3302 return -EOPNOTSUPP; 3303 3304 if (!value || !size) 3305 return -EACCES; 3306 3307 rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL); 3308 if (rc) 3309 return rc; 3310 3311 spin_lock(&isec->lock); 3312 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3313 isec->sid = newsid; 3314 isec->initialized = LABEL_INITIALIZED; 3315 spin_unlock(&isec->lock); 3316 return 0; 3317 } 3318 3319 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 3320 { 3321 const int len = sizeof(XATTR_NAME_SELINUX); 3322 if (buffer && len <= buffer_size) 3323 memcpy(buffer, XATTR_NAME_SELINUX, len); 3324 return len; 3325 } 3326 3327 static void selinux_inode_getsecid(struct inode *inode, u32 *secid) 3328 { 3329 struct inode_security_struct *isec = inode_security_novalidate(inode); 3330 *secid = isec->sid; 3331 } 3332 3333 static int selinux_inode_copy_up(struct dentry *src, struct cred **new) 3334 { 3335 u32 sid; 3336 struct task_security_struct *tsec; 3337 struct cred *new_creds = *new; 3338 3339 if (new_creds == NULL) { 3340 new_creds = prepare_creds(); 3341 if (!new_creds) 3342 return -ENOMEM; 3343 } 3344 3345 tsec = new_creds->security; 3346 /* Get label from overlay inode and set it in create_sid */ 3347 selinux_inode_getsecid(d_inode(src), &sid); 3348 tsec->create_sid = sid; 3349 *new = new_creds; 3350 return 0; 3351 } 3352 3353 static int selinux_inode_copy_up_xattr(const char *name) 3354 { 3355 /* The copy_up hook above sets the initial context on an inode, but we 3356 * don't then want to overwrite it by blindly copying all the lower 3357 * xattrs up. Instead, we have to filter out SELinux-related xattrs. 3358 */ 3359 if (strcmp(name, XATTR_NAME_SELINUX) == 0) 3360 return 1; /* Discard */ 3361 /* 3362 * Any other attribute apart from SELINUX is not claimed, supported 3363 * by selinux. 3364 */ 3365 return -EOPNOTSUPP; 3366 } 3367 3368 /* file security operations */ 3369 3370 static int selinux_revalidate_file_permission(struct file *file, int mask) 3371 { 3372 const struct cred *cred = current_cred(); 3373 struct inode *inode = file_inode(file); 3374 3375 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 3376 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 3377 mask |= MAY_APPEND; 3378 3379 return file_has_perm(cred, file, 3380 file_mask_to_av(inode->i_mode, mask)); 3381 } 3382 3383 static int selinux_file_permission(struct file *file, int mask) 3384 { 3385 struct inode *inode = file_inode(file); 3386 struct file_security_struct *fsec = file->f_security; 3387 struct inode_security_struct *isec; 3388 u32 sid = current_sid(); 3389 3390 if (!mask) 3391 /* No permission to check. Existence test. */ 3392 return 0; 3393 3394 isec = inode_security(inode); 3395 if (sid == fsec->sid && fsec->isid == isec->sid && 3396 fsec->pseqno == avc_policy_seqno()) 3397 /* No change since file_open check. */ 3398 return 0; 3399 3400 return selinux_revalidate_file_permission(file, mask); 3401 } 3402 3403 static int selinux_file_alloc_security(struct file *file) 3404 { 3405 return file_alloc_security(file); 3406 } 3407 3408 static void selinux_file_free_security(struct file *file) 3409 { 3410 file_free_security(file); 3411 } 3412 3413 /* 3414 * Check whether a task has the ioctl permission and cmd 3415 * operation to an inode. 3416 */ 3417 static int ioctl_has_perm(const struct cred *cred, struct file *file, 3418 u32 requested, u16 cmd) 3419 { 3420 struct common_audit_data ad; 3421 struct file_security_struct *fsec = file->f_security; 3422 struct inode *inode = file_inode(file); 3423 struct inode_security_struct *isec; 3424 struct lsm_ioctlop_audit ioctl; 3425 u32 ssid = cred_sid(cred); 3426 int rc; 3427 u8 driver = cmd >> 8; 3428 u8 xperm = cmd & 0xff; 3429 3430 ad.type = LSM_AUDIT_DATA_IOCTL_OP; 3431 ad.u.op = &ioctl; 3432 ad.u.op->cmd = cmd; 3433 ad.u.op->path = file->f_path; 3434 3435 if (ssid != fsec->sid) { 3436 rc = avc_has_perm(ssid, fsec->sid, 3437 SECCLASS_FD, 3438 FD__USE, 3439 &ad); 3440 if (rc) 3441 goto out; 3442 } 3443 3444 if (unlikely(IS_PRIVATE(inode))) 3445 return 0; 3446 3447 isec = inode_security(inode); 3448 rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass, 3449 requested, driver, xperm, &ad); 3450 out: 3451 return rc; 3452 } 3453 3454 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 3455 unsigned long arg) 3456 { 3457 const struct cred *cred = current_cred(); 3458 int error = 0; 3459 3460 switch (cmd) { 3461 case FIONREAD: 3462 /* fall through */ 3463 case FIBMAP: 3464 /* fall through */ 3465 case FIGETBSZ: 3466 /* fall through */ 3467 case FS_IOC_GETFLAGS: 3468 /* fall through */ 3469 case FS_IOC_GETVERSION: 3470 error = file_has_perm(cred, file, FILE__GETATTR); 3471 break; 3472 3473 case FS_IOC_SETFLAGS: 3474 /* fall through */ 3475 case FS_IOC_SETVERSION: 3476 error = file_has_perm(cred, file, FILE__SETATTR); 3477 break; 3478 3479 /* sys_ioctl() checks */ 3480 case FIONBIO: 3481 /* fall through */ 3482 case FIOASYNC: 3483 error = file_has_perm(cred, file, 0); 3484 break; 3485 3486 case KDSKBENT: 3487 case KDSKBSENT: 3488 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG, 3489 SECURITY_CAP_AUDIT, true); 3490 break; 3491 3492 /* default case assumes that the command will go 3493 * to the file's ioctl() function. 3494 */ 3495 default: 3496 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd); 3497 } 3498 return error; 3499 } 3500 3501 static int default_noexec; 3502 3503 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 3504 { 3505 const struct cred *cred = current_cred(); 3506 int rc = 0; 3507 3508 if (default_noexec && 3509 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) || 3510 (!shared && (prot & PROT_WRITE)))) { 3511 /* 3512 * We are making executable an anonymous mapping or a 3513 * private file mapping that will also be writable. 3514 * This has an additional check. 3515 */ 3516 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM); 3517 if (rc) 3518 goto error; 3519 } 3520 3521 if (file) { 3522 /* read access is always possible with a mapping */ 3523 u32 av = FILE__READ; 3524 3525 /* write access only matters if the mapping is shared */ 3526 if (shared && (prot & PROT_WRITE)) 3527 av |= FILE__WRITE; 3528 3529 if (prot & PROT_EXEC) 3530 av |= FILE__EXECUTE; 3531 3532 return file_has_perm(cred, file, av); 3533 } 3534 3535 error: 3536 return rc; 3537 } 3538 3539 static int selinux_mmap_addr(unsigned long addr) 3540 { 3541 int rc = 0; 3542 3543 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) { 3544 u32 sid = current_sid(); 3545 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT, 3546 MEMPROTECT__MMAP_ZERO, NULL); 3547 } 3548 3549 return rc; 3550 } 3551 3552 static int selinux_mmap_file(struct file *file, unsigned long reqprot, 3553 unsigned long prot, unsigned long flags) 3554 { 3555 if (selinux_checkreqprot) 3556 prot = reqprot; 3557 3558 return file_map_prot_check(file, prot, 3559 (flags & MAP_TYPE) == MAP_SHARED); 3560 } 3561 3562 static int selinux_file_mprotect(struct vm_area_struct *vma, 3563 unsigned long reqprot, 3564 unsigned long prot) 3565 { 3566 const struct cred *cred = current_cred(); 3567 3568 if (selinux_checkreqprot) 3569 prot = reqprot; 3570 3571 if (default_noexec && 3572 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 3573 int rc = 0; 3574 if (vma->vm_start >= vma->vm_mm->start_brk && 3575 vma->vm_end <= vma->vm_mm->brk) { 3576 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP); 3577 } else if (!vma->vm_file && 3578 ((vma->vm_start <= vma->vm_mm->start_stack && 3579 vma->vm_end >= vma->vm_mm->start_stack) || 3580 vma_is_stack_for_current(vma))) { 3581 rc = current_has_perm(current, PROCESS__EXECSTACK); 3582 } else if (vma->vm_file && vma->anon_vma) { 3583 /* 3584 * We are making executable a file mapping that has 3585 * had some COW done. Since pages might have been 3586 * written, check ability to execute the possibly 3587 * modified content. This typically should only 3588 * occur for text relocations. 3589 */ 3590 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD); 3591 } 3592 if (rc) 3593 return rc; 3594 } 3595 3596 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 3597 } 3598 3599 static int selinux_file_lock(struct file *file, unsigned int cmd) 3600 { 3601 const struct cred *cred = current_cred(); 3602 3603 return file_has_perm(cred, file, FILE__LOCK); 3604 } 3605 3606 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 3607 unsigned long arg) 3608 { 3609 const struct cred *cred = current_cred(); 3610 int err = 0; 3611 3612 switch (cmd) { 3613 case F_SETFL: 3614 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 3615 err = file_has_perm(cred, file, FILE__WRITE); 3616 break; 3617 } 3618 /* fall through */ 3619 case F_SETOWN: 3620 case F_SETSIG: 3621 case F_GETFL: 3622 case F_GETOWN: 3623 case F_GETSIG: 3624 case F_GETOWNER_UIDS: 3625 /* Just check FD__USE permission */ 3626 err = file_has_perm(cred, file, 0); 3627 break; 3628 case F_GETLK: 3629 case F_SETLK: 3630 case F_SETLKW: 3631 case F_OFD_GETLK: 3632 case F_OFD_SETLK: 3633 case F_OFD_SETLKW: 3634 #if BITS_PER_LONG == 32 3635 case F_GETLK64: 3636 case F_SETLK64: 3637 case F_SETLKW64: 3638 #endif 3639 err = file_has_perm(cred, file, FILE__LOCK); 3640 break; 3641 } 3642 3643 return err; 3644 } 3645 3646 static void selinux_file_set_fowner(struct file *file) 3647 { 3648 struct file_security_struct *fsec; 3649 3650 fsec = file->f_security; 3651 fsec->fown_sid = current_sid(); 3652 } 3653 3654 static int selinux_file_send_sigiotask(struct task_struct *tsk, 3655 struct fown_struct *fown, int signum) 3656 { 3657 struct file *file; 3658 u32 sid = task_sid(tsk); 3659 u32 perm; 3660 struct file_security_struct *fsec; 3661 3662 /* struct fown_struct is never outside the context of a struct file */ 3663 file = container_of(fown, struct file, f_owner); 3664 3665 fsec = file->f_security; 3666 3667 if (!signum) 3668 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 3669 else 3670 perm = signal_to_av(signum); 3671 3672 return avc_has_perm(fsec->fown_sid, sid, 3673 SECCLASS_PROCESS, perm, NULL); 3674 } 3675 3676 static int selinux_file_receive(struct file *file) 3677 { 3678 const struct cred *cred = current_cred(); 3679 3680 return file_has_perm(cred, file, file_to_av(file)); 3681 } 3682 3683 static int selinux_file_open(struct file *file, const struct cred *cred) 3684 { 3685 struct file_security_struct *fsec; 3686 struct inode_security_struct *isec; 3687 3688 fsec = file->f_security; 3689 isec = inode_security(file_inode(file)); 3690 /* 3691 * Save inode label and policy sequence number 3692 * at open-time so that selinux_file_permission 3693 * can determine whether revalidation is necessary. 3694 * Task label is already saved in the file security 3695 * struct as its SID. 3696 */ 3697 fsec->isid = isec->sid; 3698 fsec->pseqno = avc_policy_seqno(); 3699 /* 3700 * Since the inode label or policy seqno may have changed 3701 * between the selinux_inode_permission check and the saving 3702 * of state above, recheck that access is still permitted. 3703 * Otherwise, access might never be revalidated against the 3704 * new inode label or new policy. 3705 * This check is not redundant - do not remove. 3706 */ 3707 return file_path_has_perm(cred, file, open_file_to_av(file)); 3708 } 3709 3710 /* task security operations */ 3711 3712 static int selinux_task_create(unsigned long clone_flags) 3713 { 3714 return current_has_perm(current, PROCESS__FORK); 3715 } 3716 3717 /* 3718 * allocate the SELinux part of blank credentials 3719 */ 3720 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp) 3721 { 3722 struct task_security_struct *tsec; 3723 3724 tsec = kzalloc(sizeof(struct task_security_struct), gfp); 3725 if (!tsec) 3726 return -ENOMEM; 3727 3728 cred->security = tsec; 3729 return 0; 3730 } 3731 3732 /* 3733 * detach and free the LSM part of a set of credentials 3734 */ 3735 static void selinux_cred_free(struct cred *cred) 3736 { 3737 struct task_security_struct *tsec = cred->security; 3738 3739 /* 3740 * cred->security == NULL if security_cred_alloc_blank() or 3741 * security_prepare_creds() returned an error. 3742 */ 3743 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE); 3744 cred->security = (void *) 0x7UL; 3745 kfree(tsec); 3746 } 3747 3748 /* 3749 * prepare a new set of credentials for modification 3750 */ 3751 static int selinux_cred_prepare(struct cred *new, const struct cred *old, 3752 gfp_t gfp) 3753 { 3754 const struct task_security_struct *old_tsec; 3755 struct task_security_struct *tsec; 3756 3757 old_tsec = old->security; 3758 3759 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp); 3760 if (!tsec) 3761 return -ENOMEM; 3762 3763 new->security = tsec; 3764 return 0; 3765 } 3766 3767 /* 3768 * transfer the SELinux data to a blank set of creds 3769 */ 3770 static void selinux_cred_transfer(struct cred *new, const struct cred *old) 3771 { 3772 const struct task_security_struct *old_tsec = old->security; 3773 struct task_security_struct *tsec = new->security; 3774 3775 *tsec = *old_tsec; 3776 } 3777 3778 /* 3779 * set the security data for a kernel service 3780 * - all the creation contexts are set to unlabelled 3781 */ 3782 static int selinux_kernel_act_as(struct cred *new, u32 secid) 3783 { 3784 struct task_security_struct *tsec = new->security; 3785 u32 sid = current_sid(); 3786 int ret; 3787 3788 ret = avc_has_perm(sid, secid, 3789 SECCLASS_KERNEL_SERVICE, 3790 KERNEL_SERVICE__USE_AS_OVERRIDE, 3791 NULL); 3792 if (ret == 0) { 3793 tsec->sid = secid; 3794 tsec->create_sid = 0; 3795 tsec->keycreate_sid = 0; 3796 tsec->sockcreate_sid = 0; 3797 } 3798 return ret; 3799 } 3800 3801 /* 3802 * set the file creation context in a security record to the same as the 3803 * objective context of the specified inode 3804 */ 3805 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode) 3806 { 3807 struct inode_security_struct *isec = inode_security(inode); 3808 struct task_security_struct *tsec = new->security; 3809 u32 sid = current_sid(); 3810 int ret; 3811 3812 ret = avc_has_perm(sid, isec->sid, 3813 SECCLASS_KERNEL_SERVICE, 3814 KERNEL_SERVICE__CREATE_FILES_AS, 3815 NULL); 3816 3817 if (ret == 0) 3818 tsec->create_sid = isec->sid; 3819 return ret; 3820 } 3821 3822 static int selinux_kernel_module_request(char *kmod_name) 3823 { 3824 u32 sid; 3825 struct common_audit_data ad; 3826 3827 sid = task_sid(current); 3828 3829 ad.type = LSM_AUDIT_DATA_KMOD; 3830 ad.u.kmod_name = kmod_name; 3831 3832 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM, 3833 SYSTEM__MODULE_REQUEST, &ad); 3834 } 3835 3836 static int selinux_kernel_module_from_file(struct file *file) 3837 { 3838 struct common_audit_data ad; 3839 struct inode_security_struct *isec; 3840 struct file_security_struct *fsec; 3841 u32 sid = current_sid(); 3842 int rc; 3843 3844 /* init_module */ 3845 if (file == NULL) 3846 return avc_has_perm(sid, sid, SECCLASS_SYSTEM, 3847 SYSTEM__MODULE_LOAD, NULL); 3848 3849 /* finit_module */ 3850 3851 ad.type = LSM_AUDIT_DATA_FILE; 3852 ad.u.file = file; 3853 3854 fsec = file->f_security; 3855 if (sid != fsec->sid) { 3856 rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad); 3857 if (rc) 3858 return rc; 3859 } 3860 3861 isec = inode_security(file_inode(file)); 3862 return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM, 3863 SYSTEM__MODULE_LOAD, &ad); 3864 } 3865 3866 static int selinux_kernel_read_file(struct file *file, 3867 enum kernel_read_file_id id) 3868 { 3869 int rc = 0; 3870 3871 switch (id) { 3872 case READING_MODULE: 3873 rc = selinux_kernel_module_from_file(file); 3874 break; 3875 default: 3876 break; 3877 } 3878 3879 return rc; 3880 } 3881 3882 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 3883 { 3884 return current_has_perm(p, PROCESS__SETPGID); 3885 } 3886 3887 static int selinux_task_getpgid(struct task_struct *p) 3888 { 3889 return current_has_perm(p, PROCESS__GETPGID); 3890 } 3891 3892 static int selinux_task_getsid(struct task_struct *p) 3893 { 3894 return current_has_perm(p, PROCESS__GETSESSION); 3895 } 3896 3897 static void selinux_task_getsecid(struct task_struct *p, u32 *secid) 3898 { 3899 *secid = task_sid(p); 3900 } 3901 3902 static int selinux_task_setnice(struct task_struct *p, int nice) 3903 { 3904 return current_has_perm(p, PROCESS__SETSCHED); 3905 } 3906 3907 static int selinux_task_setioprio(struct task_struct *p, int ioprio) 3908 { 3909 return current_has_perm(p, PROCESS__SETSCHED); 3910 } 3911 3912 static int selinux_task_getioprio(struct task_struct *p) 3913 { 3914 return current_has_perm(p, PROCESS__GETSCHED); 3915 } 3916 3917 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource, 3918 struct rlimit *new_rlim) 3919 { 3920 struct rlimit *old_rlim = p->signal->rlim + resource; 3921 3922 /* Control the ability to change the hard limit (whether 3923 lowering or raising it), so that the hard limit can 3924 later be used as a safe reset point for the soft limit 3925 upon context transitions. See selinux_bprm_committing_creds. */ 3926 if (old_rlim->rlim_max != new_rlim->rlim_max) 3927 return current_has_perm(p, PROCESS__SETRLIMIT); 3928 3929 return 0; 3930 } 3931 3932 static int selinux_task_setscheduler(struct task_struct *p) 3933 { 3934 return current_has_perm(p, PROCESS__SETSCHED); 3935 } 3936 3937 static int selinux_task_getscheduler(struct task_struct *p) 3938 { 3939 return current_has_perm(p, PROCESS__GETSCHED); 3940 } 3941 3942 static int selinux_task_movememory(struct task_struct *p) 3943 { 3944 return current_has_perm(p, PROCESS__SETSCHED); 3945 } 3946 3947 static int selinux_task_kill(struct task_struct *p, struct siginfo *info, 3948 int sig, u32 secid) 3949 { 3950 u32 perm; 3951 int rc; 3952 3953 if (!sig) 3954 perm = PROCESS__SIGNULL; /* null signal; existence test */ 3955 else 3956 perm = signal_to_av(sig); 3957 if (secid) 3958 rc = avc_has_perm(secid, task_sid(p), 3959 SECCLASS_PROCESS, perm, NULL); 3960 else 3961 rc = current_has_perm(p, perm); 3962 return rc; 3963 } 3964 3965 static int selinux_task_wait(struct task_struct *p) 3966 { 3967 return task_has_perm(p, current, PROCESS__SIGCHLD); 3968 } 3969 3970 static void selinux_task_to_inode(struct task_struct *p, 3971 struct inode *inode) 3972 { 3973 struct inode_security_struct *isec = inode->i_security; 3974 u32 sid = task_sid(p); 3975 3976 spin_lock(&isec->lock); 3977 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3978 isec->sid = sid; 3979 isec->initialized = LABEL_INITIALIZED; 3980 spin_unlock(&isec->lock); 3981 } 3982 3983 /* Returns error only if unable to parse addresses */ 3984 static int selinux_parse_skb_ipv4(struct sk_buff *skb, 3985 struct common_audit_data *ad, u8 *proto) 3986 { 3987 int offset, ihlen, ret = -EINVAL; 3988 struct iphdr _iph, *ih; 3989 3990 offset = skb_network_offset(skb); 3991 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 3992 if (ih == NULL) 3993 goto out; 3994 3995 ihlen = ih->ihl * 4; 3996 if (ihlen < sizeof(_iph)) 3997 goto out; 3998 3999 ad->u.net->v4info.saddr = ih->saddr; 4000 ad->u.net->v4info.daddr = ih->daddr; 4001 ret = 0; 4002 4003 if (proto) 4004 *proto = ih->protocol; 4005 4006 switch (ih->protocol) { 4007 case IPPROTO_TCP: { 4008 struct tcphdr _tcph, *th; 4009 4010 if (ntohs(ih->frag_off) & IP_OFFSET) 4011 break; 4012 4013 offset += ihlen; 4014 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 4015 if (th == NULL) 4016 break; 4017 4018 ad->u.net->sport = th->source; 4019 ad->u.net->dport = th->dest; 4020 break; 4021 } 4022 4023 case IPPROTO_UDP: { 4024 struct udphdr _udph, *uh; 4025 4026 if (ntohs(ih->frag_off) & IP_OFFSET) 4027 break; 4028 4029 offset += ihlen; 4030 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 4031 if (uh == NULL) 4032 break; 4033 4034 ad->u.net->sport = uh->source; 4035 ad->u.net->dport = uh->dest; 4036 break; 4037 } 4038 4039 case IPPROTO_DCCP: { 4040 struct dccp_hdr _dccph, *dh; 4041 4042 if (ntohs(ih->frag_off) & IP_OFFSET) 4043 break; 4044 4045 offset += ihlen; 4046 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 4047 if (dh == NULL) 4048 break; 4049 4050 ad->u.net->sport = dh->dccph_sport; 4051 ad->u.net->dport = dh->dccph_dport; 4052 break; 4053 } 4054 4055 default: 4056 break; 4057 } 4058 out: 4059 return ret; 4060 } 4061 4062 #if IS_ENABLED(CONFIG_IPV6) 4063 4064 /* Returns error only if unable to parse addresses */ 4065 static int selinux_parse_skb_ipv6(struct sk_buff *skb, 4066 struct common_audit_data *ad, u8 *proto) 4067 { 4068 u8 nexthdr; 4069 int ret = -EINVAL, offset; 4070 struct ipv6hdr _ipv6h, *ip6; 4071 __be16 frag_off; 4072 4073 offset = skb_network_offset(skb); 4074 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 4075 if (ip6 == NULL) 4076 goto out; 4077 4078 ad->u.net->v6info.saddr = ip6->saddr; 4079 ad->u.net->v6info.daddr = ip6->daddr; 4080 ret = 0; 4081 4082 nexthdr = ip6->nexthdr; 4083 offset += sizeof(_ipv6h); 4084 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off); 4085 if (offset < 0) 4086 goto out; 4087 4088 if (proto) 4089 *proto = nexthdr; 4090 4091 switch (nexthdr) { 4092 case IPPROTO_TCP: { 4093 struct tcphdr _tcph, *th; 4094 4095 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 4096 if (th == NULL) 4097 break; 4098 4099 ad->u.net->sport = th->source; 4100 ad->u.net->dport = th->dest; 4101 break; 4102 } 4103 4104 case IPPROTO_UDP: { 4105 struct udphdr _udph, *uh; 4106 4107 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 4108 if (uh == NULL) 4109 break; 4110 4111 ad->u.net->sport = uh->source; 4112 ad->u.net->dport = uh->dest; 4113 break; 4114 } 4115 4116 case IPPROTO_DCCP: { 4117 struct dccp_hdr _dccph, *dh; 4118 4119 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 4120 if (dh == NULL) 4121 break; 4122 4123 ad->u.net->sport = dh->dccph_sport; 4124 ad->u.net->dport = dh->dccph_dport; 4125 break; 4126 } 4127 4128 /* includes fragments */ 4129 default: 4130 break; 4131 } 4132 out: 4133 return ret; 4134 } 4135 4136 #endif /* IPV6 */ 4137 4138 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad, 4139 char **_addrp, int src, u8 *proto) 4140 { 4141 char *addrp; 4142 int ret; 4143 4144 switch (ad->u.net->family) { 4145 case PF_INET: 4146 ret = selinux_parse_skb_ipv4(skb, ad, proto); 4147 if (ret) 4148 goto parse_error; 4149 addrp = (char *)(src ? &ad->u.net->v4info.saddr : 4150 &ad->u.net->v4info.daddr); 4151 goto okay; 4152 4153 #if IS_ENABLED(CONFIG_IPV6) 4154 case PF_INET6: 4155 ret = selinux_parse_skb_ipv6(skb, ad, proto); 4156 if (ret) 4157 goto parse_error; 4158 addrp = (char *)(src ? &ad->u.net->v6info.saddr : 4159 &ad->u.net->v6info.daddr); 4160 goto okay; 4161 #endif /* IPV6 */ 4162 default: 4163 addrp = NULL; 4164 goto okay; 4165 } 4166 4167 parse_error: 4168 printk(KERN_WARNING 4169 "SELinux: failure in selinux_parse_skb()," 4170 " unable to parse packet\n"); 4171 return ret; 4172 4173 okay: 4174 if (_addrp) 4175 *_addrp = addrp; 4176 return 0; 4177 } 4178 4179 /** 4180 * selinux_skb_peerlbl_sid - Determine the peer label of a packet 4181 * @skb: the packet 4182 * @family: protocol family 4183 * @sid: the packet's peer label SID 4184 * 4185 * Description: 4186 * Check the various different forms of network peer labeling and determine 4187 * the peer label/SID for the packet; most of the magic actually occurs in 4188 * the security server function security_net_peersid_cmp(). The function 4189 * returns zero if the value in @sid is valid (although it may be SECSID_NULL) 4190 * or -EACCES if @sid is invalid due to inconsistencies with the different 4191 * peer labels. 4192 * 4193 */ 4194 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid) 4195 { 4196 int err; 4197 u32 xfrm_sid; 4198 u32 nlbl_sid; 4199 u32 nlbl_type; 4200 4201 err = selinux_xfrm_skb_sid(skb, &xfrm_sid); 4202 if (unlikely(err)) 4203 return -EACCES; 4204 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid); 4205 if (unlikely(err)) 4206 return -EACCES; 4207 4208 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid); 4209 if (unlikely(err)) { 4210 printk(KERN_WARNING 4211 "SELinux: failure in selinux_skb_peerlbl_sid()," 4212 " unable to determine packet's peer label\n"); 4213 return -EACCES; 4214 } 4215 4216 return 0; 4217 } 4218 4219 /** 4220 * selinux_conn_sid - Determine the child socket label for a connection 4221 * @sk_sid: the parent socket's SID 4222 * @skb_sid: the packet's SID 4223 * @conn_sid: the resulting connection SID 4224 * 4225 * If @skb_sid is valid then the user:role:type information from @sk_sid is 4226 * combined with the MLS information from @skb_sid in order to create 4227 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy 4228 * of @sk_sid. Returns zero on success, negative values on failure. 4229 * 4230 */ 4231 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid) 4232 { 4233 int err = 0; 4234 4235 if (skb_sid != SECSID_NULL) 4236 err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid); 4237 else 4238 *conn_sid = sk_sid; 4239 4240 return err; 4241 } 4242 4243 /* socket security operations */ 4244 4245 static int socket_sockcreate_sid(const struct task_security_struct *tsec, 4246 u16 secclass, u32 *socksid) 4247 { 4248 if (tsec->sockcreate_sid > SECSID_NULL) { 4249 *socksid = tsec->sockcreate_sid; 4250 return 0; 4251 } 4252 4253 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL, 4254 socksid); 4255 } 4256 4257 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms) 4258 { 4259 struct sk_security_struct *sksec = sk->sk_security; 4260 struct common_audit_data ad; 4261 struct lsm_network_audit net = {0,}; 4262 u32 tsid = task_sid(task); 4263 4264 if (sksec->sid == SECINITSID_KERNEL) 4265 return 0; 4266 4267 ad.type = LSM_AUDIT_DATA_NET; 4268 ad.u.net = &net; 4269 ad.u.net->sk = sk; 4270 4271 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad); 4272 } 4273 4274 static int selinux_socket_create(int family, int type, 4275 int protocol, int kern) 4276 { 4277 const struct task_security_struct *tsec = current_security(); 4278 u32 newsid; 4279 u16 secclass; 4280 int rc; 4281 4282 if (kern) 4283 return 0; 4284 4285 secclass = socket_type_to_security_class(family, type, protocol); 4286 rc = socket_sockcreate_sid(tsec, secclass, &newsid); 4287 if (rc) 4288 return rc; 4289 4290 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL); 4291 } 4292 4293 static int selinux_socket_post_create(struct socket *sock, int family, 4294 int type, int protocol, int kern) 4295 { 4296 const struct task_security_struct *tsec = current_security(); 4297 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock)); 4298 struct sk_security_struct *sksec; 4299 u16 sclass = socket_type_to_security_class(family, type, protocol); 4300 u32 sid = SECINITSID_KERNEL; 4301 int err = 0; 4302 4303 if (!kern) { 4304 err = socket_sockcreate_sid(tsec, sclass, &sid); 4305 if (err) 4306 return err; 4307 } 4308 4309 isec->sclass = sclass; 4310 isec->sid = sid; 4311 isec->initialized = LABEL_INITIALIZED; 4312 4313 if (sock->sk) { 4314 sksec = sock->sk->sk_security; 4315 sksec->sclass = sclass; 4316 sksec->sid = sid; 4317 err = selinux_netlbl_socket_post_create(sock->sk, family); 4318 } 4319 4320 return err; 4321 } 4322 4323 /* Range of port numbers used to automatically bind. 4324 Need to determine whether we should perform a name_bind 4325 permission check between the socket and the port number. */ 4326 4327 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 4328 { 4329 struct sock *sk = sock->sk; 4330 u16 family; 4331 int err; 4332 4333 err = sock_has_perm(current, sk, SOCKET__BIND); 4334 if (err) 4335 goto out; 4336 4337 /* 4338 * If PF_INET or PF_INET6, check name_bind permission for the port. 4339 * Multiple address binding for SCTP is not supported yet: we just 4340 * check the first address now. 4341 */ 4342 family = sk->sk_family; 4343 if (family == PF_INET || family == PF_INET6) { 4344 char *addrp; 4345 struct sk_security_struct *sksec = sk->sk_security; 4346 struct common_audit_data ad; 4347 struct lsm_network_audit net = {0,}; 4348 struct sockaddr_in *addr4 = NULL; 4349 struct sockaddr_in6 *addr6 = NULL; 4350 unsigned short snum; 4351 u32 sid, node_perm; 4352 4353 if (family == PF_INET) { 4354 addr4 = (struct sockaddr_in *)address; 4355 snum = ntohs(addr4->sin_port); 4356 addrp = (char *)&addr4->sin_addr.s_addr; 4357 } else { 4358 addr6 = (struct sockaddr_in6 *)address; 4359 snum = ntohs(addr6->sin6_port); 4360 addrp = (char *)&addr6->sin6_addr.s6_addr; 4361 } 4362 4363 if (snum) { 4364 int low, high; 4365 4366 inet_get_local_port_range(sock_net(sk), &low, &high); 4367 4368 if (snum < max(PROT_SOCK, low) || snum > high) { 4369 err = sel_netport_sid(sk->sk_protocol, 4370 snum, &sid); 4371 if (err) 4372 goto out; 4373 ad.type = LSM_AUDIT_DATA_NET; 4374 ad.u.net = &net; 4375 ad.u.net->sport = htons(snum); 4376 ad.u.net->family = family; 4377 err = avc_has_perm(sksec->sid, sid, 4378 sksec->sclass, 4379 SOCKET__NAME_BIND, &ad); 4380 if (err) 4381 goto out; 4382 } 4383 } 4384 4385 switch (sksec->sclass) { 4386 case SECCLASS_TCP_SOCKET: 4387 node_perm = TCP_SOCKET__NODE_BIND; 4388 break; 4389 4390 case SECCLASS_UDP_SOCKET: 4391 node_perm = UDP_SOCKET__NODE_BIND; 4392 break; 4393 4394 case SECCLASS_DCCP_SOCKET: 4395 node_perm = DCCP_SOCKET__NODE_BIND; 4396 break; 4397 4398 default: 4399 node_perm = RAWIP_SOCKET__NODE_BIND; 4400 break; 4401 } 4402 4403 err = sel_netnode_sid(addrp, family, &sid); 4404 if (err) 4405 goto out; 4406 4407 ad.type = LSM_AUDIT_DATA_NET; 4408 ad.u.net = &net; 4409 ad.u.net->sport = htons(snum); 4410 ad.u.net->family = family; 4411 4412 if (family == PF_INET) 4413 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr; 4414 else 4415 ad.u.net->v6info.saddr = addr6->sin6_addr; 4416 4417 err = avc_has_perm(sksec->sid, sid, 4418 sksec->sclass, node_perm, &ad); 4419 if (err) 4420 goto out; 4421 } 4422 out: 4423 return err; 4424 } 4425 4426 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 4427 { 4428 struct sock *sk = sock->sk; 4429 struct sk_security_struct *sksec = sk->sk_security; 4430 int err; 4431 4432 err = sock_has_perm(current, sk, SOCKET__CONNECT); 4433 if (err) 4434 return err; 4435 4436 /* 4437 * If a TCP or DCCP socket, check name_connect permission for the port. 4438 */ 4439 if (sksec->sclass == SECCLASS_TCP_SOCKET || 4440 sksec->sclass == SECCLASS_DCCP_SOCKET) { 4441 struct common_audit_data ad; 4442 struct lsm_network_audit net = {0,}; 4443 struct sockaddr_in *addr4 = NULL; 4444 struct sockaddr_in6 *addr6 = NULL; 4445 unsigned short snum; 4446 u32 sid, perm; 4447 4448 if (sk->sk_family == PF_INET) { 4449 addr4 = (struct sockaddr_in *)address; 4450 if (addrlen < sizeof(struct sockaddr_in)) 4451 return -EINVAL; 4452 snum = ntohs(addr4->sin_port); 4453 } else { 4454 addr6 = (struct sockaddr_in6 *)address; 4455 if (addrlen < SIN6_LEN_RFC2133) 4456 return -EINVAL; 4457 snum = ntohs(addr6->sin6_port); 4458 } 4459 4460 err = sel_netport_sid(sk->sk_protocol, snum, &sid); 4461 if (err) 4462 goto out; 4463 4464 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ? 4465 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT; 4466 4467 ad.type = LSM_AUDIT_DATA_NET; 4468 ad.u.net = &net; 4469 ad.u.net->dport = htons(snum); 4470 ad.u.net->family = sk->sk_family; 4471 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad); 4472 if (err) 4473 goto out; 4474 } 4475 4476 err = selinux_netlbl_socket_connect(sk, address); 4477 4478 out: 4479 return err; 4480 } 4481 4482 static int selinux_socket_listen(struct socket *sock, int backlog) 4483 { 4484 return sock_has_perm(current, sock->sk, SOCKET__LISTEN); 4485 } 4486 4487 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 4488 { 4489 int err; 4490 struct inode_security_struct *isec; 4491 struct inode_security_struct *newisec; 4492 u16 sclass; 4493 u32 sid; 4494 4495 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT); 4496 if (err) 4497 return err; 4498 4499 isec = inode_security_novalidate(SOCK_INODE(sock)); 4500 spin_lock(&isec->lock); 4501 sclass = isec->sclass; 4502 sid = isec->sid; 4503 spin_unlock(&isec->lock); 4504 4505 newisec = inode_security_novalidate(SOCK_INODE(newsock)); 4506 newisec->sclass = sclass; 4507 newisec->sid = sid; 4508 newisec->initialized = LABEL_INITIALIZED; 4509 4510 return 0; 4511 } 4512 4513 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 4514 int size) 4515 { 4516 return sock_has_perm(current, sock->sk, SOCKET__WRITE); 4517 } 4518 4519 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 4520 int size, int flags) 4521 { 4522 return sock_has_perm(current, sock->sk, SOCKET__READ); 4523 } 4524 4525 static int selinux_socket_getsockname(struct socket *sock) 4526 { 4527 return sock_has_perm(current, sock->sk, SOCKET__GETATTR); 4528 } 4529 4530 static int selinux_socket_getpeername(struct socket *sock) 4531 { 4532 return sock_has_perm(current, sock->sk, SOCKET__GETATTR); 4533 } 4534 4535 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname) 4536 { 4537 int err; 4538 4539 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT); 4540 if (err) 4541 return err; 4542 4543 return selinux_netlbl_socket_setsockopt(sock, level, optname); 4544 } 4545 4546 static int selinux_socket_getsockopt(struct socket *sock, int level, 4547 int optname) 4548 { 4549 return sock_has_perm(current, sock->sk, SOCKET__GETOPT); 4550 } 4551 4552 static int selinux_socket_shutdown(struct socket *sock, int how) 4553 { 4554 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN); 4555 } 4556 4557 static int selinux_socket_unix_stream_connect(struct sock *sock, 4558 struct sock *other, 4559 struct sock *newsk) 4560 { 4561 struct sk_security_struct *sksec_sock = sock->sk_security; 4562 struct sk_security_struct *sksec_other = other->sk_security; 4563 struct sk_security_struct *sksec_new = newsk->sk_security; 4564 struct common_audit_data ad; 4565 struct lsm_network_audit net = {0,}; 4566 int err; 4567 4568 ad.type = LSM_AUDIT_DATA_NET; 4569 ad.u.net = &net; 4570 ad.u.net->sk = other; 4571 4572 err = avc_has_perm(sksec_sock->sid, sksec_other->sid, 4573 sksec_other->sclass, 4574 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 4575 if (err) 4576 return err; 4577 4578 /* server child socket */ 4579 sksec_new->peer_sid = sksec_sock->sid; 4580 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid, 4581 &sksec_new->sid); 4582 if (err) 4583 return err; 4584 4585 /* connecting socket */ 4586 sksec_sock->peer_sid = sksec_new->sid; 4587 4588 return 0; 4589 } 4590 4591 static int selinux_socket_unix_may_send(struct socket *sock, 4592 struct socket *other) 4593 { 4594 struct sk_security_struct *ssec = sock->sk->sk_security; 4595 struct sk_security_struct *osec = other->sk->sk_security; 4596 struct common_audit_data ad; 4597 struct lsm_network_audit net = {0,}; 4598 4599 ad.type = LSM_AUDIT_DATA_NET; 4600 ad.u.net = &net; 4601 ad.u.net->sk = other->sk; 4602 4603 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO, 4604 &ad); 4605 } 4606 4607 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex, 4608 char *addrp, u16 family, u32 peer_sid, 4609 struct common_audit_data *ad) 4610 { 4611 int err; 4612 u32 if_sid; 4613 u32 node_sid; 4614 4615 err = sel_netif_sid(ns, ifindex, &if_sid); 4616 if (err) 4617 return err; 4618 err = avc_has_perm(peer_sid, if_sid, 4619 SECCLASS_NETIF, NETIF__INGRESS, ad); 4620 if (err) 4621 return err; 4622 4623 err = sel_netnode_sid(addrp, family, &node_sid); 4624 if (err) 4625 return err; 4626 return avc_has_perm(peer_sid, node_sid, 4627 SECCLASS_NODE, NODE__RECVFROM, ad); 4628 } 4629 4630 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 4631 u16 family) 4632 { 4633 int err = 0; 4634 struct sk_security_struct *sksec = sk->sk_security; 4635 u32 sk_sid = sksec->sid; 4636 struct common_audit_data ad; 4637 struct lsm_network_audit net = {0,}; 4638 char *addrp; 4639 4640 ad.type = LSM_AUDIT_DATA_NET; 4641 ad.u.net = &net; 4642 ad.u.net->netif = skb->skb_iif; 4643 ad.u.net->family = family; 4644 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4645 if (err) 4646 return err; 4647 4648 if (selinux_secmark_enabled()) { 4649 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4650 PACKET__RECV, &ad); 4651 if (err) 4652 return err; 4653 } 4654 4655 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad); 4656 if (err) 4657 return err; 4658 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad); 4659 4660 return err; 4661 } 4662 4663 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4664 { 4665 int err; 4666 struct sk_security_struct *sksec = sk->sk_security; 4667 u16 family = sk->sk_family; 4668 u32 sk_sid = sksec->sid; 4669 struct common_audit_data ad; 4670 struct lsm_network_audit net = {0,}; 4671 char *addrp; 4672 u8 secmark_active; 4673 u8 peerlbl_active; 4674 4675 if (family != PF_INET && family != PF_INET6) 4676 return 0; 4677 4678 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 4679 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4680 family = PF_INET; 4681 4682 /* If any sort of compatibility mode is enabled then handoff processing 4683 * to the selinux_sock_rcv_skb_compat() function to deal with the 4684 * special handling. We do this in an attempt to keep this function 4685 * as fast and as clean as possible. */ 4686 if (!selinux_policycap_netpeer) 4687 return selinux_sock_rcv_skb_compat(sk, skb, family); 4688 4689 secmark_active = selinux_secmark_enabled(); 4690 peerlbl_active = selinux_peerlbl_enabled(); 4691 if (!secmark_active && !peerlbl_active) 4692 return 0; 4693 4694 ad.type = LSM_AUDIT_DATA_NET; 4695 ad.u.net = &net; 4696 ad.u.net->netif = skb->skb_iif; 4697 ad.u.net->family = family; 4698 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4699 if (err) 4700 return err; 4701 4702 if (peerlbl_active) { 4703 u32 peer_sid; 4704 4705 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 4706 if (err) 4707 return err; 4708 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif, 4709 addrp, family, peer_sid, &ad); 4710 if (err) { 4711 selinux_netlbl_err(skb, family, err, 0); 4712 return err; 4713 } 4714 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER, 4715 PEER__RECV, &ad); 4716 if (err) { 4717 selinux_netlbl_err(skb, family, err, 0); 4718 return err; 4719 } 4720 } 4721 4722 if (secmark_active) { 4723 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4724 PACKET__RECV, &ad); 4725 if (err) 4726 return err; 4727 } 4728 4729 return err; 4730 } 4731 4732 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval, 4733 int __user *optlen, unsigned len) 4734 { 4735 int err = 0; 4736 char *scontext; 4737 u32 scontext_len; 4738 struct sk_security_struct *sksec = sock->sk->sk_security; 4739 u32 peer_sid = SECSID_NULL; 4740 4741 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 4742 sksec->sclass == SECCLASS_TCP_SOCKET) 4743 peer_sid = sksec->peer_sid; 4744 if (peer_sid == SECSID_NULL) 4745 return -ENOPROTOOPT; 4746 4747 err = security_sid_to_context(peer_sid, &scontext, &scontext_len); 4748 if (err) 4749 return err; 4750 4751 if (scontext_len > len) { 4752 err = -ERANGE; 4753 goto out_len; 4754 } 4755 4756 if (copy_to_user(optval, scontext, scontext_len)) 4757 err = -EFAULT; 4758 4759 out_len: 4760 if (put_user(scontext_len, optlen)) 4761 err = -EFAULT; 4762 kfree(scontext); 4763 return err; 4764 } 4765 4766 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 4767 { 4768 u32 peer_secid = SECSID_NULL; 4769 u16 family; 4770 struct inode_security_struct *isec; 4771 4772 if (skb && skb->protocol == htons(ETH_P_IP)) 4773 family = PF_INET; 4774 else if (skb && skb->protocol == htons(ETH_P_IPV6)) 4775 family = PF_INET6; 4776 else if (sock) 4777 family = sock->sk->sk_family; 4778 else 4779 goto out; 4780 4781 if (sock && family == PF_UNIX) { 4782 isec = inode_security_novalidate(SOCK_INODE(sock)); 4783 peer_secid = isec->sid; 4784 } else if (skb) 4785 selinux_skb_peerlbl_sid(skb, family, &peer_secid); 4786 4787 out: 4788 *secid = peer_secid; 4789 if (peer_secid == SECSID_NULL) 4790 return -EINVAL; 4791 return 0; 4792 } 4793 4794 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 4795 { 4796 struct sk_security_struct *sksec; 4797 4798 sksec = kzalloc(sizeof(*sksec), priority); 4799 if (!sksec) 4800 return -ENOMEM; 4801 4802 sksec->peer_sid = SECINITSID_UNLABELED; 4803 sksec->sid = SECINITSID_UNLABELED; 4804 sksec->sclass = SECCLASS_SOCKET; 4805 selinux_netlbl_sk_security_reset(sksec); 4806 sk->sk_security = sksec; 4807 4808 return 0; 4809 } 4810 4811 static void selinux_sk_free_security(struct sock *sk) 4812 { 4813 struct sk_security_struct *sksec = sk->sk_security; 4814 4815 sk->sk_security = NULL; 4816 selinux_netlbl_sk_security_free(sksec); 4817 kfree(sksec); 4818 } 4819 4820 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 4821 { 4822 struct sk_security_struct *sksec = sk->sk_security; 4823 struct sk_security_struct *newsksec = newsk->sk_security; 4824 4825 newsksec->sid = sksec->sid; 4826 newsksec->peer_sid = sksec->peer_sid; 4827 newsksec->sclass = sksec->sclass; 4828 4829 selinux_netlbl_sk_security_reset(newsksec); 4830 } 4831 4832 static void selinux_sk_getsecid(struct sock *sk, u32 *secid) 4833 { 4834 if (!sk) 4835 *secid = SECINITSID_ANY_SOCKET; 4836 else { 4837 struct sk_security_struct *sksec = sk->sk_security; 4838 4839 *secid = sksec->sid; 4840 } 4841 } 4842 4843 static void selinux_sock_graft(struct sock *sk, struct socket *parent) 4844 { 4845 struct inode_security_struct *isec = 4846 inode_security_novalidate(SOCK_INODE(parent)); 4847 struct sk_security_struct *sksec = sk->sk_security; 4848 4849 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 4850 sk->sk_family == PF_UNIX) 4851 isec->sid = sksec->sid; 4852 sksec->sclass = isec->sclass; 4853 } 4854 4855 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb, 4856 struct request_sock *req) 4857 { 4858 struct sk_security_struct *sksec = sk->sk_security; 4859 int err; 4860 u16 family = req->rsk_ops->family; 4861 u32 connsid; 4862 u32 peersid; 4863 4864 err = selinux_skb_peerlbl_sid(skb, family, &peersid); 4865 if (err) 4866 return err; 4867 err = selinux_conn_sid(sksec->sid, peersid, &connsid); 4868 if (err) 4869 return err; 4870 req->secid = connsid; 4871 req->peer_secid = peersid; 4872 4873 return selinux_netlbl_inet_conn_request(req, family); 4874 } 4875 4876 static void selinux_inet_csk_clone(struct sock *newsk, 4877 const struct request_sock *req) 4878 { 4879 struct sk_security_struct *newsksec = newsk->sk_security; 4880 4881 newsksec->sid = req->secid; 4882 newsksec->peer_sid = req->peer_secid; 4883 /* NOTE: Ideally, we should also get the isec->sid for the 4884 new socket in sync, but we don't have the isec available yet. 4885 So we will wait until sock_graft to do it, by which 4886 time it will have been created and available. */ 4887 4888 /* We don't need to take any sort of lock here as we are the only 4889 * thread with access to newsksec */ 4890 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family); 4891 } 4892 4893 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb) 4894 { 4895 u16 family = sk->sk_family; 4896 struct sk_security_struct *sksec = sk->sk_security; 4897 4898 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 4899 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4900 family = PF_INET; 4901 4902 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid); 4903 } 4904 4905 static int selinux_secmark_relabel_packet(u32 sid) 4906 { 4907 const struct task_security_struct *__tsec; 4908 u32 tsid; 4909 4910 __tsec = current_security(); 4911 tsid = __tsec->sid; 4912 4913 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL); 4914 } 4915 4916 static void selinux_secmark_refcount_inc(void) 4917 { 4918 atomic_inc(&selinux_secmark_refcount); 4919 } 4920 4921 static void selinux_secmark_refcount_dec(void) 4922 { 4923 atomic_dec(&selinux_secmark_refcount); 4924 } 4925 4926 static void selinux_req_classify_flow(const struct request_sock *req, 4927 struct flowi *fl) 4928 { 4929 fl->flowi_secid = req->secid; 4930 } 4931 4932 static int selinux_tun_dev_alloc_security(void **security) 4933 { 4934 struct tun_security_struct *tunsec; 4935 4936 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL); 4937 if (!tunsec) 4938 return -ENOMEM; 4939 tunsec->sid = current_sid(); 4940 4941 *security = tunsec; 4942 return 0; 4943 } 4944 4945 static void selinux_tun_dev_free_security(void *security) 4946 { 4947 kfree(security); 4948 } 4949 4950 static int selinux_tun_dev_create(void) 4951 { 4952 u32 sid = current_sid(); 4953 4954 /* we aren't taking into account the "sockcreate" SID since the socket 4955 * that is being created here is not a socket in the traditional sense, 4956 * instead it is a private sock, accessible only to the kernel, and 4957 * representing a wide range of network traffic spanning multiple 4958 * connections unlike traditional sockets - check the TUN driver to 4959 * get a better understanding of why this socket is special */ 4960 4961 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE, 4962 NULL); 4963 } 4964 4965 static int selinux_tun_dev_attach_queue(void *security) 4966 { 4967 struct tun_security_struct *tunsec = security; 4968 4969 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET, 4970 TUN_SOCKET__ATTACH_QUEUE, NULL); 4971 } 4972 4973 static int selinux_tun_dev_attach(struct sock *sk, void *security) 4974 { 4975 struct tun_security_struct *tunsec = security; 4976 struct sk_security_struct *sksec = sk->sk_security; 4977 4978 /* we don't currently perform any NetLabel based labeling here and it 4979 * isn't clear that we would want to do so anyway; while we could apply 4980 * labeling without the support of the TUN user the resulting labeled 4981 * traffic from the other end of the connection would almost certainly 4982 * cause confusion to the TUN user that had no idea network labeling 4983 * protocols were being used */ 4984 4985 sksec->sid = tunsec->sid; 4986 sksec->sclass = SECCLASS_TUN_SOCKET; 4987 4988 return 0; 4989 } 4990 4991 static int selinux_tun_dev_open(void *security) 4992 { 4993 struct tun_security_struct *tunsec = security; 4994 u32 sid = current_sid(); 4995 int err; 4996 4997 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET, 4998 TUN_SOCKET__RELABELFROM, NULL); 4999 if (err) 5000 return err; 5001 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, 5002 TUN_SOCKET__RELABELTO, NULL); 5003 if (err) 5004 return err; 5005 tunsec->sid = sid; 5006 5007 return 0; 5008 } 5009 5010 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb) 5011 { 5012 int err = 0; 5013 u32 perm; 5014 struct nlmsghdr *nlh; 5015 struct sk_security_struct *sksec = sk->sk_security; 5016 5017 if (skb->len < NLMSG_HDRLEN) { 5018 err = -EINVAL; 5019 goto out; 5020 } 5021 nlh = nlmsg_hdr(skb); 5022 5023 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm); 5024 if (err) { 5025 if (err == -EINVAL) { 5026 pr_warn_ratelimited("SELinux: unrecognized netlink" 5027 " message: protocol=%hu nlmsg_type=%hu sclass=%s" 5028 " pig=%d comm=%s\n", 5029 sk->sk_protocol, nlh->nlmsg_type, 5030 secclass_map[sksec->sclass - 1].name, 5031 task_pid_nr(current), current->comm); 5032 if (!selinux_enforcing || security_get_allow_unknown()) 5033 err = 0; 5034 } 5035 5036 /* Ignore */ 5037 if (err == -ENOENT) 5038 err = 0; 5039 goto out; 5040 } 5041 5042 err = sock_has_perm(current, sk, perm); 5043 out: 5044 return err; 5045 } 5046 5047 #ifdef CONFIG_NETFILTER 5048 5049 static unsigned int selinux_ip_forward(struct sk_buff *skb, 5050 const struct net_device *indev, 5051 u16 family) 5052 { 5053 int err; 5054 char *addrp; 5055 u32 peer_sid; 5056 struct common_audit_data ad; 5057 struct lsm_network_audit net = {0,}; 5058 u8 secmark_active; 5059 u8 netlbl_active; 5060 u8 peerlbl_active; 5061 5062 if (!selinux_policycap_netpeer) 5063 return NF_ACCEPT; 5064 5065 secmark_active = selinux_secmark_enabled(); 5066 netlbl_active = netlbl_enabled(); 5067 peerlbl_active = selinux_peerlbl_enabled(); 5068 if (!secmark_active && !peerlbl_active) 5069 return NF_ACCEPT; 5070 5071 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0) 5072 return NF_DROP; 5073 5074 ad.type = LSM_AUDIT_DATA_NET; 5075 ad.u.net = &net; 5076 ad.u.net->netif = indev->ifindex; 5077 ad.u.net->family = family; 5078 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0) 5079 return NF_DROP; 5080 5081 if (peerlbl_active) { 5082 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex, 5083 addrp, family, peer_sid, &ad); 5084 if (err) { 5085 selinux_netlbl_err(skb, family, err, 1); 5086 return NF_DROP; 5087 } 5088 } 5089 5090 if (secmark_active) 5091 if (avc_has_perm(peer_sid, skb->secmark, 5092 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad)) 5093 return NF_DROP; 5094 5095 if (netlbl_active) 5096 /* we do this in the FORWARD path and not the POST_ROUTING 5097 * path because we want to make sure we apply the necessary 5098 * labeling before IPsec is applied so we can leverage AH 5099 * protection */ 5100 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0) 5101 return NF_DROP; 5102 5103 return NF_ACCEPT; 5104 } 5105 5106 static unsigned int selinux_ipv4_forward(void *priv, 5107 struct sk_buff *skb, 5108 const struct nf_hook_state *state) 5109 { 5110 return selinux_ip_forward(skb, state->in, PF_INET); 5111 } 5112 5113 #if IS_ENABLED(CONFIG_IPV6) 5114 static unsigned int selinux_ipv6_forward(void *priv, 5115 struct sk_buff *skb, 5116 const struct nf_hook_state *state) 5117 { 5118 return selinux_ip_forward(skb, state->in, PF_INET6); 5119 } 5120 #endif /* IPV6 */ 5121 5122 static unsigned int selinux_ip_output(struct sk_buff *skb, 5123 u16 family) 5124 { 5125 struct sock *sk; 5126 u32 sid; 5127 5128 if (!netlbl_enabled()) 5129 return NF_ACCEPT; 5130 5131 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path 5132 * because we want to make sure we apply the necessary labeling 5133 * before IPsec is applied so we can leverage AH protection */ 5134 sk = skb->sk; 5135 if (sk) { 5136 struct sk_security_struct *sksec; 5137 5138 if (sk_listener(sk)) 5139 /* if the socket is the listening state then this 5140 * packet is a SYN-ACK packet which means it needs to 5141 * be labeled based on the connection/request_sock and 5142 * not the parent socket. unfortunately, we can't 5143 * lookup the request_sock yet as it isn't queued on 5144 * the parent socket until after the SYN-ACK is sent. 5145 * the "solution" is to simply pass the packet as-is 5146 * as any IP option based labeling should be copied 5147 * from the initial connection request (in the IP 5148 * layer). it is far from ideal, but until we get a 5149 * security label in the packet itself this is the 5150 * best we can do. */ 5151 return NF_ACCEPT; 5152 5153 /* standard practice, label using the parent socket */ 5154 sksec = sk->sk_security; 5155 sid = sksec->sid; 5156 } else 5157 sid = SECINITSID_KERNEL; 5158 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0) 5159 return NF_DROP; 5160 5161 return NF_ACCEPT; 5162 } 5163 5164 static unsigned int selinux_ipv4_output(void *priv, 5165 struct sk_buff *skb, 5166 const struct nf_hook_state *state) 5167 { 5168 return selinux_ip_output(skb, PF_INET); 5169 } 5170 5171 #if IS_ENABLED(CONFIG_IPV6) 5172 static unsigned int selinux_ipv6_output(void *priv, 5173 struct sk_buff *skb, 5174 const struct nf_hook_state *state) 5175 { 5176 return selinux_ip_output(skb, PF_INET6); 5177 } 5178 #endif /* IPV6 */ 5179 5180 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb, 5181 int ifindex, 5182 u16 family) 5183 { 5184 struct sock *sk = skb_to_full_sk(skb); 5185 struct sk_security_struct *sksec; 5186 struct common_audit_data ad; 5187 struct lsm_network_audit net = {0,}; 5188 char *addrp; 5189 u8 proto; 5190 5191 if (sk == NULL) 5192 return NF_ACCEPT; 5193 sksec = sk->sk_security; 5194 5195 ad.type = LSM_AUDIT_DATA_NET; 5196 ad.u.net = &net; 5197 ad.u.net->netif = ifindex; 5198 ad.u.net->family = family; 5199 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto)) 5200 return NF_DROP; 5201 5202 if (selinux_secmark_enabled()) 5203 if (avc_has_perm(sksec->sid, skb->secmark, 5204 SECCLASS_PACKET, PACKET__SEND, &ad)) 5205 return NF_DROP_ERR(-ECONNREFUSED); 5206 5207 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto)) 5208 return NF_DROP_ERR(-ECONNREFUSED); 5209 5210 return NF_ACCEPT; 5211 } 5212 5213 static unsigned int selinux_ip_postroute(struct sk_buff *skb, 5214 const struct net_device *outdev, 5215 u16 family) 5216 { 5217 u32 secmark_perm; 5218 u32 peer_sid; 5219 int ifindex = outdev->ifindex; 5220 struct sock *sk; 5221 struct common_audit_data ad; 5222 struct lsm_network_audit net = {0,}; 5223 char *addrp; 5224 u8 secmark_active; 5225 u8 peerlbl_active; 5226 5227 /* If any sort of compatibility mode is enabled then handoff processing 5228 * to the selinux_ip_postroute_compat() function to deal with the 5229 * special handling. We do this in an attempt to keep this function 5230 * as fast and as clean as possible. */ 5231 if (!selinux_policycap_netpeer) 5232 return selinux_ip_postroute_compat(skb, ifindex, family); 5233 5234 secmark_active = selinux_secmark_enabled(); 5235 peerlbl_active = selinux_peerlbl_enabled(); 5236 if (!secmark_active && !peerlbl_active) 5237 return NF_ACCEPT; 5238 5239 sk = skb_to_full_sk(skb); 5240 5241 #ifdef CONFIG_XFRM 5242 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec 5243 * packet transformation so allow the packet to pass without any checks 5244 * since we'll have another chance to perform access control checks 5245 * when the packet is on it's final way out. 5246 * NOTE: there appear to be some IPv6 multicast cases where skb->dst 5247 * is NULL, in this case go ahead and apply access control. 5248 * NOTE: if this is a local socket (skb->sk != NULL) that is in the 5249 * TCP listening state we cannot wait until the XFRM processing 5250 * is done as we will miss out on the SA label if we do; 5251 * unfortunately, this means more work, but it is only once per 5252 * connection. */ 5253 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL && 5254 !(sk && sk_listener(sk))) 5255 return NF_ACCEPT; 5256 #endif 5257 5258 if (sk == NULL) { 5259 /* Without an associated socket the packet is either coming 5260 * from the kernel or it is being forwarded; check the packet 5261 * to determine which and if the packet is being forwarded 5262 * query the packet directly to determine the security label. */ 5263 if (skb->skb_iif) { 5264 secmark_perm = PACKET__FORWARD_OUT; 5265 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid)) 5266 return NF_DROP; 5267 } else { 5268 secmark_perm = PACKET__SEND; 5269 peer_sid = SECINITSID_KERNEL; 5270 } 5271 } else if (sk_listener(sk)) { 5272 /* Locally generated packet but the associated socket is in the 5273 * listening state which means this is a SYN-ACK packet. In 5274 * this particular case the correct security label is assigned 5275 * to the connection/request_sock but unfortunately we can't 5276 * query the request_sock as it isn't queued on the parent 5277 * socket until after the SYN-ACK packet is sent; the only 5278 * viable choice is to regenerate the label like we do in 5279 * selinux_inet_conn_request(). See also selinux_ip_output() 5280 * for similar problems. */ 5281 u32 skb_sid; 5282 struct sk_security_struct *sksec; 5283 5284 sksec = sk->sk_security; 5285 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid)) 5286 return NF_DROP; 5287 /* At this point, if the returned skb peerlbl is SECSID_NULL 5288 * and the packet has been through at least one XFRM 5289 * transformation then we must be dealing with the "final" 5290 * form of labeled IPsec packet; since we've already applied 5291 * all of our access controls on this packet we can safely 5292 * pass the packet. */ 5293 if (skb_sid == SECSID_NULL) { 5294 switch (family) { 5295 case PF_INET: 5296 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED) 5297 return NF_ACCEPT; 5298 break; 5299 case PF_INET6: 5300 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED) 5301 return NF_ACCEPT; 5302 break; 5303 default: 5304 return NF_DROP_ERR(-ECONNREFUSED); 5305 } 5306 } 5307 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid)) 5308 return NF_DROP; 5309 secmark_perm = PACKET__SEND; 5310 } else { 5311 /* Locally generated packet, fetch the security label from the 5312 * associated socket. */ 5313 struct sk_security_struct *sksec = sk->sk_security; 5314 peer_sid = sksec->sid; 5315 secmark_perm = PACKET__SEND; 5316 } 5317 5318 ad.type = LSM_AUDIT_DATA_NET; 5319 ad.u.net = &net; 5320 ad.u.net->netif = ifindex; 5321 ad.u.net->family = family; 5322 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL)) 5323 return NF_DROP; 5324 5325 if (secmark_active) 5326 if (avc_has_perm(peer_sid, skb->secmark, 5327 SECCLASS_PACKET, secmark_perm, &ad)) 5328 return NF_DROP_ERR(-ECONNREFUSED); 5329 5330 if (peerlbl_active) { 5331 u32 if_sid; 5332 u32 node_sid; 5333 5334 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid)) 5335 return NF_DROP; 5336 if (avc_has_perm(peer_sid, if_sid, 5337 SECCLASS_NETIF, NETIF__EGRESS, &ad)) 5338 return NF_DROP_ERR(-ECONNREFUSED); 5339 5340 if (sel_netnode_sid(addrp, family, &node_sid)) 5341 return NF_DROP; 5342 if (avc_has_perm(peer_sid, node_sid, 5343 SECCLASS_NODE, NODE__SENDTO, &ad)) 5344 return NF_DROP_ERR(-ECONNREFUSED); 5345 } 5346 5347 return NF_ACCEPT; 5348 } 5349 5350 static unsigned int selinux_ipv4_postroute(void *priv, 5351 struct sk_buff *skb, 5352 const struct nf_hook_state *state) 5353 { 5354 return selinux_ip_postroute(skb, state->out, PF_INET); 5355 } 5356 5357 #if IS_ENABLED(CONFIG_IPV6) 5358 static unsigned int selinux_ipv6_postroute(void *priv, 5359 struct sk_buff *skb, 5360 const struct nf_hook_state *state) 5361 { 5362 return selinux_ip_postroute(skb, state->out, PF_INET6); 5363 } 5364 #endif /* IPV6 */ 5365 5366 #endif /* CONFIG_NETFILTER */ 5367 5368 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 5369 { 5370 return selinux_nlmsg_perm(sk, skb); 5371 } 5372 5373 static int ipc_alloc_security(struct task_struct *task, 5374 struct kern_ipc_perm *perm, 5375 u16 sclass) 5376 { 5377 struct ipc_security_struct *isec; 5378 u32 sid; 5379 5380 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL); 5381 if (!isec) 5382 return -ENOMEM; 5383 5384 sid = task_sid(task); 5385 isec->sclass = sclass; 5386 isec->sid = sid; 5387 perm->security = isec; 5388 5389 return 0; 5390 } 5391 5392 static void ipc_free_security(struct kern_ipc_perm *perm) 5393 { 5394 struct ipc_security_struct *isec = perm->security; 5395 perm->security = NULL; 5396 kfree(isec); 5397 } 5398 5399 static int msg_msg_alloc_security(struct msg_msg *msg) 5400 { 5401 struct msg_security_struct *msec; 5402 5403 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL); 5404 if (!msec) 5405 return -ENOMEM; 5406 5407 msec->sid = SECINITSID_UNLABELED; 5408 msg->security = msec; 5409 5410 return 0; 5411 } 5412 5413 static void msg_msg_free_security(struct msg_msg *msg) 5414 { 5415 struct msg_security_struct *msec = msg->security; 5416 5417 msg->security = NULL; 5418 kfree(msec); 5419 } 5420 5421 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 5422 u32 perms) 5423 { 5424 struct ipc_security_struct *isec; 5425 struct common_audit_data ad; 5426 u32 sid = current_sid(); 5427 5428 isec = ipc_perms->security; 5429 5430 ad.type = LSM_AUDIT_DATA_IPC; 5431 ad.u.ipc_id = ipc_perms->key; 5432 5433 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad); 5434 } 5435 5436 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 5437 { 5438 return msg_msg_alloc_security(msg); 5439 } 5440 5441 static void selinux_msg_msg_free_security(struct msg_msg *msg) 5442 { 5443 msg_msg_free_security(msg); 5444 } 5445 5446 /* message queue security operations */ 5447 static int selinux_msg_queue_alloc_security(struct msg_queue *msq) 5448 { 5449 struct ipc_security_struct *isec; 5450 struct common_audit_data ad; 5451 u32 sid = current_sid(); 5452 int rc; 5453 5454 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ); 5455 if (rc) 5456 return rc; 5457 5458 isec = msq->q_perm.security; 5459 5460 ad.type = LSM_AUDIT_DATA_IPC; 5461 ad.u.ipc_id = msq->q_perm.key; 5462 5463 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 5464 MSGQ__CREATE, &ad); 5465 if (rc) { 5466 ipc_free_security(&msq->q_perm); 5467 return rc; 5468 } 5469 return 0; 5470 } 5471 5472 static void selinux_msg_queue_free_security(struct msg_queue *msq) 5473 { 5474 ipc_free_security(&msq->q_perm); 5475 } 5476 5477 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg) 5478 { 5479 struct ipc_security_struct *isec; 5480 struct common_audit_data ad; 5481 u32 sid = current_sid(); 5482 5483 isec = msq->q_perm.security; 5484 5485 ad.type = LSM_AUDIT_DATA_IPC; 5486 ad.u.ipc_id = msq->q_perm.key; 5487 5488 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 5489 MSGQ__ASSOCIATE, &ad); 5490 } 5491 5492 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd) 5493 { 5494 int err; 5495 int perms; 5496 5497 switch (cmd) { 5498 case IPC_INFO: 5499 case MSG_INFO: 5500 /* No specific object, just general system-wide information. */ 5501 return task_has_system(current, SYSTEM__IPC_INFO); 5502 case IPC_STAT: 5503 case MSG_STAT: 5504 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 5505 break; 5506 case IPC_SET: 5507 perms = MSGQ__SETATTR; 5508 break; 5509 case IPC_RMID: 5510 perms = MSGQ__DESTROY; 5511 break; 5512 default: 5513 return 0; 5514 } 5515 5516 err = ipc_has_perm(&msq->q_perm, perms); 5517 return err; 5518 } 5519 5520 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg) 5521 { 5522 struct ipc_security_struct *isec; 5523 struct msg_security_struct *msec; 5524 struct common_audit_data ad; 5525 u32 sid = current_sid(); 5526 int rc; 5527 5528 isec = msq->q_perm.security; 5529 msec = msg->security; 5530 5531 /* 5532 * First time through, need to assign label to the message 5533 */ 5534 if (msec->sid == SECINITSID_UNLABELED) { 5535 /* 5536 * Compute new sid based on current process and 5537 * message queue this message will be stored in 5538 */ 5539 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG, 5540 NULL, &msec->sid); 5541 if (rc) 5542 return rc; 5543 } 5544 5545 ad.type = LSM_AUDIT_DATA_IPC; 5546 ad.u.ipc_id = msq->q_perm.key; 5547 5548 /* Can this process write to the queue? */ 5549 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 5550 MSGQ__WRITE, &ad); 5551 if (!rc) 5552 /* Can this process send the message */ 5553 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG, 5554 MSG__SEND, &ad); 5555 if (!rc) 5556 /* Can the message be put in the queue? */ 5557 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ, 5558 MSGQ__ENQUEUE, &ad); 5559 5560 return rc; 5561 } 5562 5563 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 5564 struct task_struct *target, 5565 long type, int mode) 5566 { 5567 struct ipc_security_struct *isec; 5568 struct msg_security_struct *msec; 5569 struct common_audit_data ad; 5570 u32 sid = task_sid(target); 5571 int rc; 5572 5573 isec = msq->q_perm.security; 5574 msec = msg->security; 5575 5576 ad.type = LSM_AUDIT_DATA_IPC; 5577 ad.u.ipc_id = msq->q_perm.key; 5578 5579 rc = avc_has_perm(sid, isec->sid, 5580 SECCLASS_MSGQ, MSGQ__READ, &ad); 5581 if (!rc) 5582 rc = avc_has_perm(sid, msec->sid, 5583 SECCLASS_MSG, MSG__RECEIVE, &ad); 5584 return rc; 5585 } 5586 5587 /* Shared Memory security operations */ 5588 static int selinux_shm_alloc_security(struct shmid_kernel *shp) 5589 { 5590 struct ipc_security_struct *isec; 5591 struct common_audit_data ad; 5592 u32 sid = current_sid(); 5593 int rc; 5594 5595 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM); 5596 if (rc) 5597 return rc; 5598 5599 isec = shp->shm_perm.security; 5600 5601 ad.type = LSM_AUDIT_DATA_IPC; 5602 ad.u.ipc_id = shp->shm_perm.key; 5603 5604 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM, 5605 SHM__CREATE, &ad); 5606 if (rc) { 5607 ipc_free_security(&shp->shm_perm); 5608 return rc; 5609 } 5610 return 0; 5611 } 5612 5613 static void selinux_shm_free_security(struct shmid_kernel *shp) 5614 { 5615 ipc_free_security(&shp->shm_perm); 5616 } 5617 5618 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg) 5619 { 5620 struct ipc_security_struct *isec; 5621 struct common_audit_data ad; 5622 u32 sid = current_sid(); 5623 5624 isec = shp->shm_perm.security; 5625 5626 ad.type = LSM_AUDIT_DATA_IPC; 5627 ad.u.ipc_id = shp->shm_perm.key; 5628 5629 return avc_has_perm(sid, isec->sid, SECCLASS_SHM, 5630 SHM__ASSOCIATE, &ad); 5631 } 5632 5633 /* Note, at this point, shp is locked down */ 5634 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd) 5635 { 5636 int perms; 5637 int err; 5638 5639 switch (cmd) { 5640 case IPC_INFO: 5641 case SHM_INFO: 5642 /* No specific object, just general system-wide information. */ 5643 return task_has_system(current, SYSTEM__IPC_INFO); 5644 case IPC_STAT: 5645 case SHM_STAT: 5646 perms = SHM__GETATTR | SHM__ASSOCIATE; 5647 break; 5648 case IPC_SET: 5649 perms = SHM__SETATTR; 5650 break; 5651 case SHM_LOCK: 5652 case SHM_UNLOCK: 5653 perms = SHM__LOCK; 5654 break; 5655 case IPC_RMID: 5656 perms = SHM__DESTROY; 5657 break; 5658 default: 5659 return 0; 5660 } 5661 5662 err = ipc_has_perm(&shp->shm_perm, perms); 5663 return err; 5664 } 5665 5666 static int selinux_shm_shmat(struct shmid_kernel *shp, 5667 char __user *shmaddr, int shmflg) 5668 { 5669 u32 perms; 5670 5671 if (shmflg & SHM_RDONLY) 5672 perms = SHM__READ; 5673 else 5674 perms = SHM__READ | SHM__WRITE; 5675 5676 return ipc_has_perm(&shp->shm_perm, perms); 5677 } 5678 5679 /* Semaphore security operations */ 5680 static int selinux_sem_alloc_security(struct sem_array *sma) 5681 { 5682 struct ipc_security_struct *isec; 5683 struct common_audit_data ad; 5684 u32 sid = current_sid(); 5685 int rc; 5686 5687 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM); 5688 if (rc) 5689 return rc; 5690 5691 isec = sma->sem_perm.security; 5692 5693 ad.type = LSM_AUDIT_DATA_IPC; 5694 ad.u.ipc_id = sma->sem_perm.key; 5695 5696 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM, 5697 SEM__CREATE, &ad); 5698 if (rc) { 5699 ipc_free_security(&sma->sem_perm); 5700 return rc; 5701 } 5702 return 0; 5703 } 5704 5705 static void selinux_sem_free_security(struct sem_array *sma) 5706 { 5707 ipc_free_security(&sma->sem_perm); 5708 } 5709 5710 static int selinux_sem_associate(struct sem_array *sma, int semflg) 5711 { 5712 struct ipc_security_struct *isec; 5713 struct common_audit_data ad; 5714 u32 sid = current_sid(); 5715 5716 isec = sma->sem_perm.security; 5717 5718 ad.type = LSM_AUDIT_DATA_IPC; 5719 ad.u.ipc_id = sma->sem_perm.key; 5720 5721 return avc_has_perm(sid, isec->sid, SECCLASS_SEM, 5722 SEM__ASSOCIATE, &ad); 5723 } 5724 5725 /* Note, at this point, sma is locked down */ 5726 static int selinux_sem_semctl(struct sem_array *sma, int cmd) 5727 { 5728 int err; 5729 u32 perms; 5730 5731 switch (cmd) { 5732 case IPC_INFO: 5733 case SEM_INFO: 5734 /* No specific object, just general system-wide information. */ 5735 return task_has_system(current, SYSTEM__IPC_INFO); 5736 case GETPID: 5737 case GETNCNT: 5738 case GETZCNT: 5739 perms = SEM__GETATTR; 5740 break; 5741 case GETVAL: 5742 case GETALL: 5743 perms = SEM__READ; 5744 break; 5745 case SETVAL: 5746 case SETALL: 5747 perms = SEM__WRITE; 5748 break; 5749 case IPC_RMID: 5750 perms = SEM__DESTROY; 5751 break; 5752 case IPC_SET: 5753 perms = SEM__SETATTR; 5754 break; 5755 case IPC_STAT: 5756 case SEM_STAT: 5757 perms = SEM__GETATTR | SEM__ASSOCIATE; 5758 break; 5759 default: 5760 return 0; 5761 } 5762 5763 err = ipc_has_perm(&sma->sem_perm, perms); 5764 return err; 5765 } 5766 5767 static int selinux_sem_semop(struct sem_array *sma, 5768 struct sembuf *sops, unsigned nsops, int alter) 5769 { 5770 u32 perms; 5771 5772 if (alter) 5773 perms = SEM__READ | SEM__WRITE; 5774 else 5775 perms = SEM__READ; 5776 5777 return ipc_has_perm(&sma->sem_perm, perms); 5778 } 5779 5780 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 5781 { 5782 u32 av = 0; 5783 5784 av = 0; 5785 if (flag & S_IRUGO) 5786 av |= IPC__UNIX_READ; 5787 if (flag & S_IWUGO) 5788 av |= IPC__UNIX_WRITE; 5789 5790 if (av == 0) 5791 return 0; 5792 5793 return ipc_has_perm(ipcp, av); 5794 } 5795 5796 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 5797 { 5798 struct ipc_security_struct *isec = ipcp->security; 5799 *secid = isec->sid; 5800 } 5801 5802 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode) 5803 { 5804 if (inode) 5805 inode_doinit_with_dentry(inode, dentry); 5806 } 5807 5808 static int selinux_getprocattr(struct task_struct *p, 5809 char *name, char **value) 5810 { 5811 const struct task_security_struct *__tsec; 5812 u32 sid; 5813 int error; 5814 unsigned len; 5815 5816 if (current != p) { 5817 error = current_has_perm(p, PROCESS__GETATTR); 5818 if (error) 5819 return error; 5820 } 5821 5822 rcu_read_lock(); 5823 __tsec = __task_cred(p)->security; 5824 5825 if (!strcmp(name, "current")) 5826 sid = __tsec->sid; 5827 else if (!strcmp(name, "prev")) 5828 sid = __tsec->osid; 5829 else if (!strcmp(name, "exec")) 5830 sid = __tsec->exec_sid; 5831 else if (!strcmp(name, "fscreate")) 5832 sid = __tsec->create_sid; 5833 else if (!strcmp(name, "keycreate")) 5834 sid = __tsec->keycreate_sid; 5835 else if (!strcmp(name, "sockcreate")) 5836 sid = __tsec->sockcreate_sid; 5837 else 5838 goto invalid; 5839 rcu_read_unlock(); 5840 5841 if (!sid) 5842 return 0; 5843 5844 error = security_sid_to_context(sid, value, &len); 5845 if (error) 5846 return error; 5847 return len; 5848 5849 invalid: 5850 rcu_read_unlock(); 5851 return -EINVAL; 5852 } 5853 5854 static int selinux_setprocattr(struct task_struct *p, 5855 char *name, void *value, size_t size) 5856 { 5857 struct task_security_struct *tsec; 5858 struct cred *new; 5859 u32 sid = 0, ptsid; 5860 int error; 5861 char *str = value; 5862 5863 if (current != p) { 5864 /* SELinux only allows a process to change its own 5865 security attributes. */ 5866 return -EACCES; 5867 } 5868 5869 /* 5870 * Basic control over ability to set these attributes at all. 5871 * current == p, but we'll pass them separately in case the 5872 * above restriction is ever removed. 5873 */ 5874 if (!strcmp(name, "exec")) 5875 error = current_has_perm(p, PROCESS__SETEXEC); 5876 else if (!strcmp(name, "fscreate")) 5877 error = current_has_perm(p, PROCESS__SETFSCREATE); 5878 else if (!strcmp(name, "keycreate")) 5879 error = current_has_perm(p, PROCESS__SETKEYCREATE); 5880 else if (!strcmp(name, "sockcreate")) 5881 error = current_has_perm(p, PROCESS__SETSOCKCREATE); 5882 else if (!strcmp(name, "current")) 5883 error = current_has_perm(p, PROCESS__SETCURRENT); 5884 else 5885 error = -EINVAL; 5886 if (error) 5887 return error; 5888 5889 /* Obtain a SID for the context, if one was specified. */ 5890 if (size && str[1] && str[1] != '\n') { 5891 if (str[size-1] == '\n') { 5892 str[size-1] = 0; 5893 size--; 5894 } 5895 error = security_context_to_sid(value, size, &sid, GFP_KERNEL); 5896 if (error == -EINVAL && !strcmp(name, "fscreate")) { 5897 if (!capable(CAP_MAC_ADMIN)) { 5898 struct audit_buffer *ab; 5899 size_t audit_size; 5900 5901 /* We strip a nul only if it is at the end, otherwise the 5902 * context contains a nul and we should audit that */ 5903 if (str[size - 1] == '\0') 5904 audit_size = size - 1; 5905 else 5906 audit_size = size; 5907 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR); 5908 audit_log_format(ab, "op=fscreate invalid_context="); 5909 audit_log_n_untrustedstring(ab, value, audit_size); 5910 audit_log_end(ab); 5911 5912 return error; 5913 } 5914 error = security_context_to_sid_force(value, size, 5915 &sid); 5916 } 5917 if (error) 5918 return error; 5919 } 5920 5921 new = prepare_creds(); 5922 if (!new) 5923 return -ENOMEM; 5924 5925 /* Permission checking based on the specified context is 5926 performed during the actual operation (execve, 5927 open/mkdir/...), when we know the full context of the 5928 operation. See selinux_bprm_set_creds for the execve 5929 checks and may_create for the file creation checks. The 5930 operation will then fail if the context is not permitted. */ 5931 tsec = new->security; 5932 if (!strcmp(name, "exec")) { 5933 tsec->exec_sid = sid; 5934 } else if (!strcmp(name, "fscreate")) { 5935 tsec->create_sid = sid; 5936 } else if (!strcmp(name, "keycreate")) { 5937 error = may_create_key(sid, p); 5938 if (error) 5939 goto abort_change; 5940 tsec->keycreate_sid = sid; 5941 } else if (!strcmp(name, "sockcreate")) { 5942 tsec->sockcreate_sid = sid; 5943 } else if (!strcmp(name, "current")) { 5944 error = -EINVAL; 5945 if (sid == 0) 5946 goto abort_change; 5947 5948 /* Only allow single threaded processes to change context */ 5949 error = -EPERM; 5950 if (!current_is_single_threaded()) { 5951 error = security_bounded_transition(tsec->sid, sid); 5952 if (error) 5953 goto abort_change; 5954 } 5955 5956 /* Check permissions for the transition. */ 5957 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 5958 PROCESS__DYNTRANSITION, NULL); 5959 if (error) 5960 goto abort_change; 5961 5962 /* Check for ptracing, and update the task SID if ok. 5963 Otherwise, leave SID unchanged and fail. */ 5964 ptsid = ptrace_parent_sid(p); 5965 if (ptsid != 0) { 5966 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS, 5967 PROCESS__PTRACE, NULL); 5968 if (error) 5969 goto abort_change; 5970 } 5971 5972 tsec->sid = sid; 5973 } else { 5974 error = -EINVAL; 5975 goto abort_change; 5976 } 5977 5978 commit_creds(new); 5979 return size; 5980 5981 abort_change: 5982 abort_creds(new); 5983 return error; 5984 } 5985 5986 static int selinux_ismaclabel(const char *name) 5987 { 5988 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0); 5989 } 5990 5991 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 5992 { 5993 return security_sid_to_context(secid, secdata, seclen); 5994 } 5995 5996 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 5997 { 5998 return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL); 5999 } 6000 6001 static void selinux_release_secctx(char *secdata, u32 seclen) 6002 { 6003 kfree(secdata); 6004 } 6005 6006 static void selinux_inode_invalidate_secctx(struct inode *inode) 6007 { 6008 struct inode_security_struct *isec = inode->i_security; 6009 6010 spin_lock(&isec->lock); 6011 isec->initialized = LABEL_INVALID; 6012 spin_unlock(&isec->lock); 6013 } 6014 6015 /* 6016 * called with inode->i_mutex locked 6017 */ 6018 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 6019 { 6020 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0); 6021 } 6022 6023 /* 6024 * called with inode->i_mutex locked 6025 */ 6026 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 6027 { 6028 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0); 6029 } 6030 6031 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 6032 { 6033 int len = 0; 6034 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX, 6035 ctx, true); 6036 if (len < 0) 6037 return len; 6038 *ctxlen = len; 6039 return 0; 6040 } 6041 #ifdef CONFIG_KEYS 6042 6043 static int selinux_key_alloc(struct key *k, const struct cred *cred, 6044 unsigned long flags) 6045 { 6046 const struct task_security_struct *tsec; 6047 struct key_security_struct *ksec; 6048 6049 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); 6050 if (!ksec) 6051 return -ENOMEM; 6052 6053 tsec = cred->security; 6054 if (tsec->keycreate_sid) 6055 ksec->sid = tsec->keycreate_sid; 6056 else 6057 ksec->sid = tsec->sid; 6058 6059 k->security = ksec; 6060 return 0; 6061 } 6062 6063 static void selinux_key_free(struct key *k) 6064 { 6065 struct key_security_struct *ksec = k->security; 6066 6067 k->security = NULL; 6068 kfree(ksec); 6069 } 6070 6071 static int selinux_key_permission(key_ref_t key_ref, 6072 const struct cred *cred, 6073 unsigned perm) 6074 { 6075 struct key *key; 6076 struct key_security_struct *ksec; 6077 u32 sid; 6078 6079 /* if no specific permissions are requested, we skip the 6080 permission check. No serious, additional covert channels 6081 appear to be created. */ 6082 if (perm == 0) 6083 return 0; 6084 6085 sid = cred_sid(cred); 6086 6087 key = key_ref_to_ptr(key_ref); 6088 ksec = key->security; 6089 6090 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL); 6091 } 6092 6093 static int selinux_key_getsecurity(struct key *key, char **_buffer) 6094 { 6095 struct key_security_struct *ksec = key->security; 6096 char *context = NULL; 6097 unsigned len; 6098 int rc; 6099 6100 rc = security_sid_to_context(ksec->sid, &context, &len); 6101 if (!rc) 6102 rc = len; 6103 *_buffer = context; 6104 return rc; 6105 } 6106 6107 #endif 6108 6109 static struct security_hook_list selinux_hooks[] = { 6110 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr), 6111 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction), 6112 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder), 6113 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file), 6114 6115 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check), 6116 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme), 6117 LSM_HOOK_INIT(capget, selinux_capget), 6118 LSM_HOOK_INIT(capset, selinux_capset), 6119 LSM_HOOK_INIT(capable, selinux_capable), 6120 LSM_HOOK_INIT(quotactl, selinux_quotactl), 6121 LSM_HOOK_INIT(quota_on, selinux_quota_on), 6122 LSM_HOOK_INIT(syslog, selinux_syslog), 6123 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory), 6124 6125 LSM_HOOK_INIT(netlink_send, selinux_netlink_send), 6126 6127 LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds), 6128 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds), 6129 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds), 6130 LSM_HOOK_INIT(bprm_secureexec, selinux_bprm_secureexec), 6131 6132 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security), 6133 LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security), 6134 LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data), 6135 LSM_HOOK_INIT(sb_remount, selinux_sb_remount), 6136 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount), 6137 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options), 6138 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs), 6139 LSM_HOOK_INIT(sb_mount, selinux_mount), 6140 LSM_HOOK_INIT(sb_umount, selinux_umount), 6141 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts), 6142 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts), 6143 LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str), 6144 6145 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security), 6146 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as), 6147 6148 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security), 6149 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security), 6150 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security), 6151 LSM_HOOK_INIT(inode_create, selinux_inode_create), 6152 LSM_HOOK_INIT(inode_link, selinux_inode_link), 6153 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink), 6154 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink), 6155 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir), 6156 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir), 6157 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod), 6158 LSM_HOOK_INIT(inode_rename, selinux_inode_rename), 6159 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink), 6160 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link), 6161 LSM_HOOK_INIT(inode_permission, selinux_inode_permission), 6162 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr), 6163 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr), 6164 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr), 6165 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr), 6166 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr), 6167 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr), 6168 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr), 6169 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity), 6170 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity), 6171 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity), 6172 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid), 6173 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up), 6174 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr), 6175 6176 LSM_HOOK_INIT(file_permission, selinux_file_permission), 6177 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security), 6178 LSM_HOOK_INIT(file_free_security, selinux_file_free_security), 6179 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl), 6180 LSM_HOOK_INIT(mmap_file, selinux_mmap_file), 6181 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr), 6182 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect), 6183 LSM_HOOK_INIT(file_lock, selinux_file_lock), 6184 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl), 6185 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner), 6186 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask), 6187 LSM_HOOK_INIT(file_receive, selinux_file_receive), 6188 6189 LSM_HOOK_INIT(file_open, selinux_file_open), 6190 6191 LSM_HOOK_INIT(task_create, selinux_task_create), 6192 LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank), 6193 LSM_HOOK_INIT(cred_free, selinux_cred_free), 6194 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare), 6195 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer), 6196 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as), 6197 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as), 6198 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request), 6199 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file), 6200 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid), 6201 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid), 6202 LSM_HOOK_INIT(task_getsid, selinux_task_getsid), 6203 LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid), 6204 LSM_HOOK_INIT(task_setnice, selinux_task_setnice), 6205 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio), 6206 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio), 6207 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit), 6208 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler), 6209 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler), 6210 LSM_HOOK_INIT(task_movememory, selinux_task_movememory), 6211 LSM_HOOK_INIT(task_kill, selinux_task_kill), 6212 LSM_HOOK_INIT(task_wait, selinux_task_wait), 6213 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode), 6214 6215 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission), 6216 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid), 6217 6218 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security), 6219 LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security), 6220 6221 LSM_HOOK_INIT(msg_queue_alloc_security, 6222 selinux_msg_queue_alloc_security), 6223 LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security), 6224 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate), 6225 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl), 6226 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd), 6227 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv), 6228 6229 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security), 6230 LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security), 6231 LSM_HOOK_INIT(shm_associate, selinux_shm_associate), 6232 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl), 6233 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat), 6234 6235 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security), 6236 LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security), 6237 LSM_HOOK_INIT(sem_associate, selinux_sem_associate), 6238 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl), 6239 LSM_HOOK_INIT(sem_semop, selinux_sem_semop), 6240 6241 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate), 6242 6243 LSM_HOOK_INIT(getprocattr, selinux_getprocattr), 6244 LSM_HOOK_INIT(setprocattr, selinux_setprocattr), 6245 6246 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel), 6247 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx), 6248 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid), 6249 LSM_HOOK_INIT(release_secctx, selinux_release_secctx), 6250 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx), 6251 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx), 6252 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx), 6253 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx), 6254 6255 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect), 6256 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send), 6257 6258 LSM_HOOK_INIT(socket_create, selinux_socket_create), 6259 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create), 6260 LSM_HOOK_INIT(socket_bind, selinux_socket_bind), 6261 LSM_HOOK_INIT(socket_connect, selinux_socket_connect), 6262 LSM_HOOK_INIT(socket_listen, selinux_socket_listen), 6263 LSM_HOOK_INIT(socket_accept, selinux_socket_accept), 6264 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg), 6265 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg), 6266 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname), 6267 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername), 6268 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt), 6269 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt), 6270 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown), 6271 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb), 6272 LSM_HOOK_INIT(socket_getpeersec_stream, 6273 selinux_socket_getpeersec_stream), 6274 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram), 6275 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security), 6276 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security), 6277 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security), 6278 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid), 6279 LSM_HOOK_INIT(sock_graft, selinux_sock_graft), 6280 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request), 6281 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone), 6282 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established), 6283 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet), 6284 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc), 6285 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec), 6286 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow), 6287 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security), 6288 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security), 6289 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create), 6290 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue), 6291 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach), 6292 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open), 6293 6294 #ifdef CONFIG_SECURITY_NETWORK_XFRM 6295 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc), 6296 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone), 6297 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free), 6298 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete), 6299 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc), 6300 LSM_HOOK_INIT(xfrm_state_alloc_acquire, 6301 selinux_xfrm_state_alloc_acquire), 6302 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free), 6303 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete), 6304 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup), 6305 LSM_HOOK_INIT(xfrm_state_pol_flow_match, 6306 selinux_xfrm_state_pol_flow_match), 6307 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session), 6308 #endif 6309 6310 #ifdef CONFIG_KEYS 6311 LSM_HOOK_INIT(key_alloc, selinux_key_alloc), 6312 LSM_HOOK_INIT(key_free, selinux_key_free), 6313 LSM_HOOK_INIT(key_permission, selinux_key_permission), 6314 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity), 6315 #endif 6316 6317 #ifdef CONFIG_AUDIT 6318 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init), 6319 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known), 6320 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match), 6321 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free), 6322 #endif 6323 }; 6324 6325 static __init int selinux_init(void) 6326 { 6327 if (!security_module_enable("selinux")) { 6328 selinux_enabled = 0; 6329 return 0; 6330 } 6331 6332 if (!selinux_enabled) { 6333 printk(KERN_INFO "SELinux: Disabled at boot.\n"); 6334 return 0; 6335 } 6336 6337 printk(KERN_INFO "SELinux: Initializing.\n"); 6338 6339 /* Set the security state for the initial task. */ 6340 cred_init_security(); 6341 6342 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC); 6343 6344 sel_inode_cache = kmem_cache_create("selinux_inode_security", 6345 sizeof(struct inode_security_struct), 6346 0, SLAB_PANIC, NULL); 6347 file_security_cache = kmem_cache_create("selinux_file_security", 6348 sizeof(struct file_security_struct), 6349 0, SLAB_PANIC, NULL); 6350 avc_init(); 6351 6352 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks)); 6353 6354 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET)) 6355 panic("SELinux: Unable to register AVC netcache callback\n"); 6356 6357 if (selinux_enforcing) 6358 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n"); 6359 else 6360 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n"); 6361 6362 return 0; 6363 } 6364 6365 static void delayed_superblock_init(struct super_block *sb, void *unused) 6366 { 6367 superblock_doinit(sb, NULL); 6368 } 6369 6370 void selinux_complete_init(void) 6371 { 6372 printk(KERN_DEBUG "SELinux: Completing initialization.\n"); 6373 6374 /* Set up any superblocks initialized prior to the policy load. */ 6375 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n"); 6376 iterate_supers(delayed_superblock_init, NULL); 6377 } 6378 6379 /* SELinux requires early initialization in order to label 6380 all processes and objects when they are created. */ 6381 security_initcall(selinux_init); 6382 6383 #if defined(CONFIG_NETFILTER) 6384 6385 static struct nf_hook_ops selinux_nf_ops[] = { 6386 { 6387 .hook = selinux_ipv4_postroute, 6388 .pf = NFPROTO_IPV4, 6389 .hooknum = NF_INET_POST_ROUTING, 6390 .priority = NF_IP_PRI_SELINUX_LAST, 6391 }, 6392 { 6393 .hook = selinux_ipv4_forward, 6394 .pf = NFPROTO_IPV4, 6395 .hooknum = NF_INET_FORWARD, 6396 .priority = NF_IP_PRI_SELINUX_FIRST, 6397 }, 6398 { 6399 .hook = selinux_ipv4_output, 6400 .pf = NFPROTO_IPV4, 6401 .hooknum = NF_INET_LOCAL_OUT, 6402 .priority = NF_IP_PRI_SELINUX_FIRST, 6403 }, 6404 #if IS_ENABLED(CONFIG_IPV6) 6405 { 6406 .hook = selinux_ipv6_postroute, 6407 .pf = NFPROTO_IPV6, 6408 .hooknum = NF_INET_POST_ROUTING, 6409 .priority = NF_IP6_PRI_SELINUX_LAST, 6410 }, 6411 { 6412 .hook = selinux_ipv6_forward, 6413 .pf = NFPROTO_IPV6, 6414 .hooknum = NF_INET_FORWARD, 6415 .priority = NF_IP6_PRI_SELINUX_FIRST, 6416 }, 6417 { 6418 .hook = selinux_ipv6_output, 6419 .pf = NFPROTO_IPV6, 6420 .hooknum = NF_INET_LOCAL_OUT, 6421 .priority = NF_IP6_PRI_SELINUX_FIRST, 6422 }, 6423 #endif /* IPV6 */ 6424 }; 6425 6426 static int __init selinux_nf_ip_init(void) 6427 { 6428 int err; 6429 6430 if (!selinux_enabled) 6431 return 0; 6432 6433 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n"); 6434 6435 err = nf_register_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops)); 6436 if (err) 6437 panic("SELinux: nf_register_hooks: error %d\n", err); 6438 6439 return 0; 6440 } 6441 6442 __initcall(selinux_nf_ip_init); 6443 6444 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 6445 static void selinux_nf_ip_exit(void) 6446 { 6447 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n"); 6448 6449 nf_unregister_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops)); 6450 } 6451 #endif 6452 6453 #else /* CONFIG_NETFILTER */ 6454 6455 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 6456 #define selinux_nf_ip_exit() 6457 #endif 6458 6459 #endif /* CONFIG_NETFILTER */ 6460 6461 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 6462 static int selinux_disabled; 6463 6464 int selinux_disable(void) 6465 { 6466 if (ss_initialized) { 6467 /* Not permitted after initial policy load. */ 6468 return -EINVAL; 6469 } 6470 6471 if (selinux_disabled) { 6472 /* Only do this once. */ 6473 return -EINVAL; 6474 } 6475 6476 printk(KERN_INFO "SELinux: Disabled at runtime.\n"); 6477 6478 selinux_disabled = 1; 6479 selinux_enabled = 0; 6480 6481 security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks)); 6482 6483 /* Try to destroy the avc node cache */ 6484 avc_disable(); 6485 6486 /* Unregister netfilter hooks. */ 6487 selinux_nf_ip_exit(); 6488 6489 /* Unregister selinuxfs. */ 6490 exit_sel_fs(); 6491 6492 return 0; 6493 } 6494 #endif 6495